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Abstract Nonnegative Matrix Factorization (NMF) is the problem of ap-
proximating a given nonnegative matrix M through the conic combination of
two nonnegative low-rank matrices W and H. Traditionally NMF is tackled
by optimizing a specific objective function evaluating the quality of the ap-
proximation. This assessment is often done based on the Frobenius norm. In
this study, we argue that the Frobenius norm as the “point-to-point” distance
may not always be appropriate. Due to the nonnegative combination result-
ing in a polyhedral cone, this conic perspective of NMF may not naturally
align with conventional point-to-point distance measures. Hence, a ray-to-ray
chordal distance is proposed as an alternative way of measuring the discrep-
ancy between M and WH. This measure is related to the Euclidean distance
on the unit sphere, motivating us to employ nonsmooth manifold optimization
approaches.

We apply Riemannian optimization technique to solve chordal-NMF by
casting it on a manifold. Unlike existing works on Riemannian optimization
that require the manifold to be smooth, the nonnegativity in chordal-NMF
is a non-differentiable manifold. We propose a Riemannian Multiplicative Up-
date (RMU) that preserves the convergence properties of Riemannian gradient
descent without breaking the smoothness condition on the manifold.

We showcase the effectiveness of the Chordal-NMF on synthetic datasets
as well as real-world multispectral images.
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1 Introduction

Given a nonnegative matrix M ∈ Rm×n
+ and a rank r ≤ min{m,n}, Nonneg-

ative Matrix Factorization (NMF) is to find factor matrices W ∈ Rm×r
+ and

H ∈ Rr×n
+ such that M ≈ WH [1]. NMF is commonly achieved by minimiz-

ing the Frobenius norm ∥M −WH∥F =
√∑

ij(Mij − (WH)ij)2 (where Mij

is the (i, j)th-entry of M) that measures the quality of the approximation.
Note that the nonnegativity constraints in W and H restrict linear combina-
tion in WH to conic combination, thus M ≈ WH is saying that M , which
represents a point cloud, is contained within a polyhedral cone generated by
the r columns of W with nonnegative weights encoded in H, see Fig. 1. This
conic view of NMF suggests that the point-to-point distance Mij − (WH)ij
in the Frobenius norm does not naturally fit NMF. In this work, we propose
to measure the discrepancy between M and WH using a ray-to-ray distance
that we call chordal distance that we defer the background to the next section.
In this work, we are interested in solving

argmin
W≥0,H≥0

{
F (W ,H) :=

1

n

n∑
j=1

(
1− ⟨m:j ,Wh:j⟩

∥m:j∥2∥Wh:j∥2

)}

= argmax
W≥0,H≥0

n∑
j=1

⟨m:j ,Wh:j⟩
∥m:j∥2∥Wh:j∥2

,

(Chordal-NMF)

where the objective function F : Rm×r × Rr×n → R is defined as the chordal
distance between WH and M , ∥ · ∥2 is the Euclidean norm, ⟨·, ·⟩ is the Eu-
clidean inner product, and m:j is the jth column of M . The constraints ≥ 0
denote element-wise nonnegativity, where 0 is zero matrix of the appropriate
size.

Contribution. Our contributions are 3-folds.

1. We propose a new model (Chordal-NMF) with motivation. To the best of
our knowledge, such problem is new and has not been studied in the NMF
literature.

2. Solving Chordal-NMF is not trivial: it is a nonsmooth nonconvex and block-
nonconvex problem. We propose a Block Coordinate Descent (BCD) algo-
rithm with Riemannian Multiplicative Update (RMU) for solving Chordal-
NMF.

– We provide a theory on deriving the Riemannian gradient of the objec-
tive function F .
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Fig. 1 Left: Picture of a rank-3 NMF. Data points (in black) that represent the columns
of M encapsulated by a polyhedral cone generated by r = 3 columns w1,w2,w3 (in red).
Right: The sphere S2+ in the nonnegative orthant R3

+. The black dot is closer to the blue dot
in Euclidean distance, but closer to the pink dot in chordal distance, which is equivalent to
the geodesic arc length on the sphere.

– The nonnegativity constraints in Chordal-NMF introduce nondifferen-
tiability in the manifold and make some existing manifold techniques
infeasible or ineffective. We propose RMU to solve the nonsmoothness
issue in the manifold optimization. In particular, we show that, if the
initial variable in the algorithm is feasible, the whole sequence is guar-
anteed to be feasible.

3. We showcase the effectiveness of the Chordal-NMF on synthetic datasets
as well as real-world multispectral images.

Literature review. NMF has a rich literature, for details we refer the reader
to the book [1]. We review the literature related to chordal distance in Sec-
tion 2 and Riemannian optimization in Section 3. As we will see in the next
section, chordal distance is linked to the cosine similarity, commonly used in
face recognition task [2,3] and in deep learning as normalization [4]. Note that
these works transformed the data to another space (known as Metric Learning)
to improve the use of cosine similarity, in this work we do not perform data
transformation. The chordal distance is also linked to the Hamming distance
on binary code, which is in fact a form of cosine similarity [5]. Chordal dis-
tance is related to the Euclidean distance on unit sphere [6], in which manifold
optimization technique can be applied.

Paper organization and notation. In the remaining of this section, we describe
the overall algorithmic framework on solving Chordal-NMF. In Section 2 we
discuss the motivation and the details of the chordal distance. In Section 3
we review Riemannian optimization techniques. In Section 4 and Section 5
we discuss how do we update the variable H and W , respectively. Section 6
contains the experiments and Section 7 sketeches the conclusion.
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Notation. We use {italic, bold italic, bold italic capital} letters to denote
{scalar, vector, matrix} resp.. Given a matrix A, we denote a:j the jth column
of A and aj: the jth row of A. We denoted by (M)ij or Mij the ij component
of matrix M . The notation ⟨ξ, ζ⟩ denotes the Euclidean inner product in the
standard basis, and the norm ∥ξ∥2 denotes the Euclidean norm of ξ. Given
a vector v ̸= 0, we denote v̂ the unit vector of v, i.e., v̂ = v/∥v∥2. If v = 0
then we define v̂ to be any unit vector. We denote [θ]+ = max{0, θ} element-
wise. The symbol k denotes iteration counter, and i, j, p, q, s, t denote column
and/or row indices. We use ξ, ζ to denote dummy variable, such as min

ξ
f(ξ).

We introduce new notation when needed.

Useful tools. We list two useful tools. The first one is useful for deriving the
Euclidean gradient of the objective function.

Proposition 1 Let A ∈ Rm×n, b ∈ Rm, c ∈ Rm,D ∈ Rp×n, e ∈ Rp and
f(x) = ⟨Ax + b, c⟩/∥Dx + e∥2. The Euclidean gradient of f in Rn, denoted
as ∇f , for Dx+ e ̸= 0, is

∇f(x) =
∥Dx+ e∥22A⊤c− ⟨Ax+ b, c⟩D⊤(Dx+ e)

∥Dx+ e∥32
.

We put the proof in the appendix.
Next, in this paper, we make use of a useful tensor product formula. Let

V and W be two vector spaces with inner product. Denote the tensor product
of v ∈ V and w ∈ W as v ⊗w ∈ V ⊗W . Then we have

⟨v,x⟩w = (w ⊗ v)(x). (1)

Block Coordinate Descent framework. To solve the Chordal-NMF, we use Block
Coordinate Descent as shown in Algorithm 1 with starting point (W0,H0).

To simplify the discussion, we assumeM ∈ Rm×n
+ contains no zero columns

(zero columns provide no information so we discard them). Next, we assume
M is pre-processed as m:j = m:j/∥m:j∥2 so all columns m:j have unit ℓ2-
norm and we hide ∥m:j∥2 in (Chordal-NMF). For compactness we hide the
factor 1/n in the subproblem formulation inside Algorithm 1.

Chordal-NMF is not symmetric. Classical NMF in Frobenious norm is sym-
metric: ∥M−WH∥F = ∥M⊤−H⊤W⊤∥F so we can use the same procedure
updating H to update W (subject to transpose). Chordal-NMF measures the
cosine distance between m:j and Wh:j , not between the rows mi: and wi,:H,
so chordal-NMF is not symmetric. The asymmetric leads to the W-subproblem
and H-subproblem have different structure, and we use different approaches
to solve the subproblems. We solve H-subproblem column-wise as in lines 3-4
in Algorithm 1, to be discussed in Section 4. We solve W-subproblem matrix-
wise, to be discussed in Section 5.
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Algorithm 1: Block Coordinate Descent (BCD) for Chordal-NMF

1 for k = 1, 2, ... do

2 H-subproblem Update Hk+1 using column-wise update

3 for j = 1, 2, ..., n do

4 h-subproblem Update h:j,k+1 = argmax
h≥0

〈
m:j ,Wh

〉
∥Wh∥2

.

5 W-subproblem Update

Wk+1 = argmax
W≥0

{
F (W ;H) =

n∑
j=1

⟨m:j ,Wh:j⟩
∥Wh:j∥2

}∣∣∣∣∣
H=Hk+1

.

2 The chordal distance

In this section, we discuss the motivation and the details of Chordal-NMF.

Deriving Chordal-NMF from Frobenius NMF. From the conic view of NMF
discussed in the introduction, the geometry of chordal distance can be seen
as the Euclidean distance between unit vectors on the unit sphere. Expanding
the squared-Frobenius objective ∥M − WH∥2F =

∑
j ∥m:j − Wh:j∥22 gives∑

j ∥m:j∥22−2
〈
m:j ,Wh:j⟩+

∥∥Wh:j∥22, which tells that the pairwise (squared-

)Euclidean distance between m:j and Wh:j , denoted by ∥m:j − Wh:j∥22,
is contributed by three parts: the inner product

〈
m:j ,Wh:j⟩ and the sizes

∥m:j∥2, ∥Wh:j∥2. If m:j and Wh:j in this expression have unit ℓ2-norm, the
terms ∥m:j∥2, ∥Wh:j∥2 vanishes and gives

1

2
∥M −WH∥2F =

n∑
j=1

(
1−

〈
m:j ,Wh:j

〉)
=

n∑
j=1

(
1− cos θ(m:j ,Wh:j)

)
,

(2)

where we have used for the Euclidean inner product ⟨ξ, ζ⟩ = ∥ξ∥2∥ζ∥2 cos θ(ξ, ζ)
with θ(ξ, ζ) denoting the angle between the vectors ξ, ζ.

Quotient space interpretation. From (2), we define a new objective function as
in (Chordal-NMF) that we want to use for measuring the distance betweenm:j

and Wh:j purely by the angle in-between and disregarding the sizes ∥m:j∥2,
∥Wh:j∥2. This is done by the division of ∥m:j∥2∥Wh:j∥2 in (Chordal-NMF),
which can be interpreted by the notion of quotient space. The division of the
norm ∥Wh:j∥2 collapses all the elements in the set {x : x = Wh} to a single
point, leading to the chordal distance a purely angle-based distance by ignoring
the length information of the vector.
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Haversine interpretation. The haversine function in navy navigation [7] is de-
fined as hav(θ) := (1 − cos θ)/2, where θ = d/r is called the central angle,
defined as the distance d between two points along a great circle of the sphere,
normalized by the radius of the sphere r. The expression 1− cos θ in (2) is the
haversine distance with r = 1.

Sphere interpretation. The map ξ 7→ ξ/∥ξ∥2 in (Chordal-NMF) sends nonzero
vector ξ ∈ Rm to the unit sphere in Rm. In Rm with Euclidean inner product
⟨u,v⟩ and norm ∥u∥2 =

√
⟨u,u⟩, the unit sphere and unit ball are

Sm−1 :=
{
ξ ∈ Rm | ∥ξ∥2 =

√
⟨ξ, ξ⟩ = 1

}
,

Bm :=
{
ξ ∈ Rm | ∥ξ∥2 =

√
⟨ξ, ξ⟩ ≤ 1

}
,

resp., which both are subsets of Rm. We remark that Sm−1 is nonconvex while
Bm is convex. Now we define four functions

f chord : Rm × Rm → [0, 2] ∪ {+∞} ∪ {±
√
−1∞}

: u,v 7→
√
2− 2⟨u,v⟩/(∥u∥2∥v∥2),

f sq-chord : Rm × Rm → [0, 4] ∪ {±∞}
: u,v 7→ 2− 2⟨u,v⟩/(∥u∥2∥v∥2),

fchord : Sm−1 × Sm−1 → [0, 2]

: u,v 7→
√
2− 2⟨u,v⟩,

fsq-chord : Sm−1 × Sm−1 → [0, 4]

: u,v 7→ 2− 2⟨u,v⟩.

(3)

Let u ̸= 0,v ̸= 0. The function f chord(u,v) can be viewed as the Euclidean
distance between two unit vectors on Sm−1, see Fig. 1 for the case for n = 3.
Let û be the unit vector of u, obtained by normalizing u to unit ℓ2-norm
(known as pullback), we have

f chord(u,v) =

√〈 u

∥u∥2
− v

∥v∥2
,

u

∥u∥2
− v

∥v∥2

〉
=

∥∥∥∥ u

∥u∥2
− v

∥v∥2

∥∥∥∥
2

=
∥∥û− v̂

∥∥
2
.

There are several undesirable properties for f chord:

1. At u = 0 and/or v = 0, the function f chord is undefined, it can take ∞ or
even the complex values ±

√
−1∞. If we restrict the domain of f chord from

Rm to Rm
++, the domain becomes an open set. Optimization problem on

open set has no solution.
2. The function f chord is not differentiable with respect to (wrt.) u,v being

unit parallel vector as f chord(û, v̂) :=
√
2− 2 = |0|, and absolute value is

not differentiable at zero.
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3. In the Euclidean case, f chord is a non-convex function wrt. the variables u,
v and the pair (u,v).

These undesirable properties lead us to define chordal distance on the unit
sphere Sm−1 as follows.

Definition 1 On Sm−1 with inner product ⟨u,v⟩, we define fchord and fsq-chord
as in (3).

For example, if u and v are {parallel, anti-parallel, perpendicular}, then
fchord(u,v) gives {0, 2,

√
2}, resp., and fsq-chord(u,v) gives {0, 4, 2} resp..

3 Background of optimization on manifold

In this section, we first discuss about nonnegative-constrained optimization
problems, then we review manifold optimization. Lastly, we present the Rie-
mannian Multiplicative Update with some analysis.

Nonnegative-constrained optimization and variants. Denote E a linear space
(e.g., Rn,Rm×r) with an inner product ⟨·, ·⟩E and an induced norm ∥ · ∥E .
Given a cost function f : E → R, consider the minimization problems

P0 : argmin
x

f(x) s.t. x ∈ M, x ∈ X

P1 : argmin
x∈M

f(x) s.t. x ∈ X , P2 : argmin
x∈M

f(x) + ι(x),

P3 : argmin
x∈M+

f(x), P4 : argmin
x∈M

f(x) + γp(x).

P4
γ large⇐⇒ P0

restriction⇐⇒ P1
indicator⇐⇒ P2

⇐
⇒ M+

P3

where the sets M := {x ∈ E |h(x) = 0} and X := {x ∈ E |x ≥ 0} are con-
straints. Here X is the nonnegative orthant. The function h(x) is called the
defining function of M. We focus on convex compact set M being a smooth
embedded submanifold of Rn, where h(x) is many-times continuously differ-
entiable. We also assume f is differentiable.

In Euclidean optimization, we treat x ∈ M as a constraint in (P0). We “re-
move” such constraint by defining a function f

∣∣
M : M → R as the restriction

of f that the domain of f
∣∣
M is M, and here f is called the smooth extension

of f
∣∣
M that extends domf

∣∣
M from M to E. In this way, (P0) can be written

as (P1), a constrained manifold optimization. Problem (P1) can be converted
into a constraint-free problem using indicator. Let ι(x) : E → R ∪ {+∞} be
the indicator function of the set X that, if x ∈ X then ι(x) = 0 and if x /∈ X
then ι(x) = +∞, then using ι we have (P2). We can also rewrite (P1) using
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M+ := M ∩ X (assumed nonempty), then (P1) becomes (P3). Lastly, using
a (possibly nondifferentiable) penalty function p(x) : E → R with a penalty
parameter γ ≥ 0, we can rewrite (P0) as (P4). These problems are equivalent
(under certain conditions), and solving any one of them will solve the others.
We show their relationships next to the problem definition.

3.1 Nonnegative-constrained manifold optimization

We note that solving P0 directly by manifold techniques is not trivial. In the
following paragraphs, we discuss several key points related to this idea. This
section also serves as a literature review on manifold optimization.

Violating the smoothness condition of manifold. We refer to the term “man-
ifold optimization” as an optimization problem on a smooth (differentiable)
manifold. The nonnegative orthant X , as a cone, is not a smooth manifold.
Furthermore, the intersection M+ := M∩X for X as a nonsmooth manifold,
where M+ is assumed to be nonempty, is also not a smooth manifold, because,
for any point x in the boundary (the “corner”) of M+, there does not exists
a Rn−homeomorphic neighborhood in M. As a result, several techniques in
manifold optimization do not have convergence guarantee for solving problems
like (P0) and (P2) as these problems do not belong to manifold optimization.

As a remark, a naive fix of the smoothness issue is to replace the closed set
X by the open set Y := X ∩ Rn

++, i.e., take variable strictly positive instead
of nonnegative. See [8, Ch11.6] for some discussion. However, we remark that
the optimization problem on the open set has no solution in general.

Existing methods not applicable to indicator functions. With variable restricted
to be nonnegative, the indicator function ι is a nonsmooth (non-differentiable)
function from E to the extended real R ∪ {+∞}, and such function belongs
to the class of convex lower semicontinuous (l.s.c) function [9], making (P2)
not satisfying the assumptions in many existing works in nonsmooth Rie-
mannian optimization, e.g. Projected Gradient Descent on Riemannian Mani-
folds [10], Riemannian proximal gradient [11], and Manifold proximal gradient
(ManPG) [12].

Penalty methods will possibly produce non-strictly feasible points. There are
several ways to choose the penalty function p(x) for nonnegativity constraints.

– Finite nonsmooth penalty. Instead of the possibly infinite-valued in-
dicator function in (P2), it is possible to use a finite nonsmooth penalty
p(x) = ∥max{0,−x}∥1 where max is taken element-wise and ∥ · ∥1 is ℓ1-
norm. In this way, we can apply ManPG for solving (P4). However, ManPG
has the following subproblem [12, Eq.4.3]

vk+1 = argmin
v

〈
∇f(x),v

〉
E
+

∥v∥2E
2t

+ γp(xk + v) s.t. v ∈ Txk
M, (4)
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where Txk
M denotes the tangent space of M at point xk, to be explained

later in this section. In short, since solving (4) is possibly expensive, thus
the per-iteration cost of ManPG is high and therefore ManPG is not suit-
able for Chordal-NMF.

– Smoothing. We can choose a smooth penalty based on smoothing such
as p(x) = ∥(max{0,−x})2∥1, where (·)2 is taken element-wise. In this way,
we can use Riemannian optimization techniques to solve (P4). However,
we do not consider smoothing in this paper due to speed issues.

– Nonsmooth penalty with IRLS. Iterative reweighted least squares
(IRLS) [13] is another approach to deal with nonsmooth penalty term
such as p(x) = ∥max{0,−x}∥1. This is based on the variational inequality
of absolute value that |w| = argmin

η≥0

(
w2/η + η

)
/2. Hence, we have the

following equivalent expression of the nonsmooth penalty

p(x) = ∥max{0,−x}∥1 =
∑
i

|xi| − xi

2
= argmin

ηi≥0

1

2

∑
i

(1
2

(x2
i

η
+ η
)
− xi

)
.

However, IRLS suffers from the same disadvantage of smoothing that the
resultant update often has a slower convergence than directly updating the
optimization variable.

Euclidean projected gradient descent is infeasible. A naive idea to deal with
the optimization problem is to ignore the manifold and solve P0 as it is
using Euclidean optimization methods such as the projected gradient de-
scent. However such approach is infeasible: in the update, after we performed
a gradient descent step, we project the variable onto the intersection set
M+ := X ∩ M as xk+1 = projM+

(
xk − α∇f(xk)

)
, in which the project

subproblem projM+
(z) = argmin

x∈M+

1

2
∥x− z∥2E is general hard that there is no

closed-form solution, or the problem is expensive to solve. Generally projM+

is a composition

projM+
= projM ◦ projX ◦ projM ◦ · · · ◦ projX︸ ︷︷ ︸

possibly many

,

thus Euclidean projected gradient descent is infeasible due to a very high per-
iteration cost.

Projection-free method is expensive. The in-feasibility of projM+
motivates the

use of projection-free method, such as the Riemannian Frank-Wolfe (RFW) [14].
The core of RFW is to solve a subproblem, expensive for our purpose, that is

in the form argmin
z∈M+

〈
gradf(xk), Exp−1

xk
(z)
〉
E
, since it requires the evaluation

of an exponential map, followed by a computation on the geodesic.
In this paper we provide a projection-free method that only requires the com-
putation of the Riemannian gradient part gradf without the exponential map.
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Dual methods are slow and primal sequence is not strictly feasible. It is natu-
ral to solve (P0) by Riemannian Augmented Lagrangian multiplier [15] or to
solve (P2) using Riemannian ADMM. However, dual approaches have draw-
backs. First, they have additional parameters to tune. Second, the sequence
generated by these methods is not strictly-primal-feasible: the primal variable
is only feasible when a sufficiently large number of iterations is carried out
(in principle, after infinitely many iterations). Since dual approaches are well-
known for having a slow convergence, this makes their per-iteration cost very
high and therefore they are not feasible for our application. Furthermore, it is
dangerous to use an infeasible variable to update the other block of variables
in the BCD framework.

On fractional programming. Fractional Programming (FP) [16,17] (see the
monograph [18] for a modern treatment) can also be used to solve the sub-
problems in Chordal-NMF. The idea of FP is to convert the optimization
problem in the form maxx f(x)/g(x) on the fraction of two functions f, g,
to the “linearlized form” maxx,y f(x) − yg(x). We do not consider fractional
program in this work because (i) it introduces another variable y, and (ii)
the function f(x) − yg(x) conversion for our application (Chordal-NMF) is
non-convex.

Our solution: Riemannian multiplicative update. To tackle these technical is-
sues, we propose a cost-effective Riemannian gradient descent (RGD) method
for solving Problem (P1). The idea is to perform a RGD with a special stepsize
that guarantees the feasibility of the variable. Our approach is motivated by
the research of NMF on multiplicative update, see [1, Section 8.2] for details.
There are advantages of this method:

– The expensive projection projM+
discussed above is not required.

– Unlike the dual approaches, if the initial variable in the algorithm is feasi-
ble, the whole sequence is guaranteed to be feasible, see Proposition 2.

– RMU allows the tools from Riemannian optimization to be utilized, there
is no violation of the smoothness in the method.

We introduce RMU in Section 3.3, before that we review the background of
Riemannian optimization below.

3.2 Background of Riemannian optimization

Riemannian optimization, or manifold optimization, has a long history [19,
20,21,22,23,24,25,8]. Such rich literature makes it impossible to review all
the content. Hence we give the absolute minimum prerequisite on manifold
optimization for the paper.
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Submanifold and ambient space. For smooth function h : E → Rk, the set
M := {x ∈ E | h(x) = 0k} is an embedded submanifold of E of dimension
dimE − k. In this paper we focus on h in the form h(x) = ⟨·, ·⟩E − k. As a
preview, in the h-subproblem, M is the “shell” of an ellipsoid, it has k(= 1)
dimension lower than its ambient Euclidean space (which is Rr). In the W-
subproblem, M is the “shell” of a twisted spectrahedron. For a manifold M
in E, we call E the ambient space of M. In this work, all ambient spaces of
M are some specific linear vector space E, such as Rr (for the h subproblem)
and Rm×r (for the W subproblem).

Tangent space and projection. Let the differential of h Dh(x)[v] defined as
Dh(x)[v] = ⟨gradh(x),v⟩E . Let ker denote the kernel of a matrix in linear
algebra, the tangent space of M at a reference point x, denoted as TxM, is
defined as the kernel of Dh(x), i.e.,

TxM := kerDh(x) =
{
v ∈ E | ⟨gradh(x),v⟩E = 0

}
.

The set TxM refers to the collection of vectors v ∈ E that is tangent to M
at x. The orthogonal projection projTxM : E → TxM, is defined based on
orthogonal decomposition of a vector space as v = projTxM(v) + Dh(x)∗[α],
where Dh(x)∗[α] is the adjoint of Dh(x)[v], and α ∈ R plays the role of
the dual variable (with a technical name covector) as the unique solution to

α = argmin α∈R
∥∥v −Dh(x)∗[α]

∥∥2
E
= (Dh(x)∗)†[v], where † is pseudo-inverse.

This gives an explicit expression projTxM(v) = v − Dh(x)∗
[
(Dh(x)∗)†[v]

]
.

We remark that if the tangent space projTxM is equals to the ambient space,
then the projection is not necessary.

Retraction. A point x that originally sitting on a manifold M may leave out-
side M after a gradient operation, hence certain operation is required to pull
the point back onto M. This can be achieved by a particular smooth map,
known as the retraction R : TxM → M that maps a point on the tangent
space TxM onto M. Different retractions can be found in the literature, such
as exponential map and metric retractions [8, Section 3.6]. However, in the gen-
eral case, to obtain the exponential map of a manifold M one requires to solve
a differential equation. Therefore, for computational efficiency reasons, we con-
sider another approach to pull the point back to the manifold M defined by
h, known as the metric retraction Rx(v) = argmin

y∈E
∥x+v−y∥2E s.t.h(y) = 0.

Note that Rx(v) is possibly non-unique and possibly hard to compute. Among
all the possible retractions we focus on the following metric retraction:

Rx(v) :=
x+ v

∥x+ v∥E
. (Metric retraction)
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Restriction and smooth extension. Given a function f : E → R, the function
f
∣∣
M : M → R is called the restriction of f . The function f

∣∣
M is obtained by

restricting the domain of f from Rn to M. Given a function g : M → R, the
function g : U → R is called the smooth extension of g, where U ⊂ E. The
function g is obtained by defining g in a neighborhood U of M. We can see
that restriction and extension are “inverse” of each other.

Riemannian gradient and Euclidean gradient. Given a function f
∣∣
M : M → R

with its smooth extension f : E → R, let ∇f(x) denotes the Euclidean gra-
dient of f in the standard Euclidean basis at a point x ∈ E, the Riemannian
gradient of f

∣∣
M defined on M, denoted as gradf

∣∣
M, at a point z, wrt. the

reference point x, is the Euclidean gradient ∇f(z) projected onto the tan-
gent space TxM. That is gradf

∣∣
M(z) = projTxM∇f(z). We note that the

“complete” Riemannian gradient is computed using metric tensor. Let g be
the metric tensor of M and let Gx denotes the matrix representation of the
g in coordinates, then gradf

∣∣
M(z) = G−1

x projTxM∇f(z). In this work we do
not consider metric tensor for the sake of cheap computational cost.

For simplifying the notation, we usually write f
∣∣
M as f taking the natural

extension.

3.3 Riemannian Multiplicative Update (RMU)

In this work, we propose a Riemannian Multiplicative Update (RMU) for
solving Chordal-NMF in the form of (P3). At the core, RMU is a special kind
of Riemannian gradient descent (RGD) with the update xk+1 = Rxk

(αvk),
where vk = −gradf(xk) is the (negative) Riemannian gradient of f at xk.
It is important to note that RMU is a projection-free method for (P3) which
contains the nonnegativity constraint. RMU guarantees the nonnegativity of x
by selecting a stepsize α such that Rxk

(αvk) stays within X . In the following,
we first review euclidean multiplicative update (MU) and then we generalize
its variant in the Riemannian case.

Euclidean MU. MU was first proposed in [26,27,28], and during years has
gained popularity in NMF [1]. MU can be done via a “element-wise sign decom-
position”: Euclidean gradient can be written as ∇f(x) = ∇+f(x)−∇−f(x),
where ∇+f(x) ≥ 0 and ∇−f(x) ≥ 0. Let ⊙ be element-wise product and
⊘ be element-wise division, for solving a nonnegative-constrained Euclidean
optimization problem, the MU step has the form

xk+1 = xk ⊙∇−f(xk)⊘∇+f(xk), (5)

which is obtained by choosing an element-wise stepsize α = xk ⊘∇+f(xk) in
the Euclidean gradient descent step xk+1 = xk − α∇f(xk), see [29] for the
derivation. We remark that in the literature the MU update (5) is frequently

written as xk+1 = xk
∇−f(xk)

∇+f(xk)
. We do not use this convention because it

confuses with metric retraction for our purpose.
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RMU. Now we generalize MU to the Riemannian case. First, a Riemannian
gradient gradf(x) always admits the the element-wise sign decomposition
gradf(x) = grad+f(x) − grad−f(x), where grad+f(xk) is the positive part
of the Riemannian gradient of f . This sign decomposition holds since for
any object b, it can be written as b = b+ − b− with b+ = max(0, b) and
b− = max(0,−b).

We generalize (5) to the Riemannian case as follows, where we prove that
the nonnegativity of the update is preserved by RMU without projection
(Proposition 2). The key of the proof is metric retraction and a particular
choice of the element-wise step-size α that acts component-wise on the up-
date direction vk.

Proposition 2 (Riemannian Multiplicative Update) Denote vk the anti-
parallel direction of the Riemannian gradient of a manifold M at xk by the
expression vk = −gradf(xk), and let Rxk

the metric retraction onto M. If a
nonnegative xk is updated by RGD step xk+1 = Rxk

(α⊙vk) with an element-
wise stepsize α ∈ E defined as α = xk⊘grad+f(xk), then xk+1 is nonnegative
and is on M.

Proof The term α⊙(−gradf(xk)) with α = xk⊘grad+f(xk) can be computed
as

−α⊙ gradf(xk) = −
(
xk ⊘ grad+f(xk)

)
⊙ gradf(xk)

=
(
xk ⊘ grad+f(xk)

)
⊙
(
grad−f(xk)− grad+f(xk)

)
= xk ⊙ grad−f(xk)⊘ grad+f(xk)− xk.

The element-wise operations as linear transformations preserve the tangent
condition of a manifold into a point [30]. Now apply (Metric retraction) on
−α⊙ gradf(xk), the xk terms got canceled and gives

xk+1 = Rxk

(
−α⊙ gradf(xk)

)
=

xk −α⊙ gradf(xk)

∥xk −α⊙ gradf(xk)∥E

=
xk ⊙ grad−f(xk)⊘ grad+f(xk)

∥xk ⊙ grad−f(xk)⊘ grad+f(xk)∥E
.

The numerator is nonnegative since grad+f and grad−f are nonnegative by
definition, the denominator is nonnegative and xk is nonnegative by assump-
tion, therefore the updated point xk+1 is nonnegative.

Proposition 2 besides telling that RMU is projection-free for nonnegative-
constrained manifold optimization, it also gives a convergence condition for
gradf(xk) = 0, which is equivalent to grad−f(xk) = grad+f(xk). That is, we
have a simple way to check the convergence of the sequence {xk}k∈N by com-
paring grad−f(xk), grad

+f(xk) if the explicit gradient expressions are avail-
able.
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As a remark, note that RMU is a projection-free method that does not
requires the additional computation of the exponential map and the subse-
quent steps in RFW that we reviewed in Section 3.1, and therefore has a lower
per-iteration computational cost, making it suitable for Chordal-NMF.

We are now ready to move on to the explicit update of H and W in the
next two sections.

4 Column-wise H-subproblem over ellipsoid

In this section, we discuss how to solve (h-manifold-subproblem) in Algo-
rithm 1. We consider the argmin form as

h:j,k+1 = argmin
h

{
ϕ(h) :=

(
1− ⟨m:j ,Wh⟩

∥Wh∥2

)}
s.t. h ≥ 0. (h-subproblem)

The denominator in ϕ is problematic if Wh = 0. We get rid of this de-
nominator based on the discussion in Section 2 as follows. We introduce a
constraint Wh ∈ Sm−1 and a function ϕ

∣∣
Wh∈Sm−1 . This gives an equivalent

problem

argmin
h

{
ϕ
∣∣
Wh∈Sm−1(Wh) := 1− ⟨m:j ,Wh⟩

}
s.t. h ≥ 0.

From sphere to ellipsoid Instead of working on ϕ
∣∣
Wh∈Sm−1 that is defined on

Wh ∈ Sm−1, we consider working on the problem over ellipsoid. Let W has
full rank, we define an ellipsoid Er−1

W⊤W
⊂ Rr by a Positive Definite (PD)

matrix W⊤W ∈ Rr×r as

Er−1
W⊤W

:=
{
ξ ∈ Rr

∣∣∣ 〈ξ, ξ〉Er−1

W⊤W

:=
〈
W⊤Wξ, ξ

〉
= 1
}
⊂ Rr,

(Ellipsoid Manifold)
where the weighted inner product is defined as ⟨ξ, ζ⟩Er−1

W⊤W

:= ⟨W⊤Wξ, ζ⟩
and the induced norm ∥ξ∥2Er−1

W⊤W

= ⟨ξ, ξ⟩Er−1

W⊤W

.

Let R be the length of the semi-axes of EW⊤W , then the principal axes of
EW⊤W and the value 1/R2 are given by the eigenvectors and the corresponding
eigenvalues of W⊤W , resp. [31]. Now we arrive at a problem wrt. h on the
ellipsoid Er−1

W⊤W
.

To ease notation, sometimes we write ⟨ξ, ζ⟩Er−1

W⊤W

as ⟨ξ, ζ⟩E and ∥ξ∥Er−1

W⊤W

as ∥ξ∥E .

Optimization over manifold. We consider the following re-formulation of the
h-subproblem

argmin
h

{
ϕ(h) := 1− ⟨m:j ,Wh⟩

}
s.t. h ∈ H := Rr

+ ∩ Er−1
W⊤W

⊂ M := Er−1
W⊤W

.
(h-manifold-subproblem)
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Here the optimization variable h is constrained to be inside the set H which
takes the nonnegativity and the ellipsoid Er−1

W⊤W
into account. We remark

that:

– If we perform the smooth extension of ϕ from M to Rr, and take h ≥ 0,
we go back to (h-subproblem) in Algorithm 1, under a sign change.

– Being a subset of Rr, the set M := Er−1
W⊤W

is a smooth submanifold [8,
Def 3.10] and we can show that the inner product ⟨ξ, ζ⟩E is a Riemannian
metric [8, Proposition 3.54].

– The subset H of M is a nosmooth manifold. The set H is constructed as
the intersection of the closed set Rr

+ with M. The set Rr
+ has sharp corners

at the boundary and thus it is not smooth. See Section 3 for our discussion
on the issues caused by such non-smoothness.

– Strictly speaking, the function ϕ in the h-subproblem and the function ϕ in
(h-manifold-subproblem) have different domains and therefore they are not
the same function, here we have abused the notation that if h ∈ Er−1

W⊤W
then the denominator ∥Wh∥2 = 1 disappears.

4.1 Tools on ellipsoid manifold

In this section, we summarize the tools to solve (h-manifold-subproblem) by
RMU, collected in Table 1 and detailed in the following paragraphs.

Table 1 Summary of mathematical objects for Riemannian optimization

Name / Reference Definition / expression

Ellipsoid manifold of h
Er−1
W⊤W

:=
{
ξ ∈ Rr

∣∣ ⟨W⊤Wξ, ξ
〉
= 1

}
(Ellipsoid Manifold)

Tangent space of Er−1
W⊤W

at ζ
TζEr−1

W⊤W
:=

{
ξ ∈ Rr

∣∣ ⟨W⊤Wξ, ζ
〉
= 0

}
Definition 2

Project ξ onto TζEr−1
W⊤W proj

TζE
r−1

W⊤W

(ξ) =

(
Ir −

(W⊤Wζ)⊗2

∥W⊤Wζ∥22

)
ξ

Proposition 3

Retraction
Rζ(ξ) = (ζ + ξ) / ∥ζ + ξ∥E

Proposition 4

Tangent space. For compact notation, we use A := W⊤W . On EA, we define
the tangent space as follows.

Definition 2 Let function h(ξ) = ⟨Aξ, ξ⟩ − 1 defines Er−1
A , its differential is

Dh(ξ)[ζ] = 2⟨Aξ, ζ⟩. The tangent space of Er−1
A at a reference point ζ ∈ Er−1

A ,
denoted as TζEr−1

A , is TζEr−1
A :=

{
ξ ∈ Rr

∣∣ ⟨Aζ, ξ⟩ = 0
}
= KerDh(ζ).
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Projection onto tangent space. We define the adjoint operator of Dh(ξ)[ζ]

as Dh(ξ)∗[α] = 2αAξ, where α takes the value α =
1

2

⟨Aζ, ξ⟩
∥Aζ∥22

obtained by

solving the least squares α = argmin
α∈R

∥∥ξ −Dh(ζ)∗[α]
∥∥2
2
. Now by Dh(ξ)∗[α], α,

we have the projector projTζEr−1
A

(ξ) = ξ−Dh(ζ)∗[α] as shown in the following

proposition.

Proposition 3 The projector projTζEr−1
A

: Rr → TζEr−1
A of ξ onto the tangent

space at the reference point, ζ is

projTζEr−1
A

(ξ) = ξ − ⟨Aζ, ξ⟩
∥Aζ∥22

Aζ

=
(
Ir −

(Aζ)⊗ (Aζ)

∥Aζ∥22

)
ξ =

(
Ir −

(Aζ)⊗2

∥Aζ∥22

)
ξ.

(proj-ellips)

Proof In (proj-ellips), the first equality is by definition of orthogonal projec-
tion, the last two equalities are based on tensor product ⊗ and (1), where x⊗2

denotes x ⊗ x. Now we show (proj-ellips) satisfies the three conditions in [8,

Def. 3.60]. First, the range of projTζEr−1
A

, denoted as Im
(
projTζE

)
, is exactly

TζEr−1
A , since

ξ =
(
Ir −

(Aζ)⊗2

∥Aζ∥22

)
ξ ⇐⇒ −⟨Aζ, ξ⟩

∥Aζ∥22
Aζ = 0

Aζ ̸=0⇐⇒ ξ ∈ TζEr−1
A .

Next, we show the orthogonality of projTζEr−1
A

. First, we have

〈
ξ − projTζEr−1

A
(ξ), ξ

〉 (proj-ellips)
=

〈
ξ −

(
Ir −

(Aζ)⊗2

∥Aζ∥22

)
ξ, ξ

〉
,

cancelling ξ gives
1

∥Aζ∥22

〈
(Aζ)⊗2ξ, ξ

〉
. Now apply a tensor product trick

⟨a, (b⊗ b)c⟩ (1)
= ⟨a, ⟨b, c⟩b⟩ = ⟨b, c⟩⟨a, b⟩ gives 1

∥Aζ∥22
⟨Aζ, ξ⟩⟨Aζ, ξ⟩

TζEr−1
A= 0

so the proof of orthogonality is finished.
Lastly, we show that projTζEr−1

A
is idempotent, i.e.,

projTζEr−1
A

(
projTζEr−1

A
(ξ)
)
= projTζEr−1

A
(ξ).

First projTζEr−1
A

(
projTζEr−1

A
(ξ)
)

(proj-ellips)
= projTζEr−1

A

((
Ir−

(Aζ)⊗2

∥Aζ∥22

)
ξ

)
, giv-

ing projTζEr−1
A

(
ξ − (Aζ)⊗2

∥Aζ∥22
ξ

)
. By the same tensor trick again, we have that

projTζEr−1
A

(ξ)− ⟨Aζ, ξ⟩
∥Aζ∥22

projTζEr−1
A

(Aζ). Expand the term projTζEr−1
A

(Aζ) we

get projTζEr−1
A

(ξ)− ⟨Aζ, ξ⟩
∥Aζ∥22

(
Aζ − ⟨Aζ,Aζ⟩

∥Aζ∥22
Aζ
)

︸ ︷︷ ︸
=0

, and the proof is completed.
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Retraction. We define retraction on the ellipsoid Rζ : TζEr−1
A → Er−1

A as
follows.

Proposition 4 (metric retraction) A way to compute Rζ : TζEr−1
A → Er−1

A

for the manifold Er−1
A is

Rζ(ξ) =
ζ + ξ

∥ζ + ξ∥E
TζEr−1

A=
ζ + ξ√
1 + ∥ξ∥2E

. (retract-ellipsoid)

Proof Consider a continuous curve c : R → Er−1
A defined by the following ex-

pression c(t) = Rζ(tξ) = (ζ + tξ)/
√
1 + t2∥ξ∥2E , then c is a smooth (differen-

tiable) since (ζ+tξ)/
√
1 + t2∥ξ∥2E is a smooth function for all (ζ, ξ) ∈ Rr×Rr.

Next, we have c(0) = ζ and

c′(0) :=
dc(t)

dt

∣∣∣∣
t=0

=
ξ − tζ∥ξ∥2E

(1 + t2∥ξ∥2E)
√

1 + t2∥ξ∥2E

∣∣∣∣
t=0

= ξ.

Hence R is a retraction for Er−1
A by definition [8, Definition 3.47].

Riemannian Gradient Descent. We solve (h-manifold-subproblem) using RMU
discussed in Section 3.3. Based on the discussion above, the Riemannian gra-
dient gradϕ(ξ) = projTζEr−1

A
∇ϕE(ξ) can be split as

gradϕ(ξ)
(proj-ellips)

=

(
Ir −

(Aζ)⊗2

∥Aζ∥22

)
∇ϕE(ξ)

(6)
=

(
Ir −

(Aζ)⊗2

∥Aζ∥22

)
W⊤

∥Wξ∥2

(
(Wξ)⊗2

∥Wξ∥22
− Im

)
m:j

=

(
W⊤

∥Wξ∥2
(Wξ)⊗2

∥Wξ∥22
+

(Aζ)⊗2

∥Aζ∥22
W⊤

∥Wξ∥2

)
m:j︸ ︷︷ ︸

grad+ϕ

−

(
W⊤

∥Wξ∥2
+

(Aζ)⊗2

∥Aζ∥22
W⊤

∥Wξ∥2
(Wξ)⊗2

∥Wξ∥22

)
m:j︸ ︷︷ ︸

grad−ϕ

,

where we make use of Proposition 1 to compute the Euclidean gradient of h,
denoted as ∇ϕE(h), as follows

⟨Wh,m:j⟩W⊤(Wh)

∥Wh∥32
− W⊤m:j

∥Wh∥2
(1)
=

W⊤

∥Wh∥2

(
(Wh)⊗2

∥Wh∥22
− Im

)
m:j . (6)

Finally, to update h, we put ξ = ζ = hk in gradϕ, perform the RMU under
metric retraction discussed in Section 3.3 as

h:j,k+1 =
h:j,k ⊙ grad−ϕ(h:j,k)[h:j,k]⊘ grad+ϕ(h:j,k)[h:j,k]∥∥∥h:j,k ⊙ grad−ϕ(h:j,k)[h:j,k]⊘ grad+ϕ(h:j,k)[h:j,k]

∥∥∥
Er−1
A

.
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Since RMU is a special kind of Riemannian gradient method, by the theory
of Riemannian gradient method [8], we have convergence rate O

(
1√
k

)
for the

h-subproblem.

Efficient implementation. Pre-compute B := W⊤M and c = Ah gives

gradϕ(h) =
1

⟨h, c⟩1/2

((
⟨B:j ,h⟩c
⟨h, c⟩

+
c⊗2

⟨c, c⟩
B:j

)
−
(
B:j+

c⊗2

⟨c, c⟩
⟨B:j ,h⟩c
⟨h, c⟩

))
.

Using (1) we bypass tensor product and compute gradϕ(h) involving only four
inner products

gradϕ(h) =
1

⟨h, c⟩1/2

((
⟨B:j ,h⟩
⟨h, c⟩

+
⟨B:j , c⟩
⟨c, c⟩

)
c −

(
B:j +

⟨B:j ,h⟩
⟨h, c⟩

c

))
.

The overall cost of computing gradϕ(h) is thus in O(4r), cheaper than other
updates.

Numerical performance. We compare RMU and methods mentioned in Sec-
tion 3.1 on two synthetic datasets randomly generated under zero-mean unit
variance Gaussian distribution with negative entries replaced by zero. We per-
formed 100 Monte Carlo trials on two datasets sizing (m,n, r) = (50, 100, 4)
and (m,n, r) = (100, 100, 4). Fig. 2 shows the median of the objective function
values. For the case, (m,n, r) = (50, 100, 4), RMU achieved the best per-
formance (fastest convergence to the minimum achievable function value) 71
times, and RADMM achieved the best performance 41 times, and for the case
(m,n, r) = (100, 100, 4), RMU achieved the best performance 97 times and
RADMM achieved the best performance 27 times.

0 0.1 0.2 0.3 0.4 0.5

10-15

10-10

10-5 EPG
RMU
RADMM
RALM

0 0.1 0.2 0.3 0.4 0.5

10-15

10-10

10-5 EPG
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RADMM
RALM

Fig. 2 Median convergence of the 100 random trials. RMU is among the fastest methods
with strict feasibility. RADMM has the best convergence in the early stage of the iteration
but the primal variable sequence is possibly not feasible.

5 Matrix-wise W-subproblem as a finite sum minimization

In this section we discuss how to solve the W-subproblem in Algorithm 1.
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Notation simplification. We ease the notation. Let ⟨·, ·⟩Fro = Tr(·⊤·) be the
Frobenius inner product, from ⟨m:j ,Wh:j⟩ = ⟨m:jh

⊤
:j ,W ⟩Fro we define the

matrices Bj := m:jh
⊤
:j = m:j ⊗ h:j and Aj := h:jh

⊤
:j = h:j ⊗ h:j = h⊗2

:j . We
remark not to confuse matrices A,B here with the A,B defined in the last
paragraph of Section 4. We rewrite the W-subproblem in Algorithm 1 using
Aj ,Bj in the argmin form

argmin
W≥0

{
F (W ) =

1

n

n∑
j=1

f j(W )

}
,

where f j(W ) = 1− ⟨Bj ,W ⟩Fro
⟨W ,WAj⟩1/2Fro

.

(W-subproblem)

In f j , the subscripts j means f j is defined by the jth column of H and M ,

and the over-line in f emphasizes that we are taking smooth extension of a
restricted function of W from a manifold M of W (to be defined later) to
the ambient Euclidean space Rm×r, assuming the denominator is nonzero. In
practice if a column hj is zero, then the term f j is removed in the sum from
the very beginning.

RMU is inefficient on W-subproblem. We have Theorem 1 shows that RMU
approach on the finite-sum (W-subproblem) is inefficient.

Theorem 1 It is computationally inefficient to perform RMU on W to solve
(W-subproblem) for a large n.

To illustrate and to make Theorem 1 more accessible, we first consider the
following three lemmas.

Lemma 1 For n = 1 in (W-subproblem), we have a manifold which we name
“shell of a single twisted spectrahedron”. Table 2 summarizes the results of
RMU on such manifold.

Table 2 Summary of mathematical objects for manifold optimization on the shell of a
single twisted spectrahedron

Name / Reference Definition / expression

Manifold of W Mj :=
{
W ∈ Rm×r

∣∣ ⟨W ,W
〉
A

1/2
j

= 1
}

(Shell of twisted spectrahedron)

Tangent space of Mj at Z
TZMj :=

{
W ∈ Rm×r

∣∣ ⟨W ,ZAj

〉
Fro

= 0
}

Definition 3

Project W onto TZMj
projTZMj

(W ) =
(
I −

(ZAj)
⊗2

∥ZAj∥2Fro

)
W

Proposition 6

Retraction RW (Z) = (W +Z) / ∥W +Z∥
A

1/2
j

.

Proposition 7
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Proof We put the proof of these results in Section 7.2 in the Appendix.

Lemma 2 (RMU update on W for single twisted spectrahedron) If
n = 1, we can solve (W-subproblem) using RMU. The Riemannian gradient
gradfj(W ) = projTZMj

∇f j(W ) is

gradfj(W ) =

(
⟨Bj ,W ⟩FroWAj

⟨W ,WAj⟩3/2Fro

+
(ZAj)

⊗2

∥ZAj∥2Fro
Bj

⟨W ,WAj⟩1/2Fro

)
︸ ︷︷ ︸

grad+fj(W )

−

(
Bj

⟨W ,WAj⟩1/2Fro

+
(ZAj)

⊗2

∥ZAj∥2Fro
⟨Bj ,W ⟩FroWAj

⟨W ,WAj⟩3/2Fro

)
︸ ︷︷ ︸

grad−fj(W )

.

With Z = W = Wk, we arrive at the RMU update of W under metric
retraction (see Section 3.3) as

Wk+1 =
Wk ⊙ grad−fj(Wk)[Wk]⊘ grad+fj(Wk)[Wk]∥∥∥Wk ⊙ grad−fj(Wk)[Wk]⊘ grad+fj(Wk)[Wk]

∥∥∥
A

1/2
j

. (7)

Proof The derivation is based on the Proposition 5 on the Euclidean gradient
∇F (W ), and the Proposition 7 in Section 7.2 in the Appendix.

We give an efficient implementation of the Riemannian gradient gradfj(W )
in Section 7.3 in the Appendix.

Lemma 3 For (W-subproblem) with n = 2, we have a manifold which we
name “spectrahedra”. The computation of the mathematical objects for the
manifold optimization on such spectraehedra have a high per-iteration cost.
Precisely, the computation of RMU involves a pseudo-inverse with a cost about
O(2m2) for computing the adjoint operator, and a possibly expensive metric
projection step that potentially has no closed-form solution.

Proof See Section 7.4 in the Appendix.

The conclusion of Lemma 3 generalizes to n > 2, hence we are now ready
to prove Theorem 1.

Proof (The proof of Theorem 1) Based on Lemma 3, the computation of the
mathematical objects for the manifold optimization on the generalized spec-
traehedra (with n ≫ 2) have a high per-iteration cost. Precisely, the com-
putation of RMU involves a pseudo-inverse with a cost about O(nm2) for
computing the adjoint operator, and a possibly expensive metric projection
step that potentially has no closed-form solution.
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Euclidean projected gradient descent (EPG). Ignoring the notion of manifold,
(W-subproblem) can be solved by the Euclidean projected gradient update
Wk+1 = proj+

(
Wk−α∇F (Wk)

)
with a stepsize α ≥ 0. We compute ∇F (Wk)

as follows.

Proposition 5 For F (W ) in (W-subproblem), its Euclidean gradient is

∇F (W ) =
1

n

n∑
j=1

∇f j =
1

n

n∑
j=1

(
⟨Bj ,W ⟩FroWAj

⟨W ,WAj⟩3/2Fro

− Bj

⟨W ,WAj⟩1/2Fro

)
. (8)

Proof Quotient rule of gradient gives

∇f j = −
⟨W ,WAj⟩1/2Fro

(
∇⟨Bj ,W ⟩Fro

)
− ⟨Bj ,W ⟩Fro

(
∇⟨W ,WAj⟩1/2Fro

)
⟨W ,WAj⟩Fro

.

By A⊤
j = Aj and ∇⟨W ,WAj⟩Fro = WAj +WA⊤

j we arrive at (8).

Fractional programming. Factional program (FP) is another approach to han-
dle (W-subproblem). Below we derive the FP-formulation of (W-subproblem).
Apply the Dinkelbach transform [17] on (W-subproblem) by introducing vari-
ables λ1, λ2, ..., λn gives

argmin
W≥0,λ1,··· ,λn

n∑
j=1

λj⟨W ,WAj⟩1/2Fro − ⟨B:j ,W ⟩Fro. (FP-formulation)

Following Jagannathan’s method [16], we have the following algorithm

– At each iteration k, set λj =
⟨m:jh

⊤
:j ,W ⟩

⟨W ,Wh:jh⊤
:j ⟩1/2

using the most recent

version of W and H.
– Perform Euclidean gradient descent (with Nesterov’s acceleration) on (FP-

formulation).

Numerical performance. As RMU for the whole sum F (W ) in (W-subproblem)
is computationally infeasible, we consider consensus setup [32] on each mani-
fold. We numerically compare the performance of three methods: EPG, con-
sensus RMU and Fractional Programming, on two synthetic datasets randomly
generated under zero-mean unit variance Gaussian distribution with negative
entries replaced by zero. We performed 100 Monte Carlo runs on two datasets
sizing (m,n, r) = (50, 100, 4) and (m,n, r) = (100, 100, 4). Fig. 3 shows the
median of the objective function values. For the case (m,n, r) = (50, 100, 4),
EPG achieved the fastest convergence 100% of the time, and for the case
(m,n, r) = (100, 100, 4), FracProg achieved the fastest convergence 100% of
the time.
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Fig. 3 Median convergence comparison, among 100 Monte Carlo runs, of consensus RMU
with EPG (Euclidean Projected Gradient) and Fractional Programming. EPG and Frac-
tional Programming approaches are the fastest methods.

6 Experiment

In this section we report the numerical results concerning the performance of
Chordal-NMF. We report results on synthetic data in Section 6.1, and then
on real-world data in Section 6.2. Below we give the description of the exper-
imental setup.

How Chordal-NMF is applied. We briefly describe how Chordal-NMF is ap-
plied on a data matrix M . First we remove all zero columns in M , then we
normalize each column of M by its ℓ2 norm, where we also record the value
of the norm. After that we run Chordal-NMF on the normalized M and get
the decomposition WH. Lastly, we multiply the column norm on M before
the normalization back to each column hj .

Implementation of Chordal-NMF. We implement Chordal-NMF using the BCD
structure discussed in the introduction. Based on the preliminary tests on dif-
ferent solvers for the sub-problems (see the end of Section 4 and Section 5),
we implement Chordal-NMF as follows: for the H-subproblem, we perform
RMU (Riemannian Multiplicative Update) as described in Section 4. For the
W-subproblem, we perform EPG (Euclidean Projected Gradient) as described
in Section 5.

Benchmark. We compare the result of the Chordal-NMF with that of the
classical Frobenius norm NMF (FroNMF) based on the algorithm HALS [1,
Chapter 8.3.3]. In all the experiments, all the methods start with the same ran-
dom initialization, where all elements in W0,H0 are generated under uniform
distribution U [0, 1].

Code. The experiments were conducted in MATLAB 2023a1 in a machine with
OS Windows 11 Pro on a Intel Core 12 gen. CPU 2.20GHz and 16GB RAM.

1 The MALTAB code is available at https://github.com/flaespo/Chordal_NMF.

https://github.com/flaespo/Chordal_NMF
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6.1 Synthetic Dataset

Dataset description. We use the specific dataset M ϵ,δ = WtrueH
ϵ,δ
true with

ϵ > 0 and δ > 0 as follows.

Wtrue =

0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

 ,Hϵ,δ
true =

1− ϵ δ(1− ϵ) ϵ δϵ ϵ δϵ
ϵ δϵ 1− ϵ δ(1− ϵ) ϵ δϵ
ϵ δϵ ϵ δϵ 1− ϵ δ(1− ϵ)

 .

We explain the meaning and the purpose of such setup. The matrix Wtrue

represents a cone in R3 (see Fig. 4). The matrix Hϵ,δ
true represents how we gen-

erate the six columns of M ϵ,δ by conic combination of columns of Wtrue under
a small perturbation ϵ and an attenuation δ. The perturbation ϵ represents
how much the columns of M ϵ,δ deviate from the columns of Wtrue, while the
attenuation δ represents how much the columns M:2,M:4,M:6 in M ϵ,δ have
their norm scaled downward. For δ getting smaller, it is getting harder for
FroNMF to recover Htrue, while it is less a problem for Chordal-NMF since
the angle between the data columns are invariant to the attenuation δ. See
Fig. 4 for an illustration.

We construct M ϵ,δ across different values of (ϵ, δ), and run Chordal-NMF
and FroNMF on each instance of M ϵ,δ generated. Then we extract the matrix
H produced by the last iteration of the each method, and calculate the relative
error between H and Hϵ,δ

true as ∥H−Hϵ,δ
true∥F /∥H

ϵ,δ
true∥F . Fig. 4 shows the heat-

map of the results across different values of (ϵ, δ), showing that Chordal-NMF
on average has a better recovery of H than FroNMF, especially for the case
when δ is small.

-6 -5 -4 -3 -2 -1 -6 -5 -4 -3 -2 -1

-6
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-3
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0.4

0.6

0.8

1

Fig. 4 Left subplot: the plot ofWtrue (the red, blue, green ray) andM(0.1, 0.3) (the black

rays). Right subplot: The relative error ∥H − Hϵ,δ
true∥F /∥Hϵ,δ

true∥F for the two methods,
where left gird (the first six columns) is the result from FroNMF, and the right grid (the
last six columns) is the result from Chordal-NMF. In the grid, the x-axis is the value of δ
(in log-scale) and the y-axis is the value of ϵ (in log-scale) .

6.2 On real-world dataset

NMF finds extensive use across various application domains in real-world data
analysis [1]. A prevalent application domain is within the realm of Earth Ob-
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servation (EO), particularly in the analysis of remote sensing data. EO applica-
tions typically involve the utilization of multispectral or hyperspectral images,
which are stored as matrices and can be effectively analyzed through NMF for
unmixing purposes [33]. A conventional approach in this context involves ad-
dressing the standard NMF problem by minimizing the point-to-point Frobe-
nius norm [34]. However, in this section, we introduce a comparative analysis
between the performance of FroNMF and the novel Chordal-NMF method
proposed in this work.

Dataset description. We chose a cloudy multispectral image due to its rele-
vance in highlighting the advantages of employing Chordal-NMF compared to
standard FroNMF for analyzing multispectral images under various cloudiness
conditions. Our primary goal here is to provide a comprehensive illustration
of how Chordal-NMF can better manage the presence of different cloud con-
ditions, thereby presenting itself as a useful alternative for conducting image
analysis for EO applications. Specifically, the matrix M is a cloudy multispec-
tral image (with a pixel size rows:150, cols:290 and bands:12), in a selected
area of Apulia region in Italy, from the Copernicus data space ecosystem2. We
use a reference image obtained in cloudless conditions as the ground truth3.
We benchmark Chordal-NMF with FroNMF, where both methods start with
the same (random) initialization.

The reconstruction. We run FroNMF and Chordal-NMF on the cloudy data
M with the same initialization W0,H0 obtained from random uniform distri-
bution U [0, 1]. The initial objective function value F (W0,H0) = 0.1906100.
The reconstruction given by WFroNMF,HFroNMF from FroNMF gives a chordal
function value 0.0012792. The reconstruction obtained by WCh,HCh from
Chordal-NMF gives a chordal function value 0.0014398. We consider the two
methods achieve a similar chordal function value.

From a qualitative point of view, Fig. 5 shows an RGB representation of
the ground truth (cloudless reference image), the cloudy data M , and the
reconstruction obtained from FroNMF and Chordal-NMF on M .

Fig. 5 The RGB image of a scene. From left to right, the images are: the ground truth
(the cloudless reference image), the cloudy data image M , the reconstruction obtained by
FroNMF on M , and the reconstruction obtained by Chordal-NMF on M . In the image, the
three color-boxes are selected areas under different cloundiness in which we perform further
quantitative analysis.

2 https://dataspace.copernicus.eu/
3 The cloudy image and the cloudless image are obtained in the same condition (except

the cloudiness) with a temporal difference of 5 days.

https://dataspace.copernicus.eu/
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Further analysis on the selected areas. We now present the analysis of the three
selected areas. The three boxes were chosen to represent three distinct cloud
conditions: the red box is a cloudy area, the cyan box is a less-cloudy areas,
and the yellow box is a cloudless area. We compute the spectral signatures of
the pixels in these areas, and their mean behavior is plotted in Figs. 6. We
also numerically compared these spectral profile vectors by two criteria:

1. the SID-SAM between the spectral profile vectors, where we consider the
hybrid SID-SAM [35] of the spectral information divergence (SID) and
spectral angle mapper (SAM),

2. the ℓ2-norm of the difference between the spectral profile vectors.

Results are reported in Table 3 for the three areas, in which Chordal-NMF
achieves a better performance.
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Fig. 6 From left to right: the spectral signatures of the pixels in the red/cyan/yellow box
in Fig.5. In all the three cases, the spectral profile of obtained by Chordal-NMF is on average
closer to the ground truth spectral profile (measurement obtained in cloudless condition).

Table 3 The numerics of the pixels in the three boxes. Here “w GT” stands for “with
ground truth”.

Red Cyan Yellow
Compared w GT SID-SAM ℓ2 SID-SAM ℓ2 SID-SAM ℓ2
Cloudy dataset 2.2559 0.2655 0.0633 0.2154 0.0807 0.1594
FroNMF 2.0214 0.2650 0.5518 0.1901 0.3574 0.1458
Chordal-NMF 0.2090 0.2116 0.1486 0.1487 0.1161 0.1161

On the cloudy image recovery, we see that Chordal-NMF is always bet-
ter than FroNMF regardless of the cloudiness of the image by achieving a
lower SID-SAM value and a lower ℓ2-norm value. For example, in the red box,
Chordal-NMF seems to have a better recovery of the region under the cloud.

On Samson dataset. We test our approach also on a benchmark dataset for
EO applications: Samson dataset [1]. In this image, there are 95 × 95 pixels,
each pixel is recorded at 156 channels. This dataset is not challenging since
many analyses have been already carried out [34], however we found it inter-
esting to report some results on it. In fact, even if it is well known from the
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literature that there are three targets in the image, we want to highlight how
Chordal-NMF is better at extracting the rock/soil component. Fig. 7 shows
the abundance map from the FroNMF and Chordal-NMF. From this, we can
see the Chordal-NMF is able to recover rock under shadow water regions near
the coast better than standard FroNMF.
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Fig. 7 The Samson dataset and the rock abundances map of the decompositions. From left
to right: the data, the abundance maps obtained form FroNMF and Chordal-NMF.

7 Conclusion

In this paper, we introduced a NMF model called Chordal-NMF, which is
different from the classical NMF that the objective function is a point-to-
point Euclidean distance, where in Chordal-NMF a ray-to-ray distance is used.
Based on the geometric interpretation that NMF describes a cone, we argued
that chordal distance, which measures the angle between two vector in the
nonnegative orthant, is more suitable than the Euclidean distance for NMF.

Under a BCD framework, we developed a new algorithm to solve the
Chordal-NMF, where Riemannian optimization technique is used to solve the
H-subproblem. To be exact we proposed a Riemannian Multiplicative Update
(RMU) that preserves the convergence properties of Riemannian gradient de-
scent without breaking the smoothness condition on the manifold.

We showcase the effectiveness of the Chordal-NMF on the synthetic dataset
as well as real-world multispectral images.

Appendix

7.1 The proof of Proposition 1

Proof Let h(x) = (g ◦ f)(x) =
(
f(x)

)2
where function g : R → R : x 7→ x2

is convex, increasing (on R+) and differentiable, then by chain rule we have
∂(g ◦ f)(x) = g′(f(x))∂f(x), which gives

∇h(x) = 2f(x)∇f(x) =
⟨Ax+ b, c⟩
2∥Dx+ e∥2

∇f(x) (chain-rule)
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Now by the definition h(x) =
(
f(x)

)2
, so

∇h(x) = ∇

((⟨Ax+ b, c⟩
)2

∥Dx+ e∥22

)
(grad-h)

Equate (chain-rule) and (grad-h) gives

∇f(x) =
∥Dx+ e∥2
⟨Ax+ b, c⟩

∇

((⟨Ax+ b, c⟩
)2

2∥Dx+ e∥22

)

By assumption Dx+ e ̸= 0, we make use of quotient rule ∇f

g
=

g∇f − f∇g

g2

to arrive at

∇f(x)

=
∥Dx+ e∥2
⟨Ax+ b, c⟩

∥Dx+ e∥22∇
(
⟨Ax+ b, c⟩

)2
−
(
⟨Ax+ b, c⟩

)2
∇∥Dx+ e∥22

2∥Dx+ e∥42

=
∥Dx+ e∥22∇

(
⟨Ax+ b, c⟩

)2
−
(
⟨Ax+ b, c⟩

)2
∇∥Dx+ e∥22

2⟨Ax+ b, c⟩∥Dx+ e∥32

=
∥Dx+ e∥222⟨Ax+ b, c⟩A⊤c−

(
⟨Ax+ b, c⟩

)2
2D⊤(Dx+ e)

2⟨Ax+ b, c⟩∥Dx+ e∥32

=
∥Dx+ e∥22A⊤c− ⟨Ax+ b, c⟩D⊤(Dx+ e)

∥Dx+ e∥32

7.2 The proof of Lemma 1 on a single shell of twisted spectrahedra

Consider (W-subproblem) with n = 1. Following the discussion in Section 4,
we get grid of the denominator ⟨W ,WA1⟩Fro in f1 by introducing a con-
strained problem argmax

W≥0
⟨Bj ,W ⟩Fro s.t. ⟨W ,WA1⟩Fro = 1. We note that A1

is a rank-1 symmetric positive semi-definite (PSD) matrix with two eigen-
values: a single positive eigenvalue and 0 with multiplicity r − 1. Moreover,

A1 has its square-root A
1/2
j , so ⟨W⊤W ,A1⟩Fro = ⟨W⊤W ,A

1/2
1 A

1/2
1 ⟩Fro =

⟨WA
1/2
1 ,WA

1/2
1 ⟩Fro = ⟨W ,W ⟩

A
1/2
1

allows us to define the manifold M1 as

M1 =
{
W ∈ Rm×r

∣∣∣ ⟨W ,W ⟩
A

1/2
1

− 1 = 0 ⇐⇒ Tr(A1W
⊤W ) = 1

}
,

(Shell of twisted spectrahedron)
which we interpret M1 as the shell of a twisted spectrahedron. The term
spectrahedron [36] refers to the eigen-spectrum of a matrix behaves like a
polyhedron, while the word “twisted” refers to the linear transformation A1.

Now we mirror Section 3.2 and Section 4.1 on deriving the tools on manifold
of W , summarized in Table 2, where consider a particular j for Mj .
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Tangent space. On the shell of a single twisted spectrahedron Mj we define
the tangent space as follows.

Definition 3 Let h(W ) = ⟨W ,WAj⟩Fro − 1 defines Mj , its differential is
Dh(Z)[Z] = 2⟨WAj ,Z⟩Fro. The tangent space of Mj at a reference point
Z ∈ Mj , denoted as TZMj , is

TZMj :=
{
W ∈ Rm×r

∣∣∣ ⟨ZAj ,W ⟩Fro = 0
}
= KerDh(W ).

Projection onto tangent space. We define the adjoint operator of Dh(W )[Z]

as Dh(W )∗[α] = 2αWAj , where α takes the value α =
1

2

⟨W ,ZAj⟩Fro
∥ZAj∥2Fro

ob-

tained by solving the least squares α = argmin
α∈R

∥∥W − Dh(Z)∗[α]
∥∥2
Fro

. Now

by Dh(W )∗[α], α, the definition of projector onto tangent space [8, Defini-
tion 3.60], and the property of orthogonal projector [8, Equation 7.74], we
have the projector projTZMj

(W ) = W −Dh(Z)∗[α] as shown in the following
proposition.

Proposition 6 The projector projTZMj
: Rm×r → TZMj of W onto the

tangent space at the reference point Z is

projTZMj
(W ) = W − ⟨ZAj ,W ⟩Fro

∥ZAj∥2Fro
ZAj

=
(
I − ZAj ⊗ZAj

∥ZAj∥2Fro

)
W =

(
I − (ZAj)

⊗2

∥ZAj∥2Fro

)
W .

(9)

Proof The proof follows the same arguments used in the proof of Proposition 3.

Retraction. We define the retraction on Mj as RW : TZMj → Mj as follows.

Proposition 7 (Retraction) A way to compute the retraction
RW : TZMj → Mj for the manifold Mj is

RW (Z) =
W +Z

∥W +Z∥
A

1/2
j

TZMj
=

W +Z√
1 + ∥W ∥2

A
1/2
j

. (retract-spectrahedron)

Proof Consider a continuous curve c : R → Mj defined by the following ex-

pression c(t) = RW (tZ) = (W + tZ)/
√

1 + t2∥W ∥2
A

1/2
j

. Then c is a smooth

(differentiable) since (W + tZ)/
√
1 + t2∥W ∥2

A
1/2
j

is a smooth function for all

(W ,Z) ∈ Rm×r × Rm×r. Next, we have c(0) = W and

c′(0) :=
dc(t)

dt

∣∣∣∣
t=0

=

Z − t∥Z∥2
A

1/2
j

W

(1 + t2∥W ∥2
A

1/2
j

)
√
1 + t2∥W ∥2

A
1/2
j

∣∣∣∣
t=0

= Z.

Hence (retract-spectrahedron) is a retraction for Mj by definition [8, Defini-
tion 3.47].
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7.3 Efficient implementation of the Riemannian gradient in Lemma 2

Consider Lemma 2, let C = WkAj in gradfj(Wk)[Wk] gives

gradfj(Wk)[Wk] =
1

⟨W ,C⟩1/2Fro

(
⟨Bj ,W ⟩FroC
⟨W ,C⟩Fro

+
(C)⊗2

∥C∥2Fro
Bj

)

−

(
Bj +

(C)⊗2

∥C∥2Fro
⟨Bj ,W ⟩FroC
⟨W ,C⟩Fro

)
.

We remark that the use of tensor product is purely for the ease of deriv-
ing the expression. The tensor product between two matrices is likely to be
very expensive. Hence, we avoid the expensive tensor product and compute
gradfj(W ) as

gradfj(W ) =
1

⟨W ,C⟩1/2Fro

((
⟨Bj ,W ⟩Fro
⟨W ,C⟩Fro

+
⟨Bj ,C⟩Fro
∥C∥2Fro

)
C

−
(
Bj +

⟨Bj ,W ⟩Fro
⟨W ,C⟩Fro

C

))
.

7.4 The proof of Lemma 3 for n = 2

Consider n = 2 in (W-subproblem). By the fact that the Cartesian products
of manifolds are manifolds, we consider product space M1 ×M2. Define

M[2] =
{
W ∈ Rm×r

∣∣ h(W ) = 02

}
,

where h : Rm×r → R2 : W 7→
[
⟨W ,WA1⟩Fro − 1
⟨W ,WA2⟩Fro − 1

]
.

(Spectrahedra)

We call the manifold M[2] “spectrahedra” as it is constructed by spectrahe-
dron. We now compute its tangent space. Following arguments in Section 4.1
and Section 7.2, we have the following results that we hide the proofs. The func-

tion h in (Spectrahedra) has the differential Dh(W )[Z] = 2

[
⟨WA1,Z⟩Fro
⟨WA2,Z⟩Fro

]
.

The tangent space of M[2] is the set

TZM[2] :=
{
W
∣∣ ⟨WA1,Z⟩Fro = ⟨WA2,Z⟩Fro = 0

}
,

its adjoint is Dh(W )∗[α] = 2α1WA1 + 2α2WA2 = 2W (α1A1 + α2A2). Let
vec be vectorization and let ⊗K be the Kronecker product, now the α that
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minimizes
∥∥W −Dh(Z)∗[α]

∥∥2
Fro

also minimizes

∥∥∥vec(W − 2Z(α1A1 + α2A2)
)∥∥∥2

2

=
∥∥∥vec(W )− 2(I ⊗K Z)vec

(
α1A1 + α2A2

)∥∥∥2
2

=

∥∥∥∥vec(W )− 2(I ⊗K Z)
[
vecA1 vecA2

] [α1

α2

] ∥∥∥∥2
2

.

To simplify the notation, let SZ = (I ⊗K Z)[vecA1 vecA2], where the
subscript Z indicates the dependence of Z. Now α is the root of the following
normal equation

S⊤
ZSZ

[
α∗
1

α∗
2

]
=

1

2
S⊤
ZvecW =⇒ α∗ =

1

2
(S⊤

ZSZ)
−1S⊤

ZvecW =
1

2
S†
ZvecW .

Now the orthogonal projector projTZM[2] : Rm×n 7→ M[2] is

projTZM[2](W ) = W − 2Z
2∑

j=1

1

2

(
S†
ZvecW

)
j
Aj = W − 2Z(α∗

1A1 + α∗
2A2).

(10)
The Riemannian gradient is then

gradF (W ) = 2projTZM[2]

(
∇F (W )

)
(10)
= ∇F (W )−2Z(α∗

1A1+α∗
2A2). (11)

Note that the value of α∗
1 and α∗

2 in (11) is an implicit function of Z and

∇F (W ) as

[
α∗
1

α∗
2

]
=

1

2

(S†
Zvec∇F (W )

)
1(

S†
Zvec∇F (W )

)
2

 . Hence the explicit expression of

the Riemannian gradient is

gradF (W ) = ∇F (W )−Z
(
S†
Zvec∇F (W )

)
1
A1 −Z

(
S†
Zvec∇F (W )

)
2
A2.

Then we compute grad+F = max{gradF,0} and grad−F = max{−gradF,0}
to proceed with RMU.

In conclusion, we can see that in order to run RMU on M[2], there are
several challenges:

– the computation of α∗, which includes the computation of SZ ∈ Rm2×2,
S†
Z ∈ R2×2, in which all these terms have to be re-computed in each

iteration.
– the computation of the metric projection onto M[2], which itself is a diffi-

cult problem.
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