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a b s t r a c t

Inspired by the use of travelling waves for propulsion mechanisms adopted by many
animals and organisms, this paper investigates the mechanism with which travelling
waves in beam-like structures induce velocity in a surrounding fluid. This work focuses
on the flow induced around the beam tip and provides an experimental characterisation
of the phenomena. A test rig equipped with Laser Doppler Anemometry (LDA) is used to
investigate the induced fluid velocity and its dependency on the modal response of the
beam. Numerical simulations are performed to complement the experimental tests and
provide further insight into the fluid–structure interaction. The numerical model also
allows for the beam vibration envelope and vibration patterns to be obtained and cor-
related with the measured fluid velocity. Several geometrical variations are considered
in the analysis over a range of frequencies that encompass resonant responses up to the
fourth mode. The results showed that the fluid flow is only marginally affected by the
change in the vibration pattern between the first-two resonant mode; the induced fluid
velocity and, hence, the thrust are mostly driven by the tip velocity of the beam.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Travelling waves in vibrating structures submerged in liquid have been utilised in many engineering applications. It
as been demonstrated that submerged beams can be utilised for transport (Malladi, 2016) or pumping devices (Nisar
t al., 2008; Wang and Fu, 2018). If the beam is clamped at each end, it creates a force that pushes the surrounding
iquid in the axial direction. This configuration was used by Ogawa et al. (2009) to drive a liquid pumping device by
tilising nine piezoelectric patches distributed evenly along the length of the beam. The pumping action was achieved
y applying sinusoidal voltages with a phase difference of 120◦ between each piezoelectric. Following this investigation,

the performance of actuation mechanisms for pumping devices was further improved in Ye et al. (2014) and Yu et al.
(2015), where magnetic-based actuators were used to substitute the piezoelectric patches. The magnetic actuation was
achieved by mounting four cylindrical magnets on the beam surface that are separated equally along the beam length.
Furthermore, the poles are arranged in a way that it creates a 90-degree phase delay between each pole. Although the
use of four magnets on the beam surface can limit miniaturisation, this actuation solution generated more force than the
piezoelectric counterpart, hence, resulting in a higher flow rate (Ye et al., 2014; Yu et al., 2015; Liu and Zhang, 2017).
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In the case of free-free boundary conditions, the beam vibration and interaction with the surrounding fluid can
enerate thrust for self-propelling devices (e.g., artificial swimmers and robotic fish). The literature presents studies of the
elationship between vibration characteristics and the forward velocity induced on the surrounding fluid and highlights
hat different structural mode shapes interact with the surrounding media in different ways. The first two mode shapes of
cantilever beam, for example, resemble thunniform fish locomotion. Parametric studies have been conducted to address
he influence of beam geometries on the propulsive performance of the beam around these low mode shapes (Erturk
nd Delporte, 2011; Shahab et al., 2015). Shahab et al. (2015), for instance, demonstrated that the mean thrust for this
onfiguration is proportional to the beam width and length. Erturk and Delporte (2011) increased the thrust through the
ddition of a caudal fin at the free end of the cantilever beam. The fluid dynamics of the beam tip have been thoroughly
nvestigated in Demirer (2021), Fernández-Prats et al. (2015), Piñeirua et al. (2017), Shelton et al. (2014), Yeh (2016),
llowing the role of other important parameters such as flexural stiffness, tailbeat frequency, heaving and pitching mode,
nd phase lag on the generation of thrust to be highlighted. Recently, further improvements have been attempted through
he use of smart materials and nature inspired geometries (Erturk and Delporte, 2011; Cen and Erturk, 2013; Shahab and
rturk, 2015, 2016), however the sensitivity of thrust to small changes in frequency, especially close to resonance, remains
considerable limitation.
In higher mode shapes, the cantilever beam can mimic anguilliform locomotion such as eels and lamprey (Cui et al.,

018) and therefore are considered more promising for propulsive applications, as concluded by the numerical and
xperimental studies in Piñeirua et al. (2017), Dryden and Ballard (2021), Godoy-Diana and Thiria (2018), Piñeirua et al.
2015), Ramananarivo et al. (2014a,b), Raspa et al. (2014). Ramananarivo et al. (2013), though, reported that the forward
elocity in this configuration depends on the beam tip velocity: a shorter beam can generate higher velocities compared
o a longer beam. This is due to the energy dissipation caused by the surrounding fluid, which results in reduced vibration
mplitudes. This phenomenon also creates a phase delay between the displacements at the free ends of the beam,
hich is conducive to travelling waves. This is also known as progressive waves or propagating waves in the vibration
attern (Ramananarivo et al., 2014a).
Since the dissipation energy in the beam depends on many parameters – boundary conditions, forcing frequencies

nd amplitudes, to name a few – the nature of the vibrational wave in the beam can be easily affected, going from pure
tanding to pure travelling waves. Commonly a mixture of travelling and standing waves is observed (Malladi, 2016),
ith amplification of standing waves mostly occurring at resonance for particular beam configurations. Nonetheless,
esearchers have developed techniques to amplify the amplitude of travelling waves whilst reducing the amplitude of
tanding waves over a wide range of frequencies. Using magnetic induction, for instance, a combination of permanent
nd electro-magnets can be used to induce a distribution of repulsive and attractive forces on the beam. Using a force
istribution with two or more forces 90 degrees out of phase and at the same amplitude, high-amplitude travelling waves
an be generated over a wide range of frequencies, as demonstrated by Ye et al. (2014). Although very promising, the
mplementation of this method presents some challenges due to the precision required to control the force distribution. An
lternative actuation method using piezoelectric patches mounted on the beam surface at different positions is presented
y Musgrave (2021). This would allow the phase and amplitude of the free tips to be controlled more precisely. However,
he work from Malladi et al. (2017) shows that, by varying the phase difference of the two piezoelectric actuators to excite
he third mode, a discrepancy exists between the predicted and generated thrust induced by the travelling waves.

A comprehensive study that relates the characteristics of the travelling wave to the thrust it induces is lacking. Since
iverse and sometimes contradicting results are found in the literature, a more systematic approach to monitor the
luid–structure interaction is here proposed. In this paper an experimental rig that allows for the quantification of the
hrust produced by the travelling wave is presented. The results are used to assess the influence of several geometrical
arameters including the thickness of the beam. In addition, this work extends previous studies by considering travelling
aves in frequency ranges up to the fourth resonant frequency, as well as the measurement of the influence on the
forward) velocity induced in the fluid. This will provide further insight into the complex interaction between travelling
aves in structures and the surrounding media and will be conducive to enhance thrust generation using travelling waves.

. Experimental investigation

The schematic diagram of the experimental setup for the fluid measurements is illustrated in Fig. 1. Fig. 1(a) depicts
he test rig configuration which consists of a metal beam submerged in a 40 x 25 x 25 cm tank filled with 23.5 L of
ater. The submerged beam was attached to an LDS V201 electrodynamic shaker using an L-shaped extension plate.
his configuration results in a base excited cantilevered beam (the constrain of the cantilever undergoes a prescribed
otion). The extension plate was made of stainless-steel materials with a thickness of about 10 times that of the beam,

esulting in its first natural frequency being higher than the operating frequencies of the beam to avoid interference.
PCB Piezotronics Model 352C22 accelerometer was mounted at each end of the extension plate. The accelerometer,

ocated at the clamped section of the beam, was used to monitor that the desired base excitation was achieved, while a
econd accelerometer on the shaker base was used to ensure that the extension plate movement could be approximated
s a rigid body. The two accelerometers were amplified by a PCB Piezotronics Model 428C signal amplifier, before being
onnected to a DAQ. A PicoScope 2405A USB Oscilloscope was used to acquire the signal as well as generate the input
ignal for the shaker. The output of the signal generator was amplified by a 48 W LDS PA25E power amplifier.
2
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Fig. 1. (a) The front view of the test rig, and (b) The schematic diagram of the experimental test with the beam, tank and extension plate shown
n the top view.

A commercially available Dantec Dynamics two component Laser Doppler Anemometry system was used to measure
he velocity profile produced by the moving beam 5 mm below the tip of the beam (x = 0.140 m) on a plane in-line
ith the centre of the beam. The location of the sampled points is indicated by the red cross in Fig. 1(a). Fig. 1(b) shows
he schematic of the acquisition/excitation chain used in the experiments. The system comprises of two lasers, a Bragg
ell, transmitting and receiving optics, and a traverse system. Two diode-pumped solid-state 1 W lasers with wavelengths
f 488 nm and 514 nm were used to generate continuous laser beams. The measurement probe consists of (laser) beam
plitters, a focusing lens and receiving optics. The lasers were oriented at an angle of 2.5◦ to create a measurement volume
f 2.62 × 0.12 x 0.12 mm3. Silver-coated hollow glass spheres, with a mean particle diameter of 10 µm, were used to
omogenously seed the water tank. The seeding particles reflect the fringe pattern generated by the laser beams back into
he head of the probe. Analysis of the frequency shift of the scattered fringe pattern allows the velocity of the particle
assing through the measurement volume to be calculated (Zhang, 2010). The measurement probe was mounted on a
antec 9041T3332 2D traverse system resulting in a spatial resolution of ± 0.01 mm.
Fig. 2 displays the xy-plane through the axis of the beam and the velocity measurement locations. The beam – black

ectangle in Fig. 2 – had a length of 0.135 m and vibrated in the yz-plane. The beam length remains constant throughout
he study, whilst different beam thicknesses are examined. In an ideal case, the beam oscillation in the y-direction induces
ovement of the surrounding liquid in the xy-plane (no out-of-plane movement). Since the LDA system monitors the fluid
elocity in the x- and z-directions, this setup allows for the measurement of the x-velocity component (horizontal) only.

Although the 2D traverse system is capable of moving across the xy-plane, the measurement location was maintained
at 5 mm downstream from the tip of the beam (x = 0.140 m). This is to prevent the LDA lasers to hit the beam and
its reflections to damage the receiving optics. The traverse system was operated to measure velocities in the y-axis from
−0.025 m to 0.025 m. Schematics of the velocity measurements and direction of the fluid in the xy-plane is illustrated
ith red arrows in Fig. 2.
The oscillating beam used in the test has dimensions of 135 mm x 12.75 mm x 0.6 mm. The density of the beam is

pproximately 8442 kg/m3. The flexural rigidity, EI , of the cantilever beam has been estimated by correlating the geometry
nd the density to the natural frequencies of the beam as follows (Inman, 2013):

EI =
ω2

nρA
β4
n

(1)

here, E is the modulus of elasticity, ρ is the density of the material, A is the cross-sectional area, I is the second moment
f area, ωn and βn are the natural frequency and the wave number at the nth mode, respectively. The first-four values of
L for the cantilever beam configuration are 1.8751, 4.6941, 7.8548 and 10.9955.
n

3
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Fig. 2. Fluid measurement location relative to the beam.

Fig. 3. The FRF of the beam with the thickness of 0.6 mm obtained from experiments.

The natural frequencies can be extracted from the peaks of the beam transmissibility frequency response function (FRF).
Data-Physics Quattro spectrum analyser was used to measure the FRF of the beam: this was computed considering the

ransfer function between the velocity at the free tip of the beam, measured by a Polytec PDV-100 laser vibrometer, and
he acceleration at the base, measured with the PCB accelerometer, mounted on the clamped section of the beam. More
nformation on the structural characterisation of the beam can be found in Syuhri et al. (2022). Fig. 3 presents the FRFs of
he 0.6 mm beam from the experimental measurements in two different media: air and water. The beam was subjected
o a random excitation with a frequency content in the range 0–600 Hz. Note that the magnitude of the FRF is the ratio
etween the tip and the base acceleration. Since the laser vibrometer measures velocities, the signal analyser automatically
onverts these into accelerations to obtain a dimensionless ratio. This process which might include filtering procedures
an affect the amplitude of the acceleration responses. Therefore, the FRF magnitude in Fig. 3 may be underestimated.
owever, the location of the peaks, i.e., their frequency, is not affected.
In Fig. 3, the red line demonstrates the FRF of the beam vibrating in the air with a maximum random amplitude

f 600 mV. Note that the gain for the power amplifier was set constant to 3 for all FRF measurements. Therefore, the
aximum amplitude after amplification was about 4.6 V. The characteristics of the output voltage of the power amplifier
ith respect to different gain levels are described in our previous paper in Syuhri et al. (2020a). Because the system in
ir behaves linearly, the beam FRF is independent of the base amplitude: this was assessed by repeating the experiment
t different base amplitudes (the FRFs obtained are identical and therefore are not shown here for brevity). This is an
ndication that the aerodynamic forces are negligible with respect to the elastic forces. This also suggests that the linear
haracteristic observed for the damping forces is predominantly caused by material damping, as shown in Wagg and
eild (2015), using the Galerkin approach in conjunction with the Euler–Bernoulli beam equation. For the beam vibrating
nderwater, the maximum amplitudes of the random signals were varied at 400 mV, 600 mV and 800 mV represented
n Fig. 3 with the blue, black, and green lines, respectively. Unlike in air, it is observed that the FRF magnitude of the
esponses in water decreases with increasing input amplitudes. This change in FRF, particularly for large displacements,
s due to nonlinear fluid forces: these can be approximated with a quadratic function (Syuhri et al., 2020b). For small
isplacements, the quadratic part of the damping function becomes negligible and the damping forces can be assumed to
e linear. Consequently, the FRF for the small displacement become independent from the input amplitudes. In addition,
t is worth mentioning that, while random input signals can offer quick estimation of the modal properties of the beam,
eriodic input signals such as the stepped-sine wave with controlled base amplitudes are more appropriate for assessing
he beam.
4
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Fig. 4. LDA velocity profiles were generated at the forcing frequency of 18 Hz and the base amplitude of 1.8 mm. The normalised velocity, V ∗

ftb , is
he ratio of the induced mean fluid velocity to the maximum base velocity of the beam.

The first three peaks of the FRF in air occur at frequencies of approximately 24 Hz, 150 Hz and 424 Hz. Substituting
hese natural frequencies into Eq. (1), a mean flexural rigidity, EI , of approximately 0.0397 N m2 with a variance of
pproximately 4.6% has been estimated. Note that discrepancies in the flexural rigidity for different natural frequency
alues may be caused by nonlinearities in the beam, affecting the term E, I or a combination of the two. Fig. 3 shows
hat, when the beam vibrates underwater, the FRF magnitude of the first resonant peak is lower than the magnitude of
he second and third peaks. The first three natural frequencies from the measurement of the beam submerged in water
re approximately 13.48 Hz, 84.77 Hz and 243 Hz. It is noticed that the presence of water results in a drop of the beam’s
atural frequencies of about 56%. Therefore, the liquid affects not only to the damping force but also the linear mass per
nit length. By considering the fluid effect, the relationship between the flexural rigidity and natural frequencies can be
xpressed by

EIw =

(
ρA + πρwb2/4

β4
n

)
ω2

n,w (2)

where b is the beam width; the subscript w stands for water (Ramananarivo et al., 2014a). Using Eq. (2), the equivalent
mean flexural rigidity is approximately 0.0379 N m2 with a variance of approximately 4.6%.

The traverse system was set to scan 5 cm along the y-axis with an increment of 2 mm, creating a total of 26
measurement points. To generate an average flow velocity contour along the y-axis, the LDA system was operated in
burst mode with a constant sampling time for every measurement station. To examine the dependency of the mean fluid
velocity on the sample time – the acquisition time at each location – the beam was arbitrarily actuated with a forcing
frequency and base amplitude of 18 Hz and 1.8 mm, respectively. The sampling time was varied from 60 s to 120 s with
steps of 30 s and the results are presented in Fig. 4. Note that it took approximately 52 min to complete the velocity
measurements with a transit time of 120 s. It is evident from the figure that the transit time did not have a significant
impact on the results. Nonetheless, a sampling time of 120 s was used throughout all measurement conditions to ensure
sufficient number of seeding particles passed through the LDA measurement point.

Due to the limitation of the test rig, it is difficult to maintain a constant base amplitude up to 84 Hz where the second
resonance occurs. In addition, cavitation was observed when the beam was forced at 40 Hz with a base displacement of
1.2 mm. This introduces complexities which are out of the scope of this work. Therefore, a maximum forcing frequency
of 35 Hz was considered, limiting this study to the first resonance of the beam. The frequencies of 4 Hz, 9 Hz and 14 Hz
were chosen in order to investigate the fluid velocity induced by the beam when vibrating in the first mode shape. The
frequencies of 18 Hz, 23 Hz and 30 Hz were selected because the beam vibration, at those frequencies, is composed of
both the first and the second mode shapes. The location of the selected frequencies with respect to the FRF is shown in
the left panel in Fig. 5. The right panel in Fig. 5 displays the normalised LDA fluid velocity profiles with respect to the
maximum base velocity of the beam for various frequencies generated with a constant base amplitude of 1.2 mm. It is
seen from the figure that the mean fluid velocity at 4 Hz fluctuates around zero. This is due to the very low base input
velocity for the beam which was estimated to be approximately 0.03 m/s. The negative mean velocity is discussed in
Section 3.2.

At 9 Hz, the maximum fluid velocity is approximately equal to the base input velocity of the beam. At the first
resonance, 14 Hz, the input base velocity is about 0.11 m/s which can generate a maximum fluid velocity of 0.15 m/s. At
18 Hz, the input base motion increases to 0.14 m/s with the fluid velocity decreasing to 0.12 m/s. With the base input
velocity of 0.17 m/s, the beam at 23 Hz can only induce a maximum fluid velocity of 0.1 m/s. Although a maximum mean
fluid velocity of 0.14 m/s can also be achieved at 30 Hz, the base velocity of the beam at this frequency is 0.23 m/s, which
is much higher than the 0.14 m/s corresponding to the 18 Hz case. It can be seen from the right panel in Fig. 5 that the
peak fluid velocity increases until 14 Hz, then decreases for 18 Hz and 23 Hz, to increase again for the 30 Hz case. This
behaviour follows the trend of the FRF magnitude.
5
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Fig. 5. (a) Location of the forcing frequency in the beam FRF and (b) influence of forcing frequencies on the mean fluid velocities.

Fig. 6. Influence of the base amplitudes on the normalised velocity.

Fig. 6 shows the influence of the base amplitudes on the fluid velocities at various frequencies. It is seen that in general
igher base amplitudes correspond to higher fluid velocities. There is a nonlinear trend between the maximum fluid
elocity and base amplitude, demonstrated by the fact that these measurements do not belong to the same plane. At 9 Hz
or instance, the maximum fluid velocity is 0.17 m/s generated with the base input displacement and velocity of 1.2 mm
nd 0.11 m/s, respectively. The normalised velocity, i.e. the ratio of the maximum mean fluid velocity to the base input
elocity, generated with the base amplitude of 2 mm is 1.3 higher than that of the base amplitude of 1.2 mm. Although,
t 14 Hz i.e., the resonant frequency, increasing the base amplitude from 1.2 mm to 2 mm results in decreasing V ∗

ftb by
bout 8%, the maximum mean fluid velocity increases from 0.15 m/s to 0.22 m/s. An insignificant change also occurs at the
requency of 18 Hz, where increasing the base amplitude only affects 10% of V ∗

ftb. Therefore, there is a nonlinear correlation
etween the base motion of the beam and the mean fluid velocity. This finding is in agreement with the previous studies
eported in Piñeirua et al. (2017) where vibrating at the second mode shape generates less reactive thrust than the first
ode shape. They noticed that due to the presence of a node at approximately 0.75L in the second mode shape of the
eam, the motion of the beam at the length of about 0.75 L to 1 L (or from the nodal point to the free tip of the beam)
ontributes to generating reactive thrust, while at 0 L to approximately 0.75 L (or from the base input to the nodal point),
t produces resistive or drag force. On the contrary, the beam vibrating in the first mode shape generates reactive thrust
lmost all along the beam length. Another factor that may contribute to the nonlinear relationship presented in Fig. 6 is
he difference in the slope value around the tip of the beam when vibrating at the first and second modes as reported in
ishtail studies (Matta et al., 2019; Zurman-Nasution et al., 2021). They showed that in low frequencies the largest sweep
ngle could lead to lower thrust generation than the lower values.
To further explore the region between the first and second resonant, another beam with a reduced thickness of 0.3

m was used. The beam length and width are the same as the previous one. The beam density is 8631 kg/m3. Using
he same procedures, Fig. 7 displays the FRF magnitude of the beam with the thickness of 0.3 mm vibrating in air and
ater. The first-three natural frequencies for the beam vibrating in air are approximately 12 Hz, 75.5 Hz and 214.3 Hz.
sing Eq. (1), these frequency values result in a mean modulus of elasticity of 178 GPa. For the measurements in water,
6
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Fig. 7. FRF of the beam with the thickness of 0.3 mm.

Fig. 8. Velocity profiles of the 0.3 mm beam generated with the constant base amplitude of 1.2 mm.

he first three natural frequencies are approximately 4.98 Hz, 32.9 Hz and 94.8 Hz, which result in the mean flexural
igidity of 0.0046 N m2. It is noticed that the discrepancy in the estimated mean flexural rigidity for measurements in
ir and water is increased to 9.6%, compared to the thicker beam model. This may be due to the approximation of the
nalytical approaches that are based on the theory of a fixed rigid body subjected to an oscillating flow (Morison et al.,
950). Therefore, it provides a good approximation for rigid beams and tends to become less accurate for more flexible
eams.
To investigate the region between the first two resonances for the 0.3 mm beam vibrating in water, frequencies of 9

z, 14 Hz and 18 Hz were arbitrarily selected so that the influence of the mode shape can be considered in the analysis. A
orcing frequency of 33 Hz was considered to examine the fluid dynamics while the beam vibrates at the second resonance.
he location of these forcing frequencies in the beam FRF is depicted in Fig. 7 with grey circle markers. Using the same
luid measurement methods, Fig. 8 displays the fluid velocity profiles for various frequencies generated with a constant
ase amplitude of 1.2 mm. At 9 Hz, the maximum fluid velocity is approximately half of the base input velocity which is
stimated at about 0.07 m/s. The deviation between the fluid and base velocity doubles at 14 Hz where the base input
elocity of 0.11 m/s can only produce a horizontal fluid velocity of 0.025 m/s. The ratio of the maximum fluid velocity
o the base input begins to increase after passing 14 Hz. Eventually, V ∗

ftb becomes unity at the frequency of 33 Hz or at
he second resonant. It is noticed from the figure that the peaks of the fluid velocity profile match the trend of the FRF
agnitude. For instance, the lowest FRF magnitude in the first two peaks is observed at 14 Hz which coincides with the

owest fluid velocity among the selected frequencies. It can be concluded that there is a dependency of the fluid velocity
n the beam FRF. This phenomenon is further investigated with numerical simulations in the next section.

. Numerical study and analysis

.1. Numerical setup

The Computational Fluid Dynamics (CFD) model for simulating a three-dimensional fluid–structure interaction (FSI)
onsists of three domains: the solid (beam), the overset boundary, and the background fluid (tank) domain. The beam
imension was taken from the experimental measurements provided in Section 2. The total beam length of 0.135 m
7
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Fig. 9. (a) Global mesh domain; (b) Overset and background boundary; and (c) Boundary layer around the beam.

is defined as 1 chord length, denoted as c. Accordingly, the beam thickness of 0.6 mm is equal to 0.0044c. Since the
tructure is symmetric, a half model was used to reduce the computational time. This results in a beam width of 0.047c.
he geometry of the background boundary was 12c x 5c x 0.5c, whilst the overset boundary was 2c x 0.7c x 0.1c as
hown in Fig. 9(a). The background boundary was extended to ensure the numerical stabilities were achieved. A three-
imensional mesh was generated with the built-in mesh feature in STAR-CCM+. The solid domain mesh was constructed
ith a hexahedral mesh. The overset and background boundary mesh were created with an unstructured polygonal mesh
nd a structured prism layer applied at the solid surface. An illustration of the coordinate axis system, global mesh domain
nd mesh visualisation are presented in Fig. 9.
A surface control was applied to the background mesh, allowing the structured mesh to grow from the near fields of

he overset mesh to the far fields. The far field was set to 20 times of the base size value. A single volumetric control was
pplied to the background and overset meshes to ensure that the two regions have the same cell size. This is to prevent
verlap between the two regions which may alter the flow features. The mesh size of the overset boundary was set to
0% of the base size value. A prism layer was applied to the beam surface of the overset boundary. The total height of the
ear wall prism layer was set to 0.0056c, specified with 10 number of layers.
The unsteady FSI simulation was performed in STAR-CCM+. For the flow physics and solver, the conservation equations

or mass and momentum were solved with the ‘‘Segregated Flow’’ model with the constant density assumption for the
quation of state models. The computation used the Reynolds-Averaged Navier–Stokes (RANS) equations with the k − ω

ST Menter model for turbulence modelling methods. The All-Y+ built-in function in STAR-CMM+, capable of dealing
ith a wide range of near-wall mesh densities, was used for the wall treatment. The density and dynamic viscosity of
ater were set to 997.561 kg/m3 and 8.8871E−4 Pa-s, respectively. Accordingly, the Reynolds numbers in this study,
stimated using an equation in Sader (1998) and Xiu et al. (2018) with ρ = 997.561 kg/m3, η = 0.0010016 N s/m2,
= 0.01275 m and vibration frequency varying from 9 Hz to 33 Hz, are within the range of 2300 ≤ Re ≤ 8400. The
oundary conditions for the background domain were set to the following configurations: (1) Wall for the right, left, top,
ottom and back surface; and (2) Symmetry plane for the front surface. The ‘‘Solid Displacement’’ module was applied to
he solid domain to simulate the transverse vibrations of the beam. The dynamic beam behaviour under loading conditions
8
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Fig. 10. The time series of fluid velocities at the coordinates of x = 0.137 m and y = 0 m.

as evaluated with the ‘‘Solid Stress’’ model which is based on the finite element approach. The material was assumed
o be isotropic with a linear elastic stress–strain relationship. The boundary conditions of the solid domain were set to
he following configurations: (1) Symmetry plane at the front surface, (2) Free at the top, bottom, back and right surface,
nd (3) Constraint with prescribed displacement at the left surface. The displacement input was of a sinusoidal wave
ith the amplitude and frequency values taken from the experiment and applied only in the y-direction. A two-way FSI
oupling was performed directly within STAR-CCM+ to provide continuous interactions between fluid and solid solvers.
he ‘‘Mapped Contact Interface’’ model was used to facilitate the beam and surrounding fluid exchanging displacements
nd fluid forces at every time step. The ‘‘Morphing Motion’’ module, available in the STAR-CCM+’s built-in features, was
pplied to the overset region to follow the deformation of the beam. Accordingly, the overset domain provides two region
nterfaces: the solid–fluid and fluid–fluid interface.

For the unsteady simulation, a temporal 2nd-order discretisation with a temporal resolution of at least 71-time steps
er period was used. The simulation was stopped once the beam and fluid responses reached the steady state, which was
round 1 s to 2 s depending on the forcing frequency. The dynamic responses of the beam and the local velocity around
he beam tip were saved at each step, paying attention that the residuals (continuity, x-momentum, y-momentum and
-momentum) reached a value below 1.0 × 10−4.
The CFD model was validated against experiment data: measurements for the beam with the thickness of 0.6 mm and

ase actuation of 1.8 mm at 18 Hz were used. It is worth mentioning that the validation only considers fluid velocity
ithout including beam responses due to limitations in the test rig. A mesh independence study was performed as part
f the validation process: three grids, namely G1 (coarse grid), G2 (medium grid) and G3 (fine grid), were assessed. The
otal cell count for all domains for grid G1, G2 and G3 are approximately 0.72 million, 2.15 million, and 4.89 million cells,
espectively.

Fig. 10 presents the time series of the fluid velocities recorded at the x = 0.137 m and y = 0 m; for a graphical
epresentation of the measurement location, please refer to Fig. 2. As expected, there is a discrepancy of about 10% based
n the mean velocity at the steady state between the base coarse grid, G1, and the most refined grid, G3. Grid G2 achieves
low level of variance compared to grid G3, while achieving an approximate 44% reduction in the total cell count. To

nvestigate the influence of the prism layer height on the time series of the fluid velocities, two grids G2A and G2B with
rism layer heights of 0.002c and 0.0075c, respectively, were analysed, where c indicates 1 chord length. It is evident from
ig. 10 that the variation of height considered in G2A and G2B do not affect in a significant manner the fluid velocity.
ig. 11 displays the comparison of the mean fluid velocity between the numerical simulation and experimental data. It
s worth mentioning that the mean velocities were taken at x = 0.140 m. The mean velocities at y = 0 m for the coarse
esh G1 and the finer mesh G2 drop approximately 40% at just 3 mm from x = 0.137 m to x = 0.140 m. Although the
ifference of the peak between the experiment data and the coarse grids is small, the mean velocities for the grids, G1
s non-symmetric, and the peaks are offset from the zero point. On the contrary, grid G2 provides a symmetric average
elocity, whilst the peak is almost aligned with the experiment data. Therefore, grid G2 is selected to be used in the study.
t is observed that discrepancies exist between the experiment and simulation at the measurement location away from
he centre, particularly from ±0.005 m to ±0.02 m. Those locations are where the beam tip, vibrating with a peak-to-peak
mplitude of approximately 0.004 m, has minimum influence on the induced flow. The water might circulate in the tank
ith a low velocity and, hence, contribute to overestimating the measured velocity value. However, the flow around the
entre of measurement points should not be affected by this occurrence, demonstrated with an identical velocity profile
etween the experiment and simulation.

.2. Simulation results and discussion

Numerical simulations using the grid model G2 were used to expand the mean velocity results obtained experimentally
sing the beam with the thickness 0.6 mm. The base amplitude was set to a constant value of 1.2 mm and the forcing
9
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Fig. 11. Comparison of the mean fluid velocity of the experimental data and numerical simulation.

Fig. 12. Velocity responses of the 0.6 mm beam at (a) f = 9 Hz and (b) f = 14 Hz. The first row represents the beam envelope and the second
row represents the propagation wave over time; hence the velocity magnitude of the second row can be read from the first row.

frequencies were varied based on the experimental data. Fig. 12 presents the steady state velocity responses of the 0.6
mm beam for various forcing frequencies. It is worth mentioning that the beam velocity was represented in a 3D plot
with respect to the time and beam length. Therefore, the first row of Fig. 12 displays the velocity envelope or the front
view of the 3D plot which describes the velocity amplitude over the beam length, while the second row shows the top
view of the 3D plot which depicts the propagation of the wave over time. Note that the reader can refer to the beam
envelope to read the magnitude of the propagation wave over time. At f = 9 Hz, it is observed that the beam vibrates
in the first mode shape and the base input and the tip are in phase. Due to the damping from the fluid forces, there is a
slight phase delay between the base and the free tip in the vibration pattern. The ratio between the tip and base input
velocity is 2.17. At f = 14 Hz, the tip velocity ratio increases to 2.66 and the phase delay between the base and the
free tip becomes more noticeable. The maximum phase delay is achieved when the forcing frequency equals the natural
frequency: from the beam equation, one obtains that the damping contribution is the highest and it is responsible for
maximising the amplitude of the travelling waves (Syuhri et al., 2022).
10
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Fig. 13. The time series of fluid velocities of the 0.6 mm beam generated at f = 9 Hz probed at (a)–(b) x = 0.136 m and (c)–(d) x = 0.140 m;
where (a) and (c) depict the vertical fluid velocity, whereas (b) and (d) are horizontal fluid velocity. Note that the transient responses from t = 0 s
to 0.7 s are not included.

To demonstrate the fluid behaviour due to the first mode shape, Fig. 13(a) and (b) show the time history of the fluid
velocity in the vertical and horizontal direction, respectively, located at x = 0.136 m actuated with the forcing frequency
of 9 Hz (note the different scales are used for the panels in Fig. 13 to better highlight the features of the flow). From these
figures, it can be seen that the fluid velocity in the vertical and horizontal directions reaches its maximum amplitude at
the same time and the same location. By comparing Fig. 12(a) and Fig. 13(a), the fluid velocity is 90 degrees out of phase
relative to the beam velocity. For the horizontal fluid velocity component shown in Fig. 13(b), the local maximum values
are 0.31 m/s. Due to the fluctuation in the time series, the mean velocity of the horizontal component along the central
axis of the undeformed beam (y=0) is estimated to be 0.17 m/s, which is about half of the local maximum values. Fig. 13(c)
and (d) display the time series of the vertical and horizontal fluid velocity components at x = 0.140 m, respectively. It is
observed that the fluid velocity drops about 54% compared to the measurement at x = 0.136 m. The mean velocity of the
horizontal velocity component is 0.076 m/s which is comparable to the result obtained from the experiment shown in
Fig. 6. High fluctuations in the fluid velocity were also discovered at f = 14 Hz where the maximum horizontal velocity
at x = 0.136 m is 0.58 m/s, while the maximum mean velocity is only 0.3 m/s (note that the results are not shown here
for brevity).

The behaviour in Fig. 12(a) and Fig. 13(b) explains the negative value in the mean velocity of the experimental data at
f = 4 Hz shown in Fig. 8. At low frequencies, the ratio between the free tip and the base displacement is approximately
equal to unity and the beam undergoes a quasi-rigid body movement. Due to pressure differences generated by this
quasi-rigid body movement, positive pressure gradients push the fluid in the positive direction, whilst negative pressure
gradients draw in fluid from the domain. Consequently, due to the oscillations, the mean velocity becomes small, and
in some regions the average value of the horizontal velocities becomes negative. For instance, the mean velocity at
y = 0.005 m and x = 0.136 m shown in Fig. 13(b) is −0.016 m/s. The numerical simulations also confirmed the nonlinear
dependency between the mean fluid velocity and the base amplitude noted in Fig. 6. This is mostly due to the quadratic
nature of the damping function in the beam equation: increasing the input amplitude increases the velocity of the beam
which causes a considerable shift in the damped natural frequency. Consequently, the beam free tip to base displacement
ratio, particularly near resonance, changes with the input amplitude.

Fig. 14(a) and (b) depict the beam velocity responses at 23 Hz and 30 Hz, respectively. The tip velocity ratio at f = 23
Hz is estimated to be 1.96. After the first resonant frequency, the beam response is comprised of the first two mode
shapes (the contribution from other modes is negligible). Note that the free tip and the base of the beam at the second
mode are 180 degrees out-of-phase. For pure standing waves, this creates a node in the deflection with consequent zero
displacement. In the presence of damping, there is a phase delay which makes the amplitude at the node non-zero as
demonstrated by the velocity envelope at f = 23 Hz and f = 30 Hz in Fig. 14. In addition, the position of the node
tends to shift to the free end of the beam. It is also worth noting that when the amplitude of the oscillation reduces, the
contribution of the surrounding fluid to the damping force is considerably smaller. Therefore, the phase delay between
the displacement at the extrema of the beam also becomes smaller.

At f = 30 Hz, the tip velocity ratio is about 1.06. Fig. 15(a) and (b) present the time series of the horizontal fluid
velocity located at x = 0.136 m and x = 0.140 m, respectively (the reader should note the different scales used in Fig. 15
11
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Fig. 14. Velocity responses of the 0.6 mm beam velocity at (a) f = 23 Hz and (b) f = 30 Hz.

Fig. 15. Time series of the fluid velocity at f = 30 Hz probed (a) x = 0.136 m and (b) x = 0.140 m.

he two pictures, necessary to highlight the characteristics of the induced flow). It is seen from the visual observation
hat the fluid velocity is more uniform than that of the beam vibrating in the first mode shape. This can be caused by the
ecrease in the tip velocity ratio.
12
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Fig. 16. Velocity responses of the 0.3 mm beam at (a) f = 9 Hz and (b) f = 33 Hz.

To further investigate the fluid characteristics of the 0.3 mm beam, the thickness of the solid domain of the CFD model
was altered to 0.0022c. All simulation parameters follow the grid model G2. Fig. 16 presents the beam velocity envelope
and vibration pattern of the beam with the thickness of 0.3 mm for various forcing frequencies. The tip ratio at the forcing
frequency of 9 Hz and 18 Hz are 1.3 and 1.08, respectively. At f = 33 Hz or the second resonant frequency, the tip ratio
increases to 1.78, and the vibration pattern presents a noticeable contribution from the travelling waves, indicated by
the phase delay between the displacements at the beam extrema. The horizontal fluid velocity components recorded at
x = 0.136 m for forcing frequencies of 9 Hz and 33 Hz are shown in Fig. 17. It is noticed that at 9 Hz the 0.6 mm beam
oscillates following the first mode shape whereas the vibration of the 0.3 mm beam mostly exhibits the characteristics of
the second mode shape. By comparing Fig. 13(b) and Fig. 17(a) it can be seen that the fluid velocity at the same frequency
of 9 Hz, exhibits less fluctuations when the beam vibrates at the second mode shape than the first mode shape. At 33 Hz,
the maximum fluid velocity shown in Fig. 17(b) is 0.90 m/s while the maximum mean velocity is 0.59 m/s.

4. Model development: Two-point excitation beam model

It has been demonstrated with the 0.3 mm and 0.6 mm beams that the maximum travelling waves are experienced
near resonance. Nonetheless a meaningful comparison of the effect of travelling waves on the fluid dynamics of the two
beams is difficult due to the profound differences between the behaviour of the beam at this frequency and the consequent
travelling wave content in the vibration. To generate travelling waves over a wide range of frequencies, the beam extrema
need to be actuated so that a 90-degree phase delay in the displacements is created. Fig. 18(a) illustrates the schematic
diagram of the two-point excitation model to generate a pure travelling wave. This configuration is a modified version
of the artificial swimmers developed in Ramananarivo et al. (2013). The two magnets located outside of the tank are
connected to a rotating shaft. This can be used to either attract or repel the permanent magnets located on the beam,
generating periodic forces. The 90 degrees out of phase between the beam tips are achieved by arranging the poles of the
permanent magnets as illustrated in Fig. 18(a). Since the beam is mounted to the permanent magnets which are assumed
to be solid, this configuration no rotation of the cross section of the beam is possible at the tips. By assuming that the
magnets undergo rigid body movement without rotation, the beam can be modelled as a clamped–clamped beam with
moving supports illustrated in Fig. 18(b).

The 0.6 mm beam was considered in order to study the influence of the travelling waves in the first mode shape of
the beam on the dynamics of the surrounding fluid. For the clamped–clamped beam configuration, the first-four values of
βn/L are 4.7300, 7.8532, 10.9956 and 14.1372. Rearranging Eq. (2) and using the beam parameters described in Section 2,
the first three natural frequencies of the 0.6 mm beam vibrating in water are approximately 88.88 Hz, 244.99 Hz, and
13
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Fig. 17. Time series of the fluid velocity at (a) f = 9 Hz and (b) f = 33 Hz.

Fig. 18. (a) Schematic diagram of the two-point excitation beam model, and (b) Schematics of the two-point excitation beam model.

480.29 Hz (Inman, 2013). For the numerical simulations, the two-point excitation model was achieved by assigning the
boundary conditions at the left and right walls of the solid domain with a constraint with prescribed displacement. All
simulation parameters, including the base input amplitude and forcing frequency, were identical to the 0.6 mm cantilever
beam model described in Section 3.1. The base input wb1 was set to 90 degrees out of phase relative to wb2. Accordingly,
he ratio between the displacement at the tips (tip ratio) of this model would be equal to one for all forcing conditions.
ig. 19(a) and (b) present the velocity envelope and vibration pattern of the two-point excitation model generated at
= 14 Hz and f = 30 Hz, respectively. At f = 14 Hz the vibration for the cantilever and the two-point excitation beam

model follows the same pattern even with different beam tip ratios. On the contrary, the two models at f = 30 Hz have
different vibration patterns due to different mode shapes, even when the ratio between the displacements at the extrema
of the beams is the same, i.e., equal to one.

Fig. 20 displays the comparison of the mean horizontal velocity for the cantilever and the two-point excitation beam
model presented with the solid and dotted lines, respectively. The cantilever beam provides higher mean velocities than
the two-point excitation beam model for the forcing frequencies of 9 Hz to 23 Hz. At the first mode shape, the maximum
horizontal fluid velocity is determined by the tip velocity rather than the travelling waves. This can be seen from the mean
velocity, particularly at the forcing frequency of 9 Hz and 14 Hz where the two models vibrate in the same mode shape,
but in the case of the cantilever beam a mixture of standing and travelling wave is present, whereas in the two-actuation
system, the waves are purely travelling. However, when the travelling waves are the sole component in the vibration,
fewer fluctuations are observed in the time series of the fluid velocity. For instance, the maximum mean velocity of the
two-point excitation model with the forcing frequency of 9 Hz drops from 0.093 m/s at x = 0.136 m to 0.065 m/s at
x = 0.140 m. This is still small compared to the cantilever beam model where the maximum mean velocity decreases by
approximately 0.09 m/s just 4 mm downstream. At 18 Hz and 23 Hz, the cantilever beam vibrates at the second mode
14
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Fig. 19. Velocity responses of the 0.6 mm beam at (a) f = 14 Hz and (b) f = 30 Hz.

Fig. 20. Comparison of the mean velocity of the 0.6 mm beam for the cantilever (solid-lines) and two-point excitation beam model (dotted-lines).

hape with a 180 degrees phase difference between the two tips, while the two-point excitation model keeps vibrating
n the first mode shape. In this case, travelling waves in the two-point excitation model do not significantly increase the
ean horizontal velocity. For higher frequencies, namely 30 Hz, the mean velocity of the two models converges. Since

he two models have the same tip ratio, this is an indication that at this frequency the vibration pattern (standing vs
ravelling) does not influence the horizontal fluid velocity.

The 0.3 mm beam is used to compare the two-point excitation and the cantilever models when vibrating in the same
ode shape. For the case of the clamped–clamped beam vibrating in water, rearranging Eq. (2) the first three natural

requencies can be obtained: 34.65 Hz, 95.53 Hz and 187.27 Hz. Using the same CFD model for the beam with the thickness
f 0.3 mm, Fig. 21 shows the velocity envelope and vibration pattern of the clamped–clamped beam with moving supports
or various forcing frequencies. From the figure it can be seen that the node of the second mode shape is gradually
ormed when increasing the forcing frequency. The inputs for the excitations were set to wb1 = Af sin(2π ft + θ1) and
b2 = Af sin(2π ft + θ2) where θ1 and θ2 were 0 and π/2 respectively for the first mode: this generates mechanical waves
hat propagate from 0 m to 0.135 m along the beam. In the second mode shape, there are two antinodes that have a 180
egrees phase shift. Therefore, the phase angle θ1 and θ2 at 33 Hz shown in Fig. 21(c) were set to π/2 and 0, respectively,
o maintain the same direction of propagation for the travelling waves.
15
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Fig. 21. Velocity responses of the 0.3 mm beam at (a) f = 18 Hz, (b) f = 23 Hz and (c) f = 33 Hz.

Fig. 22. Comparison of the mean velocity of the 0.3 mm beam at x = 0.136 m; the solid and dotted lines represent the cantilever beam and the
wo-point excitation beam model, respectively.

Fig. 22 presents the comparison of the mean horizontal fluid velocities of the 0.3 mm beam for various forcing fre-
uencies. The cantilever and two-point excitation beam model are indicated with the solid and dotted lines, respectively.
he mean velocities of the two models are comparable particularly for the forcing frequency of 9 Hz, 14 Hz and 18 Hz. The
ame phenomenon can also be seen for the cantilever beam at f = 23 Hz, the green solid line, and the two-point excitation
beam model at f = 33 Hz, the magenta dotted-line, where these two models generate vibration with an identical beam
tip velocity value of 0.27 m/s. It can be concluded for the first two resonance that the fluid velocity is dependent of the
beam tip velocity. The fluctuation in the time series of fluid velocity is due to the high displacement at the tip rather than
the vibration pattern. This can be observed, for instance, at f = 33 Hz for the cantilever beam model shown in Fig. 22
where the tip displacement is approximately 2.48 mm. In addition, the vibration pattern, which can be pure travelling,
pure standing, or hybrid waves, has minimal effect on the fluid dynamics, particularly for the first two mode shapes.
16
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Fig. 23. FRF of the beam with the thickness of 0.1 mm measured in air.

5. Investigation into higher mode

A metal beam with a thickness of 0.1 mm was used to investigate the fluid characteristics up to the fourth beam
resonant frequency. The length and width of the beam are the same as the other beams described in Section 2. The beam
density is 8500 kg/m3. Using Eq. (1), the mean flexural rigidity is about 2.231e-4 N m2. Fig. 23 presents the FRF of the
cantilever beam with the thickness of 0.1 mm vibrating in air obtained from experimental measurements with random
inputs. The first three natural frequencies are approximately 4.50 Hz, 27.25 Hz and 77.25 Hz. Note that the first torsional
natural frequency for a cantilever beam is typically located after the third resonant of the bending (transverse) vibration.
The combination of the transverse and torsional vibration can potentially induce other fluid phenomena which are not the
interest of this study. Since the experimental equipment is not capable of obtaining the FRF for the torsional vibration, a
3D modal analysis was carried out using ABAQUS. It was found that the first and second torsional resonances are at 89.52
Hz and 268.55 Hz. By assuming that the flexural rigidity of the beam is constant for all media, EI = EIw , Eqs. (1) and (2)
can be rearranged to give a relationship between the natural frequencies in vacuum and in water as follows (Koushesh,
2016),

fn,w =
1√

1 +
πρwb
4ρh

fn (3)

Substituting the obtained natural frequencies into Eq. (3) results in the undamped natural frequency values of 1.23 Hz,
7.73 Hz, 21.65 Hz, 25.08 Hz and 42.43 Hz. Note that the frequency of 25.08 Hz is the torsional vibration of the beam.

Using the grid model G2 to simulate the dynamic responses of the 0.1 mm beam, the thickness of the solid domain
of the CFD model was reduced to 0.00074c. The simulation parameters were identical to the cantilever beam model
described in Section 3.1. The ratio of the tip displacement to the base input from the STAR-CCM+ simulation, shown
in Fig. 24, is superimposed with the results from the analytical model of a cantilever beam vibrating in water derived
in Syuhri et al. (2022). Stepped sine waves were used for the input signal for simulating the analytical model with the
forcing frequency varied from 0.5 Hz to 35 Hz and a constant base amplitude of 1.2 mm. It is evident that the analytical
model agrees well with the STAR-CCM+ model, except for the forcing frequency of 18 Hz and 23 Hz. These frequencies
are around the third resonant of the transverse vibration which is close to the first resonant of the torsional vibration.
Since the analytical model only considers the transverse vibration, the discrepancies might be caused by the influence of
the torsional vibration on the 3D simulation of the STAR-CCM+ model. Fig. 25 displays the velocity envelope and vibration
pattern of the cantilever beam for some of the forcing frequencies. There are 3 nodes in the velocity envelope at f = 30
Hz indicating that the beam vibrates in the fourth mode shape. There is also a strong travelling wave pattern at f = 30
Hz demonstrated with the phase delay ± 90 degrees between the two tips.

The two-point excitation beam model is used to generate maximum travelling waves for the 0.1 mm beam. The natural
frequencies for the clamped–clamped beam configuration vibrating in air are 28.04 Hz, 77.28 Hz and 151.50 Hz. These
result in natural frequencies for submerged in water of about 7.85 Hz, 21.65 Hz, 42.43 Hz and 70.15 Hz. Fig. 26 displays the
vibration responses of the two-point excitation model generated with the 0.1 mm beam for various forcing frequencies.
Note that the phase angle θ1 and θ2 of the base inputs for the second mode were set to π/2 and 0, respectively, to keep
he travelling waves in the positive direction. Reducing the thickness of the beam appears to induce more travelling waves
or the cantilever beam model which, in turn, leads to wave patterns comparable to the two-point excitation beam model.
his phenomenon can be particularly seen, for example, at f = 30 Hz where the two models vibrate in different mode
hapes with the same tip velocity value. In addition, an identical wave pattern is also observed for the two models at 9
z, although the result is not shown here for brevity.
The solid and dotted lines in Fig. 27 present the comparison of the horizontal mean velocities at x = 0.136 m for the

antilever and two-point excitation beam model, respectively. The dotted line for f = 4 Hz is indistinguishable due to its

superimposition with the solid line. The maximum mean velocity is still determined by the tip velocity for the forcing
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Fig. 24. FRF of the 0.1 mm beam generated with stepped sine waves.

Fig. 25. Velocity responses of the cantilever beam at (a) f = 4 Hz, (b) f = 14 Hz and (c) f = 30 Hz.

requency up to 9 Hz or the second resonant. The vibration patterns show their influence on the fluid dynamics at 14 Hz.
t this frequency, the tip velocity and the tip ratio are equal for both models, while the mean fluid velocity is higher in the
wo-point excitation model compared to the cantilever beam model. This is an indication that the tip velocity becomes
ndependent of the maximum mean velocity. Following the same trend, the mean velocities superimpose each other at
8 Hz, although the tip velocity of the cantilever beam model is higher than the two-point excitation model. The same
ncident, where the mean fluid velocity of the two-point excitation model exceeds the cantilever beam, can also be seen
t f = 30 Hz. Although the two models have a similar tip velocity, about 0.23 m/s with the tip ratio equal to unity, there
s a significant difference in the mean fluid velocity. In addition, the fluid velocity at 23 Hz is incomparable since this
requency is located between the third resonant, 21.65 Hz of the bending vibration and the first resonant, 25.08 Hz, of
he torsional vibration of the cantilever beam. Therefore, the torsional vibration might also contribute to generate higher
luid velocity responses.

. Discussion on the variation in the beam thickness and induced fluid velocity

Comparisons of induced fluid velocities for one- (cantilever beam) and two-point excitation beam models have been
onsidered in the previous sections. This section examines the relationship between the induced fluid velocity and
18
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Fig. 26. Velocity responses of the two-point excitation model at (a) f = 4 Hz, (b) f = 14 Hz and (c) f = 30 Hz.

Fig. 27. Comparison of the mean fluid velocity at x = 0.136 mm; Solid lines: the cantilever beam model and dotted lines: the two-point excitation
eam model.

ariation in the beam thicknesses. Fig. 28(a) presents the comparison of maximum beam tip velocity of the two models
or various beam thicknesses. It should be noted that the maximum beam tip velocity of the two-excitation beam model
or 0.1 mm to 0.6 mm, displayed with the dotted lines, superimposes each other. Fig. 28(b) shows V ∗

ftt , the maximum mean
luid velocity relative to the maximum beam tip velocity, of the one- and two-point excitation beam models for various
eam thicknesses. As anticipated, the trend line of the fluid velocity of the cantilever beam follows the beam tip velocity
articularly for frequencies up to 20 Hz. This is where the beams vibrate in the first and second mode shapes; and the
nduced fluid velocity is mainly driven by the tip velocity. After passing 20 Hz, the 0.1 mm beam generates higher mean
luid velocity with a lower tip velocity compared to the thickest (0.6 mm) beam. This may be associated with the travelling
aves in the fourth mode shape that promote a higher fluid velocity for the thinner beam. Moreover, the contribution of
ravelling waves can also be seen in Fig. 28(b) where the two-excitation models offer superior V ∗

ftt than the other model
or the same beam thickness.

As anticipated, both models agree that decreasing the beam thickness would increase V ∗

ftt . This is believed to be due
o the contribution of the wave speed that propagates from one tip to another tip. This type of wave is also known as the
19
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Fig. 28. Comparison of (a) the maximum beam tip velocity and (b) normalised fluid velocity, V ∗

ftt , for various beam thicknesses using one-point
(cantilever beam) and two-point excitation beam models.

propulsive wave speed in swimming animals and is defined as the product of the frequency, f and wavelength, λ (van
Weerden et al., 2014). In the beam equation, the latter term is associated with the mode shape of the beam and dictated
primarily by the wave number, βn, given in Eq. (1). For instance, the mode shape of the two-point excitation beam model
can be approximated by a sinusoidal waveform with the wavelength function of nλ/2. Accordingly, reducing the beam
hickness would lower the natural frequency which eventually leads to an increase in the wave number followed by the
avelength.

. Conclusions

This paper investigates the effect of travelling waves on the fluid dynamics of a beam submerged in water. A cantilever
eam model subjected to the base motion was considered for the experimental tests to study the characteristics of the
ean fluid velocity. In an initial examination, the cantilever beams with thicknesses of 0.3 mm and 0.6 mm operating

n the first–second resonant frequencies demonstrate that the normalised fluid velocity with respect to the base input is
ependent on the FRF magnitude of the beam. Further examination using numerical simulations reveals that the mean
luid velocity is determined by the tip velocity, while the ratio between the free and base input tips can induce fluctuation
n the time series of the horizontal fluid velocity. A two-point excitation beam configuration, capable of generating
aximum travelling waves, has been introduced to examine the influence of the travelling waves on fluid dynamics.
y comparing the vibration pattern of the cantilever beam and the two-point excitation beam model, it has been shown
hat the changes in vibration patterns in the first two modes for beams of 0.3 mm and 0.6 mm thickness can promote
igher normalised velocity, V ∗

ftt . Moreover, controlling the tip velocity using the two-point excitation beam model can
educe fluctuations in the time series of the fluid velocity.

To expand the investigation into the higher modes, a more flexible beam with a thickness of 0.1 mm was also examined
sing the numerical approach developed. This allowed the authors to study the fluid flow induced by the vibrations of the
eam up to the fourth resonant frequency. Reducing the beam thickness reduces the natural frequencies as well as the tip
isplacement and increases the magnitude of travelling waves in the cantilever beam model. For the first two resonant
requencies, this can minimise the velocity fluctuations in the surrounding media; the same effect can be obtained using
two-point excitation approach. Comparing the vibration patterns of the one- and two-point excitation model, it became
vident that the mean fluid velocity becomes independent from the tip velocity and relies on travelling waves for higher
requency modes, namely from the third resonance. A proof of this is the fact that the mean fluid velocity of the two-
oint excitation beam model (pure travelling wave) becomes higher than that of the cantilever beam model (mixture of
ravelling and standing wave). Furthermore, the comparison between beams of different thicknesses excited in two points
evealed that the induced fluid velocity is higher for thinner beams.

In terms of the beam configuration, the cantilever beam model can provide a higher mean fluid velocity, particularly
n the case of stiff materials operating at the first two resonant frequencies. However, the tip velocity of the cantilever
eam model reduces with increasing frequency and fluid viscosity which makes the ratio between the displacement at
he extrema of the beam less than one. Therefore, controlling the free tip velocity might be necessary. Using the two-point
xcitation beam model, the tip velocity can be kept constant. In addition, travelling waves can be induced over a wide
ange of frequencies resulting in higher mean fluid velocity, particularly in the case of thin beams operating at higher
odes. However, the phase delay between the displacement of the tips needs to be controlled to maintain the waves
20
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travelling in the same direction for different mode shapes. The needed phase between the actuations can be found by
looking at the phase shift of the antinodes for each mode shape of the clamped–clamped beam configuration.

Our results support the previous observation that the mode shape can affect the induced fluid velocity: the first mode
hape induces more velocity than the second mode shape (Piñeirua et al., 2017). Our simulations also support the previous
tudy in Demirer et al. (2022) that the travelling waves can provide efficient locomotion, indicated by higher normalised
fluid-to-beam tip) velocity, V ∗

ftt . We note that there are nonlinear correlations between the induced fluid velocity and the
ynamic behaviour of the beam. Furthermore, these findings would contribute to the development of devices capable of
elf-propulsion.
Further investigation is required to examine the influence of the torsional vibration in the cantilever beam configu-

ation that occurs close to the third resonant of the bending beam vibration. In the two-point excitation beam model,
he effect of rotation induced by the interaction of the permanent magnets with the external magnetic field needs to
e considered, since this would induce both rotation and deflection along the beam. In addition, it is also important
o investigate the relationship between travelling waves and hydrodynamic thrust, including their swimming efficiency
ratio of mechanical output power to electrical input power to actuate the beam) for various vibration modes and flow
egimes.
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