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ABSTRACT: Southern Ocean humpback whales Megaptera novaeangliae are capital breeders, 
breeding in the warm tropics/subtropics in the winter and migrating to nutrient-rich Antarctic 
feeding grounds in the summer. The classic feeding model is for the species to fast while migrating 
and breeding, surviving on blubber energy stores. Whilst northern hemisphere humpback whales 
are generalists, southern hemisphere counterparts are perceived as krill specialists, but for many 
populations, uncertainties remain regarding their diet and preferred feeding locations. This study 
used bulk and compound-specific stable isotope analyses and isoscape-based feeding location 
assignments to assess the diet, trophic ecology and likely feeding areas of humpback whales sam-
pled in the Ross Sea region and around the Balleny Islands. Sampled whales had a mixed diet of 
plankton, krill and fish, similar to the diet of northern hemisphere humpback whales. Proportions 
of fish consumed varied but were often high (2–60%), thus challenging the widely held paradigm 
of Southern Ocean humpback whales being exclusive krill feeders. These whales had lower δ15N 
values and trophic position estimates than their northern hemisphere counterparts, likely due to 
lower Southern Ocean baseline δ15N surface water values and a lower percentage consumption of 
fish, respectively. Most whales fed in the Ross Sea shelf/slope and Balleny Islands high-productiv-
ity regions, but some isotopically distinct whales (mostly males) fed at higher trophic levels either 
around the Balleny Islands and frontal upwelling areas to the north, or en route to Antarctica in 
temperate waters off southern Australia and New Zealand. These results support other observa-
tions of humpback whales feeding during migration, highlighting the species’ dietary plasticity, 
which may increase their foraging and breeding success and provide them with greater resilience 
to anthropogenically mediated ecological change. This study highlights the importance of combin-
ing in situ field data with regional-scale isoscapes to reliably assess trophic structure and animal 
feeding locations, and to better inform ecosystem conservation and management of marine pro-
tected areas.  
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1.  INTRODUCTION 

Humpback whales Megaptera novaeangliae are 
balaenopterid cetaceans that are distributed through-
out the world’s oceans and are the most extensively 
studied of all large cetaceans (Fleming & Jackson 
2011). Southern hemisphere humpback whales com-
plete annual migrations of over 8000 km between 
cold, nutrient-rich Southern Ocean feeding grounds 
in summer, and warmer calving grounds (also often 
referred to as breeding grounds) in low-latitude waters 
in winter (Clapham 1996, 2018, Corkeron & Connor 
1999). Along with gray whales Eschrichtius robustus, 
humpback whales have one of the longest recorded 
mammalian migrations (Clapham 2001, Rasmussen et 
al. 2007, Stevick et al. 2011). They are capital breeders, 
traditionally thought to fast during migration and 
breeding (Lockyer & Brown 1981), surviving on energy 
or ‘capital’ from their blubber stores built up from feed-
ing on high-density prey patches during the feeding 
season (Hain et al. 1981, Hazen et al. 2009, Cade et al. 
2020). However, uncertainties re main surrounding 
humpback whale movement patterns and mixing of 
different populations, their diet and their degree of 
feeding whilst migrating (Gales et al. 2009, Barendse 
et al. 2010, Owen et al. 2024, this volume). Given their 
large body size (12–17 m), high energy requirements 
and the importance of humpback whales as consumers 
in Southern Ocean food webs (Witteveen et al. 2006), 
there is a need to better understand their diet and for-
aging ecology to effectively manage and conserve this 
species and its associated ecosystems. This is particu-
larly relevant considering the commercial harvesting of 
Antarctic krill Euphausia superba in the Scotia Sea 
region and ecosystem shifts resulting from global cli-
mate (Kawaguchi et al. 2013, Stock et al. 2014, Schine et 
al. 2016) and oceanic change (Nicol et al. 2008). 

Humpback whales feed by lunge feeding, advancing 
on prey with their mouths open and engulfing large 
quantities of water, then closing their mouths, forcing 
water out through their baleen plates to trap filtered 
prey (Dolphin 1988, Baraff et al. 1991, Owen et al. 
2017). In the northern hemisphere, they are classified 
as generalists, feeding on a mixed diet of fish and krill 
(Christensen et al. 1990, 1992, Ryan et al. 2014, Witte-
veen & Wynne 2016), whereas in the southern hemi-
sphere, numerous studies have re corded humpback 
whales as feeding predominantly on krill (Matthews 
1937, Chittleborough 1965, Kawamura 1994, Bannister 
& Hedley 2001, Paterson et al. 2001, Friedlaender et al. 
2006, 2008, Waugh et al. 2012, Groß et al. 2020). South-
ern Ocean humpback whales were thought to confine 
their feeding to Antarctic waters, fasting whilst on 

their calving grounds and when migrating (Dawbin 
1966, Lockyer 1981, Baraff et al. 1991). However, there 
is now increasing evidence of humpback whales feed-
ing on high-density krill patches and fish during 
migration, both in the southern hemisphere (e.g. Gill 
et al. 1998, Stamation et al. 2007, Gales et al. 2009, 
 Barendse et al. 2013, Eisenmann et al. 2017, Andrews-
Goff et al. 2018, Owen et al. 2024) and northern hemi-
sphere (Baraff et al. 1991, Swingle et al. 1993, Laerm et 
al. 1997, Visser et al. 2011). Indeed, 4 of the 7 hump -
back whale breeding populations have been observed 
to feed along migration routes (International Whaling 
Commission 2011), with feeding events lasting from 
days to weeks in highly productive temperate areas 
(Gales et al. 2009, Owen et al. 2015). Seasonal aerial 
surveys re corded regular aggregations of more than 
20 humpback whales feeding on baitfish between 37 
and 42° S off the coast of Australia during migration 
(D. Donnelly unpubl. data). Due to the mobile nature 
of these whales and the remote location of their forag-
ing grounds, long-term tracking of individuals to es-
tablish feeding sites is logistically challenging and ex -
pensive. Standard techniques for tracking whale 
movements have included observations from whaling 
records and ‘Discovery’ tag data (Rayner 1939, Chittle-
borough 1959, Dawbin 1964), photo-identification 
(Garrigue et al. 2004, Constantine et al. 2014, Franklin 
et al. 2014), satellite tagging (Dalla Rosa et al. 2008, 
Riekkola et al. 2018) and genetic analysis (Constantine 
et al. 2014, Schmitt et al. 2014a,b, Steel et al.  2018). 
More recently, stable isotope analysis has emerged as 
a powerful tool to investigate the trophic ecology and 
foraging ranges of humpback whales by analysing the 
stable isotope values of their tissues and prey within 
their foraging environments (Eisenmann et al. 2016, 
Witteveen & Wynne 2016, MacKenzie et al. 2022). 

The isotopic composition of phytoplankton at the 
base of the food chain (the isotopic baseline) is trans-
ferred to higher trophic levels with relatively predict-
able relationships (De Niro & Epstein 1978, 1981, Mi-
nagawa & Wada 1984, Vander Zanden & Rasmussen 
1999). The bulk nitrogen stable isotope value (the 
ratio of 15N to 14N, expressed as δ15N in ‰ units) in a 
consumer, such as a humpback whale, can be in-
creased by 3–4 ‰ relative to its diet. This difference 
in isotopic composition, referred to variously as frac-
tionation factor, tissue–diet (isotopic) spacing or 
trophic discrimination factor (TDF), makes nitrogen 
stable isotopes a valuable tool for trophic studies 
 (Peterson & Fry 1987, Post 2002, Vander Zanden & 
Rasmussen 2001). However, TDFs can be variable 
within individuals, among species and within different 
environments (Vander Zanden & Rasmussen 2001, 
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McCutchan et al. 2003; see also Section 2.5.1 below), 
so knowledge of the species and ecosystem is impor-
tant. Baseline δ15N values can also vary greatly across 
space (Somes et al. 2010, McMahon et al. 2013, Mac-
Kenzie et al. 2014) and time (Schmittner & Somes 
2016, Espinasse et al. 2019, St John Glew & Espinasse 
et al. 2021), so the importance of mapping phyto-
plankton δ15N values to estimate the trophic position 
(TP) of consumers in food webs is widely recognised 
(Hobson & Welch 1992, Cabana & Rasmussen 1996, 
Jennings & Warr 2003). Complementary to baseline 
and consumer tissue bulk δ15N analysis, an additional 
assessment of TP can be made via compound-specific 
stable isotope analysis (CSIA) of nitrogen in amino 
acids (N-AA), using δ15N values of certain amino acids 
(δ15NAA) (McClelland & Montoya 2002, Chikaraishi et 
al. 2009, 2014). This approach is based on the fraction-
ation between the so-called ‘source’ and ‘trophic’ 
amino acids in metabolic processes (Popp et al. 2007, 
Hannides et al. 2009). Source amino acids cannot be 
synthesised and must be acquired through diet; there-
fore, their δ15N values reflect the isotopic baseline, 
whereas trophic amino acids can be acquired or syn-
thesised, and their δ15N values reflect the isotopic 
baseline plus trophic and physiological effects. As 14N 
is preferentially excreted, exchange of nitrogen with 
the available nitrogen pool results in an enrichment in 
15N in an organism’s tissue as biomass is transferred 
from one trophic level to another, thereby increasing 
δ15NAA values of trophic amino acids in secondary 
consumers (Hannides et al. 2009, Chikaraishi et 
al.  2014). Thus, a general equation based on δ15NGlx 
(glutamic acid, trophic) and δ15NPhe (phenylalanine, 
source) can be used to assess the TP (TPGlx/Phe) of any 
organism across different environments (Chikaraishi 
et al. 2009, 2014; see also Section 2.6). 

Carbon is less affected by trophic fractionation than 
nitrogen, with an approximate 0.4–0.8 ‰ increase 
per trophic level (Vander Zanden & Rasmussen 2001, 
Post 2002). This means that bulk carbon stable isotope 
values (the ratio of 13C to 12C, expressed as δ13C in ‰ 
units) are more suitable to trace the source of carbon 
to an organism or system, where sources are isotopi-
cally distinct (Fry & Sherr 1984, Rounick & Winter-
bourn 1986, France & Peters 1997). Nevertheless, car-
bon stable isotopes also show variable trophic 
enrichment and highly dynamic baseline values. Pela-
gic suspended particulate organic matter (SPOM), a 
proxy for marine phytoplankton (which strictly 
speaking comprises phytoplankton and detritus) in 
open-ocean waters, shows a positive relationship be -
tween water temperature and δ13C values (Sackett et 
al. 1965, Rau et al. 1989, Goericke & Fry 1994). The 

relationship is particularly strong in the Southern 
Ocean between 40 and 80° S, where persistent δ13C 
gradients have been measured (Cherel & Hobson 
2007, Quillfeldt et al. 2010, Espinasse et al. 2019). The 
predictable relationship between δ13C values of 
SPOM and spatially determined environmental vari-
ables has enabled the development of both data- and 
process-based models of natural spatio-temporal 
variations in isotopic baselines, which are termed iso-
scapes. These models enable trophic levels and diet 
(St John Glew et al. 2018), feeding grounds (Cherel & 
Hobson 2007, Cherel et al. 2007, Jaeger et al. 2010) 
and movements or migrations of marine organisms 
(Graham et al. 2010, Hobson et al. 2010, Trueman et 
al. 2019) to be inferred from consumer tissue isotope 
data. Isoscape applications are now widespread and 
summarised in several review papers (Hobson 1999, 
Ramos & González-Solís 2012, Trueman et al. 2012, 
McMahon et al. 2013, Trueman & St John Glew 2019), 
and the recent development of large-scale oceanic 
modelled isoscapes for carbon (Magozzi et al. 2017, St 
John Glew & Espinasse et al. 2021) and nitrogen 
stable isotopes (Somes et al. 2010, Schmittner & 
Somes 2016, St John Glew & Espinasse et al. 2021) has 
increased confidence in large basin-scale animal 
movement inferences from tissue stable isotope values. 

This study focussed on humpback whales feeding 
during the summer months in the vicinity of the Bal-
leny Islands and the Ross Sea slope, East Antarctica, a 
known high-density feeding ground (Franklin et al. 
2012, Harrison et al. 2020). Animals feeding in this 
region most likely belong to groups of humpback 
whales that migrate in the autumn to calving grounds 
in north-eastern Australian and New Caledonian 
waters (Constantine et al. 2014, Schmitt et al. 2014a, 
Riekkola et al. 2018), classified by the International 
Whaling Commission (2011) as the E1 breeding pop-
ulation. The hypothesis that ‘Southern Ocean hump-
back whales have a similar diet to northern hemi-
sphere humpback whales, eating a mixed diet of fish 
and krill’ was tested. Combining multiple stable iso-
tope methods and data from three voyages to the Bal-
leny Islands and Ross Sea, the TP, diet and likely feed-
ing locations of humpback whales were determined. 
After examining the whale isotopic niche data, the 
hypothesis that ‘some whales may feed at higher 
trophic levels than others’ was also explored through 
modelling the relative proportions of prey taken by 
whales occupying different isotopic niches and 
through CSIA analysis. A literature review of carbon 
and nitrogen stable isotope and TP values was com-
pleted to compare Southern Ocean humpback whales 
of this study with northern hemisphere populations. 
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2.  MATERIALS AND METHODS 

2.1.  Overview 

Surface water SPOM (used as a proxy for phyto-
plankton in this study) was sampled along transect 
lines from New Zealand to the Ross Sea to provide 
baseline data for estimates of whale TP and to gener-
ate field data to validate δ13C and δ15N isoscapes. A 
combination of δ13C and δ15N analyses of whale skin 
biopsies and muscle from potential whale prey, and 
CSIA of N-AA of the whale skin were used to deter-
mine the diet and TP of humpback whales sampled 
around the Balleny Islands and the Ross Sea slope. 
The TP of the whales was validated using a Bayesian 
estimate of TP (Quezada-Romegialli et al. 2018). Baye -
sian modelling was used to determine niche width 
and isotopic niche overlap to assess if whale clusters 
were isotopically distinct (Jackson et al. 2011). In 
addition, ‘MixSIAR’ (Bayesian Mixing Models in R) 
modelling (Stock et al. 2018) was applied to deter-
mine the proportions of prey that humpback whales 
were feeding on. Finally, data-derived and modelled 
δ13C and δ15N isoscapes (St John Glew & Espinasse et 
al. 2021) were used to ascertain where the humpback 
whales were most likely to have been feeding over the 
integrated time period of their skin biopsy record. 

2.2.  Study area and sampling 

2.2.1.  Study area 

Biological samples were collected during 3 oceano-
graphic voyages from New Zealand to the Ross Sea 
on  the RV Tangaroa: (1) International Polar Year —
Census of Antarctic Marine Life voyage, January–
March 2008 (Pinkerton et al. 2011); (2) Antarctic 
Whale Expedition voyage, February–March 2010 
(Gales 2010 https://data.aad.gov.au/aadc/voyages/
display_voyage.cfm?voyage_id=544); and (3) New 
Zealand–Australia Antarctic Ecosystems voyage, Feb-
ruary–March 2015 (O’Driscoll & Double 2015). Hence-
forth the sampling trips are referred to respectively as 
(1) V2008, (2) V2010 and (3) V2015, where ‘V’ repre-
sents ‘voyage’. The vessel tracks for each voyage and 
the key sampling locations of SPOM and marine fauna 
are shown in Figs. 1 & 2. Whale skin and SPOM sam-
ples were collected during V2010 and V2015, and prey 
samples were collected on all 3 voyages. Details of the 
sample types and numbers taken on each voyage are 
provided in Table S1 in Supplement 1 at www.int-res.
com/articles/suppl/m734p123_supp1.pdf. 

2.2.2.  SPOM sampling and processing 

SPOM samples were obtained by underway sam-
pling of near-surface water at 6-hourly intervals from 
5.5 m beneath the RV Tangaroa via the Underway 
Flow Through System on V2010 and V2015 (Fig. 1). 
For sample processing details, see Text S1. 

2.2.3.  Humpback whale biopsy sampling and  
tissue processing 

A total of 65 humpback whale biopsies were sam-
pled for stable isotope analysis, genetics and sex 
determination (Table S1, Text S2), with 55 biopsies 
obtained between 12 February and 8 March 2010, and 
10 biopsies sampled between 7 February and 2 March 
2015 (Fig. 1). The arrival time of humpback whales on 
their Antarctic feeding grounds is between October 
and December (Chittleborough 1965, Dawbin 1966, 
Andrews-Goff et al. 2018). Given an estimated skin 
turnover rate of 3 to 4 mo (Text S3), for skin biopsies 
taken in February/March, the stable isotopic compo-
sition of a whale’s prey should be almost fully inte-
grated into the whale skin after 3 to 5 mo of feeding. 
The measured isotopic values of the whale skin were 
therefore expected to primarily reflect the Antarctic 
feeding ground signal. 

In 2010, 31 biopsies were sampled in the vicinity of 
the Balleny Islands (BI: 162.0–166.0° E, 66.0–67.5° S), 
22 south-east of the Balleny Islands (SEBI: 166.0–
170.0° E, 67.5–70.0° S) and 2 along the Ross Sea slope 
(RSS: 175.0° E–165.0° W, 69.0–70.5° S). In 2015, 7 
humpback whales were sampled around BI and 3 
along the RSS. For detailed sampling methods and 
processing information, see Text S2. 

2.2.4.  Prey sampling and analytical preparation 

Sampling locations of fish, Antarctic krill and mixed 
community zooplankton (which were not identified to 
species) are shown in Fig. 2, with sample numbers pro-
vided in Table S1 and methods and tissue processing 
details in Text S4. The fish sampled included 5 mycto-
phid (lantern fish) species (Electrona carlsbergi, E. ant-
arctica, Gymnoscopelus nicholsi, G. opisthopterus and 
G. braueri) and Antarctic silverfish Pleuragramma ant-
arctica. These species were the only prey species sam-
pled that were deemed to be relevant as potential 
humpback whale prey and together are amongst the 
most commonly encountered fish in the Southern 
Ocean (Koubbi et al. 2011, Woods et al. 2023). 
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2.2.5.  Lipid extraction of biological samples 

Lipid synthesis strongly discriminates against the 
13C isotope (De Niro & Epstein 1977, 1978), leading to 
more negative δ13C values in lipid-rich tissues, rel-
ative to proteins and carbohydrates (Rounick & Win-
terbourn 1986). To reduce bias in stable isotope 

results due to ‘lipid contamination’ (Hebert & Keen-
leyside 1995, Post et al. 2007, Mintenbeck et al. 2008), 
we followed the recommended method of analysing 
bulk (whole) samples for nitrogen content (%N) and 
δ15N values, and lipid-extracting samples to obtain 
accurate carbon content (%C) and δ13C values (Ricca 
et al. 2007, Logan et al. 2008) for all whale biopsy 
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Fig. 1. Location of ship’s voyage (V) tracks, suspended particulate organic material (SPOM) and humpback whale Megaptera 
novaeangliae biopsy sampling during V2008, V2010 and V2015. SPOM sampling locations indicate the ship’s tracks in 2010 
and 2015; the ship’s track in 2008 is marked by the solid red line (no SPOM samples were taken on this voyage). The inset shows 
finer-scale details of humpback whale skin sampling locations around the Balleny Islands (BI). SEBI: south-east Balleny Islands; 
RSS: Ross Sea slope. The locations of the major oceanographic fronts (after Sokolov & Rintoul 2007) are marked as SAF_N 
(Subantarctic Front, northern boundary), SAF_S (Subantarctic Front, southern boundary), PF_N (Polar Front, northern 
boundary), PF_S (Polar Front, southern boundary), SACCF_N (Southern Antarctic Circumpolar Current Front, northern 
boundary) and SACCF_S (Southern Antarctic Circumpolar Current Front, southern boundary). The location of the median sea 
ice extent between 1981 and 2010 is also included for the months of January and February using data from the National Snow 
and Ice Data Center (Fetterer et al. 2017). Bathymetry was generated from the General Bathymetric Chart of the Oceans  

(GEBCO), sourced online at https://www.gebco.net/data_and_products/gridded_bathymetry_data/ 
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(V2010, V2015), krill (V2008) and myctophid (V2010, 
V2015) samples (methodological details in Text S5). 
Krill (V2015) and silverfish (V2008, V2015) were ana-
lysed as whole bulk samples, with a subset analysed 
after lipid extraction to derive a species-specific δ13C 
correction formula. Where bulk C:N mass ratios 
exceeded 3.5, we corrected the δ13C values using 
these derived formulae. For mixed-community zoo-
plankton samples, where sample material was lim-
ited, δ13C data were corrected for lipid content using 
C:N molar ratios following equations in Fry (2002). 

2.3.  Stable isotope analysis 

2.3.1.  Bulk stable isotope analysis 

All bulk stable isotope analyses were carried out 
at the NIWA Environmental and Ecological Stable 
Isotope Analytical Facility in Wellington, New Zea-
land, using 2 intercalibrated elemental analyser (EA) 
continuous flow isotope ratio mass spectrometer 

(CF-IRMS) analytical systems. Most 
analyses were carried out using a 
MAS200 autosampler connected to a 
Flash 2000 EA coupled with a DELTA 
V Plus (Thermo Fisher Scientific) CF-
IRMS. A small number of samples 
were analysed using an AS200_LS 
autosampler on an NA-1500 EA (Fisons 
Instruments) linked to a DELTAPlus 
CF-IRMS (Ther mo Fisher Scientific). 
For de tails of analysis, standards used, 
isotopic calculations and normalisa-
tion, accuracy and precision, refer to 
Text S6. All estimates of variance re -
ported are given as ±1 SD, using the 
format ‘mean, SD’. 

2.3.2.  Amino acid hydrolysis and 
derivatisation for CSIA of whale 

biopsy samples 

Fourteen humpback whale skin sam-
ples were selected for CSIA of δ15NAA 
from Clusters A and B (see Sec-
tion 2.4.2), from samples where suffi-
cient skin biopsy material was avail-
able to encompass the maximum range 
of bulk isotope values and both sexes 
(8  males and 6 females). One sample 
was analysed in duplicate providing 

replication of analysis (Table S2: sample 2010_216a 
and b). Amino acids are non-volatile molecules that 
require hydrolysis and derivatisation prior to analysis. 
Whale biopsy samples were hydrolysed into individ-
ual amino acids with 6 N hydrochloric acid, then 
derivatised using acetyl chloride-isopropanol fol-
lowed by trifluoroacetic anhydride to produce triflu-
oroacetic amino acid esters (Macko et al. 1997). The 
hydrolysis and derivatisation method of Hannides et 
al. (2009) was closely followed with only minor devi-
ations, which are reported in Text S7. 

2.3.3.  CSIA of N-AA 

Derivatised samples were transferred into ethyl 
acetate and diluted to the appropriate concentration 
for analysis on the gas chromatograph (GC) IRMS. 
Eleven amino acids were detected and reported: 
7  ‘trophic’ amino acids (alanine, valine, leucine, iso-
leucine, proline, aspartic acid and glutamic acid), a 
‘source’ amino acid (phenylalanine), a ‘metabolic’ 
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Electrona carlsbergi, E. antarctica, Gymnoscopelus nicholsi, G. opisthopterus 
and G. braueri); ANS: Antarctic silverfish Pleuragramma antarctica; BI: Balleny 
Islands; RS: Ross Sea. The colours of the species symbols match those in Fig. 5
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amino acid (threonine) and 2 ‘intermediate’ amino 
acids (glycine and serine). Glycine and serine cannot 
easily be classified as either ‘source’ or ‘trophic’ 
amino acids (Cherel et al. 2019) and are thus consid-
ered ‘intermediate’ (Shen et al. 2021). 

The CSIA of N-AA was carried out on a TRACE 
Ultra GC with GC IsoLink interface coupled via a 
ConFlo IV to a DELTA V Plus IRMS (Thermo Fisher 
Scientific), with GC PAL autosampler (CTC Analytics). 
For details of the analysis, standards used, raw data 
corrections, accuracy and precision refer to Text S8 
and Fig. S1. 

2.4.  Statistical analyses 

2.4.1.  Comparing stable isotope values between 
locations, age groups and sexes 

Differences in δ13C and δ15N values between loca-
tions (BI, SEBI, RSS), age groups (adult, subadult, 
dependent young) and sexes of whales were investi-
gated using generalised linear models (GLMs) with a 
Gaussian distribution and an identity link function. 
Twelve models were built for δ15N and δ13C, respec-
tively, including all possible combinations of vari-
ables. Models were then ranked according to their 
Akaike’s information criterion (AIC) corrected for 
small sample sizes (AICC) (Burnham et al. 2011) to 
select the model that best explained the data. Final 
models were checked for interactions between vari-
ables and homogeneity of variance, and residual dis-
tributions were checked for normality. All statistical 
analyses were completed in R (R Core Team 2020). 

2.4.2.  Niche comparison 

K-means cluster analysis (MacQueen 1967, Lloyd 
1982) was used to define 2 clusters (A and B) of hump-
back whales based on their respective δ13C and δ15N 
values. K-means clustering is an established unsuper-
vised machine learning algorithm for segregating a 
data set into k groups or clusters, where k represents 
the number of clusters pre-specified by the user (here, 
k = 2, chosen a priori after visual inspection of the 
data), and objects within the same cluster are as simi-
lar as possible. 

Six different Layman metrics (δ13C range, δ15N 
range, total area [TA], mean distance to centroid [CD], 
mean nearest neighbour distance [MNND] and stand-
ard deviation of nearest neighbour distance [SDNND]) 
(Layman et al. 2007) were used to compare isotopic 

niches between clusters (Table S3). All Layman metrics 
were bootstrapped with replacement (n = 10 000, indi-
cated with a subscript ‘boot’) based on the smallest sam-
ple size in the data set (n = 9) to enable statistical com-
parison between clusters (Manly 1997, Jackson et al. 
2012). To further assess niche widths and isotopic 
niche overlap between clusters, standard ellipse areas 
(SEAs), the bivariate equivalent to standard deviation 
in univariate analyses, were calculated with correction 
for small sample size (SEAc, Jackson et al. 2011). In ad-
dition, Bayesian SEAs (SEAB) were calculated using 
1000 posterior draws to statistically compare niche 
width and to estimate the niche overlap between 
clusters, calculated as the proportion of the total SEAB 
for each sex, respectively. All metrics were calculated 
using the R package ‘SIBER’ (Stable Isotope Bayesian 
Ellipses in R) (Jackson et al. 2011, R Core Team 2020). 

2.5.  Prey apportionment modelling 

2.5.1.  Selection of diet–tissue TDFs 

Quantifying the diet of an organism using prey ap-
portionment modelling requires knowledge of the iso-
topic enrichment (i.e. TDF) in the predator relative to 
prey (DeNiro & Epstein 1978, 1981). TDFs can be 
highly variable depending on species, physiology, on-
togeny, habitat and food type (see summary by Boeck-
len et al. 2011, their Table 1), and in large marine mam-
mals, they are difficult to measure. However, from a 
study of wild fin whales Balaenoptera physalus feeding 
exclusively on euphausiid krill Meganyctiphanes nor-
vegica, Borrell et al. (2012) calculated whale skin 
stable isotope TDFs of 1.28, 0.38 ‰ for carbon and 
2.82, 0.30 ‰ for nitrogen. The authors suggested that 
TDFs are relatively constant between taxonomically 
close species and that fin whale values can be extrapo-
lated to other cetaceans. Therefore, the TDF values of 
Borrell et al. (2012) (hereafter referred to as ‘Borrell 
TDF’) were used, but for comparison, data are also pre-
sented in the Supplementary Materials using the tra-
ditionally accepted Post (2002) stable isotope TDF 
values of 0.39, 1.3 ‰ for carbon and 3.4, 0.98 ‰ for 
 nitrogen (hereafter referred to as ‘Post TDF’). 

2.5.2.  Mixing model 

The contribution of different prey sources to the 
humpback whale diet was estimated using 2 isotopic 
tracers (δ13C and δ15N), applying the isotopic mixing 
model of Stock et al. (2018), which incorporates 
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uncertainties in isotope values of both sources and 
consumers, TDFs and tissue turnover rates. The 
model included δ13C and δ15N values from 5 potential 
prey (phytoplankton, mixed community zooplank-
ton, Antarctic krill, myctophids and silverfish), from 
3  sampling locations (BI, RSS and Ross Sea [RS]). 
Phytoplankton were included as possible prey, as 
potentially significant proportions of phytoplankton 
can be entrained and consumed during the feeding 
filtration process, particularly in densely aggregated 
patches of food. These various combinations of prey 
stable isotope values and locations were grouped 
using Ward’s hierarchical cluster analysis based on 
the mean δ13C and δ15N values of the prey (Fig. S2) to 
minimise the number of sources within the mixing 
model (Phillips & Gregg 2003, Moore & Semmens 
2008, Parnell et al. 2010). Data were checked for nor-
mal distribution using a Shapiro-Wilk t-test and 
visual inspection (Table S4). To test the hypothesis 
that some of the male humpback whales may have 
been feeding at higher trophic levels than the rest of 
the sampled males and most females (see Section 3.2), 
data were modelled to work out the relative propor-
tions of prey taken by whales in the 2 clusters (A and 
B; see Section 2.4.2). 

To test whether data met the point-in-polygon re -
quirement for every consumer (i.e. that all consumer 
iso topic values lie within a polygon bounded by the 
isotopic signatures of the sources; Phillips & Gregg 
2003, their Fig. 6A–F), a simulated mixing polygon 
was computed (Smith et al. 2013). No tissue correc-
tion factor was applied to whale skin stable isotope 
data when plotted with whale prey muscle stable iso-
tope data, as previous analysis of necropsied Hector’s 
dolphin Cephalorhynchus hectori, Māui dolphin C. h. 
maui and killer whale Orcinus orca skin and muscle 
samples showed minimal fractionation for carbon or 
nitrogen stable isotopes between these 2 tissue types 
(S. Bury unpubl. data). Similar findings were reported 
for fin whales by Borrell et al. (2012) and for humpback 
whales by Todd et al. (1997), who reported differences 
of less than 0.4 ‰ between whale skin and muscle. 

Two iterations of ‘MixSIAR’ were run using, firstly, 
the Post TDF (reported only in the Supplement) and, 
secondly, the Borrell TDF (reported in Section 3). To 
test which factors were involved in predicting dietary 
proportions, for each TDF, the null model including 
all whales with no clustering was compared with the 
model including the variable ‘whale cluster’ as a fixed 
categorical effect with 2 levels (Cluster A and Cluster 
B) (Table S5). Models had a multiplicative error term 
(Stock & Semmens 2016) and specifications were 3 
Markov chain Monte Carlo (MCMC) chains, 200 000 

iterations as burn-in, and 100 000 iterations thinned 
by a factor of 100, providing a total of 3000 draws for 
estimating posterior distributions and credible inter-
vals. Model diagnostics were checked to ensure con-
vergence, and models were evaluated by comparing 
their AIC weights (wAIC) (Burnham & Anderson 2002) 
and approximate leave-one-out cross-validation infor-
mation criterion (LOOic) (Vehtari et al. 2017). 

2.6.  Estimation of humpback whale TP 

Due to the difficulty of directly measuring a TDF for 
humpback whales, 3 different methods of TP calcula-
tions were applied to corroborate the results: 

(1) simple mathematical TP estimates using SPOM, 
whale prey and whale δ15N data from this study, com-
bined with best estimates of TDFs between the con-
sumer and the prey, taken from the literature (details 
provided in Section 3); 

(2) a Bayesian estimation of TP from consumer stable 
isotope ratios using the R package ‘tRophicPosition’ 
(Quezada-Romegialli et al. 2018), which enables 
within-population variability to be accounted for and 
considers uncertainties and error propagation of the 
calculations. For the Bayesian model, krill were used 
as the nitrogen stable isotope baseline. Carbon stable 
isotope data were not incorporated in the model, as 
δ13C values in this study were primarily driven by lat-
itudinal feeding location, which would confound the 
TP estimates. 

(3) TP estimates from CSIA data. Using the CSIA 
data, Eq. (1) (based on δ15N values for the ‘trophic’ 
amino acid glutamic acid [δ15NGlx] and the ‘source’ 
amino acid phenylalanine [δ15NPhe]), was used to 
assess the TP (TPGlx/Phe) of the humpback whales 
(Chikaraishi et al. 2009, 2014): 

        TPGlx/Phe = [δ15NGlx – δ15NPhe – β / TDF] + 1    (1) 

where β represents the isotopic difference between 
δ15NGlx and δ15NPhe in primary producers (taken to be 
+3.4, 0.9 ‰ for marine algae). In a recent review, Ra-
mirez et al. (2021) showed that β-values are taxon- and 
tissue-specific, but they also noted that variability in 
β-values dissipates at higher trophic levels. Therefore, 
the widely accepted marine algal value of +3.4 ‰ was 
used. The validity of the TPGlx/Phe estimate depends on 
the consistency of both β and TDF values (Chikaraishi 
et al. 2014, Ramirez et al. 2021). In this study, the 
humpback whale data-derived TDF value used for the 
TPGlx/Phe calculations was based on a whale TP of 3.32 
(taken from the simple mathematical TP estimate (1) 
above; see also Section 3.6.1), where: 
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        TDFwhale = (Glx – Phe – 3.4)/(TPwhale – 1), 
                               where TPwhale = 3.58                           

(2) 

2.7.  Isoscapes 

Whale skin δ13C values for individuals from 
Clusters A and B (as defined by the K-means cluster 
analysis) were used to identify the spatially explicit 
posterior probability for the origin of food resources 
incorporated into skin tissue of each individual 
whale. Assignment methods followed Wunder (2010) 
and were implemented with the R package ‘ASSIGNR’ 
(Ma et al. 2020) using carbon and nitrogen isoscape 
models for SPOM in the Southern Ocean (St John 
Glew & Espinasse et al. 2021). Since whale tissue of 
known origin was not available, δ13C and δ15N whale 
tissue values were adjusted by assuming a constant 
offset between whale skin and the isoscape model for 
SPOM of 1.67 ‰ for carbon (0.39 ‰ phytoplankton–
krill Post TDF + 1.28 ‰ krill–whale Borrell TDF) and 
6.22 ‰ for nitrogen (3.40 ‰ phytoplankton–krill 
Post TDF + 2.82 ‰ krill–whale Borrell TDF). 

Spatially-explicit posterior probability densities 
were estimated for each whale individually. Assign-
ments were first carried out using only δ13C values 
and were then repeated using both δ13C and δ15N 
data. For the single δ13C-only isoscape assignments, 
the estimated variance model from St John Glew & 
Espinasse et al. (2021) was used. For the dual-iso-
scape assignments, single isotope variances esti-
mated by St John Glew & Espinasse et al. (2021) were 
used for the diagonal of the variance–covariance 
matrix, and the off-diagonals were estimated from the 
expected values for δ13C and δ15N from the isoscape 
models for each raster cell (Ma et al. 2020). In both 
assignment model cases, the bounding box for the 
posterior densities ranged from 140 to 220° E and 
from 77.5 to 39.5° S. Probability densities were aver-
aged across all whales in each of the 2 previously 
identified feeding Clusters A and B. The resultant 
probability densities are spatially explicit representa-
tions for the average feeding origin of the whales in 
each cluster. 

2.8.  Factors to consider when interpreting  
stable isotope data 

Several factors should be considered when inter-
preting stable isotope data in the context of TP status, 
diet apportionment and feeding location assignments 
(Gannes et al. 1997, Jardine et al. 2006, Inger & Bearhop 

2008). Useful summaries are provided by Bearhop et 
al. (2004) and in review papers by Martínez del Rio et 
al. (2009), Newsome et al. (2010), Boecklen et al. 
(2011) and Thomas & Crowther (2015). Briefly, factors 
include stable isotope incorporation rates into an ani-
mal’s tissue and the metabolic activity of that tissue 
affecting its turnover rates (Text S3), tissue type cor-
rection factors (Cherel et al. 2005b), diet–tissue TDFs 
(Hobson & Clark 1992, Vander Zanden & Rasmussen 
2001, Caut et al. 2009; Text S3), nutritional stress 
(Fuller et al. 2005), the sex, age, reproductive and 
physiological status of the organism (Fuller et al. 
2004, Cherel et al. 2005a), estimates of stable isotope 
baselines (including the calculation of β-values in the 
CSIA TP calculation, Ramirez et al. 2021) and iso-
scape baseline-organism spacing values (see Section 
2.7). Furthermore, isoscape-based animal assign-
ments generally rely on isoscapes constructed using 
surface SPOM stable isotope values, which only pro-
vide an approximation of isotopic baselines, since 
SPOM stable isotope values vary with depth (Lourey 
et al. 2003), and both humpback whales and their prey 
undergo diel vertical movements. Varying degrees of 
uncertainty exist for all of these issues, with some 
information still unknown, generating caveats that 
need to be acknowledged. 

3.  RESULTS 

3.1.  Humpback whale skin stable isotope 
 variability between sampling locations, 

whale age groups and sexes 

Individual humpback whale skin δ13C values ranged 
from –26.77 to –20.90 ‰, and δ15N values ranged 
from 6.49 to 9.48 ‰ across all sampling locations and 
years with an overall arithmetic mean, ±1 SD (hence-
forth referred to simply as ‘mean’) of –25.23, 1.03 ‰ 
and 7.57, 0.66 ‰, respectively (Fig. 3; Table S1). A 
similar spread of δ13C and δ15N values occurred across 
all sampled regions (BI, SEBI and RSS), resulting in 
mean values overlapping between sampling regions 
and years. There was little isotopic variation in the 
mean and SD values of δ13C and δ15N values between 
adult whales sampled in 2015 (n = 10), and adults (n = 
44), subadults (n = 6) and dependent young (n = 5) 
sampled in 2010 (Fig. S3b, Table S6). 

Genetic analysis identified 29 males and 26 females 
sampled in 2010, with 1 male and 9 females sampled in 
2015, giving a total of 30 male and 35 females sampled 
overall. The temporal sampling of males and females 
was evenly spread throughout the 2010 voyage. There 
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was considerable overlap between male and female 
δ13C and δ15N values (Fig. S4), but across the data set, 
mean male values were slightly higher (δ13C: –24.86, 
1.27 ‰; δ15N: 7.88, 0.65 ‰) than fe male values (δ13C: 
–25.56, 0.62 ‰; δ15N: 7.31, 0.55 ‰) (Table S7). 

GLMs showed that sex, age and sampling year were 
the main predictors of both δ13C and δ15N values 
(Table S8). The top models retained sex and age for 
higher δ13C values, and sex and year for higher δ15N 
values. However, the second and third-best models 
for δ13C (retaining sex and year; and sex, age and 
year) and the second-best models for δ15N (retaining 
sex and year; and sex and age) explained the data 
almost equally well as the respective top-ranked 
models (Table S8). Values of δ15N increased slightly 
with year, and dependent young had lower, and 
sub adults had higher δ13C values. However, although 
age and year were retained in the final models for δ13C 
and δ15N values, respectively, the effects were not 
significant (Table S9). While sex and age had com-
parable variable importance contributing to the over-
all model fit for δ13C values, the final model for δ15N 
values was mainly driven by sex (Fig. S5). The devi-
ance explained was low for top-ranked models for 
both δ13C and δ15N values (18.9 and 17.9%, respec-
tively), indicating that part of the data variation is not 
explained by the predictor variables. 

3.2.  Niche comparison 

Two clusters (A and B) of individual humpback 
whales were identified, based on their respective 
δ13C and δ15N values (Fig. 4). Cluster A whales had a 
mean δ13C value of –25.57, 0.50 ‰ and a δ15N value 
of 7.38, 0.43 ‰, whilst Cluster B whales had a 
mean δ13C value of –23.66, 0.43 ‰ and δ15N value 
of 8.81, 0.48 ‰ (Table S1); thus, Cluster B whales 
had 1.90 ‰ higher mean δ13C and 1.43 ‰ higher 
mean δ15N values than Cluster A whales. Isotop -
ic niche metrics varied between the 2 clusters 
(Table S3), with Cluster B having a higher probabil-
ity for larger bootstrapped values than Cluster A for 
all metrics, except MNND (97.2% Cluster A > 
Cluster B) and SDNND (79.2% Cluster A > Cluster 
B). Niche differentiation between the 2 clusters was 
further demonstrated by the negligible SEAB overlap 
for both clusters (SEAB overlap: Cluster A = 0.4%, 
Cluster B = 0.1%). Both clusters included whales 
sampled from all locations (BI, SEBI and RSS) 
(Fig. S6). However, Cluster B comprised predomi-
nantly male whales: 7 males and 2 females, with the 
2 females plotting in the lower range of δ13C and 
δ15N values (Fig. 4). This led to the hypothesis that 
some of the male humpback whales (those in 
Cluster B) may have been feeding at higher trophic 
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Fig. 3. Lipid-extracted δ13C and bulk δ15N biplot of 2010 and 2015 humpback whale Megaptera novaeangliae skin biopsy sam-
ples, showing sampling year and location for (a) all values and (b) mean ± 1 SD values. BI: Balleny Islands; SEBI: south-east Balleny  

Islands; RSS: Ross Sea slope; n: number of samples taken on each voyage in each region
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levels than the rest of the sampled males (those in 
Cluster A) and most females (Cluster A). 

3.3.  Carbon and nitrogen stable isotope values of 
humpback whale prey 

Phytoplankton from all areas showed high variabil-
ity in both δ13C and δ15N values, and this wide isotopic 
variability was reflected up the food chain and ob -
served in mixed-community zooplankton, Antarctic 
krill, myctophids and Antarctic silverfish (Fig. 5a,b). 
BI phytoplankton had higher mean stable isotope 
values (δ13C: –24.05, 1.66 ‰; δ15N: 1.49, 0.95 ‰) 
than RSS (δ13C: –28.41, 1.01 ‰; δ15N: 0.39, 1.97 ‰) 
and RS phytoplankton (δ13C: –28.56, 0.98 ‰; δ15N: 
0.06, 0.96 ‰), which were similar (Table S1). Antarctic 
krill from BI had higher isotope values (δ13C: –24.39, 
1.07 ‰; δ15N: 4.96, 0.60 ‰) compared to Antarctic 
krill from RSS (δ13C: –26.23, 0.65 ‰; δ15N: 4.11, 
0.62 ‰) and RS  (δ13C: 26.09, 0.59 ‰; δ15N: 4.10, 
0.62 ‰). The same pattern was also observed for 
BI mixed community zooplankton (δ13C: –23.39, 
1.25 ‰), which had higher δ13C values than mixed 

community zooplankton from the RSS (δ13C: –27.45, 
1.01 ‰) and RS (δ13C: –27.19, 1.53 ‰). Notably, RSS 
mixed community zooplankton had higher δ15N 
values (7.03, 2.04 ‰) compared to both RS (δ15N: 5.29, 
2.26 ‰) and BI (δ15N: 4.81, 1.01 ‰) zooplankton. Myc-
tophids from RSS and RS had similar δ13C values 
(–25.5 ‰), with BI values 1 ‰ higher, and all 3 loca-
tions had similar δ15N values, ranging from 9.08, 
0.61 ‰ (RSS) to 9.57, 0.77 ‰ (RS). Myctophid δ13C 
values overlapped with Antarctic silverfish values 
(δ13C: –25.11, 0.68 ‰), which had marginally higher 
δ15N values (RS δ15N: 10.24, 0.8 ‰) than myctophids. 

The isotopic prey polygon biplot (Fig. 5c) shows the 
isotopic means of the prey clusters (1–6, as defined 
based on the δ13C and δ15N values in Fig. S2), with the 
prey cluster numerals plotted in Fig. 5b,c. Humpback 
whale skin means (±1 SD) for ‘all whales’, ‘Cluster A 
whales’ and ‘Cluster B whales’ are shown with the 
Borrell TDF subtracted (Fig. 5c). The simulated mixing 
prey polygon plot (Smith et al. 2013) (Fig. S7) val-
idated the use of these prey cluster data in the ‘Mix-
SIAR’ prey apportionment mixing model (Stock et al. 
2018) with the exemption of one outlier, which was 
removed from the data set used for the ‘MixSIAR’ 
model prior to analysis. 

3.4.  ‘MixSIAR’ mixing model outputs: proportions 
of different prey ingested by humpback whales 

All prey clusters, i.e. 1–6 (Fig. S2), had significantly 
different means (t-tests) in one or both of the isotope 
ratios (Table S4). Myctophids and silverfish grouped 
together in Cluster 6 and are collectively referred to 
as ‘fish’ in the dietary discussion. 

The Bayesian mixing model containing ‘whale cluster’ 
as a categorical variable was ranked highest (Table S5), 
and this model had lower multiplicative error terms (ξj) 
than the null model. The posterior distributions of the 
proportional contributions of each prey cluster to 
humpback whale diet for Borrell TDFs are shown in 
Fig. 6 and Table S10 (with results for Post TDFs pro-
vided for comparison in Fig. S8). Whilst the model out-
puts generate a range of possible prey proportions, the 
means of these ranges and the modes are also given in 
Figs. 6 & 8 and Table S10 to facilitate interpretation of 
the relative importance of each potential prey. 

3.4.1.  Cluster A whale diet 

The dominant prey items for Cluster A whales were 
RSS and RS phytoplankton (Cluster 1: mean 34, 6%; 
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Fig. 4. Lipid-extracted δ13C and bulk δ15N biplot showing 
standard ellipse area corrected for small sample size (SEAc, 
solid line ovals) and convex hull area (TA, area within dotted 
lines) for humpback whales Megaptera novaeangliae (see 
Table S3 for definitions). Ellipse areas hold 40% of the 
data. See Fig. 3 to view year and location of whale biopsy 
samples and Fig. S3 to view whale age group, for each of the  

isotopically segregated clusters A and B
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range 11–50%), followed by fish (Cluster 6: mean 27, 
7%; range 2–46%), and RSS and RS mixed-commu-
nity zooplankton (Cluster 5: mean 25, 10%; range 1–
57%) (Fig. 6a). Contributions from RSS and RS krill 
(Cluster 3), and BI phytoplankton (Cluster 2), mixed-
community zooplankton and krill (Cluster 4) were 
minimal. Cluster A whales appeared therefore to be 
sourcing most of their diet from the RSS and RS. 

3.4.2.  Cluster B whale diet 

Cluster B whales had a more varied diet than 
Cluster A whales, with the greatest proportion of their 
diet from BI mixed-community zooplankton and krill 
(Cluster 4: mean 41, 30%; range 0.1–83% with a bimo-
dal result, meaning there were 2 plausible solutions 
for the proportion vector) (Fig. 6b). Fish (Cluster 6: 
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a)

c)

b)

All whales, minus Borrell TDF (n = 65)
Cluster A whales, minus Borrell TDF (n = 56)
Cluster B whales, minus Borrell TDF (n = 9)
Myctophids BI/RSS/RS, Silverfish RS (n = 561)
Zooplankton RSS/RS (n = 84)
Zooplankton BI/Antarctic krill BI (n = 86)
Antarctic krill RSS/RS (n = 133)
Phytoplankton BI (n = 42)
Phytoplankton RSS/RS (n = 174)

All whales (n = 65)
Cluster A whales (n = 56)
Cluster B whales (n = 9)

Myctophids BI (n = 25)
Antarctic silverfish RS (n = 170)

Myctophids RSS (n = 112)
Myctophids RS (n = 254)
Zooplankton BI (n = 6)
Zooplankton RSS (n = 4)
Zooplankton RS (n = 80)
Antarctic krill BI (n = 80)
Antarctic krill RSS (n = 46)
Antarctic krill RS (n = 87)
Phytoplankton BI (n = 42)
Phytoplankton RSS (n = 65)
Phytoplankton RS (n = 109)

Fig. 5. (a) Lipid-extracted or lipid-corrected δ13C and bulk δ15N biplot of humpback whale Megaptera novaeangliae skin and 
muscle tissue of potential prey sampled in 2008, 2010 and 2015 from waters around the Balleny Islands (BI), the Ross Sea slope 
(RSS) and the Ross Sea (RS). (b) Mean values of data plotted in panel a. (c) Lipid-extracted or lipid-corrected δ13C and bulk δ15N 
prey polygon biplot showing means of potential humpback whale prey clusters. Humpback whale skin means are shown with 
the trophic discrimination factors (TDFs) of Borrell et al. (2012) subtracted. Error bars for whale skin isotope values are shown 
in panel b but have been omitted in panel c for image clarity. All means are plotted with ±1 SD. Symbol colours and bold black 
numbers represent the prey clustering used in Ward’s hierarchical analysis (Fig. S2) and ‘MixSIAR’ Bayesian mixing model  

output results (Fig. 6)



Bury et al.: Southern Ocean humpback whale trophic ecology

mean 34, 14%; range 3–60%, bimodal) 
and BI phytoplankton (Cluster 2: mean 
13, 16; range 0–46%, bimodal) mostly 
made up the rest of their diet. Contrib-
utions from RSS phytoplankton, RSS 
and RS krill, and mixed-community 
zooplankton (Clusters 1, 3 and 5, re -
spectively) were small. The bimodal 
results suggest that either (1) the diet 
was approximately two-thirds BI mixed-
community zooplankton and krill with 
around a quarter fish and other minor 
components; or (2) that the diet was 
approximately 50% fish balanced by 
around one-third BI phytoplankton and 
little BI mixed- community zooplank-
ton and krill. How ever, posterior modal 
peak heights suggest that the former 
diet is more probable. These results 
indicate a relative importance of fish in 
the diet of both Cluster A and B whales, 
and suggest that Cluster B whales 
derived a high proportion of their diet 
from around the BI. 

3.5.  CSIA of N-AA 

Of the 14 humpback whale skin sam-
ples analysed for CSIA of N-AA, 9 were 
from Cluster A (5 males and 4 females) 
and 5 from Cluster B (3 males and 2 
females) (Table S2). Values of δ15NGlx 
and δ15NPhe, along with TP were plotted 
against bulk δ15N data (Fig. 7). These 
plots illustrate a ‘flat’ trend line for 
δ15NPhe, with those values remaining 
relatively constant with increasing bulk 
δ15N values, compared to a steeper 
trendline for δ15NGlu, which showed 
15N enrichment in glutamic acid as 
bulk δ15N values increased. The AA 
δ15N data were examined applying 
the amino acid ‘fasting’ and ‘foraging’ 
indicators outlined by Lübcker et al. 
(2020): mean δ15N alanine values 
were similar between Cluster A (16.34, 
5.43 ‰) and Cluster B whales (16.62, 
3.50 ‰) (Table S2), whilst δ15N threo -
nine values were generally higher for 
Cluster B than Cluster A (mean –23.14, 
3.01 ‰ compared to –27.82, 4.37 ‰, 
respectively), although high standard 
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Fig. 6. Posterior distributions of the proportional contributions of each prey 
cluster (1–6, in parentheses) to the diet of humpback whales Megaptera no-
vaeangliae estimated using ‘MixSIAR’ (Stock et al. 2018) applying the trophic 
discrimination factors (TDFs) of Borrell et al. (2012). Diets were estimated sep-
arately for whales in (a) Cluster A and (b) Cluster B. Posteriors are plotted as 
the highest probability density intervals (HPDIs), which represent the shortest 
interval width containing the desired credibility range, and are more appropri-
ate when posteriors are skewed or multimodal compared to equal-tailed cred-
ible intervals. HPDIs of 50, 75, 90 and 95% are plotted for each prey cluster with 
decreasing bar thickness and colour intensity. Posterior peaks (modes) are 
plotted separately as filled circles. The posterior means and highest posterior 
peaks are given as percentages at the right-hand side of each panel for each 
prey cluster, with the mean given first on the left. RSS: Ross Sea slope; RS: Ross 
Sea; BI: Balleny Islands; Krill: Antarctic krill Euphausia superba; Fishes: mycto-
phids (Electrona carlsbergi, E. antarctica, Gymnoscopelus nicholsi, G. opistho -
pterus and G. braueri) plus Antarctic silverfish Pleuragramma antarctica. 
Numbers in brackets for the y-axis labels relate to Ward’s hierarchical prey  

cluster numbers depicted in the dendrogram of Fig. S2 
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deviations indicate there is considerable overlap in 
these data. No consistent trends were observed in any 
of the other amino acids. 

3.6.  Estimates of whale TP 

Humpback whale δ15N values ranged from 6.49 to 
9.58 ‰ across the 65 skin biopsy analyses (Fig. 3; 
Table S1). This range of 3.1 ‰ corresponds to slightly 
more than 1 TP when applying the TDF of Borrell et 
al. (2012). 

3.6.1.  Simple mathematical TP calculation 

A simple calculation of whale TP values (Table 1) 
was carried out using data presented in Table S11. 
Using bulk δ15N data averaged over the years 2010 
and 2015 for whales, and the years 2008, 2010 and 
2015 for prey from all sampled regions south of 66° S, 
the following was noted. If the mean Southern Ocean 
phytoplankton baseline δ15N value in regions where 
whales were most likely feeding is 0.45 ‰, the phyto-
plankton–krill TDF is 3.40 ‰ (Post 2002), and the 
krill–whale TDF is 2.82 ‰ (Borrell et al. 2012), then if 

whales were exclusively eating krill, one would 
expect their mean δ15N isotope value to be 0.45 + 3.40 
+ 2.82 = 6.67 ‰. However, their mean δ15N value was 
7.57 ‰, which is 0.90 ‰ greater than predicted, con-
firming that humpback whales in this study are likely 
to be incorporating fish into their diet to elevate the 
bulk δ15N value in their tissue, which is also sup-
ported by the Bayesian modelling output presented 
above. Assuming a fish–whale TDF of 2.82 (after 
Borrell et al. 2012), then the 0.90 ‰ increase of mea-
sured versus predicted δ15N value for whales repre-
sents 0.32 of a TP (0.90/2.82). If whales consumed a 
pure krill diet, then their expected TP would be 3.00. 
The mean TP of these humpback whales is therefore 
likely to be 3.32. The same calculation was carried out 
for the 2 whale clusters (A and B), for all females and 
for all males. Cluster A had a mean TP of 3.25, whilst 
the Cluster B mean TP was 3.76. Female mean TP was 
3.23, and male mean TP was 3.43 (Table 1). 

3.6.2.  Modelled ‘tRophicPosition’ calculation 

The ‘tRophicPosition’ model of Quezada-Romegi-
alli et al. (2018) gave humpback whale mean TP esti-
mates of 3.07 using the Borrell TDF (Table 1). The 
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female mean TP value was 2.98 compared to the male 
value of 3.18. Bayesian modelling posterior pairwise 
comparisons gave a probability of 99.8% that males 
had higher TP than females. The mean TP value of 
Cluster A was 3.00 compared to the Cluster B value of 
3.51. Bayesian modelling posterior pairwise compari-
sons gave a probability of 100% that Cluster B whales 
had higher TP than Cluster A whales. 

3.6.3.  CSIA TP and TDF calculation 

A biplot of δ15NGlx versus δ15NPhe values over 
trophic isoclines showed that male humpback whales 

generally had higher TP values than females, sup-
porting the TP calculations presented above, with 
male TPs ranging from 2.82 to 4.23 compared to 
female values of 2.58 to 3.35 (Fig. 8; Table S2). Male 
mean TP values were 3.57, 0.53 compared to female 
mean TP values of 3.00, 0.28. Two male whales in 
Cluster B had the highest TP of above 4.20, with 
Cluster B whales having a mean TP of 3.67, 0.60, 
compared to whales in Cluster A with a mean TP of 
3.14, 0.38. The mean TP of the subset of 14 whales 
analysed for CSIA was 3.33, 0.52. 

3.6.4.  Comparison of the three methods of 
TP calculation 

The simple mathematical calculation using mean 
bulk δ15N data from humpback whales and prey pro-
duced a mean whale TP of 3.32, which was very close 
to the CSIA-calculated value of 3.33, whilst the 
‘tRophic Position’ model produced a mean value of 
3.07. 
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Whale groups               TP calculation method 
                                                           Simple      ‘tRophic-       CSIA 
                                                        arithmetic    Position’ 
                                                                                   model                
 
All (n = 65, CSIA n = 14) 
Mean                                                   3.32              3.07             3.33 
Lower 95% CL                                                        2.99                   
Median                                                                      3.07                   
Upper 95% CL                                                        3.15                   

Females (n = 35, CSIA n = 6) 
Mean                                                   3.23              2.98             3.00 
Lower 95% CL                                                        2.89                   
Median                                                                      2.98                   
Upper 95% CL                                                        3.06                   

Males (n = 30, CSIA n = 8) 
Mean                                                   3.43              3.18             3.57 
Lower 95% CL                                                        3.08                   
Median                                                                      3.18                   
Upper 95% CL                                                        3.28                   

Cluster A (n = 56, CSIA n = 9) 
Mean                                                   3.25              3.00             3.14 
Lower 95% CL                                                        2.94                   
Median                                                                      3.00                   
Upper 95% CL                                                        3.06                   

Cluster B (n = 9, CSIA n = 5) 
Mean                                                   3.76              3.51             3.67 
Lower 95% CL                                                        3.36                   
Median                                                                      3.51                   
Upper 95% CL                                                        3.67                  

Table 1. Trophic position (TP) estimates using 3 different 
methods of TP calculation for humpback whales Megaptera 
novaeangliae. The ‘tRophicPosition’ model was run applying 
trophic discrimination factors of Borrell et al. (2012), using 
Antarctic krill Euphausia superba as the nitrogen stable iso-
tope baseline. TP estimates are shown as the median with 
95% confidence levels (CL). The whole data set was used for 
the simple mathematical calculation and the ‘tRophicPosition’ 
model, whilst a subset of samples (n = 14) was used for the 
compound-specific stable isotope analysis (CSIA) calculations  

as indicated

Fig. 8. Nitrogen stable isotope values of glutamic acid 
(‘trophic amino acid’, δ15NGlx) plotted against phenylalanine 
values (‘source amino acid’, δ15NPhe) for humpback whale 
Megaptera novaeangliae skin samples. Trophic isoclines 
with a slope of 1.0 and y-intercept intervals of 3.58 ‰ repre-
sent different trophic positions (TPs = 2, 3, 4 and 5). These 
isoclines are calculated according to the CSIA data-derived 
trophic discrimination factor of the whale: TDFwhale = (Glx – 
Phe – 3.4)/(TPwhale – 1) = 3.58, where TPwhale is 3.32 based 
on simple arithmetic TP calculation from bulk nitrogen stable  

isotope data (see Section 2.6 and Table S11) 
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3.7.  Isoscapes 

When assigning whales to the most probable feed-
ing locations based on comparisons between whale 
isotope data and isoscapes, the mean posterior prob-
ability density for the 56 whales in Cluster A was 
strongly bimodal when using only δ13C data. This 
suggested that some individual Cluster A whales 
were feeding north of the BI, between ~53 and ~63° S 

between the Subantarctic Front and the Southern 
Antarctic Circumpolar Current Front (Fig. 1), whereas 
another subset was feeding further south along the 
edge of and within the RS at ~75° S latitude (Fig. 9a). 
When using both δ13C and δ15N values for the Cluster 
A whale assignments, the mean posterior probability 
was multi-modal: the density was much greater for 
regions around the RS, with lower density assign-
ments between ~61 and ~67° S around the BI and just 
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north of the islands within the Southern Antarctic 
 Circumpolar Current Front, and a few assignments 
around 50° S to the south-east of New Zealand 
(Fig. 9c). The mean posterior probability density of 
assignments based on δ13C values for the 9 whales in 
Cluster B, by contrast, suggested a more diffuse bi -
modal distribution that extended further north, from 
~50 to ~60° S, with low probability density to the 
southwest and east of New Zealand (Fig. 9b). When 
using both δ13C and δ15N data for the Cluster B 
assignments, the mean posterior probability was still 
multi-modal; however, the density was much greater 
for regions off the south-western and south-eastern 
coasts of New Zealand and around Tasmania, with an 
additional lower-density mode along the edge of the 
RS (Fig. 9d; Fig. S9). 

4.  DISCUSSION 

This study applied multiple stable isotope methods 
to better constrain and understand Southern Ocean 
humpback whale trophic ecology. The primary hypo -
thesis that Southern Ocean humpback whales have 
a  similar diet to northern hemisphere humpback 
whales, eating a mixed diet of fish and krill, was con-
firmed. The secondary hypothesis, that some of the 
male humpback whales (those in Cluster B) were 
feeding at higher trophic levels than the rest of the 
sampled males (those in Cluster A) and most females 
(Cluster A) was also validated. 

4.1.  Comparison of humpback whale bulk  
stable isotope values, TP and diet with other  

published studies 

The ‘tRophicPosition’ model calculations gave re -
sults consistent with the simple arithmetic and CSIA 
TP estimates, providing confidence in these methods. 
To place the bulk isotope values, TP calculations and 
‘MixSIAR’ dietary conclusions from this study in 
context, a literature review of baleen whale stable iso-
tope and TP data and likely consumed prey was car-
ried out (Table S12 in Supplement 2 at www.int-res.
com/articles/suppl/m734p123_supp2.xlsx). Whilst it is 
acknowledged that there is no control or correction 
made for any variability in δ15N baselines for the data 
collated in the table, there are some interesting general 
trends. For example, for whales sampled in similar 
locations, whales that fed mainly on zooplankton gen-
erally had lower δ15N values compared to whales sam-
pled in the same area feeding predominantly on fish. 

4.1.1.  Southern hemisphere humpback whale  
δ15N values 

The mean humpback whale δ15N value of 7.5, 0.7 ‰ 
from this study was relatively close to Southern 
Ocean humpback whale supplementary feeders of 
the E1 breeding stock sampled off east Australia (7.1, 
1.0 ‰), feeding on Antarctic krill and Antarctic or 
temperate fish (Eisenmann et al. 2016). It was slightly 
higher than the mean value of 6.8, 0.4 ‰ reported for 
the E1 breeding stock (J. Groß unpubl. data), but 
close to the mean values measured for Population D 
(7.1, 0.5 ‰) and E2 (7.3, 0.5 ‰) in the same study (see 
Table S12 for descriptions of whale breeding stocks). 
Bengtson Nash et al. (2018) obtained δ15N values 
closely aligned to this study for humpback whales 
sampled off Moreton Bay, south-east Queensland, 
Australia, with values ranging from 7.8, 1.2 ‰ for 
males to 7.4, 1.6 ‰ for females, reported as eating 
Antarctic krill. They too observed higher values for 
males than females. Owen et al. (2024) recorded δ15N 
values of 7.4, 0.2 ‰ to 8.0, 0.1 ‰ for whales sampled 
off south-east Australia in the sub-tropics. In contrast, 
whales sampled in temperate waters off south-east 
Australia, observed to be eating temperate krill Nycti-
phanes australis and pilchards Sardinops sagax, had 
higher values of 8.1, 0.2 ‰ to 9.2, 0.2 ‰ (Owen et al. 
2024). Southern Ocean whales reported as being ex-
clusive Antarctic krill ‘classical feeders’ of the D 
breeding stock had lower δ15N values of 5.4, 0.7 ‰, 
and ‘classical feeders’ of the E1 breeding stock had 
values of 6.0, 0.7 ‰ (Eisenmann et al. 2016). These 
whales, which feed purely on Antarctic krill, had δ15N 
values that were 1–2 ‰ lower than whales in the 
same study that were supplementing their diet with 
fish, and were between 1.5 and 2 ‰ lower than 
whales sampled around the BI in this study. These com-
parisons provide confidence in the Borrell ‘MixSIAR’ 
modelling results, which indicated that the Southern 
Ocean humpback whales of this study had substantial 
contributions of fish in their diet (posterior means: 
Cluster A 27%; Cluster B 35%). These proportions are 
plausible in the context of δ15N values and dietary in-
formation from other studies presented in Table S12. 

4.1.2.  Comparison of Southern Ocean and northern 
hemisphere humpback whale δ15N values 

The wide range of δ15N values reported for northern 
hemisphere humpback whales (Table S12) suggests 
that these whales are flexible generalists, feeding 
across multiple trophic levels or varying isotopic 
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baselines (Christensen et al. 1992, Filatova et al. 2013, 
MacKenzie et al. 2022). North-west Atlantic hump-
back whales (Gavrilchuk et al. 2014) and North Paci-
fic Ocean humpback whales (Witteveen et al. 2008, 
2009b, 2011, Fleming & Jackson 2011, Filatova et al. 
2013, Wright et al. 2015, 2016), which consume a high 
proportion of fish in their diet, have much higher δ15N 
values (13.0–14.7 ‰) than southern hemisphere 
humpback whales. This prevails even for those whales 
re ported as predominantly eating krill, with some fish 
contributing to their diet (e.g. δ15N values of 12.3–
13.1 ‰: Fleming & Jackson 2011, Witteveen et al. 
2011, MacKenzie et al. 2022). These δ15N values are 
around 5 ‰ higher than Southern Ocean humpback 
whales in  our study, thought to have a similar diet. 
This difference is likely driven by higher nitrogen 
stable isotope baseline values in northern hemi-
sphere oceanic regions where whales were feeding 
compared to Southern Ocean feeding areas, in addi-
tion to potentially higher percentage fish contrib-
utions to the whales’ diet. Mechanistic models of δ15N 
baseline values in Somes et al. (2010) give values of 
2–4 ‰ in the North Pacific Ocean and 4–8 ‰ in the 
north-east Pacific Ocean, whereas Southern Ocean 
spatial statistical models of compiled, measured δ15N 
data suggest baseline values of 0–2 ‰ (Somes et al. 
2010) and –3 to 2 ‰ (St John Glew & Espinasse et al. 
2021). Mean SPOM δ15N values measured in this 
study (Table S1) ranged from 0.1 to 1.5 ‰, which were 
considerably lower than northern hemisphere values 
given by Somes et al. (2010) and could explain the 
lower southern hemisphere δ15N values of humpback 
whales. 

4.1.3.  Nitrogen stable isotope values and diets of 
other baleen whale species 

Like humpback whales, fin whales have diets that 
range from almost exclusively foraging on copepods 
and krill, to supplementation of zooplankton with 
fish. Various studies of northern hemisphere fin whales 
report δ15N values ranging from around 9.5–11 ‰ for 
whales with a predominantly zooplankton diet (Agui-
lar et al. 2014, Silva et al. 2019, MacKenzie et al. 2022), 
to 12–15 ‰ for fin whales that have fish in their diet 
(Gendron et al. 2001, Gavrilchuk et al. 2014, Ryan et 
al. 2014, Witteveen & Wynne 2016, Wild et al. 2018). 
Northern hemisphere blue whales Balaenoptera mus-
culus, feeding exclusively on zooplankton, have δ15N 
values ranging from 9 to 10 ‰ (Ostrom et al. 1993, 
Gavrilchuk et al. 2014, Silva et al. 2019, MacKenzie et 
al. 2022). These values for northern hemisphere fin 

and blue whales with pure zooplankton diets are 
around 1.5 ‰ higher than values for the Southern 
Ocean humpback whales in this study, shown to have 
a mixed diet of zooplankton and fish. A Southern 
Ocean blue whale skin biopsy obtained from the 2015 
voyage had a δ15N value of 6.9 ‰ (Table S12; S. Bury 
un publ. data) which was 2–3 ‰ lower than northern 
hemisphere blue whale values. Although it is only 
a  single blue whale δ15N value, this measurement 
lends support to the concept that higher nitrogen 
stable isotope baseline values in the northern hemi-
sphere oceans drive up the δ15N values of whales 
feeding in those areas. The humpback whale mean 
δ15N value of this study was 0.6 ‰ higher than the 
2015 blue whale skin value, likely indicating that 
most of this study’s humpback whales were feeding at 
a higher trophic level than blue whales, further sup-
porting fish being a marked component of the hump-
back whale diet. 

4.1.4.  TP comparison of southern and northern 
hemisphere humpback whales 

The mean simple arithmetic and CSIA TP values of 
3.3, and the ‘tRophicPosition’ Borrell model value of 
3.1 for humpback whales in this study (Table 1) agree 
with other published Southern Ocean humpback 
whale TP estimates (Table S12). For southern hemi-
sphere whales, J. Groß (unpubl. data) calculated a 
mean TP of 3.0, 0.1 for the E1 humpback whale pop-
ulation, and a value of 3.1, 0.1 for the E2 population, 
which, from fatty acid concentration data, suggested 
that these whales included some higher TP prey in 
their diet. Haro et al. (2020) derived a TP of 3.4 from 
an ecosystem model for south-east Pacific humpback 
whales in the Magellan Strait. 

In contrast, in the northern hemisphere, North Pac-
ific Ocean humpback whales eating a diet of predom-
inantly zooplankton and fish had TP values of be -
tween 3.1 and 3.3 (Hirons 2001, Witteveen et al. 2011, 
Wright et al. 2015, 2016). North Pacific Ocean hump-
back whales from the northern Gulf of Alaska that 
predominantly ate fish had a higher TP of 3.7 (Hirons 
2001, Witteveen et al. 2008, 2011, Wright et al. 2015), 
whilst whales sampled from California to southern 
British Columbia with a similarly high fish content in 
their diet had a mean TP of 3.9 (Miller 2006, Witte-
veen et al. 2011). Pauly et al. (1998) used stomach 
content analysis to derive a mean TP value of 3.6 for 
humpback whales from a variety of northern hemi-
sphere locations estimating a diet of 55% zooplank-
ton and 45% fish, which is in line with the 3.7 TP value 

140



Bury et al.: Southern Ocean humpback whale trophic ecology

for Cluster B whales in this study consuming a poste-
rior mean of 34% fish estimated from the ‘MixSIAR’ 
Borrell model. A high TP value of 4.1 was assigned to 
European Arctic humpback whales by MacKenzie et 
al. (2022), who reported whales consuming a diet of 
euphausiids and fish. The highest value of 4.5 was 
reported by Ostrom et al. (1993) for humpback whales 
feeding off the coast of Newfoundland, Canada, con-
suming a diet of zooplankton, euphausiids, crusta-
ceans, small fish and small squid, with squid likely 
elevating the TP of these whales. 

4.1.5.  TP and diet of other baleen whale species 

Interestingly, fin whales consuming a similar diet 
to Southern Ocean humpback whales had TP values 
similar to the value of 3.3 determined in this study 
(TP 3.4: Pauly et al. 1998; TP 3.0: MacKenzie et al. 
2022). The higher fin whale TP value of 4.5 reported 
by Haro et al. (2020) for whales feeding in the 
Magellan Strait off Chile can be explained by a diet 
of higher trophic level organisms including fish and 
cephalopods. Blue whale TP values ranged from 3.0 
(MacKenzie et al. 2022) to 3.2 (Ostrom et al. 1993, 
Pauly et al. 1998), being slightly lower than the TP 
of whales in our study. These TP comparisons pro-
vide further evidence that the Southern Ocean hump-
back whales in our study were consuming a diet pre-
dominantly of zooplankton, supplemented with 
varying proportions of fish. 

4.2.  Isotopic niche space and diet of Cluster A  
and B humpback whales 

An organism’s isotopic niche space provides insight 
into its ecological range, resource use and geographi-
cal diversity, where niche parameters can respond 
rapidly to changes in prey abundance and intra- and 
interspecific competition (Bearhop et al. 2004, New -
some et al. 2007, Fry & Davis 2015). The smaller isoto-
pic niche area of Cluster A compared to Cluster B 
whales in this study suggested that Cluster B individ-
uals might be more specialised, have more similar 
ecological behaviour and be more vulnerable to 
change (Newsome et al. 2012). The higher isotopic 
values and TP of males and Cluster B whales com-
pared to females suggested that the former were 
either feeding at a higher trophic level or in areas 
where baseline δ15N values were elevated. The CSIA 
‘flat’ trend line for δ15NPhe, which remained relatively 
constant with increasing bulk δ15N values, indicated 

that the elevated δ15N values of male and Cluster B 
humpback whales were most likely due to trophic 
influences, rather than isotopic baseline effects. In 
addition, δ15N values of threonine were generally 
higher for Cluster B than Cluster A whales, suggest-
ing that Cluster B whales foraged at a higher trophic 
level (Lübcker et al. 2020). 

4.3.  Feeding locations of the whales 

There was good agreement on feeding locations of 
the humpback whales surmised from the ‘MixSIAR’ 
modelling data and from the isoscape-based whale 
feeding location assignments. ‘MixSIAR’ modelling 
data indicated that Cluster B whales likely fed closer 
to the highly productive BI than along the RSS and in 
the RS, feeding on more fish than Cluster A whales, 
whilst Cluster A whales fed mostly in the RSS and RS 
area. In both cases, whales consumed varying but 
sometimes high proportions of fish (2–60%), contrary 
to the paradigm of them being exclusive krill feeders 
(Chittleborough 1965, Bannister & Hedley 2001, 
Waugh et al. 2012). These data are consistent with 
more recent observations that Southern Ocean hump-
back whales consume fish as part of their diet during 
migration (Eisenmann 2016, Groß et al. 2020, Owen et 
al. 2024) and that they are seemingly quite plastic in 
their feeding behaviour (Gavrilchuk et al. 2014, Haro 
et al. 2016). 

The strong latitudinal gradient of SPOM δ13C 
values (Fig. 10), enabled the feeding areas of Cluster 
A and B whales to be estimated using the isoscape-
based whale assignment method (Wunder 2010, St 
John Glew & Espinasse et al. 2021). From the δ13C and 
δ15N assignments, Cluster A and B whales likely fed in 
different locations: Cluster A whales probably fed 
further south, mainly in the RSS and RS region with 
lower density assignments around and to the north of 
the BI, whilst Cluster B whales seem to have predom-
inantly fed south-east of Australia and south-west and 
south-east of New Zealand, with 1 or 2 individuals 
assigned to the RS. 

The assignments using both δ13C and δ15N data 
(Fig. 9c,d) produced results that seem more plausible 
than assignments using only δ13C data (Fig. 9a,b). 
This is likely because the field-measured δ15N SPOM 
values more closely matched those predicted by the 
δ15N isoscape model, than the equivalent field- and 
isoscape-modelled δ13C values (Fig. 10; Fig. S10). 
Trends in measured SPOM δ13C values (Transect 
SPOM) and modelled data from the St John Glew & 
Espinasse et al. (2021) isoscape with latitude were 
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quite closely aligned between 40 and 60° S (Fig. 11). 
However, there were clear anomalies, which likely 
reflect localised regional variability in baseline δ13C 
values due to enhanced primary productivity within 
the Subantarctic Front, Polar Front and Southern Ant-
arctic Circumpolar Current Front regions, areas of 
enhanced up welling, such as around the BI, and the 
ice-melt regions of the RSS and RS. These small-scale, 
high-productivity areas, such as around the BI and 
other localised highly productive frontal regions, are 
not captured in large-scale spatial modelling (such as 
St John Glew & Espinasse et al. 2021). 

The elevated δ13C values of Cluster B whales indi-
cate that these whales were either predominantly 
feeding (1) further north than the other whales; (2) in 
more productive waters and/or closer inshore; (3) on 
benthic or ice-associated fauna; or (4) off the shores of 
eastern Australia or New Zealand during migration. 
The assignment results support (1) and (4), but (2) and 
(3) could be equally plausible explanations. During 
the whale sampling periods in 2010 and 2015, high 
productivity around the BI produced locally high δ13C 
phytoplankton values and large swarms of krill and 
silverfish (O’Driscoll & Double 2015, Harrison et al. 
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2020). Observational data (Gales 2010) shows that 
the BI is an important feeding ground for Southern 
Ocean humpback whales that primarily originate from 
east Australia (Constantine et al. 2012, Andrews-Goff 
et al. 2018), and the data from our study support this. 

Cetacean distributions generally reflect patterns of 
oceanographic processes, such as fronts, generating 
regional biological activity (Bost et al. 2009, Riekkola 
et al. 2019). Southern Ocean humpback whales have 
been observed to largely feed along the marginal 
ice  zone, the RSS and slope, and seamount/island 
areas characterised by local hotspots of productivity 
(Kaschner 2008, Bestley et al. 2019, Harrison et al. 
2020). Seamounts and plateaus represent key feed-
ing areas for cetaceans (Johnston et al. 2008, Skov 
et al. 2008, Morato et al. 2010) and are important for 
the New Caledonia humpback whale breeding stock 
and the E1 population (Garrigue et al. 2015) and 
Western Australian humpback whales, which also 
feed along the western boundary current (Bestley et 
al. 2019). Surface waters around oceanic islands and 
plateaus often have high nutrient and iron concen-
trations due to upwelling effects (Blain et al. 2001, 
Schallenberg et al. 2018), high chlorophyll a con-

centrations (Sokolov & Rintoul 2007) and elevated 
primary productivity. These phenomena, collectively 
recognised as the Island Mass Effect (Doty & Oguri 
1956, Blain et al. 2001), generate increased δ13C and 
δ15N SPOM values (Bidigare et al. 1997, Popp et al. 
1998), resulting in higher isotopic values in hump-
back whales feeding in these areas. 

Key predictors of foraging behaviour are water tem-
perature (Owen et al. 2019), distance from the ice 
edge, ice melt rate and variability in ice concentration 
2 mo prior to arrival on the feeding grounds (Nicol et 
al. 2008, Andrews-Goff et al. 2018, Riekkola et al. 
2019). Humpback whale feeding is thus sustained by a 
biological cascade, in which new biological produc-
tivity is triggered by ice melting, which in turn sup-
ports phytoplankton grazers such as krill and other 
zooplankton, and ultimately whales. Humpback whales 
can show persistent space use and site fidelity (Tynan 
1998, Branch 2011, Bombosch et al. 2014), with whales 
moving through the same location or occupying ad -
jacent habitats over consecutive austral summers 
(Andrews-Goff et al. 2018). The similarity be tween 
2010 and 2015 whale skin iso topic values in this study 
supports this observation. 
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4.4.  Potential factors affecting stable isotope values 
of Southern Ocean humpback whales 

4.4.1.  Whale sex and pregnancy 

Although this study found no isotopic difference 
between humpback whale age groups, sampling loca-
tion or year, males had slightly higher δ13C and δ15N 
values than females. Several studies of humpback 
whales have found no difference in δ13C or δ15N 
values between sexes (Witteveen et al. 2011, Gavril-
chuk et al. 2014, Fleming et al. 2016, Bengtson Nash 
et al. 2018). In addition, a study of southern hemi-
sphere humpback whale blubber fatty acid profiles 
showed no clear nutritional status separation be -
tween females and males (Eisenmann 2016). The 
mean isotopic difference between males and females 
in this study was not large (Tables S2 & S7) and may 
be due to a small subset of male whales feeding at a 
higher trophic level (Fig. 4; Fig. S4). However, there 
are other factors that should also be considered. 

Differences in size, time spent on feeding grounds 
and associated fasting duration between male and 
female humpback whales, plus the reproductive status 
of females, could contribute to the isotopic difference 
in their skin tissues superimposed on diet effects. 
Adult female humpback whales range in length from 
12 to 17 m and are between 40 and 150 cm longer than 
males. Considering the potential positive relationship 
between size and δ15N values (Jennings et al. 2002, 
2008), one might expect higher δ15N values in females 
than males. Unfortunately, there were no size-based 
data within this study to assess if size had any effect 
on stable isotope ratios. Movement modelling studies 
of humpback whales migrating from Western Aus-
tralia to the Southern Ocean showed that females 
moved faster than males during resident and transit 
periods, which Bestley et al. (2019) attributed to 
either their larger size or different energetic require-
ments. A difference in metabolism and energetic 
requirements between males and females could also 
contribute to sex-related isotopic differences. 

Pregnancy is also known to affect the stable isotope 
composition of females, such that their isotopic values 
do not exclusively reflect diet (Clark et al. 2016). 
Pregnant mammals often have lower δ15N values as 
they become net anabolic (i.e. as they increase pro-
tein synthesis) and decrease the excretion of nitro-
genous waste (Fuller et al. 2004, Martínez del Rio et 
al. 2009, Kurle et al. 2014). Carbon stable isotope 
values also decrease as pregnant females mobilise 
lipid stores to meet the energetic demands of preg-
nancy (Kelly 2000, Kurle & Worthy 2001). The exis-

tence and magnitude of these effects vary among spe-
cies (Kurle 2002, Habran et al. 2010, Newsome et al. 
2010). There was no information relating to the preg-
nancy status of females in this study. However, South-
ern Ocean humpback whale pregnancy rate estimates 
of 37% (Chittleborough 1965), 18–48% (Clark et al. 
2016) and 30–86% (mean 52%) (Pallin et al. 2023) in 
the Western Antarctic Peninsula, and an estimate of 
57% obtained from whales sampled around the Ker-
madec Islands (Riekkola et al. 2018), indicate that 
pregnancy could have accounted for the overall lower 
mean δ13C and δ15N values in females compared to 
males. For future studies, it would be useful to carry 
out progesterone analysis of biopsied blubber to 
obtain information on the proportion of pregnant 
females in the population. Without this information, 
pregnancy-related changes in stable isotope values 
are difficult to assess and complicate interpretations 
of data to infer diet and migration (Newsome et al. 
2010, Clark et al. 2016). 

4.4.2.  Time spent on feeding grounds and feeding 
and fasting effects on whale stable isotope values 

Another factor contributing to humpback whale 
isotopic variability is the length of time spent on the 
feeding grounds. Male and female humpback whales 
arrive at and depart from Antarctic feeding grounds 
at different times: the first whales to arrive from 
October onwards are pregnant females, then males, 
then lactating females with a calf, with whales depart-
ing around April in the order of lactating females with 
a calf, males, then pregnant females (Chittleborough 
1965, Dawbin 1966, 1997). In addition, Riekkola et 
al.  (2018) noted that Oceania humpback whales 
migrated to different feeding grounds based on their 
life history stages, with all tagged females with calves 
in their study migrating to the Ross Sea region. Some 
non-pregnant females also overwinter in Antarctica 
to improve body condition for the next reproductive 
cycle (Clark et al. 2016). For the whole population, if 
around 20–60% of whales are pregnant, then be -
tween approximately one-fifth and two-thirds of the 
females may arrive before males and the remaining 
proportion of females (those that are lactating) after 
the males.. Differences in arrival time may therefore 
not account for male/female differences in isotope 
values, since arrival times for males/females over the 
whole population could be averaged out to be quite 
similar; however, differences in arrival time could 
contribute to greater isotopic variability within the 
population. 
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Later arrival on the feeding grounds could mean 
that those whales spend a longer time migrating and 
fasting. Some studies have shown that fasting in -
creases δ15N values of some organisms by up to 1 ‰ 
(Hobson et al. 1993, Cherel et al. 2005a), due to pro-
tein synthesis using 15N-enriched amino acids derived 
from catabolism of endogenous protein (Hatch 2012). 
Other studies, however, observed that δ15N values 
declined during periods of reduced feeding, reflect-
ing changing δ15N baselines between summer and 
winter feeding grounds, rather than tissue metabo-
lism effects (Matthews & Ferguson 2015, Pomerleau 
et al. 2018). Furthermore, several studies have sug-
gested that δ15N values are not affected by fasting 
(Hobson & Schell 1998, Ben David et al. 1999, Wil-
liams et al. 2007, Gómez-Campos et al. 2011, Aguilar 
et al. 2014, Owen et al. 2024). For humpback whales, 
this is likely because they have evolved to endure 
long predictable periods of fasting, so the effects of 
fasting are not equivalent (in terms of metabolic and 
biochemical processes) to starvation, i.e. they do not 
experience ‘nutritional stress’ during these times, due 
to physiological adaptation (Kempster et al. 2007, 
Witteveen et al. 2009a). In addition, Riekkola et al. 
(2020) surmised from humpback whale tracking and 
energetic studies that even extreme long-distance 
migration does not appear to adversely affect the 
energetic expenditure of these animals. 

Blubber stores are likely to be the primary source of 
energy until stages of extreme nutritional stress are 
reached (Aguilar et al. 2014). This is because the quan-
tity of lipid reserves stored by an organism influences 
the degree to which protein versus lipid is catabolised 
for energy (Elia et al. 1999). Large fat reserves mean 
the whales are less likely to metabolise 15N-enriched 
proteins during fasting (Polischuk et al. 2001, Aguilar 
et al. 2014). Evidence to support minimal effects of 
fasting on δ15N values is provided by Bengtson Nash et 
al. (2018), who sampled E1 breeding stock humpback 
whales off the south-east Queensland coast and mea-
sured very similar δ15N values in southward-migrating 
‘fasting’ whales (7.5, 1.3 ‰) compared to the north-
ward migrating ‘post-feeding’ whales (7.7, 1.8 ‰). 
These southward-migrating ‘fasting’ whales not only 
had similar δ15N values, but also similar δ13C values 
(–24.9, 1.0 ‰) to humpback whales in our study, which 
had been feeding in Antarctica for several months 
(δ13C –25.2, 1.0; δ15N 7.6, 0.7). Owen et al. (2024) also 
noted that southward migrating whales in the sub-
 tropics had similar isotope values to whales feeding in 
the Antarctic, supporting the notion that there is little 
change in isotopic values due to whale fasting. Fur-
thermore, alanine δ15N values (which, if higher, are in-

dicative of fasting: Lübcker et al. 2020) were similar be-
tween Cluster A and B whales, indicating fasting was 
likely not affecting nitrogen isotope values. 

A further consideration is that delayed arrival on 
the feeding grounds could mean that those whales 
had more time for migratory feeding on fish and krill 
in temperate waters (Gales et al. 2009, Andrews-Goff 
et al. 2018, Owen et al. 2024), which would increase 
their δ15N values. Stable isotope analysis of baleen 
whale plates showed that supplementary feeding may 
be a common strategy for about 30% of east Austral-
ian humpback whales (Eisenmann 2016). It is likely 
that the Cluster B whales with higher isotope values 
were late-arriving males engaged in feeding in tem-
perate waters off south-east Australia or southern 
New Zealand during their southward migration while 
migrating en route to Antarctica (corroborated by the 
whale assignment locations in Fig. 9d and Fig. S9), 
supporting observations of Gales et al. (2009). This 
supplementary feeding whilst migrating may be an 
indicator that the Southern Ocean ecosystem does 
not meet the energetic requirements of the humpback 
whales during the summer feeding season, as sug-
gested by Riekkola et al. (2018), or it could just be 
opportunistic feeding behaviour. 

4.4.3.  Effects of quality, abundance and location of 
prey on humpback whale stable isotope values 

Humpback whales are largely opportunistic for-
agers that depend on quality, high-lipid-content, 
energy-dense prey to maximise fat deposition in their 
blubber layers, providing a sustained energy source 
(Worthy & Edwards 1990, Koopman et al. 2002, Witte-
veen et al. 2011). At low latitudes, humpback whales 
can lose between one-third to half of their body mass 
(Dawbin 1966, Lockyer 1981, Baraff et al. 1991) due to 
lipids being catabolised during migration and periods 
of limited nutrient intake (Lockyer 1986, Castellini & 
Rea 1992, Parrish 1997). As has been shown for other 
animals (Urton & Hobson 2005, Inger et al. 2006), prey 
choice for humpback whales can therefore signifi-
cantly impact survival, migration and reproductive 
success (Witteveen et al. 2011). In addition, baleen 
whales need to feed on aggregated prey above a 
threshold density to ensure positive net energy gain 
from a feeding event (Piatt & Methven 1992, Hazen et 
al. 2009, Goldbogen et al. 2011). It is thus possible that 
the consumption of a higher-quality diet (McCutchan 
et al. 2003, Vanderklift & Ponsard 2003) was a contrib-
utor to the higher δ15N values of Cluster B whales of 
this study. 
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As confirmed by this study, Southern Ocean hump-
back whales are dependent on Antarctic krill as a 
major dietary component. Krill are strongly associ-
ated with the sea ice extent and abundance of associ-
ated sea ice algae (Atkinson et al. 2004, Loeb et al. 
1997) and are thus vulnerable to climate change 
(Flores et al. 2012). They are recruited at the sea ice 
edge and disperse northwards following sea ice melt 
(Ward et al. 1990, Brierley et al. 1999). Their abun-
dance is dependent on high levels of primary produc-
tivity, which in turn is affected by ocean circulation, 
bathymetry, coastline morphology, localised upwel-
ling and frontal dynamics (Bathmann et al. 1997, 
Strutton et al. 2000, Martinson et al. 2008). These fac-
tors, combined with climate change, exert important 
controls on isotopic baselines and prey availability for 
humpback whales (Gross 2005, Fountain et al. 2012, 
Pallin et al. 2023). Higher encounter rates of hump-
back whales tend to be observed in the northern RS 
(65–70° S), where this study was located, which is a 
region of rapid ice retreat and high chlorophyll pro-
ductivity (Moore & Abbott 2000, Nicol et al. 2006). 
Clarke & Tyler (2008) observed that, whilst most post-
larval Antarctic krill populate the upper 150 m of the 
water column, some can be found in abyssal waters as 
deep as 3500 m, where omnivory is increased with 
resultant higher δ15N values (Cresswell et al. 2009, 
Bengtson Nash et al. 2018). This could explain the 
wide variability observed in krill δ15N values in this 
study, ranging from 2.03 to 7.39 ‰ (Table S1), which 
is reflected up the food chain in myctophids and Ant-
arctic silverfish. 

Since there is lower abundance of Antarctic krill in 
the RS region compared to the Scotia Sea (Atkinson et 
al. 2004, 2017), it is likely that humpback whales feed-
ing in the RS area have lower dependence on krill 
than those elsewhere in the Southern Ocean. Due to 
ocean acidification, a complete collapse of Antarctic 
krill populations is forecasted by 2300 if current CO2 
emissions are not mitigated (Kawaguchi et al. 2013). 
In this scenario, humpback whales may avoid the 
threat of starvation by being highly responsive to 
environmental oscillations through dietary diversifi-
cation (Bengtson Nash et al. 2018). Diversity in the 
interannual feeding strategies of humpback whales 
from the eastern Australian E1 breeding stock dem-
onstrates plasticity in prey selection and migratory 
behaviour of this species (Eisenmann et al. 2016), 
which provides hope for adaptive strategies and their 
long-term survival. The more diverse diet of Southern 
Ocean humpback whales confirmed by this study pro-
vides further evidence for possible dietary plasticity 
in the face of potential anthropogenically mediated 

changes to the trophic structure and prey abundance 
and distributions within the Southern Ocean. 

Humpback whales in the north-east Pacific Ocean 
have shown temporal and geographical variability in 
diet driven by changes in prey abundance (Fleming et 
al. 2016). Changes at lower trophic levels are often 
amplified at higher trophic levels due to non-linear 
responses of biological communities and predatory 
interactions (Friedland et al. 2012, Stock et al. 2014). 
Such top-predator responses are due to the dynamic 
interactions and cumulative effects between chang-
ing oceanographic conditions, mid-trophic-level prey 
dynamics, and predator foraging behaviour (Hilty & 
Merenlender 2000, Abraham & Sydeman 2004, Syde-
man et al. 2013). Although our data show an isotopic 
difference between males and females, this difference 
is not marked (<1 ‰ between female and male mean 
values for both δ13C and δ15N), with humpback whale 
stable isotope values primarily reflecting consump-
tion of the dominant prey types in the ecosystem. 
Changes in prey abundance likely drive changes in 
whale diet at the population level (males and females 
combined), such that humpback whale prey composi-
tion can be an indicator of dominant prey types in the 
ecosystem (Fleming et al. 2016). Thus, multi-decadal 
changes in foraging behaviour of humpback whales 
could be a useful synoptic indicator of changing 
oceanographic and ecological conditions. 

The variety and complexity of factors that can 
influence humpback whale δ13C and δ15N values 
makes it difficult to provide a definitive assessment of 
the relative importance of different drivers determin-
ing their isotopic composition. Additionally, biopsy 
collection could be affected by sampling biases, since 
animals that spend more time at the surface are more 
easily sighted and sampled and may therefore be 
overrepresented in the sampling. Cows with calves 
may be more readily sighted and sampled, as they are 
often more active at the surface than males or non-
nursing females. Whales that spend less time at the 
surface and perhaps feed in deeper waters may be 
underrepresented, such that the full dietary range of 
isotopic values is not captured by biopsy sampling. 
Nonetheless, dietary intake and feeding location are 
likely to be the dominant determinants of stable iso-
tope values, with other factors potentially also con-
tributing to isotopic variation. 

5.  CONCLUSIONS 

This study combined multiple stable isotope 
methods to quantify diet and TP and to identify 
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 foraging areas of Southern Ocean humpback whales. 
It  confirmed the hypothesis that Southern Ocean 
humpback whales sampled around the BI and in the 
RS had a mixed diet of plankton, krill and fish, simi-
lar to the diet of northern hemisphere humpback 
whales. The percentage of fish consumed varied (2–
60%), but proportions were often high, thus challeng-
ing the widely held paradigm of Southern Ocean 
humpback whales being exclusive krill feeders and 
re-enforcing the notion that they have dietary plasti-
city. Southern Ocean humpback whales had lower 
δ15N values than northern hemisphere populations 
and lower TP values, likely due to a combination of 
lower baseline δ15N surface water values in the South-
ern Ocean compared to the northern hemisphere and 
a lower percentage consumption of fish, respectively. 

‘MixSIAR’ prey apportionment modelling and TP 
calculations using the TDF of Borrell et al. (2012) pro-
duced data that closely aligned with trophic informa-
tion from other studies, hence placing more confi-
dence in the Borrell et al. (2012) factors than the Post 
(2002) values. It is recommended that future studies 
of humpback whale trophic ecology utilise the TDFs 
of Borrell et al. (2012). 

The majority of the whales sampled in this study 
appeared to be foraging in the RS, along the RSS and 
in the vicinity of the BI. An isotopically distinct subset 
of male humpback whales with higher TP was identi-
fied through bulk carbon and nitrogen and CSIA of N-
AA. Isoscape-based whale assignments combined with 
regional isotopic baseline field measurements indi-
cated that these whales were either taking higher-
quality food sourced from productivity hotspots such 
as the BI and/or frontal upwelling areas, or that they 
had fed en route to Antarctica in temperate waters off 
south-eastern Australia, south-west or south-east New 
Zealand. 

Since Antarctic ecosystems are particularly vulner-
able to climate change, warming, freshening, ocean 
acidification and shifts in primary production pat-
terns leading to variable krill abundance, an im -
proved understanding of ocean biogeochemistry and 
trophic interactions is becoming increasingly impor-
tant, both for predicting change and for robust eco-
system management of the Ross Sea region. It is 
hoped that the development of seasonal and regional 
smaller-scale isoscapes combined with improvements 
in remote sensing techniques and oceanic modelling 
will enhance the applicability of stable isotope tools 
to better understand and manage such ecosystems. 
As demonstrated by this study, in situ field data are 
essential to inform and rationalise these models to 
improve data interpretations, and to assist managerial 

decisions and policy implementation to better protect 
and conserve Southern Ocean humpback whales and 
their environment, particularly within the Ross Sea 
region marine protected area. The revelation of a 
more diverse Southern Ocean humpback whale diet 
has implications for predicting the impact of future 
ecosystem changes on the foraging and hence breed-
ing success of humpback whales. It also highlights the 
need for further dietary studies on other marine pred-
ators in the Southern Ocean that are thought to be 
highly dependent on Antarctic krill. 
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