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Abstract 
University of Southampton 

Faculty of Medicine, School of Cancer Sciences 
Doctor of Philosophy 

Investigating the Tumour Immune Microenvironment as a Determinant of Antigen 
Presentation and Immune Response in Oesophageal Cancer 

by William Boyce Pratt 
 

Oesophageal cancer (OC), the 12th most common cancer (UK), presents with high clinical need 
and poor survival.  OC is histologically divided into adenocarcinoma (OAC) and squamous cell 
carcinoma.  Antigen presentation machinery (APM) is crucial for eliciting anti-tumoral 
immune responses by cancer-antigen recognition. However, the genomic landscape of APM 
genes and dysregulation of expression in OAC is unknown. 

A bioinformatic approach has been employed to elucidate the landscape of genomic defects 
in APM genes using large multi-omics datasets (TCGA and OCCAMS). Digital cytometry 
methods were applied to determine the impact of APM expression on immune composition 
within the tumour immune microenvironment (TiME). Additionally, immunohistochemistry 
(IHC) of a large tissue microarray series for candidate APM genes and immune cell markers 
(HLA-A/B/C/E/Class 2, CD3, CD4, CD8, Foxp3) was performed with digital histopathology 
analysis to validate findings. Lastly, cell modelling and single-cell RNA sequencing were 
implemented to determine the role of CSDE1 in regulating the expression of MHC class I 
genes in OAC cell lines. 

Genomic landscape analysis found APM mutation incidence to be infrequent and copy-
number segments complex over the HLA locus of chromosome 6; these results did not inform 
survival analysis. However, the expression of APM genes showed a significant impact on 
overall survival (OS), with the expression of 12 out of 18 MHC class I, 12/20 MHC class II and 
4/7 APM regulators were associated to altered OS. Following this analysis, the impact of APM 
gene expression on the TiME identified 10/20 MHC class I, 7/20 MHC class II and 3/7 APM 
gene expression regulators associated with altered immune composition. Using these 
approaches together, identified 17/45 assessed APM genes possessed both an association 
with survival outcomes and altered immune composition, including CSDE1, HLA-E, ERAP2, 
CD74, HLA-DRB1 and HLA-DRB5, among others.  

IHC demonstrated that the low expression of HLA-E and HLA class II and the high expression 
of TAP1 and CSDE1 corresponded to shorter OS. T cell density alone did not associate with 
OS. Yet the high expression of HLA-A/B/C combined with the low abundance of CD8+ T cells 
resulted in shorter OS compared to high HLA-A/B/C protein expression and greater CD8+ T 
cell density. CD3/8+ T-cell density correlated with greater HLA-ABC and HLA class 2 protein 
expression and a correspondingly increased T-cell infiltrate. 

Knockdown of CSDE1 expression produced greater JAK/STAT1 signalling and increased 
expression of HLA-A/B/C transcripts, suggesting a significant negative regulator role in the 
expression of MHC class I HLAs. CSDE1 was upregulated in single cancer cells compared to 
healthy comparative cells, with evidence suggesting overexpression may be acquired in 
premalignancy over increasing dysplasia (i.e., Barrett’s oesophagus). 

This work has translational value for OAC patients. Firstly, APM expression presents a 
potential marker of altered survival and immune composition, which has biomarker utility for 
immunotherapy implementation. Secondly, CSDE1 may form an actionable pathway to 
improve immune responses as a potential future target for vaccine therapies.
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Chapter 1 General Introduction 

1.1 Study rationale  

Oesophageal cancer (OC) is the seventh most common cancer, globally attributed to 

572,034 new cases being reported in 2018 and 508,585 deaths. In 2014-2016, 9,100 new 

cases of OC were reported in the UK, placing OC as the 14th most common cancer type 

nationally (1, 2).  OC is split into two histological subtypes: adenocarcinomas (OAC) and 

squamous cell carcinomas (ESCC).  Although these diseases share the same primary site, 

they possess several distinct risk factors, incidence trends, histology, and genomic 

characteristics (3).  

OAC refers to cancers originating from mucus-secreting cells in the lower third of the 

oesophagus.  OAC is positively associated with Barrett’s oesophagus (a precursor to OAC) 

and is characterised by chromosomal instability (CIN) (Figure 1).  Other risk factors of 

OAC include obesity, smoking, age, use of non-steroidal anti-inflammatory drugs 

(NSAIDs) and proton pump inhibitors (PPIs), and race.  In contrast, OSCC refers to cancer 

of squamous epithelia in the upper and middle third of the oesophagus.  OSCC is 

characterised with amplification of CCND1, TP63/SOX2 and deletion of KDM6A (Figure 1). 

The significant risk factors of OSCC include smoking and alcohol intake; although smoking 

is a risk factor for OAC and OSCC, the associated risk in OSCC is far greater (OR of 2.77 vs 

5.63 at 60+ years packed smoking; OAC: OSCC) (4). 

Antigen presentation is key in eliciting immune responses towards cancer, yet cancers 

often somatically aberrate the components of this pathway are to reduce or prevent 

immune response towards tumours.  The landscape and impact of aberrations in antigen 

presentation machinery (APM) are well-detailed in other cancers such as breast, lung, 

colorectal and even OSCC.  However, research into the impact of APM aberrations in OAC 

is severely lacking (5-7).  It is important to address this knowledge gap in OAC as it will 

significantly impact current and future efforts in treating OAC with immunotherapeutics, 

including immune checkpoint blockade therapy, CAR-T cell therapy and adoptive T cell 

therapy (8).  

To address this, we will focus on datamining publicly available datasets of OAC to 

discover and landscape APM defects, determining their clinical impact on survival and 

the immune cell subpopulations in the tumour immune microenvironment (TIME).  

Furthermore, we shall validate these findings in situ using immunohistochemistry (IHC) 
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methodology, whilst exploring the spatial expression of APM proteins and immune cell 

spatial distributions.  The implementation of single-cell RNA-seq (scRNA-seq) 

methodology will allow us to examine how APM gene candidates are expressed in 

different cell types. Through this, we can investigate the role of antigen presentation in 

editing the immune microenvironment and immune suppression. 

Overall, we expect several APM components that have been reported to impact TIME 

and overall survival to possess a similar impact on our OAC cohorts.  We are particularly 

interested in MHC I machinery, such as HLA-A, which are known instigators of CD8+ 

cytotoxic T lymphocyte anti-tumoral activity (9). 

 

Figure 1 Diagram representing the anatomical location of gastroesophageal carcinoma 

subtypes from the proximal oesophagus to the distal stomach.  Colour bandwidth 

represents the proportion of each subtype within the anatomic region.  Notable subtypes 

features are stated in each subtype heading (adapted from The Cancer Genome Atlas 

Research Network) (3). 
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1.2 Incidence of Oesophageal cancer 

OAC occurs predominantly in males, in the US, the male: female incidence ratio (9:1) 

shows a significant trend towards males (1, 10, 11). Similarly, in the UK, age standardised 

(AS) rates displays males as the predominant sex in OAC, scoring an AS rate of 22.6 

compared to females scoring 8.3 in 2016 (1). Male: female incidence ratios of OAC differ 

geographically, with the highest ratios found in North America (7.6:1), Oceania (6.2:1), 

Europe (6:1); lowest ratios located to Asia (4.4:1), Latin America/Caribbean (3.9:1) and 

Africa (1:1) (12).  OAC incidence also differs by geographical location.  The highest rates 

(OAC cases per 100,000) are found in Northern/Western Europe (3.4), North America 

(3.5) Oceania (3.1) (12)(13). The lowest rates of OAC are located to South/Central 

America/Caribbean (1.2), North/West Africa (0.7), Sub-Saharan Africa (0.4), Eastern 

Europe (0.8) and Asia (0.6) (12)(13). Notably, the UK has the highest incidence of OAC 

globally. This may be due to the obesity epidemic and other risk factors such as GORD 

and Barrett's oesophagus. The incidence rates are 7.2 for males and 2.5 for females. 

1.3 Risk factors of Oesophageal cancer 

1.3.1 Sex and age 

As noted, prior sex is a prominent risk factor for OAC, occurring primarily in men, with 

high male to female ratios for OAC are exhibited in Northern America (7.6:1), Oceania 

(6.2:1), and Europe (6.0:1), with lower ratios in Asia (4.4:1), Latin America and the 

Caribbean (3.9:1), and Africa (1:1); these ratios have remained steady, but recent 

research shows a steady increase in sex ratios in the UK and Netherlands (13, 14). 

The risk of OAC increases with age; in the UK, the highest OAC incidence age group is 80+ 

years old (84.1 OAC cases per 100,000 and the lowest incidence age group is <49 years 

old (up to 3.1 OAC cases per 100,000) (15). 

Interestingly, all age groups (80+, 65-79, 50-69 and 40-49 years old) display an increase in 

incidence since 1970; for instance, the incidence of OAC in 80+-year-old men increased 

from 23.0 to 84.1 per 100,000, most likely relating to the obesity epidemic and GORD 

incidence (15). Similarly, OSCC incidence increases with age with 24.9 OAC cases per 
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100,000 in 80+-year-olds (UK); contrasting to OAC, the incidence of OSCC has decreased 

since 1970 from 42.3 to 25.1 for 80 + year old men (15). 

The difference in incidence between men and women in the UK and elsewhere is likely 

because of compounded risk factor differences between the sexes, UK examples include; 

obesity where 67% of men and 62% of women were classed as overweight; smoking 

statistics from 2015 indicate 19.3% of men and 15.3% of women smoked cigarettes, 

however, the difference between the incidence of smoking has been steadily falling since 

1945 (16-18). 

1.3.2 Gastro-oesophageal reflux disease (GORD) and Barrett’s oesophagus  

One of the primary associated risk factors for OAC is Gastro-oesophageal reflux disease.  

GORD is a globally prevalent disorder characterised by the chronic reflux of stomach acid 

into the lower oesophagus and is significantly more prevalent in western populations (18 

to 28%) compared to eastern populations (2 to 8%), characterised as the most significant 

risk factor for OAC incidence (19). 

Barrett’s oesophagus (BE) is a histological and genetic precursor to OAC, referring to the 

formation of a metaplastic columnar epithelium with a crypt-like structure in the 

oesophagus (resembling the intestinal epithelia) because of damage of the squamous 

epithelium.  Often, the damage caused to the squamous epithelium is caused by GORD 

and stomach acid reflux; in response, specialised columnar cells form the oesophageal 

epithelia and secrete mucins to protect the oesophagus from the refluxed acid (Figure 2). 

The exact pathogenesis of BE was elusive, with two hypotheses arising.  Firstly, in trans-

differentiation, a squamous epithelial cell first dedifferentiates into a transitional cell that 

then differentiates into a columnar cell, this process may occur under a reflux-induced 

inflammatory microenvironment, upregulating CDX2, pSMAD1, pSMAD5 and/or pSMAD8 

expression (20-22). Alternatively, trans-commitment of progenitor cells may explain the 

pathogenesis of BE; in this mechanism, pluripotent stem cells within oesophageal 

submucosal glands undergo trans-commitment to form a columnar epithelium (23, 24). A 

recent study has suggested a two-phase model for the development of BE with the first 

phase possessing positive selection for homozygous mutation in CDKN2A and TP53. 

These lineages will spread disproportionally across the segment, while mutations in 

ARID1A and SMARCA4  may be positively selected for excess of functional mutations, but 
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do not see large-scale spreading across the segment (25, 26). The second phase shows 

stabilisation of the lineages in both likely cancer outcome and non-cancer outcome 

lineages, with the cancer lineages possessing one or more risky lineages. These are 

typically marked by TP53 mutations which undergo chromosomal instability, copy 

number variation and structural alterations, and genome doubling with local expansion 

of the unstable clones attributed to colonization during wound repair in the epithelial 

layer (25, 26). A striking study in 2021 aimed to molecularly characterize all putative cell 

origins for BE and explain whether all OAC subtypes originate from BE; within this study it 

was determined BE originates from gastric cardia via c-MYC and HNF4A-driven 

transcriptional programs with OAC most likely arising from undifferentiated Barrett’s 

oesophagus cell types (27).

Figure 2 Depiction of GORD-OAC cancer pathogenesis.  Left: Gastric acid refluxes into 

the oesophagus, damaging the normal squamous epithelium; Middle: Adaptive response 

leads to the formation of a metaplastic columnar epithelium (BE), secreting mucus to 
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protect the oesophagus; Right: Over a process of dysplasia, columnar epithelial cells gain 

cancer driver mutations (TP53, CDKN2A, SMAD4, ARID1A and PIK3CA), forming an 

adenocarcinoma.  Created with Biorender.com. 

1.3.3 Smoking and alcohol consumption 

A strong association between cigarette smoking and OAC (OR of 1.96); the length of 

smoking cessation is associated with decreased risk (<10 years of smoking cessation: OR 

= 0.82 and ≥10 years of smoking cessation: OR = 0.71) (28). In a recent study, ESCC also 

displayed an association with smoking, though to a lesser degree than OAC with an OR of 

1.49 for current smokers and 1.04 for ex-smokers (P = <0.001) (29).  

However, when adjusting this data for alcohol consumption, the difference in risk 

diminishes (OR of 1.12 for current smokers and 0.83 for ex-smokers; P = 0.191) (29). 

following up this finding alcohol consumption was investigated; OR rates adjusted for 

smoking highlighted alcohol consumption as a critical risk factor, with current drinkers 

being at the highest risk (OR of 2.24) and ex-drinkers possessing lesser risk (OR of 1.51) 

(29). 

1.3.4 Obesity 

Rising incidence of OAC has been correlated to the obesity epidemic faced by western 

nations, with studies identifying this trend (30-33).  Interestingly, the abdominal 

diameter has been more explicitly correlated increase in OAC risk than BMI, with studies 

associating abdominal obesity with OAC risk (31, 32).  Obesity may be linked to OAC via 

the incidence of BE with several studies identifying this link; obesity has showed a 

significant and independent association to oesophageal inflammation and BE; it is 

important to note that these studies focus on specifically abdominal obesity rather than 

BMI as these show differing risk of BE and OAC (34-36). 

1.3.5 Medication 

Several studies have implicated the use of specific medications in OAC risk.  This includes 

proton pump inhibitors (PPIs) and Lower oesophageal sphincter (LES)-relaxing 

medications.  One study identified around half of the patients with OAC also take PPIs; 

despite decreasing the acidity of refluxed stomach acid further investigation showed that 
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the reflux of bile salts alone may contribute Barrett’s oesophagus (described later) and 

OAC transformation (37, 38). Whereas LES-relaxing medication increased the patient-

recorded incidence of reflux symptoms and increasing the risk of developing OAC (39). 

Adjusting the data for reflux symptoms, diminished the positive relationship between 

LES-relaxing medication and OAC, suggesting the relationship between LES-relaxing 

medication and OAC is mostly because of the risk of developing gastro-oesophageal 

reflux symptoms (38, 39). 

1.3.6 Genomic associations  

Despite the sparse number of publications in OAC on APM defects, a few papers describe 

the impact of HLA genes on the risk of developing BE and subsequently OAC; the findings 

of these papers are detailed below.  

One study identified loss of HLA-A/B/C expression in BE epithelia compared to normal 

epithelia by immunostaining (BE: 50% -positive, Normal: 68.3% -positive); whereas HLA-

DR staining was substantially higher in BE than normal tissue (BE: 51.6% -positive, 

Normal: 11.7 % -positive); Expression of HLA-DP/DQ/DR was markedly upregulated in BE 

compared to normal tissue BE: 73.4% -positive, Normal: 18.3% -positive) (39). Further 

analysis discovered a total loss of HLA-A/B/C with a gain of HLA-DP/DQ/DR was clear in 

37.5% of BE patients but none in the control patients; this MHC I loss/MHC II acquire 

phenotype was also positively associated with dysplasia (39).  

Remarkably, polymorphisms within the MHC locus have been associated with BE risk, 

predisposition, and risk of OAC.  One study identified variants in two loci associated to BE 

risk. Firstly, chromosome 6p21, rs9257809 within the MHC locus (OR 1.21) and 

chromosome 16q24, rs9936833 closest to the protein-coding gene is FOXF1 (OR 1.14), 

implicated in oesophageal development and structure; similar findings were identified in 

two external studies which associated these variants BE, reflux-symptoms and OAC risk 

(40-42). 
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1.4  Medical intervention 

1.4.1 Diagnosis  

Most patients are diagnosed with OC after reporting symptoms of progressive dysphagia, 

weight loss and anaemia (43). This is typically followed up with upper gastrointestinal 

endoscopy with biopsies, examining oesophagus to identify obstructions in the lumen, 

the wall of the oesophagus and outside the oesophagus compressing the lumen (43).  

Unfortunately, OC is often diagnosed at a late-stage, because of the oesophageal 

anatomy allowing for symptomless development (44).  One study shows longer hospital 

delays result in poorer patient short-term outcomes (higher overall morbidity and 

mortality rates); however, long-term outcomes did not change (45). In the US, upon 

diagnosis only approximately 25% of patients present with localised disease, limiting 

available treatment options; this is reflected in the UK as 60-70% of patients present with 

late-stage disease, and are deemed not suitable for treatment with curative intent (46-

48). However, the impact of the late diagnosis on survival is disputed; one study found 

time to diagnosis (TTD) was associated to patient malnutrition but did not affect 

resectability and both short- and long-term outcomes (44).  

1.4.2 Staging and grading  

OAC tumours are staged in two main systems in the UK, The TNM (T, primary tumour; N, 

regional lymph node involvement; M, distant metastatic spread) classification system 

(8th edition) and the number system (49). The TNM system allows staging to be 

represented using distinct categories, displayed in Figure 3 and Table 1; the stratification 

of tumours allows for stratification of patient survival, by patient survival decreasing with 

increasing TNM stage group (numbers system; Table 2).  T is used to classify the tumours 

local invasion, which, in combination with metastases and the presence of cancer cell in 

lymph nodes classifications depicts the tumours overall progression (50). notably, the 

edition version is vital as continual improvements are made regularly to improve the 

system.  For instance, the transition from the 6th edition to the 7th edition resulted in 

better prognostic stratification of overall survival in oesophageal cancers and was 

especially performed greater in OAC (51). Secondly, histological grading is performed by 

a pathologist to describe the differentiation of the cancer cells within a tumour section 
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(Table 2); in oesophageal cancer histological grade is important as increasing histological 

grade is associated with decreased survival for early-stage cancers and used to 

distinguish stage I and stage IIA cancers by G1/G2 (well differentiated and moderately 

differentiated; stage I) from G3 (poorly differentiated; stage IIA) (Table 1 & 2) (50).  

Figure 3 TMN staging 8th edition.  Representation of different TNM stages of OAC in 

relation to human anatomy.  Tis, high-grade dysplasia (HGD); T1, cancer invades lamina 

propria, muscularis mucosae, or submucosa; T2, cancer invades muscularis propria; T3, 

cancer invades adventitia; T4a, resectable cancer invading adjacent structures such as 

pleura, pericardium, or diaphragm; and T4b, unresectable cancer invading other adjacent 

structures, such as the aorta, vertebral body, or trachea.  The N classifications are as 

follows: N0, no regional lymph node metastasis; N1, regional lymph node metastases 

involving one to two nodes; N2, regional lymph node metastases involving three to six 

nodes; and N3, regional lymph node metastases involving seven or more nodes.  M is 

classified as follows: M0, no distant metastasis; and M1, distant metastasis.  Adapted 

from Rice et al., 2017 (Permission obtained) (52). 
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Table 1 Table of TMN stage categories with descriptions specific to OAC.  Adapted from 

Rice et al., 2017 (Permission obtained) 48. 

T CATEGORY N CATEGORY M CATEGORY 

T0  No evidence of primary tumour  N1 Metastasis in 1–2 
regional lymph nodes 

M1  Distant 
metastasis 

 Tis  High-grade dysplasia, defined as malignant 
cells confined by the basement membrane  

N2  Metastasis in 3–6 
regional lymph nodes 

  
 

 T1  Tumour invades the lamina propria, muscularis 
mucosae, or submucosa 

N3  Metastasis in ≥7 regional 
lymph nodes 

  
 

 
T1a  

Tumour invades the lamina propria or 
muscularis mucosae  

NX  Regional lymph nodes 
cannot be assessed 

  
 

 
T1b  

Tumour invades the submucosa    
 

  
 

 T2  Tumour invades the muscularis propria    
 

  
 

 T3  Tumour invades the adventitia    
 

  
 

 T4  Tumour invades adjacent structures    
 

  
 

 
T4a  

Tumour invades the pleura, pericardium, 
azygos vein, diaphragm, or peritoneum 

  
 

  
 

 
T4b  

Tumour invades other adjacent structures, 
such as the aorta, vertebral body, or trachea  

  
 

  
 

Table 2 Histological grades for tumour sections (52). 

GRADE DEFINITION 

GX  Grade cannot be assessed stage grouping as G1  

G1  Well-differentiated  

G2  Moderately differentiated  

G3  Poorly differentiated  

G4  Undifferentiated stage grouping as G3 squamous  

  

1.4.3 Treatment – the current standard of care in the UK 

After staging, a management plan is devised, tailored to the patient’s stage; co-

morbidities, WHO performance status, considering the patient’s and family’s wishes (52). 

In the UK, neo-adjuvant therapy followed by surgery represents the standard of care in 

the UK (52). Patients that receive treatment with curative intent for OAC are advocated 

to undergo preoperative chemotherapy or radiation therapy followed by surgery (53).  

Several UK-based trials have promoted the preoperative use of cisplatin, 5-fluorouracil 

and epirubicin in OC (Table 3),  producing a significant survival advantage over surgery 

alone (54, 55).  
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Table 3 Preoperative chemotherapy drugs used in the UK for the treatment of OAC and 

ESCC. 

 

 

Unfortunately, only 37.6% of patients are deemed suitable for treatment with curative 

intent. The low eligibility is because of the majority of patients presenting with late-stage 

disease, the US SEER (Surveillance, Epidemiology, and End results program) 

demonstrates this phenomenon with approximately 40% of patients are diagnosed with 

distant metastatic disease, 32% with regional disease, and only 18% of individual have 

localised disease at the point of diagnosis (58-60).  

  

DRUG 
NAME 

CHEMICAL NAME MECHANISM OF ACTION 

Cisplatin  cis-diamminedichloroplatinum (II)  Binds purine residues and causes 
deoxyribonucleic acid (DNA) damage in cancer 
cells; oxidative stress (55, 56).   

5-fluorouracil  fluoropyrimidine 5-fluorouracil  
(5-FU)  

Metabolites of 5-FU  inhibit nucleotide synthetic 
enzyme thymidylate synthase, and miss-
incorporates fluoronucleotides into RNA and 
DNA, causing DNA and RNA damage (56).   

Epirubicin  Epirubicin hydrochloride  Interferes with DNA, RNA and protein synthesis 
via the intercalation of DNA, inhibition of 
topoisomerase II activity, generation of oxygen 
and drug-free radicals (57).  
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1.5 Histology 

The histology of OAC typically displays the columnar epithelium compared to the 

squashed squamous epithelium found in healthy oesophageal tissue; while normal tissue 

shows a well-differentiated structure, OAC shows mass disruptions to structures such as 

the epithelium and glandular structures (Figure 4) (61-63). Notably, there are several 

three histologic types of columnar metaplasia which may cause adenocarcinoma 

including cardiac-type columnar mucosa composed of only mucosal cells; fundic-type 

columnar mucosa composed of mucosal cells, acid secreting parietal cells and chief cells; 

and intestinal-type columnar mucosa characterised by the presence of goblet cells (66). 

Figure 4 Histology of the human oesophagus.  (A) Histology of normal squamous 

epithelium of the oesophagus, displaying a squashed epithelium towards the lumen with 

the lamina propria beneath divided by the basement membrane (65).  (B) Histology of 

OAC, characteristically exhibits a columnar epithelium with malformed glands beneath, 

large irregular hyperchromatic nuclei may be found invading the submucosa (64). 

Permissions obtained. 



 

29 

1.6 OAC evolution, disease progression and metastasis  

Evolution: As stated earlier, OAC is highly associated with GORD and Barrett’s 

oesophagus.  Occurring through a defined pathogenic pathway (Figure 2).  However, the 

exact mechanism behind this transformation is still unknown.  Studies have suggested 

that transdifferentiation may be a crucial part of the pathogenesis of Barrett’s 

oesophagus; this process involves fully differentiated squamous epithelium cells 

changing into differentiated columnar cells, with or without mitotic division (65, 66). 

However, this mechanism is highly criticised as lineage-tracing studies have yielded no 

transdifferentiation events which result in columnar cells (66). Other studies suggest 

transcommitment; a process in which immature progenitor cells are reprogrammed to 

alter their patterns of cellular differentiation may allow for the squamous-columnar 

epithelial transition.  The exact cell of origin for this process was elusive, yet recent 

literature suggests BE originating from gastric cardia via c-MYC and HNF4A-driven 

transcriptional programs with OAC arising from undifferentiated Barrett’s oesophagus 

cell types (67, 68). Notably, somatically acquired genomic copy number alterations 

increase as OAC develops with the median percentage of the genome with a diploid copy 

number being 99.7% in Barrett’s oesophagus compared to the OAC median diploid copy 

number at 62.4%. The most frequently affected candidate cancer genes among the 

37.6% included GATA4, KLF5, MYB, PRKCI, CCND1, FGF3, FGF4, FGF19 and VEGFA (69). 

Despite this notable change in copy number, the DNA mutational signatures overlap 

between Barrett’s oesophagus, early and late adenocarcinoma. Only a small amount of 

difference between early and late adenocarcinoma was noted, with 6.9% of the detected 

mutations being OAC-unique. This may indicate that the progression from BE to OAC 

driven by common mutagens and copy-number aberration rather than mutation. The 

overlap between BE and OAC suggests they are genomically similar to each other, and it 

has been further noted that 25% of OAC diagnosis occur within a year of BE diagnosis. 

This has previously been interpreted to be OAC present but missed by endoscopy, 

however, this may also be evidence of rapid progression of BE to OAC the pre-existing 

genomically unstable lineages (69).  

 

During the development of OAC, tumour cells begin to preferentially express PD-L2 over 

PD-L1, potentially because of IL4/IL13 cytokines from CD4+ Th2 cells within the 

inflammatory environment produced during cancer development; also, preferential 
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expression of PD-L1 in tumour infiltrating inflammatory cells (TIICs) over tumour cells was 

detected in OAC, compared to the ESCC with the expression of PD-L1 in both tumour 

cells and TIICs (70). Preferential expression of PD-L1 and PD-L2 is a recurrent immune 

evasion mechanism found in OAC and other cancers. Specifically, Small-cell lung cancer 

(71), squamous cell carcinoma of the oral cavity (72), cervical cancer (73), ovarian cancer, 

breast cancer, melanoma, bladder cancer, head and neck cancer, soft tissue sarcoma and 

prostate cancer (74, 75) have showed frequent copy-number increases of chromosome 

9p24 where the PD-L1 gene (CD274) is located. 

 

Disease progression: Deconvolution analysis comparing BE to OAC found the largest 

expression changes in BE progression occurred in M2 macrophages, pro–B cells, and 

eosinophils, whereas immunohistochemical analysis found OAC tumour sections were 

relatively immune poor, with a rise in PD-L1 expression and loss of CD8+ T cells (76). 

 

Metastasis: A recent study of 388 samples of OAC found that 90% of patients possessed 

subclones from the primary tumour which spread rapidly from the primary site to form 

multiple metastasis sites, including the lymph nodes and liver, supporting a clonal 

diaspora model for metastases of OAC.  Further analysis revealed high L1 transposon 

activity in metastatic OAC compared to the primary site relating to a larger proportion of 

structural variants in the metastatic samples, suggesting an increase in genomic 

instability in later disease stages and potentially metastasis (77). 

1.7 Immunotherapy trials 

Interestingly, recent US trials focusing on immunotherapy have showed moderate 

responses to checkpoint blockade inhibitors, Pembrolizumab and Nivolumab in OAC (78, 

79).  Pembrolizumab, an inhibitor of PD-1, became the first approved immune checkpoint 

inhibitor in 2014 after a phase Ib trial in advanced melanoma (KEYNOTE-001) (80, 81).  

Nivolumab, a fully human IgG4 monoclonal antibody targeting PD-1 with high affinity for 

PD-1 inhibiting PDL1/PD-L2-PD-1 binding (Figure 5), received approval for treatment of 

metastatic melanoma, non-small cell lung cancer, and renal cell carcinoma (82). 

Strikingly, Nivolumab demonstrated positive responses in the treatment of 

chemotherapy-refractory gastric and gastroesophageal junction in a double-blind phase 3 
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trial for patients who have received two or more lines of chemotherapy and have not 

been selected for PD-L1 expression (ATTRACTION-2) (83). 

Ipilimumab is a monoclonal antibody targeted to CTLA-4, a transmembrane receptor on T 

cells, capable of activating T cells in cancer settings (Figure 5).  A recent study 

(CheckMate-032) employed the usage of ipilimumab plus nivolumab in the treatment of 

advanced oesophageal cancer, confirming dual treatment with ipilimumab and 

nivolumab was superior to nivolumab monotherapy (84). The CheckMate-032 trial 

demonstrates combination therapy of anti-CTLA-4 and Anti-PD-1/PD-L1 may be more 

effective than monotherapies; this avenue of combination treatment options is being 

investigated in several cancers advanced melanoma, metastatic osteosarcoma, colorectal 

cancer, recurrent glioblastoma, and renal cell carcinoma with favourable responses to 

these combination therapies (85-92). 

 

CAR-T (Chimeric antigen receptor) cells may also provide an effective measure against 

OAC in future with guanylyl cyclase C (GUCY2C) targeting CAR-T cells typically used to 

target human colorectal cancer may apply to OAC, with several studies indicating 

GUCY2C is highly expressed by OAC particularly in moderately to well-differentiated 

tumours (93-95). 

 

Overall, most immunotherapeutic efforts in OAC are focused on the use of checkpoint 

blockade therapeutics including Pembrolizumab, Nivolumab and ipilimumab in 

monotherapies or in combined therapies (79, 84, 96-103). A current literature search 

(15/08/2021) could not identify any trials or publications using adoptive T cell therapies 

in OAC; however, adoptive T cell therapy in combination with low-dose Nivolumab has 

been trialled in two patients with OSCC which may indicate adoptive T cell therapies may 

also present a future treatment for OAC (8). 
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Figure 5: Mechanism of action of immune checkpoint inhibitors.  (Left) PD-1 is 

expressed on activated T cells which may bind to PD-L1 expressed on tumour cells, 

leading to T cell exhaustion.  CTLA-4 competes with the co-stimulatory T cell molecule 

CD28 for B7 ligands, upon bonding CTLA-4 decreases T cell proliferation and cytotoxic 

activities.  (Right) Blockade of CTLA-4 by anti-CTLA-4 antibodies and PD-1 with anti-PD-1 

or anti-PD-L1 antibodies stimulates T cell activity and inhibits tumour cell’s ability to 

suppress T cell activity through the expression of PD-1 or CTLA-4 (104). (Created with 

Biorender.com). 
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1.8 The tumour microenvironment 

The tumour immune microenvironment (TIME) is the network of interacting cancer and 

immune cells found within a tumour.  Notably, the mechanisms of immunity with these 

niches differ significantly from those outsides of the tumour microenvironment niche, 

because of cancers ability to manipulate and obstruct normal immune functions as a 

mechanism to avoid anti-tumoral immunity.  For its significant role in the development 

and progression of tumours, the TIME is deemed as an emerging hallmark of cancer 

(105). 

 

Specifically, three general classes of TIME have been defined infiltrated-excluded, 

infiltrated-inflamed and infiltrated-T lymphocytes.  Infiltrated-excluded is defined by the 

exclusion of cytotoxic T lymphocytes (CTLs) from the tumour core; instead, CTLs may be 

found on the periphery of the tumour interacting with tumour-associated macrophages 

or stuck in fibrotic nests; comparatively infiltrated-inflamed TIMEs are characterised by 

the high abundance of PD-L1 expression on tumour and myeloid-derived cells, and 

possess CTLs high in the expression of GZMB, IFNG and PDCD1; finally, infiltrated-T 

lymphocytes possess tumour infiltrating lymphocytes (TLS) localised to immune cells 

compositions similar to those found in lymph nodes. 

 

Overall, the TIME is defined by the immunosuppressive role it performs to achieve anti-

tumoral immune evasion.  However, fully characterising the TIME can be difficult because 

of the number of cells and molecules involved in these processes. For example, the 

cytokine network which forms the inter-cellular immune communication between 

specialised immune cells forms a complex network, which may act to either suppress or 

promote immune destruction of cancer cells (Figure 6). 

 

Immune profiling of OAC in 47 samples identified high expression of checkpoint markers 

including LAG3, TIM3, CTLA4 and CD276 compared to PD1/PD-L1, besides upregulated 

CD38 and LILRB1 expression demonstrating multiple immune checkpoint mechanisms 

suggesting immune checkpoint therapies should be used in combinations for the most 

effective treatment (106).  
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Immunochemical and deconvolution analysis have characterised the OAC 

microenvironment by poor cytotoxic effector cell infiltration and increased immune 

inhibitory signalling; between BE and OAC T cells no significant increases in CD4, CD8, or 

Treg populations or subpopulations was detected, however, Th1 and Th2 cells were 

found increased in OAC (77). 

 

Whilst the myeloid cell populations appeared unchanged overall, there was a difference 

in the balance of M1/M2 macrophages with M2 macrophages found to be significantly 

increased in OAC compared to BE, pro-B cells were also found increased in OAC as 

compared to BE with the remaining B cell populations being unchanged (77). Overall, 

these analyses identify much of the immune population remains similar to BE, however, 

some distinct differences can be identified in the immune subpopulations; these notable 

differences in the immune subpopulation balances expected and measured differences in 

cytokines be found to modulate and impede immune functions such as IL6 and CXCL8 

(77, 107).   
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Figure 6: Cytokines forms an essential intracellular communication network which may 

act to suppress anti-tumour immune response via several diverse mechanisms. 

One key pathway of immunosuppression (Red lines) is located via MDSCs inducing M2 

macrophage polarisation via secretion of IL-6 and IL-10 and Treg activity via IL-10 and 

TGF-B secretion, this results in a greater concentration of IL-10 within the TME inhibiting 

CD8+ and NK cell activity while M2 macrophages hinder the maturation of DCs reducing 

presentation of tumour antigens to T cells. Conversely, tumour suppression (Green lines) 

is also dependant on the usage of the cytokine network with M1 macrophages 

communicating with CD8+, NK and Th1 T cells allowing tumour directed immune 

rejection to occur. 



Chapter 1 
 

36 

1.9  Antigen Presentation Machinery (APM) and pathways  

Antigen presentation functions within host immunity for the recognition of self and non-

self.  T cells may act to destroy infected host cells through the specific recognition of 

antigens presented on antigen presentation molecules on the cell surface.  Upon specific 

recognition and with the co-stimulatory signal, the T cell may activate and direct 

cytotoxicity towards the infected cell, aiding in the clearance of infection. 

Antigen presentation may be functionally divided into endogenous and exogenous 

pathways (See Figure 7).  The endogenous pathway, also known as MHC I functions to 

display intracellular peptides, such as self-proteins or incorporated viral proteins, 

whereas exogenous pathways (MHC II) function to display extracellular peptides, 

engulfed by a professional antigen presenting cell (108). Interestingly, cancer cells may 

also present cancer-specific antigens on the cell surface, which may be recognised by 

cancer-specific T-cells, acting to suppress tumour formation by destroying cancer cells 

(109). 

 

The MHC I pathway is an antigen presentation mechanism characterised by displaying 

endogenous peptides on MHC I molecules to CD8+ T cells (Figure 7A).  MHC I pathways 

are expressed in most cell types in the body, excluding non-nucleated cells such as red 

blood cells which rely on CD47 markers for immune recognition and tolerance (110). 
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Figure 7: MHC pathways in humans.  Cellular interface of the Antigen Presentation 

Pathways (A) MHC I presentation; endogenous peptides are presented to CD8+ T cells, 

which specifically recognise the antigen with a T cell receptor (TCR), provided the T cell is 

supplied with a recognisable antigen, co-stimulatory signals, and a lack of co-inhibitory 

signals, the CD8+ T cell may activate and destroy the cell. B) MHC II presentation; 

exogenous peptides are presented to CD4+ T cells, specifically recognising the antigen 

with a TCR, provided the T cell is supplied with a recognisable antigen, co-stimulatory 

signals, and a lack of co-inhibitory signals, the CD4+ T cell may activate and function to 

stimulate/support an immune response.  (Created with Biorender.com). 
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1.9.1 The MHC I pathway  

The MHC I pathway is an antigen presentation mechanism characterised by displaying 

endogenous peptides on MHC I molecules to CD8+ T cells (Figure 7A).  MHC I pathways 

are expressed in most cell types in the body, excluding non-nucleated cells such as red 

blood cells which rely on CD47 markers for immune recognition and tolerance (110). 

Endogenous peptides (normal, cancer-specific or pathogenic) are produced from proteins 

within the cytosol which are degraded by the proteasome into peptide fragments; 

several peptide fragments are transported into the endoplasmic reticulum (ER) lumen 

through the ER membrane translocon, transporter associated with antigen processing 

(TAP1/2) (110) (See Figure 8). The nascent heavy chain of the MHC I molecule is co-

translationally transported into the ER lumen by the translocon docking to the ribosome 

on the cytoplasmic face of the ER membrane, then binds to calnexin until a dimer with 

Beta-2-microglobulin (B2M) is formed.  The MHC I- B2M complex is then released from 

calnexin, binding to the chaperonin proteins calreticulin and ERp57, which transport the 

complex to TAP, where the complex binds to TAP via Tapasin forming the peptide-loading 

complex (PLC) (110). 

 

At this stage, peptide fragments can now bind to the peptide-binding cleft of the MHC I 

molecule, provided these fragments are 8-10 amino acids (AA) in length.  However, 

peptides longer than 8-10 AA in size may be trimmed further by ERAP1 and ERAP2.  After 

successful binding of a stable peptide to the peptide-binding cleft of an MHC I molecule, 

the MHC-peptide complex leaves the PLC, effectively passing the ER quality control 

process, allowing the MHC-peptide complex to be transferred to the Golgi apparatus 

network, transporting the complex to the cell surface (Figure 8) (110). 

 

The MHC I-peptide complex may then be specifically recognised by a CD8+ T cell receptor 

(TCR), providing this T cell is supplied with a non-self/non-healthy MHC I presented 

antigen, sufficient co-stimulatory signals (E.g. CD28-B7 interaction) and lack of co-

inhibitory signals (E.g. CD80/86-CTLA4 interaction) (110). Notably, MHC I molecules also 

function as an inhibitory signal to NK cells which actively target cells which lose MHC I 

expression (111). 
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To evade immune destruction, cancer targets MHC I genes for somatic mutation, 

effectively abrogating the MHC I pathway to hinder the presentation of cancer antigens 

on MHC I molecules to the immune system.  For example, one study identified B2M 

somatic mutations early in cancer development, which are attributed to the loss of 

function and reduced MHC I surface expression, thus forming a cancer immune evasion 

mechanism (112). Further examples of somatically acquired APM defects have been 

observed in the HLA class I genes including HLA-A/B/C, displaying roles in cancer immune 

evasion by producing antigen loss variants that undergo selective immune pressure 

during cancer development (113). Overall APM genes represent an inviting target for 

somatically acquired aberration in cancer development and should be a key topic of 

research as specific APM aberrations may impact the efficacy of immunotherapy (113). 

Figure 8 MHC I pathway overview.  MHC I molecules are transcribed by ribosomes on 

the ER, folded, then transported by chaperones to Tapasin (TAP1/2).  Endogenous 

peptides are degraded by proteasomes into peptide fragments then transported into the 

ER lumen by Tapasin, peptide fragments exceeding 8-10 AA in size are degraded further 

by ERAAP.  In the ER lumen, antigen peptide fragments form complexes with MHC I 

molecules which are then transported to the cell surface via the Golgi apparatus for 

display.  (Created with Biorender.com). 
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1.9.2  The MHC II pathway 

The MHC II pathway is characterised by the display of exogenous peptides on MHC II 

molecules to CD4+ T cells (Figure 7B).  MHC II pathways are primarily expressed by 

professional antigen presenting cells, such as dendritic cells and macrophages, as well as 

some endothelial cells, thymic epithelial cells, and B cells.  MHC gene evolution has been 

a key topic of research over the past five decades, with only a few species being used to 

make direct comparisons between MHC I and II. A few studies have identified pathogenic 

selective pressure and the variation of MHC II alleles has played a key role in the 

evolutionary history of MHC II genes; however, the evolutionary origin of these antigen 

presenting cells is mostly unknown, meaning little evidence exists to determine the exact 

origins of MHC II genes (114, 115). Notably, MHC II expression is present in epithelial cells 

of the lung, intestine, and stomach; specifically gastric epithelial cells have demonstrated 

in upregulate MHC II expression in chronic inflammatory conditions, such as autoimmune 

conditions and may extend to gastric cancers (116). 

 

Exogenous peptides carriers, such as pathogenic bacteria are engulfed into phagosomes 

which fuse with lysosomes forming phagolysosomes, these structures degrade 

exogenous peptides with proteases into peptide fragments between 13 and 17 AA in size 

(Figure 9).  Meanwhile, MHC II molecules are transcribed in the ER alongside the 

invariant chain (li) which form a complex together, the complex is then transported to 

the MHC II compartment (MIIC) via the Golgi apparatus (110). 

 

Following peptide degradation, the phagolysosome fuses with the MIIC releasing 

degraded exogenous peptides and proteases into the MIIC; proteases CTSS or CTSL act to 

cleave li into CLIP.  CLIP is exchanged with an exogenous peptide fragment, catalysed, 

and stabilised by HLA-DM, which itself is regulated by HLA-DO.  Finally, the MHC II 

peptide complex is transported to the cell surface for display via the endosomal network.  

Alternatively, MHC II-li complexes can be transported directly from the ER to the cell 

surface, which may be recycled back into the MIIC for antigen loading (110). 
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The displayed MHC II peptide-complex may stimulate and activate CD4+ T cells, which act 

as helper cells supporting the immune response towards pathogen clearance, such as 

secretion of immunostimulatory cytokines; specifically, the secretion of IL-1, IL-2, IL-12, 

IFN-y and TNF-a from Th1 cells play a positive role in anti-tumoral immunity, bolstering 

CD8+ and NK cell activity, survival and expansion (109, 117). 

Figure 9 MHC II pathway overview.  MHC II molecules and invariant chains are 

transcribed by ribosomes on the ER, folded, bound, then transported to the MHC II 

compartment (MIIC) via the Golgi apparatus.  Exogenous peptides are internalised and 

degraded by proteases in phagolysosomes, phagolysosomes then fuse with the MHC II 

compartment, releasing proteases which cleave invariant chains on MHC II molecules 

into CLIP; CLIP is then exchanged with antigen peptides assisted by HLA-DM. MHC II-

antigen complexes are then transported by the endocytic network to the cell surface.  

(Created with Biorender.com). 
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1.9.3 Cross-presentation pathways   

The mechanisms of presenting exogenous antigen on MHC I molecules are coined as 

cross-presentation pathways.  These pathways have been discovered predominantly in 

dendritic cells (DCs), being tied to important functions including the generation of an 

immune response directed towards viruses and tumours, immunisation and in the 

induction of immune tolerance (118). 

 

Two general pathways exist within this domain; the cytosolic pathway, where 

internalised antigens are transported to the cytosol from the endosomal compartments, 

exogenous cytosolic peptides are then degraded by the proteasome, transported into the 

ER by TAP, allowing for the loading of exogenous derived peptides in the MHC I pathway; 

the vacuolar pathway, internalised antigens are degraded by lysosomal proteases and 

then loaded onto MHC I molecules within the endocytic compartment (Figure 10) (118).  

Interestingly, Cathepsin S, not Cathepsin L and B have been shown to play a key role in 

antigen degradation within the vacuolar pathway, demonstrated within DCs of TAP 

deficient mice (119). 

In cancer, cross-presentation of tumour antigens can occur via phagocytosis of dead 

cancer cells; as the local tumour microenvironment can be pro-inflammatory cell death 

of tumour cells can be significant, resulting in cellular debris (120). The debris from dead 

cells can be engulfed into APCs then and presented on MHC I molecules via the cross-

presentation pathways (121). Interestingly, cross-presentation of tumour antigens can be 

enhanced by tumour burden and may be conducted by CD1c dendritic cells and 

macrophages, which may cause CD8+ anti-tumoral T cell responses (122, 123). 
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Finally, the cross-presentation mechanism may be exploited for future immunotherapy 

efforts; several studies have identified immunotherapies focusing on enhancing DCs or 

introducing tumour antigens to DCs could allow for greater T cell priming, as tumour 

antigens would be presented to both CD4+ and CD8+ T cell, inducing an anti-tumoral 

response (124-126). 

Figure 10 Cross-presentation cellular mechanisms.  In both the vacuolar and cytosolic 

pathway, exogenous peptides are engulfed by the cell and internalised into a 

phagosome, which then fuses to the endoplasmic reticulum (ER), allowing it to obtain 

antigen presentation machinery proteins such as TAP, Tapasin, MHC I molecules and 

Sec61 translocons.  In the cytosolic pathway the phagosome Some internalised 

exogenous peptides are transported out to the cytosol, potentially via ubiquitination by 

ubiquitin (Ub)-conjugating enzymes (UBCs) resulting in translocation of the peptides 

through the Sec61 translocon; peptides translocated to the cytosol can be degraded by 

proteosomes, allowing for the cleaved peptides to be transported back into the fused 

phagosome through TAP permitting peptide binding to MHC I molecules using antigen 

presentation machinery gained from the ER. In contrast, proteases degrade the vacuolar 

pathway internalised peptides within the ER-fused phagosome by proteases, allowing 

Tapasin the load the cleaved peptides onto MHC I molecules, then transported to the cell 

surface.  Adapted from Rock, K., 2003.  (107). 
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1.9.4  Regulation of APM gene expression 

The activation of MHC class I genes except for HLA-G is mediated by multiple conserved 

cis-acting regulatory promoter elements including ISRE (interferon-stimulated response 

element) and the SXY-module (127). Interestingly, these regulatory promoter elements 

are further involved in the transcriptional activation of the B2M promoter, but not TAP 

and immunoproteasome promoters (127-129).  Within this pathway for MHC class I 

promotion, the enhancer A is bound by the nuclear factor NF-KB and ISRE is bound by 

interferon regulatory factor (IRF) family members.  Specifically, transcription factors NF-

κB and IRF-1 function as mediators of the TNFα and IFN-γ pathway gene activation which 

result in induction of MHC class I transcription.  Notably, IRF-1 inactivation has been 

uncovered in cancers. In leukaemia and pre-leukemic myelodysplasia (MDS) loss of 

chromosome 5 or deletion within the long arm where the IRF-1 gene is located occurred 

in 30% of MDS cases, 15% of de novo acute myelogenous leukaemia (AML) cases, 50% of 

cases of secondary AML arising from MDS (130-132). Following the discovery of IRF-1 loss 

in AML and MDS further research identified 50% of gastric tumours and 32% of invasive 

breast carcinomas exhibit LOH at the 5q region implying a critical contribution of IRF-1 to 

the development of stomach carcinoma and invasive disease in breast cancers (133, 

134). Specifically, to oesophageal carcinoma, 5q31.1 was reported as the smallest 

commonly deleted region in 57% of the specimens tested (35/61 tumours); a further 

study found expression of IRF-1 to be decreased and IRF-2 increased in OSCCs compared 

with matched normal oesophageal tissue (135, 136). As prior mentioned, HLA-G 

expression is not regulated by NF-κB or IRF-1, instead the HLA-G promoted can be 

transactivated by the cyclic-AMP response element binding protein (CREB)-1. Whereas, 

Ras-responsive binding protein-1 (RREB-1) acts as a transcriptional repressor of HLA-G via 

chromatin remodelling of the HLA-G locus (137). 

 

A Further regulator of MHC class I expression was discovered in 2010 by ChIP (Chromatin 

Immunoprecipitation) analysis revealing NLRC5 associated to MHC class I promotors 

regulating its transcriptional activity (138). NLRC5 functions via forming a MHC class I 

enhanceosome together with the RFX-complex (RFX5, RFXAP, RFXANK), ATF1/CREB and 

the NFY-complex, thus acting as a key co-activator for MHC class I expression (139). In a 

pan-cancer study, preferential methylation, copy number and somatic mutations of 

NLRC5 associated to impaired cytotoxic T-lymphocyte activity and decreased MHC class I 
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expression in breast, skin, liver, ovarian, bladder, lung, and prostate cancers (140). The 

pan-cancer study further identified the expression of NLRC5 was correlated with survival 

of cancer patients with skin, rectal, bladder, uterine, cervical, and head and neck tumours 

(140). 

 

Class II transactivator (CIITA) is a transcriptional coactivator that regulates γ-interferon-

activated transcription of MHC class I and II genes.  CIITA structure possess a series of 

regulatory domains including an activation domain , an acetyltransferase domain, a 

proline/serine/threonine (PST) domain, a GBD (GTP binding domain) and a canonical LRR 

(C-terminal leucine rich region) domain common to NLR (Nod-like receptor) proteins 

(141). Notably, deficiency of CIITA results in aberrant MHC gene expression and has been 

associated to autoimmune diseases such as Type II bare lymphocyte syndrome.  

Functionally, CITTA regulates MHC gene expression via two distinct mechanisms, as a 

transcriptional activator and as a general transcription factor.  In CITTA’s transcriptional 

activator role CIITA nucleates an enhanceosome comprising the DNA binding 

transcription factors RFX, cyclic AMP response element binding protein, and NF-Y.  As a 

transcription factor CIITA functionally replaces TAF1 a TFIID component.  Similarly, to 

TAF1, CITTA possesses acetyltransferase (AT) and kinase activities and actively 

contributes to both MHC class I and II transcription. 

 

Recently, the role of CSDE1 as a regulator of MHC class I expression was discovered, 

functioning via the stabilisation of TCPTP a tyrosine phosphatase which 

dephosphorylates STAT1 in the IFN-y pathway.  Within these studies, the greater 

expression of CSDE1 in a melanoma cell line resulted in high dephosphorylation of STAT1 

preventing translocation of STAT1 into the cell nucleus downstream of the JAK/STAT 

pathway (142). This function inherently prevents STAT1 from binding to the γ-activated 

sequence (GAS), this inhibits the promotion of IRF1 which handles MHC class I promotion 

by binding to ISRE a prior discussed transcriptional promoter of MHC class I expression, 

decreasing the expression of MHC class I genes.  Further investigation yielded the 

regulation of CSDE1 occurs via SMYD3 trimethylation of CSDE1 locus.  A further study 

identified CSDE1 may form a target for therapy via oncolytic viruses, creating a selection 

pressure towards an escape-associated tumour antigen via mutation of CSDE1 (C-T) 

which may be a target for cancer vaccines, adoptive T-cell and CAR-T cell therapies (143). 
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1.10 Candidate APM genes   

Using prior literature several APM genes have been reported as possessing an impact on 

survival and immune responses in other cancers and diseases, by assessing the known 

APM defects in other cancers which impact prognostic values a list of defined APM gene 

candidates for analysis in OAC was determined.  These candidates and their respective 

impact in other cancers are stated below in Tables 4 and 5. 

Table 4 Key APM genes in the MHC I pathway with their associated APM processes and 

published roles in cancers 

APM PROTEIN; 
MHC I 

APM 
GENE 

SYMBOL; 
MHC I 

GENE FUNCTION EVIDENCE FROM LITERATURE 

TAPASIN TAPBP Assembly of the 

MHC class I loading 

complex. 

Tapasin is downregulated in multiple OSCC cell 

lines. 

Tapasin downregulation is associated with poorer 

outcomes in triple-negative breast cancer (144, 

145). 

Loss of Tapasin correlates with diminished CD8+ T-

cells and disease progression in colorectal cancer 

(149). 

TAPBPR TAPBPL Assembly of the 

MHC class I loading 

complex; binds 

peptide-free MHC 

I molecules 

(permitting peptide 

editing) 

TAPBPR isoforms alter association with MHC I 

molecules; long isoforms may down-regulate 

surface expression of MHC I molecules (150). 

HLA-A HLA-A Assembly of the 

MHC class I loading 

complex. 

Antigen presenting 

molecule. 

The HLA-A *11 allele is strongly associated to 

OSCC risk (151). 

HLA-A expression is regulated by the HER2 

signalling pathway is OSCC and gastric cancers 

(152). 

HLA-B HLA-B Assembly of the 

MHC class I loading 

complex. 

Antigen presenting 

molecule. 

The HLA-B*46 allele is strongly associated to 

OSCC risk (151). 

HLA-B expression is downregulated in gastric 

cancer and in lymphatic metastasis (153). 

HLA-C HLA-C Assembly of the 

MHC class I loading 

complex. 

Antigen presenting 

molecule. 

HLA-C expression is down-regulated in CRC (154). 
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HLA-E HLA-E Assembly of the 

MHC class I loading 

complex. 

Antigen presenting 

molecule. 

HLA-E+ gastric tumours carry poorer 5-year survival 

than HLA- tumours (155). 

HLA-G HLA-G Assembly of the 

MHC class I loading 

complex. 

Antigen presenting 

molecule. 

HLA-G expression correlates with poor prognosis is 

gastric carcinomas (156). 

BETA-2 
MICROGLOBULIN 

B2M Assembly of the 

MHC class I loading 

complex. 

Antigen presentation 

B2M mutations reduce the overall levels of cell 

surface MHC-I molecules; B2M mutant tumours 

possessed elevated cytotoxicity (124).  B2M loss of 

heterozygosity in metastatic melanoma 

immunotherapy is enriched. 

threefold in non-responders (~30%) compared to 

responders (~10%) and associated with poorer 

overall survival (157). 

ERP57 PDIA3 Assembly of the 

MHC class I loading 

complex. 

PDIA3high gastric tumours have improved 

prognosis over PDIA3low tumours (158). 

CALRETICULIN CALR Assembly of the 

MHC class I loading 

complex. 

CALR expression is associated with infiltration of T-

cells; strong CALR expression with high CD3+ and 

CD45RO+ T-cell infiltration is associated with higher 

5-year survival in colon cancer (159). 

CALNEXIN CANX Assembly of the 

MHC class I loading 

complex. 

Calnexin downregulated in ~25% of primary 

laryngeal squamous cell carcinoma lesions, number 

of 

infiltrating CD8+ T cells correlated with calnexin 

expression (160). 

ERAP1 ERAP1 Assembly of the 

MHC class I loading 

complex. 

Degradation of 

peptides in the ER 

ERAP1 down-regulation suffices to stimulate the 

cytotoxic activity of NK cells and CTLs (against an 

unknown cancer antigen), resulting in tumour 

growth arrest (161, 162). 

ERAP2 ERAP2 Assembly of the 

MHC class I loading 

complex. 

Degradation of 

peptides in the ER. 

ERAP2 expression lost in 17 out of 

26 liver carcinoma samples.  Loss of ERAP1/2 

expression is associated with a lack of surface HLA 

class I molecules (163). 

TAP1 TAP1 Peptide transport into 

the ER lumen. 

High expression of TAP1 by OAC correlated with 

significantly shorter overall survival times in OAC 

(164). 

TAP2 TAP2 Peptide transport into 

the ER lumen. 

Increased levels of MIR125a-5p and MIR148a-3p 

reduces levels of TAP2 in OAC, associated to poor 

patient outcomes (164). 
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Roles in cancer collected by literature search on PubMed 
(https://www.ncbi.nlm.nih.gov/pubmed/) using the following search terms (1) *Gene 
symbol* OR *Protein name* AND “Antigen presentation” AND “Cancer” (2) *Gene 
symbol* OR *Protein name* AND “Antigen presentation” (3) (1) *Gene symbol* OR 
*Protein name* AND “Cancer”. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROTEASOME 
BETA SUBUNIT 

BETA1I 
(INDUCIBLE) 

PSMB9 Peptide generation 

and trimming. 

Overexpression of PSMB8 and 

PSMB9 correlates to better survival and improved 

response to immune checkpoint inhibitors of 

melanoma patients (165). 

PROTEASOME 
BETA SUBUNITS 

BETA2I 
(INDUCIBLE) 

PSMB10 Peptide generation 

and trimming. 

LMP10 nuclear expression in HPV positive and 

LMP10 cytoplasmic expression in the HPV-negative 

tonsillar and base of tongue squamous cell 

carcinoma patients correlated to better clinical 

outcome (166). 

PROTEASOME 
BETA SUBUNITS 

BETA5I 
(INDUCIBLE) 

PSMB8 Peptide generation 

and trimming. 

Overexpression of PSMB8 and 

PSMB9 correlates to better survival and improved 

response to immune checkpoint inhibitors of 

melanoma patients (165). 
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Table 5 Key APM genes in the MHC II pathway with their associated APM processes and 
published roles in cancers. 

APM 
PROTEIN; 

MHC II 

APM 
GENE 

SYMBOL; 
MHC II 

GENE FUNCTION EVIDENCE FROM LITERATURE 

HLA-DM 

Alpha: 

HLA-DMA 

Beta: HLA- 

DMB 

Stabilisation and 

loading of the MHC II 

complex 

Decreased expression in B cell lymphoma (167); 

Lack of HLA-DM in head and neck squamous cell 

carcinoma (168). 

HLA-DO 

Alpha: 

HLA-DOA 

Beta: HLA- 

DOB 

Antigenic peptide 

chaperoning and 

loading into MHC II 

molecules. 

Methylated promoters in RFX5-negative B-

lymphoma cells (169). 

HLA-DP 

Alpha: 

HLADPA1 

Beta: HLA- 

DPB1 

Assembly of the MHC 

class II loading 

complex. 

Antigen presentation. 

Low expression of HLA-DPA1, and HLA-DPB1 is 

associated with poor prognosis in paediatric 

adrenocortical tumours (170). 

HLA-DQ 

Alpha: 

HLA- 

DQA1, 

HLADQA2 

Beta: HLA- 

DQB1, 

HLA- 

DQB2 

Assembly of the MHC 

class II loading 

complex. 

Antigen presentation. 

HLA-DQA1*03 defined as a risk allele in lung 

adenocarcinoma (171). 

HLA-DR 

Alpha: 

HLADRA 

Beta: 

HLADRB1, 

HLA- 

DRB4, 

HLA- 

DRB5 

Assembly/Stabilisation 

and loading of the 

MHC II loading 

complex; antigen 

presentation. 

Methylated HLA-DR promoters in RFX5-negative 

B-lymphoma cells (169). 

Low expression of HLA-DRA is associated with 

poor prognosis in paediatric adrenocortical tumours 

(170). 

The HLA-DRB1*1601 allele is strongly associated 

with gastric cancer development (172). 

INVARIANT 
CHAIN 
LI/CLIP 

CD74 (cell 

surface 

form) 

Assembly/Stabilisation 

and loading of the 

MHC II 

loading complex; 

antigen presentation; 

MHC II complex 

transport. 

Antigen presentation. 

Novel somatic gene fusion, CD74-NRG1 identified 

in lung adenocarcinoma (173). 

CD74 interacts with CD44 and enhances 

tumorigenesis and metastasis in breast cancer 

(174). 



Chapter 1 
 

50 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Roles in cancer collected by literature search on PubMed 
(https://www.ncbi.nlm.nih.gov/pubmed/) using the following search terms (1) *Gene 
symbol* OR *Protein name* AND “Antigen presentation” AND “Cancer” (2) *Gene 

CATHEPSIN 
S 

CTSS 

Degradation of li into 

CLIP 

(B cells, DCs, 

CD74expressing 

cells); peptide 

generation. 

CTSS expression mediates gastric cancer cell 

migration (175). 

Down-regulation of cathepsin S suppresses triple-

negative breast cancer growth and metastasis 

(176). 

CATHEPSIN 
L 

CTSL 

Degradation of li into 

CLIP 

(Thymic cortical 

epithelial cells); 

peptide generation. 

Expression Contributes to breast tumour 

angiogenesis (177). 

SPPL2A SPPL2A 
CD74 turnover from 

the MIIC. 

Knockout of SPPL2a results in build-up of invariant 

chain N-terminal fragments, impaired endosomal 

trafficking of MHC II molecules in B cells (178). 

AEP LGMN Peptide generation. 

miR-3978 inhibits gastric carcinoma and metastatic 

progression in a mice model by regulating 

legumain protein expression; confirmed in 20 

human gastric carcinoma patients (179). 

GILT IFI30 Peptide generation. 

GILT expression is required for optimal 

presentation of the melanoma antigen TRP1 (180). 

Loss of GILT expression correlates with poor 

survival and disease-free progression in diffuse 

large B cell lymphoma and breast cancer (181, 

182). 
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symbol* OR *Protein name* AND “Antigen presentation” (3) (1) *Gene symbol* OR 
*Protein name* AND “Cancer”. 
 
 
 

1.11 The genomics of OAC & OSCC  

Several studies to date have investigated the genomic alterations which may drive the 

progression of OAC from BE through the Dysplasia-BE-OAC pathway, discussed in the 

‘OAC evolution, disease progression and metastasis’ section.  In 2013, Dulak et al. 

analysed the genome sequencing of 149 OAC patient samples, with 15 sample being 

analysed using whole genome sequencing; from this investigation, Dulak and colleagues 

noted several genomic features of OAC.  First, they established that a the highest rate of  

A>C transversions in OAC was present in the noncoding areas, while within the coding 

region a there was a distinct overrepresentation of under-expressed genes; further 

investigation identified 26 frequently mutated key genes including TP53 (72%), ELMO1 

(25%), DOCK2 (12%), CDKN2A (12%), ARID1A (9%), SMAD4 (8%) and PIK3CA (6%); these 

findings were further validated by a study in 551 OAC samples reporting similar driver 

mutation events (Figure 11) (183, 184). 

Beyond genomic mutation, this study also identified frequent amplification of oncogenes 

KRAS (21%), HER2 (19%), EGFR (16%), CND1 (10%) and MET (6%), and deletion of SMAD4 

(34%), CDKN2A (32%) and ARID1A (10%) (183). Among these, TP53 aberration is the most 

frequent; this a key tumour suppressor gene coding for the P53 protein, which function 

to arrest the cell cycle upon the detection of DNA damage, allowing enactment of DNA 

repair pathways or programmed cell death; this gene is frequently disrupted in many 

cancers because of its key role in inhibiting carcinogenesis (185). Interestingly, ELMO1 

and DOCK2 encode dimerization partners and intracellular mediators of the Rho family 

GTPase, RAC1; the frequency of alteration of these gene suggests aberrant RAC1 

activation contributes to malignant transformation, mainly by enhancing cellular motility, 

supported by studies of other cancers (186-190). 

 

Finally, the loss of SMAD4 and ARID1A expression often observed in OAC cases have a 

significant impact on the genome.  SMAD4 acts within TFG-B signalling as the central 

mediator of the pathway which results in the recruitment of transcriptional factors to 

transactivate or repress target genes. Because of this function SMAD4 play a significant 
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role as a tumour suppressor by inducing cell cycle arrest and apoptosis within the G1 

phase (191, 192). 

Figure 11 The driver gene landscape of OAC.  (A) Driver mutations or CNVs are shown for 

each patient of 551 OACs.  Amplification is defined as >2 copy number adjusted ploidy 

(2x ploidy of that case) and extrachromosomal amplification as >10 copy number 

adjusted ploidy (10x ploidy for that case).  Driver associated features for each driver gene 

are displayed to the left.  On the right, the percentages of different mutation and copy 

number changes are displayed, differentiating between driver and passenger mutations 

using dNdScv, and the % of predicted drivers by mutation type is shown.  Above the plot 

are the number of driver mutations per sample with an indication of the mean (red line = 

5).  (B), Mean driver events per case in 551 OACs and comparison to exome-wide excess 

of mutations generated by dNdScv.  (C), Expression changes in OAC driver genes 
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compared to normal intestinal tissues in RNA matched samples (n=116).  Only genes with 

expression changes of note are shown (184). 

 

Founding investigations of ESCC using whole-genome sequencing methodology have 

provided a solid basic understanding of the biology underlying the condition including 

the alleles predisposing to ESCC. Lin et al. conducted whole-exome and targeted deep 

sequencing of 139 paired ESCC cases, and analysed SCNVs from over 180 ESCC cases; 

from these experiments Lin et al. reported frequent mutations in AT1, FAT2, ZNF750, and 

KMT2D besides known commonly mutated genes (TP53, PIK3CA, and NOTCH1) (193). 

 

Song et al. conducted a comprehensive genomic analysis of 158 ESCC cases (WGS of 17 

cases, WES of 71, 53 WES case plus 70 cases underwent array comparative genomic 

hybridization analysis) as part of the International Cancer Genome Consortium research 

project (ICGC) (194). Using this methodology, they identified 8 significantly mutated 

genes including 6 known (TP53, RB1, CDKN2A, PIK3CA, NOTCH1, and NFE2L2), 1 tumour-

associated gene (ADAM29), and mutations in FAM135B not previously linked to cancer 

(194). The FAM135B was mutated in 6.8% of cases (6 of 88) and was associated to poorer 

prognosis (p = 0.026, log-rank test); further analysis implicated FAM135B in promotion of 

malignancy in ESCC.  Exome sequencing on the 113 tumour-control pairs identified a 

mean of 82 non-silent mutation per ESCC tumour, exhibited a mutational profiling 

resembling other squamous cell carcinoma of tissue, but was distinct from OAC’s 

mutational profile.  Mutations in genes involve in cell cycle and apoptotic regulation 

were mutated in 99% of the ESCC cases which underwent exome sequencing (TP53, 93%; 

CCND1, 33%; CDKN2A, 20%; NFE2L2, 10%; and RB1, 9%) (194). 

 

Research has explored the mutational pathways of ESCC, elucidating mutation in 

epigenetic modulatory genes.  With Song et al. identifying frequent non-silent mutations 

in 48 genes which function in histone modification mechanism (53.4% of ESCC cases), 

including KMT2D, ASH1L, KMT2C, SETD1B, CREBBP, and EP300; pathway analysis found 

these somatic aberrations were mainly involved in the Wnt, cell cycle and Notch 

signalling pathways (194). Gao et al. reported cell cycle, apoptosis and DNA damage 

control pathways were ubiquitously dysregulated, owing mainly to TP53 mutation and 

chromatin modification pathway genes (Notch, phosphoinositide 3-kinase, and Ras 

pathways) to a lesser degree (194). Histone-modification related genes were frequently 
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mutated including KMT2D (19%), KMT2C 6%), KDM6A (7%), EP300 (10%), and CREBBP 

(6%); also, Hippo and Notch pathways were frequently dysregulated by mutations in 

FAT1, FAT2, FAT3, or FAT4 (27%) or AJUBA (JUB; 7%) and NOTCH1, NOTCH2, or NOTCH3 

(22%) or FBXW7 (5%) (194). Notably, cases possessing mutations in EP300 had dismal 

survival (P = 0.0032) (194). 

1.12 Literature review of molecular pathway defects of APM in OAC 

and ESCC  

OAC presents with high expression potential for neo-antigens with high affinity for HLA 

class I binding (Median of 20 neo-antigens expressed per sample in the mutagenic 

subgroup of OAC). Especially in cases with dominant T>G mutational patterns, suggesting 

the use of immunotherapy may be effective in these cases (195). 

 

Despite the known high neo-antigen loading of OAC, a few studies have highlighted 

potential defects in MHC pathways of OAC; firstly, a study identified an increase HLA-DR 

expression within the inflammation to cancer progression sequence (196). Furthermore, 

the multivariant analysis demonstrated low expression of HLA-DR was correlated with 

poor survival, suggesting HLA-DR may be useful as an independent prognostic indicator in 

OAC patients (196).  Another study identified increased levels of micro-RNAs, MIR125a-

5p and MIR148a-3p in OAC cell lines, reducing the level of TAP2 and MHC I expression, 

which collarets to markers of adaptive immunes response and overall shorter survival 

(164). 

 

Two studies have indicated MHC variants may play a significant role in predisposition to 

Barrett’s oesophagus and the risk of OAC; finding a specific MHC single nucleotide variant 

(rs9257809 A>G allele; 9% in Caucasian) was strongly associated with a predisposition to 

Barret’s oesophagus, finding an OR of  1.38 in males and 1.11 in females; interestingly, 

the susceptibility to OAC also increases in individuals homozygous for rs9257809 with an 

OR of 1.12 (Sex corrected) against heterozygous wildtype-variant with an OR of 0.79 (Sex 

corrected) (197, 198)  
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Overall, research using multi-omics datasets, into APM defects in OAC is lacking, and 

many core components of the MHC I and II pathways are yet to be fully investigated for 

defects in OAC.  One aim of this research is to address this.  

 

In ESCC, defects in APM pathways are significantly more elucidated than in OAC.  Within 

ESCC, studies have explored the role of APM defects in risk, immune response, prognosis, 

biological regulation, treatment, progression, and carcinogenesis.  For example, a few 

studies have implicated high expression of HLA-G in poorer patient outcomes, while 

another study associated a high expression of HLA-I and HLA-F with cancer risk and 

poorer overall survival (199-201). Other APM defects have also been associated with 

ESCC carcinogenesis.  Interestingly, Human Papilloma Virus (HPV) infection has been 

associated with HLA-DRB1 alleles relating to carcinogenesis; HPV has also been shown to 

regulate the methylation and expression of HLA-DQB1 further associated with ESCC 

cancer risk and poor patient outcomes (202-204).  

 

Overall, the literature investigating APM defects in ESCC is significantly more extensive 

than OAC, demonstrated by a basic literature search (Figure 12); these research papers 

have discovered several prognostically relevant defects, highlighting a need for further 

investigation in the APM defects of OAC. 
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Figure 12 A bar chart representing literature search.  Conducted (Date: 27/02/2023) on 

the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/) using search terms for 

OAC and ESCC (“Oesophageal Adenocarcinoma” OR “Oesophageal Squamous Cell 

Carcinoma” OR “Oesophageal cancer” AND (Antigen presentation” OR MHC OR HLA).  

The hits were filtered to primary research articles and reviewed individual to affirm 

relevance to the antigen presentation and histological types of oesophageal cancer.  The 

findings of this literature search are displayed above.  
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1.13 Research hypotheses, aims and objectives. 

Prior research has indicated a role of APM alterations in patient outcomes in several 

cancers, including gastric and OSCC; however, the current literature has not explored 

APM alterations in OAC and their impact on patient outcomes.  

 

Overall hypothesis: ‘The tumour micro-environment is a determinant of antigen 

presentation and immune response in oesophageal adenocarcinoma.’  

 

Thereby, forms the following aims and objectives:  

 

Aim 1 (Results Chapter 3): Characterisation of the genetic and transcriptomic landscape 

of Antigen Processing Machinery (APM) and MHC I & II pathway abnormalities (‘defects’) 

in OAC and their clinical relevance within two published genomic datasets; The Cancer 

Genome Atlas (TCGA) and Oesophageal cancer clinical and molecular stratification 

(OCCAMS) programs. 

 

Objective 1a: TCGA and ICGC datasets will be analysed to measure the frequency of APM 

candidate mutation, copy-number changes, and differential expression from normal 

oesophageal mucosa; describing known somatic APM genomic events via COSMIC, 

regarding the background literature and survival outcomes.  

Objective 1b: TCGA and OCCAMS datasets will be analysed using maximally selected rank 

statistics optimal cut-offs to measure the impact of APM candidate expression on overall 

survival in univariate and multivariate analysis. 

Objective 1c: TCGA and OCCAMS datasets will be analysed using correlation analysis to 

determine the key regulatory factors associated to APM candidate expression. 

 

Aim 2 (Results Chapter 4): Investigate immune infiltrate and activity in OAC and/ or 

recurrent molecular defects in APM/ MHC I & II pathways by digital cytometry utilising 

deconvolution analysis of bulk transcriptomic data. 

 

Objective 2a: Characterise the immune cell subpopulations in OAC with our cohorts using 

CIBERSORT deconvolution and compare to known published immune populations in OAC.  
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Objective 2b:  Assess the impact of antigen processing machinery defects identified by 

the chapter 3 datamining analysis on the immune cell subpopulations our OAC cohorts 

(TCGA and OCCAMS). 

Objective 2c: Determine the prognostic value of antigen processing machinery defects in 

combination with immune cell distributions. 

 

Aim 3 (Results Chapter 5): Validate the clinical significance of APM, MHC I & II expression 

and immune cell infiltrate in oesophageal adenocarcinoma by immunohistochemistry.  

 

Objective 3a: Immune and APM protein staining data on a Southampton OAC TMA 

series, will be analysed to measure the level OAC T cell infiltrate in tumour cores, 

determining the variance in marker expression and to valid my observations from Aims 1 

& 2.  

Objective 3b: APM staining scores and immune density data will be collated to identify 

significant correlations between APM protein expression and T cell density. 

Objective 3c: APM staining scores and immune density data will be analysed with 

maximally selected rank statistics optimal cut-offs to measure the impact of APM protein 

expression on patient outcomes (constructing Univariate and Multivariate models for 

Overall survival, disease-free survival, and cancer-specific survival and important clinical 

co-variates). 

 

Aim 4 (Results Chapter 6): Model the regulatory role of CSDE1 expression on 

prognostically significant APM genes in OAC cancer cell lines by transfection 

knockdown/overexpression of CSDE1. 

 

Objective 4a: Knockdown/overexpression of CSDE1 will be performed via siRNA and 

validated at the mRNA and protein level in OAC cell lines. 

 

Objective 4b: MHC class I mRNA and protein expression levels will be measured in 

knockdown/overexpression CSDE1 cell models, determining the effect of CSDE1 

expression on MHC class I expression. 
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Objective 4c: phosphorylation status of STAT1 protein levels will be measured in OAC cell 

lines to determine the effect of altered CSDE1 expression on the activation of the 

JAK/STAT signalling pathway. 

 

Objective 4d: CSDE1 mRNA expression will be repartitioned into single cell populations 

from single-cell RNA sequencing data generated from primary human tumour tissue to 

determine whether CSDE1 is over expressed in OAC cancer cells compared to normal 

cells. 
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Chapter 2 General Materials and Methods 

 

2.1 Download and filtering TCGA data. 

Data was selected and downloaded directly from the TCGA repository 

(https://portal.gdc.cancer.gov/) using the TCGAbiolinks R package to specifically access 

the TCGA-ESCA project for mutation, copy-number variation and expression counts data; 

the data was filtered to cases of OAC or OSCC by querying subtypes aquire patient 

barcodes for each subtype (205). Data was queried and downloaded as a summarised 

experiment with attached relevant clinical data.  File formats for downloaded TCGA data 

were: mutation as MAF format, expression counts as summarised experiment, copy-

number variation as summarised experiment. 

2.1.1 Clinical  

Clinical data was quality controlled to determine the completeness of the data, observing 

patient follow-up data, vital status, staging, sex, age, co-morbidity (Weight, smoker 

status, alcohol history), grading/differentiation status; cases without this required data 

was excluded from analysis. 

2.1.2 Mutation 

Mutation data was first quality controlled to remove duplicated mutations and filtered to 

the cases of OAC using the patient barcodes from the filtered clinical data.  Further 

quality inspection compared the known mutational landscape of OAC from literature to a 

summarised MAF using a TiTv plot which classifies Single Nucleotide Variants into 

Transitions and Transversions and top mutated genes.  Mutation data was then 

processed using MAFtools into subsetted MAF files comprised of the MAF data for our 

gene candidate list and known driver genes in OAC for ease of handling.  Using the 

summarised MAF data the mutations per sample was extracted to highlight hypermuted 

cases.  Mutation data was visualised using Oncoplots for our subsetted MAF files and 

https://portal.gdc.cancer.gov/
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annotated with the mutation per sample per patient column extracted from the earlier 

summarise MAF. 

2.1.3 Copy-number 

Copy-number variation was quality controlled by TCGAs SNP 6.0 pipeline quality control 

metrics at two stages using signal/noise ratio and number of segments, samples with 

outlier values were excluded by the TCGA study.  Further quality control was conducted 

by comparing the summarised copy-number calls to known copy number alterations in 

OAC.  Copy number data was then paired with clinical annotations for stage, BMI 

category, smoking, and alcohol history, ethnicity, and gender.  Visualisation of copy 

number data was conducted using Oncoprints for absolute copy number calls with 

annotated clinical features mention above.  Further visualisation focused on viewing the 

copy number segment data using IGV viewer to observe the complexity of copy-number 

segments on chromosome 6. 

2.1.4 RNA Expression 

Expression data was quality controlled by visualising library sizes, by filtering out non-

expressed genes, visualising count distributions using DEseq2 both before and after TMM 

(Trimmed Mean of M) normalisation of the RNA-seq counts.  Expression data was 

processed as a summarised experiment using EdgeR to normalise the samples by TMM.  

Next the TMM normalised counts were processed by filtering the count to our candidate 

list and known drivers, these filtered counts were processed for clustering and PCA 

analysis; expression data was combined with GTex normal oesophageal mucosa samples 

and normalised to allow for differential expression analysis visualised by volcano plots.  

Further processing mated the clinical data to the TMM counts to allow for survival 

analysis using survminer() R program and maximally Selected Rank Statistics (206).  

Visualisation was conducted using heatmaps to visualise the clustering of expression of 

APM genes across the cohort; survival data was visualised in forest plot for CoxPH 

analysis and Kaplan-Meier plots for survival analysis.  Scripts for data mining analysis of 

TCGA data are made available on GitHub (https://github.com/wp1g19/OAC-Thesis-

Antigen-processing-machinery-and-the-immune-microenvironment). 

 

https://github.com/wp1g19/OAC-Thesis-Antigen-processing-machinery-and-the-immune-microenvironment
https://github.com/wp1g19/OAC-Thesis-Antigen-processing-machinery-and-the-immune-microenvironment
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2.2 Download and filtering ICGC data. 

2.2.1 Download 

ICGC ESAD project data (release 28) was directly downloaded from the ICGC portal 

(https://dcc.icgc.org/).  Data downloaded included simple somatic mutation files, copy 

number somatic mutation files and donor clinical files. 

• Clinical

Patient clinical was quality controlled for complete clinical data on follow up times, vital 

times, staging, gender, age, smoking, and alcohol history. 

• Mutation

Mutation data first processed from the simple somatic mutation file format to the MAF 

format using MAFtools on iridis 4 (script available at https://github.com/wp1g19/OAC-

Thesis-Antigen-processing-machinery-and-the-immune-microenvironment).  After MAF 

format conversion the MAF file was quality controlled to remove duplicate mutations 

and summarised for quality inspection comparing the known mutational landscape of 

OAC from literature to a summarised MAF using a TiTv plot which classifies Single 

Nucleotide Variants into Transitions and Transversions and top mutated genes.  Further 

processing extracted the mutation count per sample from the summarised MAF file.  

Mutation data was visualised into an Oncoplots in combination with copy-number 

variation data and annotated with total mutation count per patient to identify 

hypermutable cases.  Copy-number quality control of copy-number data was conducted 

by removing duplicated absolute copy number calls and by comparing the summarised 

copy-number calls to known copy number alterations in OAC.  Copy-number data as copy 

number somatic mutation files were collated with the MAF mutation file using MAFtools 

then visualised by Oncoplots with annotated total mutation count per patient sample. 

2.3 Download and filtering OCCAMS data. 

OCCAMs expression RNA-seq data was retrieved from the Southampton Underwood 

group filestore in RNA count file format, access to this data can be obtained directly from 

ICGC under a DACO application (https://daco.icgc.org/).  Clinical data was also obtained 

from the Underwood group filestore but can be openly accessed via the ICGC portal.  

https://dcc.icgc.org/
https://daco.icgc.org/
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Firstly, clinical data was filtered for tumour samples with complete clinical data on follow 

up times, vital status, staging, age, gender, smoking, and alcohol history.  RNA-seq count 

files from OCCAMs were collated together using R cbind() functions and filtered to the 

quality controlled clinical data.  Expression data was quality controlled by visualising 

library sizes, by filtering out non-expressed genes, visualising count distributions using 

DEseq2 both before and after TMM (Trimmed Mean of M) normalisation of the RNA-seq 

counts. 

 

• Clinical 

OCCAMS Patient clinical obtained via the Underwood laboratory then quality controlled 

for complete clinical data on follow up times, vital times, staging, gender, age, smoking, 

and alcohol history. 

 

• RNA Expression 

RNA-seq expression data from OCCAMS was combined with TCGA expression data after 

TMM normalisation using Combat-seq was processed using PCa analysis and hierarchal 

clustering with Euclidean distance which was visualised by heatmaps (207). Further 

processing combined OCCAMS/TCGA expression data with GTex normal oesophageal 

mucosa samples for differential expression analysis using EdgeR.  For survival analysis the 

clinical data was integrated into the normalised counts and analysed using CoxPH 

analysis besides survival analysis with maximally Selected Rank Statistics optimal cut 

points visualised by forest plots and Kaplan-Meier plots, respectively.  Multivariate 

analysis was conducted using a CoxPH model with known prognostic clinical factors 

ascertained from the 551 multivariate model (differentiation status, sex, age, and 

treatment response). 

 

 

2.4 Survival analysis 

 
Survival analysis was conducted using R (4.2.1) employing Maximally ranked statistics 

from the Maxstat package (determines the lowest p value comparing survival between 

two groups with minimum proportions to maintain power) before conducting CoxPH 
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univariate and multivariate survival using the finalfit() package in R (208, 209). This 

approach was employed to formulate: 

• Overall survival (OS) time (Months) which calculates the survival time of a patient 

within the cohort. 

• Cancer-specific survival (CSS) which excludes the impact of death events not 

related to the cancer such as surgical complications. 

• Disease-free survival (DFS) which details the length of time between treatment 

and disease recurrence/progression.  

Multivariate CoxPH analysis clinical model is constructed using key clinical features 

including TNM staging, Age and Sex as used in prior studies employing the backwards 

elimination model (210). 
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Chapter 3 Survival differences via expression of curated 

APM gene candidates was determined using the 

landscape of genomic defects of antigen presentation 

machinery genes in OAC. 

3.1 Introduction 

Exploring the published literature identified a significant knowledge gap surrounding the 

genomic landscape of APM defects in OAC and their association to altered TIME immune 

distributions and clinical outcomes.  To address the knowledge gap established in my 

literature review I set an experimental hypothesis: ‘Genomic defects in antigen 

processing machinery of oesophageal adenocarcinoma are dysregulated and associate 

with clinical outcomes.’ To address this hypothesis, I selected two large OAC genomic 

datasets (TCGA and ICGC/OCCAMS) to datamined the landscape of APM genomic was 

performed to ascertain the incidence of genomic events in my APM gene candidates and 

their respective impact on overall survival. 

Current literature on the landscape of APM component defects in OAC is severely lacking 

compared to other cancers, this leaves a knowledge gap on the details of APM 

components and their associations to the TIME immune cell distributions and overall 

survival.  Using external references which demonstrate APM defects impact the TIME, 

this study hypothesises that ‘The tumour micro-environment is a determinant of antigen 

presentation and immune response in oesophageal adenocarcinoma.’ To address our 

primary hypothesis, we will first data mine publicly available datasets to discover the 

landscape of APM defects and their associations to the TIME immune cell distributions 

and overall survival. 

3.1.1 Antigen presentation and known pathway defects in OAC. 

Antigen presentation is a key function within host immunity for the recognition of cancer 

cells as T cells may act to destroy infected host cells through the specific recognition of 

antigens presented on antigen presentation molecules on the cell surface.  Upon specific 

recognition and with the co-stimulatory signal, the T cell may activate and direct 

cytotoxicity towards the infected cell, assisting in the clearance of infection.  Because of 
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its significant role in immune surveillance and its potential for anti-tumoral immunity, 

antigen presentation pathway components are often somatically targeted by cancer to 

evade immune destruction, these immune evasion mechanisms are discussed below 

categorised by pathway and function in context to OAC and other cancers. 

3.1.2 MHC I endogenous pathway 

This pathway is crucial for T cell recognition of cancer, presenting endogenous peptides 

to CD8+ T lymphocytes for recognition of cancer antigens which results in T cell 

activation, expansion and anti-tumoral immune response.  This pathway is composed of 

several key components which can be divided into differing functions allowing the 

process to present peptides on HLA molecules to CD8+ T lymphocytes.  

Firstly, several genes participate in the assembly of the MHC I loading complex, these 

include the major HLA genes (HLA-A/B/C/E/G) as well as CALR, CANX, B2M, ERp57, 

ERAP1, ERAP2, TAPBPL and TAPBP.  Genes involved in the assembly of the MHC I loading 

complex are important for transport of the HLA molecule to the TAP transporter in the 

endoplasmic reticulum preparing the molecule for peptide binding and eventual travel to 

the cell surface via the Golgi Apparatus.  

Defects (expression, mutation, copy number alteration) among genes required for MHC I 

loading complex assembly can significantly impact the pathway impeding peptide loading 

to the HLA peptide binding site.  Defects in this subgroup of MHC I genes in OAC have not 

been explored in the literature, with a singular reference to B2M as a novel driver gene in 

OAC in the 551 OCCAMS study. This mutation was specifically associated with 

hypermutated cases noting a three-way association among hypermutation, Wnt 

activation and loss of immune-signalling genes including B2M which has been prior linked 

to immune escape in colorectal cancer. This suggests an acquired immune evasion 

mechanism to prevent immune surveillance for hypermutated tumours (176, 198-200). 

The 551 OCCAMS study findings suggest our data mining should aim to explore the 

prevalence of hypermutable cases with B2M mutations as this could be a recurrent 

immune evasion mechanism implemented by OAC tumours. 

 

Other cancers have identified defects in MHC I genes involved in MHC I loading complex 

assembly. For example, TAPBP downregulation has been found in OSCC cell lines and 

triple-negative breast cancer, with the impact on the immune microenvironment 
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demonstrated in colorectal cancer indicating loss of Tapasin correlates with diminished 

CD8+ T cell populations and disease progression (140-142).  

Interestingly, B2M mutation defects has been identified outside of OAC with a pan-cancer 

study using The Cancer Genome Atlas (TCGA) identified B2M mutations reduced the 

overall level of cell surface MHC I molecules and reduced levels of cytotoxicity; B2M 

mutation demonstrates defects in APM components which function to assemble the MHC 

I loading complex may act to reduce antigen presentation of cancer antigens via 

impedance of MHC I loading complex assembly, preventing the surface expression of 

MHC I antigen presentation molecules.  

The next category of MHC I genes are classified as genes functioning in peptide transport 

into the endoplasmic reticulum lumen.  This category encompasses two key genes TAP1 

and TAP2, these genes functions together to form the Transporter associated with 

antigen processing protein complex which acts to transport cytosolic endogenous 

peptides into the lumen of the endoplasmic reticulum in proximity to the MHC I loading 

complex.  Defects in TAP1 have been noted in OAC with high expression of TAP1 

correlating to significantly shorter survival times in a study of 51 patients (189). TAP2 has 

also been noted to possess clinical prognostic value in OAC with reduced expression of 

TAP2 due to increased MIR125a-5p and MIR148a-3p expression associated to poor 

patients’ outcomes (189).  The findings from the existing literature suggests that the RNA 

expression of TAP1 and TAP2 should be explored to investigate the potential prognostic 

value in our large datasets.  

The final sub-category of MHC I genes are defined by their function in peptide generation 

and trimming, these include ERAP1, ERAP2, PSMB9, PSMB10, PSMB8; these genes in 

prior publications have demonstrated a significant impact on the peptide repertoire 

available for antigen presentation, thereby they may be somatically targeted to reduce 

cancer antigen presentation.  There is a lack of knowledge of the impact of defects within 

this sub-category in OAC, conversely, in other cancers these genes have been associated 

to prognostic value for overall survival.  For example, ERAP2 loss of expression was 

identified in liver carcinomas and was associated to lack of MHC I surface molecules, 

whereas PSMB9 over-expression in melanoma patients has been correlated to greater 

survival and improved response to immune-checkpoint inhibitors (157, 201).  Combined, 

these findings suggest exploring the expression profile of these genes involved in peptide 

generation may have prognostic value in OAC.   
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Overall, the MHC I endogenous pathway is somatically downregulated in other cancers 

(0-93%), however, there is a significant knowledge gap in the prevalence and prognostic 

values of MHC I APM defects in OAC, forming a research goal to identify the incidence of 

defects previously identified in OAC and other cancers and assess them for clinical 

prognostic value (211). 

3.1.3 MHC II pathway  

This pathway is also known as the exogenous pathway is characterised by the display of 

exogenous peptides on MHC II molecules to CD4+ T cells.  MHC II pathways are primarily 

expressed by professional antigen presenting cells, such as dendritic cells and 

macrophages, as well as some endothelial cells, thymic epithelial cells, and B cells.  

Targeting cancer cells via MHC II is less direct than the MHC I pathway, however, a known 

mechanism which professional antigen presentation cells (APCs) may help target cancers 

cells occurs via APCs engulfing peptides from fragments of dead cancer cells or secreted 

tumour specific antigens (202).  MHC II components can be divided into sub-category 

based on their similar functions which will be explored below.  

Firstly, genes which function solely in the assembly, stabilisation and loading of the MHC 

II loading complex, which includes HLA-DR, HLA-DQ, HLA-DP, CD74, HLA-DM and HLA-DO.  

Exploration of the literature identified several defects possessing prognostic value in 

other cancers yet yielded no results on the prognostic value of these defects in OAC.  An 

example of these defects is found in paediatric adrenocortical tumours where low 

expression HLA-DR and HLA-DP results in poor prognosis (162).  A further example is 

found in HLA-DM which is found under-expressed in B-Cell lymphoma and head and neck 

squamous cell carcinoma cell which showed impeded immune recognition in B-cell 

lymphomas (159, 160).  

The second sub-category includes genes which function in peptide generation, including 

LGMN, IFI30, CTSS and CTSL.  The prognostic role of these genes in cancer immunity is 

more ambiguous because of the multiple functional roles these genes. For example, IFI30 

expression was associated with enhanced leucocyte mediated immune and inflammatory 

response in Glioblastoma. However, within the same study IFI30 was found to activate 

IL6-STAT6 signal pathway which has been linked to increased migration and invasion and 

metastasis in colorectal cancers (203). Another example is found is GILT expression which 

was crucial for optimal presentation of the melanoma antigen TRP1 in one study. In 
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another absence of GILT was associated to poor patient survival in breast cancer 

patients. However, another dual function arises as GILT also performs proliferation 

inhibiting functions with the absence of GILT was positively correlated with adverse 

characteristics of breast cancers, such as histological type, tumour size, lymph nodes 

status, and pTNM stage (174). 

These genes highlight the need for quality control and cautious evaluation of prognostic 

value, as the impact on clinical outcome may not strictly relate to defective antigen 

presentation.  

Overall, the impact of MHC II defects in cancer in the literature appear to be less 

impactful on clinical outcomes and more infrequent, with cancer mostly somatically 

targeting candidates in the MHC I pathway.  MHC II defects have demonstrated impact in 

other cancers yet the impact of said defects in OAC is currently unknown forming a key 

knowledge gap which this study aims to address. 

3.1.4 Alternative processing of cancer antigens 

Antigen presentation mechanisms are not strictly restricted to the MHC I endogenous 

and MHC II exogenous pathways, with alternative processing pathways which may allow 

for cancer antigen recognition.  One alternative pathway involves the MR1 gene which 

has been demonstrated to be cable of presenting cancer antigens to MR1 restricted T 

cells able to recognise pan-cancer (204).  Despite the keen interest in MR1-restricted T 

cell immunotherapies the expression of MR1 in cancers especially in OAC is not 

documented. Therefore, understanding the landscape of MR1 defects plus expression 

may function as both a prognostic and stratification tool for determining ideal candidates 

for MR1-restricted T cell therapies in future. 

 

An additional antigen presentation pathway centres around the CD1 family of genes 

which present lipid molecules as opposed to the protein peptide fragments presented by 

the MHC I and II pathways.  Interestingly, natural killer cells (NKT) are CD1D-restricted 

cells capable of recognising cancer-specific lipids bound to CD1D molecules, and alter the 

TIME by killing TAMs and altering the activity of effects of CD1d+ myeloid-derived 

suppressor cells (MDSCs) mediated immune suppression preventing immune suppression 

(205-207). 
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Alternative antigen processing pathways have demonstrated impact in the literature 

from current NKT cell responses reshaping the immunosuppressive microenvironment 

via lipid antigen recognition to a potential pan-cancer therapy using MR1-restricted T cell 

therapies.  From the literature the expression and genomic defects of both CD1 family 

and MR1 genes will be explored as they may possess impact on clinical outcomes in OAC, 

as they have demonstrated in other cancers. 

3.1.5 Hypothesis and research objectives 

The literature search (in Section 2.2) identified a specific knowledge gap in the landmark 

of APM gene defects in OAC by expression, mutation, and copy-number, whereas the in 

OSCC several published papers were found in HLA molecules (See Figure 12).  

Furthermore, the few publications focusing on APM defects in OAC did not focus on their 

prognostic value and utility, leaving specific knowledge gaps which this chapter will 

explore to address the following hypothesis, aims and objectives. 

 

Hypothesis: ‘Antigen processing machinery of oesophageal adenocarcinoma are 

dysregulated and associate with clinical outcomes.’ 

 

Aim 1: Characterisation of the genetic and transcriptomic landscape of Antigen 

Processing Machinery (APM) and MHC I & II pathway abnormalities (‘defects’) in OAC and 

their clinical relevance within two published genomic datasets; The Cancer Genome Atlas 

(TCGA) and Oesophageal cancer clinical and molecular stratification (OCCAMS) programs. 

 

Objective 1a: TCGA and ICGC datasets will be analysed to measure the frequency of APM 

candidate mutation, copy-number changes, and differential expression from normal 

oesophageal mucosa; describing known somatic APM genomic events via COSMIC, 

regarding the background literature and survival outcomes.  

Objective 1b: TCGA and OCCAMS datasets will be analysed using maximally selected rank 

statistics optimal cut-offs to measure the impact of APM candidate expression on overall 

survival in univariate and multivariate analysis. 

Objective 1c: TCGA and OCCAMS datasets will be analysed using correlation analysis to 

determine the key regulatory factors associated to APM candidate expression. 
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3.2 Methodology 

3.2.1 Datasets  

To address the assessment of the incidence and clinical prognostic value of defects in 

APM genes of OAC large genomic datasets were employed to data mine the genomic 

information the determine the incidence of defects within a cohort of OAC patients.  

Datasets were selected based on availability, cohort size and quality of clinical data, from 

this criterion two OAC datasets, TCGA and ICGC/OCCAMS and normal stomach tissue 

dataset, GTEx was selected.  

 

The TCGA project is a publicly available pan-cancer data repository which has molecularly 

characterized over 20,000 primary cancer and matched normal samples spanning 33 

cancer types, generating genomic, epigenomic, transcriptomic, and proteomic data (212). 

For our interests, the TCGA-ESCA dataset will allow us to explore OAC and OSCC mutation 

(MAF: Mutect2), copy-number variation, methylation (Affymetrix array) and mRNA 

expression (Raw counts) data from 187 patients (81 OAC; 90 OSCC) .  

 

The International Cancer Genome Consortium (ICGC) is also a pan-cancer data repository 

which has collated clinical and molecular data from over 100,000 cancer patients 

participating in therapeutic clinical trials from 84 worldwide cancer projects, including 

OCCAMs project (184, 213). ICGC data is partially available to the public with mutation 

and absolute copy number calls being open access, however, access to expression RNA-

seq data is closed access and requires application through DACO (https://daco.icgc.org/). 

For this study we will access the ESAD-UK dataset within the ICGC project comprised of 

409 OAC patient samples from UK sites, matching our available RNA-seq expression data 

from 152 OCCAMS patient samples.  

 

GTEx standing for Genotype-Tissue Expression project, collects post-mortem gene RNA-

seq expression data from multiple regions of the human body, including organs such as 

heart, lung, liver, brain, and among others.  From the analysis presented here, GTEx 

stomach tissue comprising 324 normal stomach tissue samples with mRNA sequencing 

https://daco.icgc.org/
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data as raw counts (Open Access available from 

(https://gtexportal.org/home/tissue/Stomach?tissueSelect=Stomach ).  

3.2.2 Power and sample size 

I used power and sample size calculator (http://powerandsamplesize.com/Calculators/) 

to assess the power of discovery in the cohorts using a prior publication exploring TCGA 

pan cancer power for mutation (214). The datasets were quality controls for complete 

clinical characteristics of age, sex and pTNM staging data, then combined in R to achieve 

power of discovery for mutation, copy-number, and expression data. 

3.2.3 Mutation/copy number analysis 

Mutation data from TCGA in Mutation Annotation Format (MAF) format was queried and 

downloaded into an R environment using TCGAbiolinks, then read imported into 

MAFtools (215). Meanwhile, ICGC ESDA project simple-somatic-mutation data was 

downloaded from the ICGC portal (Release 28) and converted into MAF format before 

merging the two OAC dataset MAF files with MAFtools.  Mutation frequency was 

visualised using Oncoplots whilst mutation burden of OAC samples with/without APM 

mutations was exported to GraphPad prism from visualisation and statistic comparison 

using Mann-Whitney U tests. 

3.2.4 Differential expression analysis 

To achieve differential expression analysis (DEA), RNA-seq data was obtained via an 

additional cohort of normal gastro-oesophageal junction samples (n=375) from the GTEx 

dataset within the Recount2 project.  The normal RNA-seq data was imported into R 

using the Recount package, batch corrected to the TCGA/OCCAMS RNA-seq data using 

ComBat in TMM format; batch corrected RNA-seq data was used for DEA analysis using 

the DEseq2 package and visualised by EnhancedVolcano (207, 216-219). Batch corrected 

OAC and OSCC data were also used in a DEA using the methods above. 

3.2.5 Survival analysis (mRNA) 

mRNA expression counts from TCGA and OCCAMS were converted to TMM then batch 

corrected using ComBat (selected after comparing batch correction between limma and 

ComBat via PCA), before mating with clinical data complete for Overall survival time 

https://gtexportal.org/home/tissue/Stomach?tissueSelect=Stomach
http://powerandsamplesize.com/Calculators/
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(Months), survival status, cancer-specific survival, recurrence status, recurrence time 

(Months), TNM staging, Age and Sex (207). Survival differences via expression of curated 

APM gene candidates was determined using Maximally ranked statistics from the Maxstat 

package (determines the lowest p value comparing survival between two groups with 

minimum proportions to maintain power) before conducting CoxPH univariate and 

multivariate survival in a backwards elimination model via the finalfit() package in R (208, 

209). 

3.2.6 Methylation analysis. 

Methylation data was only obtainable from the TCGA OAC dataset, this data was obtained 

using the Shiny Methylation Analysis Resource Tool (SMART) (Available from: 

http://www.bioinfo-zs.com/smartapp/) for the entire TCGA-ESCA dataset; this tool was 

employed because of its ability to integrate multi-omics and clinical data with DNA 

methylation while avoiding the computation and time cost in aligning methylation data 

from TCGA (220). Methylation analysis target genes were selected from APM candidate 

genes and APM gene expression regulators possessing clinical survival associations at the 

mRNA expression level. CpGs were selected on a per gene basis for CpG with significantly 

different methylation compared to normal oesophageal tissue and with relevance to their 

respective gene’s expression (i.e., CpG island within a proximal promoter of the gene of 

interest). 

Methylation of each gene was visualised in GraphPad prism 10 

(https://www.graphpad.com/features) comparing OAC to normal tissue.  Additionally, 

differentially methylated CpGs within the HLA locus of chromosome 6 were queried in 

SMART and presented in table form. 

3.2.7 Statistical analysis 

Chi-squared and Anova were performed in Graphpad prism 10 to compare the cohorts 

characteristics including Age, sex and pTNM staging to determine whether cohorts 

possess any significant differences between the datasets implemented in the analysis.  T 

tests were implemented using Graphpad prism 10 to compare the mutation rate between 

APM mutated and non-APM mutated groups, to compare the methylation values for APM 

genes. 

  

http://www.bioinfo-zs.com/smartapp/
https://www.graphpad.com/features
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3.3 Results 

3.3.1 Description of the study cohorts. 

Firstly, I explored the cohort characteristics for my analysis across age, sex and pTNM 

clinical features. These clinical features were selected to describe the cohort based upon 

matching available characteristics across the different projects and their associated value 

within clinical practice.  Cohorts were combined to provide the greatest sample size 

dependant on analysis.  These combined cohorts included TCGA/OCCAMS for mRNA 

gene expression analysis, TCGA/ICGC employed for mutation/copy number analysis 

(Table 6).  Additionally, individual cohorts were assessed for each analysis type 

(expression, copy-number, mutation and methylation, Table 6). 

For age, an average of 65-67 years were present across the cohorts and possessed a wide 

range at their extremes of 27-87 years, using an unpaired t-test confirmed there was no 

statistical difference in age among in comparing the cohorts and combined cohorts (p = 

0.65) (Table 6).  

The youngest patient among the cohorts was 27 years old present in the TCGA-ESCA 

dataset and was of interest as OAC presents as a disease of age. This specific case 

presents as a 27-year-old male diagnosed with Stage IIIA OAC which received curative 

chemoradiotherapy, however, exploring the new tumour event data identified a distant 

metastasis in the liver 160 days into treatment. 

To address the early onset of disease comparative to the rest of my cohort and external 

cohort I observed the patient possessed a history of reflux disease and was diagnosed 

prior with Barrett’s oesophagus which may indicate the reason for the early onset of 

OAC. 

Sex in the incidence of OAC has prior been reported as a male dominant disease and my 

cohorts exhibited this similar male dominance, among the OAC cohort the Male: Female 

ratio varied minorly between the OAC cohorts from 79.4-87%:13-20.6% (Male: Female), 

using a Chi-squared analysis these minor difference were determined to be non-

significant (p = 0.96:0.92; Male: Female) (221) (Table 6). 

OAC tumours are most frequently diagnosed in pT 3, denoted in several studies, my OAC 

cohorts confirmed this trend with the pT2-4 being the most frequent reported diagnosis 

(pT2-4: 49.5-82.9%) compared to the reported diagnosis of pT0-1 (pT0-1: 5.1-24.6%) and 

unknown pT-stage (pTNM: 12-30.9%), among the three pT stage categories both pT0-1 
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and pT2-4 approached a significant difference (p=0.086;0.076) but were not significantly 

different according to Chi-Squared analysis (222) (Table 6). 

OAC tumours are often diagnosed with positive regional nodal spread, according to the 

literature, within my OAC cohorts tumour positive lymph nodes were present in majority 

of cases with a positive frequency (pN1-3) ranging from 40.2-63.2%, negative nodal 

involved case frequency ranging from 23.2-29.9% and unknown lymph node involved 

cases ranging from 9-26.1%, no statistically significant differences between the cohorts 

was observed in Chi-Squared analysis (pN0 p=0.99; pN1-3 p=0.33; pNNA p=0.14) (222) 

(Table 6). 

OAC is often diagnosed in the later stages often resulting in a relatively high metastasis 

frequency of ~30% compared to other diseases.  Among my selected OAC cohorts the 

rate of metastasis is infrequent compared to external studies (pM1:0.1-7.3%), however 

the frequency of non-metastasised OAC cases remains like external studies in three 

cohorts (pM0 34.7-77%) (Table 6).  The low non-metastasized OAC case frequency is 

particularly observed in the OCCAMS cohort (pM0:37.4%) also impacting the 

TCGA/OCCAMS combined cohort, these differences in metastasis rates among the OAC 

cohorts was determine as statistically significant by Chi-Squared analysis in pM0 and pM-

NA reported cases (pM0: p=0.0045;pMNA: p=0.0008), this suggests a potential input 

error in the OCCAMS dataset for metastasis at pathological diagnosis (Table 6). 
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Table 6 Cohort characteristics across TCGA, OCCAMS and ICGC, plus combinations of 

TCGA/OCCAMS and TCGA/ICGC. 

PARAMETER 
TOTAL/% 
(TCGA) 
N = 69 

TOTAL/% 
(OCCAMS) 

N = 107 

TOTAL/% 
(ICGC) 
N = 409 

TOTAL/% 
(COMBINED 

TCGA/OCCAMS) 
N = 176 

TOTAL/% 
(COMBINED 
TCGA/ICGC) 

N = 478 

CHI-
SQUARE 

(Χ2)/ANOVA 
P VALUE 

AGE (YEARS) 67.2 

(Range 

28-87) 

 

66.5 (Range 

45.1-87.7) 

65.9 

(Range 

36-87) 

66.8 (Range 27-

87.7) 

66.6 (Range 

27-87) 

0.65 

SEX  

 

60 (87%) 

9  (13%) 

 

 

85 (79.4%) 

22 (20.6%) 

 

 

351 

(85.8%) 

58 

(14.2%) 

 

 

145 (82.4%) 

31 (17.6%) 

 

 

411 (86%) 

67  (14%) 

 

 
MALE 

FEMALE 
 

 

0.26 (0.99) 

0.96 (0.92) 

PT  

 

17 

(24.6%) 

38 

(55.1%) 

14 

(20.3%) 

 

 

21 (19.6%) 

53 (49.5%) 

33 (30.9%) 

 

 

21 (5.1%) 

339 

(82.9%) 

49 (12%) 

 

 

38 (21.6%) 

91 (51.7%) 

47 (26.7%) 

 

 

38   (7.9%) 

377 (78.9%) 

63  (13.2%) 

 

 
0-1 
2-4 
NA 

 

8.2 (0.086) 

8.5 (0.076) 

5.0 (0.29) 

 

PN  

 

16 

(23.2%) 

39 

(56.5%) 

14 

(20.3%) 

 

 

32 (29.9%) 

43 (40.2%) 

32 (29.9%) 

 

 

109 

(26.7%) 

263 

(64.3%) 

37 (9%) 

 

 

48 (27.3%) 

82 (46.6%) 

46 (26.1%) 

 

 

125 (26.2%) 

302 (63.2%) 

51  (10.6%) 

 

 
0 

1-3 
NA 

 

0.36 (0.99) 

4.6 (0.33) 

7.0 (0.14) 

PM 
 

 

37 

(53.6%) 

5 (7.3%) 

27 

(39.1%) 

 

 

40 (37.4%) 

1 (0.1%) 

66 (61.7%) 

 

 

331 

(80.9%) 

23 (5.6%) 

55 

(13.5%) 

 

 

77 (43.8%) 

6  (3.4%) 

93 (52.8%) 

 

 

368 (77%) 

28  (5.9%) 

82  (17.1%) 

 

 

15.0 

(0.0045) 

5.3 (0.25) 

19.0 

(0.0008) 

0 

1 

NA 

Sex, pT, pN and pM data categorized into discrete values and compared between cohorts using χ2 analysis.  Age data compared 

between cohort using ANOVA. Difference in N number in combined cohorts compared to individual cohort N numbers is due to non-

matching clinical features. 
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3.3.2 APM genomic aberrations. 

An extremely low incidence of APM mutation occurred within my OAC cohort (ICGC-ESDA 

and TCGA-ESCA combined) with 75/502 cases containing an APM mutation across all 46 

candidate APM genes (See Figure 13).  The highest incidence of mutation occurring in 

CD1A/D/C at 2-3% of the entire cohort, though mostly comprised as missense mutations 

which were not previously reported in the cosmic database (Figure 13).  Although the 

noted low mutation rate of APM gene candidates in the combined TCGA-ESCA/ICGC 

dataset, several mutations may have a significant impact on the formation of APM 

component proteins required for antigen presentation.  Additionally, the mutational 

burden of OAC tumour samples was significantly greater in samples containing an APM 

mutation than those without (See Figure 14).  
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Figure 13 : Mutation/Copy number Oncoplots for OAC in the combined TCGA-ESCA/ICGC-ESAD cohort.  
Depicting the frequency of mutation and type of mutation with the APM candidate genes is 
paired with a mutation count above each sample.  Mutations plotted to patients (columns) 
and genes (rows) with mutation rate display left of each Oncoplot in percentages, total 
mutation count of all genes annotated above each patient sample as a bar chart labelled 
Mutcount. 
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B2M mutations (n=4) found in two OAC patients may have a significant impact on the 

B2M protein and its function.  As displayed in Figure 15 and Table 7, B2M mutations 

within one sample (TUMOR SAMPLE BARCODE: TCGA-L5-A4OI-01) demonstrated a 

mutation within the translation start-site; similar mutations found within this site have 

previously been identified in several cancers including haematopoietic and lymphoid 

cancers, lung, ovarian, pancreatic, soft tissue, and gastrointestinal cancer (223-234); 

additionally, mutations within this site are predicted a high pathogenicity FATHMM score 

of 0.86. it is important to note 1 of the 2 samples possessing B2M mutations also 

presented with high mutational burden.  Within the cohort two multi-hit mutation 

events within two ICGC patient samples are found with high mutation burden, including a 

nonsense mutation and three frame shift deletions within the C1 domain of the B2M 

gene.  Furthermore, a frameshift deletion mutation identified within a separate sample 

(TCGA-V5-AASX-01) occurs within an S-nitrosylation site likely impacting post-

translational modification (Figure 15; Table  7).  

Figure 14 Mutation burden between samples possessing a mutation in APM genes and 
those without, statistical comparison via Mann-Whitney U test (p < 0.0001). 

https://www.cbioportal.org/patient?sampleId=TCGA-L5-A4OI-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-V5-AASX-01&studyId=esca_tcga
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Figure 15 Lollipop plot of B2M mutations in OAC cases within the TCGA-ESCA dataset; 

mutation descriptions found in table 7.  Plots retrieved from cBioportal. 

Table 7 B2M mutation descriptions in OAC cases within the TCGA-ESCA dataset, labelled 
to Figure 15. 

LABEL SAMPLE 
ID 

CANCER 
TYPE 

PROTEIN 
CHANGE 

MUTATION TYPE TOTAL 
MUTATIONS IN 
SAMPLE 

A TCGA-V5-

AASX-01 

Oesophageal 

Adenocarcinoma 

Y46Cfs*10 FS del 327 

B TCGA-L5-

A4OI-01 

Oesophageal 

Adenocarcinoma 

Y83Sfs*19 FS del 2043 

C TCGA-L5-

A4OI-01 

Oesophageal 

Adenocarcinoma 

M1? Stop Codon 2043 

D TCGA-L5-

A4OI-01 

Oesophageal 

Adenocarcinoma 

Y83F Missense 2043 

https://www.cbioportal.org/patient?sampleId=TCGA-V5-AASX-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-V5-AASX-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-L5-A4OI-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-L5-A4OI-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-L5-A4OI-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-L5-A4OI-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-L5-A4OI-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-L5-A4OI-01&studyId=esca_tcga


81 

HLA-B mutations were more frequent than B2M mutations in our datasets (Figure 16;  

Table 8), with 4/8 mutations predicted to result in loss of function (nonsense and 

frameshift), this relates to the literature where in OSCC mutations in the immunoglobulin 

C1-set domain effect function by abrogating HLA-B-Tapasin interactions; interestingly, a 

single known mutation in HLA-B (c.343+2T>C) was previously identified in colorectal and 

stomach cancers being associated to positive selection in immune rich TIMEs (225, 235). 

Mutation among APM gene expression regulators is infrequent among my cohort with 

the highest frequency occurring in RFXAP with 4 patients consisting of nonsense, 

missense, in Frame insertion and a frame shift insertion mutation; unfortunately, 

because of the encoding available in the ICGC cohort the nonsense and in Frame 

insertion cannot be evaluated qualitatively.  

Figure 16 Lollipop plot of HLA-B mutations in OAC cases within the TCGA-ESCA dataset; 

mutation descriptions found in table 8.  Plots retrieved from cBioportal. 
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Table 8 HLA-B mutation descriptions in ordered by cancer type within the TCGA-ESCA dataset, 

labelled to Figure 16, ordered by disease type. 

 

The missense mutation in RFXAP occurred within the c-terminal binding domain and 

possesses a high PolyPhen score suggesting the mutation is probably damaging (0.998) 

but has not been prior described in the COSMIC database; the frame shift insertion 

occurs in exon 1 of the RFXAP gene, however, the mutation does not appear in the 

COSMIC database.  Only 1 missense mutation was detected in IRF1 and CIITA with the 

CIITA mutation labelled as benign by PolyPhen (Score of 0.02), the IRF1 mutation could 

not be scored because of lack of annotation within the ICGC dataset.  NLRC5 4 missense 

mutations occur within the ICGC datasets but could not be qualitatively assessed because 

of lack of annotation.  RFXANK 1 missense mutation occurs in c-terminal binding domain 

within the TCGA dataset and scores as benign by PolyPhen (0 score).  Only a single CSDE1 

missense mutation occurred within the ICGC datasets, lacking annotation for further 

analysis.  3 mutations occurred in RFX5 1 splice intron (ICGC), 1 missense mutation 

scoring as possibly damaging (0.544), and 1 translation start site mutation (ICGC).  

 

LABEL SAMPLE ID CANCER TYPE PROTEIN 
CHANGE 

MUTATION 
TYPE 

# MUT IN 
SAMPLE 

B TCGA-L5-

A8NJ-01 

Oesophageal 

Adenocarcinoma 

G276* Nonsense 297 

C TCGA-V5-

AASX-01 

Oesophageal 

Adenocarcinoma 

G261* Nonsense 327 

G TCGA-L5-

A4OP-01 

Oesophageal 

Adenocarcinoma 

D357A Missense 122 

H TCGA-L5-

A8NJ-01 

Oesophageal 

Adenocarcinoma 

G276V Missense 297 

A TCGA-JY-

A93F-01 

Oesophageal Squamous 

Cell Carcinoma 

E222* Nonsense 168 

D TCGA-VR-

A8EP-01 

Oesophageal Squamous 

Cell Carcinoma 

L17Rfs*82 FS ins 117 

E TCGA-Z6-

AAPN-01 

Oesophageal Squamous 

Cell Carcinoma 

X115_splice Splice 369 

F TCGA-JY-

A6FG-01 

Oesophageal Squamous 

Cell Carcinoma 

V306F Missense 277 

https://www.cbioportal.org/patient?sampleId=TCGA-L5-A8NJ-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-L5-A8NJ-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-V5-AASX-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-V5-AASX-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-L5-A4OP-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-L5-A4OP-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-L5-A8NJ-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-L5-A8NJ-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-JY-A93F-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-JY-A93F-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-VR-A8EP-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-VR-A8EP-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-Z6-AAPN-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-Z6-AAPN-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-JY-A6FG-01&studyId=esca_tcga
https://www.cbioportal.org/patient?sampleId=TCGA-JY-A6FG-01&studyId=esca_tcga
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Comparing the tumour driver genes identified in the Frankell et al article, with my cohort 

analysis found several of the associated driver gene mutations were similar in abundance 

except for B2M mutation, which did not achieve similar representation (Figure 17) (236). 

Figure 17 Mutation Oncoplot for driver genes identified in the 551 
Frankell et al paper (2019) with annotated tumour 
mutation burden (Top) and APM mutation status 
(Bottom).
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Within the copy number analysis, I observed high genome complexity in copy number 

segments in the HLA-locus on chromosome 6 (6p21) with many of the amplified 

segments overlapping with the VEGFA gene a known recurrent amplification event in 

OAC (Figure 18).  

The complexity of copy number segment over the locus was further identified in cases 

with copy number segments spanning the HLA-locus displaying co-amplification/deletion 

across multiple MHC class I & II genes present in 7.6% of cases within the TCGA/ICGC 

cohort (n = 38/502).  Because of the complexity in the HLA-locus with the majority of 

copy-number events being described as an APM co-amplification/deletion group. The 

clinical significance of APM gene copy number events could not be deconvoluted to the 

single gene level, meaning survival association were based upon the amplification or 

deletion of a group of APM genes; survival analysis of these co-copied groups did not find 

any significance differences in overall survival. Next, I assessed the regulators of APM 

gene expression, these gene are not located on chromosome 6 avoiding the associated 

genomic complexity.  Firstly, IRF1 displayed the highest frequency of copy-number 

events among the candidate APM gene expression regulators with 46 patients exhibiting 

IRF1 copy number events of which only a sole case displayed an amplification event with 

the remainder possessing IRF1 deletion.  The second highest frequency of copy-number 

event among the APM gene expression regulators was found in RFXAP with 43 patients 

possessing a copy-number event 25 of which exhibited amplification and 17 deletions.  

CIITA copy number events were present in 32 patients with 8 amplification and 24 

deletion events.  RXANK copy number events occurred in 30 patients of which 24 were 

deletion events and 6 amplifications.  NLRC5 copy number events were present in 28 

patients among these were 26 deletion and 2 amplification events.  Within the cohort 27 

patients possessed a copy number event in CSDE1 consisting of 18 deletion and 9 

amplification events.  Finally, 22 patients demonstrated RFX5 copy number events with 4 

deletions and 18 amplifications.  
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Figure 18: Representative copy number segments in the HLA-locus on chromosome 6 (6p21) 
blue and red represents loss and gain respectively, each line on y-axis represents 
individual patients. 
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3.3.3 APM dysregulated mRNA expression. 

Differential expression analysis of the TCGA/OCCAMS bulk RNA-seq data (n=176) 

identified none of my APM gene candidates were differentially expressed when 

comparing to GTEX normal stomach (n=359). Oesophageal mucosa tissue was selected 

using prior literature assessing the top varying genes, reduced features from principal 

component analysis, and encoded features from an autoencoder neural network (237). 

Among the APM gene candidates which were only small fold changes in differential 

expression were detected with the greatest increase of expression found in CTSS and 

IRF1 (4.07E-02 and 3.19E-02 respectively), however both genes did not achieve 

significance; similarly the greatest decrease in expression identified in TAP2 and HLA-

DPA1 (-1.45E-02 and -1.31E-02 respectively) was not significant in my differential 

expression analysis (Table 9, Figure 19). 

Unfortunately, differential expression analysis between OAC and OSCC did not yield any 

significant fold change in the expression of our APM gene candidates, neither achieving a 

Log2 fold change greater than +1/-1 nor the p value threshold (See Figure 20). 

  



 

87 

 

Table 9 A table of differential expression results for our APM candidate genes with log 
fold change of gene expression comparing OAC to normal stomach tissue. 

 
GENE BASEMEAN LOG2FOLDCHANGE LOG2 FOLD 

CHANGE SE 
WALD 
STATISTIC 

PVALUE 

CTSS 44.983196 4.07E-02 0.109 0.374 0.708 

IRF1 43.761558 3.19E-02 0.0791 0.403 0.687 

SPPL2A 45.669112 2.40E-02 0.0370 0.648 0.517 

CANX 365.66515 2.36E-02 0.0634 0.372 0.710 

RFXAP 4.4176 2.31E-02 0.0568 0.406 0.685 

CSDE1 504.49757 2.19E-02 0.0509 0.431 0.666 

RFX5 37.967755 1.96E-02 0.0404 0.485 0.628 

NLRC5 45.122318 1.64E-02 0.1036 0.158 0.874 

ERAP1 59.02741 1.38E-02 0.0413 0.333 0.739 

CIITA 40.130435 1.17E-02 0.0661 0.177 0.859 

CTSL 57.124888 1.16E-02 0.0815 0.143 0.887 

PDIA3 200.54399 9.96E-03 0.0561 0.178 0.859 

CD1D 1.002181 9.58E-03 0.142 0.0673 0.946 

MR1 22.019528 8.45E-03 0.0255 0.331 0.741 

TAPBPL 21.283693 7.81E-03 0.0513 0.152 0.879 

TAPBP 157.91175 5.31E-03 0.0455 0.117 0.907 

LGMN 62.518148 3.85E-03 0.0466 0.0827 0.934 

HLA-C 425.26405 2.12E-03 0.0601 0.0353 0.972 

HLA-A 393.5236 2.02E-03 0.0531 0.0380 0.970 

HLA-E 481.5501 7.32E-04 0.0426 0.0172 0.986 

RFXANK 24.719202 -9.42E-05 0.0356 0.00264 0.998 

HLA-B 534.29728 -7.38E-04 0.0647 0.0114 0.991 

CD74 441.40637 -1.52E-03 0.0854 0.0178 0.986 

HLA-G 6.649073 -2.30E-03 0.0720 -0.0320 0.974 

HLA-DMA 25.072684 -3.12E-03 0.0865 0.0360 0.971 

B2M 955.77353 -3.46E-03 0.0593 0.0582 0.954 

PSMB10 17.868314 -5.32E-03 0.0473 -0.112 0.911 

PSMB9 15.42342 -6.70E-03 0.0864 0.0775 0.938 

PSMB8 39.852858 -6.76E-03 0.0587 0.115 0.908 

CALR 319.23215 -7.02E-03 0.0549 0.127 0.898 

TAP1 73.765951 -7.41E-03 0.0715 0.104 0.918 

HLA-DRA 138.40034 -8.20E-03 0.143 0.0573 0.954 

HLA-DRB1 95.535384 -8.66E-03 0.103 0.0844 0.933 

HLA-DPB1 43.172828 -1.09E-02 0.0900 -0.121 0.904 

HLA-DMB 13.371499 -1.31E-02 0.0803 0.164 0.870 

TAP2 48.822086 -1.45E-02 0.0682 0.213 0.833 

HLA-DPA1 66.933144 -2.03E-02 0.124 -0.164 0.870 

ERAP2 25.460888 -4.01E-02 0.162 0.248 0.804 

HLA-DQB2 3.754546 -4.50E-02 0.148 0.303 0.762 

HLA-DQA1 18.632014 -6.43E-02 0.160 0.402 0.688 
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HLA-DQA2 4.119687 -6.46E-02 0.166 0.389 0.697 

HLA-DRB5 39.667806 -1.54E-01 0.197 0.778 0.437 

HLA-DOA 7.489424 -1.68E-01 0.177 -0.954 0.340 

Figure 19 Volcano plot of differential expression analysis (DEA).  Comparing APM gene 

expression between TCGA/OCCAMS tumour samples and GTEx Normal stomach 

Samples.  log fold change, over -log10 p value, cut-offs: Log2 fold change 0.5, -log10 p 

value 10e-5. 
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Figure 20 Volcano plot of differential expression analysis (DEA).  Comparing APM gene 
expression between TCGA/OCCAMS tumour samples and TCGA OSCC 
samples.  log fold change, over -log10 p value, cut-offs: Log2 fold change 0.5, -
log10 p value 10e-5. 

3.3.4 APM genes associated with clinical outcomes and disease progression. 

It is unknown whether the level of expression of my APM gene candidates possessed 

prognostically significant associations with overall survival.  Therefore, I sought to assess 

the maximal differences in survival (overall survival, cancer-specific survival, and disease-

free survival) because of APM gene expression, which would allow me to filter out APM 

gene expression profiles which are potentially non-informative in OAC.  To achieve this, I 

explored overall survival with maximally ranked statistics to select high and low survival 

expression groups for each APM gene candidate for comparison, producing this analysis 

yielded significant differential survival dependent on APM expression.  Furthermore, the 

significant associations in overall survival, cancer-specific survival and disease-free 

survival were evaluated in a multivariate model to determine if the prognostic 

significance was independent of prognostic clinical features. 
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3.3.5 APM regulators and survival associations 

Firstly, four prior mentioned regulators of APM gene expression were associated to 

different survival outcomes in my OAC cohort.  The high expression group of CSDE1 

(n=130) possessed a significant association to poor overall survival in univariate survival 

analysis (HR: 1.74, p=0.015). In multivariate survival analysis the significance of the 

association between high CSDE1 expression and risk for poor overall survival grew (HR: 

2.90, p=0.008) demonstrating itself as an independent prognostic factor (Figure 23, Table 

12). 

 

In univariate cancer specific survival analysis (CSS), only the high expression group of 

CSDE1 (n=97) associated with poor prognosis with borderline significance (HR: 1.70, 

p=0.051), but non-significant by multivariate survival analysis (Table 13).  Univariate DFS 

analysis identified the low expression group of CSDE1 (n=18) was associated with 

increased risk of disease recurrence with high significance (HR: 2.81, p=0.003), 

multivariate analysis this association retained high significance and increased in risk 1.6-

fold (HR: 4.39, p=0.015) (Table 14). 

 

The RFX5 gene, an enhanceosome RFX-complex regulator of MHC class I and class II 

expression also possessed association to overall survival.  The low expression group of 

RFX5 (n=138) associated to poor overall survival (HR: 2.10, p=0.013).  In univariate CSS 

analysis, the low expression group of RFX5 (n=109) associated with poor prognosis (HR: 

2.81, p=0.017).  Under multivariate analysis this association lost significance (Table 13).  

Univariate disease-free survival (DFS) analysis identified the low expression group of 

RFX5 (n=108) was associated with increased risk of disease recurrence with high 

significance (HR: 2.81, p=0.024), in multivariate analysis this association possessed 

borderline significance with similar risk (HR: 2.65, p=0.053) (Table 14). 

 

Additionally, the high expression group of RFXAP (n=105) associated to poorer overall 

survival (HR:1.63, p=0.022); in multivariate analysis the only RFX-complex gene to retain 

its significance was RFX5 (HR:2.78, p=0.028) with RFXAP expression losing its prognostic 

significance (HR:1.01, p=0.987); (Figure 23, Table 12). 
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The fourth APM regulator uncovered as prognostically significant was CITTA, a gene 

responsible for expression of MHC class II genes in professional APCs, of which the low 

expression group was associated to poor survival in univariate analysis (HR:1.65, 

p=0.016), yet did not remain significant in multivariate survival analysis (HR:1.40, 

p=0.323).  In univariate CSS analysis the low expression group of CIITA (n=64) associated 

with poor prognosis with borderline significance (HR: 1.68, p=0.058), unfortunately 

multivariate analysis this association lost significance and inversed the association with 

risk (HR: 0.71, p=0.405) (Table 13). 

3.3.6 Correlation analysis identifies correspondent expression between APM genes and 
APM gene expression regulators. 

To explore the potential mechanism between APM gene expression regulators and 

survival outcomes I performed a correlation analysis between their expression and the 

expression of MHC class I and II genes.  Firstly, within the MHC class I genes CSDE1 

presents a significant negative correlation of HLA-A/B/C (p = 0.032, 0.028, 0.014; see 

Figure 21), PSMB9 (R = -0.182; p = 0.015; see Figure 21) and TAPBPL (R = -0.176; p = 0.02; 

see Figure 21), but a positive correlation with CANX (R = 0.197; p = 0.0086; see Figure 21). 

Interestingly, CSDE1 expression also negatively correlates with other APM regulators 

including NLRC5, IRF1 and CIITA (p = 0.0046, 0.05, 0.05; see Figure 21).  

NLRC5 expression positively correlated to HLA-A/B/C/E, TAP1, TAP2, TAPBP, TAPBPL, 

PSMB9/10 expression (p <0.01), and negatively correlated with CANX and CALR 

expression (Respectively, R = -0.247, -0.216; p = 0.0009, 0.004; see Figure 21). 

 

IRF1 expression correlated to MHC class I HLAs including HLA-A/B/C/E/G (p < 0.001; see 

Figure 21), the Tapasin translocon components TAP1, TAP2, TAPBP and TAPBPL (p < 

0.0001; see Figure 21),  B2M (R = 0.349; p < 0.0001; see Figure 21) , and finally peptide 

generation genes ERAP1, ERAP2 and PSMB8/9/10 (p < 0.0001; see Figure 21). 

CIITA expression correlated with MHC class I HLAs HLA-A/B/C/E/G (p < 0.01; see Figure 

21), Tapasin translocon components TAP1, TAP2, TAPBP and TAPBPL (p < 0.0001; see 

Figure 21), B2M (R =  0.226; p = 0.003; see Figure 21) and peptide generation genes 

ERAP2 and PSMB9/10 (p < 0.01; see Figure 21). 
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The APM gene expression regulators which found correlation with MHC class II APM 

expression included IRF1, RFX5, RFXAP and CIITA.  CIITA possessed the strongest positive 

correlations with MHC class II expression in HLA-DMA/DMB, HLA-DOA, HLA-DPA1/B1, 

HLA-DRA, HLA-DQA1/A2/B2, and HLA-DRB1/B5 (p < 0.0001; see Figure 22). 

RFX5 also positively correlated with MHC class II HLA expression in HLA-DMA/DMB, HLA-

DOA, HLA-DPA1/B1, HLA-DRA, HLA-DQA1/A2/B2, and HLA-DRB1/B5 (p < 0.05; see Figure 

22), as well as, CD74 (R = 0.344; p < 0.001; see Figure 22) , and peptide generation genes 

CTSS, SPPL2A, and PDIA3 (p < 0.05; see Figure 22). Conversely, RFXAP possessed a 

negative correlation with HLA-DMA and LGMN (Respectively, R = -0.160, -0.152; p < 0.05; 

see Figure 22). 

Finally, IRF1 displayed a positive correlation with MHC class II HLA expression in HLA-

DMA/DMB, HLA-DOA, HLA-DPA1/B1, HLA-DRA, HLA-DQA1/A2/B2, and HLA-DRB1/B5 (p < 

0.001; see Figure 22), CD74 (R = 0.386; p < 0.0001; see Figure 22), and peptide 

generation genes CTSS and CTSL (Respectively, R = 0.308, 0.210; p < 0.01; see Figure 22). 

Figure 21 Correlation heatmap of MHC class I expression with APM regulators.  Red 
circles represent significant correlations (Pearson’s correlation: p < 0.05).  
A: MHC class I expression with APM regulators.  B: MHC class II expression 
with APM regulators. 
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Figure 22 Correlation heatmap of MHC class II expression with APM regulators.  Red 
circles represent significant correlations (Pearson’s correlation: p < 0.05).  A: 
MHC class I expression with APM regulators.  B: MHC class II expression with 
APM regulators. 

3.3.7 MHC class I APM gene candidates and survival associations 

Out of the five examined MHC class I loading complex candidate genes only low HLA-A 

expression was associated with altered OS (HR:1.80, p=0.015), CSS (HR: 2.06, p=0.023) 

and DFS (HR: 2.25, p=0.021) in the OAC cohort (See Figure 23, Table 12 & 13). However, 

the association between poor survival outcomes and low HLA-A expression did not 

withstand multivariate model analysis (See Table 12 & 13). Additionally, HLA-B/-E/-G 

demonstrated an association with altered CSS (HR: 1.77, p=0.033; HR: 2.09, p=0.036; HR: 

1.77, p=0.031) within the OAC cohort (See Table 13). Despite these univariate CSS 

findings within HLA-B/-E/-G expression groups, when applied to multivariate survival 

analysis the significance was not retained. Furthermore, none of the survival outcomes 

were associated with HLA-C expression. 
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Examining the six candidate genes known to participate in the assembly of the MHC class 

I loading complex, only low CALR expression was associated with both altered OS (HR: 

1.91, p=0.018) and CSS (HR: 2.11, p=0.039), these findings retained significance in 

multivariate modelling for OS, but not CSS analysis (See Table 12 & 13). Both low 

expression of TAPBPL and TAPBP were associated with altered CSS (HR:2.00, p=0.009; 

HR:2.20, p=0.014) and DFS (HR:2.05, p=0.036; HR:2.16, p=0.011); only low TAPBP 

expression retained significance in multivariate CSS analysis (See, Table 13 & 14). 

The remaining three gene candidates participating in MHC class I assembly (B2M, PDIA3 

and CANX) did not possess any significant survival associations with OS, CSS or DFS. 

 

Of the seven MHC class I gene candidates which function to generate peptides and 

transport them into the endoplasmic reticulum, singularly the high expression group of 

PSMB10 associated with altered OS (HR: 1.61, p=0.025), CSS (HR: 2.71, p=0.001), and DFS 

(HR: 1.79, p=0.040) (See Table 12, 13 & 14). Despite the interesting univariate significance 

of the high PSMB10 expression group, these results did not remain significant in 

multivariate survival analysis. Among this subset of MHC class I genes, the low expression 

group of ERAP2 demonstrated an association with poor OS (HR: 1.72, p=0.007) and CSS 

(HR: 2.05, p=0.023) (See Table 12 & 13); multivariate survival analysis only association 

with OS were retained. The high expression groups of ERAP1, PSMB8 and PSMB9 

displayed an association with shorter CSS (HR:2.55, p=0.030; HR:2.32, p=0.016; HR:2.76, 

p=0.003) (See Table 13). Despite finding significantly altered CSS from these genes in 

univariate analysis, application of the multivariate model did not yield significance. 

Finally, the expression groups of Tapasin translocon, TAP1 and TAP2 did not possess an 

association with any survival measure (OS/CSS/DFS). 

Overall, twelve out of the eighteen MHC class I gene candidates demonstrated an 

association with patients’ outcomes, with only four of the twelve associations retaining 

significance within the multivariate survival analysis (Table 10). 
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Table 10 MHC I candidate gene expression association with survival outcomes among 

the OAC cohorts (TCGA and OCCAMS).  Significance respective to outcome. 

APM GENE SYMBOL; MHC I EXPRESSION-SURVIVAL 

ASSOCIATION 

SIGNIFICANCE 

UNIVARIATE MULTIVARIATE 

TAPBP LOW EXPRESSION – SHORTER DFS * * 

TAPBPL LOW EXPRESSION – SHORTER OS, 

CSS 

HIGH EXPRESSION – SHORTER DFS 

NS, ** 

 

* 

NS, NS 

 

NS 

HLA-A LOW EXPRESSION – SHORTER OS, 

CSS, DFS  

*, *, * NS, NS, NS 

HLA-B LOW EXPRESSION – SHORTER CSS * NS 

HLA-C NO SURVIVAL ASSOCIATION NA NA 

HLA-E LOW EXPRESSION – SHORTER CSS * NS 

HLA-G LOW EXPRESSION – SHORTER CSS * NS 

B2M NO SURVIVAL ASSOCIATION NA NA 

PDIA3 NO SURVIVAL ASSOCIATION NA NA 

CALR LOW EXPRESSION – SHORTER OS, 

CSS 

*, * *, NS 

CANX NO SURVIVAL ASSOCIATION NA NA 

ERAP1 LOW EXPRESSION – SHORTER CSS * * 

ERAP2 LOW EXPRESSION – SHORTER OS, 

CSS 

* * 

TAP1 NO SURVIVAL ASSOCIATION NA NA 

TAP2 NO SURVIVAL ASSOCIATION NA NA 

PSMB9 LOW EXPRESSION – SHORTER CSS * NS 

PSMB10 HIGH EXPRESSION – SHORTER OS, 

CSS, DFS 

*, ***, * NS, NS, NS 

PSMB8 LOW EXPRESSION – SHORTER CSS * NS 

P values: NA = Non-applicable, NS = non-significant, * <0.05, ** <0.01, *** < 0.001. 

3.3.8 MHC class II APM gene candidates and survival associations 

Findings with HLAs  

Out of the fifteen examined MHC class II loading complex/assembly candidate genes 

eight demonstrated associations with altered survival outcomes (OS, CSS, DFS) (Table 

11). Firstly, the low expression of CD74 was associated to shorter OS approaching 

significance (HR:1.67, p=0.054); and achieving significance with a reduced CSS and DFS 

time (HR: 2.88, p=0.006; HR: 2.04, p=0.050) (See Figure 23, Table 12, 13 & 14).  However, 

these associations are not retained in the multivariate clinical (See Figure 23, Table 12, 

13 & 14).  Low expression of the HLA-DMA gene transcript demonstrated the most 

significant association with poor overall survival (HR:1.77, p=0.005; see Table 12).  
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Despite possessing the highest significance within the univariate model, under 

multivariate this association have borderline significance at the 5% level (HR:1.93, 

p=0.051; see Table 12). 

 

The next significant survival association observed was with lower expression of HLA-DRA 

(OS HR:1.67, p=0.013; CSS HR: 2.07, p=0.01; DFS HR: 2.07, p=0.01); only the association 

with shorter CSS remained significant in multivariate analysis (HR:2.07, p=0.027; see 

Table 12, 13 & 14). 

 For HLA-DPA1 low expression was related to poorer OS, CSS and DFS (HR:1.53, p=0.035; 

HR: 2.37, p=0.025; HR: 2.54, p=0.001; See Figure 23, Table 12, 13 & 14), but only poorer 

OS and DFS, in the multivariant model (see Table 12 & 14).  The low expression of HLA-

DRB5 only related to increased risk of recurrence of disease with high significance (DFS 

HR: 2.52, p=0.001) in univariate tests (see Table 14).  Decreased HLA-DQA1 expression 

demonstrated an association with CSS and DFS (HR: 1.85, p=0.054; HR: 2.35, p=0.003); 

but neither remained significant in multivariate analysis (see Table 13 & 14). 

 

Additionally, OAC patients with lower HLA-DRB1 expression corresponded with poorer 

CSS (HR: 2.71, p=0.002) and an increased risk of recurrence (DFS HR: 2.34, p=0.006), but 

only in univariate analysis (see Table 13 & 14).  Decreased expression of HLA-DOA in OAC 

patients corresponded with increased recurrence of disease (DFS HR: 2.20, p=0.013), yet 

failed to withstand multivariate analysis (see Table 14).  The final significant relationship 

between MHC Class II genes and survival outcome was between low HLA-DQA2 

expression and recurrence of disease (DFS HR: 2.26, p=0.015), however in multivariate 

analysis, this relationship lost significance (see Table 14) 

 

Peptide generation 

Within, this class of candidate genes three out of five candidate demonstrate association 

with survival outcomes (See Table 11), high expression of SPPL2A (n=104) was associated 

to poorer survival outcomes (OS HR:1.52, p=0.045), however this finding did not stand up 

to multivariate testing against the clinical model (OS HR:1.07, p=0.831).  In univariate CSS 

analysis the high expression group of SPPL2A associated with poor prognosis with 

significance (CSS HR: 1.52, p=0.045), multivariate analysis demonstrated a non-significant 

trend with increased in risk (HR: 2.73, p=0.190) (Table 13). 
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The low expression group of LGMN (n=60) was associated to lower patient overall 

survival (HR:1.95, p=0.001), despite the high significance of this association the 

significance is lost in multivariate testing against the clinical model (OS HR:1.66, p=0.165).  

In univariate CSS analysis, the low expression group of LGMN (n=32) associated with poor 

prognosis with great significance (HR: 2.55, p=0.001), in multivariate analysis this 

association lost significance (HR: 1.33, p=0.625) (Table 13).  Univariate DFS analysis 

identified the low expression group of LGMN (n=68) was associated with increased risk of 

disease recurrence with great significance (HR: 1.93, p=0.015), multivariate analysis failed 

to yield significance. 

Finally, the low expression group of CTSS corresponded with shorter CSS (HR:1.99, 

p=0.010), but did not retain significance within the multivariate model (Table 13). 
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Table 11 MHC II candidate gene expression association with survival outcomes among 
the OAC cohorts (TCGA and OCCAMS).  Significance respective to outcome. 

APM GENE SYMBOL; MHC II EXPRESSION-SURVIVAL 
ASSOCIATION 

SIGNIFICANCE 
UNIVARIATE MULTIVARIATE 

HLA-DMA 

 

LOW EXPRESSION – 

SHORTER OS 

** NS 

HLA- 

DMB 

NO SURVIVAL ASSOCIATION NA NA 

HLA-DOA 

 

LOW EXPRESSION – 

SHORTER DFS 

* 

 

 

NS 

HLA- 

DOB 

NO SURVIVAL ASSOCIATION NA NA 

HLA-DPA1 

 

LOW EXPRESSION – 

SHORTER OS, CSS & DFS 

*, *, ** *, NS, NS 

  HLA- 

DPB1 

NO SURVIVAL ASSOCIATION NA NA 

HLA- 

DQA1 

LOW EXPRESSION – 

SHORTER CSS & DFS 

NS, ** NS, NS 

 HLA-DQA2 

 

LOW EXPRESSION – 

SHORTER DFS 

* NS 

 HLA- 

DQB1 

NO SURVIVAL ASSOCIATION NA NA 

 HLA- 

DQB2 

NO SURVIVAL ASSOCIATION NA NA 

 HLA-DRA 
LOW EXPRESSION – 

SHORTER OS, CSS & DFS 

*, *, * *, NS, NS 

HLA-DRB1 
LOW EXPRESSION – 

SHORTER CSS 

** NS 

 HLA- 

DRB4 

NO SURVIVAL ASSOCIATION NA NA 

HLA- 

DRB5 

LOW EXPRESSION – 

SHORTER DFS 

*** NS 

CD74 (cell surface form) LOW EXPRESSION – 

SHORTER OS, CSS & DFS 

NS, **. * NS, NS, NS 

CTSS LOW EXPRESSION – 

SHORTER CSS 

** NS 

CTSL NO SURVIVAL ASSOCIATION NA NA 

SPPL2A HIGH EXPRESSION – 

SHORTER OS & CSS 

*,* NS, NS 

LGMN LOW EXPRESSION – 

SHORTER OS, CSS & DFS 

***, ***. ** NS, NS, NS 

IFI30 NO SURVIVAL ASSOCIATION NA NA 

P values: NA = Non-applicable, NS = non-significant, * <0.05, ** <0.01, *** < 0.001. 

 



 

99 

 

 

Figure 23 Univariate CoxPH forest plot of APM gene expression in the TCGA/OCCAMS 

Cohort using maximally ranked statistics for optimal cut points between low/high 

expression groups.  Only significant/approximate significant results shown p<0.55. * 

Represents genes which greater expression associates with greater risk. 
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Table 12 CoxPH overall survival analysis in univariate and multivariate model. 

VARIABLE LEVELS N (%) HR (UNIVARIABLE) N = 176 HR (MULTIVARIABLE) N = 78 
Age Mean (SD) 66.8 (11.1) 0.99 (0.98-1.01, p=0.515) 1.01 (0.98-1.05, p=0.440) 

Sex Female 31 (17.6) - - 
Male 145 (82.4) 1.65 (0.90-3.01, p=0.105) 0.77 (0.31-1.91, p=0.576) 

pT 0-1 38 (29.5) - - 
2-4 91 (70.5) 1.39 (0.78-2.48, p=0.266) 0.48 (0.17-1.37, p=0.172) 

pN 0 48 (36.9) - - 
1-3 82 (63.1) 2.56 (1.45-4.52, p=0.001) 3.83 (1.41-10.45, p=0.009) 

pM 0 77 (92.8) - - 

1 6 (7.2) 7.07 (2.75-18.19, p<0.001) 8.04 (2.99-21.61, p<0.001) 
CSDE1 low 130 (74.4) - - 

high 44 (25.6) 1.74 (1.11-2.71, p=0.015) 2.90 (1.31-6.40, p=0.008) 
RFX5  high 138 - - 

low 36 2.10 (1.17-3.76, p=0.013) 2.78 (1.12-6.91, p=0.028) 
SPPL2A low 69 - - 

high 105 1.52 (1.01-2.30, p=0.045) 1.07 (0.56-2.07, p=0.831) 
RFXAP  low 69 - - 

high 105 1.63 (1.07-2.49, p=0.022) 1.01 (0.52-1.93, p=0.987) 
CD74  high 40 - - 

low 134 1.67 (0.99-2.82, p=0.054) 1.12 (0.53-2.34, p=0.769) 
CIITA  high 86 - - 

low 88 1.65 (1.10-2.47, p=0.016) 1.40 (0.72-2.71, p=0.323) 
PSMB10  low 121 - - 

high 53 1.61 (1.06-2.44, p=0.025) 1.30 (0.65-2.61, p=0.456) 
LGMN  high 114 - - 

low 60 1.95 (1.30-2.93, p=0.001) 1.66 (0.81-3.41, p=0.165) 
TAPBPL  high 124 - - 

low 50 1.48 (0.99-2.24, p=0.058) 1.00 (0.48-2.06, p=0.991) 
CALR  high 42 - - 

low 132 1.91 (1.12-3.28, p=0.018) 2.52 (1.01-6.32, p=0.048) 
ERAP2  high 109 - - 

low 65 1.72 (1.16-2.56, p=0.007) 3.15 (1.58-6.27, p=0.001) 
HLA-DPA1  high 89 - - 

low 85 1.53 (1.03-2.27, p=0.035) 1.98 (1.04-3.75, p=0.037) 
HLA-DMA  high 98 - - 

low 76 1.77 (1.18-2.64, p=0.005) 1.93 (1.00-3.73, p=0.051) 
HLA-DRA  high 81 - - 

low 93 1.67 (1.12-2.49, p=0.013) 2.07 (1.08-3.94, p=0.027) 
HLA-DRB5 high 104 - - 

low 70 1.45 (0.98-2.16, p=0.065) 1.70 (0.88-3.30, p=0.116) 
HLA-A high 140 - - 

low 34 1.80 (1.12-2.88, p=0.015) 1.30 (0.61-2.73, p=0.497) 
Number in data frame = 138, Number in model = 65, Missing = 73, Number of events = 26, Concordance = 0.822 (SE = 0.034), R-

squared = 0.363(Max possible = 0.942), Likelihood ratio test = 29.321 (df = 6, p = 0.000).  Determining significance independent 

of the clinical model, top four variables form the clinical model each gene is assessed against. 
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Table 13 CoxPH cancer specific survival analysis in univariate and multivariate model.  

VARIABLE LEVELS N (%) HR (UNIVARIABLE) N = 176 HR (MULTIVARIABLE) N = 78 
Age Mean (SD) 66.8 (11.1) 0.99 (0.98-1.01, p=0.515) 1.01 (0.98-1.05, p=0.440) 

Sex Female 31 (17.6) - - 
Male 145 (82.4) 1.65 (0.90-3.01, p=0.105) 0.77 (0.31-1.91, p=0.576) 

pT 0-1 38 (29.5) - - 
2-4 91 (70.5) 1.39 (0.78-2.48, p=0.266) 0.48 (0.17-1.37, p=0.172) 

pN 0 48 (36.9) - - 
1-3 82 (63.1) 2.56 (1.45-4.52, p=0.001) 3.83 (1.41-10.45, p=0.009) 

pM 0 77 (92.8) - - 

1 5 (6.1) 7.07 (2.75-18.19, p<0.001) 8.04 (2.99-21.61, p<0.001) 
CSDE1 low 41 (74.4) - - 

high 97 (25.6) 1.70 (1.00-2.91, p=0.051) 2.06 (0.78-5.43, p=0.143) 
HLA-E  high 121 (87.7) - - 

low 17 (12.3) 2.09 (1.05-4.15, p=0.036) 1.09 (0.28-4.31, p=0.899) 
SPPL2A low 34 (24.6) - - 

high 104 (75.4) 1.52 (1.01-2.30, p=0.045) 2.73 (0.61-12.26, p=0.190) 
HLA-DPA1  high 123 (89.1) - - 

low 15 (10.9) 2.37 (1.11-5.05, p=0.025) 1.15 (0.18-7.23, p=0.878) 
PSMB9 high 122 (88.4) - - 

low 16 (11.6) 2.76 (1.42-5.36, p=0.003) 0.55 (0.14-2.25, p=0.409) 
HLA-B  high 88 (63.8) - - 

low 50 (36.2) 1.77 (1.05-2.97, p=0.033) 1.22 (0.48-3.09, p=0.672) 
HLA-DRA  high 102 (73.9) - - 

low 36 (26.1) 2.07 (1.19-3.61, p=0.010) 0.75 (0.23-2.47, p=0.632) 
PSMB8  high 122 (88.4) - - 

low 16 (11.6) 2.32 (1.17-4.62, p=0.016) 0.43 (0.12-1.58, p=0.204) 
HLA-DRB5 high 115 (83.3) - - 

low 23 (16.7) 2.08 (1.04-4.16, p=0.038) 1.39 (0.43-4.45, p=0.579) 
HLA-DQA1  high 111 (80.4) - - 

low 27 (19.6) 1.85 (0.99-3.46, p=0.054) 0.88 (0.35-2.22, p=0.790) 
HLA-DRB1 high 116 (84.1) - - 

low 22 (15.9) 2.71 (1.42-5.15, p=0.002) 1.05 (0.35-3.13, p=0.927) 
TAPBP  high 116 (84.1) - - 

low 22 (15.9) 2.20 (1.18-4.11, p=0.014) 2.02 (0.73-5.62, p=0.176) 
HLA-G high 85 (61.6) - - 

low 53 (38.4) 1.77 (1.05-2.98, p=0.031) 1.64 (0.72-3.76, p=0.240) 
HLA-A high 116 (84.1) - - 

low 22 (15.9) 2.06 (1.11-3.85, p=0.023) 0.62 (0.18-2.17, p=0.452) 
ERAP2 high 118 (85.5) - - 

low 20 (14.5) 2.05 (1.03-4.08, p=0.040) 2.15 (0.64-7.21, p=0.214) 
ERAP1 high 29 (21.0) - - 

low 109 (79.0) 2.55 (1.09-5.94, p=0.030) 1.38 (0.45-4.25, p=0.577) 
CALR       high 35 (25.4) - - 

low 103 (74.6) 2.11 (1.04-4.31, p=0.039) 1.51 (0.55-4.18, p=0.425) 
TAPBPL       high 92 (66.7) - - 

low 46 (33.3) 2.00 (1.19-3.37, p=0.009) 1.00 (0.44-2.29, p=0.994) 
CTSL       high 31 (22.5) - - 

low 107 (77.5) 2.08 (0.98-4.42, p=0.056) 1.76 (0.57-5.39, p=0.324) 
LGMN       
 

high 106 (76.8) - - 
low 32 (23.2) 2.55 (1.48-4.40, p=0.001) 1.33 (0.42-4.19, p=0.625) 

PSMB10       high 112 (81.2) - - 
low 26 (18.8) 2.71 (1.52-4.86, p=0.001) 1.63 (0.64-4.12, p=0.305) 

CIITA   high 64 (46.4) - - 
low 74 (53.6) 1.68 (0.98-2.87, p=0.058) 0.71 (0.31-1.60, p=0.405) 

CD74   high 125 (90.6) - - 
low 13 (9.4) 2.88 (1.36-6.12, p=0.006) 1.66 (0.20-13.84, p=0.639) 

MR1  high 85 (61.6) - - 
low 53 (38.4) 1.68 (1.00-2.82, p=0.051) 1.45 (0.59-3.54, p=0.417) 

CTSS       high 86 (62.3) - - 
low 52 (37.7) 1.99 (1.18-3.35, p=0.010) 1.47 (0.58-3.72, p=0.415) 

RFX5       high 29 (21.0) - - 
low 109 (79.0) 2.81 (1.21-6.55, p=0.017) 2.33 (0.78-6.97, p=0.132) 

Number in data frame = 138, Number in model = 65, Missing = 73, Number of events = 26, Concordance = 0.822 (SE = 0.034), R-

squared = 0.363(Max possible = 0.942), Likelihood ratio test = 29.321 (df = 6, p = 0.000).  Determining significance independent 

of the clinical model, top five variables form the clinical model each gene is assessed against. 
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Table 14 CoxPH disease-free survival analysis in univariate and multivariate model. 

Determining significance independent of the clinical model, top five variables form the 

clinical model each gene is assessed against. 

VARIABLE LEVELS N (%) HR (UNIVARIABLE) N = 176 HR (MULTIVARIABLE) N = 78 
Age Mean (SD) 66.8 (11.1) 0.99 (0.98-1.01, p=0.515) 1.01 (0.98-1.05, p=0.440) 

Sex Female 31 (17.6) - - 
Male 145 (82.4) 1.65 (0.90-3.01, p=0.105) 0.77 (0.31-1.91, p=0.576) 

pT 0-1 38 (29.5) - - 
2-4 91 (70.5) 1.39 (0.78-2.48, p=0.266) 0.48 (0.17-1.37, p=0.172) 

pN 0 48 (36.9) - - 
1-3 82 (63.1) 2.56 (1.45-4.52, p=0.001) 3.83 (1.41-10.45, p=0.009) 

pM 0 77 (92.8) - - 

1 6 (7.2) 7.07 (2.75-18.19, p<0.001) 8.04 (2.99-21.61, p<0.001) 
RFX5 high 30 (21.7) - - 

low  108 (78.3) 2.48 (1.13-5.47, p=0.024) 2.65 (0.99-7.13, p=0.053) 
CTSS  high 27 (19.6) - - 

low 111 (80.4) 2.27 (0.97-5.28, p=0.058) 0.95 (0.29-3.12, p=0.927) 
CD74 high 125 (90.6) - - 

low 13 (9.4) 2.04 (1.00-4.17, p=0.050) 1.34 (0.36-5.05, p=0.663) 
PSMB10  low 100 (72.5) - - 

high 38 (27.5) 1.79 (1.03-3.13, p=0.040) 0.91 (0.37-2.22, p=0.878) 
LGMN high 70 (50.7) - - 

low 68 (49.3) 1.93 (1.14-3.28, p=0.015) 1.44 (0.64-3.23, p=0.375) 
TAPBPL  low 121 (87.7) - - 

high 17 (12.3) 2.05 (1.04-3.85, p=0.036) 1.96 (0.44-8.33, p=0.375) 
HLA-DPA1 high 125 (90.6) - - 

low 13 (9.4) 2.54 (1.27-5.09, p=0.008) 1.87 (0.63-5.57, p=0.261) 
HLA-DOA high 119 (86.2) - - 

low 19 (13.8) 2.20 (1.18-4.11, p=0.013) 0.63 (0.22-1.83, p=0.401) 
HLA-DQA2 high 122 (88.4) - - 

low 16 (11.6) 2.26 (1.17-4.38, p=0.015) 2.03 (0.63-6.52, p=0.232) 
HLA-DRA  high 126 (91.3) - - 

low 12 (8.7) 2.56 (1.24-5.26, p=0.011) 1.67 (0.50-5.59, p=0.406) 
HLA-DRB5 high 113 (81.9) - - 

low 25 (18.1) 2.52 (1.43-4.44, p=0.001) 1.77 (0.74-4.24, p=0.199) 
HLA-DQA1 high 114 (82.6) - - 

low 24 (17.4) 2.35 (1.33-4.14, p=0.003) 0.97 (0.42-2.22, p=0.940) 
HLA-DRB1 high 117 (84.8) - - 

low 21 (15.2) 2.34 (1.27-4.31, p=0.006) 0.76 (0.28-2.07, p=0.591) 
TAPBP high 112 (81.2) - - 

low 26 (18.8) 2.16 (1.20-3.92, p=0.011) 2.35 (1.03-5.41, p=0.044) 
HLA-A high 126 (91.3) - - 

low 12 (8.7) 2.25 (1.13-4.46, p=0.021) 0.83 (0.28-2.45, p=0.740) 
CSDE1 high 120 (87.0) - - 

low 18 (13.0) 2.67 (1.40-5.09, p=0.003) 4.39 (1.33-14.53, p=0.015) 
Number in data frame = 138, Number in model = 65, Missing = 73, Number of events = 26, Concordance = 0.822 (SE = 0.034), 

R-squared = 0.363(Max possible = 0.942), Likelihood ratio test = 29.321 (df = 6, p = 0.000) 
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3.3.9 APM epi-genomic aberrations. 

Survival analysis suggests several genes in both MHC pathways as well as regulators of 

their expression are associated to differential survival outcomes, however, it is unknown 

what mechanism OAC may be leveraging to alter the expression of these genes.  

Therefore, I have explored the epigenetics (Methylation) of genes of interest among my 

candidate genes within the TGCA-ESCA dataset.  Firstly, I observed the methylation across 

the HLA locus, finding ten CpGs linked to MHC genes which exhibit differential 

methylation between normal oesophageal tissue and OC. Six of these differentially 

methylated CpGs are associated to HLA class II genes HLA-DPA1/B1 with the remain four 

CpGs linked to HLA-G and HLA-F genes, all of these sites are significantly hyper-

methylated compared to normal tissue (p<0.001; see Table 15). 

 

 
Table 15 significant differentially methylated CpGs of the HLA-locus on chromosome 6. 

PROBE 
LOG2(FOLD 
CHANGE) P.VALUE ADJ.PVALUE START END GENE 

CG18914211 1.951 7.20E-06 0.000209 29828038 29828039 HLA-G 

CG03521696 1.476 2.00E-06 0.000111 29827818 29827819 HLA-G 

CG19990651 0.921 0.00017943 0.00163 33080778 33080779 
HLA-DPA1; HLA-

DPB1 

CG09234582 0.743 0.000391344 0.00286 33080509 33080510 
HLA-DPA1; HLA-

DPB1 

CG01132696 0.878 2.63E-05 0.000444 33080781 33080782 
HLA-DPA1; HLA-

DPB1 

CG06437840 1.10 0.000254439 0.00209 33080752 33080753 
HLA-DPA1; HLA-

DPB1 

CG26645432 0.622 0.000384841 0.00283 33080725 33080726 
HLA-DPA1; HLA-

DPB1 

CG00126638 0.772 1.66E-06 0.000103 29827806 29827807 HLA-G 

CG20617328 -0.847 0.000242639 0.00203 33072833 33072834 HLA-DPA1 

CG24177217 -0.709 4.95E-06 0.000171 29734276 29734277 HLA-F; HLA-F-AS1 

 

Next, I moved forward to assess the differential methylation of candidate genes which 

possessed an association with survival via mRNA expression.  Within the MHC class I 

candidate genes five genes were selected for analysis based on their impact on survival. 
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Among the HLAs of the MHC pathway only HLA-A and HLA-G demonstrated a significant 

increase in methylation value comparing OAC to normal tissue (HLA-A: Normal B-value 

mean 0.1972; Tumour B-value 0.4814; p < 0.0001. HLA-G: Normal B-value mean 0.2147. 

; Tumour B-value 0.5560; p < 0.0001. See Figure 24); HLA-B was examined for differential 

methylation between normal and OAC finding no significant differences.  HLA-complex 

assemble gene CALR and peptide generation gene ERAP2 was also assessed for 

methylation differences in normal and OAC tissue finding a significant increase in CALR 

methylation among tumour samples, but no significant methylation difference in ERAP2 

(CALR: Normal B-value mean 0.7394; Tumour B-value 0.8472; p = 0.0173. ERAP2: Normal 

B-value mean 0.9187; Tumour B-value 0.8881; p = 0.4994. See Figure 24). 

 
Two MHC class II HLAs, HLA-DPA1 and HLA-DPB1 were assessed for differential 

methylation between normal oesophagus and OAC tissue finding a significant increase in 

methylation among OAC samples (HLA-DPA1: Normal B-value mean 0.3223; Tumour B-

value 0.7085; p < 0.0001. HLA-DPB1: Normal B-value mean 0.3324; Tumour B-value 

0.7511; p <0.0001. See Figure 24). 

 

Four APM gene expression regulators were assessed including a negative regulator CSDE1 

and positive regulators CIITA and RFX5.  The negative regulator, CSDE1, demonstrated a 

substantial significant decrease in methylation of the proximal promoter for expression 

(CSDE1: Normal B-value mean 0.5736; Tumour B-value 0.3550; p < 0.0001. See Figure 24).  

The positive regulator of MHC class II HLA expression, CIITA, displayed a significant 

decrease in methylation in OAC samples compared to normal tissue (CIITA: Normal B-

value mean 0.4355; Tumour B-value 0.2936; p = 0.0017. See Figure 24), whereas the 

positive regulator of MHC class I HLA expression, RFX5, demonstrated an increased 

methylation score in OAC compared to normal oesophagus (RFX5: Normal B-value mean 

0.5685; Tumour B-value 0.6628; p = 0.0372. See Figure 24).  Observing methylation over 

cancer stage, did not yield any significant differences with tumour progression. 
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Figure 24 Methylation of APM candidate genes compared between normal oesophagus 

and OAC samples using Beta-methylation values.  Statistical test represented are 

Kruskal-Wallis tests with FDR correction (ns = non-significant, * = p < 0.05, ** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001). 

 

 

Finally, I explored the correlation between methylation of the APM gene candidates with 

significantly different methylation values compared to normal tissue presented in Figure 

24, and their respective mRNA expression.  Using this analysis, I found two APM gene 

expression regulators, CIITA and CSDE1, possessed a negative correlation between 

methylation and gene expression (CIITA: R = -0.25, p = 0.027. CSDE1: R = -0.27, p = 0.016. 

See Figure 25A/B and Table 16).  Among MHC class I HLAs, HLA-B possessed an 

unexpected positive correlation between methylation and expression, whereas HLA-G 

possess the expected negative methylation to expression correlation (HLA-B: R = 0.22, p = 

0.049. HLA-G: R = -0.29, p = 0.0095. See Figure 25C/D and Table 16). 
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Figure 25 Scatter plot of significant methylation to mRNA expression (TMM) 
correlations of APM candidates which possessed significantly different 
methylation in OAC compared to normal tissue.  A: CIITA.  B: CSDE1.  C: HLA-
B. D: HLA-G. 

Table 16 methylation-expression (mRNA: TMM) correlations from APM candidates with 
differential methylation in OAC tumour tissue and normal oesophagus. 

GENE R P VALUE 
HLA-A 0.1 0.37 
HLA-B 0.22 0.049 
HLA-G -0.29 0.0095 
ERAP2 -0.078 0.5 
CALR 0.02 0.86 

HLA-DPA1 0.02 0.86 
HLA-DPB1 0.03 0.8 

CSDE1 -0.27 0.016 
CIITA -0.25 0.027 
RFX5 -0.1 0.39 
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3.4 Discussion 

3.4.1 Mutation incidence of APM genes in OAC is infrequent.  

In this Chapter, the work aimed to identify somatic APM genomic alterations with clinical 

value.  Although mutation analysis did not yield many recurrent APM mutations, there 

were several of interest in this study.  The B2M mutations may be of interest as 

mutations in B2M may result in loss of MHC class I expression, which would benefit 

hyper-mutated tumours through the reduction in cancer antigen presentation. This 

hypothesis appears to fit with our analysis showing a much higher mutation count a the 

B2M mutated case.  One study specifically identifies a B2M mutation found in our 

analysis resulting in a Y46Cfs*10 reporting a lack of B2M expression 

(Immunohistochemistry) in colorectal cancer patient samples harbouring this mutation 

(238). This may represent a cancer immune evasion mechanism as B2M functions in the 

assembly of MHC I molecules on the ER, lack of B2M expression would then restrict 

cancer antigen presentation to tumour infiltrating lymphocytes preventing an anti-

tumoral response.  Additionally, cases containing an APM mutation had increased 

Tumour mutational burden, this could suggest cancer with higher mutational burden 

seek somatic mutation of APM components to elicit immune evasion or higher 

mutational burden simply results in a statistically higher probability of APM mutation.  

Furthermore, we identified mutations of the immunoglobulin C1-set domain in HLA-B of 

OAC cases; specifically, a mutation in the 220–227 α3 loop, E222 has been shown to 

abrogate MHC I and Tapasin interaction, resulting in loss of function (239).  Conversely, 

mutation in HLA-B and B2M have been associated to poorer prognosis and further could 

negatively impact the outcome for immunotherapies as somatic mutations of these APM 

genes within the TCGA dataset (Pan-cancer) have been associated to high mutation 

burden, increased neoantigen loading, and higher NK cell infiltrate with CD8+ T cell 

infiltration; these effects are associated with immune evasion mechanisms.  B2M 

mutations in this instance reduces the overall level of surface MHC-I molecules while 

mutations in HLA molecules disturb the overall composition of the MHC-I complex 

landscape, aiding immune surveillance escape (240). However, this study did not explore 

OAC or OSCC, instead opting to analyse colorectal, ovarian and lung cancer among 

others, which in the case of colorectal cancer, T cell infiltrate is associated to higher 

tissue inflammation which is further associated to poor prognosis (241). 
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3.4.2 Copy number events are not informative in OAC but are frequent among APM genes 
of the HLA-locus. 

Copy-number analysis yielded two interesting subgroups, an amplification group, and a 

deletion group, which share the copy-number events across a gene subset in the 

TCGA/ICGC cohort which was present in approximately 7% of cases.  Segment analysis 

identified genes within a gene set of interest, within the minimally affected genomic 

region, were located proximally to each other, and shared the same copy-number 

segments, furthermore, these genes were proximally located to VEGFA a previously 

identified frequently amplified gene in OAC (242). 

However, the incidence of these groups was much higher in OAC than OSSC, and the 

number of copy-number events in total was found to be significantly higher in OAC; this 

greater number of events may be due to the complexity of copy-number segments found 

in OAC compared to OSCC resulting from OACs characteristic chromosomal instability 

(243). Overall, the amplification and deletion groups may be of interest for further study 

to determine the impact on immune populations via deconvolution analysis.  

The APM gene expression regulator candidates possessed a significant number of copy-

number events with the highest frequency being IRF1 consisting of mostly deletions. This 

is interesting as loss of IRF1 could result in low APM expression, conversely IRF1 has also 

been reported to inhibit anti-tumoral responses via the upregulation of PD-L1 in tumour 

cells (244, 245). 

3.4.3 APM gene candidates and differential expression in OAC. 

In the expression analysis of the TCGA/OCCAMS OAC cohort the APM gene candidates 

did not possess significant differential expression compared to normal stomach samples.  

However, this lack of finding may be due to methodological factors such as using 

unmatched normal samples from the GTEx dataset, or the lack of an appropriate normal 

tissue. Unlike OSCC where normal squamous oesophageal epithelium forms an 

appropriate normal control, cells which derive into OAC are more like that of stomach 

epithelia, leading to difficulty in producing an accurate DEA.  Additionally, the known 

downregulation of APM machinery in OSCC has mostly been associated via 

immunohistochemistry methodology rather than RNA-seq methods making comparisons 

difficult between the histological subtypes (148). 
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3.4.4 Expression of APM gene candidates associates with overall, cancer-specific, and 
disease-free survival in OAC. 

From assessment of the literature performed in the general introduction (Chapter 1), a 

comprehensive analysis of the APM gene expression and their respective associations 

with clinical outcome had not previously been published, therefore forming a substantial 

knowledge gap, in OAC.  This was addressed, by elucidating the association between the 

list of curated APM genes and clinical outcomes including overall survival, CSS and DFS in 

both a univariate and multivariate model with important co-variates used in the clinic 

(Age, Sex, pT, pN and pM) and in biomarker studies in the literature. 

 

Firstly, some of the regulators of MHC expression possessed a significant association with 

outcome.  For instance, high CSDE1 expression was significantly associated with overall 

survival and DFS in both univariate and multivariate analysis.  This observation fits with 

the known role of CSDE1 downregulating MHC class I expression via stabilising TCPTP, a 

phosphatase kinase enzymes, which in turn dephosphorylates STAT1 in the JAK/STAT 

pathway downstream of IFN-y signalling (145). The IFN-y signalling pathway is a 

significant driver of MHC class I expression, ultimately activating the ISRE regulatory 

promoter elements allowing for further downstream promotion of MHC class I 

expression by the known trans-activators of MHC class I expression (RFX5-family, NLRC5 

and IRF-1) (130, 142). 

 

Prior publications have demonstrated CSDE1 acts as a master regulator of MHC class I 

expression, in cancer, the greater expression of CSDE1 in a melanoma cell line resulted in 

high dephosphorylation of STAT1 preventing translocation of STAT1 into the cell nucleus 

downstream of the JAK/STAT pathway as prior described (145). 

 

Thereby, my analysis and literature suggest CSDE1 expression is OAC significantly 

associates with poor outcomes, likely via downregulating MHC class I expression 

resulting in immune evasion.  Interestingly, these observations present an opportunity 

for targeting CSDE1 in OAC.  A recent paper presented a study of oncolytic viruses, where 

the authors were successful in creating a selection pressure towards an escape-

associated tumour antigen via infection with a mutant form of CSDE1 which was highly 

expressed and could be a potential target for cancer vaccines, adoptive T-cell and CAR-T 

cell therapies (146). This may have potential in OAC, as CSDE1 is not a known target gene 
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in OAC, nor a recurrently targeted passenger gene in our data (only 1 of 502 cases with a 

missense mutation). 

 
Expression of RFX5-family genes including RFX5 and RFXAP in the data analysis, identified 

association with overall survival, CSS and DFS.  The RFX5-family genes play a significant 

role in the regulation of MHC class I expression forming the RFX-complex (RFX5, RFXAP, 

RFXANK) within the MHC class I enhanceosome together with NLRC5 trans-activator, 

ATF1/CREB and the NFY-complex which bind to the SXY-module for promoting MHC class 

I expression (142). RFX5 has prior been published as a prognostic biomarker and 

associated with immune infiltration in stomach adenocarcinoma. Within that study, 

expression of RFX1, RFX3, RFX4, RFX5, RFX7 and RFX8 was significantly elevated in STAD 

tissue versus adjacent normal tissue. Moreover, patients with high RFX5 and RFX7 

expression had a better overall survival, first progression, post-progression survival and 

significantly associated with the abundance of immune cells, the expression of immune 

biomarkers and tumour mutational burden (246). 

 

Evidence of the role of RFXAP in cancer is sparse, a single study identified RFXAP 

expression correlated with tumour stage and poor prognosis, but associated these 

findings with RFXAP overexpression upregulating KDM4A and attenuated methylation of 

H3K36, thereby impairing DNA repair and enhancing the DNA damage induced by fisetin 

(247). Considering my findings and the literature, I suggest RFX5 associates to survival 

outcomes by regulating factor of MHC class I expression in OAC, this finding is justified by 

the recent publication of its function in gastric cancers as prognostic biomarker 

associated with immune infiltration (248). Further investigation of the expression of RFX5 

and immune abundance may identify parallels with the stomach adenocarcinoma study 

and OAC, the regulatory role of this APM regulator on MHC class I expression will be 

assessed among the other APM regulators in the chapter 4 and 6. On the other hand, 

RFXAP could not be validated by the literature and its association with survival outcomes 

in OAC identified here may be only representative of the role of the MHC class I 

enhanceosome or potentially alternative roles beyond APM gene regulation. 

 
Lower CIITA expression was associated to poorer overall survival and CSS only in 

univariate analysis.  CIITA is a transcriptional coactivator that regulates γ-interferon-

activated transcription of MHC class I and II genes, of which mutation has been prior 
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associated to autoimmune diseases such as Type II bare lymphocyte syndrome (249, 

250). In lung adenocarcinomas, loss of CIITA was associated to decreased MHCII 

expression, low T cell infiltration and converted tumours from anti–PD-1 sensitive to 

anti–PD-1 resistant (251).  Additionally, high CIITA expression has been prior associated 

to high MHC-II expression in Epstein–Barr virus-associated stomach adenocarcinomas, 

potentially contributing to the highly immunogenic tumour microenvironment noted in 

this specific tumour subset (252). Combining the known literature and my findings could 

suggest CIITA plays a significant role in the immunogenicity of OAC tumours. Thereby, 

cases with poor CIITA expression may also exhibit low anti-tumoral immunity leading to 

poorer patient outcomes.  Further analysis to observe the distribution of immune cells 

within the OAC microenvironment among cases of low/high CIITA expression may yield 

further insight into the overarching role in the immunogenicity of tumours to identify 

parallels with stomach adenocarcinomas (See chapter 4). 

 
Within my analysis IRF-1 and NLRC5 expression did not appear as a prognostic indicator 

of survival outcome.  This provides an interesting insight into the function of these genes 

in OAC may not be intrinsic to modulation of MHC class I expression. Whereas, the prior 

mentioned CSDE1 gene may be functionally responsible for said modulation as a master 

regulator, thereby it is of import to assess the correlation between the known APM 

expression regulators and APM expression.  This is especially important as brief 

examination of the OE19 OAC cell line demonstrates a loss in IRF-1 correlating to 

substantially lower MHC class I expression in comparison to other OAC cell lines (OE33 

and FLO-1) (253). 

Overall, these findings support the premise of APM expression regulators may form a 

prognostic marker of survival outcome in OAC, yet whether these genes may form a 

therapeutic target in OAC is yet to be elucidated.  CSDE1 is of interest due to its ‘master 

regulator’ role in MHC class I expression, which I will follow up in modulating CSDE1 

expression in OAC cell lines.  

 

MHC class I gene expression have demonstrated significant associations with survival 

outcomes in other diseases including OSCC and gastric cancers, and link to the 

upregulation of adaptive anti-tumoral immune responses.  Furthermore, MHC class I 

gene expression downregulation has prior been associated with cancer pathogenesis and 

alluded to be important for the efficacy of immune checkpoint blockade therapy. 
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Within my analysis I found many parallels in the importance of MHC class I expression in 

survival outcomes reported in the literature of other cancers. 

 

The consequence of MHC class I HLA-antigen loading complex assembly/antigen 

presentation gene expression prior published mirrors my finding reported in my OAC 

cohort expression.  Specifically, the low expression of HLA-A/B/E/G displayed a 

correspondence with poorer survival outcomes, similar to a prior meta-analysis 

publication in gastric cancers where HLA class I overexpression possessed a significant 

positive association with OS (254). However, the same study notes negligible impact of 

HLA class I overexpression on DFS, opposed to my findings in HLA-A which demonstrated 

a link between low expression and shorter DFS in univariate analysis.  This could indicate 

minor differences in the importance of HLA class I expression between OAC and gastric 

cancers in survival outcomes, however, the concordance between OS and HLA class I 

expression in gastric cancer, the most similar cancer to OAC, lends confidence to my 

findings in the expression survival associations highlighted in my analysis of OAC. 

 

These findings among HLA class I molecules suggest CD8 T cell recognition via HLA in 

cancers may have a profound impact on overall anti-tumoral immunity in OAC, however 

this must be explored further to identify modulation of T cell subpopulations in OAC due 

to HLA class I expression, which will be explored via digital cytometry in chapter 4. 

 

The TAPASIN genes (TAP1, TAP2, TAPBP, TAPBPL and TAPBPR) have prior been associated 

to survival outcomes and immune modulation in cancers including colorectal, malignant 

melanoma, head and neck squamous cell carcinoma (HNSCC), renal cell carcinoma, 

colorectal carcinoma, glioblastoma, lung carcinoma, and neuroblastoma (255-257). 

Downregulation of TAPASIN genes has been closely tied to decreased HLA class I 

presentation, restriction in neo-antigen repertoire and diminished CD8+ T cell responses 

in cancer (255, 256).  Within my data analysis only TAPBP and TAPBPL demonstrated 

altered survival outcomes within OS, DFS and CSS; TAPBP functionally acts to localise HLA 

molecules to the TAPASIN translocon in the ER allowing for optimal antigen loading, low 

expression of TAPBP has been linked to poor patient survival in a pan-cancer analysis, 

concordant with my OAC cohort findings of low TAPBP resulting in shorter DFS (258). 
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TAPBPL presents a more complex survival interaction with low expression associating to 

shorter OS and CSS, but high expression linking to poorer DFS.  Examining the literature 

higher TAPBPL expression has been prior correlated to improved OS in breast cancer, 

forming part of a prognostic model; however, TAPBPL has also been implicated as a novel 

regulator within T cells resulting in inhibition of T cell responses and proliferation, 

unfortunately, as my OAC cohort contains only bulk-RNA I could not determine the 

distribution of TAPBPL expression across the cellular subtypes, leaving open the 

possibility TAPBPL expression may represent a positive prognostic factor when expressed 

in cancer cells (displayed in altered OS and CSS), but a negative prognostic factor when 

expressed in T cell populations (259, 260). Exploration of differential immune 

subpopulations due to TAPBPL expression via digital cytometry may indicate whether this 

is a possibility and worth further investigation, this is explored in Chapter 4. 

 

Within my analysis of the OAC cohort low expression of CALR resulted in shorter OS and 

CSS; CALR functions in the early assembly of HLA class I molecules prior to association to 

the TAPASIN translocon, several publications have associated the decreased expression 

of CALR with either poorer or improved prognosis depended on the disease type.  For 

example, within colorectal, AML, glioblastoma, NSCLC, ovarian, urothelial cancers, high 

expression of CALR associates to improved survival outcomes; conversely, in gastric, 

bladder, MCL, neuroblastoma and pancreatic cancers, the increased expression of CALR 

corresponds to poorer patient outcomes (261-276). Thereby, my analysis yields a striking 

result as despite the similarity between gastric, pancreatic cancer and OAC, increased 

CALR expression forms a positive prognostic indicator of survival; this result finds 

validation with published analysis of OAC samples from the TCGA dataset demonstrating 

improved relapse free survival with greater CALR expression (277). This analysis in 

combination with the literature could support CALR as positive prognostic factor in OAC, 

however, it is important to note the roles CALR can perform outside of antigen 

presentation, including epithelial-to-mesenchymal transition (EMT) and metastasis, 

reported in breast and gastric cancer, which is not assessed in my analysis (278, 279). 

Importantly, assessing the impact of CALR on immune cell subpopulation distribution 

may indicate whether the function of CALR in improved OAC patient outcomes is 

immune related (presented in chapter 4). 
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Peptide generation is incredibly important in cancer antigen presentation to produce 

immunogenic neoantigens which can optimally bind to the HLA molecule peptide binding 

cleft. This importance is reflected in the literature, for example, the ERAP genes (ERAP1 & 

2) function within the ER to cleave peptides into the appropriate length for binding to 

MHC class I HLAs (8-11).  In cancer ERAP1 expression can alter the neo-epitope 

repertoire, as demonstrated by ERAP1 inhibitors/knockout models which produce 

increased neoantigen peptide length and greater cytotoxic T cell infiltrate (279-281).  

Unfortunately, this does not find concordance with my analysis with low ERAP1 

expression corresponding with shorter CSS, however, this cannot reflect inhibition or 

knockout of ERAP1 as there is still functional quantity of ERAP1 in these cases.  ERAP2 

similarly to ERAP1 functions to cleave peptides for optimal HLA binding; in Squamous cell 

lung carcinoma, high ERAP2 expression was identified as an independent positive 

prognostic factor, this is concordant low ERAP2 expression shorter OS, CSS (282). 

Conversely, ERAP2 inhibition in leukaemia has resulted in the presentation of novel 

epitopes which could enhance the immunogenicity of tumour cells (283, 284).  

Interestingly, approximately 25% of individuals possess a SNP which results in lack of 

ERAP2 expression, which may simulate the altered epitope described in the leukaemia 

publication, however assessing the samples in the OAC cohort which lacked ERAP2 

expression did not indicate any altered survival outcomes in OAC (284). Further 

investigation into the immune cell landscape with ERAP1/2 expression may yet yield 

interesting findings beyond survival analysis, explored in Chapter 4. 

 

The immunoproteasome is vital for peptide generation, degrading proteins in the cytosol 

before peptide translocation to the ER.  Within my mRNA expression analysis three 

immunoproteasome component genes demonstrated an association with altered 

survival.  Specifically, the low expression of PSMB8/9 corresponded with shorter CSS, 

whilst conversely greater PSMB10 correlated to shorter OS, CSS and DFS.  This presents 

an interesting dichotomy, between the impact of the immunoproteasome components 

on survival in OAC; exploring the literature reinforces a known dichotomy due to the 

multiple functions of the immunoproteasome.  The functions of the immunoproteasome 

include peptide generation, maintenance of protein homeostasis and promoting 

tumorigenic cytokine expression.  While playing a positive role in antigen presentation, 

these components may possess differing roles, for example, PSMB8/9 expression is 
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known to associate to improved prognosis due to its role in improved neo-antigen and 

TAAs presentation. This has been demonstrated on melanoma cells, with downregulation 

presenting a  major mechanism accounting for MHC class I antigen loss in colorectal 

cancer (284, 285). 

Interestingly, the prognostic value of PSMB10 varies between disease type, for example, 

greater PSMB10 expression in pancreatic cancer corresponds to longer OS, whereas, in 

gastric cancer greater PSMB10 expression results in poorer OS (286).  Without further 

analysis it is difficult to infer which role each immunoproteasome component is 

performing; however, this analysis suggests PSMB8/9 may be improving antigen 

presentation by producing immunogenic peptides for presentation, whilst PSMB10 may 

either be functioning to improve cancer cell survival by protein homeostasis or by 

promoting tumorigenic cytokine expression.  Further analysis observing the immune cell 

distribution between prognostic expression groups of PSMB8/9/10 may yield further 

insight into the function of these immunoproteasome components in OAC. 

 

MHC class II genes are exclusively expressed by professional antigen presenting cells 

(APCs) including dendritic, macrophages and B cells.  Typically, the presence of APCs in 

the immune microenvironment forms a positive prognostic factor, though the specific 

subtype of macrophage possesses differing outcomes with M1 macrophages deemed a 

positive prognostic feature in cancer and M2 a negative factor.  In respect to my analysis 

assessing the impact of MHC class II on survival outcomes may in be indicative markers of 

two factors, the presence/lack of APCs in the tumour immune microenvironment by 

aggregate MHC class II expression or differences immune composition.  Justifying the 

later point, prior publications have demonstrated M1 macrophages express higher levels 

of MHC class II molecules due to macrophages MHC class II expression being inducible 

rather than constitutive like dendritic cells. Thereby, identifying the significant survival 

associations within MHC class II gene expression should be paired with digital cytometry 

to deconvolute the specific cell of origin potentially responsible for altered survival 

outcomes (287-289). 

 

Firstly, among the HLA-antigen loading complex assembly/antigen presentation genes, 

nine out of fifteen candidate gene’s expression corresponded with altered survival 

outcomes.  Consistently, the low expression of these nine candidates possessed a similar 

negative impact on survival outcomes, this could support the potential argument that 
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this gene expression profile represents cases of high or low presence of APCs in OAC 

tumours or indicate the polarisation state of macrophages in the OAC TIME.  This finding 

will be further explored in chapter 4 via digital cytometry methodology to characterise 

APCs distribution related to differential expression of MHC class II genes. 

Exploring the literature finds support for the survival associations identified by my 

analysis of MHC class II gene expression in OAC; for instance HLA-DR of which HLA-DRA is 

a component of has been prior identified as an independent positive prognostic indicator 

in tumour epithelium of OAC. This may provide insight into the reasoning behind OAC 

being characterised as an immune hot tumour type, as HLA-DR is reported to possess the 

greatest correlation with cytotoxicity markers in cancer . Additional publications highlight 

HLA-DR correlates to increased T cell infiltrate in lung adenocarcinoma and forms a 

marker of immune hot tumours predicting responses to checkpoint blockade therapy in 

NSCLC (196, 290, 291).  In combination with published literature, the expression of HLA-

DRA in OAC may represent immune hot tumours which could form exceptional targets 

for immunotherapy.  These studies findings can be further extrapolated into my findings 

in HLA-DRB1/5 which when lowly expressed associated to poor patient outcomes. 

importantly, the subtype of APC which is responsible for this outcome is unknown, 

further analysis conducted in chapter 4 will explore whether high HLA-DRA expression in 

OAC can be attributed to a specific APC subtype. 

 

The literature surrounding the importance of HLA-DMA expression in cancer survival is 

sparely reported, studies so far have focused on the downregulation of these genes via 

external mechanisms including C-MYC, however, two studies of interest identified 

downregulation of HLA-DMA; firstly, a pan-cancer analysis demonstrated HLA-DMA 

correlates with cytotoxicity markers in cancer, though possess the smallest correlation 

with cytotoxic activity; the second study demonstrates HLA-DMA is downregulated over 

stage in cutaneous melanoma with higher expression corresponding to greater OS (292, 

293). Aligning my findings with these publications suggests HLA-DMA may form a 

component of immune response in OAC resulting in greater survival outcomes via 

eliciting responses from CD4+ T cells, assessment using digital cytometry presented in 

chapter 4 will explore this interaction. 
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According to a recent publication HLA-DPA1 expression possesses the third greatest 

correlation with cytolytic behaviour, thereby within the scope of OAC the expected result 

would form an association between increased HLA-DPA1 expression and improved 

survival outcomes due to improved immune suppression of OAC tumours.  My analysis 

demonstrates low HLA-DPA1 within OAC tumours corresponds with shorter OS, CSS and 

DFS finding concordance with the known biological role of HLA-DPA1 in eliciting CD4+ T 

cell responses, to be confirmed in digital cytometry analysis in chapter 4. 

 

In my analysis I uncovered low HLA-DQ gene expression in the form of HLA-DQA1/2 in 

OAC associated to shorter survival outcomes, aligning this finding to research in others 

cancers identifies HLA-DQ genes highly correlates with cytolytic activity in tumours (293). 

Despite this, publications in OSCC how linked the expression of HLA-DQA1 with poor 

survival outcomes corresponding to increased immune evasion (294, 295).  My findings 

presented here highlight further differences in the TIME of OAC as compared to OSCC 

and may clarify the role of HLA-DQ genes in OAC compared of OSCC, yet further analysis 

into predicting the cells expressing these genes must be conducted (see chapter 4). 

 

Lastly among the HLA class II molecules, low expression of HLA-DOA corresponded to 

shorter DFS; current literature places HLA-DOA as the least immunogenic among its 

peers, despite this, HLA-DOA has been identified as a candidate within a 7-gene signature 

which predicts improved DFS in Hepatocellular Carcinoma (296). 

 

Decreased expression of CD74 within the OAC cohort demonstrated a correlation with 

shorter OS, CSS and DFS, this provides an interesting perspective of the potential role of 

CD74 in OAC.  Notably, prior literature surrounding CD74 in cancer either demonstrates 

the genes role as a positive or negative prognostic factor dependant on the disease type 

and the role CD74 plays either within antigen presentation or non-antigen presentation 

processes such as macrophage migration or mesenchymal epithelial transition (MET).  

For example in gastric and colon cancers, fibroblasts which expressed CD74 increase 

gastric cancer cell proliferation and drove MET of normal gastro-intestinal cells; this 

finding is in opposition to my analysis (297). Though supporting arguments can be found 

in breast cancer research which indicate CD74 expression may be a positive prognostic 

feature of basal-like breast cancer and prostate cancer (286, 298).  CD74 expression also 

correlated to high mean density of CD8, CD4 and CD68 TILs in basal-like breast cancer, 
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and increased macrophages, activated dendritic cells, and neutrophils in gliomas (298, 

299).  Examination of CD74 expression survival group via digital cytometry will be used in 

chapter 4, to assess whether the expression of CD74 mirrors the increased infiltrate of 

TILs seen in basal-like breast cancer.  

 

Examination of SPPL2A expression within the OAC cohort found high expression 

corresponds to shorter OS and CSS, this is a particularly interesting result following the 

CD74 analysis, as SPPL2A functions to cleave CD74 in the MHC class II compartment.  

Thereby, by extension the role of SPPL2A in OAC may mirror that of CD74, where high 

cleavage prevents the optimal effect of CD74 in improving survival outcomes; observing 

the literature find scarce detail on the function of SPPL2A in cancers especially within the 

scope of antigen presentation.  However, exploring the human protein database does 

find in gastric cancers high expression results in longer OS, whereas high expression in 

pancreatic cancer corresponds to shorter OS (286).  This could potentially relate to either 

SPPL2A functions producing an inflammatory microenvironment, altered DC 

differentiation or the reported negative role of SPPL2A in the nuclear translocation of the 

ODZ1, a protein associated to poor patient outcome in glioblastoma (300-302). Thereby, 

in my further analysis of SPPL2A I will determine whether the impact on survival 

outcomes in OAC is related to any immunological differences in immune cell composition 

regarding DC differentiation or by the association of the roles of CD74 and SPPL2A in 

immune cell distributions of OAC (see chapter 4). 

 

The remaining two MHC class II genes, LGMN and CTSS are both proteases involved in 

peptide generation for MHC class II HLA loading, interestingly they both share the same 

trend with survival with low LGMN expression corresponding to shorter OS, CSS, DFS and 

low CTSS expression associating to shorter CSS.  Mining the literature surrounding CTSS 

and LGMN in cancer highlights a discordance between my OAC cohort and other cancers.  

For example, high expression of CTSS in gastric and lung cancer relates to gastric cancer 

cell migration, invasion and poor survival outcomes in both diseases. However, the role 

of CTSS in these cancers has been associated to ECM remodelling, cell migration and 

producing an inflammatory microenvironment, rather than its antigen presentation role, 

even forming a potential treatment vector through inhibition (303-307). Conversely, CTSS 

in the case of OAC may bolster immune responses as shown in other cancers where the 
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expression of CTSS correlates to increased immunogenicity of tumours and immune 

infiltrate including oesophageal, gastric and pancreatic cancers, further correlating to 

TMB (308). This opens an interesting question on the role of CTSS as a positive prognostic 

factor in OAC and the potential that the high TMB of OAC is responsible for the disparity 

of survival outcomes between OAC and other cancers.  Mirroring the literature of CTSS, 

LGMN is also established as a negative prognostic factor in cancers including gastric, 

colorectal and breast cancers, leveraging this effect by promoting tumour development 

and TAMs stimulated cell proliferation, migration, and invasion (309-311). For these two 

key proteases it is key to follow up the survival analysis with digital cytometry to explore 

the alteration of the TIME due to their expression, this could potentially unravel the roles 

CTSS and LGMN are playing in OAC which produces this dichotomy in survival outcomes 

between OAC and other cancers. 

 
The final APM gene candidate to exhibit altered survival outcomes with expression 

belonged to an alternative APM pathway, high MR1 expression in OAC presents as a 

positive factor in survival outcome, with only recent publications beginning to explore 

the function role of MR1 in tumour immune.  One such study explored the novel role 

MR1 possesses in eliciting responses from MAIT cells to produce a specific anti-tumoral 

response in a pan-cancer cell panel, suggesting MR1 is capable of presenting highly 

immunogenic lipids to MAIT cells to target cancer (312). Interestingly, the survival impact 

of MR1 expression in OAC has not yet been explored in the literature, thereby my 

analysis suggests MR1 may be capable of eliciting immune responses in OAC, 

unfortunately, by current deconvolution methodology MAIT cells cannot be 

deconvoluted, yet digital cytometry analysis will endeavour to identify any other 

adaptions in the TIME due to MR1 expression (See chapter 4). 

3.4.5 Transcription regulation by genome methylation alters the APM landscape of mRNA 
expression via regulation of known APM gene expression regulators. 

To explore the mechanism potentially behind cancer regulation of APM genes which 

possessed a significant association I conducted an epigenetic analysis of ten APM genes 

comprised of five MHC class I, two MHC class II HLAs and three APM gene expression 

regulators.  Notably, the methylation of CpG sites associated to eight of the ten gene 

explored genes were differentially methylated in comparison to normal oesophagus.  
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Of the eight differentially methylated genes, six demonstrated significantly higher 

methylation including MHC class I components HLA-A/G and CALR, HLA-DPA1/B1 of the 

MHC class II HLAs and APM gene expression regulator RFX5.  Significantly reduced 

methylation of CpG probes associated to the expression of CIITA and CSDE1 was also 

identified with the remaining genes HLA-B and ERAP2 not reaching a significant 

association. 

Exploring the literature yielded interesting parallels in the methylation of the explored 

genes, firstly, the methylation of CpG site for HLA-A identified in my analysis 

(cg09803951) has been prior identified as possessing associated with reduced HLA-A 

expression in pre-invasive squamous cell lung cancer (313). However, then assessing the 

correlation between this CpGs site (cg09803951) methylation and expression within my 

OAC cohort I did not find a significant correlation.  Interestingly, the methylation of HLA-G 

in OAC appeared significantly lower compared to normal tissue, with literature 

demonstrating similarly events in HLA-G de-methylation in other cancers to exploit HLA-

G’s ability to elicit immune tolerance towards cancer cells and perturbed T/NK cell 

infiltrate (314, 315). This argument is further supported by the analysis presented 

displaying a statistically significant correlation between the methylation CpG associated 

with HLA-G and its respective mRNA expression.  Despite these results finding 

concordance with the wider literature, the survival association between low HLA-G 

expression and poorer survival still provides a confusing outlook on the function of HLA-G 

in OAC, highlighting a further need to explore the dynamics of immune subpopulations 

due to HLA-G expression (See chapter 4). 

The final MHC class I gene investigated, CALR, demonstrates an increase methylation 

status in OAC tissue, in the current literature CALR expression is presented as a negative 

prognostic characterise of multiple cancers including OAC, thereby, the increase in 

methylation was unexpected, however the CpG site which displayed the greatest 

differential methylation in this case did not correlate to expression. 

Both MHC class II HLA-DPA1/B1 possessed increased methylation status in OAC tissue 

compared to normal oesophageal tissue, however the same methylation site did not 

correspond to gene expression.  Notably, this result finds concordance with CRC and 

serrated polyposis syndrome where HLA-DPA1 being hypermethylated compared to 

normal tissue, conversely, the CpG site the publication differs from that selected within 

my analysis (cg12858166) (316). This alternative CpG site within my analysis did not yield 
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either a correlation with expression or differential methylation from normal tissue, which 

could demonstrated key differences in the regulation of MHC class II expression in OAC 

compared to CRC (316). Interestingly, the methylation of HLA-DP (including alpha and 

beta variants) has been prior associated with poorer overall survival in gastric cancer as 

part of a four-gene methylation signature, which could suggest other CpG sites for HLA-

DP genes could have an impact on OAC survival due to the similarity between the 

diseases (317). 

Among the APM gene expression regulators, CIITA and CSDE1 demonstrated altered 

methylation as compared to normal oesophageal tissue.  CIITA, which functions as a 

trans-activator of MHC class II expression and has been prior identified as a somatic 

target for epigenetic silencing in cancer associating to poorer survival and disease 

progression, demonstrated in rhabdomyosarcoma, haematopoietic tumour cells and 

gastrointestinal cancers (318, 319). This provides a striking contrast to my OAC cohort 

results (TCGA only) where methylation of CIITA decreased in OAC tumours compared to 

normal tissue. Furthermore, the methylation of the CpG site associated to CIITA did 

correlate to CIITA expression in OAC suggesting APCs may upregulate CIITA expression in 

OAC tumours as a positive immune response or a response to inflammatory cytokines 

present in OAC tumours. Yet CIITA upregulation is is not understood adenocarcinomas 

(320). Reduced methylation of CSDE1 in my OAC cohort compared to normal oesophagus 

mirrors a recent publication, which demonstrates cancer modifies methylation at the 

CSDE1 locus via a methyltransferase SYMD3 which mediates H3K4 trimethylation of 

CSDE1 locus in mouse melanoma cancer models with a more recent study replicating this 

finding in oral squamous cell carcinoma (321, 322). 

3.4.6 Limitations 

During my data mining investigation a few notable limitations arose which require 

explanation.  Firstly, the clinical data could seek improvements in accurate reporting, for 

instance, several samples did not accurately report the TNM staging within both the TCGA 

and OCCAMS datasets, requiring these samples to be filtered out, decreasing the overall 

sample size.  This leads to a further issue as although the cohort did possess power of 

detection for 20% incidence of genomic events (copy number, mutation, mRNA 

expression). Study of the complete OCCAMS dataset (n=551) did detect B2M mutations as 

a somatic driver mutation, this was not reflected in my OAC cohort potentially due to the 

smaller sample size (242). Furthermore, issues in clinical data effected the results of the 
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multivariate analysis due to the lack of metastasis reporting in the TNM staging resulting 

in a reduced multivariate model N number. 

Unfortunately, there is lack of methylation data within the OCCAMS dataset which 

severely reduced the number of OAC samples to n = 87, which could not afford a decent 

power of detection.  An additional issue involves the complexity of copy number 

segments over chromosome 6 preventing any attempt to deconvolute the impact of copy 

number at the single gene level. 

3.4.7 Conclusions 

This data mining experiment has formed an excellent discovery for the landscape APM 

genomic defects among OAC patients, despite limitations presented above.  Overall, the 

results of my data analysis suggest somatic mutations is infrequent among OAC patients 

meaning APM machinery proteins are intact in OAC upon expression.  Somatic copy 

number in OAC over the HLA locus presented a complex issue where multiple HLAs of 

both the MHC class I and II were co-copied on the same segment, furthermore this may 

be driven by selection of VEFGA, a well understood copy number amplification in OAC.  

This led to exploring the mRNA expression, finding the expression of APM gene 

candidates in OAC associates to survival outcomes.  Additionally, the regulation of APM 

gene expression was explored, finding CSDE1, IRF1, NLRC5, RFX5 and CIITA all formed a 

component in APM gene expression regulation via correlation analysis, with CSDE1 and 

RFX5 demonstrating association with survival outcomes.  Importantly, the CSDE1 survival 

association withstood multivariate testing, suggesting CSDE1 may be an independent 

prognostic marker of survival.  To explore the regulation of APM gene expression 

regulators I observed the methylation status of these genes, with the most striking result 

demonstrating demethylation of the CSDE1 locus in OAC compared to normal 

oesophageal tissue.  I have characterised the OAC APM genomic landscape, finding APM 

gene expression and revealed several targets to analyse further, including HLA-A/B, 

TAPASIN genes, and CSDE1 based on my findings and the wider literature.  This research 

also presents a holistic landscape of APM genomics in OAC which has not prior been 

presented in such depth, unlike OSCC which has been greatly explored for APM genomic 

defects.  Excitingly, there is merit to further investigate APM gene candidate expression in 

OAC and its impact on the OAC TIME.  The next step in my analysis is to observe the 

impact of APM gene expression which possessed prognostic significance on the 



 

123 

distributions of immune cell subpopulations using digital cytometry (See Chapter 4), this 

should potentially further elucidate the role of APM gene expression in the TIME and anti-

tumoral immunity.  

Chapter 4 Investigating the relationship between 

immune composition estimates and prognostic APM gene 

defects. 

4.1 Introduction 

From the prior chapter, it is understood defects in APM gene expression within OAC 

tumours can associate with patient overall survival, however, the mechanism by which 

this survival impact is come about is not yet understood. 

This chapter will focus on elucidating whether prognostically informative APM gene 

expression (determined by OS association from Chapter 3 results) is tied to changes in the 

tumour immune microenvironment (TIME), estimated by digital cytometry deconvolution 

analysis to identify the proportions of immune cell subpopulations from the combined 

TCGA and OCCAMS RNA-seq data. 

4.1.1 Deconvolution methods  

Determining immune cell compositions in tumour tissue relies on several conventional 

methods including immunohistochemistry and flow cytometry, however, these 

techniques often use single markers for cell types such as a CD8+ antibody to detect CD8+ 

T cells.  Enumerating immune subsets using these methods suffer from limitations in 

phenotypic markers and can be challenging to practically implement and standardise 

(323) . With recent advancements in in silico methods and computational modelling (i.e., 

machine learning) allow for predicting fractions of multiple cell types in gene expression 

profiles in sample mixtures, these methods have been coined as ‘immune profiling by 

signature matrix deconvolution’ or ‘deconvolution’ for short.  Multiple deconvolution 

computation models have since been developed since the advent of more powerful 

computation hardware including OLS, nnls, RLR, FARDEEP, and CIBERSORT (324-327).  

Deconvolution analysis methodology can be divided into two broad categories, reference-

based (supervised) methods, which function by using a priori defined reference matrix 

made of expected gene expression profiles of cell types.  Mathematically, a reference 
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matrix is represented as 𝐻𝑚 𝑥 𝑘, m representing expected value for markers for a 

particular cell type and k representing cell types known to be present in the sample; using 

the reference matrix a deconvolution methodology can use non-negative or constrained 

linear regression methods to dissect cell types based upon the samples gene expression 

matrix (328).  

Reference-free (unsupervised) approaches contrast to referenced-based approaches by 

using ad hoc feature selection, with the variability of each feature determining how 

informative a feature is in the sample mixture; selected features are then used to dissect 

cell types (329). A literature search of deconvolution methodology found the top 

deconvolution methods used in publication (>100 articles) are CIBERSORT and Xcell.  

CIBERSORT and the latest version CIBERSORTx are supervised deconvolution methods 

which infer cell type abundance and cell-type-specific gene expression from RNA profiles 

of intact tissues; this methodology was first reported in 2015 with CIBERSORTx being 

reported in 2019 (327, 330). Outside of the initial report, CIBERSORT was first published in 

a pan-cancer analysis of the TCGA dataset identifying an association between 22 distinct 

leukocyte subsets and cancer survival (331). CIBERSORTx also provides two distinct 

reports on immune abundance, namely absolute and fractional values.  Fractional scores 

represent the proportion of a cell type targeted by the analysis, for example the 

proportion of LM22 (Immune cells) which are CD4+ T helper cells, whereas absolute 

scores scales cellular fractions to produce a score reflecting each cell type’s absolute 

proportion allowing for direct comparison between samples and cell types (332). 

Next Xcell deconvolution, first reported in 2017, outperformed the previous version of 

CIBERSORT by not being reliant on Affymetrix microarray studies, instead integrating 

single sample gene set enrichment analysis with deconvolution approaches and could 

identify 64 cell types opposed to the 22 cell types CIBERSORT can deconvolute.  

Importantly CIBERSORTx carries several advantages including estimation of sub-

population and total immune content using its absolute setting (333, 334).  A recent study 

benchmarked a number of deconvolution methodologies, assessing them with both bulk 

and single-cell RNA transcriptomic reference data to determine the accuracy of each 

using pseudo-bulk datasets with known cellular proportions using RMSE (root mean 

square error) as a measure of accuracy (335). For the analysis of bulk RNA the top five 

performing bulk deconvolution methods were determined to be OLS, nnls, CIBERSORTx, 

RLR, and FARDEEP (in running order) due to their similarly low RMSE (335). Assessment of 
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deconvolution methods in scRNA-seq data identified the DWLS, MuSiC, SCDC as the top 

three as they achieved median RMSE values lower than 0.05, penalised regression 

approaches such as lasso, ridge, elastic net regression, and DCQ performed worse in 

scRNA-seq data achieving a median RMSE of approximately 0.1 (335). An external review 

of deconvolution methods in immune-oncology examined the use of CIBERSORT, EPIC, 

MCPcounter, quanTIseq, TIMER and Xcell; from this report xCell was suggested as it 

performed best with the lowest RMSE; however, results of this analysis were much in 

concordance with the prior benchmarking paper placing CIBERSORT and Xcell as the most 

accurate deconvolution methods (332, 333, 336-340). Using the available literature 

CIBERSORTX provides high accuracy, the second highest cell type distinction with the 22 

LM immune panel (A validated signature matrix containing 547 genes that distinguish 22 

human hematopoietic cell phenotypes), can be used to infer total immune content of a 

sample and is by far the most published (A PUBMED literature search of “CIBERSORT” and 

“Xcell” terms, resulted in: 761 vs 182 research articles). Thereby, by consulting the 

literature the deconvolution analysis for our project will focus on the use of CIBERSORTX 

to identify the proportions of the immune cells, whilst allowing analysis to determine 

total immune content in OAC samples. 

4.1.2 Limitations of deconvolution methodology 

Despite the usefulness of deconvolution methodology in determining the immune cell 

subpopulations in cancer there are several limitations associate with these techniques.  

Firstly, the spatial location of the immune cell types cannot be determined by 

deconvolution; the spatial location of immune cells is important as this can help elucidate 

the mechanistic effects of these cells in the TME.  For example, the location of CD8+ T 

cells can help determine the immunophenotype of a specific tumour, with exclusion of 

CD8+ T cells from the intratumorally space being a marker of an immunosuppressive 

TIME (210).  Secondly, only a specified number of immune cell phenotypes can be 

classified by deconvolution methodology. For example, within the LM22 signature matrix 

the signatures for CD4+ cells are CD4 naïve, CD4 resting and CD4 activated, which does 

not provide granular data on the immunophenotype of CD4 cells which can significantly 

impact the TIME. This includes Th1/Th2 balance, requiring further exploration using 

methodologies such as gene set enrichment analysis, as demonstrated in other 

immunological studies (341, 342). Finally, RMSE values produced in deconvolution 

analysis are significantly impacted by a priori knowledge, with sub-setting of known 
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markers of cells prior to deconvolutions significantly lowering the RMSE, suggesting 

sensitivity to input data.  This sensitivity may mean that different datasets may not be 

directly comparable; furthermore, this sensitivity was explored by removing a single 

immune cell type from pancreatic samples finding that removing a cell type from the 

reference matrix made MuSiC, NNLS, and CIBERSORT results less accurate (343). 

4.1.3 Validation of deconvolution output 

Despite deconvolution addressing the limitation of phenotypical markers presented in 

immunohistochemistry (IHC), methodologies such as RNA-scope, spatial transcriptomics, 

and flow cytometry should be employed to validate the findings of deconvolution 

analysis (344, 345). 

4.1.4 The Tumour Immune Microenvironment (TIME) of OAC 

 The TIME is the network of interacting cancer and immune cells found within a tumour.  

Notably, the mechanisms of immunity within these niches are significantly different from 

those outsides of the tumour microenvironment niche, due to cancers ability to 

manipulate and obstruct normal immune functions as a mechanism to avoid anti-tumoral 

immunity.  For its significant role in the development and progression of tumours, the 

TIME is deemed as a hallmark of cancer (346). A previous study of the TIME of 111 

primary OAC resections (mean age 65; sex Male: Female, 96:15; T category T1: 33, T2: 10, 

T3:65, T4:3; Lymph node metastasis: 52; distant metastasis: 4; Tumour grade G1-2: 64, 

G3-4: 47) depict a high range of CD3+, CD8+, FoxP3+ TILs distribution.  See key results 

summarised in Table 17. 

 
Table 17 Summary of cell densities in OAC from Stein et al, 2017 (210). 

IMMUNE CELL MARKER TUMOURAL LOCATION CELL DENSITY 
(Intratumoural/Peritumoural) 

CD3 INTRATUMOURAL 1-231/0.849 mm2 

CD3 PERITUMOURAL 1-220/0.849 mm2 

CD8 INTRATUMOURAL 1-130/0.849 mm2 

CD8 PERITUMOURAL 1-145/0.849 mm2 

FOXP3 INTRATUMOURAL 0-73/0.849 mm2 

FOXP3 PERITUMOURAL 0-35/0.849 mm2 

 

This study also identified the TILs counts for each T cell subtype (CD3+, CD8+ and FoxP3+) 

correlated with each other and further correlated with the total inflammatory reaction 
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(210).  Another study of 354 OAC tissue microarrays identified that OAC seems to 

preferentially express PD-L2 over PD-L1, detecting PD-L2 in in 51.7% of OACs compared 

to the 2% of cases with PD-L1 epithelial expression (73).  Moreover, PD-L1 is expressed in 

both tumour cells and tumour infiltrating immune cells in OSCC, but there is preferential 

expression of PD-L1 in TIICs (Tumour infiltrating immune cells) rather than in tumour cells 

in OAC (73). Notably, interleukin-6 (IL-6) is highly expressed in some OAC cases, being 

especially expressed in cancer-associated fibroblasts (CAFs) (347).  High secretion of IL-6 

in OAC patients may impact the differentiation of monocytes from dendritic cells to 

macrophages, effecting cell fate of monocytes in the TIME identifiable by deconvolution 

analysis (347, 348).  One study used the estimation of Stromal and Immune Cells in 

Malignant Tumour Tissues Using Expression Data (ESTIMATE) algorithm, which calculates 

a score based on the expression of immune signature genes (141 genes) including 

markers of T cells; analysis of the TIME of OAC found the median immune score was 

higher in female as compared to male patients and was correlated with tumour-node-

metastasis stage (349, 350). 

 

Important cellular players of the TIME in OAC are described across the following sections 

below. 

4.1.5 B lymphocytes  

B lymphocytes are cells that express clonally diverse cell surface immunoglobulin (Ig) 

receptors that can recognise specific antigenic epitopes.  These cells mediate multiple 

functions essential for immune homeostasis; B cells are essential in the activation of T 

cells demonstrated in mice depleted of B cells at birth using anti-IgM antiserum (351). 

Other functions B cells perform in host immunity include antigen presentation to T cells, 

cytokine secretion, Th1/Th2 cytokine balance and the regulation of dendritic cells (352-

354).  In oesopho-gastric adenocarcinomas B cells were increased in tumour samples and 

subset-analyses of TILs showed increased proportions of differentiated and activated B 

cells and an enrichment for follicular T helper cells.  These tumour-associated B cells 

(TABs) in OAC were mainly organized in tertiary lymphoid structures (TLS), which are 

similar structurally to secondary lymphoid organs (355).  Additionally, B cells were 

decreased in tumours with high expression of PD-L1 or impaired MHC I HLA expression 

(355).  From the literature, low proportions of B cells in OAC tumours from deconvolution 

could link to high PD-L1 expression within prognostically significant APM expression 
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groups, this is due to B cell infiltrate decreasing in tumours with HLA-loss and PD-L1 

expression (355). 

4.1.6 CD8 T cells 

Naive CD8+ T cells specifically recognise antigens presented on APCs (antigen presenting 

cells) MHC I molecules activating and maturing into cytotoxic T lymphocytes (CTLs).  CTLs 

provide immune defence against intracellular bacteria, viral, protozoa infections, in 

addition to providing anti- tumoral responses(356). CD8+ T cells can specifically target 

cancer cells, thus forming the majority of immune anti- tumoral responses, directing 

cytotoxicity towards cancer cells by secreting cytotoxic granules.  Cytotoxic granules 

contain perforin, plus granzymes A and B, these respectively act to form pores in cell 

membranes and induce apoptosis through activation of a caspase cascade establishing an 

apoptosome (357). As CD8+ T cells can target cancer cells, their mechanisms of 

engagement can be exploited by immunotherapies to boost anti-tumoral responses.  

Immunotherapies such as anti-CTLA-4 has shown promise in keeping T-cells activated by 

preventing tumour cell B7 ligand from binding to CTLA-4 receptors.  This blockade of the 

immune checkpoint allows T-cells to direct cell cytotoxicity towards cancer cells (358). 

These therapies are currently being explored in OAC and gastric cancers, with the 

presence of CD8+ TILs being a major factor in in response to checkpoint blockade 

therapies; thereby, APM expression which impacts the infiltration of CD8+ TILs in OAC 

measured by deconvolution may be a prognostic tool in future to assess the likelihood of 

patient response to checkpoint blockade in OAC (359). Interestingly, within CD8+ T cells 

there can be found a CD8+ Treg population, this subset notably is capable of secreting 

inhibitory cytokines and chemokines; including IL-10, transforming growth factor (TGF)-β, 

IL16, IFN-γ (360). Remarkably, CD8+CD28− Tregs can render APCs tolerogenic, through 

upregulation of immunoglobulin-like transcript (ILT)3 and ILT4 expression (361). CD8+ 

TILs correlate with improved survival in patients with OAC, with CD8+ TILS forming an 

independent prognostic factor and were associated to significant pathological response 

to neoadjuvant chemotherapy.  Within the same study multivariate analysis increased 

levels of CD4+ and CD8+ TILs were associated with significant local tumour regression, 

lymph node downstaging and improved cancer specific survival (362). 
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4.1.7 CD4 T cells  

CD4+ T cells often coined, ‘T helper’ cells due to their support functions in assisting most 

aspects of the adaptive immune system from helping activate B cells to secrete 

antibodies, macrophages to destroy ingested microbes and even assist in activating CD8+ 

cytotoxic T lymphocytes to kill cancer cells.  CD4+ T cells can be divided into multiple cell 

types; firstly, Th1 cells participate in responding to intracellular pathogen and cancerous 

cells.  In the presence of IFN-γ and IL-12, and absence of IL-4 and IL-10, naive CD4+ T cells 

are driven to differentiate into Th1 cells (363). This maturation towards the Th1 

immunophenotype is further driven by a positive feedback loop, resulting from Th1 cells 

expressing IFN-γ in the microenvironment, also suppressing generation of Th2, Th17, and 

Tregs (364-366).  Moreover, secretion of IL-2 from Th1 cells promotes the proliferation of 

lymphocytes, enhancing the activity of NK cells by upregulating IL-12 receptor and STAT4 

expression; this interaction leads to increased secretion of IFN-γ and TNF from NK cells 

(367). Furthermore, IFN-y and IL-12 secreted from Th1 cells may increase CD40 

expression, thereby promoting macrophage functions, such as phagocytosis and 

presentation of exogenous antigens (368). Th2 cells participate in type-II immune 

responses towards parasites, but also play significant roles in allergies and atopic 

illnesses (369).  TCR activation and cytokine-mediated signalling are important during Th2 

cell differentiation.  TCR activation leading to NFAT, NF-kB and AP-1 activation results in 

upregulation of IRF4 expression, this in combination with upregulation of GATA3 leads to 

Th2 differentiation.  IL-4 and IL-13 can also promote Th2 differentiation through binding 

to IL-4 receptors, resulting in the upregulation of GATA3 via STAT6 (370).  Interestingly, 

squamous esophagitis to Barrett's oesophagus progression is accompanied by a 

transition from a Th1 to Th2 immune response which is hypothesised to induce PD-L2 

through the Th2 cytokines IL-4 and IL-13 in the progression from squamous esophagitis to 

Barrett's oesophagus, contributing to immune evasion of OAC (73). Thereby, detection of 

a Th2 dominant Th1/Th2 balance in deconvolution analysis could relate to immune 

suppression of TIME via PD-L2 induction.  Th17 cells are proinflammatory cells, these cells 

mediate host defence against bacteria and fungi by secreting IL-17.  Th17 cells 

characteristically express; RORyT, RORα, IL-17A, and IL-17F (371, 372).  Interestingly, Th17 

cells are polarised in the presence of TGF-β and IL-6 (371).  However, unlike their Th1 and 

Th2 counterparts, Th17 do not secrete IL-6, thereby do not possess a positive feedback 

loop for the generation of Th17 cells.  Instead, IL-21 is key to Th17 expansion, promoting 
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Th17 expansion via an IL-6 and TCR independent mechanism (373).  In OAC IL-17 secreted 

by Th17 cells promotes cell invasiveness and migration through ROS-dependent, NF-κB-

mediated MMP-2/9 activation (374).  Furthermore, in reflux oesophagitis (RO) and BE an 

increased ratio of Th17/Treg was observed when compared to normal controls, and the 

proportion of Th17/Treg in BE was also increased in comparison RO patients (375). 

Expression levels of RORyT, IL-17, IL-6, and TGF-β were elevated, while the levels of 

Foxp3 and IL-10 were reduced in patients when compared to the controls, validating the 

increase in Th17/Treg ratio (375). 

4.1.8 T cells regulatory (Tregs) 

 CD4+ Tregs act to suppress immune functions, prevent autoimmune disease and to 

promote self-tolerance by secreting specific cytokines such as IL-10 and TGF-β. Tregs 

were first described as immunosuppressive CD4+CD25+ T cells in 1995, prior to identifying 

the roles of IL-2 and TGF-β in maintenance and development of T cells, and FoxP3 as a 

master regulator of Treg functions (376). Notably, Tregs secrete immunosuppressive 

cytokines including IL-10, IL-35, and TGF-β.  These cytokines play additional roles 

promoting promote tTreg (thymus Treg) and pTreg (peripheral site Treg) proliferation 

and function, as well as, exerting suppression of other effectors cells.  TGF-β secreted 

from Tregs produces several biological responses, these include inhibiting transcription 

of IL-2 and cyclin D expression, preventing effector cell proliferation.  Furthermore, TGF-β 

inhibits Tbet and GATA3, suppressing Th1, Th2, and CD8+ T cell responses.  TGF-β also 

induces FoxP3 expression on other Tregs in the microenvironment, whilst promoting T 

cell survival by downregulating C-MYC and FasL expression, needed in activation-induced 

cell death of lymphocytes (ACID) (377).  In OAC and BE, an increase in the frequency of 

Tregs compared with normal controls with patients possessing higher Treg counts in the 

centre of the tumour associated with lower stage of disease and were positively 

correlated with the density of CD8+ CTLs (378). However, the presence of Tregs was not 

an independent prognostic factor to CD8+ T cells in OAC suggesting the increase in Treg 

numbers is related to increase the host defence mechanism overall.  The literature on 

Tregs suggest that Tregs could present a marker for overall immune host defence 

mechanisms in our OAC cohort. 
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4.1.9 Natural killer cells (NK) 

NK cells are innate lymphocyte cells that mediate anti-tumour and anti-viral responses; 

by secreting cytokines and chemokines NK cells can regulate immune responses, for 

example, CC-chemokine ligand 5 (CCL5), XC-chemokine ligand 1 (XCL1) and XCL2 secreted 

from NK cells promotes the recruitment of dendritic cells into solid tumours, this event 

correlates with improved survival (379). Activated NK cells mediate cell cytotoxicity 

through the release of granzyme B, inducing a cascade of caspases cleavages, resulting in 

cell apoptosis (380).  NK cells work synergistically with professional antigen presenting 

cells, in secreting cytokines required to induce inflammation and recruit lymphocytes to 

sites of inflammation, allowing the foundation of cellular adaptive response.  

Furthermore, activated NK cells express HLA-DR that can initiate MHC II-dependent CD4+ 

T-cell proliferation (381). Importantly, NK cells are capable of targeting cancer cells which 

undergo loss of MHC I cell surface molecules directing cytotoxic activity towards the 

cancer cells (382). In OAC, a high concentration of NK cells was associated to prolonged 

overall survival independently from clinical and other immune cell proportions; 

specifically, the best prognosis from this study was identified in patients high density of 

either CD20+ B cells or IGKC+ plasma cells combined with high density of either high CD3+, 

CD8+, FoxP3+ or NKp46+ lymphocytes, with high density of NKp46+ cells being 

significantly associated with a lower tumour stage (383). From the literature, a high 

fraction of NK cell in the TIME is a positive prognostic marker to investigate in the 

deconvolution of our cohorts, furthermore the impact of APM gene expression on NK cell 

subpopulation density can be explored; the evidence for this includes analysis of 

CD56dimCD16+ NK and CD56brightCD16− NK cells in OAC which relates to disease 

progression (384). 

4.1.10 Monocytes 

Monocytes perform a range of functions in cancer at distinct stages of tumour growth 

and progression; protumour functions include differentiation in tumour associated 

macrophages, metastatic cell seeding, suppression of T cell function and remodelling of 

the extra cellular matrix (385-387). Antitumoral function of monocytes include tumour 

cytotoxicity, prevention of metastasis, engulfment of tumour material, recruitment 

of/correlation with NK cells and inhibition of Tregs (388-394).  In deconvolution analysis 

of our cohorts, the presence of monocytes may indicate either immune suppression or 
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cytotoxic activity, observing the cytotoxic activity in high monocyte populations may 

indicate their role in the OAC microenvironment. 

4.1.11 Macrophages  

Macrophages are crucial mediators of tissue homeostasis in the TIME, the function of 

these cells are often distorted by tumours to stimulate proliferation, angiogenesis and 

metastasis, the macrophages exploited by tumours are known as tumour associated 

macrophages (TAMs).  TAMS are often described in tumours as one of two phenotypes 

M1 or M2 macrophages; M1 TAMs are pro-inflammatory and are activated by IFN-γ and 

lipopolysaccharide and promote tumour immunity by expressing elevated levels of 

tumour necrosis factor (TNF) and inducible nitric oxide synthase.  Conversely, M2 TAMs 

are anti-inflammatory and pro-tissular, expressing MHC class II molecules and pro-

tumorigenic when they express high levels of arginase 1, IL-10, CD163, CD204 or CD206 

(395). In cancer, M1 macrophages are often polarised to the M2 phenotype by IL-4, IL-10 

and TGF-β cytokines secreted into the TIME (396). In OAC prevalence of the M2 subtype 

was found to predict lymph node metastasis, cellular invasion, and poor prognosis (397-

401). 

4.1.12 Dendritic cells (DCs) 

DCs are a specialised diverse group of professional APCs which play crucial roles in the 

initiation and regulation of both innate and adaptive responses.  Importantly, in the 

TIME, DCs acquire and process tumour antigens presenting them on MHC II molecules 

with two other stimulatory signals, providing co-stimulation and stimulatory soluble 

factors, shaping T cell responses to cancer (402, 403). Tumours often modulate the 

function of DCs to achieve immune evasion including the inhibition of differentiation, 

exclusion from the TIME, disrupting activation, direct inactivation, impaired handling of 

the antigen presentation, metabolic stress and reducing viability (402). The presence of 

DCs has been noted to increase from BE to OAC, this could suggest in OAC may impair 

the function of these DCs shifting the DCs to an anti-inflammatory phenotype by 

exploiting the IL-6/JAK/STAT3 pathway. This could produce functionally incompetent 

dendritic cells as previously described in head and neck squamous cell carcinoma, non-

small cell carcinoma and breast adenocarcinoma (402, 404, 405). Overall, the population 

of DCs should remain rare in comparison to other immune cell types, with resting DC 
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being a potential marker of reduced anti-tumoral immunity via the aforementioned IL-

6/STAT3 pathway, my deconvolution analysis will aim to confirm this in OAC (406). 

4.1.13 Mast Cells 

Mast cells are long-lived secretory cells, belonging to the granulocyte family which 

possess a multitude of functions in angiogenesis, homeostasis, innate and adaptive 

immunity, and cytokine/chemokine release.  In cancers mast secrete pro-angiogenic 

factors, such as VEGF, bFGF, TGF-beta, TNF-alpha, and IL-8, supporting tumour growth 

(407). Mast cells can act as either pro-tumoral or antitumoral; for example, mast cells can 

secrete TNF-α and increasing antigen presentation by dendritic cells, promoting pro-

inflammatory T cell responses and monocyte/macrophage activation, or conversely, mast 

cells can secrete IL-10 and thus block T cell proliferation (408, 409). The abundance of 

Mast cells in OAC is known to correlate to improved OS, especially in cases with lymph 

node metastasis (410).  Additionally, pancreatic ductal adenocarcinoma (PDAC) Mast cell 

concentration within the intertumoral space, but not the peritumoral or the 

intratumorally space, was associated to poor prognosis (411). Due to the genomic 

similarities between PDAC and OAC, there may be similarities between the concentration 

of mast cells and prognosis in OAC as seen in PDAC.  Thereby, in our analysis assessing 

the impact of expression of our prognostically significant APM genes on the population of 

mast cells by deconvolution analysis may elucidate the role of APM genes in mast cell 

prevalence in OAC, suggesting potential crosstalk between specific APM genes and mast 

cells or providing a biomarker for their presence. 

4.1.14 Eosinophils 

Eosinophils are innate immune cells, belonging to the granulocyte family which secrete a 

diverse range of cytokines (412). In cancer, eosinophils can act to support anti-tumoral 

responses by normalizing tumour vessels and enhancing infiltration of CD8+ T cells by 

chemoattractant recruitment (413).  The impact of eosinophils on survival has been 

investigated in OAC, demonstrating eosinophil positive tumour possess longer overall 

survival compare to eosinophil negative tumours in cases only treated with surgery (414). 

Thereby, investigating the impact of APM gene expression on eosinophil subpopulations 

in OAC by deconvolution may yield insights by which APM gene expression impacts the 

innate immune response and overall survival. 
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4.1.15 Neutrophils 

 Neutrophils are granulocytes which form most abundant leukocytes in the circulation 

and function to capture and destroy invading microorganisms using phagocytosis and 

intracellular degradation, release of granules, and by forming neutrophil extracellular 

traps (415). In tumours, neutrophils are known as tumour-associated neutrophils and can 

have antitumour and pro-tumour functions; pro-tumoral function include the released of 

reactive oxygen species (ROS), secretion of pro-tumour cytokines and chemokines (TGF-

β, HGF, CCL4, CXCL8, IL17) (416-418). In OAC patients with elevated levels of TANs 

(Tumour associated neutrophils) were associated to poorer prognosis. This suggests the 

deconvolution analysis should aim to identify any significant difference in neutrophil 

populations for each candidate gene. Differences in neutrophil populations associated to 

APM gene expression may indicate APM gene expression could be affecting survival 

through impacting the number, function, and phenotype of neutrophils.  Interestingly, 

Mast cell positive tumour possess longer overall survival compare to Mast cell negative 

tumours (414). 

4.2 Hypothesis and research objectives 

The prior datamining investigation of the landscape of genomic defects in APM genes 

identified the expression of several APM genes was prognostically significant in our 

cohorts, however, the impact of APM gene expression on the TIME immune cell 

subpopulations is unknown.  To explore how APM gene expression impacts the immune 

subpopulations of OAC, deconvolution analysis will be conducted to elucidate the 

proportions of TIME immune cell subpopulations and thereby investigate the immune 

response associated with altered APM gene expression. 

 

Hypothesis 2: The expression of prognostically significant antigen presentation machinery 

genes defines the immunophenotype of OAC by editing the distribution of immune cell 

subpopulations in the TIME.  

Aim 2 (Results Chapter 4): Investigate immune infiltrate and activity in OAC and/ or 

recurrent molecular defects in APM/ MHC I & II pathways by digital cytometry utilising 

deconvolution analysis of bulk transcriptomic data. 
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Objective 2a: Characterise the immune cell subpopulations in OAC with our cohorts using 

CIBERSORT deconvolution and compare to known published immune populations in OAC.  

Objective 2b:  Assess the impact of antigen processing machinery defects identified by 

the chapter 3 datamining analysis on the immune cell subpopulations our OAC cohorts 

(TCGA and OCCAMS). 

Objective 2c: Determine the prognostic value of antigen processing machinery defects in 

combination with immune cell distributions. 
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4.3 Methodology 

4.3.1 Samples and data 

Samples for deconvolution analysis were extracted from the prior data mining analysis for 

176 samples from the combined TCGA-OCCAMS cohort.  The data used for deconvolution 

included RNA-seq counts normalised using TPM, batch corrected between the two 

datasets (Combat-seq) and clinical data parsed to include survival times, survival events 

and optimal cut point classifiers for each APM gene (207). 

4.3.2 CIBERSORTx 

Deconvolution functions on a linear model which focus on a gene expression profile as a 

linear equation of pre-defined signatures of immune genes at different ratios.  These 

linear regression models are applied to estimate gene coefficients used to infer the 

immune cell abundances (323).  CIBERSORTx specifically, is a deconvolution method using 

v-support vector regression method to estimate the immune cell proportions (relative) 

from a gene expression profile (323). 

Firstly, the prerequisite mixture files for TCGA and OCCAMs were prepared for analysis.  

The mixture file contains the gene expression profiles of the samples, this forms a table 

where the first row consists of column headers containing the sample labels and the first 

column consists of row headers containing the gene name or symbols, with the data 

points occupying the remainder of the table.  For our analysis, the mixture files were 

produced from the TPM normalised RNA-seq counts batch corrected using ComBat-seq 

produced in a tab-delimited (.txt) format.  Next the mixture files were uploaded into to 

the CIBERSORT file storage (https://cibersort.stanford.edu/upload.php), then input into 

the CIBERSORT basic configuration parameters on the CIBERSORT webpage 

(https://cibersortx.stanford.edu/); parameters used for each run are as follows: 

- Job type: Impute Cell Fractions 

- Signature matrix file: LM22.update-gene-symbols.txt 

- Mixture file: MIXTURE.txt 

- Batch correction: enabled 

- Batch correction mode: B-mode 

- Disable quantile normalization: false 

- Run mode (relative or absolute): absolute  

- Permutations: 100 

https://cibersort.stanford.edu/upload.php
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These parameters were selected based on advice provided in the CIBERSORTx publication, 

permutations set to 100 to produce “meaningful p values” (i.e. significant level down to 

p-value 0.01), Batch correction disabled as data was prior batch corrected, quantile 

normalisation disabled as data in RNA-seq format, finally, absolute mode used as these 

results provide comparable results between samples and cell types (323).  

4.3.3 Statistical analysis of deconvolution data 

For the combined dataset, CIBERSORT analysis for all immune cell phenotypes were 

simplified into the broad categories by adding together absolute values of immune cells 

(B cells, Plasma cells, T cells CD8, T cells CD4, T cells regulatory (Tregs), NK cells, 

Macrophages, Dendritic cells, Granulocytes, Monocytes) then z-score scaled prior to 

passing data to pheatmap function (pheatmap package) in R version 4.0.2, clustered using 

Euclidean distance with ward.d2 linkage (419). Heatmaps were annotated with the TPM 

expression of GZMA, GZMB, PRF1, the absolute TILs score and CYTscore (A score 

representing immune cytotoxicity via degranulation) calculated from the geometric mean 

of GZMA and PRF1 expression (√ GZMA ×  PRF1) (420). 

To confirm the accuracy and optimise the CIBERSORTx analysis, variations on the 

CIBERSORTx analysis were conducted and compared to Methyl-CIBERSORT data 

(orthogonal standard/ calibrator method using paired DNA methylation data with high 

accuracy to the flow cytometry gold standard) for matching TCGA samples (gifted by Dr 

Tim Fenton with permission to re-use).  Variations in data sources and batch corrected 

data types tested included TIMER 2.0 TPM, CIBERSORTx B-mode batch corrected TPM 

(only TCGA samples), CIBERSORTx B-mode batch corrected TPM (combined OCCAMS and 

TCGA samples) and finally CIBERSORTx ComBat-seq batch corrected TPM (combined 

OCCAMS and TCGA samples) (327, 421). 

 

Using the RNA-seq data from Chapter 3 results I produced a correlation analysis, 

correlating the expression of prognostically significant APM genes identified in Chapter 3 

with the immune cell subpopulation CIBERSORTx absolute values produced using 

methods explained above, these results were placed in a correlation heatmap using the R 

ggcorplot() function edited to identify significant correlations (Alpha set at the 5% level) 

(422). 
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To assess differences in immune cell distributions due to APM gene expression, 

upper/lower mRNA expression quantile cut points (<0.25 and >0.75 quantiles) for APM 

genes were introduced to dichotomise the CIBERSORT analysis, then passed to GraphPad 

prism 9 for statistical analysis and visualisation using boxplots (423). The normality of the 

CIBERSORT results in each expression group was assessed using Shapiro-Wilk tests, then 

central tendencies (means or medians) for each cell phenotype between the high/low 

APM gene expression groups were directly compared using unpaired T-tests (Parametric 

data) or Mann-Whitney U tests (non-parametric) based on data normality.  The prior 

dichotomisation was repeated though using the upper and lower quantiles of APM gene 

expression to divide the CIBERSORT results, then passed to GraphPad prism 10 repeating 

the analysis described above.  Results were corrected for false discovery using “Two-stage 

set-up method of Benjamini, Krieger and Yekutieli” in GraphPad prism. 
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4.4 Results 

4.4.1 Validation of CIBERSORTx analysis 

Firstly, I correlated the sample-level variation of CIBERSORTx analysis to 

MethylCIBERSORT data to select the most reliable batch correction method for 

CIBERSORTx using the CD8+ T cell estimates as a benchmark.  CD8+ estimates were 

selected as they had the highest performance of CIBERSORTx estimated cell fractions in 

line with flow cytometry (R2 = 0.86) (330). 

 

CD8+ T cell scores derived from the publicly available TIMER 2.0 CIBERSORT analysis 

(using the original CIBERSORT algorithm) yielded a R2 = 0.54 (see Figure 26A) with 

MethylCIBERSORT, with CD8+ T cell scores derived from CIBERSORTx using B-mode (TCGA 

samples only) displayed an improvement in correlation with a R2 = 0.58. However, once 

combining the TCGA and OCCAMS datasets with B-mode CIBERSORTx analysis 

demonstrated a significant drop in correlation for TCGA cases, producing a R2 = 0.39. This 

limitation was addressed by using ComBat-seq to batch correct RNA-seq counts between 

TCGA and OCCAMS before producing TPM data for input into CIBERSORTX analysis with B-

mode enabled (Figure 26D). 

These CD8+ Rho values are in line with flow cytometry derived cell type fraction versus 

CIBERSORT fraction sample correlation (Rho) values (0.5-0.86) from Newman et al. (Figure 

3 in Newman, et al. 2019) (330). Using this analysis, I was able to determine that using 

TPM normalised RNA-seq counts which was batch corrected using ComBat-seq would be 

sufficient to make comparisons between TCGA and OCCAMS samples and was used for all 

downstream analyses in this chapter. 
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Figure 26: Scatter plots with linear regression comparing MethylCIBERSORT with 
variations of CIBERSORTx analysis.  A: CD8 MethylCIBERSORT Absolute score 
vs CD8 Absolute score TIMER 2.0. B: CD8 MethylCIBERSORT Absolute score vs 
CD8 Absolute score CIBERSORTx B-mode (TCGA only).  C: CD8 
MethylCIBERSORT Absolute score vs CD8 Absolute score CIBERSORTx B-mode 
(combined OCCAMS and TCGA samples) D: CD8 MethylCIBERSORT Absolute 
score vs CD8 Absolute score CIBERSORTx ComBat-seq batch corrected 
(combined OCCAMS and TCGA samples). 

4.4.2 A description of the TIME in OAC 

I moved to elucidate the TIME of OAC by clustering the CIBERSORTX estimated immune 

cell subtype distributions.  This analysis identified four distinct clusters, The first cluster 

was driven by the presence of monocytes and granulocytes, the second represents an 

immune hot group with excessive amounts of effector cells including CD8+ T, CD4+ T and 

NK cells, with high macrophages (See Figure 27 & 28).  A third cluster presented as 

immune cold relatively lacking a high subset of immune cell types (See Figure 27 & 28).  

Finally, the fourth cluster was characterised by B cells, however a subset of these samples 

does also have high plasma cells estimates (See Figure 27 & 28). 
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Figure 27 Z-scored heatmap of CIBERSORT simplified data in the entire OAC cohort (n = 176), clustered using Euclidean distance with ward.d2 linkage, 
four distinct clusters of immune phenotypes, the expression of GZMB and PRF1 (TPM, Z-scored) and absolute TILs labelled in the top annotation. 
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Figure 28 Stacked bar chart of CIBERSORT fractional values by heatmap cluster 

displayed in Figure 27. 

 

Interestingly, comparing the absolute TIL between the heatmap clusters found a 

significant difference between all clusters except cluster 1 & 2 (See Figure 29A).  Cluster 3 

possessed a significantly lower TILs compared to all other clusters, while cluster 2 

possessed a significantly greater TILs absolute score to all other clusters excepting cluster 

1 (See Figure 29A).  Expanding the comparisons between the clusters I observed cluster 3 

also possessed a significantly lower expression of granzyme-B (GZMB) compared to 

cluster 2, of which cluster 2 also possessed a significantly greater GZMB expression 

compared to cluster 4 (See Figure 29B).  Similarly, the expression of perforin-1 (PRF1) was 

significantly reduced in cluster 3 compared to cluster 2 and 4 (See Figure 29C).  These 

results place cluster 1 and 2 with the most potential cytotoxicity, followed by cluster 4 

with the remaining cluster 3 with the least potential cytotoxicity (See Figure 29C).  

Calculating the CYT score demonstrated a significantly lower cytotoxicity potential of 

cluster 3 compared to cluster 2 (See Figure 29D). 
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Figure 29 Box and Whisker plots of immune characteristics compared between heatmap 
clusters of immune phenotypes displayed in Figure 27.  A: The absolute TILs 
score derived from CIBERSORTx by heatmap cluster.  B: The expression of 
GZMB by heatmap cluster.  C: The expression of PRF1 by heatmap cluster.  D: 
CYT score by heatmap cluster.  Statistical test Mann-Whitney U test with FDR 
correction, p values*<0.05, **<0.01, ***<0.001, NS = non-significant. 

Lastly, in my cluster analysis I assessed the impact of my four immunophenotype clusters 

(IP-cluster) on survival outcomes.  In CoxPH overall survival analysis did not identify any 

significance differences between the immunophenotype clusters in both univariate and 

multivariate analysis, though cluster 3 did possess the highest, but non-significant hazards 

ratio among the clusters (See Figure 30 & Table 18). 
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Figure 30 Forest plot of CoxPH survival analysis comparing the heatmap clusters of 
immune phenotypes derived from Figure 27. 

Table 18 CoxPH survival analysis comparing the heatmap clusters of immune 
phenotypes derived from Figure 27. 

LABEL LEVELS ALL HR (UNIVARIABLE) HR (MULTIVARIABLE) 
CLUSTER 1 9 (5.2) - - 

2 55 (31.6) 0.98 (0.35-2.81, P=0.977) 0.47 (0.06-3.90, P=0.487) 

3 45 (25.9) 1.65 (0.57-4.82, P=0.358) 0.34 (0.04-3.28, P=0.352) 

4 65 (37.4) 1.39 (0.50-3.87, P=0.529) 0.60 (0.08-4.72, P=0.627) 
ABSOLUTE 

SCORE HIGH 139 (79.9) - - 

LOW 35 (20.1) 1.91 (1.14-3.19, P=0.014) 3.16 (1.00-10.03, P=0.051) 
CYTSCORE HIGH 124 (71.3) - - 

LOW 50 (28.7) 0.69 (0.43-1.09, P=0.110) 0.75 (0.36-1.56, P=0.436) 

AGE MEAN 
(SD) 

66.7 
(11.0) 0.99 (0.98-1.01, P=0.515) 1.01 (0.98-1.04, P=0.691) 

SEX FEMALE 31 (17.8) - - 

MALE 143 (82.2) 1.65 (0.90-3.01, P=0.105) 0.84 (0.34-2.08, P=0.708) 
PT 0-1 38 (29.9) - - 

2-4 89 (70.1) 1.39 (0.78-2.48, P=0.266) 0.46 (0.19-1.12, P=0.087) 
PN 0 48 (37.5) - - 

1-3 80 (62.5) 2.56 (1.45-4.52, P=0.001) 4.20 (1.63-10.77, P=0.003) 
PM 0 97 (89.0) - - 

1 12 (11.0) 2.91 (1.32-6.43, P=0.008) 6.26 (2.39-16.40, P<0.001) 
Number in data frame = 174, Number in model = 91, Missing = 83, Number of events = 50, Concordance = 0.729 (SE = 0.041), 
R-squared = 0.250( Max possible = 0.982), Likelihood ratio test = 26.175 (df = 8, p = 0.001) 
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4.4.3 Correlation of prognostically significant APM genes and immune subpopulations in 
OAC 

Moving forward, I sought to determine if APM gene expression (mRNA) associated with 

altered OS correlated to individual immune cell subpopulation CIBERSORT absolute scores 

in OAC.  This analysis would allow for further filtering of APM genes for downstream 

analysis by refining APM gene candidates which correlate with altered immune cell 

compositions. 

 

This process resulted in significant correlations between eleven MHC class I genes and 

immune populations, twenty-three for MHC class II, nine of alternative APM (A non-

conventional antigen presentation gene outside the typical MHC class I/II pathways) and 

two finally for APM gene expression regulators for all samples (See Figure 31). 

However, assessing individual immune phenotype clusters reveals further significant 

correlations; starting in cluster one, correlations are observed include five between MHC 

class I genes and immune subpopulations, five correlations between MHC class II genes 

and immune subpopulations, two between alternative APM genes and immune 

subpopulations, and five between APM gene expression regulators and immune 

subpopulations (See Figure 32).  Cluster 2 reveals few significant correlations between 

APM genes and immune subpopulations consisting of five MHC I class correlations, seven 

MHC class II correlations, eight alternative APM correlations and a lack of APM gene 

expression regulators with a significant correlation (See Figure 32).  Cluster 3 

demonstrates significant correlations between APM genes and immune subpopulations 

including seven MHC I class correlations, thirteen MHC class II correlations, three 

alternative APM correlations and a single APM gene expression regulator with a 

significant correlation (See Figure 32).  Finally, cluster 4 possessed significant APM gene 

correlations with immune subpopulations for five MHC I class correlations, nine MHC 

class II correlations, and two APM gene expression regulators with a significant 

correlation (See Figure 32).  The following results subsections will break down these 

correlations. 
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Figure 31 Correlation heatmap of APM mRNA expression to CIBERSORT ABSOLUTE 

scores for immune cell subpopulations, with negative values representing a negative 

correlation and positive values a positive correlation.  * = p <0.05. Drawn using ggcorrplot 

in R 4.0.2.
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Figure 32 Correlation heatmap of APM mRNA expression to CIBERSORT ABSOLUTE 

scores for immune cell subpopulations with heatmap clusters identified in Figure 27.  

Negative values representing a negative correlation and positive values a positive 

correlation.  Statistical test Pearson with Holm’s method p value adjustment * = p <0.05. 

Drawn using ggcorrplot in R 4.0.2. 
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4.4.3.1 Effector and Treg populations 

Among effector cells, several APM genes demonstrated a significant correlation to 

immune cell subpopulations including CD8+, CD4+, NK and Treg cells. 

Firstly, MHC class I (HLA-A/ B/ C) and APM expression of CALR, TAPBPL and HLA-E 

correlated significantly to increased CD8+ T cell scores (Respectively: R = -0.19, 0.19, 0.16; 

p <0.05; See Figure 31).  Breaking down the clusters, further correlations between MHC 

class I genes and CD8 T cells were observed including HLA-A and PSMB10 in cluster 1 

(Respectively: R = 0.77, 0.67; p <0.05; See Figure 32) and CALR in both cluster 2 and 4 

(Respectively: R =  -0.28, -0.36; p <0.05; See Figure 32).  The expression of MHC class II 

genes did not demonstrate any correlations with CD8+ T cell scores, though CD74 did 

trend towards a correlation (R = 0.13; p = 0.09).  Lastly, for CD8+ T cells, the APM 

regulator, CSDE1 correlated with CD8+ T cell ABSOLUTE scores approaching significance (R 

= -0.13; p = 0.09; See Figure 31).  Observing individual clusters yielded two further 

correlations with CTSS in cluster 1 (R = 0.95; p < 0.0001; See Figure 32) and SPPL2A in 

cluster 2 (R = -0.29; p < 0.05; See Figure 32). 

 

For CD4+ T cell – APM gene expression correlations, a single MHC class I (ERAP2) and 

alternative APM gene (CD1D) found correlation to CD4+ T cell populations (Respectively: 

R = 0.25, 0.34, 0.16; p <0.01; See Figure 32).  A further correlation was observed in cluster 

2 with CD1D (R = 0.53; p < 0.0001; See Figure 32) and an additional three correlations in 

cluster 3 with CD1D, HLA-A, ERAP2 (Respectively: R = 0.39, -0.37, 0.34; p < 0.05; See 

Figure 32).  A larger number of CD4+ T cell correlations were found with MHC class II gene 

expression including CD74, HLA-DQA1, HLA-DRA and HLA-DPA1 (Respectively: R = 0.24, 

0.17, 0.16, 0.1; p <0.05; See Figure 31).  No significant correlation was observed between 

APM gene expression regulators and CD4+ T cell abundance.  Cluster 1 displays a further 

correlation is observed in SPPL2A (R = 0.34; p < 0.0001; See Figure 32), cluster 2 

demonstrates a correlation in HLA-DQA1 (R = 0.33; p < 0.05; See Figure 32) and finally a 

single correlation in cluster 3 with HLA-DPA1 (R = 0.38; p < 0.05; See Figure 32). 

 

Only two APM genes found correlation of NK cell populations, both belonging to the MHC 

class I pathway ERAP1 and PSMB10 (Respectively: R = 0.15, 0.19; p <0.05; See Figure 31).  

Cluster 1 revealed a further two correlations in HLA-A and TAPBP (Respectively: R = 0.72, 
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0.70; p <0.05; See Figure 32); cluster 3 demonstrates a further four correlation with 

ERAP1, HLA-B, and PSMB8 (Respectively: R = 0.45, 0.33, 0.32; p <0.05; See Figure 32). 

 

Treg populations correlation with APM genes including two MHC class I genes TAPBPL and 

PSMB10 (Respectively: R = 0.15, 0.21; p <0.05; See Figure 31), and one alternative APM 

gene, namely CD1D (R = 0.29; p <0.01; See Figure 31).  Six MHC class II genes correlated 

to Treg populations including CD74, CTSS, HLA-DRB1, HLA-DQA1, HLA-DRA and HLA-DPA1 

(Respectively: R = 0.33, 0.17, 0.27, 0.23, 0.23, 0.21; p <0.05; See Figure 31). 

Finally, an APM gene expression regulator, CIITA, positively correlated to Treg populations 

(R = 0.27; p < 0.01; See Figure 31).  Tregs demonstrate further correlations HLA-DRB5 in 

cluster 1 (R = 0.73; p < 0.05; See Figure 32), CD1D and HLA-DQA1 in cluster 2 

(Respectively: R = 0.44, 0.27; p <0.05; See Figure 32).  Cluster 3 correlations with Tregs 

includes CIITA, HLA-DQA1, HLA-DPA1, CD74, HLA-DRB1 and HLA-DRA (Respectively: R = 

0.54, 0.5, 0.5, 0.47, 0.42, 0.39; p <0.01; See Figure 32); cluster 4 correlations with Tregs 

includes PSMB10, LGMN, CD74, SPPL2A, TAPBP, HLA-A, PSMB8 and CTSS (Respectively: R 

= 0.34, 0.33, 0.27, 0.27, 0.27, 0.26, 0.25, 0.25 ; p <0.05; See Figure 32) 

 

4.4.3.2 Myeloid cell populations 

Among the myeloid cell populations several APM genes with OS associations found 

correlation to subpopulation density in OAC including macrophages, DCs, granulocytes 

and monocytes. 

 

Macrophage populations displayed correlation with MHC class I/II and alternative APM 

genes within my OAC cohort.  Firstly, only one MHC class I gene ERAP2 showed a 

significant positive correlation to macrophage populations (R = 0.17; p <0.05; See Figure 

31).  MHC class II genes possessed a positive correlation to macrophage absolute scores 

including CD74, LGMN and CTSL (Respectively: R = 0.2, 0.22, 0.27; p <0.01; See Figure 31).  

Finally, for Macrophages, alternative APM genes CD1D and MR1 displayed a positive 

correlation to macrophage population (Respectively: R = 0.32, 0.17; p <0.05; See Figure 

31).  Within individual clusters several correlations between APM genes and macrophages 

were observed, namely, in cluster 1 a correlation with CD1D (R = 0.88; p <0.01; See Figure 

32); in cluster 2 CD1D correlates with macrophages (R = 0.36; p <0.01; See Figure 32).  A 

further eight correlations with macrophages are observed in cluster 3 including LGMN, 
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CTSL, MR1, CD1D, HLA-DRB5, HLA-E, HLA-DPA1 and HLA-DQA1 (Respectively: R = 0.62, 

0.57, 0.5, 0.46, 0.33, 0.33, 0.33, 0.32; p <0.05; See Figure 32); a single additional 

correlation was identified in CTSL within cluster 4 (R = 0.28; p <0.01; See Figure 32). 

 

Among DCs only CD1D demonstrated a correlation to their score within my OAC cohort 

(Respectively: R = 0.  26; p <0.001; See Figure 31).  A further three correlations were 

identified within the heatmap clusters including HLA-B in cluster 1 (R = -0.71; p <0.01; See 

Figure 32), CD1D in cluster 2 (R = 0.42; p <0.01; See Figure 32), and finally LGMN in cluster 

3 (R = -0.32; p <0.01; See Figure 32). 

 

The granulocyte population positively correlated to the expression of one MHC class II 

gene, CTSS (R = 0.22; p <0.01; See Figure 31), and one alternative APM gene, CD1D (R = 

0.25; p <0.001; See Figure 31).  Further correlations within clusters included CD1D in 

cluster 1 (R = 0.79; p <0.001; See Figure 32), PSMB10 and ERAP1 in cluster 2 

(Respectively: R = 0.38, 0.27; p <0.05; See Figure 32), ERAP2 in cluster 3 (R = 0.49; p 

<0.001; See Figure 32) and HLA-DPA1 in cluster 4 (R = -0.27; p <0.001; See Figure 32). 

Finally, among myeloid populations, monocytes positively correlated to the expression of 

three MHC class II genes, LGMN, CTSL, and HLA-DRB5 (Respectively: R = 0.19, 0.32, 0.19; p 

<0.01; See Figure 31), and one alternative APM gene CD1D (R = 0.25; p <0.01; See Figure 

31).  Within cluster analysis of correlations with monocytes cluster 1 revealed a further 

correlation with HLA-DRB5 (R = 0.73; p <0.05; See Figure 32), cluster two additional 

correlation for CD1D and CTSL (Respectively: R = 0.44, 0.32; p <0.05; See Figure 32), and 

lastly, a single correlation in cluster 3 with ERAP2 (R = 0.34; p <0.05; See Figure 32). 

 

4.4.3.3 B lineage cell populations 

Separately, B cells significantly negative correlated to one MHC class I gene, CALR (R = -

0.17; p < 0.01; See Figure 31) and positively correlated to one alternative APM gene, 

CD1D (R = 0.35; p < 0.001; See Figure 31).  A further three significant correlations 

between B cells and MHC class II was detected for CD74, SPPL2A and HLA-DQA1 

(Respectively: R = 0.31, -0.17, 0.18; p <0.05; See Figure 31).  For B cells additional 

correlation were observed within individual clusters, including CIITA and CSDE1 in cluster 

1 (Respectively: R = -0.80, 0.72; p <0.05; See Figure 32), CD1D, CD74, HLA-DQA1, HLA-

DPA1, MR1 and PSMB8 in cluster 2 (Respectively: R = 0.64, 0.37, 0.34, 0.31, 0.31, -0.27; p 
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<0.05; See Figure 32).  Lastly, for B cell correlations, SPPL2A negatively correlated to B cell 

abundance in cluster 3 (R = -0.31; p <0.05; See Figure 32). 

Conversely to B cells, plasma cells only found positive correlation with APM gene 

expression for eight genes.  Only one MHC class I gene, TAPBPL, correlated to plasma cell 

absolute scores (R = 0.19; p <0.01; See Figure 31), also only one alternative APM gene, 

CD1D found a positive correlation with plasma cells scores (R = 0.27; p <0.001; See Figure 

31).  Six MHC class II gene found positive correlation including CD74, HLA-DRB1, HLA-

DQA1, HLA-DRA and HLA-DPA1 (Respectively: R = 0.31, 0.16, 0.16, 0.24, 0.27; p <0.05; See 

Figure 31).  No significant correlations were observed between APM gene regulators and 

plasma cell abundance in the total sample correlation analysis.  However, within the 

cluster analysis CSDE1, RFX5 and CIITA found correlation with plasma cell abundance in 

cluster 1 (Respectively: R = -0.80, 0.68 0.73; p <0.05; See Figure 32), with a further 

correlation in cluster 1 found in CD74 (R = 0.70; p <0.05; See Figure 32).  Within cluster 2 

two further correlations with CD1D and CD74 (Respectively: R = 0.41, 0.35; p <0.05; See 

Figure 32) and an additional seven correlations in cluster 4 including SPPL2A, HLA-DRA, 

TAPBPL, HLA-DPA1, CSDE1, CD74 and RFX5 (Respectively: R = 0.44, 0.34, 0.32, 0.32, 0.27, 

0.26, 0.25; p <0.05; See Figure 32). 

4.4.4 The impact of APM gene expression on immune effector/Treg cell populations in the 
OAC TIME. 

Moving forward from correlation analysis, I progressed to statistically evaluate the 

difference in means/ medians for immune cell subpopulations CIBERSORT absolute scores 

by APM genes, which both possess a significant association to OS and a correlation 

between mRNA expression and immune cell subpopulation absolute scores from 

CIBERSORT analysis.  This analysis would use the mRNA expression quantiles to 

dichotomise the CIBERSORT absolute scores.  Starting with effector/Treg subpopulations, 

I firstly observed whether any statistically significant mean alterations between the 

low/high MHC class I mRNA expression groups as determined by quantile cut points. 

 

Using quantile expression groups for MHC class I genes to dichotomise the CIBERSORT 

results for effector/Treg cell populations did find significant difference in mean scores in 

three of the ten correlations assessed.  Foremost, I observed the association between 

HLAs loading complex assembly and alternative antigen presenting genes, finding the 
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lower quantile of CALR expression exhibited significantly greater CD8+ T cell abundance 

compared to the upper quantile (Upper: 0.09266 vs Lower: 0.1555; p = 0.0386; See Figure 

33 & Table 19).  Conversely, the lower quantile of HLA-E expression exhibited significantly 

lower CD8+ T cell abundance compared to the upper quantile (Upper: 0.1738 vs Lower: 

0.1064; p = 0.0433; See Figure 33 & Table 19).  Additionally, the lower quantile of CD1D 

expression related to a significant reduction in CD4+ T cell abundance (Upper: 1.093 vs 

Lower: 0.7891; p = 0.0027; See Figure 33 & Table 19). 

Moving forward to the peptide generation genes, I found the lower quantile of PSMB10 

expression exhibited significantly lower Treg abundance compared to the upper quantile 

(Upper: 0.2008 vs Lower: 0.1438; p = 0.0135; See Figure 33).  Conversely, the lower 

quantile of PSMB8 expression exhibited a greater abundance of CD4+ T cells (Upper: 

0.7762 vs Lower: 0.9827; p = 0.001; See Figure 33 & Table 19).  Observing the ERAP genes 

I identified the lower quantile of ERAP1 expression corresponded to a reduced presence 

of CD4 and NK cells in my OAC cohort (Respectively: Upper: 0.9234, 0.1844 vs Lower: 

0.7459, 0.1309; p = 0.0335, 0.0241; See Figure 33 & Table 19).  The final association 

observed among effector cells demonstrates the lower quantile of ERAP2 expression in 

OAC is associated to reduced CD4+ T cell infiltration (Upper: 1.069 vs Lower: 0.8232; p = 

0.0163; See Figure 33 & Table 19). 
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Figure 33 Boxplot of effector/Treg cell CIBERSORT absolute scores by quantile 
expression for MHC class I and alternative APM genes.  Colours represent 
cluster of origin for the sample (Red: Cluster 1; Green: Cluster 2; Cyan: Cluster 
3; Blue: Cluster 4).  Statistical tests Mann-Whitney U test with FDR correction, 
p values*<0.05, **<0.01, ***<0.001, NS = non-significant. 

Moving Beyond MHC class I, I assessed whether any statistically significant mean 

alterations between the low/high MHC class II mRNA expression groups as determined by 

quantile cut points.  Consistently, the upper quantile of MHC class II expression in these 

five gene corresponded to increased Treg abundance including CD74 (Upper: 0.2101 vs 

Lower: 0.1210; p = 0.0190; See Figure 34 & Table 19), the lysozyme CTSS (Upper: 0.2045 

vs Lower: 0.1274; p = 0.0228; See Figure 34 & Table 19), and MHC class II HLAs, HLA-DRB1 

(Upper: 0.2042 vs Lower: 0.1143 ; p = 0.0220), HLA-DRA (Upper: 0.1973 vs Lower: 0.1159; 

p = 0.0365), HLA-DRB5 (Upper: 0.1940 vs Lower: 0.1299; p = 0.0347), HLA-DQA1 (Upper: 

0.1177 vs Lower: 1.019; p = 0.0166) and HLA-DPA1 (Upper: 0.1997 vs Lower: 0.1045; p = 

0.0098) See Figure 34 & Table 19). 

Increased CD4+ T cell abundance was identified among four HLA loading complex 

assembly genes of the MHC class II system, namely CD74 (Upper: 1.014 vs Lower: 0.7823; 

p = 0.0274; See Figure 34 & Table 19), HLA-DPA1 (Upper: 1.110 vs Lower: 0.7712; p = 

0.0018; See Figure 34 & Table 19), HLA-DQA1 (Upper: 1.019 vs Lower: 0.7241; p = 0.0034; 
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See Figure 34 & Table 19), and HLA-DRA (Upper: 1.032 vs Lower: 0.7833; p = 0.0174; See 

Figure 34 & Table 19). 

Figure 34 Boxplot of effector cell CIBERSORT absolute scores by quantile expression for 
MHC class II genes.  Colours represent cluster of origin for the sample (Red: Cluster 1; 
Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4).  Statistical tests Mann-Whitney U test 
with FDR correction, p values*<0.05, **<0.01, ***<0.001, NS = non-significant. 

Finally, for effector cells I explored the impact on CIITA and CSDE1 using quantile cut point 

dichotomisation on Treg and CD8+ T cell abundance scores, respectively.  Here I found 

significant differences in mean scores for each interaction, with the upper quantile of 

CSDE1 mRNA expression relating to lower CD8+ T cell abundance (Upper: 0.08498 vs 

Lower: 0.1597; p = 0.0217 See Figure 35 & Table 19), and the upper quantile of CIITA 

expression relating to greater Treg abundance (Upper: 0.2071 vs Lower: 0.1328; p = 

0.0111 See Figure 35 & Table 19). Additionally, the upper quantile of CIITA expression 

corresponded to greater CD4+ T cell abundance within my OAC cohort (Upper: 1.066 vs 

Lower: 0.7869; p = 0.0064; See Figure 35 & Table 19).  The final effector T cell APM 

expression regulator was observed in RFX5, where the lower quantile of expression 
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presented a reduction in Treg populations (Upper: 0.1914 vs Lower: 0.1472; p = 0.0433 

See Figure 35 & Table 19). 

Figure 35 Boxplot of effector cell CIBERSORT absolute scores by quantile expression for 
APM regulator genes.  Colours represent cluster of origin for the sample (Red: 
Cluster 1; Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4).  Statistical tests 
Mann-Whitney U test with FDR correction, p values*<0.05, **<0.01, 
***<0.001, NS = non-significant. 

4.4.5 The impact of APM gene expression on myeloid cell populations in the OAC TIME. 

Next, I explored the impact of APM gene expression on myeloid population cells including 

macrophages, DCs, granulocytes and monocyte subpopulations dichotomised by quantile 

cut points, mirroring the above CIBERSORTx analysis. 

Among HLA loading complex assembly genes, both HLA-E and TAPBPL demonstrated a 

corresponding  increase in myeloid populations, specifically, the upper quantile of HLA-E 

expression related to increased monocyte populations (Upper: 0.1218 vs Lower: 0.05796; 

p = 0.0437; See Figure 36 & Table 19), while, the upper quantile of TAPBPL associated to 
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greater macrophage abundance (Upper: 0.6645 vs Lower: 0.4917; p = 0.0479; See Figure 

36 & Table 19). Two peptide generation genes within the MHC class I gene candidates 

associated to altered myeloid populations; the upper quantile of PSMB10 expression 

corresponded to lesser dendritic cell abundance (Upper: 0.1130 vs Lower: 0.1684; p = 

0.0244; See Figure 36 & Table 19), conversely, the upper quantile of ERAP1 expression 

related to greater granulocyte populations in OAC (Upper: 0.6066 vs Lower: 0.4048; p = 

0.0061; See Figure 36 & Table 19). 

 

Exploring myeloid population abundance differences due to quantile expression of 

alternative APM gene CD1D, of which the upper quantile of expression related to 

increased macrophage populations (Upper: 0.7612 vs Lower: 0.1520 ; p = 0.0022; See 

Figure 36 & Table 19), an increased monocyte abundance (Upper: 0.1433 vs Lower: 

0.07333; p = 0.0381; See Figure 36 & Table 19), and lastly an increased granulocyte 

abundance (Upper: 0.6459 vs Lower: 0.4181; p = 0.03; See Figure 36 & Table 19). Another 

alternative APM gene, MR1, also found association to macrophage abundance with the 

OAC cohort with the upper quantile of expression resulting in greater macrophage 

populations (Upper: 0.7109 vs Lower: 0.5358; p = 0.0455; See Figure 36 & Table 19). 

 
Observing the impact of MHC class II expression on myeloid cell CIBERSORT scores yielded 

nine significant differences in myeloid subpopulations.  Observing the HLA loading 

complex assembly genes of the MHC class II system, the upper quantile of CD74 

expression group there was a notable increase in macrophage (Upper: 0.7401 vs Lower: 

0.5040; p = 0.0345; See Figure 37 & Table 19) and granulocyte populations (Upper: 

0.6757 vs Lower: 0.4550; p = 0.0127; See Figure 37 & Table 19). 
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Figure 36 Boxplot of myeloid cell CIBERSORT absolute scores by quantile expression for 
MHC class I genes.  Colours represent cluster of origin for the sample (Red: 
Cluster 1; Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4).  Statistical tests 
Mann-Whitney U test with FDR correction, p values*<0.05, **<0.01, 
***<0.001, NS = non-significant. 

The upper quantile of four MHC class II HLA genes corresponded to increased 

macrophage abundance, including HLA-DPA1 (Upper: 0.7567 vs Lower: 0.4706; p = 

0.0043; See Figure 37 & Table 19), HLA-DQA1 (Upper: 0.7537 vs Lower: 0.4878; p = 

0.0073; See Figure 37 & Table 19), HLA-DRA (Upper: 0.7202 vs Lower: 0.5175; p = 0.0354; 

See Figure 36), and HLA-DRB5 (Upper: 0.6992 vs Lower: 0.4833; p = 0.0251; See Figure 37 

& Table 19). 

Finally, MHC class II peptide generation gene expression demonstrated association with 

altered myeloid populations, firstly, the upper quantile of CTSL expression group 

persisted a similar increase in macrophage score (Upper: 0.7968 vs Lower: 0.4802; p = 

0.0163; See Figure 37 & Table 19); The upper quantile of LGMN expression group 

persisted a similar increase in macrophage score (Upper: 0.7412 vs Lower: 0.5395; p = 

0.0375; See Figure 37 & Table 19).  
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Lastly, the upper quantile of CTSS expression group persisted a similar increase in 

granulocyte abundance (Upper: 0.6260 vs Lower: 0.4208; p = 0.0156; See Figure 37 & 

Table 19). 

Figure 37 Boxplot of myeloid cell CIBERSORT absolute scores by quantile expression for 
MHC class II genes.  Colours represent cluster of origin for the sample (Red: 
Cluster 1; Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4).  Statistical tests 
Mann-Whitney U test with FDR correction, p values*<0.05, **<0.01, 
***<0.001, NS = non-significant. 

4.4.6 The impact of APM gene expression on B lineage cell populations in the OAC TIME 

Lastly, I explored the impact of APM gene expression of B lineage cell population within 

my OAC cohort using quantile mRNA expression for APM genes.  Assessing the MHC class 

I/alternative APM expression comparing quantile expression of the genes identified only 

two genes, namely CD1D, produced a significant reduction in B cell abundance within my 

OAC cohort (Upper: 0.6486 vs Lower: 0.3797; p = 0.0015; See Figure 38 & Table 19).  The 

second association observed displayed the upper quantile of CALR expression possessed 

greater B cell populations in OAC (Upper: 0.4489 vs Lower: 0.6470; p = 0.0491; See Figure 

38 & Table 19). 
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Figure 38 Boxplot of B lineage cells CIBERSORT absolute scores by quantile expression 
for MHC class I genes.  Colours represent cluster of origin for the sample (Red: 
Cluster 1; Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4).  Statistical tests 
Mann-Whitney U test with FDR correction, p values*<0.05, 
**<0.01,***<0.001, NS = non-significant. 

The impact of MHC class II expression on B lineage cell distribution using the quantile cut 

points for MHC class II genes.  Using this approach, I discovered five MHC class II genes 

which expression resulted significantly different B lineage cell abundance.  The HLA 

loading complex assembly genes associated to altered B lineage cell populations, such as, 

the upper quantile of HLA-DQA1 expression contained greater B cell abundance 

compared to the lower quantile of expression within my OAC cohort (Upper: 0.5555 vs 

Lower: 0.3072; p = 0.0130; See Figure 39 & Table 19).  The upper quantile of HLA-DRB1 

expression within my OAC cohort scored higher for plasma cell abundance (Upper: 0.3470 

vs Lower: 0.1647; p = 0.0320; See Figure 39 & Table 19).  Interestingly.  the upper 

quantile of HLA-DRB5 expression corresponded to both increased B cell (Upper: 0.4738 vs 

Lower: 0.3166; p = 0.0320; See Figure 39 & Table 19) and plasma cell (Upper: 0.2686 vs 

Lower: 0.1238; p = 0.0276; See Figure 39) concentrations within my OAC tumours. 
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Finally, a peptide generation gene of the MHC class II system, SPPL2A, demonstrated an 

association with B cell populations, with the upper quantiles of expression corresponding 

to lower B cell abundance (Upper: 0.4228 vs Lower: 0.6135; p = 0.0115; See Figure 39 & 

Table 19). 

Figure 39 Boxplot of B lineage cells CIBERSORT absolute scores by quantile expression 
for MHC class II genes.  Colours represent cluster of origin for the sample 
(Red: Cluster 1; Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4).  Statistical 
tests Mann-Whitney U test with FDR correction, p values*<0.05, **<0.01, 
***<0.001, NS = non-significant. 
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Table 19 Summary of significant immune cell content difference between upper and 
lower APM gene expression quantiles. 

GENE 
IMMUNE CELL 

TYPE 
UPPER-LOWER QUANTILE  

IMMUNE CONTENT Δ P VALUE 
CTSS TREG 0.077 0.0008 

GRANULOCYTES 0.21 0.016 
CD1D MACROPHAGES 0.33 0.0009 

GRANULOCYTES 0.23 0.0038 
B CELL 0.27 0.0015 

CD4+ T CELL 0.30 0.0027 
MONOCYTES 0.070 0.038 

PSMB10 TREG 0.072 0.001 
DENDRITIC CELL -0.055 0.024 

HLA-DPA1 TREG 0.099 0.0012 
CD4+ T CELL 0.34 0.0018 

MACROPHAGES 0.29 0.0043 
HLA-DRB1 TREG 0.090 0.0013 

PLASMA CELL 0.18 0.032 
CD74 TREG 0.089 0.0031 

GRANULOCYTES 0.22 0.013 
MACROPHAGES 0.24 0.017 

CD4+ T CELL 0.23 0.027 
HLA-

DQA1 CD4+ T CELL 0.29 0.0034 
B CELL 0.24 0.0034 

MACROPHAGES 0.29 0.0073 
TREG 0.067 0.017 

ERAP1 GRANULOCYTES 0.20 0.0061 
CD4+ T CELL 0.18 0.034 

NK CELL 0.054 0.024 
CIITA CD4+ T CELL 0.28 0.0064 

MACROPHAGES 
TREG 

0.22 
0.074 

0.019 
0.0113 

HLA-DRA TREG 0.081 0.0066 
CD4+ T CELL 0.249 0.017 

MACROPHAGES 0.20 0.035 
PSMB8 CD4+ T CELL -0.21 0.010 

SPPL2A B CELL -0.19 0.012 
ERAP2 CD4+ T CELL 0.25 0.016 

HLA-DRB5 MACROPHAGES 0.22 0.025 
PLASMA CELL 0.15 0.028 

B CELL 0.16 0.032 
TREG 0.064 0.035 

CALR CD8+ T CELL -0.076 0.026 
B CELL -0.20 0.049 

LGMN MACROPHAGES 0.20 0.038 
CSDE1 CD8+ T CELL -0.068 0.042 
HLA-E CD8+ T CELL 0.076 0.043 

MONOCYTES 0.064 0.044 
RFX5 TREG 0.044 0.043 

TAPBPL MACROPHAGES 0.17 0.048 
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4.5 Discussion 

The analysis in this chapter, allows for broad investigation of the relationship of our 

prognostically significant APM genes and the TIME using the results of deconvolution 

themselves in context with the known literature on the TIME in cancers.  A key outcome 

of this chapter was the potential of altered immunity due to the expression of several 

prognostically significant APM genes which were identified in Chapter 3, forming novel 

knowledge on the immunity of OAC tumours. 

4.5.1 The TIME of OAC is diverse and is broadly defined into four phenotypes. 

The first significant finding of this Chapter’s analysis was the observation of four distinct 

immunophenotypes.  These immunophenotypes can be broadly classified by their 

constituent immune abundances.  Cluster 1 is a small cluster (n = 9/176, 5.1% of cases) 

and can be defined as a monocyte-high immunophenotype; exploring the literature 

surrounding the function of monocytes provides insight into the variable functions within 

cancer, finding both pro-tumoral and anti-tumoral roles of monocytes.  Examples of pro-

tumoral roles of monocytes include the suppression of T cell functions in colorectal 

tumours (Mouse model) and pancreatic cancer, and the recruitment of Tregs in 

pancreatic ductal adenocarcinoma (Mouse model).  Anti-tumoral roles of monocytes 

include tumour cytotoxicity in ovarian cancer and antigen presentation in B16 melanoma 

(Mouse model) (424-427).  Unfortunately, no significant survival differences could be 

determined in this cluster compared to other clusters, despite this, cluster 1 possessed 

the lowest hazard ratio for overall survival, this trend could suggest the presence of a high 

monocyte immunophenotype could be a positive for overall survival.  However, without a 

greater sample size this finding cannot be validated.  Interestingly, the value of this first 

immunophenotype has been prior publication supporting the presence of monocytes in 

OAC is a positive predictor of immunochemotherapy outcomes (428). 

The second cluster could be described as a classical ‘immune hot’ immunophenotype, 

possessing high effector cell content compared to the other clusters; this 

immunophenotype represents the greatest opportunity for immunotherapy applications 

such as checkpoint blockade.  Furthermore, this immunophenotype displays greater 

potential T cell derived cytotoxicity as predicted by my analysis (429-431).  Interestingly, 

this may be reflected in OAC with the attempt to create a ‘cancer-immune set point’, 

which describes the immune profile threshold of intrinsic factors such as immune cell 
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abundance, cytokine secretion and genetic composition and extrinsic factors including gut 

microbiota and the presence of infection, which is required to pass to predict sensitivity 

to immune checkpoint inhibition (432). However, results also point to an unfortunate 

outcome in determining patient care pathways with only 55/176 (31.3%) patients (cluster 

2) may be potentially able to benefit from checkpoint blockade therapy.  The third cluster 

forms an opposing immunophenotype to cluster 2, this immunophenotype can be 

characterised describe as immune cold, presenting a lack of TILs compared to the other 

three clusters.  Immune cold tumours present a significant issue in producing an effective 

immunotherapy to drive anti-tumoral immunity.  Interestingly, this immunophenotype 

did present with the greater hazard ratio for overall survival, despite not being a 

significant finding, this could therefore represent a problematic cluster of patients 

forming approximately a quarter of all patients (n = 45/176, 25.6%), which are unlikely 

the benefit from ICB immunotherapy and possess a survival disadvantage (433). 

 

However, the gross categorisation of tumours as immune cold is currently being 

challenged; where intermediate immunophenotypes may yield alternative approaches to 

immunotherapy application with the literature suggesting new definition such as immune 

exclude and immunosuppressed which may need these alternative approaches (434, 

435). Thereby, the identification of this cluster within my OAC cohort supports the 

argument of immune cold tumours are highly frequent in OAC dissuading a single 

approach should be taken in the immunotherapy of OAC, instead observing 

immunological feature prior to treatment to determine the appropriate treatment 

pathway. 

 

The final immunophenotype is a characterised as a high B cell type; the presence of B 

cells in oesophageal adenocarcinoma and gastric carcinomas with their positive role in 

survival has been prior published, suggesting the presence of CD20+ B cells associates 

with survival outcomes and the recruitment of other effector cells including T cells and NK 

cells (383, 436, 437). The identification of this immunophenotype which makes up the 

majority of OAC patients (n = 67/176, 38.1%) demonstrates immunotherapy approaches 

focusing on the interaction of B lineage cells in the TIME of OAC may present an inviting 

opportunity for future immunotherapies. For example, the presence of B cell has 

correlated to suppression of T cell responses via upregulating PD-L1 expression in the 

TIME, as demonstrated in breast and pancreatic cancers; targeting these B cell enriched 
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patients with PD-1/L1 inhibitors may yield greater T cell responses in these cases (438, 

439).  

Overall, this analysis has outlined the diversity of immunophenotypes present in OAC, 

understanding the immunophenotypes may guide future efforts to stratify patients to 

apply the most appropriate treatment pathway.  Unfortunately, this analysis highlights 

checkpoint blockade therapy may not be applicable in all cases; thereby, using this 

approach provides justification selecting immune hot patients for checkpoint blockade. 

4.5.2 Effector cell populations are increased in cases with high expression of MHC class I in 
OAC 

Observing effector cell populations, several subpopulations appeared altered due to the 

expression of MHC class I genes.  This result was expected, as the MHC class I system is 

responsible to eliciting responses from effector cells, directly interacting with CD8+ T 

cells. 

Most of the MHC class I genes which influence effector cell populations were peptide 

generation genes.  Firstly, the increased expression of PSMB8 in OAC tumours appears to 

result in lesser CD4+ T cells. This appears to oppose prior literature in multiple cutaneous 

malignant melanoma showing the expression of PSMB8 correlated with M1 macrophages, 

CD8 T cells, CD4+ T cells, follicular helper T cells, γδ T cells, regulatory (Tregs) T cells, and 

activated NK cells. However, within this study PSMB8 did negatively correlate to M0 

macrophages, resting mast cells, and CD4 resting memory T cells (440). This could suggest 

the impact on reducing CD4 resting memory T cells is greater than potentially increase in 

other CD4+ T cells in OAC. 

 

The greater expression of PSBM10 in my analysis resulted in greater presence of Tregs, 

exploring the literature did not yield any prior publication demonstrating an interaction 

between PSMB10 expression and Treg populations.  This could suggest Treg abundance is 

not directly impacted by the expression of PSMB10, instead the increase in their presence 

may be due to other immune cells as PSMB10 also alters other cells, such as dendritic 

cells demonstrated in the literature (441). 

The latter peptide generation genes to demonstrate altered effector cell abundance were 

ERAP1 and ERAP2.  Greater ERAP1 expression corresponded to increased CD4 and NK cell 

populations within my OAC cohort; for CD4+ T cell increases this could be explained by 
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the literature which details in ankylosing spondylitis the silencing of ERAP1 results in 

suppressed CD4+ Th17 cell expansion by preventing the binding of HLA-B27 free heavy 

chains to KIR3DL2, suggesting this mechanism may be present in cancers such as OAC 

(442, 443). The interaction between ERAP1 and NK cells as shown in my analysis has been 

prior demonstrated in cancer via a similar mechanism, in a transfected cell model of acute 

lymphoblastic lymphoma which demonstrated the inhibition ERAP1 renders HLA-B*51:01 

molecules less eligible for KIR3DL1 binding (444, 445). Thereby, using the literature in 

combination with my analysis it can be suggested ERAP1 in OAC alters HLA-B allotype 

binding to KIRs, which results in altered CD4+ T cell and NK cell recruitment and 

expansion.  ERAP2 expression correlating with CD4+ T cell density has prior been 

demonstrated in squamous cell lung carcinoma, yet no mechanism is yet determined 

(282). 

 

Next, I observed the associations between effector cell populations and HLA loading 

complex assembly genes and alternative APM genes.  Firstly, greater HLA-E expression 

within my cohort resulted in higher CD8+ T cell abundance; the impact of HLA-E 

expression on CD8 T cells in OAC may relate to alternatively spliced isoforms of the 

antioxidant enzyme peroxiredoxin 5 peptides bound to HLA-E capable of being recognised 

by HLA-E-specific CD8 T cells; this interaction may further relate to findings that 

Peroxiredoxin 5 overexpression has been identified in gastric adenocarcinomas (367, 

368). 

Higher CALR expression within my OAC cohort corresponded to decreased CD8+ T cells, 

this opposes the literature which reports the loss of CALR expression negatively affects 

immunosurveillance, with the expression of CALR correlating with TILs in three cancer 

types including colorectal, breast and ovarian (446, 447). Unfortunately, the literature 

could not help to explain my analysis results in this case, further exploration of this novel 

result may be warranted in future investigations. 

 

Finally, CD1D expression in my OAC cohort related to increased CD4+ T cells, this can be 

explained via publication demonstrating CD4+ CD1d-restricted NKT cells exist within 

immune microenvironments, thereby, CD1D may be directly interacting with these 

specific NKT cells in the tumour immune microenvironment of OAC (448, 449). 

Unfortunately, this specific subset of NKT has not been identified in oesophageal 
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adenocarcinoma to date, thereby, future analysis using flow-cytometry methodology 

could pinpoint this interaction in OAC (not attempted within my study). 

 

Overall, my analysis presented here demonstrates the importance of MHC class I in 

eliciting effector cell responses in OAC, especially, peptide generation genes of the MHC 

class I system could specifically alter interactions with CD4+ T cells and NK cells. Exploiting 

these genes to produce future immunotherapies for OAC may yield an effective therapy 

for those possessing the upper quantile of ERAP1/2 expression in the population 

(n=44/174). Assessing these results highlights the importance of intact and well-

expressed MHC class I molecules to produce effective T cell responses in OAC, in 

particular, the expression of peptide generation genes may produce altered immunity by 

regulating the peptide epitope as already prior literature has found for the PSMB8/9/10 

and ERAP1/2 genes (450-454). 

4.5.3 Effector cell populations are greater in cases with characteristically high expression 
of MHC class II in OAC 

Next within my study, I observed altered effector cell populations, due to the expression 

of MHC class II genes.  This result was expected, as the MHC class II system is solely 

present on professional APCs which engage in T cell education, directly interacting with 

CD4+ T cells. 

For the specific CD4+ T cell density associations four HLA-loading complex assembly genes 

found a correspondence between greater expression and higher CD4+ T cell abundance, 

while six MHC class II genes were associated to increased Treg populations, including five 

HLA-loading complex assembly genes and a single peptide generation gene. 

Firstly, CD74 demonstrated a positive association with CD4+ T cell and Treg abundance; 

this gene’s primary function is to function as a chaperone which regulates antigen 

presentation, though a secondary function is found as cell surface receptor for the 

cytokine macrophage migration inhibitory factor (MIF).  The literature does demonstrate 

this relationship (CD74:CD4+ T cell) persists in breast cancer where the expression of 

CD74 presents as a positive prognostic factor in basal-like breast cancer attributed to 

greater densities of TILs including CD4+ T cells (298). Interestingly, CD74 in the literature 

has prior exhibited an ability to perform dendritic cell cross-priming of CD8+ T cells in viral 

infections, yet no increase in CD8+ T cell populations was attributed to CD74 expression 
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within my study, this could suggest cross-presentation within dendritic cells is not a 

frequent occurrence within OAC (455). The increase of Treg populations attributed to the 

expression of CD74 has prior been approached in the recent literature; here CD74 is 

thought to support the accumulation and functions of Tregs.  Specifically, CD74 was 

located to the surface Tregs in non-small cell lung cancer and was overexpression in 

tumour-associated Treg as opposed to blood circulating Tregs, this could suggest CD74 

expression may be a marker of increased tumour-associated Tregs, but must be further 

assessed in future research of OAC to prove the relationship (456). 

 

The expression of HLA-DPA1 corresponded to an increase in CD4+ T cell density within my 

OAC cohort, this can be explained via HLA-DPA1/CD4 mediating cell crosstalk between 

CD4 + T conv cells and pDC cells demonstrated in head and neck squamous cell 

carcinomas, suggesting the results observed in OAC may be mediated by dendritic cells in 

the TIME (457). HLA-DPA1 also corresponded to Treg populations, unfortunately, this 

exact relationship did not find explanation in the literature, however, this association may 

be simply driven by co-recruitment of activated effector cells to inflammatory 

microenvironments observed in OAC (458). The greater expression of HLA-DQA1 

appeared to result in greater CD4+ T cells and Tregs within OAC. This could suggest 

expression of this gene within professional APCs corresponds to the activation and 

recruitment of CD4+ T cells within OAC patients to the tumour site as demonstrated in 

breast cancer. Whereas, extracellular HLA-DQA1 may be a component in inducing Tregs 

as shown in celiac disease, but not yet observed in cancer (459, 460). 

 

Similarly the higher expression of HLA-DRA was also associated to increased abundance of 

CD4+ T cells and Tregs within of OAC microenvironment. The correspondence with CD4+ 

T cells has prior been identified in non-small cell lung cancer and renal cell carcinomas 

and potentially is produce via two mechanisms. Namely, the recruitment and activation 

role of HLA-DR proteins bound to APCs on CD4+ T cells, and/or the expression of HLA-DR 

on CTLs (291, 461-464). Mirroring the CD4+ T cell relationship, the HLA-DRA and Treg 

association may also relate to expression of HLA-DRA on Tregs as shown in cervical 

squamous cell carcinoma; however, in a disease similar to OAC, gastric cancer, a 

publication suggests HLA-DR expression on pDCs, myeloid DCs (mDCs), macrophages, and 

B cells may relate to ICOS-L expression by these cells the activation of Tregs (ICOS+ Treg 

induction) (465, 466). 
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The final HLA-loading complex assembly genes to find association to effector cells were 

HLA-DRB1 and HLA-DRB5 with Treg populations, the relationship observed here may 

relate to prior discussed expression of these genes in Tregs as shown colorectal cancer 

liver metastases and ovarian cancer (467). 

 

Lastly, the single peptide generation gene to associate with increased Tregs was identified 

in CTSS, where similarly to some HLA molecules, CTSS has been shown to be expressed in 

Tregs of bladder cancer, and relates to increased CD8+ T cell proliferation and apoptosis 

of cancer cells (468). Unfortunately, no relationship between CTSS and CD8+ T cell 

abundance was observed within my analysis, thus weakening the above suggestion in 

OAC. 

 

Overall, the direct interaction of MHC class II antigen presenting molecules and CD4+ T 

cells appears to be an occurrence in OAC, and the expression of these molecules may 

impact activity of the CD4+ T cell subset.  However, Tregs present a more complex finding 

with the literature supporting several of the HLA-loading complex assembly genes may be 

expressed by tumour associated Tregs or Treg activation may be linked to interaction with 

DCs expression of these genes. Which of these outcomes is most likely can be determined 

when exploring the associations between HLA-loading complex assembly genes and 

myeloid populations later in this discussion. 

4.5.4 Myeloid cell populations are altered in cases due to MHC class I expression in OAC. 

Following my analysis of effector cells and their association to APM genes, I explored the 

alteration of myeloid cell populations, due to the expression of APM genes. 

Starting with MHC class I genes, I observed altered myeloid cell subset abundances linked 

to specific MHC class I genes including two involved in each function of HLA-loading 

complex assembly, peptide generation and alternative antigen presentation.  This result 

was less expected, as the MHC class I system is present on professional APCs, but 

presentation between cancer cells and myeloid cells does not occur in a conventional 

manner. 
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Firstly, greater expression of HLA-loading complex assembly genes TAPBPL and HLA-E lead 

to increased abundance of macrophages and monocytes, respectively.  The TAPBPL 

relationship may be explained by its expression in macrophages and the expression-cell 

abundance correlation has prior been identified in breast cancer, with the low expression 

of TAPBPL relating to increased risk (260, 469). Increased HLA-E expression in OAC related 

to greater abundance of monocytes, an explanation ground in cancer was not found in 

cancer studies. However, in juvenile idiopathic arthritis, a disease with a highly 

inflammatory microenvironment akin to cancer, the upregulation of HLA-E expression 

was noted in B cell and monocyte populations with an interesting down-regulation of 

HLA-E among T cell populations (470). This does propose an interesting question about 

the cell of origin or mechanism the relation between HLA-E and monocytes employs in 

OAC, which could be explored in future studies. 

The increased expression of peptide generation genes PSMB10 and ERAP1 corresponded 

to increased abundance of dendritic cells and granulocytes, respectively.  The former 

relationship has been prior elucidated in dendritic cells as the expression of 

immunoproteasome components appears integral to the maturation of these cells, Furth 

more, the lack of PSMB10 expression in myeloid populations results in deficient MHC 

class I expression within DCs and correlates to poor survival outcomes (471-473). The 

later relationship between higher ERAP1 expression and increased presence of 

granulocytes could not be explained by the literature in a cancer setting, despite this, 

lymphocytes stimulated by ERAP1/2 expressing choriocarcinoma cells in a preeclampsia 

setting resulted in the increase of granulocyte-macrophage colony-stimulating factor 

(GM-CSF).  GM-CSF functions to enhance neutrophils and macrophages activity and has 

prior been investigated in human gastrointestinal infections and cancer, suggesting 

activation and migration of myeloid cells such as neutrophils to inflammation sites may be 

regulated by this cytokine (474-476). 

Finally, observing alternative APM genes found greater MR1 expression related to 

increased macrophage populations; within the literature this relationship provides a 

complex contradiction, firstly MAIT cells which MR1 directly interacts with appears to 

lead to phenotype shift of liver macrophages and within the same study MR1 was shown 

to be expressed in Kupffer cell macrophages (477). On the other hand, a study of the 

human intestinal mucosa found a lack of expression of MR1 in macrophages (478). 

Thereby, at this stage the exact mechanistic relationship between MR1 expression and 
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macrophage populations cannot be explained, made especially difficult by the limitations 

on cell type evading MAIT cell in CIBERSORTx.  

CD1D expression positively corresponded to increased populations of monocytes, 

macrophages and granulocytes within the OAC microenvironment, notably, this is an 

expected result in monocytes and macrophages as CD1D is a marker for these cell types 

(479). However, the relationship with granulocytes is more interesting and may relate to 

CD1D-restricted NKT cells encompassed by the granulocyte immune cell type, 

demonstrating a potential NKT cells may be reacting with monocytes and macrophages 

present in OAC tumours (480). Additionally, a prior publication demonstrates the CD1D-

restricted NKT cells may produce granulocyte–macrophage colony-stimulating factor to 

recruit neutrophils (479). 

Holistically this analysis demonstrates that although few direct conventional interactions 

occur between MHC class I genes and myeloid population, the expression of MHC class I 

genes can influence myeloid populations, however, difficulty arises when attempting to 

deconvolute the mechanisms behind such associations as several MHC class I and 

especially alternative APM genes can form markers of myeloid populations. 

4.5.5 Myeloid cell populations are altered in cases with high MHC class II expression in 
OAC. 

Following the associations between myeloid cells and MHC class I expression, I moved 

forward to assessed myeloid relationships to MHC class II expression, this analysis 

presents with added complexity as myeloid cells express MHC class II system genes as 

part of their primary function to directly interact with and educate CD4+ T cells.  Thereby, 

in discussing these results particular attention must be paid in determining the likelihood 

that an association observed is a product of a function of a particular MHC class II gene or 

whether the association is likely due to the gene being a marker of a myeloid cell 

population. 

Starting with the HLA-loading complex assembly genes of the MHC class II system, the 

higher expression of CD74 corresponded to increased macrophage and granulocyte 

populations, CD74 itself is expressed by macrophages, but is not expressed on the surface 

of neutrophils and mast cells (481, 482). Therefore, the expression of CD74 associating to 

high macrophage populations may be indicative of macrophages constituent expression 

of the gene.  However, an alternative suggestion can be made which encompasses the 
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relation between CD74 expression and both macrophages and granulocyte increased 

populations.  CD74, apart from functioning as a chaperone for HLAs of the MHC class II 

system also functions as a receptor for macrophage migration inhibitory factor (MIF) with 

studies in gastrointestinal tract diseases demonstrating MIF binding to CD74 can result in 

the upregulation of cytokines including IL-1, IL-6, IL-8, and TNF-α (483). The increased IL-8 

secretion due to MIF binding CD74 would relate to increased neutrophil populations with 

IL-8 role as a key chemoattractant for this cell type; this relationship has also been 

observe in breast cancer, however, this mechanism functions through CD74 binding of 

TIMP1 which can be associated to granulopoiesis and neutrophilia in mouse models (484-

487). 

Greater expression of HLA-DRA and HLA-DRB5 both correlated to increased macrophage 

populations within my OAC cohort.  Interestingly, this opposes findings in OSCC data 

where lower expression of HLA-DR positively correlated with high-density of M2 TAMs 

promotes malignant behaviour of OSCC cells, however, this is attributed to phenotypic 

switching from M1 to M2 macrophage phenotype with the publication not exploring 

overall macrophage density (488). Thereby, the expression of HLA-DR genes including 

HLA-DRA and DRB5 may relate to the phenotype of macrophages, with the corresponding 

relationship observed within my OAC cohort occurring due to macrophages expressing 

HLA-DR as observed in lung cancer (489). 

The expression of the final two HLA-loading complex assembly genes, HLA-DPA1 and HLA-

DQA1 corresponded to increased macrophages in the OAC TIME; once again these genes 

are constitutively expressed by macrophages and exploration of these genes in the 

literature did not find analysis which successfully deconvolutes the role of these genes 

from its use as a biomarker (490, 491). 

The remaining MHC class II genes to associated to myeloid populations are functionally 

grouped into peptide generation genes, namely, CTSL, CTSS and LGMN.  Both increased 

expression CTSL and LGMN corresponded to increased macrophage populations in the 

OAC cohort samples, the expression of CTSL has prior been reported to modulate the 

polarisation of macrophages driving them towards an M2 phenotype in breast cancer 

(492). However, the expression of CTSL may be indicative of macrophages being 

stimulated by IL-4 in the TIME of OAC leading to expression of CTSL, this suggestion is 

supported by studies of gastric carcinomas where IL-4 is often overexpressed (493, 494). 
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Lastly, increased CTSS expression in OAC corresponded to increased granulocyte 

populations, this may be due to CTSS playing a role in truncating chemokines CXCL1/2/3/5 

by N-terminal processing creating the active form of these chemokines which function to 

recruit neutrophils (495). 

 

Overall, this analysis in combination with the literature provides several potential 

mechanisms by which myeloid populations may be altered by the expression of MHC class 

II genes, however, a number of these genes are constitutively expressed by myeloid cell 

subpopulations thus are not informative.  

4.5.6 B lineage cell populations in the OAC TIME are altered by the expression of CALR and 
CD1D in OAC 

Observing the B cell associations with MHC class I expression found only two genes 

corresponded with increased B cell populations, namely, the chaperone gene CALR and 

the alternative APM gene CD1D.  The interaction with CALR has prior been reported in 

renal cell carcinoma where the expression of CALR positively correlated with B cell 

infiltration plus immune modulators PD-1 and LAG3, while the immune cell correlation 

was observed with my OAC samples, the correspondence to PD-1/LAG3 expression was 

not identified.  CD1D expression is noted in B cell populations, thereby using this 

approach could not disentangle the probability CD1D plays a functional role in B cell 

recruitment or whether this gene just forms a marker for the presence of B cells as CD1D 

plays a major role in B cell development (496). Overall, little mechanistic understanding 

can be gathered from the literature on the role of these two genes, excluding the 

knowledge of CD1D marking the presence of B cells. 

4.5.7 B lineage cell populations in the OAC TIME are increased by the expression of MHC 
class II genes 

My final observations investigated the association between MHC class II gene expression 

and the abundance of B lineage cells, finding four HLA-loading complex assembly genes 

and a single peptide generation gene of the MHC class II system found a corresponding 

relationship.  B cell populations were elevated in cases with high HLA-DQA1, HLA-DRB5 

and SPPL2A; HLA-DQA1 have demonstrated this impact in prior studies of colorectal 

cancer which its expression correlated with immune infiltrate in right side colorectal 

cancer, but not left side (497). Greater HLA-DRB1/5 expression increased plasma cell 
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abundance in OAC, however, this may relate to HLA-DR being expressed on 

CD19+CD24−CD38hi plasma cells in the study of immunoglobulin G4 (IgG4)-related 

disease, gastric cancer, and melanoma (498-500). As gastric cancer is genomically similar 

to OAC and shares similarities in their TIME this provides confidence to this finding within 

my OAC cohort (501). Increased HLA-DRB5 expression in the OAC cohort also 

corresponded to increased B cell populations, HLA-DR proteins are expressed on B cells, 

making this finding likely due to B cell expression of HLA-DRB5; the expression of HLA-DR 

in OAC epithelium has been prior reported to associate poor survival forming an 

independent prognostic marker (196). 

 

Finally, the greater expression of SPPL2A corresponded to increased B cell populations 

within my OAC cohort, this finding may be due to SPPL2A role in clearance of CD74 n-

terminal fragments (NTF), mouse models have demonstrated lack of SPPL2A expression in 

the TIME can result in the accumulation of CD74 NTF leading to the arrest of B cell 

maturation in the translational stage (502-504). Therefore, in OAC the expression of 

SPPL2A may result in adequate maturation of B cells compared to cases with a lack of 

SPPL2A expression.  This analysis in combination with the literature demonstrates that B 

lineage cell abundance in the OAC microenvironment may be altered by the expression of 

MHC class II genes, however, with B lineage cells being capable of expressing MHC class II 

genes, the relationships observed may be displaying MHC class II expression as a marker 

of B lineage cells.  Despite, these interesting results can be observed, especially in the 

case of SPPL2A which relates to a known mechanism which impacts to function of B cells 

in tumours. 

4.5.8 Effector cell populations are altered in cases due to APM gene expression regulators 
in OAC. 

Lastly, for immune effector cells I observed the impact of APM gene expression regulator 

genes including CIITA, RFX5 and CSDE1, the impact of these genes determines the 

expression of MHC class I and II genes within cells, in turn impacting their ability to elicit 

immune responses to cancer.  Firstly, I observed CIITA which primarily regulates MHC 

class II expression with some evidence suggesting a secondary role in the regulation of 

MHC class I expression.  The expression of this regulator associated to the presence of 

CD4+ T cells and Tregs within my OAC cohort, this is explained in the literature as 

resulting from greater expression of MHC class II molecules in APCs promoting CD4+ T cell 
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priming, with greater CD4+ T cell priming an expected result would be co-recruitment of 

Tregs (458, 505). 

RFX5 is a component of the RFX complex which acts as form an enhanceosome for MHC 

class II expression, in OAC the increased expression of the RFX5 gene appears to 

correspond to increased Treg abundance, interestingly, a similar report has prior been 

published in gastric cancers with RFX5 expression correlating to increased TILs and 

positively correlated to FOXP3+ biomarker (248). 

Finally, greater CSDE1 expression in OAC corresponded to reduced CD8+ T cell abundance 

in the OAC microenvironment, this is attributed to CSDE1’s role as a negative regulator of 

MHC class I expression. Functionally reducing STAT1 signalling in the JAK/STAT pathway 

which functions downstream to promote MHC class I expression.  This has currently been 

observed in melanoma which demonstrated CSDE1 is capable of stabilising TPTCP, a 

tyrosine kinase which dephosphorylates pSTAT1 prevent its translocation to the nucleus, 

thus inhibiting pSTAT1 binding to the upstream promoter of the HLA-locus.  Thereby, I 

propose the expression of CSDE1 in OAC tumour cells functions to reduce the 

immunogenicity of cells, this will be further explored in chapter 5 and 6 (321). 

Overall, this demonstrates that APM gene expression regulators may impact the MHC 

class I and class II system holistically in their respective expression resulting in multiple 

MHC genes being altered in cancer, thus leading to altered immunity.  Further exploration 

of CSDE1 may yield interesting results using immunohistochemistry in tumour tissue to 

discovery expression localisation and knockdown models to assess the genes impact on 

expression of HLAs within the MHC class I pathway (Chapter 5 & 6). 

4.5.9 Limitations 

Deconvolution analysis of bulk-RNA from the TCGA and OCCAMS datasets have identified 

several prognostically significant genes from the datamining analysis impact the immune 

cell subpopulations in OAC.  Furthermore, deconvolution is still limited to making broad 

evaluations as exact cell location cannot determined from the RNA ‘soup’, the exact cell 

location can be highly significant as TILs presented in the intratumorally space of OAC 

possess a significant impact on survival whereas TILs located in the peritumoral space do 

not (282).  A further limitation of this analysis is the inability to determine cellular 

function specifically, for example no distinction is made in CIBERSORT between CD8 T 

cells at a resting or activate state.  The final limitation of this analysis is found in immune 
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cell markers, with our analysis we used APM expression groups as determined by our 

datamining to assess differences in immune cell subpopulations, however, a number of 

APM genes form markers for immune cell subpopulations. For example, CD1A and CD1D 

are markers for dendritic cells, thereby in our analysis a high presence of dendritic cells in 

sample samples with high CD1A and/or high CD1D expression is most likely due to the 

APM gene being a marker of the cell type, rather than the APM gene impacting the TIME 

immune subpopulation (365, 366). 

 

4.5.10 Conclusions 

In conclusion this analysis has suggested the expression of MHC class I/II, alternative APM 

and APM gene regulation regulators in OAC is important in immune cell distribution and 

whilst elucidating the diversity found in the immunophenotypes of OAC tumours.  

However, these association must be thoroughly examined to account for MHC class II and 

alternative APM genes which may form markers of individual immune subset cell 

populations.  Out of the twenty-seven candidates which possessed an association to OS 

discovered in chapter 3 twenty-one APM genes could be associated to altered immune 

cell subsets in the TIME of OAC. 

In particular, effector cell abundance was associated to the expression of six MHC class I 

genes, one alternative APM gene, seven MHC class II genes and three APM gene 

expression regulators; myeloid cell abundance related to the expression of four MHC class 

I genes, two alternative APM genes and eight MHC class II genes, with no association to 

APM gene expression regulators; finally, B lineage cell populations associated to the 

expression of one MHC class I gene, one alternative APM gene and three MHC class II 

genes. 

Using the literature in combination with these findings allows for further filtering of APM 

gene candidates, namely, HLA-A/B/C/E, ERAP2, TAP1 and HLA Class II for later 

investigation via immunohistochemistry to validate the findings.  

These candidates must be selected using a strict criterion, including available antibody 

markers, the gene’s impact on survival outcomes, the gene’s association to altered 

immunity and finally the literature surrounding the role of the gene in tumoral immunity. 
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Chapter 5 Clinical and immunohistochemical validation 
of prognostic APM genes 

5.1 Introduction 

The results gathered from the datamining section and the deconvolution section 

combined suggest APM gene expression in OAC does possess a significant impact on both 

survival and the immune cell proportions in OAC.  However, the analysis thus far 

conducted has used bulk-RNA of OAC tumours, which measures the average expression 

level for each gene across the sample, due to this the data may mask exact cell types, and 

importantly cannot be used to determine the special positioning on immune cells in 

tumours.  Understanding the limitation of bulk-RNA analysis the project aims to validate 

the findings of the bulk-RNA seq analysis whilst exploring further data gathered by 

immunohistochemistry (IHC).  IHC is a methodology by which protein markers are stained 

for using antibodies which specifically target them, then a secondary antibody may be 

applied which is conjugated to a horseradish peroxidase (HRP) or an immunofluorescent 

tag.  IHC is typically used on sections of tissue cut and mounted to slides using a slide-

sectioning machine to produce thin sections which may be observed under microscope. 

5.1.1 Immunohistochemistry for scientific and clinical applications 

As prior described IHC is a versatile method which is used for the detection of specific 

molecules (primarily proteins) in tissues, though fixed cells may also be assessed using 

this method.  Primarily, two factors of information can be gathered from IHC, firstly, the 

presence/density of a given protein within a sample and the subcellular location of the 

proteins stained.  In the clinic IHC has been employed as an additional tool beyond simple 

H&E histology to determine the presence of specific proteins which are indicative of 

prognosis and may guide treatment, foremost of these proteins is HER2 (human 

epidermal growth factor receptor 2) in breast cancer which forms a dominant driver of 

cell proliferation and survival.  HER2+ IHC staining of biopsy samples has been used to 

recommend trastuzumab in patient care, resulting in 50% reduction in the risk of 

recurrence (506-508).  Since the use of IHC to recommend anti-HER2 treatment for HER2+ 

breast cancer, this has expanded to include other cancers overexpressing this protein 

including gastric with some evidence this treatment may be applicable to OAC (509, 510). 

However, a recent trial opposed earlier suggestion trastuzumab may be useful in the 
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treatment of HER2-overexpressing OAC, finding no significance improvement in patient 

outcomes, yet the application of trastuzumab did not lead to increased toxicity so could 

provide benefit in future combining treatment studies with other HER2 targeting agents 

in OAC (511). An additional IHC prognostic marker related to OAC is COX2 which is a rate-

limiting enzyme for the conversion of arachidonic acid to prostaglandins and performing a 

multitude of functions including, those relevant here, such as immune evasion, 

angiogenesis, and proliferation.  COX2 is noted as overexpressed in OAC with therapeutic 

intervention using inhibitors in cases of Barrett’s oesophagus shown to be protective 

against the development of OAC (512-515).  In addition to these two proteins, systematic 

review of IHC analysis in OAC have also indicated the importance of protein markers CD3, 

CD8, EGFR, p53, LgR5, Ki67 and VEGF have clinical values. Yet a number of these markers 

has only been successfully applied within research failing to yield significance in clinical 

trials (516). 

5.1.2 Immunohistochemistry investigation of OAC immunity and antigen presentation 
machinery 

As described above staining for immune cell markers using IHC is an important scientific 

and prognostic tool leveraged in both research and the clinic, this is especially the case in 

cancer where a substantial number of publications are available in multiple cancer types 

and prognostic features are derived from tissue samples, this includes OAC. 

Firstly, a publication by Noble et al. in OAC correlated the presence of tumour infiltrating 

lymphocytes with improved survival; by staining with CD3+, CD4+, CD8+ and FOXP3+ 

antibodies in human OAC tissue three independently prognostic factors were identified 

between surgery-only treatment (p = 0.015), completeness of resection (p = 0.001), 

increased CD8+ TILs (Tumour infiltrating lymphocytes) (p < 0.0001) and reduced 

pathological N stage (p < 0.0001) (362). This directly shows the presence of CD8+ T cells as 

a key factor in cancer specific and disease-free survival in OAC patients, this finding was 

further supported in the Noble et al. study finding higher levels of TILs in patients 

associated to favourable responses to neoadjuvant therapy (517). 

Multivariant analysis further found the increased levels of CD4+ and CD8+ TILS in patient 

samples were associated with significant local tumour regression and lymph node 

downstaging.  Overall, this study established the link between the presence of TILs and 

survival in OAC, a finding previously reported in other cancers. 
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In the same year, another study in OAC identified High intratumoural but not peritumoral 

inflammatory host response was associated to better prognosis, with the intratumoural 

inflammation being tied to high counts of intratumoural FoxP3+, CD3+, CD8+ TILs (210). 

Furthermore, the combination of TILs CD3+/CD8+/FoxP3+ was further divided into three 

prognostic groups, triple high (all T cell subsets high infiltrate)/mixed/triple low (all T cell 

subsets low infiltrate) (210). 

In the progression of BE to OAC, multiplex immune cell marker staining for CD3 (T cells), 

CD8 (cytotoxic T cells), CD163 (macrophages) and FoxP3 (Tregs) found within the stroma, 

a notable significant increase of these cell types from BE to low grade dysplasia and, to 

high grade dysplasia (79). Additionally, significant decline in CD3+CD8+ cytotoxic T cells in 

OAC samples compared to BE with high grade dysplasia (79).  IHC has also been used to 

explore reoccurrence in OAC.  With the presence of CD8+ T cells, despite being an overall 

positive prognostic indicator, may also be a potential predictor of OAC recurrence, with a 

higher mean densities of CD8+ T cells being detected in patients which reoccur; however, 

these findings were not statistically significant within this study (518). 

A recent publication used IHC in OAC to explore adaptive immune and immune 

checkpoint landscape of neoadjuvant treated OAC.  Within this project tissue microarrays 

from 329 OAC cases were subjected to IHC staining for adaptive immune cell markers 

CD3, CD4, CD8 and CD45RO and immune checkpoint biomarkers (ICOS, IDO-1, PD-L1, PD-

1); this investigation produced a number of findings, firstly, OAC tumours could be 

broadly divided into immune hot and immune cold tumours, depicted as expressing high 

level of CD45RO, ICOS, CD3, CD4, CD8, PD-1 and PD-L1 in contract to the immune cold 

cases (519). Furthermore, high expression activated T cell markers CD45RO/ICOS also 

displayed a significant survival advantage. 

The study would move forward to use multiplex IHC to explore the spatial expression of T 

cell activation in OAC tumours, this methodology found in immune hot cases a 

substantially higher count of cells co-expressed CD45RO/ICOS in the tumour stroma in 

comparison to the immune cold cases (519). This demonstrates the significant power 

multiplex IHC staining possesses in the identification of specific cells co-expressing cell 

markers to a localised area of a tumour. 

External to OAC, studies in pancreatic ductal adenocarcinoma (PDAC), a cancer type with 

similarities to OAC, have characterised the immune microenvironments as immune 

escape, immune rich and immune exhausted by the immune cells present in IHC.  In 
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immune escape TIMEs PDACs display highly immunosuppressive, with high counts of 

Tregs and M2-polarised macrophages, whilst showing low numbers of effector T cells, 

these patients typically have poorer prognosis compared to the other two immune 

phenotypes (520). Conversely, the immune rich phenotype is characterised by high 

counts of effector CD4+ and CD8+ T cells and M1 macrophages, there is also the frequent 

presence of tertiary lymphoid tissues in these cases; reduced numbers of 

immunosuppressive immune cell populations including Tregs and M2 macrophages are 

also typical in immune rich TIMEs.  Lastly, a mixed TIME phenotype called immune 

exhausted can arise, these share similar feature to their immune rich phenotypes, 

however, there is a distinct lack of tertiary lymphoid tissues in immune exhausted TIMEs 

with T cell exhibiting cell exhaustion features such as PD1, CTLA4, TIM3, and LAG3 (520, 

521). This forms a model which may be in future explored in our IHC analysis of OAC to 

characterise the impact of APM defects on the TIME immune phenotype. 

IHC based studies have also explored antigen presentation machinery in OAC and other 

cancer types; one specific study used IHC methodology to identify the loss of TAP2 

expression in OAC due to the expression of MIR125a-5p. the same study reaffirmed prior 

literature in recurrence linking the increased presence of CD8A T cells in OAC to 

recurrence (164). Another study explored locally advanced OAC tumours using IHC, 

identifying the distribution of TILs, as well as the presence of PD-L1, present in 21.2% of 

cases, in OAC as an immune evasion mechanism.  Specifically, patients with a high count 

of T cell infiltration (CD3 and CD8 staining) in the tumour centre displayed a significant 

survival advantage of 41.4 months compared to 16.3 months in T cell poor tumours 

(p = 0.025) (522). However, T cell infiltration into the invasive zone of the tumours was 

not correlated with survival; a notable loss of MHC class I protein expression on tumour 

cells was present in 32%, relating to the downregulation of APM protein expression in 

OAC (522). 

Overall, IHC is a powerful tool which has been used to explore the immune 

microenvironments and antigen processing machinery of OAC and other cancers. Using 

prior literature on the use of IHC we can identify the immune phenotype characteristics 

and survival outcomes based upon them, then move further to prioritise and associate 

our APM gene candidates which possess maximal prognostic value with clinical survival 

data and impact on the TIME. 
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5.1.3 Limitation of immunohistochemistry 

Despite the robust nature of the IHC methodology there are several well-known pitfalls 

when attempting to apply this methodology in the clinic and within research projects.  

 

Firstly, immunohistochemistry does not directly show the target of interest, instead the 

detected emission either a fluorescent tag or a coloured substrate is visible, therefore, 

extra care must be applied to the staining to reduce the possibility detection is a result of 

off-target binding of antibodies (often referred to as background staining) (523, 524). 

 

Secondly, the lack of observable staining in IHC may not reflect the complete absence of 

the target molecule. This may form out of multiple causes including insufficient affinity of 

the antibody to the target protein, poor tissue pre-processing or IHC technique, masking 

of the epitope, poor permeabilization of tissue and lack of signal amplification (solved by 

amplification techniques such as Avidin–Biotin Complexes) (523). Therefore, using IHC 

methodology a claim of complete target molecule absence should be avoided, instead 

relying on more sensitive methodologies such as western blotting. 

 

The third issue forms from the assumption a tissue should not produce a signal if no 

target is present, however, in practice this often IHC antibodies can bind to other targets 

with lower affinity presenting staining which may appear on target but is not. 

Lastly, IHC staining may fall victim to poor interpretation as the positive detection of a 

target relies heavily on additional information including knowledge of the targets 

expression and subcellular location (523). This could refer to issues in ubiquitous proteins 

expressed in the majority of cells such as signalling molecules which may appear diffuse 

across a tissue rather than cell localised or the potential of being misled by known 

additional information such as a protein appearing to stain in the nuclei rather than its 

known membrane location. However, IHC alone cannot provide enough data to discard 

this result as non-specific as the protein may have translocated to the nucleus. 
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5.1.4 Hypothesis and chapter aim and objectives. 

The prior datamining and deconvolution investigation of the landscape of genomic 

defects in APM genes and their association to altered immune population identified the 

expression of several APM genes was prognostically significant that possessed 

significantly different immune cell subpopulations in the OAC cohorts.  However, these 

findings lack validation.  To validate my findings from chapter 3 and 4 

immunohistochemistry (IHC) analysis will be conducted providing confidence between 

the association of TIME immune cell subpopulation proportions of and APM gene 

expression.  Additionally, I will gather information of spatial localisation of APM protein 

expression in OAC tissue. 

 

Hypothesis 3: ‘Expression of Antigen Presentation Machinery proteins in primary 

oesophageal adenocarcinoma tissue impacts survival and the T lymphocyte abundance.’ 

 

Objective 3a: Immune and APM protein staining data on a Southampton OAC TMA series, 

will be analysed to measure the level OAC T cell infiltrate in tumour cores, determining 

the variance in marker expression and to valid my observations from Aims 1 & 2.  

Objective 3b: APM staining scores and immune density data will be collated to identify 

significant correlations between APM protein expression and T cell density. 

Objective 3c: APM staining scores and immune density data will be analysed with 

maximally selected rank statistics optimal cut-offs to measure the impact of APM protein 

expression on patient outcomes (constructing Univariate and Multivariate models for 

Overall survival, disease-free survival, and cancer-specific survival and important clinical 

co-variates). 
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5.2 Methodology 

5.2.1 TMA samples and clinical data 

Tissue microarray samples for IHC analysis were secured from the Southampton General 

Hospital tissue bank, this consists of the OES TMA 2 tumour blocks containing 185 

patients, cored in triplicate.  These are labelled: 

• OES Tumour 1 

• OES Tumour 2 

• OES Tumour 3 

Tissue microarrays (TMAs) were constructed using triplicate, randomly selected, paraffin-

embedded 1-mm tumour cores and sectioned into 4-µm sections. 

5.2.2 Staining 

The IHC TMA staining was conducted by the Research histology group at the 

Southampton general hospital (ResearchHistology@uhs.nhs.uk) using a DAKO auto-

Stainer. 

Within my experimental design, I selected immune and APM stains; firstly, the Immune 

cell panel to cover common T cell subsets which includes CD3+ (All T cells), CD8+ 

(Cytotoxic T cells), CD4+ (T helper cells) and FoxP3+ (T regulatory cells).  Secondly, antigen 

processing machinery markers HLA-A/B/C, HLA-Class II TAP1, ERAP2 and HLA-E. 

Optimisation of antibody dilution was optimised by dilution series surrounding 

manufacturer recommendation in positive control tissues (i.e., tonsil) and negative 

controls (without primary antibody).  The details of the antibodies, dilutions and positive 

controls are in Table 20.  Stains were confirmed by a histologist in the research histology 

group at University Hospital Southampton General. 
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Table 20: Table of antibodies used in IHC staining. 

ANTIBODY 
TARGET CLONE SUPPLIER 

CATALOG 
NUMBER 

SPECIES/HOST 
ISOTYPE 

POSITIVE 
CONTROL 

CHOSEN 
DILUTION 

HLA-Class I 
(ABC) EMR8-5 Abcam ab70328 Mouse 

Human 
Tonsil 1:2000 

HLA-Class II  
(HLA 

DR/DP/DQ) CR3/43 Abcam ab7856 Mouse 
Human 
Tonsil 1:200 

HLA-E MEM-E/02 Abcam Ab2216 Mouse 
Human 
Tonsil 1:100 

CSDE1/NRU EPR17414 Abcam ab201688 Rabbit 

Human 
breast 
cancer 1:500 

TAP1 Polyclonal Proteintech 11114-1-AP Rabbit 

Human 
pancreatic 

cancer, 
Human lung 

cancer 1:200 

CD3 F7.2.38 DAKO M7254 Mouse 
Human 
Tonsil 1:50 

CD8 C8/144B DAKO M7103 Mouse 
Human 
Tonsil 1:100 

CD4 4B12 DAKO M7310 Mouse 
Human 
Tonsil 1:80 

FOXP3 236A/E7 Abcam ab20034 Mouse 
Human 
Tonsil 1:100 

       
 

5.2.3 Imaging 

Whole slide imaging will be conducted at the Biomedical imaging unit at Southampton 

General Hospital using Zeiss axio scan Z1 High Throughput Slide Scanner in brightfield 

scanning.  Scanned slide images in .CZI format will be automatically uploaded to the 

Underwood slide scanning database for ease of remote access and long-term storage. 

5.2.4 Automated analysis 

Analysis was performed in an automated fashion using Qupath (0.4.4), this aimed to 

provided consistent and standardised analysis results across TMA block and stains.  

Images were converted from .CZI format to Big TIFF format with pyramids in Zeiss Zen 

(blue edition), these Big Tiffs were loaded in Qupath (0.4.4) using bio formats and labelled 

as H-DAB images.  Standardised analysis achieved by recording my workflow in Qupath 

using the “Create workflow” command to produce groovy scripts which were run for each 

TMA image analysis.  The scripts broadly covered three functions broken down below. 

Firstly, the TMA was de-arrayed to identify each core in a grid array, each core was 

visually assessed to discount cores which exhibit core loss or histological structures not 

consistent with the OAC histological structure.  Following this, a tissue detection script 
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(available at https://github.com/wp1g19/OAC-Thesis-Antigen-processing-machinery-and-

the-immune-microenvironment) was processed to select only areas with tissue within a 

core, discounting areas with no tissue. 

 

Next, the stain vectors were estimated using the estimate stain vectors function in 

QuPath software for each image before running a stain quantification script, stain 

quantification were conducted via two methods placed in consistent scripts. Firstly, a 

percentage positive score was obtained by using the positive pixel count function 

(depreciated) which outputs the percentage of positive DAB-stained pixels.  Secondly, a 

H-score was generated using scripts adapted from Ram, et al. 2021 study of H-scoring 

methodology to produce a H-score value of 0-300 (525).  H-scoring functions by labelling 

cells as high (H), medium (M), low (L) and negatively (N) stained cells, then places them in 

an equation which produces a ratio of the weighted sum of the number of positive cells to 

the total number of detected cells.  

𝐻 − 𝑠𝑐𝑜𝑟𝑒 = ((0 𝑥 𝑁) + (1 𝑥 𝐿) + (2 𝑥 𝑀) + (3 𝑥 𝐻)) 

Equation 1: H scoring equation for scoring diffuse IHC stains. 

 

Immune cell density was calculated for CD3+, CD4+, CD8+ and FOXP3+ cells with the fast 

cell counts function in Qupath (0.4.4) using a script (available at 

https://github.com/wp1g19/OAC-Thesis-Antigen-processing-machinery-and-the-immune-

microenvironment)  for each stain to produce a cell count per mm2. Results were 

compared to staining intensity and coverage determinations by an expert histologist in 

the research histology group at university hospital Southampton General Hospital. 

 

5.2.4.1 Super-pixel segmentation and object classification 

Lastly, super-pixel segmentation analysis was conducted to firstly segment out structures 

using the DoG (Difference of Gaussians) super-pixel segmentation function in a script 

(available at https://github.com/wp1g19/OAC-Thesis-Antigen-processing-machinery-and-

the-immune-microenvironment). This functions by calculating the difference between 

two smoothed versions of the same image then applies two Gaussian kernels with 

differing standard deviations, by subtracting of these kernels and the original input image, 

edges can be detected to produce segments (526).  

https://github.com/wp1g19/OAC-Thesis-Antigen-processing-machinery-and-the-immune-microenvironment
https://github.com/wp1g19/OAC-Thesis-Antigen-processing-machinery-and-the-immune-microenvironment
https://github.com/wp1g19/OAC-Thesis-Antigen-processing-machinery-and-the-immune-microenvironment
https://github.com/wp1g19/OAC-Thesis-Antigen-processing-machinery-and-the-immune-microenvironment
https://github.com/wp1g19/OAC-Thesis-Antigen-processing-machinery-and-the-immune-microenvironment
https://github.com/wp1g19/OAC-Thesis-Antigen-processing-machinery-and-the-immune-microenvironment


 

185 

Following segmentation an object classifier was trained on a subsection of CSDE1-stained 

TMA cores to identify tumour, stroma and immune populations based on histopathologist 

report that CSDE1 stained immune and cancer populations with greater intensity than 

stroma cell populations, the object classifier was trained to distinguish between tumour, 

immune and stromal cell populations using cell size, shape, and intensity of CSDE1 stain.  

Then the object classifier was applied to the entirety of CSDE1 stained TMA images. 

5.2.5 Statistical analysis 

TMA stain quantified scores and immune cell counts (Percentage positivity and H-scores) 

were z-scored scaled prior to passing data to pheatmap() function (pheatmap package) in 

R version 4.0.2, clustered using Euclidean distance with ward.d2 linkage (411).  Optimal 

number of clusters was determined using the clValid() R package using hierarchical and 

kmeans tests (527). To assess the most accurate method of scoring diffuse stains between 

percentage positivity and H-scoring I performed a Bland-Altman analysis in GraphPad 

prism 9 which represents which scoring system is over/under predicting the value of 

protein expression.  Correlation analysis was conducted to assess the correlation of 

immune cell abundance and APM stain scores using Pearson’s correlation analysis with 

the RcmdrMisc() R package rcorr() function, which was visualised in ggplot() correlation 

heatmaps (528, 529). The prior deconvolution analysis was validated using Pearson 

correlation analysis with p-value adjustment (using the RcmdrMisc() R package rcorr() 

function) for CD4+, CD8+ and FOXP3+ T cells in TMA samples which overlapped with 

OCCAMS data, then visualised in ggplot() generated correlation heatmaps (528, 529). 

Finally, survival analysis was processed for overall survival using the workflow presented 

in chapter 3 with CoxPH univariate and multivariate OS, CSS and DFS with the finalfit() 

package in R (209). Multivariate model included immune and APM stain scores with age, 

sex and pTNM staging; this model was selected due to available clinical data and using 

prior IHC publications. 

5.2.6 Power and sample size calculations 

I used power and sample size calculator (Available at: 

https://biostat.app.vumc.org/wiki/Main/PowerSampleSize) to assess the power of 

discovery in the TMA cohort using a prior OAC staining from the Noble et al. paper 

comparing the high/low survival expression groups between the studies (517, 530).  
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5.3 Results 

5.3.1 TMA quality control and stain scoring optimisation. 

Firstly, I explored the sample size available from the stain TMA images to determine the 

quality of the TMAs being affected by core loss from entirely missing cores and cores 

which did not contain OAC histology as describe in the methodology.  Performing this 

analysis revealed 175/185 patient samples possessed at least one recorded TMA stain 

measurement.  However, exploring the individual stains, the HLA-ABC+ stain possessed 

the greatest sample size of 158/185 patients and the CSDE1 stain possess the lowest 

sample size of 114/185 patients (See Figure 40).  The sample size which successfully 

measured all IHC stains (i.e., no missing data) was only 69/185 samples, with the sample 

size of patients with all immune stains (CD3+, CD4+, CD8+ and FOXP3+) reaching 126/185 

samples and patients recording all APM stains reaching only 88/185.  Only 174/185 of 

patient samples possessed complete clinical data (survival status, follow-up time, pTNM 

staging, age and gender) (See Figure 40).  Using this analysis, I determined further 

analysis should avoid omitting all samples with missing staining to maintain power of 

discovery of 20% incidences. 

Figure 40 Consort diagram of TMA sample size available post IHC staining, including 
quality control, clinical data and individual stains available. 



 

187 

After determining the sample size due to core loss, I developed an automated detection 

and scoring of APM stains for my TMA images.  Firstly, I explored the staining present for 

HLA-ABC+, HLA-E+ and TAP1+ which all appeared diffuse and with some HLA-Class II+ 

positive stains appearing diffuse (See Figure 41).  Using this information and the current 

literature surrounding image analysis, I determined percentage positive and H scoring as 

the most effective manner to measure APM stains and proceeded to optimise the H 

scoring by visualising the staining intensity calls per cell in each APM stain and confirming 

these results with a histologist (See Figure 41) (525). 

 H-scoring was determined to be the most effective way to quantify IHC staining using 

Bland-Altman analysis of percentage positivity and H scores for HLA-A to determine 

whether percentage positivity under/overestimates staining quantification, finding that 

percentage positivity presents with a bias to underestimating HLA-A stains opposed to H 

scoring, though percentage positive and H scores are mostly agreement (bias = -2.38, 

Figure 42). 
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Figure 41 IHC APM staining and H scoring.  Top: IHC staining of APM proteins in OAC 
TMAs (HLA-ABC+, HLA-Class II+, HLA-E+ and TAP1+).  Bottom: APM stain 
scoring using H-scoring (Blue: Negative, Cream: Low stain, Green: Medium 
stain, Purple: High stain). 
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Figure 42 Bland-Altman plot comparing percentage positivity to H scores. 
A negative bias here represents underestimation of HLA-A stain quantification. 

 

Additionally, immune stains including CD3+, CD4+, CD8+ and FOXP3+ were analysed to 

determine in staining appropriately matched the known staining pattern confirming the 

appropriate cell membrane staining for CD3+, CD4+ and CD8+ markers and nuclei staining 

of FOXP3+ cells. The density of these cells was compared to a histologists report finding 

concordance, beyond this automated detection of these markers was conducted to 

calculate the density of positively stained cells (See Figure 43). 

Lastly, I conducted DoG (Difference of Gaussian) super-pixel segmentation on OAC TMAs 

stained with CSDE1 which identified OAC tumour core structure, this allowed for an 

object classifier to be trained based on knowledge CSDE1 stained tumour cells and 

immune cells with greater intensity than stromal populations (confirmed by a histologist, 

See Figure 44). 
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Figure 43 IHC immune cell staining and detection.  Top: IHC staining of immune cells in 
OAC TMAs (CD3+, CD4+, CD8+ and FOXP3+).  Bottom: automated immune cell 
detection (CD3+ Stain; Blue: Negative, Red: immune cell). 
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Figure 44 Super-pixel structure prediction.  A: super-pixel DoG (Difference of Gaussian) 
segmentation of histological OAC tumour structures.  B: Classification of OAC 
structures determined by neural networks (Red: Tumour, Green: Stroma, 
Purple: Immune cells). 

5.3.2 Exploratory data analysis reveals high heterogeneity in APM protein expression in 
OAC. 

After quality control the TMAs and confirming the accuracy of staining and stain scoring, I 

moved to assess the heterogeneity of APM protein expression detected via IHC.  I found 

five distinct clusters of APM protein expression via percentage stain coverage, the first 

cluster had a lack of TAP1+ staining with low HLA-E and HLA-ABC staining (number of 

patients?  = 16/88) with low T cell density across all T cell subsets, a second cluster was 

the largest cluster describing a high HLA-Class II+ cell population with greater HLA-ABC 

positivity than cluster 1 (12/88) and contained greater T cell density than cluster 1; cluster 

3 was the largest cluster mostly driven by high HLA-ABC and TAP1 protein expression 

(31/88), this cluster also appears to present two distinct subclusters, a HLA-ABC positive 

and negative subclusters of which the HLA-ABC positive subcluster containing greater 

CD3+ and CD8+ T cell density; cluster 4 expressed high HLA-E protein compared to all 

other clusters (9/88) and possesses the highest CD3+ T cell density (See Figure 45). 

Finally, cluster 5 contained high CSDE1 expression with a subcluster lacking HLA-ABC 

percentage score (20/88), two distinct subclusters also appear in the cluster and HLA-ABC 

high and low subcluster, with the HLA-ABC high subcluster possessing greater CD3+ T cell 

density (See Figure 45). 
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Figure 45 Z-scored heatmap of APM percentage positive staining (n = 88), clustered 
using Euclidean distance with Ward.D2 linkage, five distinct clusters of APM expression 
among OAC patients. 

Interestingly, despite five clusters also being derived from H scoring of APM proteins in 

the OAC TMA cohort, these clusters do not match the clusters derived from percentage 

scores.  The first cluster was the smallest and represented high HLA-ABC, HLA-E, HLA-

Class II and TAP1 (3/88) and possesses the highest CD3/8+ T cell density among the 

clusters (See Figure 46). The second cluster was driven by HLA-ABC and TAP1 protein 

expression with some cases possessing high HLA-Class II (8/88) with a large proportion of 

patient samples also containing high CD3/4/FOXP3+ T cell density (See Figure 46). A third 

cluster described high CSDE1 with lesser HLA-ABC/E/Class II expression (7/88) appearing 

to possess lower T cell density than cluster 1/2 (See Figure 46). Interestingly, clustering 

analysis did identify a small cluster with high CSDE1 protein expression (H score) did 

possess both low HLA-ABC protein expression and low T cell infiltrate (See Appendix A).  

Cluster 4 is the second largest cluster, possessing low TAP1 protein expression compared 

to the other clusters (27/88), interestingly this cluster appears with the lowest T cell 

density across all subsets within the clusters.  Lastly, cluster 5 had the greatest sample 

size and presents with high heterogeneity of APM protein expression matched with high 
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heterogeneity of T cell infiltration, however, notably a subset forms with high HLA-ABC 

and CSDE1 expression (43/88) (See Figure 46). 

Figure 46 Z-scored heatmap of APM H scores (n = 88), clustered using Euclidean distance 
with Ward.D2 linkage, five distinct clusters of APM expression among OAC 
patients. 

5.3.3 Exploratory data analysis reveals high heterogeneity in immune cell densities in 
OAC. 

Observing the immune populations within the TMA cohort identified four distinct clusters 

of T cell immunophenotypes in OAC.  The first cluster was the largest (64/126) presenting 

as an immune desert subset of patients lacking T cell infiltration, cluster 2 as the second 

largest cluster (31/126) presents with high FOXP3+ Tregs, lacking in CD8+ T cells 

suggesting this cluster represents as an immune suppressed group of tumours (See Figure 

47).  The third (13/126) and fourth clusters (22/126) are immune hot clusters with high 

CD3+ and CD8+ T cell infiltrate, though only cluster 4 possessed high CD4+ T cell infiltrate 

(See Figure 47). 
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Figure 47 Z-scored heatmap of immune cell density (n = 126), clustered using Euclidean 
distance with Ward.D2 linkage, five distinct clusters of immune populations. 
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5.3.4 Correlation analysis identifies relationship between APM protein expression and 
immune composition in OAC. 

 
Following the identification of APM protein expression and T cell immunophenotype 

clusters I proceeded to analyse the correlation between immune cell densities and APM 

protein expression.  Using this approach, I found CD3+ T cell density positively correlated 

with TAP1, HLA-E, HLA-Class II, and HLA-ABC H scores (Respectively: R = 0.28-0.38; p < 

0.05) and percentage positivity (Respectively: R = 0.20- 0.36; p < 0.05; see Figure 48).  

CD8+ T cell density found positive correlation with TAP1, HLA-E, HLA-Class II, and HLA-ABC 

H scores (Respectively: R = 0.20-0.36; p < 0.05; see Figure 48) plus HLA-Class II and HLA-

ABC percentage positivity (Respectively: R = 0.37, 0.38; p < 0.05; see Figure 48).  

The density of CD4+ T cell positively correlated to CSDE1 percentage positivity and H 

score (Respectively: 0.44, 0.32; p < 0.05; see Figure 48), HLA-E percentage (R = 0.25; p < 

0.05; see Figure 48) and HLA-ABC H score (R = 0.35; p < 0.05; see Figure 48). 

Finally, Treg density (FOXP3+) positively correlated to CSDE1 percentage positivity and H 

score (Respectively: 0.42, 0.37; p < 0.05; see Figure 48), HLA-Class II percentage positivity 

and H scores (Respectively: 0.3, 0.25; p < 0.05; see Figure 48) and HLA-ABC H score (R = 

0.36; p < 0.05; see Figure 48). 

 

Further investigation of correlations among my APM protein expression H scores found 

correlation, firstly, between HLA-ABC percentage positivity scores and all other APM 

markers (R values: CSDE1 H score = -0.2, TAP1% = 0.49, TAP1 H score = 0.43, HLA-E % 

staining = 0.32, HLA-E H score = 0.37, HLA-Class II% = 0.43, HLA-Class II H score = 0.44; p < 

0.05; see Figure 48). HLA-Class II percentage positivity positively correlated to TAP1 H 

scores (R = 0.22; p < 0.05; see Figure 48) HLA-E percentage positivity and H score 

(Respectively: R = 0.26, 0.27; p < 0.05; see Figure 48).  HLA-E positive coverage correlated 

to TAP1, HLA-ABC and HLA-Class II percentage positivity (Respectively: R = 0.18, 0.32, 

0.26; p < 0.05; see Figure 48) and TAP1, HLA-ABC, HLA-Class II H scores (Respectively: R = 

0.18-0.34; p < 0.05; see Figure 48).  TAP1 percentage positivity positively correlated to 

HLA-ABC and HLA-E percentage positivity (Respectively: R = 0.43, 0.18; p < 0.05; see 

Figure 48), as well as HLA-ABC, HLA-Class II, and HLA-E H scores (Respectively: R = 0.21-

0.27; p < 0.05; see Figure 48). 

Following the percentage positivity analysis, I explored the correlation between APM H 

scores and other APM markers.  Firstly, HLA-ABC H scores positively correlated with 6 
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measures of APM staining scores including CSDE1, TAP1, HLA-E and HLA-Class II 

percentage positivity (Respectively: R = 0.23-0.47; p < 0.05; see Figure 48) and TAP1, HLA-

E and HLA-Class II H scores (Respectively: R = 0.41-0.54; p < 0.05; see Figure 48). 

HLA-E H scores correlated to percentage positivity scores from TAP1, HLA-ABC and HLA-

Class II (Respectively: R = 0.18-0.32; p < 0.05; see Figure 48) and H scores from TAP1, HLA-

ABC, HLA-Class II (Respectively: R = 0.36-0.44; p < 0.05; see Figure 48). 

HLA-Class II H scores positively correlated to percentage positivity of HLA-ABC, TAP1 and 

HLA-E (Respectively: R = 0.21-0.44; p < 0.05; see Figure 48) and H scores of HLA-ABC, 

TAP1 and HLA-E (Respectively: R = 0.34-0.54; p < 0.05; see Figure 48).  Lastly, TAP1 H 

score found positive correlation with HLA-ABC, HLA-Class II, and HLA-E percentage 

positivity (Respectively: R = 0.18-0.49; p < 0.05; see Figure 48) and H scores (Respectively: 

R = 0.34-0.44; p < 0.05; see Figure 48). 

Figure 48 Correlation heatmap of APM staining scores and immune density.  p values 
determined by Pearson’s correlation test, * < 0.05. 
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5.3.5 Quantile APM protein expression analysis demonstrates altered immune 
composition in OAC. 

Beyond correlation analysis I sought to explore the association of APM protein expression 

clusters identified in earlier analysis (See Figure 45 & 46) and T cell density.  Due to the 

low sample size number of the APM high clusters, these clusters were combined to reflect 

APM high vs low protein expression in the TMA cohort.  Using this approach, I identified 

high APM protein expression using percentage positivity as a measure possessed greater 

mean CD3+ T cell density within my OAC TMA cohort (High: 863.5 vs Low: 595.1, p < 

0.0001, See Figure 49) and greater mean CD8+ T cell density (APM Mean, High: 524.8 vs 

Low: 362.5, p = 0.015, See Figure 49).  This result was reflected in analysis of H score APM 

high vs low protein expression with APM high possessing greater mean CD3+ T cell 

density within my OAC TMA cohort (High: 1192 vs Low: 621.8, p < 0.0001, See Figure 49) 

and greater mean CD8+ T cell density (APM Mean, High: 622.3 vs Low: 403.5, p = 0.0281, 

See Figure 49). 
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Figure 49 Boxplots of T cell density between APM protein expression groups (High vs 
Low).  A: T cell density compare between high/low percentage positivity APM 
protein expression groups.  B: T cell density compare between high/low H 
score APM protein expression groups.  Statistical test: Mann-Whitney U test, 
p values*<0.05, **<0.01, ***<0.001, NS = non-significant. 

 
After observing APM expression clusters associated to altered T cell density within the 

OAC TMA cohort, I proceeded to explore the association between quantile IHC protein 

staining scores (percentage positivity and H scores) for each protein quantified and T cell 

density. 
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Starting with MHC class I HLAs, the upper quantile of percentage positivity of HLA-ABC 

staining possessed greater mean CD3+ and CD8+ T cell density (Respectively: Upper: 

854.9 vs Lower: 414.7, p < 0.0001; Upper: 519.7 vs Lower: 234.5, p < 0.0001, See Figure 

50).  This result was replicated in the H score quantile analysis HLA-ABC staining 

possessed greater mean CD3+ T cell density (Upper: 906.4 vs Lower: 526.4, p < 0.0001, 

See Figure 51).  Next the upper quantile of HLA-E percentage positivity associated with 

greater CD3+, CD4+ and CD8+ T cell density (Respectively: Upper: 761.9 vs Lower: 433.7, p 

< 0.0001; Upper: 220.3 vs Lower: 68.26, p = 0.0138; Upper: 417.1 vs Lower: 275.9, p = 

0.0211, See Figure 50), these results were mirrored in the HLA-E H score upper quantile 

for greater CD3+, CD4+ and CD8+ T cell density (Respectively: Upper: 806.9 vs Lower: 

413.8, p < 0.0001; Upper: 189.5 vs Lower: 61.38, p = 0.0375; Upper: 502.6 vs Lower: 

274.8, p < 0.001, See Figure 51).  

 

Next, I explored the association between the TAPASIN translocon protein TAP1 and T cell 

density finding the upper quantile TAP1 of both percentage positivity and H score protein 

quantification associated with greater CD3+ T cell density (Respectively: Upper: 670.6 vs 

Lower: 510.8, p = 0.0160; Upper: 717.1 vs Lower: 434.5, p <0.0001, See Figure 50 & 51). 

Following the MHC class I proteins I observed the association between HLA-Class II 

protein expression quantiles and T cell density finding the upper quantile of percentage 

positivity and H score corresponded to greater CD3+, CD4+ and CD8+ T cell density 

(Percentage positivity Respectively: Upper: 801.3 vs Lower: 492.6, p <0.0001; Upper: 

516.9 vs Lower: 271.5, p<0.0001; H score Respectively: Upper: 880.4 vs Lower: 438.4, p 

<0.0001; Upper: 569.8 vs Lower: 228.5, p<0.0001, See Figure 50 & 51). Lastly, I 

investigated the association between protein expression of the APM gene expression 

regulator CSDE1 and T cell density, observing the upper quantile of CSDE1 protein 

percentage positivity scores corresponded to lesser CD3+, CD4+ and CD8+ T cell density 

(Respectively: Upper: 534.8 vs Lower: 748.4, p <0.01; Upper: 50.46 vs Lower: 261.7, 

p<0.01;  Upper: 271.8 vs Lower: 421.0, p = 0.0414, See Figure 50). However, the lower 

quantile of CSDE1 H scores only reflected the percentage positivity results with lesser 

CD3+ and CD8+ T cell density (Respectively: Upper: 763.1 vs Lower: 569.0, p = 0.0102; 

Upper: 313.3 vs Lower: 594.8, p <0.01, See Figure 51); conversely, CD4+ T cell density was 

greater in the upper quantile of CSDE1 H scores (Upper: 219.9 vs Lower: 56.79, p = 

0.0308, See Figure 51). 
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Figure 50 Boxplots of T cell density between quantile APM protein expression groups by 

percentage positivity (Upper vs Lower).  A: Upper vs Lower quantile of HLA-
ABC percentage positivity.  B: Upper vs Lower quantile of HLA-E percentage 
positivity.  C: Upper vs Lower quantile of TAP1 percentage positivity.  D: Upper 
vs Lower quantile of HLA-Class II percentage positivity.  E: Upper vs Lower 
quantile of CSDE1 percentage positivity.  Statistical test: Mann-Whitney U 
test, p values*<0.05, **<0.01, ***<0.001, ****<0.0001, NS = non-significant. 
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Figure 51 Boxplots of T cell density between quantile APM protein expression groups by 

H score (Upper vs Lower).  A: Upper vs Lower quantile of HLA-ABC H-score.  B: 
Upper vs Lower quantile of HLA-E H-score.  C: Upper vs Lower quantile of 
TAP1 H-score.  D: Upper vs Lower quantile of HLA-Class II H-score.  E: Upper vs 
Lower quantile of CSDE1 H-score.  Statistical test: Mann-Whitney U test, p 
values*<0.05, **<0.01, ***<0.001, ****<0.0001, NS = non-significant. 
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Lastly, I sought to confirm the histologists report of CSDE1 staining tumour cells with 

specificity in OAC, thereby I conducted a correlation analysis between CSDE1 H scores and 

predicted tumour content via super pixel segmentation.  Using this approach, I observed 

a positive correlation between CSDE1 H scores and tumour percentage in OAC (R2= 0.69, 

p<0.0001. See Figure 52). 
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Figure 52 Scatter plot with linear regression comparing predicted tumour percentage 
and CSDE1 H scores in OAC TMAs.  Dotted red lines represent 95% confidence 
interval. 
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5.3.6 Validation of deconvolution by immunohistochemistry 

Moving forward, I proceeded to attempt to validate my deconvolution analysis presented 

in Chapter 4.  To achieve this, I compared the T cell density of CD4+, CD8+ and FOXP3+ T 

cells from my IHC staining to the corresponding cell absolute abundances in my 

deconvolution analysis for samples which overlap between the TMA cohort and the RNA-

seq cohort (CD4/8: N = 14; Tregs: N = 13).  I could not establish a strong linear relationship 

between these variables with the closest correlation to approach significance being CD8+ 

T cell populations (R2 = 0.21, p = 0.09, See Figure 53); CD4+ and FOXP3+ T cell correlation 

displayed no appreciable correlation between IHC staining and deconvolution scores 

(Respectively: R2 = 0.005, p = 0.81; R2 = 0.027, p = 0.58, See Figure 53). However, there is 

a high potential the sample size is too small to determine any significant correlation to 

this analysis. 

To address this shortfall, I explored the using TIL percentage infiltration derived from 

TCGA biospecimen data (paired sample size of 14) produced from histopathologist 

analysis.  Here I did observe a significant relationship between TILs percentage infiltration 

and my deconvolution of TILs, although the model possesses a low R2 suggesting the 

model is weak (combine absolute values of CD4, CD8 and Tregs; (R2 = 0.34, p = 0.017, See 

Figure 54). 
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Figure 53 Scatter plot with linear regression comparing IHC T cell density with 

CIBERSORT Absolute score.  A: IHC CD8+ T cell density vs RNA-seq CIBERSORT 
Absolute score.  B: IHC CD4+ T cell density vs RNA-seq CIBERSORT Absolute 
score.  C: IHC FOXP3+ T cell density vs RNA-seq CIBERSORT Absolute score.  
Dotted red lines represent 95% confidence interval. 
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Figure 54 Scatter plot with linear regression comparing TCGA-ESCA OAC lymphocyte 

percentage with TILs CIBERSORT Absolute score.  Dotted red lines represent 
95% confidence interval. 
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5.3.7 Univariate survival analysis demonstrates significant impact of APM protein 
expression and immune composition on patient outcomes. 

Beyond identifying a link between APM protein expression and the density of T cell 

subsets, I sought to assess the association between APM protein expression, T cell density 

and overall survival using optimal cut points.  Among my assessed T cell markers, CD8+ T 

cell density associated to altered survival with low CD8+ T cell density displaying 

increased risk in OS (HR: 1.84, p = 0.04, See Figure 55); additionally, lower FOXP3+ T cells 

also corresponded to increased risk in OS (HR: 1.64, p = 0.05, See Figure 55).  However, 

neither CD3 nor CD4 T cell density associated to altered OS (See Figure 55).  Investigating 

APM protein expression their respective OS outcomes yielded four APM protein measures 

possessed altered OS; firstly, lower HLA-E H scores corresponded to increased risk of 

death (HR: 1.58, p = 0.05, See Figure 55), with HLA-E percentage positivity approaching 

significance (HR: 1.51, p = 0.06, See Figure 55).  Interestingly, lower HLA-Class II protein 

expression using both percentage positivity and H score measure results in shorter OS 

(Respectively: HR: 1.65, p = 0.02; HR: 1.83, p = 0.02, See Figure 55).  Lastly, high CSDE1 H 

scores corresponded to shorter OS in the OAC TMA cohort (HR: 1.69, p = 0.04, See Figure 

55). 

Figure 55 Forest plot of CoxPH univariate OS for TMA IHC APM protein expression and T 
cell density. 
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5.3.8 Multivariate survival analysis identifies independent prognostic APM protein 
expression and immune composition in OAC. 

Following univariate OS analysis where I observed the APM proteins HLA-E, HLA-Class II, 

the APM gene expression regulator CSDE1 and T cells (CD8+ and FOXP3+) associated with 

altered survival, I proceeded to investigate whether these findings withstood a 

multivariate survival analysis using a simple clinical model.  Among my assessed APM 

proteins, I observed only HLA-Class II protein scores produced an independent marker of 

survival, with lower HLA-Class II resulting in poorer OS both H scores and percentage 

positivity (Respectively: HR: 2.27, p = 0.022; HR: 2.24, p = 0.01, See Table 20 & 21). 

 

Table 21 CoxPH multivariate OS for TMA IHC APM protein expression (H score). 

 
VARIABLE LEVEL N (%) HR (UNIVARIABLE) HR (MULTIVARIABLE) 

 
AGE 

MEAN 
(SD) 

70.1 
(10.6) 0.97 (0.96-0.99, P=0.001) 0.99 (0.95-1.03, P=0.601) 

 
SEX F 19 (10.9) - - 

 M 155 (89.1) 0.96 (0.52-1.75, P=0.885) 0.63 (0.27-1.48, P=0.288) 
 

PT 0-1 35 (20.1) - - 
 2-4 139 (79.9) 3.07 (1.68-5.60, P<0.001) 1.92 (0.70-5.27, P=0.207) 
 

PN 0 76 (43.7) - - 
 1-3 98 (56.3) 3.03 (1.99-4.60, P<0.001) 2.22 (1.11-4.43, P=0.023) 
 

PM 0 164 (97.0) - - 
 1 5 (3.0) 1.78 (0.65-4.85, P=0.262) 1.35 (0.14-13.21, P=0.798) 
 

HLA-ABC H SCORE HIGH 83 (60.1) - - 
 LOW 55 (39.9) 1.26 (0.82-1.95, P=0.293) 1.30 (0.66-2.57, P=0.444) 
 

HLA-Class II H SCORE HIGH 44 (29.7) - - 
 Low 104 (70.3) 1.83 (1.11-3.03, P=0.017) 2.27 (1.12-4.55, P=0.022) 
 

HLA-E H SCORE HIGH 117 (77.5) - - 
 LOW 34 (22.5) 1.58 (1.01-2.49, P=0.047) 1.89 (0.81-4.39, P=0.140) 
 

TAP1 H SCORE LOW 53 (34.6) - - 
 HIGH 100 (65.4) 1.39 (0.89-1.38, P=0.15)  1.67 (0.83-3.33 , P=0.072) 
 

CSDE1 H SCORE LOW 42 (37.2) - - 
     

 HIGH 71 (62.8) 1.69 (1.02-2.78, P=0.04) 1.28 (0.65-2.50, P=0.220) 
     

Number in data frame = 174, Number in model = 88, Missing = 86, Number of events = 54, Concordance = 
0.756 (SE = 0.037), R-squared = 0.403(Max possible = 0.992), Likelihood ratio test = 45.390 (df = 19, p = 
0.001) 
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Table 22 CoxPH multivariate OS for TMA IHC APM protein expression (percentage 
positivity). 

 
VARIABLE LEVEL N (%) HR (UNIVARIABLE) HR (MULTIVARIABLE) 

 
AGE 

MEAN 
(SD) 

70.1 
(10.6) 

0.97 (0.96-0.99, 
P=0.001) 

0.98 (0.95-1.01, 
P=0.228) 

 
SEX F 19 (10.9) - - 

 
M 

155 
(89.1) 

0.96 (0.52-1.75, 
P=0.885) 

0.90 (0.35-2.32, 
P=0.826) 

 
PT 0-1 35 (20.1) - - 

 
2-4 

139 
(79.9) 

3.07 (1.68-5.60, 
P<0.001) 

2.12 (0.73-6.16, 
P=0.165) 

 
PN 0 76 (43.7) - - 

 
1-3 98 (56.3) 

3.03 (1.99-4.60, 
P<0.001) 

1.78 (0.81-3.95, 
P=0.153) 

 
PM 0 

164 
(97.0) - - 

 
1 5 (3.0) 

1.78 (0.65-4.85, 
P=0.262) 

1.46 (0.17-12.59, 
P=0.729) 

 
HLA_ABC.PERCENTAGE.POSITIVE LOW 49 (31.4) - - 

 
HIGH 

107 
(68.6) 

1.15 (0.74-1.79, 
P=0.526) 

0.90 (0.45-1.78, 
P=0.764) 

 
HLA_C2.PERCENTAGE.POSITIVE HIGH 

106 
(70.2) - - 

 
LOW 45 (29.8) 

1.65 (1.08-2.50, 
P=0.019) 

2.24 (1.21-4.14, 
P=0.010) 

 
HLA_E.PERCENTAGE.POSITIVE HIGH 66 (49.6) - - 

 
LOW 67 (50.4) 

1.51 (0.98-2.33, 
P=0.064) 

1.27 (0.69-2.32, 
P=0.440) 

 
TAP1.PERCENTAGE.POSITIVE LOW 58 (37.7) - - 

 
HIGH 96 (62.3) 

1.44 (0.94-2.23, 
P=0.096) 

1.27 (0.61-1.27, P= 
0.694)  

 
CSDE1.PERCENTAGE.POSITIVE LOW 45 (39.5) - - 

 
HIGH 69 (60.5) 

1.48 (0.90-2.41, 
P=0.120) 

1.12 (0.61-2.08, 
P=0.409) 

Number in data frame = 174, Number in model = 94, Missing = 80, Number of events = 57, Concordance = 
0.732 (SE = 0.033), R-squared = 0.338(Max possible = 0.992), Likelihood ratio test = 38.792 (df = 19, p = 
0.005) 

 
 

Moving forward I assessed whether T cell density of CD8+ and FOXP3+ T cells withstood 

multivariate analysis, unfortunately, neither T cell subset found significance in 

multivariate analysis (See Table 23).  
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Table 23 CoxPH multivariate OS for TMA IHC T cell density. 

Number in data frame = 174, Number in model = 130, Missing = 44, Number of events = 81, Concordance = 
0.741 (SE = 0.025), R-squared = 0.361(Max possible = 0.995), Likelihood ratio test = 58.122 (df = 18, p = 
0.000) 

 
 
Lastly, I assessed whether high HLA-ABC H score combined with high CD8+ T cell density 

would result in improved survival as this could represent intact antigen presentation with 

localised cytotoxic T cells capable of recognising antigens presented on these surface 

molecules impacts survival and by extension immunity.  Here I observed the presence of 

high HLA-ABC, but low CD8+ T cell density resulted in poorer OS compared to high HLA-

ABC and high CD8+ T cell density in multivariate analysis (HR: 2.88, p = 0.002, See Table 

24). 

  

 
VARIABLE LEVELS N (%) HR (UNIVARIABLE) HR (MULTIVARIABLE) 

 
AGE 

MEAN 
(SD) 

70.1 
(10.6) 0.97 (0.96-0.99, P=0.001) 0.97 (0.95-1.00, P=0.025) 

 
SEX FEMALE 19 (10.9) - - 

 MALE 155 (89.1) 0.96 (0.52-1.75, P=0.885) 0.72 (0.35-1.48, P=0.375) 
 

PT 0-1 35 (20.1) - - 
 2-4 139 (79.9) 3.07 (1.68-5.60, P<0.001) 1.62 (0.70-3.76, P=0.264) 
 

PN 0 76 (43.7) - - 
 1-3 98 (56.3) 3.03 (1.99-4.60, P<0.001) 3.78 (2.03-7.01, P<0.001) 
 

PM 0 164 (97.0) - - 
 1 5 (3.0) 1.78 (0.65-4.85, P=0.262) 1.92 (0.45-8.19, P=0.378) 
 

CD3 COUNT PER 
MM2 HIGH 56 (37.1) - - 

 LOW 95 (62.9) 1.24 (0.81-1.91, P=0.327) 1.59 (0.90-2.82, P=0.110) 
 

CD4 COUNT PER 
MM2 HIGH 96 (62.3) - - 

 LOW 58 (37.7) 1.29 (0.86-1.94, P=0.214) 1.01 (0.59-1.74, P=0.963) 
 

CD8 COUNT PER 
MM2 HIGH 141 (89.2) - - 

 LOW 17 (10.8) 1.84 (1.02-3.32, P=0.042) 1.15 (0.56-2.34, P=0.704) 
 

FOXP3 COUNT PER 
MM2 HIGH 45 (31.5) - - 

 LOW 98 (68.5) 1.64 (0.99-2.71, P=0.050) 1.50 (0.79-2.87, P=0.215) 
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Table 24 CoxPH multivariate OS for TMA IHC HLA-ABC H score:CD8 T cell density. 

 
VARIABLE LEVEL N (%) HR (UNIVARIABLE) HR (MULTIVARIABLE) 

 
AGE MEAN (SD) 

70.5 
(10.4) 

0.97 (0.95-0.99, 
P<0.001) 0.98 (0.96-1.00, P=0.027) 

 
SEX F 17 (11.8) - - 

 
M 

127 
(88.2) 

1.06 (0.55-2.06, 
P=0.857) 0.96 (0.49-1.90, P=0.917) 

 
PT T0-1 30 (20.8) - - 

 
T2-4 

114 
(79.2) 

3.57 (1.83-6.95, 
P<0.001) 2.46 (1.16-5.20, P=0.019) 

 
PN 0 62 (43.1) - - 

 
N1-3 82 (56.9) 

3.64 (2.25-5.90, 
P<0.001) 2.91 (1.73-4.88, P<0.001) 

 
PM - 2 (1.4) - - 

 
0 

137 
(95.1) 

0.61 (0.15-2.50, 
P=0.494) 

2.40 (0.55-10.49, 
P=0.244) 

 
1 3 (2.1) 

0.67 (0.09-4.77, 
P=0.690) 

3.56 (0.45-28.04, 
P=0.228) 

 
X 2 (1.4) 

0.57 (0.05-6.28, 
P=0.645) 

2.85 (0.25-33.00, 
P=0.403) 

HLA-ABC : CD8 

HIGH:HIGH 26 (18.1) - - 

HIGH:LOW 66 (45.8) 
2.15 (1.12-4.15, 

P=0.022) 2.88 (1.47-5.66, P=0.002) 

LOW:LOW 52 (36.1) 
1.49 (0.74-2.98, 

P=0.264) 1.69 (0.83-3.44, P=0.147) 
Number in data frame = 144, Number in model = 144, Missing = 0, Number of events = 89, Concordance = 
0.736 (SE = 0.026), R-squared = 0.320(Max possible = 0.996), Likelihood ratio test = 55.461 (df = 9, p = 
0.000) 
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5.4 Discussion 

5.4.1 APM gene expression in the OAC TMAs presents with high heterogeneity and 
clusters in five distinct groups. 

The motivation for this investigation is to validate my findings from the RNA-seq 

datamining and deconvolution analysis presented in Chapters 3 and 4 at the protein 

expression level in tumour tissue.  This approach allows for high confidence of the APM 

and immune landscape of OAC, whilst affirming APM-T cell relationships prior observed.  

Furthermore, these findings can be assessed directly to prior literature using IHC 

methodology of APM genes and T cell distributions.  Lastly, I pursued to confirm the 

presence of a negative regulatory role of CSDE1 protein on the expression of MHC class I 

HLAs. 

 
Within my analysis I identified distinct clusters of APM protein expression within my OAC 

TMA cohort.  Specifically, five clusters appear for both H scoring and percentage positivity 

analysis, these clusters reflected the high heterogeneity of OAC APM proteins and mostly 

overlap allowing them to be broadly described as 5 clusters with similar characterising 

features.  

 

The first cluster is described as a TAP1 low cluster, demonstrated by the percentage 

positivity and H score values with relatively low T cell density, which does correspond 

with known literature suggesting TAP1 is downregulated in oesophageal cancer among 

other cancers (531). Despite this, the wider literature could not explain specific 

downregulation of this protein’s expression in OAC but could be explained by the 

presence of miR-125a-5p bound to untranslated regions of TAP2 transcripts in OAC, as 

TAP1 is dependent on TAP2 protein for stability.  Unfortunately, no antibody for miR-

125a-5p is available to access this in IHC methodology although future studies could 

assess whether miR-125a-5p binding to TAP2 is present in OAC via immunoprecipitation 

analysis (532). However, an alternative explanation may be these cases are tumours with 

low inflammation as TAP1 expression corresponds to interferon response gene sets in 

gene-set enrichment analysis as this pathway acts to promote TAP1/2 expression (531). 

 

The second cluster is described as possessing high HLA class II protein expression, which 

would represent that these tumours have high infiltration of professional APCs such as 

dendritic cell or macrophages.  Interestingly, elevated dendritic cells has been prior noted 
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in OAC (533). However, as HLA-Class II is expressed by multiple subsets of APCs it is 

unknown whether these results reflect increased dendritic cells, specifically with 

deconvolution data presented in chapter 4 not demonstrating increased dendritic cell 

abundance due to HLA-Class II gene expression rather noting an increase in macrophage 

and granulocyte populations. 

 

Next a cluster presented with high HLA-A/E protein (Figure 45).  Firstly, a heterogenous 

cluster in percentage positivity analysis forming the largest cluster within my OAC TMA 

cohort, possessing relatively higher HLA-ABC percentage positivity, this parallels a 

publication reporting HLA-ABC positivity in 77.8% of OAC samples (355).  Secondly, a H 

score cluster reflected high HLA-E and HLA-ABC protein expression, this cluster 

represented a smaller proportion of patient samples compared to prior published analysis 

using percentage positivity (positivity), suggesting using this measure could be 

overestimating which samples are truly reflecting high HLA-ABC/E protein expression 

(525). Interestingly the proportion of high HLA-E patients within my TMA cohort did not 

reflect the proportion reported in gastric cancer, which could highlight differences 

between APM protein expression between OAC and gastric cancer (534). 

An additional cluster observed high TAP1/HLA-ABC protein expression and low CSDE1 

protein expression, this could reflect these patients have intact MHC class I presentation 

making them a prime target for immunotherapies based in the adaptive immune system, 

such as checkpoint blockade (535, 536). However, to date, checkpoint blockade therapy 

application is not stratified by patient MHC class I HLA expression (determined by biopsy) 

(9). 

 

The final cluster observed displayed high CSDE1 protein expression, but did not 

completely lack HLA-ABC protein expression by H scores as expected from the literature, 

this could reflect CSDE1 expression is specific to a subset of cells (cancer cells), with HLA-

ABC expression being unaffected in stromal cell populations; an alternative explanation 

may be the presence of HLA-A protein expression is observed due to high interferon 

signalling in these tumours recovering HLA-A expression, though this cannot be 

determined as these TMA were not stained for IFN-y. However, using percentage 

positivity indicated high CSDE1 and low HLA-ABC protein expression, this negative 

relationship between these proteins was expected as CSDE1 acts as a negative regulator 



 

213 

of MHC class I HLA expression by stabilising the tyrosine kinase TCPTP which degrades 

phosphorylated STAT1 preventing pSTAT1 translocation to the nucleus, which is key for 

promoting MHC class I HLA expression (461).  Suggesting CSDE1 as a key MHC regulator in 

OAC for the first time. 

 

5.4.2 T cell density reflects known immunophenotypes from deconvolution analysis. 

Prior analysis of T cell distributions in OAC have observed the majority of OAC cases 

possess T cell infiltrate, yet the number of cases which possess prominent levels of T cell 

infiltrate is low (362).  More recent T cell analysis in other cancers have sought to instead 

classify tumours into immunophenotypes including immune desert, immune suppressed 

and immune inflamed (537). 

 

In my analyses in this chapter, using T cell density clustering I observed known 

immunophenotypes of cancer, first of which was the largest cluster forming the immune 

excluded phenotype lacking T cells of any type, suggesting this is cluster containing mixed 

immunophenotypes.  The high proportion of tumour cores with low T cell density 

presented here reflects prior analysis in OAC suggesting only a low proportion of patients 

possess high T cell infiltration, though does not label these cases an immune excluded 

(538). The analysis presented here expands upon this earlier analysis as these cases can 

be labelled as immune excluded rather than immune suppressed as they lack the typical 

increased FOXP3+ Treg populations of immune suppressed cases which are present in the 

second immune cluster.  Although a positive correlation between FOXP3+ T cells and 

CD3/4/8+ is demonstrated in my later correlation analysis, the lower abundance of CD8+ 

T cells in this cluster does support the suggestion these cases are immune suppressed.  

The last two immune clusters belong to the immune hot phenotype with high density of 

effector T cells (CD3/4/8+) and present as the most inviting target for checkpoint 

blockade therapy (539). 

5.4.3 APM protein expression correlates with T cell density in OAC. 

Correlation analysis of APM protein expression demonstrated positive correspondence to 

T cell density within my analysis.  This included expected positive correlations such as 

HLA-ABC and CD3/4/8+ T cells as HLA-ABC is responsible for eliciting responses from CD8+ 

T cells, and CD4+ T cell is often co-recruited with other T cells.  This is further supported 
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with the upper quantile of HLA-ABC protein expression corresponding to increased CD8+ 

T cell density.  Interestingly, HLA-E H scores and not percentage positivity found positive 

correlation to CD8+ T cell density, supported by evidence the upper quantile of HLA-E 

expression possesses increased CD8+ T cells, suggesting a potential for specific cells 

expressing HLA-E may act to elicit HLA-E restricted T cells in the OAC TIME (540). TAP1 

may be important in the activation and expansion of T cells in OAC with H scores 

correlating to high CD3/8+ T cell, yet the quantile analysis only demonstrated increased 

CD3+ T cells in the upper quantile.  TAP1 has prior been demonstrated to correlate with 

immune cell infiltration in a pan-cancer study and relates to the potential of TAP1 

expression to affect the immune epitope of cancer (531, 541). 

 

Strikingly, the expected correlation between HLA-Class II protein expression and CD4+ T 

cell density was not observed within my OAC cohort (462), this results is surprising due to 

HLA-Class II roles in presenting antigens to CD4+ T helper cells. Instead HLA-Class II 

correlated to CD3/8+ T cells and Tregs with quantile analysis only displaying increased 

CD3/8+ T cells in the upper quantiles of HLA-Class II protein expression. However, it is 

difficult to suggest a potential mechanism this may occur through as HLA-Class II is 

expressed by multiple APC subtypes.  However, one suggestion could form as high HLA-

Class II represents tumours with increased IFN-y known to induce HLA class II expression 

and is a marker of CD8+ T cell activation (462). Interestingly, CSDE1, a known negative 

regulator of MHC class I HLA expression did reflect its role in OAC with a negative 

correlation between CSDE1 H scores and HLA-ABC percentage positivity, however this 

also presents a complication as a positive correlation is observed between CSDE1 

percentage positivity and HLA-ABC H scores (321). Overall, this reflects that CSDE1 

expression may be localised to a subset of cells, which was noted in the histologists report 

CSDE1 stained tumour and immune cell populations in cancer, this finding requires 

further investigation which will be explored in single cell RNA-seq data analysis 

(Presented in chapter 6).  

 

Furthermore, the upper quantile of CSDE1 protein expression in OAC possessed 

significantly lower CD3/8+ T cell populations but increased CD4+ T cell populations.  

Overall, this suggests CSDE1 expression may be localised to tumour cells in OAC and acts 

to reduce HLA-ABC protein levels in these tumour cells, resulting in lower tumour cell 
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immunogenicity and CD8+ T cell activation.  This suggestion is further supported by my 

super pixel segmentation analysis which identified a relationship between predicted 

tumour content and CSDE1 protein expression within my TMA cohort (shown in Figure 

52). 

5.4.4 APM protein expression associates to altered survival outcomes in OAC. 

In Chapter 3 I observed the expression of my APM gene candidates associated to altered 

OS in OAC.  To confirm these genes effected survival outcomes I analysed them at the 

protein level in my TMA cohort.  Interestingly, only lower HLA-E and HLA-Class II protein 

possessed significantly reduced OS.  Conversely to gastric cancer, HLA-E appeared as a 

positive indicator of univariate OS, where in gastric cancer HLA-E is noted for producing 

NK inhibition (542).  Instead these results reflect more the observation in OSCC with HLA-

E stain positivity corresponded to increased OS, as gastric cancer is considered more 

similar to OAC than OSCC is to OAC. This raises an important question surrounding the 

role of each APM protein in OAC, and whether prior assumptions of similarity in 

determining their respective roles is inaccurate, in relation to tumour immunity  (543). 

This could suggest that although cancer cell gene expression in OAC is more akin to gastric 

cancers in prognostic gene expression programs, there may exist immunological 

differences in APM gene expression which play differing roles from gastric cancer, sharing 

features with OSSC instead.  Although, this finding must be explored more directly 

applying the methodological approach I used for my IHC analysis in a future study of OSSC 

and gastric cancers to highlight the differences. 

5.4.5 T cell density associates to altered univariate survival outcomes in OAC 

T cell density has prior been published to associate to altered survival in OAC and gastric 

cancer, with greater intratumoural CD8+ T cells corresponding to improved OS (210, 362).  

Unfortunately, I did not observe this within the OS analysis of the OAC TMA cohort, this 

could be explained by a substantial majority of tumours in this cohort not expressing 

prominent levels of HLA-ABC, resulting in reduced anti-tumoral activity.  To confirm this, I 

analysed the interaction between high/low HLA-ABC and CD8 T cell density finding high 

HLA-ABC with low CD8+ T cell density produced prognostically independent shortened OS 

compared to high HLA-ABC and high CD8+ T cell density.  This suggests that neither HLA-

ABC nor CD8+ T cell density alone impact OS, instead the presence of high CD8+ T cells in 

OAC tumours expressing high HLA-ABC results in improved OS due to anti-tumoral activity 
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of cytotoxic T cells.  This finding is novel compared to prior studies which indicate CD8+ T 

cell density in OAC tumour cores is not an independent prognostic factor and future 

studies investigating T cell behaviour in OAC should stratify their results by HLA-ABC to 

elucidate the potential for anti-tumoral responses in OAC.  Furthermore, there may be 

potential for this finding to possess translational value in stratifying patients which are 

likely to have high efficacy for checkpoint blockade therapy, by selecting patients with 

high CD8+ T cell density and high HLA-ABC protein expression by biopsy as well as staining 

for PD1/PD-L1. 

5.4.6 Limitations and future work 

One of the significant issues when performing this analysis was core loss over staining, 

with the final stain, CSDE1, experiencing significant core loss due to each section of tissue 

cut expending the remaining TMA.  Thereby, future research effort exploring this cohort 

must first create new TMA from available tissue to ensure high sample size; additionally, 

an external cohort could be employed as further validation of these findings.  A further 

limitation in performing TMA analysis forms from the small sample area stained, using a 

full section for analysis instead of tumour cores could explore further details of the 

heterogeneity of APM protein and immune populations. For example, whole tissue 

sections could be used to define tumours as either immune excluded or immune 

suppressed, with immune excluded tumour exhibiting denser immune populations in the 

tumour periphery, lacking immune populations in the tumour core and immune 

suppressed lacking immune cells in both the core and periphery. Additionally, the staining 

performed in my analysis was conducted on different sliced sections, which can reduce 

how comparable the staining is between sections, to improve upon this and confirm the 

accuracy of my results presented here future efforts could explore the use of multiplex 

IHC methods to overlap the staining of APM and immune markers.  Additionally, the 

addition of cancer cell markers and immune activity markers into a multiplex IHC panel 

could explore the activity of T cells in proximity to cancer cells is dependent on the level 

of different APM protein expressions. 

5.4.7 Conclusion 

In conclusion, the results presented here confirm APM gene/protein expression is related 

to survival outcomes and the abundance of T cell subpopulations in OAC as uncovered in 
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Chapter 3 and 4. Furthermore, an important finding demonstrates CD8+ T cell alone is 

insufficient for immune rejection of OAC tumours, requiring high HLA-ABC expression to 

elicit these responses.  Additionally, the expression of CSDE1 at both the mRNA and 

protein negatively corresponds to MHC class I HLA expression and should be explored 

further to confirm this relationship in cellular models of OAC (Chapter 6).  Overall, my 

results suggest the future efforts in either producing new immuno-therapeutics or 

stratifying OAC patients for existing immune checkpoint blockade therapy should consider 

APM expression for maximizing the efficacy of patient responses. 
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Chapter 6 Cellular modelling of MHC class I expression 
regulation by CSDE1 in OAC  

6.1 Introduction 

6.1.1 Known immune evasion strategies used by cancer and current knowledge in OAC. 

Immune evasion mechanisms are strategies often employed by cancer to evade immune 

detection and subsequent anti-tumoral immune responses.  The immune system is 

equipped to monitor the microenvironment for cancer cells to detect these cells and 

eliminate them, however, cancer cells may develop somatically driven mechanisms to 

prevent recognition or promote immune cell anergy.  Understanding these evasion 

strategies and their pathogenesis is key for the development of effective 

immunotherapies and for stratifying patients which are likely to respond to existing 

immunotherapeutic strategies.  Broadly, tumour immune evasion strategies can be 

broken down into seven distinct categories including altering gene expression in cancer 

cells and adapting the tumour immune microenvironment by recruiting specific cell types 

and secreting immunosuppressive cytokines (544). 

 

The seven distinct immune evasion strategies are described as follows; firstly, multiple 

cancers are known to downregulate the expression of MHC class I molecules to evade 

detection by CD8+ T cells in the immune microenvironment by hindering the presentation 

of tumour-associated antigen to these cytotoxic T cells (See section 6.1.2).  Examples of 

this mechanism have been reported in OAC with miR125a-5p binding 3’ untranslated 

region of the TAP2 mRNA and miR148a-3p binding 3' untranslated regions of HLA-A, HLA-

B, and HLA-C mRNAs to negatively regulate their respective expression (164). 

Characterisation of alternative mechanisms of downregulation of MHC class I molecules 

has not yet been fully elucidated before the current study. 

 

An additional mechanism of cancer immune evasion is found in tumour antigen 

heterogeneity, this describes the heterogenous antigen epitope presented by cancer cells 

and presents a significant challenge in producing effective anti-cancer engineered T cells.  

Specifically, the heterogeneity of tumour-associated antigens among cancer cells within a 

microenvironment means the recognition of a single tumour antigen usually does not 
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result in complete anti-tumoral immunity by CD8+ T cells against all cancer cells and 

results in clonal selection (and survival) of cancer cells which do not present the target 

antigen (545). Although, tumour antigen heterogeneity is not well characterised in OAC, 

recent analysis of OAC epitopes of seven patient samples only revealed one putative 

antigen from a single patient, demonstrating among OAC patients tumour antigens differ 

presenting a translational issue with developing immunotherapies targeted to a single 

antigen as the expression of a target antigen may not be ubiquitous among the patient 

population (546). 

 

Immune checkpoints are critical in inhibiting immune responses towards host cells to 

prevent autoimmune disease.  However, cancer cells often upregulate immune 

checkpoint molecules such as PD-L1 to promote CD8+ T cell anergy.  Prior studies 

reported PD-L1/2 was upregulated in 40% of gastroesophageal cancers, yet the survival 

outcomes presented a complex picture, with increased PD-L1 expression resulting in 

significantly reduced OS and DFS in univariate analysis, but multivariate analysis found 

PD-L1 expression was an independent predictor for improved DFS, suggesting lack of 

immunosuppressive signalling may be protective against recurrence (101, 547-549). 

Despite the complex findings in PD-L1 expression in OAC, the current therapy of prior 

chemo-radiotherapy treated resected OAC tumour patients has recently changed in the 

UK to include nivolumab to target the PD-1/PD-L1 axis (550). 

 
Cancer cells also seek to suppress immune cell responses by secreting immuno-

suppressive factors such as TGF-β and IL-10, with TGF-β capable of supressing cytotoxic 

expression programs and T cell proliferation and IL-10 supressing CD4+ T cells and 

promoting Tregs in the tumour immune microenvironment (551, 552). Interestingly, 

dysfunctional TGF-β signalling by loss of TGF-β being noted in OAC cells (553, 554). 

Tumour also act to suppress immune response by recruiting immune regulatory cells or 

by polarising macrophages to an M2 phenotype to enact immune suppression.  

Specifically, tumours recruit Tregs and myeloid-derived suppressor cells (MDSCs) to 

suppress the immune response and inhibit T cell expansion in the tumour immune 

microenvironment.  Interestingly, increased recruitment of Tregs in OAC has been 

associated to negative prognostic impact (CSS), however, the specific recruitment factors 

were not disclosed, whereas in OSSC the expression of Eomesodermin  (Eomes) was 

found to promote progression by recruiting Tregs (555, 556).  
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The presence of MDSCs in oesophagogastric junction adenocarcinoma has been reported 

to promote progression, positively correlating with advanced staging, low grade, lymph 

node metastasis, and HER2− status (557). The polarisation of macrophages to the M2 

phenotype was noted in OAC with nodal positivity and associated to worse overall 

survival, these M2 macrophages act to suppress immune responses by secreting factors 

by secreting immunosuppressive factors such as IL-10, arginase and TGF- β (401, 558, 

559). 

 

T cells also require co-stimulatory signals to activate their responses towards cancer cells, 

such as CD80 which interacts with CD28 on T cells and acts to promote activation of 

responses (560). However, cancer can downregulate CD80 expression to evade T cell 

responses as evidenced in OAC where significant downregulation has been reported 

which inversely correlates with TGF-β and IL-10 expression (561). 

 

Lastly, stromal cells components (such as cancer-associated fibroblasts) can contribute to 

tumour immune evasion by secretion of immunosuppressive factors, building dense 

extracellular matrices and supporting tumoral vascularisation (562).  Notably, increased 

rigidity of the extracellular matrix was reported in OAC and increased collagen in Barrett’s 

oesophagus, the increase rigidity and density of the extracellular matrix in other cancers 

is noted to lead to immune exclusion preventing T cells and other immune effectors from 

reaching the tumour core (563-565). 

6.1.2 The regulatory signalling pathways of MHC class I expression. 

The expression of MHC class I genes is present in most cells in OAC tissue and has become 

a focus point in exploring the immunogenicity of cancer cells as antigens presented on 

HLAs of the MHC class I system are responsible for eliciting anti-tumoral immune 

responses from CD8+ cytotoxic T lymphocytes.  Notably, a known immune escape 

mechanism in cancer is to reduce the expression of MHC class I genes to abrogate 

responses to tumour antigens by CD8+ T cells (566). These cancer cells can leverage 

regulatory elements for MHC class I expression which are present in normal healthy cells, 

which will be explored below. 

  



 

221 

Firstly, transcriptional regulation of MHC class I is enacted by multiple trans-activators, 

these include CIITA, which is a key transcription factor associated to MHC class II 

expression, however, studies indicate CIITA is also a key element in promoting MHC class I 

expression in cells via binding to the MHC class I promoters and thus enhancing the 

transcription of these genes (567). 

 

RFX5-family genes also perform a similar role to CIITA by forming the RFX5-enhancersome 

consisting of the protein subunits RFX5, RFXAP, and RFXANK.  The RFX5-enhacersome can 

bind to both CIITA and NLRC5 proteins to form the MHC class I enhanceosome which then 

associates to the SXY module promoting downstream MHC class I expression (568). 

 

The transcription factors NF-κB, IRF1 (Interferon Regulatory Factor 1), and STAT1 (Signal 

Transducer and Activator of Transcription 1) act to positively regulate the expression of 

MHC class I genes.  Specifically, STAT1 becomes phosphorylated (pSTAT1) within the 

JAK/STAT signalling pathway after IFN- γ binds the interferon-1 receptor on the cell 

surface, following phosphorylation, pSTAT1 dimers enters the nucleus and binds to the γ-

activated sequence (GAS) which promotes the expression of IRF1, this is described as the 

type II IFN- γ response (569). 

 

IRF1 after transcriptional promotion by pSTAT1 dimers binding GAS can then bind to the 

interferon response element (ISRE) which acts to promote MHC class I expression (570). 

However, the ISRE element can also be bound by a STAT1/STAT2-IRF9 complex called 

interferon-stimulated gene factor 3 (ISGF3) which forms downstream of the type I/III IFN- 

γ receptor which can result in promotion of MHC class I expression (See Figure 56) (571). 
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Figure 56 Type I, II and III Interferon signalling pathways for their respective receptors. 
Interferons bind the type I, II and III receptors which propagate downstream signalling.  In 
Type I responses interferons excluding IFN- γ bind the type I IFN receptor which results in 
the phosphorylation of STAT1/2 forming a dimer, this dimer binds IRF9 forming ISGF3 
which translocates to the nucleus binding to ISRE to promote interferon-stimulated genes 
(ISGs).  The formation of ISGF3 can also result from IFN- γ. Type II IFN receptor are bound 
by IFN- γ which results in a pSTAT1 dimer which translocate to the nucleus, then binds to 
GAS which leads to promotion of IRF1 (Created by Biorender). 

Lastly, NF-κB also acts to promote MHC class I expression by binding two NF-κB binding 

sites in the enhancer A region, a requirement for induction of MHC class I expression 

(572). Notably, the trans-activators and transcription factors act synergistically and 

simultaneously to promote MHC class I expression (See Figure 57). 
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Figure 57 The MHC class I promotor region. 
Translocated pSTAT1 binds GAS to promote the expression of IRF1.  NLRC5/CITTA 
translocates into the nucleus forming the MHC class I enhanceosome with the RFX5-
complex, ATF1/CREB and the NFY-complex which acts to bind the SXY module to promote 
the transcription of MHC class I. NLRC5/CIITA then can recruit chromatin modifiers and 
transcriptional elongation and initiation factors.  IRF1 binds to the ISRE element within 
the MHC class I promotor region.  NF-κB binds to Enhancer A to induce the expression of 
MHC class I genes (Created with Biorender). 

6.1.3 The novel role of CSDE1 in antigen presentation machinery gene expression 
regulation  

CSDE1 is a gene coding for Cold Shock Domain Protein E1 and is implicated in several 

cellular processes including RNA stabilization, translational reprogramming, and protein 

homeostasis (573, 574).  Among these roles, recent publications have indicated CSDE1 

can function as a negative regulator of MHC class I expression in cancer.  The first study to 

uncover this role studied the effect of CSDE1 expression on JAK/STAT signalling to 

produce reduced downstream promotion of MHC class I expression; this analysis was 

founded on the initial observation of a significant correlation between CSDE1 mRNA 

expression and the expression of MHC class I genes (HLA-A/B/C, TAPBP and TAP1/2) 

within the TCGA-SKCM (skin cutaneous melanoma) dataset (n = 471) (575). Following this 

observation CSDE1 knockout cell models of melanoma and breast cancer were generated, 

these cell models demonstrated increased MHC class I mRNA expression and gene 

ontology analysis revealed increased JAK/STAT signalling pathways.  Further investigation 

observed CSDE1 knockout cells possessed greater pSTAT1, suggesting CSDE1 participated 

in inhibiting JAK/STAT signalling; interestingly, CSDE1 knockout cell models observed 

reduced PTPN2 (protein tyrosine phosphatase non-receptor type 2) mRNA stability 

uncovering the role of CSDE1 in stabilising PTPN2.  
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The importance of PTPN2, also known in its protein form as TCPTP (T cell protein tyrosine 

phosphatase), was highlighted in this study by its function to dephosphorylate pSTAT1 

within the JAK/STAT signalling pathways downstream of the IFN receptors (575). The 

dephosphorylation of pSTAT1 inhibits translocation of STAT1 dimers into the nucleus, 

preventing binding to either GAS or ISRE thus restricts the promotion of IRF1 and MHC 

class I gene expression (See Figure 58) (575). Lastly, this publication identified CSDE1 is 

regulated in tumorigenic cells via the SMYD3-mediated H3K4 trimethylation which results 

in transcription activation, though TCGA analysis only revealed a minor correlation 

between SYMD3 and CSDE1 expression suggesting only nuclear SMYD3 may strongly 

correlate to CSDE1 expression (575). 

Figure 58: CSDE1 as a negative regulator of MHC class I expression via the JAK/STAT 
pathway.  (A) CSDE1 stabilises TCPTP protein in the cytosolic compartment 
(Panel A reproduced, with permission from, Galassi and Galluzi, 2023)(576, 
577). (B) Stabilisation of TCPTP results in pSTAT1 dephosphorylation inhibiting 
pSTAT1 translocation to the nucleus preventing binding of STAT1/2 
homodimers/heterodimers to promoters of IRF1 and MHC class I HLA genes. 
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6.1.4 Biological functions of CSDE1 

CSDE1 (Cold Shock Domain Containing E1) is a gene which possesses cellular multiple 

functions.  Unfortunately, the 3D structure of CSDE1 has been not been fully 

characterised, however, it is known like other cold shock binding proteins, CSDE1 possess 

a five-stranded all-antiparallel β-barrel structure, with two cold shock domains, RNA-

binding domains and low complexity regions (578). 

 

The first known role of CSDE1 protein is found in RNA Binding, where it functions to 

regulate mRNA stability, translation, and localisation, processes crucial for gene 

expression regulation.  The mRNA binding role of CSDE1 has been explored in Drosophila 

models, where is binds msl2 and roX mRNA which plays a key role in the control of X-

chromosome dosage compensation (579).  An additional role of CSDE1 is in stress 

response, specifically as a regulator of oxidative stress, where CSDE1 and STRAP (Signal-

transducing adaptor protein) proteins interact to convey sensitivity to oxidative stress 

(580). 

 

A further role describes CSDE1 protective role from DNA damage within the NER 

(nucleotide excision repair) and DSB (double strand break) pathway and then promote 

cell growth by modulating the expression of RPA2, CHOP, PERK and GRP78 (581). 

CSDE1 has also been implicated in the regulation of embryonic development, with loss of 

CSDE1 accelerating neural differentiation and potentiates neurogenesis, with ectopic 

expression of CSDE1 impairing neural differentiation.  Specifically, CSDE1 binds the fatty 

acid binding protein 7 (FABP7) and vimentin (VIM) mRNAs, and transcripts involved in 

neuron projection development which regulates their stability and translation (582). 

 

Lastly, aberrant expression or dysregulation of CSDE1 has been prior published to be 

critical to maintain invasive phenotype of colorectal cancer via positively regulating c-MYC 

and associates with epithelial-to-mesenchymal Transition (583).  Specifically, this article 

identified CSDE1 expression was greater in colorectal tumour samples compared to 

normal tissue and in metastatic origin cell lines compared to primary cell lines (583).  

Additionally, downregulation of CSDE1 reduced cell viability and migration during restrain 

of epithelial-to-mesenchymal transition experiments, increasing sensitivity to apoptosis 
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(583).  Lastly, they observed high CSDE1 expression associated with poor prognosis, 

positively correlating to c-MYC expression in colorectal cancer tissue and cell lines (583). 

6.1.5 CSDE1 As a target for therapy in cancer 

Interestingly, a small number of recent publications identified CSDE1 as a potential target 

for immunotherapy after oncolytic therapy derived by rhinoviruses as, CSDE1 expression 

is required for translation of rhinoviruses (146). This article found CSDE1 possessed a 

selective pressure to somatically mutate in cancer treated with a oncolytic rhinovirus to 

produce a C-T mutation to produce a proline to serine change at amino acid 5 (p.P5S); this 

mutation was found to produce a neo-epitope recognized by non-tolerized T cells, which 

suggests a potential to form a trap-ambush type of therapy using an oncolytic virus to 

produce the CSDE1C-T escape variant with vaccination to prevent tumour escape (See 

Figure 59) (146). This investigation was followed up by exploring the use of T cells primed 

with CSDE1P5S peptides, finding an optimal priming regiment possessing increased IFN-γ 

upon challenge.  Furthermore, the research group observed responses to cells presenting 

CSDE1P5S neo-epitopes could be improved with the use of the CD200AR-L checkpoint 

inhibitor (584). 

 

Overall, this presents CSDE1 as a key factor in MHC class I expression and as a targetable 

feature in cancer cells. Yet this mechanism has only been directly described in melanoma 

and breast cancer cell models, with data mining analysis indicating the mechanism may 

be observed in stomach adenocarcinoma, breast cancer or bladder urothelial carcinoma, 

colon adenocarcinoma (TCGA-COAD) and liver hepatocellular carcinoma (TCGA-LIHC) 

(575). 
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Figure 59 Oncolytic trap and ambush strategy.  Targeting initial treatment failure with a 
highly targeted, escape-selective oncolytic virus then applying 
immunotherapeutic therapy to target escape variants.  Conceptual framework 
from Kottke et al, 2021 (585). 

6.1.6 Manipulating gene expression in vitro experiments 

Gene expression manipulation describes the control or alteration of the genes ability to 

produce downstream proteins, this methodology is important in the field of functional 

biology to determine the roles of genes in cellular functions and possesses clinical value in 

the manipulation of genes to produce clinically favourable outcomes.  Gene expression 

can be manipulated using multiple differing methods depending on the application. 

Broadly, gene manipulation covers mRNA targeting molecules which acts to reduce the 

expression of specific mRNA from target genes, knockout methods which aim to prevent 

gene expression by modifying the genomic DNA of a host cell; overexpression methods 

which aim to increase a genes expression by knocking in a target gene or transfecting in 

mRNA for a target gene and finally, epigenetic modification which aims to alter the 

epigenetic regulation of a genes expression; these methods will be expanded on below 

(586, 587). 
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Firstly, siRNA standing for small interfering RNA describes short, double-stranded RNA 

molecules that can specifically target complementary sequences of genes to inhibit their 

expression (588). Specifically, siRNA function by guiding the protein complex RNA-induced 

silencing complex (RISC) to a specific messenger RNA, the siRNA binds a complementary 

sequence of the target mRNA, which is followed by the RISC complex cleaving the mRNA 

or suppresses the mRNA’s translation (588). Interestingly, siRNA has already been 

employed in previous publication to investigate CSDE1’s role in the regulation of c-MYC 

and epithelial-to-mesenchymal transition and the role of micro-RNA in cancers (583, 589). 

 

Short hairpin RNA (shRNA) functions similarly to siRNA, but possess a hairpin-like 

structure, with a stem-loop, double-stranded RNA region as a precursor to forming siRNA 

(590). The key difference in shRNA is the biogenesis, where typically shRNA is expressed 

from viral or plasmid packages, then cellular machinery forms a mature shRNA (590, 591).  

Mature shRNA then binds complementary sequences of mRNA directing RISC to cleave 

the respective mRNA or prevent translation.  The study prior described to investigate the 

role of CSDE1 in MHC class I expression employed shRNA to discover CSDE1 is a negative 

regulator of MHC class I expression in melanoma (592). 

 
Gene knockout refers to techniques which aim to deactivate or delete a target gene so it 

cannot be expressed.  Generally, this involves using a targeting method such as CRISPR 

(clustered regularly interspaced short palindromic repeats) or zinc-finger motifs packaged 

in a delivery vector which is complementary to a genomic sequence, which then allows 

for cleavage of the DNA by an enzymes such as CAS9 in the case of CRISPR to form a 

double stranded break, which introduces mutation of the gene via insertion or deletion 

rending the gene non-functional (593, 594). Usually when performing a gene knockout a 

selection marker is simultaneously introduced such as an antibiotic resistance gene, 

allowing for the selection of knockout clones (593). These methods can possess 

translational value such as attempting to knockout the HLA-A gene via the CRISPR-CAS9 

system to reduce the incidence of alloreactive immune responses triggered by 

incompatible HLA molecules after organ transplantation (595). 
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Overexpression technique differ from those prior described as their purpose is to increase 

the expression of a target gene.  The vector to achieve overexpression involves plasmid 

type vectors which functionally achieves overexpression of a target gene by either gene 

cloning where a gene is cloned into a plasmid, controlled by a strong promoter, which is 

transfected into a host cell which then expresses the target gene.  Or by an inducible 

system which incorporates an inducible promoter, allowing for control of a target genes 

expression (596). An additional vector system involves using transposons, which are DNA 

sequences that can relocate within the genome, allowing for an engineered transposon 

system which carries a target gene which can be inserted into the host genome resulting 

in gene expression (597). Lastly, a modified CRISPR-CAS9 system can be implemented to 

activate constitutive gene expression by fusing a transcriptional activator to the CAS9 

protein then targeting the gene of interest to induce expression (598). An interesting use 

case of overexpression in antigen presentation research, involved overexpressing HLA-C 

in colorectal cancer cells.  Where the overexpression of HLA-C in these cells resulted in 

down-regulation of were highly enriched in cancer-related signalling pathways such as 

JAK/STAT, ErbB, and Hedgehog signalling pathways (154). 

 

An alternative method to affect the expression of a target gene would be achieved by 

epigenetic modification, for example the use of 5-Azacytidine, which was trialled in 

myelodysplastic syndromes (599).  Azacytidine functions by covalently binding DNA 

methyltransferase resulting in DNA hypomethylation and prevents DNA synthesis, 

however, this mechanism is untargeted leading to a requirement of targeted epigenetic 

modifying tools (600). Targeted epigenetic modification have thus far been developed 

using zinc-finger nucleases (ZFNs), transcriptional-activator like effectors (TALEs) and 

CRISPR which are bound to a methyltransferase that act to methylate a target gene 

inhibiting transcription (601). Using methylation inhibitors such as 5-aza-2′-deoxycytidine 

has already been implemented to investigate MHC class I HLA expression in healthy donor 

cells, which notes increased HLA-A expression after treatment of the cells with a DNA 

methyltransferase inhibitor (602). Furthermore, this approach observed HLA-A allelic 

lineage-specific methylation patterns located to the HLA-A promoter region, suggesting 

HLA-A allelic lineage-specific variation may be partially driven by epigenetic modification 

(603). 
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6.1.7 Cell models of OAC 

Cell models are critically important tools in the study of cancer, allowing researcher to 

perform functional studies genes and proteins involved in cancer development and 

progression.  These frequently make use of genetic manipulation technologies, such as 

gene knockout/down or overexpression experiments designed to explore the roles of 

specific genes as examples in the above investigation of CSDE1 functional roles in 

melanoma and breast cancer using CRISPR-CAS9 to knockout CSDE1 (145, 589). 

 

Eight cell lines have commonly been used for the investigation of OAC (See table 25); 

firstly, OE33 is one of the most common OAC cell lines in use for the investigation of OAC 

was established from a lower oesophagus adenocarcinoma of a 73-year-old female 

patient in pathological stage IIA and poor differentiation (604). Notably, OE33 expresses 

HLA-A/B/C genes constitutively, which allows OE33 to be used as a cell model of MHC 

class I expression in OAC to explore the impact of genomic manipulation of HLA-A/B/C 

expression.  An example of OE33 use in research can be found in the observation of FLOT 

(Fluorouracil, Leucovorin, Oxaliplatin and Docetaxel) directly upregulated PD-L1 on the 

surface of OE33 cells, which could be targeted with checkpoint blockade to improve 

lymphocyte killing of FLOT treated OE33 cells; these pre-clinical studies provided 

justification to explore the use of checkpoint blockade therapy in prior chemotherapy 

resected OAC tumours (605, 606).  

 

FLO-1 is another OAC cell line used for functional genomics; FLO-1 was established from a 

primary distal OAC of a 68-year-old male (607). Interestingly, FLO-1 has prior been 

exploited to investigate AURKA (Aurora kinase A) role in regulating JAK2–STAT3 activity in 

OAC finding JAK2 mediates AURKA-induced phosphorylation of STAT3 (608).  This process 

was found to promote the expression of cytokines, growth factors, and pro-survival genes 

that act within multiple cellular processes including survival, cell cycle and invasion (609).  

Despite the practicality of using cell lines in cancer studies, it is important to understand 

there are significant limitations in employing cell lines to investigate functional genomics 

in cancer.  These limitations include genetic drift where cell lines can undergo genetic 

changes over time due to continuous passaging, the lack of tissue complexity meaning 

these models not accurately represent the interaction present in the tumour 

microenvironment, and the inability to reproduce in vivo complexity among others (610). 
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Overall, to perform functional genomic research to investigate the influence of CSDE1 

expression on MHC class I expression sought by this chapter, the commercially available 

cell lines must be assessed to determine if the cell model possesses the correct genomic 

and expression profile to do this robustly. 

Table 25 Commonly used OAC cell lines in literature. 

CELL LINE AGE SEX ETHNICITY HISTOLOGY 
LITERATURE IN 

ANTIGEN 
PRESENTATION 
INVESTIGATION 

ESO26 56 MALE CAUCASIAN ADENOCARCINOMA -
GASTROESOPHAGEAL JUNCTION 

YES (611) 

ESO51 74 MALE CAUCASIAN DISTAL OESOPHAGEAL 
ADENOCARCINOMA 

NO  

FLO-1 68 MALE CAUCASIAN DISTAL OESOPHAGEAL 
ADENOCARCINOMA 

YES (532) 

KYAE-1 60 MALE ASIAN DISTAL OESOPHAGEAL 
ADENOCARCINOMA 

NO 

OACM5.1 C 
47 FEMALE CAUCASIAN BARRETTS ADENOCARCINOMA, 

ADENOCARCINOMA OF DISTAL 
OESOPHAGUS 

NO 

OE19 
72 MALE CAUCASIAN ADENOCARCINOMA - GASTRIC 

CARDIA/OESOPHAGEAL GASTRIC 
JUNCTION 

YES (532) 

OE33 73 FEMALE CAUCASIAN OESOPHAGEAL 
ADENOCARCINOMA 

YES (605) 

SK-GT-4 
89 MALE CAUCASIAN WELL-DIFFERENTIATED 

OESOPHAGEAL 
ADENOCARCINOMA 

YES (605) 

MFD-1 55 MALE CAUCASIAN OESOPHAGEAL 
ADENOCARCINOMA 

NO 
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6.1.8 Hypothesis and chapter aim, and objectives. 

From my prior analysis I found evidence suggesting CSDE1 expression may function as a 

negative regulator of MHC class I HLA expression in OAC, however, this analysis requires 

further supporting evidence to substantiate this claim.  To address this, I aimed to assess 

the impact of modulating CSDE1 expression on the mRNA and protein level of MHC class I 

HLAs in an OAC cell model and explore single cell RNA-seq to confirm the distribution of 

CSDE1 expression in OAC and compare expression between cancer cells and normal 

comparative cells. 

 

Hypothesis 3: ‘Expression of CSDE1 in oesophageal adenocarcinoma cells down-regulates 
MHC class I HLA expression.’ 
 

Objective 4a: Knockdown/overexpression of CSDE1 will be performed via siRNA and 

validated at the mRNA and protein level in OAC cell lines. 

 

Objective 4b: MHC class I mRNA and protein expression levels will be measured in 

knockdown/overexpression CSDE1 cell models, determining the effect of CSDE1 

expression on MHC class I expression. 

 

Objective 4c: phosphorylation status of STAT1 protein levels will be measured in OAC cell 

lines to determine the effect of altered CSDE1 expression on the activation of the 

JAK/STAT signalling pathway. 

 

Objective 4d: CSDE1 mRNA expression will be repartitioned into single cell populations 

from single-cell RNA sequencing data generated from primary human tumour tissue to 

determine whether CSDE1 is over expressed in OAC cancer cells in comparison to normal 

cells. 
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6.2 Methodology 

6.2.1 Cell expression profiling 

Cell mRNA raw counts data was sourced from Sanger cell model passports for OE33, OE19 

and FLO-1 (https://cellmodelpassports.sanger.ac.uk), mRNA raw counts for MFD-1 cells 

were downloaded from the Underwood Research file store. mRNA raw counts were then, 

filtered to remove lowly and highly expressed  transcripts and normalised using TMM 

(allowing for within and between sample normalisation) to explore the cells lines for 

CSDE1 and HLA-A/B/C expression values (612). 

6.2.2 General principles of cell culture 

Cell culture is a methodology to allow for cellular expansion in vitro using nutrient 

medium.  This technique allows for manipulation of cells if required and provides cellular 

read-outs and DNA, RNA, and proteins for downstream analysis.  For my experiments 

routine cell culture was performed within a laminar flow hood with the tissue culture 

reagents and nutrient media being stored within sterile containers at 4°C.  To avoid cold 

shock of cells, media and reagents were placed in a water bath at 37°C prior to use.  All 

cell cultures were grown at 5% CO2 in a humidified environment of an incubator (37°C).  

Cell lines were validated by STR-PCR in the Underwood laboratory. 

 

6.2.2.1 Thawing cell stocks 

Cell stocks stored in vials were removed from liquid nitrogen were placed at room 

temperature for 5-10 mins until completed thawed.  Thawed cell stock was transferred to 

15 ml tubes (BD Falcon), where 5 ml of cell media (DMEM/RPMI containing 10 % w/v heat 

inactivated foetal Bovine serum (FBS), 2.0 mM L-glutamine, 50 IU/ml of penicillin (100 

U/ml) and 50 µg/ml of streptomycin) was added before centrifugation at 800 g for 5 

minutes to produce a cell pellet.  After discarding the supernatant, the remaining cell 

pellet was re-suspended in complete growth medium and transferred to a cell culture 

flask (25 cm2 volume; Corning®) containing fresh cell culture media. 

 

https://cellmodelpassports.sanger.ac.uk/
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6.2.2.2 Cell culture 

Cell lines were cultured within a humidified cell incubator at 37 °C with 5 % CO2 for OE33, 

FLO1 and MFD1 cells.  For OE33 cells complete growth medium of Roswell Park Memorial 

Institute 1640 medium (RPMI) supplemented with 10 % w/v heat inactivated foetal 

Bovine serum (FBS), 2.0 mM L-glutamine, 50 IU/ml of penicillin (100 U/ml) and 50 µg/ml 

of streptomycin.  MFD-1 and FLO-1 cells were cultured in Dulbecco’s modified eagle 

medium (DMEM) supplemented with 10 % w/v heat inactivated foetal calf serum (FCS), 

2.0 mM glutamine, and 50 IU/ml of penicillin and 50 µg/ml streptomycin. 

 

Cell cultures were grown as adherent monolayers in sterile cell culture flasks (25cm2, 75 

cm2 or 175 cm2 volume; Corning®) in a humidified incubator (5 % CO2) at 37 °C. Media 

was changed every 3 - 4 days or when 80-90 % confluence was achieved. 

Confluent cells were passaged at a 1:3 to 1:5 ratio of depending on the growth rate of the 

cells.  To achieve passage.  The existing medium was discarded, then the cell layer within 

the cell culture flask was washed with PBS heated to 37 °C removing the remaining 

media.  Pre-warmed trypsin/TrypLE™ Express Enzyme (0.05 % trypsin (w/v) / 5 mM EDTA, 

Cat#25200056, ThermoFisher/TrypLE™ Express Enzyme (1X), no phenol red, 

Cat#12604013, ThermoFisher) was added to coat all cells, then incubated for 5 mins at 37 

°C. FBS containing media was then added to detached cells to inactivate the 

trypsin/TripLE by inhibiting enzyme reaction.  Finally, the free-floating cells in media 

suspension were divided into new tissue culture flasks and topped up with complete cell 

culture media. 

 

6.2.2.3 Cell count 

To perform cell counts, 0.25 ml of cells solution was added to a 0.5 ml Eppendorf, with 

0.25 ml of Trypan Blue Solution (0.04 % Trypan Blue, Cat# 15250061, ThermoFisher).  10 

μL of Trypan Blue + cell solution was pipetted into a C-chip haemocytometer (Neubauer 

Improved C-Chip Disposable Haemocytometer (2 channel), Cat#DHC-N01-50, 

NanoEnTek).  The haemocytometer was then placed under a microscope at 10x 

magnification (Nikon Diaphot) and focused on the grids.  Next five 1 mm2 area grid 

squares were then counted; the average cell count of the five grid squares was then 

calculated, then multiplied by the dilution factor to give the cell count per mL. 
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6.2.3 CSDE1 knockdown by siRNA transfection 

CSDE1 siRNA knockdown of FLO-1 cells was achieve via lipofection.  This required plating 

cells at 0.25–1 × 106 in 6 well plates until 60 % confluent overnight at 37°C in 5 % CO2.  

Cells were then transfected overnight in Opti-MEM® Medium using Lipofectamine® 

RNAiMAX Reagent (Lipofectamine™ RNAiMAX Transfection Reagent, Cat#13778075, 

Invitrogen) with a concentration of CSDE1 siRNA smart pool (siGENOME Human CSDE1 

(7812) siRNA – SMART, Cat#: M-015834-01-0010, Horizon Discovery/Dharmacon) pool of 

60 pmol in 250 μL Opti-MEM® Medium (Opti-MEM™ I Reduced Serum Medium, Cat# 

31985062, Gibco).  Following overnight incubation cell media was replaced with complete 

RPMI media and incubated for 3 days before harvesting the cells. 

6.2.4 CSDE1 overexpression by nucleofection 

CSDE1 overexpression of OE33 was attempted during my analysis.  This was conducted 

using a nucleofection kit (SE Cell Line 4D-Nucleofector™ X Kit S, Cat# V4XC-1032, Lonza).  

This required adding 2 x 105 to each 20 μL Nucleocuvette with 0.4 µg of pmaxGFP™ 

Vector and 20 μL SE Cell Line 4D-Nucleofector™ X Solution then placed into a 

Nucleofector unit where 7 different Nucleofector® programs plus 2 controls were 

conducted.  Post nucleofection the cells were incubated in 12 well plates in complete 

media at 37 °C in 5 % CO2 overnight, before imaging until a fluorescent microscope.  

Imaged cells were analysed to determine which program produced the most successful 

nucleofection marked by GFP.  Beyond this stage the most optimal program would have 

been selected for nucleofection with 0.2–1 µg of CSDE1 plasmid [CSDE1 (NM_001130523) 

Human Tagged ORF Clone, Cat#RC226183, Origene].  Unfortunately, after imaging it was 

determined cells had been infected and my remaining time in the laboratory did not allow 

for optimisation nor experiment conditions (see results section 6.4.5). 

6.2.5 RNA isolation and purification 

Extraction, isolation, and purification of RNA was conducted with use of RNeasy Mini Kit 

(RNeasy Mini Kit, Cat#74104, Qiagen).  The protocol for this procedure made use of highly 

denaturing buffer containing guanidine-thiocyanate on lysed and homogenized samples 

to inactivate RNases, then selection of RNA occurs using the binding properties of a silica-

based membrane using spin columns with ethanol. 
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The RNeasy Mini spin column allows binding of total RNA to the silica membrane with 

unbound elements being washed away, which isolates RNA from other cellular lysates.  

The RNA was extracted from cell solution which were centrifuged 300 x g for 5 mins with 

the supernatant discarded.  Cells were first disrupted with 350 µL RLT cell pellet.  Cell 

lysates were then homogenized using a sonicator for 30 s (3 x 10 seconds sonication with 

15 second rests).  The homogenized lysates were then transferred to the gDNA spin 

column and centrifuged for 30s at 8,000 g.  The gDNA column was then discarded and the 

supernatant flow-through was collected, next 350 μL 70 % ethanol was added to the 

collected solution and thoroughly mixed.  Next 700 μL of the lysate solution was 

transferred into a RNeasy spin column then centrifuged at ≥8000 x g for 15s allowing 

binding of RNA to the silica column.  Following this step, the flow through was discarded, 

700 μL of RW1 buffer was used to wash the column, with further centrifugation at ≥8000 

x g for 15s. A further wash using 500 μL RPE buffer was then conducted twice, an 

additional centrifugation at ≥8000 x g for 15s with the flow-through being discarded.  

Finally, the spin column was transferred into a 1.5 ml collection tube and eluting the RNA 

with 30 μL of RNase-free water.  This collection tube was closed and centrifuged at 8,000 

x g for 1 minute then stored at -80°C. 

6.2.6 Nucleic acid quantification  

To quantify purified mRNA and derived cDNA methods used a Nanodrop 1000 

Spectrophotometer (ThermoFisher Scientific, UK).  This required using 1 μL of nucleic 

acid-free water which was pipetted onto the nanodrop pedestal as calibration of the 

spectrophotometer.  Next 1 μL of cDNA or mRNA in solution was read with the pedestal 

being cleaned thoroughly between readings.  The DNA and RNA content for each sample 

were recorded in ng/μL, with the purity of the mRNA/cDNA being determined by 

260/230nm and 260/280 ratios.  DNA samples were satisfactory when the 260/280nm 

absorbance ratios; expected purity measurements for qualified further analysis were 

required to be within a 260/280 ratio of 1.8-2.0 for RNA and cDNA and between 2.0-2.2 

for 260/230 ratio.  Quantified cDNA stored at -20°C, for future analysis. 
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6.2.6.1 Reverse transcriptase polymer chain reaction (PCR) for cDNA synthesis 

To provide ample quantity of nucleic acid (RNA) for downstream analysis copy DNA 

(cDNA) was produced via reverse transcription of 1 µg of RNA (High-Capacity cDNA 

Reverse Transcription Kit Cat#4368814, Applied Biosystems).  The principles of reverse 

transcription involve firstly deoxy-thymine nucleotides with a short sequence [Oligo (dT)] 

which contains a complementary primer to the poly-A tail, and which also provides a free 

3’-OH end for extension by reverse transcription.  To achieve reverse transcription, a 

master mix of 2 μL reverse transcription buffer, 0.8 dNTP Mix, 2 μL random primers, 1 μL 

MultiScribe Reverse Transcriptase and 4.2 μL of nucleic acid-free water was combined for 

a total of 10 μL of master mix per sample.  Next the required concentration of RNA was 

calculated to provide 40 ng/μL in 10 μL of nucleic acid-free water for all samples to allow 

a total of 20 μL for each samples PCR reaction (master mix + sample RNA).  The solution 

was then placed in a thermocycler to the following program: 25°C - 10 minutes, 37°C – 

120 minutes, 85°C – 5 minutes and 4°C – stop to generate complementary DNA (cDNA).  

cDNA was then stored at -20°C, for future analysis. 

6.2.7 Quantitative Real-Time PCR (qRT-PCR) by TaqMan 

qRT-PCR is a method used to quantify specific sequences of cDNA allowing the researcher 

to extrapolate the quantity gene expression as it is amplified by PCR in real time.  The 

premise of TaqMan is the use of a primer and probe which are specific to the gene under 

study.  Specifically, an oligonucleotide probe is fluorescently labelled as a reporter on the 

5’ end and a quencher molecule on the 3’ end.  The importance of the quencher dye is to 

reduce the fluorescence emitted by the reporter dye whilst the probe is intact, upon 

polymerisation the gene probe anneals downstream of the primer site allowing extension 

by the Taq DNA polymerase, cleaving the reporter dye.  The cleavage of the reporter dye 

allows for detection of the reporter dye since as it is removed from the proximity to the 

quencher dye.  This signal is further amplified by the cleavage of the quencher dye by 

exonucleases during the PCR cycle.  These two cleavage events also allow primer 

extension to continue, thereby, fluorescence emitted in TaqMan qPCR is directly 

proportional to the number of copies of cDNA produced per cycle.  The PCR reactions 

here are quantified when the overall fluorescence exceeds a set threshold to produce a Ct 

value which represents the number of PCR cycles needed to reach the required 

fluorescence threshold.  
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Therefore, a higher Ct value would represent lower expression gene under study.  To 

establish the levels of CSDE1 cDNA, HLA-A, HLA-B and HLA-C cDNA or control gene GAPDH 

cDNA in cells, qRT-PCR was performed with the QuantStudio Flex Real-Time PCR System 

(QuantStudio™ 7 Flex Real-Time PCR System, 384-well, desktop, Cat# 4485701, Applied 

Biosystems) with measurements being conducted using the standard curve method.  To 

estimate gene expression of the genes of interest the log of cDNA concentration was 

plotted against Ct values for known quantities of cDNA derived from a dilution series from 

normal fibroblasts and the equation of this standard curve used to calculate the amount 

of CSDE1, HLA-A, HLA-B, HLA-C or GAPDH cDNA present in cells. 

 

Commercially available primers for CSDE1 (Hs00918650_m1, Cat#4331182, ThermoFisher 

Scientific), HLA-A (Hs01058806_g1, Cat#4331182, ThermoFisher Scientific), HLA-B 

(Hs07292706_g1, Cat#4351372, ThermoFisher Scientific), HLA-C (Hs00740298_g1, 

Cat#4331182, ThermoFisher Scientific)  and GAPDH (Hs01060665_g1, Cat#4448489, 

ThermoFisher Scientific) were used to measure cDNA levels for each gene of interest in 

knockdown cells. 1 μL cDNA was suspended and made up to 10 μL with 3.5 μL nuclease 

free water, 0.5 μL of TaqMan Assay (20X) and 5.0 μL of TaqMan Fast Advanced Master 

Mix (TaqMan™ Fast Advanced Master Mix for qPCR, Cat#4444557, Applied Biosystems).  

To ensure that the solutions were mixed thoroughly and then to remove bubbles, 

samples were vortexed.  Following this the samples were loaded in triplicate into a 384 

well then centrifuged for 300 x g for 1 min.  The PCR plate was then sealed and loaded 

into the PCR machine and ran through 50°C (2 minutes), 95°C (20 seconds), then 40 cycles 

of 95°C (1 second), and 60°C (20 seconds).  To effectively calculate the level of gene 

expression the output Ct of each gene of interest was applied to the standard curve of 

known RNA quantity using the equation below (y = Ct value, m = slope, x = log(quantity), 

b = y-intercept (613). 

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑢𝑟𝑣𝑒: 𝑦 =  𝑚𝑥 +  𝑏 

𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛: 𝑥 =  
𝑦

𝑚
−

𝑏

𝑚
 

Equation 2: Standard curve and mRNA quantification equations for TaqMan analysis. 
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6.2.8 Western blotting 

6.2.8.1 Cell lysis 

Cell pellets (~3.6 x 106 cells) were re-suspended in 1ml of PBS in an Eppendorf tube, and 

centrifuged at 8000 x g for 4 mins at 4°C.  The supernatant was removed off the cell pellet 

and ice, reducing the potential for protein degradation.  Next 20 μL of Radio-

immunoprecipitation assay (RIPA) buffer and 5 μL of protease inhibitor and 5 μL of 

phosphatase inhibitor (Halt phosphatase inhibitor cocktail, Cat#78420, ThermoFisher 

Scientific) was added to each cell pellet, then briefly vortexed, following being placed on 

ice for 30 minutes.  Lysed cell mixture was then centrifuged at 8000 x g for 5 minutes at 

4°C.  Finally, supernatant was moved to a new Eppendorf and stored at -20°C. 

 

6.2.8.2 Estimation of protein concentration 

To allow for optimal protein loading I first determined the protein concentration achieved 

after cell lysis via a Bradford assay (BCA) using Bio-Rad Protein Assay Dye Reagent 

Concentrate (Bio-Rad Protein Assay Dye Reagent Concentrate, Cat#5000006, Bio-Rad).  

This assay functions by producing a colour change of Coomassie brilliant blue G-250 dye 

which occurs when binding amino acid residues present in protein.  This colour change 

can then be read by a spectrophotometer set for absorbance (595nm).  Bovine serum 

albumin (BSA) protein standards were produced using a dilution series to create set 

protein concentrations of 0, 125, 250, 500, 750, 1500, 2000, 4000 and 5000 µg/ml.  To 

achieve the analysis firstly 250 μL of the dye concentrate was prepares at a dilution of 1:5 

with deionized water then pipetted into a sterile 96-well plate, following this 1ul of 

protein lysate for each sample was pipetted into wells in triplicate, as well as a triplicate 

of 1:10 dilution of protein lysate in deionized water and the protein standards in 

triplicate. 

The plate was then incubated for 15 minutes at 37 °C, then placed into a Varioskan Flash 

plate reader (Varioskan Flash, Cat#5250030, ThermoFisher Scientific) and read at 590 nm 

absorbance.  The absorbance measurements for the protein standards were then used to 

produce a standard curve, with the unknown sample protein concentrations being 

quantified using this standard curve in Microsoft Excel using the equation below (X= 

unknown protein quantity, Y= absorbance, m= gradient and c= y-intercept). 
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𝑋 =  (𝑌 − 𝑐)/𝑚 

Equation 3: Protein quantification equation for BCA assay. 

6.2.8.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins are separated by electrophoresis using a 1.5 mm thick pre-moulded 

polyacrylamide gel (NuPAGE 10 %, Bis-Tris 1.5 mm Mini Protein Gel, Cat#NP0306BOX, 

Invitrogen.  The gel was placed in the electrophoresis tank and the chamber filled with 

running buffer (NuPAGE Tris-Acetate SDS Running Buffer, Cat#LA0041, Invitrogen).  The 

first step in the SDS-PAGE process was to prepare the protein samples for loading by 

adding 7.5 μL of sample buffer (NuPAGE™ LDS Sample Buffer (4X), Cat#NP0007, 

Invitrogen), 3 μL of reducing agent (NuPAGE™ Sample Reducing Agent (10X), Cat#NP0004, 

Invitrogen) and adding nucleic acid-free water to control the concentration up to a total 

of 30 μL for loading into the wells. These prepared samples were heated it at 70 °C for 10 

minutes, vortexed, then placed on ice.  Protein samples were loaded into wells of the 

polyacrylamide gel together with a protein weight ladder (PageRuler™ Pre-stained Protein 

Ladder, 10 to 180 kDa, Cat#26616, Thermo Scientific).  Lastly, the electrophoresis was 

conducted for 35 minutes at 200 V constant.  After running the gel was then removed and 

submerged in transfer buffer (NuPAGE™ Transfer Buffer (20X), Cat#NP0006, Invitrogen). 

 

6.2.8.4 Immunoblotting 

After running the SDS-PAGE gel, the separated protein was then transferred to a 

nitrocellulose blotting membrane (Nitrocellulose Membranes, 0.2 μm, Cat#88013, 

Thermo Scientific), sandwiched between 2 filter paper and sponges then compressed, 

in a Mini Blot Module (Mini Blot Module, Cat#B1000, Invitrogen), and immersed in 

transfer buffer up to the fill line of the Mini Gel Tank (Mini Gel Tank, Cat#A25977, 

Invitrogen).  Proteins were transferred onto the membrane at 10V, 160 mA for 60 

minutes.  After protein transfer, the membrane was covered in Ponceau S (Ponceau S, 0.1 

% v/v soln. in 5% acetic acid, Cat# J63139.AP, ThermoFisher Scientific Chemicals) to 

confirm successful transfer.  Following successful transfer, the membrane was placed 

inside a 50 ml BD Falcon tube with 5 ml of 5 % BSA to block non-specific proteins, and 

gently agitated for 90 minutes on a roller (180 rpm) at room temperature. 

After blocking the membrane was washed 3 times with 5 ml of PBS/Tween at 5 mins and 

gently agitated for 90 minutes on a roller at room temperature.  The membrane was then 
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incubated in a Falcon tube with 5 ml of diluted primary antibody in 5% BSA (See table 26) 

overnight on a roller (180 rpm) at 4°C. 

After primary antibody incubation the stained membrane was washed 3 more times, in 

PBS/Tween for 5 minutes, then incubated with a secondary antibody for 1 hour on a roller 

at room temperature.  A final wash was conducted 3 in PBS/Tween for 5 minutes at room 

temperature with bound antibody being detected via chemiluminescence (SuperSignalTM 

West Pico/Femto, Cat#34577/34094, ThermoFisher Scientific), then imaged on a 

ImageQuant™ 800 Western blot imaging system (ImageQuant™ 800 Western blot imaging 

system, Cat# 29399481, Amersham).  GAPDH was probed as a loading control and 

subsequent re-probing of membrane for other target proteins involved stripping off the 

bound antibody with 5ml of stripping buffer (Restore Western Blot Stripping Buffer, Cat# 

21059X4, ThermoFisher Scientific), 15 minutes at room temperature after a single wash 

for 5 minutes with TBS (Tris-buffered saline) at room temperature on a roller.  After 

stripping the membrane was washed three times with 5 ml of PBS/Tween for 5 minutes at 

room temperature, followed by primary antibody incubation for the next protein target.  

Quantification of target protein was conducted in Image J, to produce a score of intensity 

of target protein normalised to the housekeeping intensity (GAPDH, used after laboratory 

testing confirming this protein expression is unchanged by non-targeting siRNA control) 

(614). Antibodies used in this method are detailed in Table 26. 

 

Table 26 Antibodies used in immunoblotting of target proteins in western blot analysis. 

ANTIBODY 
TARGET CLONE SUPPLIER 

CATALOG 
NUMBER 

SPECIES/HOST 
ISOTYPE  DILUTION 

HLA-CLASS I 
(ABC) EMR8-5 ABCAM AB70328 MOUSE 1:5000 

CSDE1/NRU EPR17414 ABCAM AB201688 RABBIT 1:1000 

STAT1 ALPHA EPYR2154 ABCAM AB92506 RABBIT 1:5000 
PHOSPHO 

STAT1 EPR3146 ABCAM AB109461 RABBIT 1:5000 

GAPDH 6C5 ABCAM AB8245 MOUSE 1:5000 

ANTI-RABBIT - ABCAM AB6721-1 GOAT 1:5000 

ANTI-MOUSE - ABCAM AB97023 GOAT 1:5000 
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6.2.9 Single-cell RNA-seq analysis 

Single-cell RNA-seq data was obtained from previous analysis conducted (Provided by the 

Matthew Rose-Zerilli/Underwood laboratory group) (615). This process involved 

disaggregating patient tissues into single cell suspensions using a modified protocol for 

fibroblast characterisation (616). Disaggregated tissue was processed through modified 

DropSeq protocol v3.1, allowing single cells to be co-encapsulated with a barcoded bead 

within a nanolitre droplet (617). These droplets were then broken, and the bead 

encapsulated yield were reverse transcribed followed by exonuclease and PCR steps.  500 

pg of cDNA were used for a Nextera XT library prep kit (Nextera XT DNA Library 

Preparation Kit, CAT# FC-131-1024, Illumina) per sample before sequencing on a NextSeq 

500.  The raw reads were then demultiplexed and converted to Fastq files through 

bcl2fastq (Illumina).  Converted Fastq file then underwent Dropseq Core Computational 

Protocol v2.1 pipeline, aligned to the HG38 genome using STAR 2.6.0a. Downstream 

analysis was conducted using Seurat in R (Version 4.4.0) (618). Data visualisation of single-

cell RNA expression was conducted using UMAPs, Violin plots, AddModuleScores (scoring 

gene sets) and Dot plots functions in Seurat. 

6.2.10 Statistical analyses 

Statistical analysis compared CSDE1 knockdown to controls in mRNA and protein 

expression was conducted in GraphPad prism 10 using one-sample T-tests for protein 

comparisons, as only one repeat of non-targeting and wildtype was available for 

comparison and T-tests for mRNA quantity comparisons (619). For T tests, significance 

was determined at a p value <0.05 after Bonferroni multiple testing correction; 

Bonferroni was selected due to greater power in testing a small number of comparisons 

compared to the Tukey method (620).  Pearson correlation analysis was employed in 

GraphPad prism 10 the correlation of APM protein expression, CSDE1 and STAT1 

signalling level.  Lastly, paired T-tests was performed in R for single-cell RNA-seq analysis 

of CSDE1 expression of intestinal metaplasia of precancerous lesions and comparative 

analysis of OAC cancer cells versus normal healthy cells. 
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6.3 Results 

6.3.1 Cell model selection and characteristics 

To determine which available cells lines would be most appropriate for knockdown and 

overexpression experiments for CSDE1.  The mRNA count data was downloaded (from 

Cell Model Passports) for accessible OAC cell lines (See Table 25) then normalised using 

TMM in EdgeR (621). Exploring the mRNA expression level of CSDE1, other canonical APM 

gene expression regulators and MHC class I genes revealed interesting observations for 

each of the cell lines.  Firstly, the expression of CSDE1 was found to be the highest in 

OACM5-1, ESO26, ESO51 and FLO-1 cells with the greatest HLA-A/B/E found in ESO26 

cells (See Figure 60).  The lowest expression of MHC class I molecules was located in 

cluster 1 which included OE19, OACM5-1 and SK-GT-4 cells; the low MHC class I 

expression of OE19 could relate to OE19 cells also possessing the lowest expression of 

IRF1, NLRC5 and the highest expression of PTPN2 (TCPTP), exploring the available data for 

OE19 reveals a copy number loss event over the IRF1 gene locus (See Figure 60). Cluster 2 

represents cell containing high TAPBP, IRF1 and TAP2 expression; among cluster 2, FLO-1 

cells demonstrated low MHC class I expression with high CSDE1 expression (See Figure 

60).  These finding suggests FLO-1, OACM5-1 and SK-GT-4 cells contain lower MHC class I 

expression, excluding TAP2/TAPBP with intact APM regulators and high CSDE1 expression 

making FLO-1 and OACM5-1 cells suitable candidate models for CSDE1 siRNA knockdown. 

 

Conversely, the greatest MHC class I expression was located to cluster 3 which included 

OE33, ESO26 and ESO51 cell lines.  OE33 possessed the greatest B2M, and HLA-C/E 

expression accompanied by high NLRC5 and IRF1 expression among OAC cell lines and 

highly expressed CSDE1 (See Figure 60).  ESO26 possessed the greatest MHC class I 

expression within cluster 3, but also contained high CSDE1 expression (See Figure 60).  

MFD-1 possessed the greatest HLA-A/B, TAP2 and TAPBP coupled with high IRF1 

expression (See Figure 60).  These results suggest OE33, and MFD-1 cell models are 

immediately available and would form effective models for CSDE1 overexpression, whilst 

FLO-1 cells are ample for knockdown experiments.  

 

Lastly, I explored the expression of the HMGA2 (High Mobility Group AT-Hook 2) gene, 

which is thought to be regulated by SMYD3 similarly to CSDE1. 
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Here I observed a similar pattern of HMGA2 expression in the OAC cell lines compared to 

CSDE1 with the greatest expression being in OACM5-1 cells and the lowest expression in 

OE19 and ESO26 cells. 

Figure 60 Heatmap of TMM normalised expression of CSDE1, MHC class I gene 
expression regulators, MHC class I genes and HMGA2 for available OAC cell 
lines.  Z-scored, Minkowski distance, ward.D2 linkage.  
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6.3.2 Validation of CSDE1 knockdown in OAC cell model 

After knocking down CSDE1 expression in FLO-1 cells, I decided to validate the success of 

the knockdown at the protein level using a western blot (3 repeats).  Using this approach, 

I observed a reduction of CSDE1 protein expression in CSDE1 knockdown cells.  

Specifically, a 55% reduction in CSDE1 protein was noted between knockdown and non-

targeting control (NC), a 55% reduction between knockdown and wildtype (WT) and a 

61% reduction between knockdown and lipofectamine treated FLO-1 cells (See Figure 61 

& 62).  This result determines that CSDE1 was successfully knocked down in FLO-1 cells 

using 60 pmol of CSDE1 siRNA, allowing for further investigation of the impact of CSDE1 

knockdown on MHC class I HLA expression and STAT1 signalling in this OAC cell line. 

Observing the lipofectamine and non-targeting siRNA control (NC) at the mRNA 

expression level found no significant increase in CSDE1, HLA-B and HLA-C expression, 

however, NC treatment did exhibit an increase in HLA-A mRNA expression in FLO-1 cells 

compared to WT (See Figure 63). 

Figure 61 Western blot of CSDE1 and GAPDH expression following CSDE1 knockdown in 
FLO-1 cells.  NC: Non-targeting control, KD: Knockdown CSDE1 60 pmol siRNA.  
Full images available in appendix 2A and E. 
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Figure 62 Protein quantification of CSDE1 normalised to GAPDH following siRNA 

knockdown in FLO-1 cells.  NC: Non-targeting control.  Error bar: Standard 
deviation.  Statistical test: one-sample T-test comparing knockdown to NC, p 
values*<0.05, **<0.01, ***<0.001, ****<0.0001. 

6.3.3 APM gene expression in OAC cancer cells is downregulated by the expression of 
CSDE1. 

Following successful knockdown of CSDE1 expression in FLO-1 OAC cells measured at the 

protein level, I aimed to confirm CSDE1 knockdown at the mRNA level and identify an 

association between lower CSDE1 expression and greater MHC class I HLA (HLA-A/B/C) 

expression in FLO-1 OAC cells.  Here I observed a significant reduction in CSDE1 mRNA in 

FLO-1 cells with a 94% reduction in CSDE1 mRNA in knockdown conditions (both 60 and 

25 pmol of CSDE1 siRNA) compared to NC, a 94% reduction compared to WT and lastly, a 

93% reduction compared to lipofectamine treated FLO-1 cells (p<0.0001, See Figure 63); 

no significant difference was observed between CSDE1 mRNA expression between 60 and 

25 pmol siRNA treatment.  

Following confirmation of CSDE1 knockdown at the mRNA level, I moved to investigate 

the impact of the knockdown on MHC class I HLA gene expression, here I present CSDE1 

knockdown (60pmol siRNA) resulted in a significant increase of in HLA-A and HLA-B 

compared to WT, 34% and 68% respectively (p<0.05, See Figure 63).  
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However, no significant increase in was noted between CSDE1 knockdown and NC for 

HLA-A/B, however, this may be potentially due to the NC siRNA control possessing 

significant increase of 18% in HLA-A and 62% increase HLA-B mRNA expression compared 

to the WT suggesting the NC may result in increased HLA expression.  Lastly, although 

HLA-C mRNA expression was not significantly higher in knockdown CSDE1 FLO-1 cells 

there is depicted an increase of 12% in quantity of HLA-C mRNA in 60pmol CSDE1 siRNA 

condition over NC and an increase of 14% over WT (See Figure 63). 
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Figure 63 mRNA quantification of CSDE1, HLA-A, HLA-B and HLA-C expression following 

CSDE1 knockdown in FLO-1 cells.  A: CSDE1 gene expression following CSDE1 
knockdown.  B: HLA-A gene expression following CSDE1 knockdown.  C: HLA-B 
gene expression following CSDE1 knockdown.  D: HLA-C gene expression 
following CSDE1 knockdown.  NC: Non-targeting control.  Error bar: Standard 
deviation.  Statistical test: Mann-Whitney U test, p values*<0.05, **<0.01, 
***<0.001, ****<0.0001. Percentage differences compared to wildtype 
available in appendix 3A-D. 
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6.3.4 APM protein expression in OAC cancer cells may be downregulated by the 
expression of CSDE1 as a modulator of the STAT1/JAK pathway. 

After qualifying a successful knockdown of CSDE1 in FLO-1 cells and observing increased 

HLA-A/B expression in these knockdown cells I decided to explore if these results are 

reflected at the protein level using 60pmol CSDE1 siRNA.  Unfortunately, I did not observe 

a significant increase in HLA-ABC level in CSDE1 knockdown though a minor increase of 

17% was noted in HLA-ABC compared to NC, the lack of significance here may be due to 

the small number of repeats (See Figure 64 & 65).  However, CSDE1 knockdown did 

demonstrate significant increase in pSTAT1/STAT1 ratio of 46%, suggesting STAT1 

signalling is greater with reduced CSDE1 (p<0.05, See Figure 64 & 65). 

Figure 64 Western blot of CSDE1, HLA-ABC, pSTAT1, STAT1 and GAPDH expression 
following CSDE1 knockdown in FLO-1 cells.  NC: Non-targeting control, KD: 
Knockdown CSDE1 60 pmol siRNA.  Full images for each stain available in 
appendix 2A-E. 
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Figure 65 Protein quantification of CSDE1, HLA-ABC, pSTAT1, STAT1 and GAPDH 
expression following CSDE1 knockdown in FLO-1 cells.  NC: Non-targeting control.  Error 
bar: Standard deviation.  Statistical test: one-sample T-test comparing knockdown to NC, 
p values*<0.05, **<0.01, ***<0.001, ****<0.0001, NS = non-significant. 
 

 

Lastly, I moved to explore the correlation of CSDE1, pSTAT1/STAT1 ratio and HLA-ABC at 

the protein level in all cell conditions.  Here I observed a trend between STAT1 signalling 

and HLA-ABC protein expression (R2 = 0.07, p = 0.61, See Figure 66); and the negative 

correlation between CSDE1 protein expression and STAT1 signalling trended towards 

significance (R2 = 0.59, p = 0.076, See Figure 66).  Additionally, CSDE1 protein expression 

demonstrated a trend towards a negatively correlation to HLA-ABC protein expression (R2 

= 0.66, p = 0.096, See Figure 66). 
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Figure 66 Correlation analysis of protein expression (CSDE1, HLA-ABC and 
pSTAT1/STAT1) in FLO-1 OAC cells.  A: pSTAT1/STAT1 signalling and CSDE1 
protein expression.  B:  CSDE1and HLA-ABC protein expression.  C: 
pSTAT1/STAT1 signalling and HLA-ABC protein expression.  Dotted line: 95% 
confidence interval.  Statistical test: Pearson’s. 
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6.3.5 Attempted CSDE1 overexpression in OE33 cells. 

After performing the CSDE1 knockdown experimental work above, I attempted to 

overexpress CSDE1 using plasmid nucleofection in OE33 cells.  Unfortunately, after 

imaging the optimisation stage using GFP as a marker of successful nucleofection, the cell 

morphology indicated excessive amounts of cell death, shortly after the nucleofection it 

was determined the cell culture were infected and dying and subsequently disposed of 

(See Figure 67). 

Figure 67 fluorescence microscopy of GFP nucleofected cells.  Green fluorescence 
identifying successfully transfected cells.  Large cells with poor morphology 
demonstrating cell stress/death.  x40 magnification (Nikon Diaphot). 
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6.3.6 The expression of CSDE1 is high in single cancer cells from human OAC tumours. 

From my prior analysis presented in chapter 5, results suggested CSDE1 expression in 

OAC may be localised to cancer cells as a potential mechanism of tumour immune 

evasion by downregulating MHC class I expression.  However, to qualify this finding I 

sought to interrogate single-cell RNA sequencing data to assess the expression of CSDE1 

in OAC cancer cells within the tumour microenvironment, identified by canonical markers 

used in a prior study of OAC, compared to comparative normal healthy cells (615). To first 

validate this, I visualised the expression pattern of CSDE1 expression finding a subset of 

cancer cells and T cells (Tregs) from both gastric cancer and OAC appeared to express 

CSDE1 in higher quantity as compared to normal gastric cardia cells (See Figure 68). 
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Figure 68 UMAP of single cell CSDE1 gene expression in OAC and gastric tumours. Left: Cell type labelled UMAP. Right: CSDE1 gene 
expression at the single cell level. Single-cell gene expression level indicated by the colour bar. Red circle: Cancer cells. 
Green Circle: Normal healthy cells. Blue circle: T cells. 
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After identifying CSDE1 expression in gastric and OAC cancer cells appear greater than 

normal gastric cardia cells, I sought to assess the HLA-A and CSDE1 mRNA co-expression 

among gastric and OAC tumours.  Here I identified co-expression of HLA-A and CSDE1 in 

OAC and gastric cancer cells, though a small proportion of these cells possessed high 

CSDE1 with low HLA-A mRNA expression or low CSDE1 with high HLA-A mRNA (See Figure 

69).  Interestingly, T cells appeared to co-express CSDE1 and HLA-A highly, while 

differentiating to differentiated squamous cells mostly possess a high CSDE1 

accompanied with low HLA-A mRNA expression (See Figure 69). 
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Figure 69 UMAP of single cell CSDE1 and HLA-A gene co-expression in OAC and gastric cancer tumours. Green: CSDE1 high 
and HLA-A low expression. Yellow: CSDE1 HLA-A co-expression. Red: HLA-A high and CSDE1 low expression. Red 
circle: Cancer cells. Green Circle: Normal healthy cells. Blue circle: T cells. 
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Additional analysis observing the co-expression of CSDE1 and HLA-A in only OAC cancer 

cells revealed a high proportion of OAC cancer cells possessed high HLA-A and low CSDE1 

mRNA expression which cluster together, with the remaining cells mostly exhibiting co-

expression both genes excluding a small number of cells with high CSDE1 and low HLA-A 

mRNA expression (See Figure 70). 

 



257 

Figure 70 UMAP of single cell CSDE1 and HLA-A gene co-expression in OAC cells. Green: CSDE1 high and HLA-A low expression. 
Yellow: CSDE1 HLA-A co-expression. Red: HLA-A high CSDE1 low and expression. 
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Following the analysis demonstrating OAC cancer cells possess a high ratio of CSDE1: HLA-

A mRNA ratio I decided to compare the cells with comparative normal healthy cells and 

the distribution of ratio across cells within tumour samples.  Here I observed a distinct 

shift towards high CSDE1: HLA-A mRNA ratio, furthermore, the HLA-A:CSDE1 ratio in OAC 

cells was significantly greater than differentiated foveolar cells (See Figure 71).  

Interestingly, OAC cells appear to possess a higher proportion of cells with extremely high 

CSDE1: HLA-A mRNA ratio (>10) which are in greater abundance compared to 

comparative normal healthy cells and gastric cancer cells (See Figure 71). 

  



259 

Figure 71 Violin plot of CSDE1:HLA-A mRNA ratio in OAC cancer cells with 
comparitive normal healthy gastric cardia cells. Red line 
represents median ratio. Statistics: Wilcoxon signed-rank test, 
Kruskal–Wallis test. CSDE1 expression in OAC cancer cells 
compared to comparative healthy cells available in appendix D. 
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Lastly, I explored the expression of CSDE1, MHC class I HLAs, interferon response gene 

sets (Alpha and Gamma) and regulators of the interferon signalling pathway among the 

low HLA-A: CSDE1 mRNA ratio group (High HLA-A, Low CSDE1 mRNA expression) and the 

high HLA-A:CSDE1 mRNA ratio group (Low HLA-A, High CSDE1 mRNA expression).  Here I 

observed under low HLA-A:CSDE1 mRNA ratio CSDE1 expression was highly expressed in 

average expression and the percentage of cells (~75% of cells). This was paired with low 

expression of MHC class I HLAs (HLA-A/B/C), positive regulators of interferon signalling 

(IRF1/9), negative regulators of interferon signalling (PTPN2) and low expression of 

interferon response gene sets (Alpha and Gamma) (See Figure 72). The exact opposite 

expression profiles were observed in the high HLA-A:CSDE1 mRNA ratio group with low 

CSDE1 average expression with CSDE1 being expressed by a smaller percentage of cells 

(<25% of cells) coupled with high expression of MHC class I HLAs (HLA-A/B/C), positive 

regulators of interferon signalling (IRF1/9), negative regulators of interferon signalling 

(PTPN2) and interferon response gene sets (Alpha and Gamma) (See Figure 72). 

Figure 72 Dot plot of CSDE1, MHC class I, PTPN2 and interferon signalling response 
genes for high/low CSDE1: HLA-A mRNA ratio. Circle size represents the 
precentage of cells expressing the gene and the blue colour scale indicates the 
level of scaled expression in each population of cells. 
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Following my analysis of CSDE1: HLA-A ratio among cancer cells, I sought to elucidate the 

heterogeneity of CSDE1 and interferon signalling downstream gene expression with OAC 

cancer cells using clustering of single cell RNA-seq data; this approach would also allow 

me to further assess the relationship between CSDE1 gene expression level and relevant 

interferon signalling downstream gene expression. 

 

Here I observed 4 distinct clusters of OAC cells regarding the expression of these markers.  

The first observed cluster (1061/4304 cells) is driven by the high CSDE1 expression, 

notably this cluster lack IRF9 and IFN-α/γ response gene expression but retains the 

expression of HLA-A/B/C (See Figure 73).  The second cluster (1459/4304 cells) possesses 

a lack of CSDE1 and IRF1 expression with a notable reduction in the expression of MHC 

class I HLAs and IFN-α/γ response gene expression (See Figure 73).  The third observed 

cluster (650/4304 cells) is driven by high IRF1 expression; interestingly, the expression of 

CSDE1 is lower in the third cluster compared to the first cluster, yet no observable 

increase in the proportion of cells expressing MHC class I HLAs and IFN-α/γ response 

genes was identified (See Figure 73).  The final cluster (1134/4304 cells) have two distinct 

subclusters; firstly, a high IFN-α/γ response gene expression subcluster of which some 

cases possess high IRF1 expression with lower CSDE1 expression compared to cluster 1.  

The second subcluster contains lower IFN-α/γ response gene expression, lacks IRF1 

expression, but retains HLA-A/B/C expression (See Figure 73).  Interestingly, the heatmap 

clustering analysis found cancer cells from the same patient of origin did not predict 

cluster assignment, suggesting shared transcriptional states in OAC cancer cells (See 

Figure 74). 

 



Chapter 6 

262 

Figure 73 Heatmap of single cell RNA-seq TPM normalised expression of CSDE1, MHC 

class I genes and interferon response genes.  Z-scored, maximum distance, Ward.D2 

linkage with top annotation of patient of origin and cluster. 

Observing expression of CSDE1 and APM at the patient level using scRNA-seq analysis of 

OAC cancer cells revealed 4 distinct clusters among patients.  The first cluster (6/24 

patients) demonstrated low HLA-C expression, yet two subclusters (3 per subcluster) 

arose characterised by either high CSDE1 and low IFN-Gamma/Alpha response gene or 

low CSDE1 and high IFN-Gamma/Alpha response gene expression (See Figure 74).  Cluster 

2 (6/24 patients) was driven by low CSDE1 and high expression of IFN-Gamma/Alpha 

response and MHC class I HLA gene expression; the third cluster (5/24 patients) 

represented high HLA-B/C gene expression and retained moderate expression of CSDE1, 

but with a notable lower HLA-A gene expression (See Figure 74).  The final cluster (7/24 

patients) represented the potential of CSDE1 to inhibit the promotion of gene 

downstream of interferon signalling, characteristically expression high amounts of HLA-A 

and CSDE1 mRNA yet possessed little expression of IFN-Gamma/Alpha response genes 

and HLA-B (See Figure 74). 
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Figure 74 Heatmap of single cell RNA-seq (patient level) TPM normalised expression of 
CSDE1, MHC class I genes and interferon response genes.  Z-scored, 
correlation distance, Ward.D2 linkage with top annotation of patient of origin 
and cluster. 

Moving forward, I assessed the expression of CSDE1 in precancerous lesions from gastric 

and oesophageal adenocarcinoma (Barrett’s oesophagus) over intestinal metaplasia and 

dysplasia.  Using a single cell RNA-seq approach I observed the proportion of cells 

expression higher levels of CSDE1 mRNA increased with the extensity of intestinal 

metaplasia and dysplasia (See Figure 75).  Interestingly, the expression of CSDE1 was 

significantly greater in cases with higher grade dysplasia and intestinal metaplasia 

compared to cases with lower grade dysplasia and intestinal metaplasia (See Figure 75). 
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Figure 75 Violin plot of CSDE1 mRNA expression in precancerous lesions (Barrett’s 
oesophagus). A: Pairwise statistical comparison of moderately extensive 
intestinal metaplasia (IM). B: Pairwise statistical comparison of intestinal 
metaplasia with high grade dysplasia (HGD). C: Pairwise statistical comparison 
of intestinal metaplasia. 
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6.4 Discussion 

6.4.1 CSDE1 expression is a key regulator of MHC class I expression by modulating STAT1 
signalling in FLO-1 OAC cells. 

The premise of this investigation was to explore the impact of CSDE1 on MHC class I 

expression via modulation of the JAK/STAT1 signalling pathway.  The rationale of this 

experiment arises from prior publication demonstrating CSDE1 was capable of stabilising 

TCPTP which acts to dephosphorylate STAT1 preventing MHC class I promotion in 

melanoma cells.  This study moved forward to suggest CSDE1 and its respective effect on 

MHC class I expression could be present in other cancers including gastric cancer, thereby 

I explored this mechanism in the context of OAC. 

 

Firstly, I hypothesised the expression of CSDE1 would perturb STAT1 signalling in OAC, 

finding CSDE1 expression in OAC, negatively correlated with STAT1 signalling 

(pSTAT1/STAT1 ratio) and CSDE1 knockdown increased STAT1 signalling in FLO-1 cells.  

This finding reflects the research which inspired this investigation, which reported CSDE1 

expression was a key negative regulator of STAT1 signalling via the stabilisation of TCPTP, 

suggesting this mechanism is active in OAC cells (145). 

Interestingly, a significant increase in HLA-A/B and an observed non-significant increase in 

HLA-C mRNA expression was observed in CSDE1 knockdown OAC cells, further supporting 

the mechanism of CSDE1 acting to hinder the expression of MHC class I HLAs by 

modulating the JAK/STAT signalling pathway as prior observed in melanoma (145). 

 

Unfortunately, the pSTAT1/STAT ratio did not correlate to MHC class I HLA protein 

expression, nor did any significant increase in MHC class I HLA protein level occur in 

CSDE1 knockdown OAC cells, however, this may relate to the low number of repeats, as 

well as, the long half-life and endosomal recycling of MHC class I HLAs (622, 623). 

Conversely, the level of CSDE1 protein did negatively correlate to HLA-ABC protein 

expression, which could suggest an alternative mechanism by which CSDE1 may hinder 

MHC class I HLA protein expression.  Unfortunately, at this stage it is unknown whether 

CSDE1 impact MHC class I HLA mRNA stability, though CSDE1 has prior demonstrated 

association to protein homeostasis and is capable of post-transcriptional repression 

through translational inhibition by binding to Pumilio homolog 1 (PUM1) (624). 
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To eliminate this possibility, future investigation should explore the role of CSDE1 in post-

transcriptional/translational repression of MHC class I HLAs. 

 

I did not have time to explore the impact of TCPTP expression on STAT1 signalling, with 

the original study suggesting CSDE1 is capable of binding PTPN2 mRNA for stability, this 

leaves future work to explore directly TCPTP expression on STAT1 signalling.  Also not 

explored in this investigation is the prior published role of the histone lysine 

methyltransferase, SMYD3, which is responsible for the upregulation of CSDE1 expression 

which has also been published to be linked to the expression of High Mobility Group AT-

Hook 2 (HMGA2).  This is involved in the maintenance of cancer stem cell properties and 

regulates oral squamous cell carcinoma development and progression (625, 626). This 

further complicates the potential of CSDE1 to impact survival outcomes, with further 

testing to determine if the survival differences prior observed are due to perturbed STAT1 

signalling resulting in lower MHC class I expression or by H3K4me3-mediated HMGA2 

transcription (627). 

6.4.2 Localisation of CSDE1 mRNA expression in patient tumour samples 

From my prior analysis presented in chapter 5, CSDE1 protein expression appeared to be 

localised to cancer cells and T cells according to an expert histologists assessment and 

Superpixel classification of tumour histology (Figure 44).  To confirm the localisation of 

CSDE1 expression to OAC cancer cells and T cells an analysis of single cell OAC tumours 

was performed and found CSDE1 expression is greater among OAC cancer cells compared 

to comparative normal healthy cells.  Additionally, CSDE1 expression was greater among 

Tregs within tumour microenvironments, providing further useful information on top of 

my previous work.  Furthermore, the mRNA expression ratio of CSDE1: HLA-A in cancer 

cells appeared to be shifted towards a higher ratio compared to normal comparative 

healthy cells.  These findings suggest CSDE1 expression may be somatically overexpressed 

in OAC cancer cells, potentially by epigenetic modification of the CSDE1 locus mediated 

by SMYD3 as prior published, yet this mechanism remains unproven in OAC at this stage 

(321).  Interestingly, CSDE1 and HLA-A appeared to be co-expressed in a large proportion 

of OAC and gastric cancer cells, but a distinct proportion of cancer cells did possess 

exclusive expression of HLA-A or CSDE1 suggesting the CSDE1-mediated mechanism to 

downregulate the expression of MHC class I may be overcome by interferon signalling as 
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demonstrated in melanoma cell lines which overexpress CSDE1 (321). This suggestion is 

supported by evidence in the high HLA-A: CSDE1 mRNA expression group possessing 

greater expression of interferon response gene sets whilst possessing similar expression 

of positive regulators of interferon signalling (IRF1/9).  However, it is important to note 

the significant limitation in using single-cell datasets, as they do not always sample all 

transcripts in a cell and may produce false negatives in read counts. 

 

Intratumoural heterogeneity was well represented using heatmap clustering, where I 

uncovered 4 distinct clusters of cells expressing CSDE1, IRF1, MHC class I HLAs and 

interferon response genes.  Interestingly, these clusters represented a high marker gene 

expression heterogeneity. The first cluster was driven by high CSDE1 expression, which 

also possessed a lack of IRF1 expression suggesting the high CSDE1 expression could 

result in reduced promotion of IRF1 expression in these cells as suggested in the 

melanoma study of CSDE1. Yet, the expression of MHC class I HLAs was retained in these 

cells. However, as noted in the prior study the mechanism of CSDE1 negative regulation 

of interferon downstream promotion of gene expression may be overcome with high 

interferon microenvironments which are present in OAC  (321). The second cluster lacked 

CSDE1, IRF1 and interferon response gene expression with a observable lower proportion 

of cells highly expressing MHC class I HLAs; this cluster does not support the proposed 

mechanism discussed in the literature of CSDE1 as a master regulator of MHC class I 

expression, however, an alternative explanation could be made these cells are not under 

extensive interferon signalling producing this cellular phenotype (321). A third cluster 

further supports the suggestion the lack of CSDE1 expression in OAC tumour cells may 

result in greater JAK/STAT1 signalling to allow for increased IRF1 promotion by possessing 

high IRF1 expression, MHC class I HLA and interferon response gene expression and lower 

CSDE1 gene expression compared to the first cluster forming the opposite effect observed 

in the first cluster (321, 628). The final cluster presented with two interesting subclusters, 

the first small subcluster had a notable increase in interferon response gene expression 

with a number of cells possessing high IRF1 expression, these cells could be undergoing 

high interferon signalling to result in a promotion of this gene expression profile (628, 

629). The second subcluster was observed to possess lower interferon response gene set 

expression compared to the first subcluster and lacked IRF1 expression yet retained MHC 

class I HLA expression excepting several cells lacking HLA-A expression.  Cells belonging to 

this subcluster would require further investigation to determine the factors such as the 
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level of interferons in the tumour microenvironment which may influence their 

expression profile of genes downstream of interferon signalling (628). 

Additional analysis was conducted to explore the expression of CSDE1 in premalignancy 

i.e., Barrett’s oesophagus; here I observed an increased proportion of cells expressing 

higher levels of CSDE1 with increasing intestinal metaplasia and dysplasia.  This result 

suggests that CSDE1 overexpression could be somatically acquired over dysplasia in 

premalignant conditions as an immune evasion mechanism.  However, this suggestion 

would require further investigation to fully elucidate the stage of pathogenesis where 

CSDE1 overexpression is acquired to produce inhibition of the JAK/STAT1 pathway 

downstream of interferon signalling which is responsible for the promotion of the MHC 

class I HLA locus.  Furthermore, CSDE1 has demonstrated other roles in cancer such as the 

induction of oncogene-induced senescence to produce senescence-associated secretory 

phenotype cells which help form the tumour microenvironment niche, thereby this raises 

a new question on the role of CSDE1 in tumorigenesis of OAC. 

Overall, these findings support the hypothesis of CSDE1 overexpression may be 

somatically acquired to evade anti-tumoral immunity during the pathogenesis of OAC 

tumours.  However, this leaves several new research questions including if the 

mechanism OAC exploits to overexpress CSDE1 involves SMYD3-mediated epigenetic 

modification of the CSDE1 locus or by an alternative mechanism, and the exact stage of 

pathogenesis of OAC which exploits CSDE1 gene expression. 

6.4.3 Limitations/future work 

My initial plans in this investigation were to employ multiple OAC cell lines (OE33, FLO-1 

and MFD-1) to overexpress and knockdown CSDE1 gene expression and monitor the 

impact on the expression of MHC class I HLAs using multiple biological replicates, which 

unfortunately was unachievable due to candidature time constraints.  As alluded to in my 

discussion, a significant limitation of this investigation is the sparse number of repeat 

experiments, future investigations should aim to validate these results using a larger 

number of repeats and using multiple OAC cell lines.  Additionally, due to infection of cell 

culture, the attempt to overexpress CSDE1 via nucleofection of OE33 cells failed, this 

approach should be repeated to successfully over-express CSDE1 in OE33 cells to 

demonstrate an opposing effect on STAT1 signalling and MHC class I HLA expression 

compared to CSDE1 knockdown. 



 

269 

A further limitation is presented in the long half-life of MHC class I HLA proteins which 

may mask the potential of CSDE1 expression hindering the expression of MHC class I HLA 

protein expression.  To prevent this factor impacting results a knockout CSDE1 OAC cell 

line should be explored which has shown success in pancreatic cancer cell lines (630). 

Lastly, the role of CSDE1 in post-transcriptional/translational modification should be ruled 

out for MHC class I expression using immunoprecipitation experiments. 

This study also cannot confirm the mechanism exploited by OAC to overexpress CSDE1 to 

achieve immune evasion, with future work this could be explored to investigate the role 

of SMYD3 in epigenetic modification of the CSDE1 locus as prior published in melanoma 

(321). Lastly, although CSDE1 overexpression in OAC appears somatic due to comparisons 

with normal healthy cells of the tumour microenvironment further research should be 

conducted to explore the stage of pathogenesis CSDE1 overexpression occurs at, this 

could focus on comparing the level of CSDE1 expression between healthy tissue, Barrett’s 

oesophagus and over OAC transformation and progression. 

6.4.4 Conclusion 

Overall, my results in combination with the known literature suggests the expression of 

CSDE1 reduces the expression of MHC class I HLAs in OAC, mirroring prior publications in 

melanoma.  However, further investigation with a larger sample size and multiple cell 

models with the addition of investigating the relationship between CSDE1 and TCPTP 

must be conducted to fully support the mechanisms presence in OAC.  Furthermore, the 

role of CSDE1 in repressing MHC class I HLA expression by post-transcriptional and post-

translational modifications external to this mechanism must be ruled out.  Lastly, recent 

publication suggests the expression of HMGA2 resulting in poorer survival outcomes in 

oral squamous cell carcinoma is partly mediated by SMYD3, akin to CSDE1 with brief 

analysis of OAC cell lines suggested CSDE1 and HMGA2 are both regulated by SMYD3 

warranting further investigation to deconvolute the impacts of SMYD3-mediated gene 

expression. 
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Chapter 7 General Discussion 

Prior to my research, antigen presentation machinery (APM) had been published to 

associate to survival outcomes and immune composition in multiple cancer types 

including oesophageal squamous cell carcinoma, as well as, being noted as important for 

high immunotherapy efficacy, yet the role of APM defects in OAC patient outcomes and 

immunity was not well reported (631-635). Thereby, the ultimate focus of this research 

was to elucidate the landscape of APM genomic defects in OAC and assess the 

relationship between these defects on the immune cell populations of OAC and patient 

outcomes. 

 

The first aim was to characterise the genetic and transcriptomic landscape of antigen 

processing machinery.  Here I used a datamining approach in large publicly available OAC 

datasets containing mutation, copy-number, epigenetic and RNA sequencing data to 

assess the frequency of somatic aberration among an expertly curated candidate list of 

APM genes to determine the value of APM genomic defects on patient outcomes. 

 

A further research question aimed to investigate the association between genomic 

defects in APM genes, APM gene expression regulators and immune compositions in OAC 

to determine whether recurrent APM genomic defects may alter the tumour immune 

microenvironment.  This involved the employment of digital cytometry methods to 

predict the immune composition of OAC patient samples, which in turn were 

dichotomised by prevalent APM genomic defects to statistically identify significantly 

altered tumoral immunity due to the respective defect in APM.  Furthermore, using this 

approach allowed for digital cytometric immunophenotyping of OAC RNA sequencing 

data which had not been performed prior to my work. 

 

A follow-up research question focused on investigating altered APM protein expression in 

OAC tissue.  To reach this goal, immunohistochemistry of a large TMA cohort sourced 

from Southampton General Hospital was stained for prognostically significant APM 

proteins, an APM regulator (CSDE1) and T cell markers followed by digital pathology 

analysis.  Combined this analysis allowed for validation of prior findings and spatial 

assessment of candidate APM protein expression in OAC tissue. 
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My final goal was to assess the role of RNA binding protein, CSDE1 in the regulation of 

MHC class I expression in OAC.  Achieving this goal, I employed cellular models and assays 

to knockdown CSDE1 and measure MHC class I gene and protein expression in 

comparison to isogenic control samples. 

 

In my studies I identified several major headlining findings.  While I demonstrated within 

the landscape of APM genomic defects, mutation presented as infrequent and copy-

number differences on Chromosome 6 were incapable of being deconvoluted to a single 

gene effect.  I did identify patterns of APM gene expression that possessed an association 

to altered survival outcomes using multivariate analysis.  A highly unexpected result was 

found with Tapasin components such as TAPBPL which in univariate analysis 

demonstrates low expression associated to shorter CSS, yet high expression 

corresponded to greater risk of recurrence.  This presents an interesting contradiction in 

the role of TAPBPL in survival outcomes to be discussed further here.  Additionally, low 

TAPBP expression in univariate and multivariate analysis associated to increased risk of 

recurrence, further complicating the potential role of TAPASIN components in OAC 

survival outcomes. 

 

Follow-up analysis also demonstrated these prognostically significant APM gene 

expression profiles possess associations with altered immune composition including HLA-

A/B/E and CSDE1, suggesting the differing survival outcomes may be mediated by APM 

gene expression driven altered immunity.  Interestingly, CD8+ T cells were observed in 

higher abundance with greater HLA-E expression, yet increased CALR and CSDE1 

corresponded lower CD8+ T cell abundance.  These results could indicate HLA-E restricted 

CD8+ T cells may be present in OAC and play a significant role in anti-tumoral immunity.  

These results were confirmed by protein level analysis of my TMA cohort using IHC and 

digital pathology methodology which provided validated insight into the specific roles of 

each APM gene candidate in determining the potential function of the tumour immune 

microenvironment of OAC.  Additionally, IHC methodology allowed for observation of 

APM protein staining across OAC tissue, finding HLA-ABC stained across the entire tissue, 

HLA-E/Class II stained either stained specifically to cancer cells or diffusely across the 

tissue and TAP1 staining was diffuse across OAC tissue.  Complete loss of APM staining 

was not observed, yet only a small subset of OAC tumours possessed relatively high HLA-
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ABC/E/Class II expression with most patients exhibiting relatively lower protein 

expression of these markers.  Additionally, approximately 20% of patients presented with 

low TAP1 protein expression which corresponded to lower CD3+ T cell abundance, which 

was not observed in mRNA analysis this could potentially relate to TAP1 protein being 

representative of TAPAPSIN dimers (TAP1/2) rather than mRNA of TAP1 alone. 

 

My in vitro investigations determined CSDE1 expression in OAC acts as a negative 

regulator of MHC class I expression demonstrating knockdown of CSDE1 produced greater 

HLA-A/B/C expression within an OAC cell line; furthermore, CSDE1 expression was found 

to be highly localised to OAC cancer cell and Treg cell populations within the tumour 

microenvironment, with cancer cells displaying greater CSDE1 gene expression compared 

to comparative normal healthy cells.  These results provide confirmatory evidence that 

the mechanism by which CSDE1 downregulates MHC class I HLA molecules is conserved 

between melanoma (ss previously published by others) and OAC (321).  Yet my results 

also provide greater granularity on the distribution of CSDE1 expression within the 

individual cell types of OAC tumours and suggests CSDE1 overexpression may yield lower 

tumour immunogenicity to produce effective immune evasion from CD8+ T cell 

responses. 
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7.1 Genomic disruption of APM in OAC and its impact on immune 
response and clinical prognosis. 

In Chapter 3, I sought to elucidate the landscape of genomic defects within APM of OAC 

and ascertain the clinical value of APM genomic defects frequently observed among a 

large multi-omics OAC cohorts.  Here I produced new findings which contributes to the 

current understanding of antigen presentation in OAC.  First of which I explored the 

mutation incidence of APM genes and associated regulators, here I observed a low 

frequency of mutation among my APM gene candidates with the highest incidence of 

mutation occurring in CD1A/C/D (in only 2-3% of the cohort), this presents an interesting 

argument that APM defects are not frequently targets for somatic mutation in OAC.  

However, this finding may be in contradiction to other studies perspectives including a 

study of 551 OAC tumours which revealed B2M as a recurrently mutated driver gene, this 

could potentially relate to either the reduced sample size or potentially sampling bias 

available for my study or the method employed to determine recurrent mutation in the 

551 study, which values the frequency of multi-hit mutations (242). 

Following this analysis, I explored the copy-number incidence among my APM gene 

candidates, finding approximately 7.6% of OAC tumours possessed multiple 

deleted/copied APM genes. 

Exploring the copy-number segments found high genomic copy number segment 

complexity over chromosome 6 proximal to the HLA locus.  The complexity of the OAC 

genome has prior been published and there are reports of VEGFA being frequently 

amplified (636). Interestingly, VEGFA is proximal to the HLA locus on chromosome 6 with 

copy number segments often overlapping VEGFA and APM genes of the HLA-locus 

suggesting APM amplification may be driven by VEGFA amplification (637). Unfortunately, 

the impact of copy-number status on individual APM genes on survival outcomes could 

not be conducted due to difficulties deconvoluting the co-copied/deleted genes. 

 

Within Chapter 3 and 4, I explored the association between APM gene expression and 

altered survival outcomes and immune composition.  Specifically, the expression of 12/18 

MHC class I genes were associated to altered survival, for example, low expression of 

HLA-A was associated to shorter OS, CSS, DFS in univariate survival analysis, but did not 

withstand multivariate testing.  Yet, the low expression of TAPBP resulted in shorter DFS 

in both univariate and multivariate survival analysis; interestingly, low TAPBP has prior 

been associated recurrence in triple-negative breast cancer and non-small cell lung cancer 
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(147, 638). This association potentially relates to poor immune control of tumours, 

evidenced by the downregulation of TAPBP being observed in multiple cancer cell lines 

including small-cell lung carcinoma, pancreatic carcinoma, colon carcinoma, head and 

neck squamous cell carcinoma, renal cell carcinoma cell lines and prostate cancer. This 

associates to low MHC class I cell surface expression, suggesting low TAPBP expression 

could result in poor immune recognition by CD8+ T cells (639). Additionally, restoring 

TAPBP expression in a lung carcinoma model produced greater immune infiltrate (CD4+, 

CD8+, CD11C+) and was associated to improved disease-free survival (640).  These results 

confirmed MHC class I expression in OAC may impact survival outcomes, but required 

further analysis to determine whether these genes may elicit altered survival via 

modulating the immune composition and respective immune response.  To explore this 

question, I used digital cytometry to deconvolute the immune signature of OAC and 

dichotomised patients by prognostically significant MHC class I gene expression.  Using 

this approach, I observed the expression of 8/18 MHC class I genes associated with 

altered immunity, for example, the upper quantile of HLA-E expression possessed greater 

abundance of CD8+ T cell and monocytes compared to the lower quantile.  These results 

suggest that the landscape of MHC class I APM component expression may be a predictor 

of survival outcomes in OAC via modulation of CD8+ T cell responses to presented tumour 

associated antigens.  

 

However, this poses further questions on the abundance of these presented antigens due 

to the expression of MHC class I machinery in OAC which could be explored using 

immunopeptidomics focused on prognostically significant MHC class I gene expression 

presented in this study.  This new knowledge also differentiates the impact of expression 

of specific MHC class I genes between OAC and other cancers, such as CANX expression in 

OAC was not prognostic, but it is prognostic in colorectal carcinomas; these findings may 

potentially by harnessed in future efforts in OAC prognostication and may also be 

explored to explain potential differences in response to immunotherapies between OAC 

and closely related cancers (641).  Specifically, a pan-cancer analysis exploring the 

subtypes of cancer (i.e., adenocarcinomas and squamous cell carcinomas) to highlight 

differences in survival and immune composition associations may potentially explore the 

impact of APM genes in modulating the immune niches of cancer subtypes. 
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I identified 12/20 MHC class II candidate genes were also associated to altered survival 

outcomes, this included HLA-DRA of which lower expression associated to shorter OS, CSS 

and DFS in univariate analysis with shorter OS withstanding multivariate analysis.  These 

results suggest the expression of MHC class II components within the OAC 

microenvironment by professional APCs may alter the immune microenvironment 

composition, by eliciting responses from CD4+ T cells for beneficial anti-tumoral 

immunity.  Additionally, MHC class II expression represents a marker for increase 

infiltration of professional APCs, which have prior been reported as a positive prognostic 

indicator in OAC (642). Additionally, 9/20 MHC class II candidate genes expression 

associated to altered immunity, for instance, the upper quantile of HLA-DPA1 expression 

contained greater abundance of Tregs, CD4+ T cells and macrophages compared to the 

lower quantile.  
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These results demonstrate MHC class II gene expression in OAC is a key regulator of 

immune composition, however, a complication forms with MHC class II expression, as the 

cell origin for expression cannot be determined using digital cytometry methods.  

Specifically, MHC class II expression can form a marker of professional APC such as 

macrophages, which in turn may affect immune composition by secreting recruitment 

factors or directly interacting with CD4+ T cells.  Interestingly, the literature provides 

evidence OAC cells within highly inflammatory microenvironments may induce MHC class 

II expression, yet the impact of induced MHC class II expression on the surface OAC cells 

induced by extreme interferon signalling on the tumour immune microenvironment as 

not yet been elucidated (642). However, assessment of cancer cell specific MHC class II 

expression in lung adenocarcinoma correlated with response to anti-PD1 therapy and 

increased CD4+ T cell infiltration, suggesting this could be an interesting avenue for future 

research (251). 

 

Lastly, I observed 4/5 APM gene expression regulators were associated to altered survival 

outcomes, including CSDE1 of which high expression corresponded to shorter OS and 

corresponded with a significant decrease in CD8+ T cell infiltration.  Overall, these results 

suggest APM gene expression regulators may impact APM expression in OAC cancer cells 

and elicit altered survival by modulating the immune composition, yet currently the 

relationship between APM gene candidate, immune composition and immune checkpoint 

gene expression is unknown. 

 

In Chapter 5, I validated my findings from Chapter 3 & 4 for HLA-ABC, HLA-E, HLA-Class II 

and TAP1 demonstrating low HLA-E, HLA-Class II and high CSDE1 protein expression 

associated to shorter OS in univariate analysis with low HLA-Class II expression associating 

to shorter OS in multivariate analysis.  Furthermore, the protein expression of these APM 

markers demonstrated altered immune composition, for example, low HLA-ABC protein 

expression possessed significantly lower CD3/8+ T cell abundance.  These results validate 

my prior findings and suggests APM machinery expression is a key modulator of survival 

and the tumour immune microenvironment. 

 

These findings expand upon prior published work from others which did not explore as 

large of a APM gene candidate list nor assessed these APM candidates for impact on 
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tumour immune composition, highlighting the landscape of APM gene expression as a key 

factor in survival outcomes potentially enacted by altering the cellular interactions of 

immune recognition within the tumour immune microenvironment.  There may be 

translational value to the findings presented throughout this study, such as assaying APM 

protein expression in OAC biopsies to predict efficacy to immunotherapy as suggested in 

prior studies (643-646).  This translational value for immunotherapy is evidence by 

investigation of melanoma APM expression demonstrating greater MHC class I and II 

expression corresponded to improved responses to checkpoint blockade therapies.  

Unfortunately, the value of APM expression in immunotherapy responses other cancers 

including OAC and gastric cancer have been elusive, yet more recent trials data may be 

assessed in future to address this knowledge gap (647). 

 

There were several limitations within my analyses.  Firstly, in combining the available 

clinical data I found significant lack of detail and missing clinical data leading to a 

restriction in the clinical model used in multivariate survival analysis and the sample size 

due to exclusion of samples lacking basic clinical data, a future prospective study may 

allow for higher quality metadata to include a greater quantity of patients within the 

models.  Higher quality clinical data would be of great value as it would allow for the 

addition of further clinically accepted co-variates for survival outcomes in multivariate 

models such as tumour regression grading and histological tumour grading, which are 

known factors in survival outcomes (648, 649). Additionally, assessing bulk-RNA seq data 

did not allow for partitioning the expression into single cell populations, which could 

mask the impact of APM cancer cell expression, therefore future analysis using single-cell 

RNA-seq data could explore APM expression in OAC cancer cells compared to 

comparative normal healthy cells as demonstrated in a recent study (428).  

 

Whilst some single-cell RNA-seq data was available in my laboratory for this type of 

investigation, due to a small sample size and lack of cases treated with immunotherapy 

(n=1) this detailed analysis could not be conducted.  Using a single-cell approach could 

also explore the distribution of MHC class II expression in OAC cancer cells and assess the 

role of APM expression on other tumour cell populations such as cancer associated 

fibroblasts and the sub-populations known as antigen-presenting fibroblasts could be of 

particular interest (650). Furthermore, this study could not explore the influence of HLA-

allotypes in OAC to determine if patients expressing specific polymorphisms/ allotypes of 
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HLA molecules can possess a significant survival advantage and/or altered immunity.  

HLA-allotypes have been prior reported to affect the immunopeptidome, response to 

immunotherapy and survival outcomes in cancers including OAC (546, 651, 652).  Lastly, 

by using IHC staining protocols, they produced restrictions in which markers which could 

be stained, for example, HLA-ABC was staining using a single antibody, preventing 

separation of impact of individual HLA-A/B/C proteins on survival and relationships with 

immune composition in OAC tumour tissue.  

 

Overall, in addressing the landscape of antigen presentation genomic defects in OAC and 

association to survival outcomes and altered microenvironments, I have uncovered 

evidence to support my initial hypothesis, with the expression of key APM components 

corresponding to altered survival outcomes and immune composition, which in future 

could provide great translational value in the field of cancer immunotherapy. 
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7.2 Potential mechanism of dysregulated APM/ MHC in OAC – 
therapeutic axis? 

Recent work identified gene knockout of CSDE1 produced greater MHC class I 

expression in a melanoma cell model.  The research paper proposed CSDE1 enacts a 

role of a negative regulator of MHC class I expression via stabilisation of TCPTP, which 

functions as a tyrosine kinase able to dephosphorylate STAT1 (321).  The importance 

of phosphorylated STAT1 (pSTAT1), is found within the JAK/STAT signalling pathway 

downstream of interferon receptors; CSDE1 stabilised TCPTP dephosphorylates 

homodimers of pSTAT1 which prevents translocation into the nucleus (321).  pSTAT1 

homodimers are functionally important for the promotion of MHC class I HLA locus as 

they bind to GAS which promotes the expression of IRF-1/9.  IRF-1/9 binds the 

interferon response element to promote the expression of MHC class I HLA locus 

(653). 

 

My initial bioinformatic analysis on CSDE1 observed greater expression of CSDE1 

transcripts corresponded to shorter survival outcomes and altered immunity with 

lower CD8+ T cell abundance.  Further investigation confirmed this relationship at the 

protein level in immunohistochemistry analysis of OAC tissue microarrays; strikingly, 

CSDE1 protein expression correlated with the tumour cell abundance in OAC tissue 

suggesting CSDE1 expression is localised to OAC cancer cells.  To validate this finding 

single cell RNA-seq analysis of OAC and gastric tumours was conducted, finding CSDE1 

gene expression was notably greater in OAC and gastric cancer cells in comparison 

comparative normal cells in the OAC microenvironment.  Furthermore, CSDE1 

expression was observed to be greater in Treg populations in comparison to effector T 

cells (CD4+/CD8+) and other cells of the OAC microenvironment (Figure 68); the 

reason this may occur in OAC is not currently clear.  However, TCPTP plays significant 

roles in inhibiting pathogenic loss of Foxp3 driven by IL-6, thereby the increased 

expression of CSDE1 in Tregs may play a role in sustaining the immunosuppressive 

function of Tregs in OAC, yet this hypothesis requires further investigation (654). 

Exploring the current literature, to date no analysis have confirmed CSDE1 to be 

upregulated in OAC, thus these findings provide potentially the first insight into the 

expression of CSDE1 within the OAC microenvironment. 
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After observing the localisation of CSDE1 to cancer cells in the OAC microenvironment 

my later research efforts focused on measuring the impact of CSDE1 expression on 

MHC class I HLA expression in a cell model and in human tumours profiled by single 

cell RNA-seq. 

 

Firstly, knocking down CSDE1 mRNA expression (siRNA) produced an increase in MHC 

class I HLA expression in a OAC cell model (FLO-1) including HLA-A/B/C at the mRNA 

and protein level with greater STAT1 signalling.  This suggests CSDE1 enacts a negative 

role in STAT1 signalling in OAC as prior identified in melanoma, involving CSDE1 

stabilising TCPTP to elicit dephosphorylation producing downregulation of MHC class I 

HLA expression (321). 

Further evidence to support the prevalence of this mechanism was observed in single 

cell RNA-seq analysis, which identified high CSDE1 and low HLA-A gene expression in 

OAC cancer cells in comparison to normal healthy cells in the OAC microenvironment. 

This indicates CSDE1 plays a negative regulatory role in MHC class I expression in OAC 

cancer cells.  Furthermore, CSDE1 upregulation was noted during dysplasia of 

Barrett’s oesophagus.  This analysis suggests CSDE1 somatic overexpression occurs 

during the pathogenesis of Barrett’s oesophagus dysplasia towards OAC, however, the 

mechanism driving the overexpression from early pre-cancerous lesions through to 

OAC is unknown and requires further investigation. 

 

Interestingly, mouse melanoma models suggest CSDE1 may provide a therapeutic axis 

for the treatment of OAC with recent publications proposing a trap-ambush 

therapeutic method (585).  This details the use of rhinovirus based oncolytic virus 

which produce a selective pressure towards CSDE1C-T (Cytosine to Thymine) point 

mutations forming a proline to serine amino acid change at αα5, as CSDE1 is required 

for rhinovirus infection.  The mutations produced from this selective pressure form 

escape-associated tumour antigens which can be recognised by CD8+ T cells.  By 

providing vaccination specific to these escape-associated tumour antigens, cancer 

cells which mutate CSDE1 to evade the oncolytic virus are thus targeted by primed T 

cells forming a trap-ambush therapeutic method (585). 
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Further investigation within a mouse melanoma model also demonstrated using 

immune checkpoint blockade with the CD200 activation receptor ligand (CD200AR-L) 

peptide was capable of enhancing the response to cancer cells harbouring CSDE1 

escape-associated tumour antigens (584). Subsequently, the analysis I present in my 

investigation of the role of CSDE1 in OAC immunogenicity support this therapeutic 

approach could be effective in the treatment of OAC, due to the specific 

overexpression of CSDE1 in OAC cancer cells in comparison to normal healthy cells of 

the OAC microenvironment.  This would suggest selective pressure formed from an 

engineered Rhinovirus or Rhabdovirus derived oncolytic virus target Type I IFN-

defective cells, such as CSDE1 overexpressing OAC cells, would actively select for 

CSDE1C-T mutation in OAC, which could further be treated by a vaccine specific for 

CSDE1C-T antigens. 

 

Throughout my investigation of the role of CSDE1 in OAC immunogenicity several 

limitations arose which future experimentation should strive to address.  Namely, due 

to time constraints and difficulty with OAC cell cultures I could not perform further 

cell model experiments.  Firstly, the experiment plans included a CSDE1 

overexpression experiment, in which CSDE1 plasmids were to be used to over express 

CSDE1 to demonstrated opposing effects to the knockdown experiment perform, i.e., 

MHC class I HLA expression to fall with increased CSDE1 expression level.  This 

approach is standard in functional genomics to provide an insight into the specific 

function of a gene of interest; in this instance, demonstrating CSDE1 as a negative 

regulator of MHC class I expression would be achieved by overexpressing CSDE1, 

whereas knockdown could demonstrate targeting CSDE1 by a targeted therapy could 

result in increased MHC class I expression. 

Secondly, to provide further confidence in my results, I had planned to conduct a 

series of CSDE1 knockdown/overexpression experiments on different cell backgrounds 

providing further repeats to rule out results due to chance and the biological 

heterogeneity association with this mechanism in OAC. 

 

Additionally, throughout my experiments I did not measure the impact of CSDE1 

expression on the level of TCPTP protein as conducted in prior publication in a 

melanoma model; performing this analysis would provide further confidence in the 
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proposed mechanism of action for CSDE1 driven downregulation of MHC class I HLA 

expression via inhibition of JAK/STAT1 signalling. 

 

Provided additional time, my investigations could have explored the impact of CSDE1 

knockout (e.g., with CRISPR) which could provide further insight than the conducted 

knockdown experiments conducted, due the limitations of siRNA knockdown methods 

such as off-target effects, incomplete knockdowns, and the impact of protein half-life 

(591). 

 

A further limitation of the current analysis is its inability to measure immune 

responses due the expression level of CSDE1 in OAC cancer cells, this potentially could 

be achieved either by in-vitro immune cell – cancer co-culture experiments in which 

CSDE1 knockdown, wildtype and overexpressing OAC cancer cells could be exhibited 

to primed matching T cells; here immune activity could be assessed using flow 

cytometry for T cell activation markers. An alternative approach could use humanised 

mouse xenograft models to explore the impact of CSDE1 expression on immune 

recognition of tumours measuring survival and T cell activation using either 

immunohistochemistry or flow cytometry.  Lastly, prior publication observed the 

impact of CSDE1 overexpression on reduced JAK/STAT1 signalling could be 

recapitulated under high IFN-γ stimulation elevated in gastrointestinal cancers (321, 

655).  As the OAC microenvironment is thought to be highly inflammatory this analysis 

should be conducted within OAC cell models, as these results could provide further 

insight into the impact of CSDE1 expression in OAC tumours with highly inflammatory 

microenvironments (656). 
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7.3 Conclusion 

In conclusion, this study has employed a bioinformatic data mining approach to elucidate 

the landscape of APM genomic defects, identifying the significance of APM gene/protein 

expression in producing altered survival and shaping the immune composition of the OAC 

tumour immune microenvironment.  Furthermore, using a cell modelling and single cell 

RNA-seq approach, this project has demonstrated CSDE1 may be a significantly 

overexpressed gene in OAC and corresponds to reduced expression of MHC class I genes.  

Thereby, these findings propose the immune composition of OAC is determined by APM 

gene expression in OAC, CSDE1 is somatically overexpressed in OAC and may form an 

actionable target for a trap-ambush therapeutic approach. 

7.4 Future directions 

The further experimental work required to address the findings from the current project 

have been discussed at length in the individual chapter and general discussion sections.  

However, in addition to these possibilities, the results presented in this thesis open many 

avenues for further research in other areas including: 

 

• Analysis of the effect of siRNA knockdown and overexpression of CSDE1 in 

multiple OAC cell lines.  Future analysis should repeat the experiment presented in 

Chapter 6 and explore the impact of CSDE1 overexpression.  In addition to this 

investigation, providing insight into the role of CSDE1 expression on the function 

of TCPTP to elicit perturbed MHC class I HLA expression should be conducted. 

 

• Interestingly, evidence has arisen demonstrating OAC cells may express MHC class 

II molecules in the presence of high IFN-γ stimulation with this phenomenon being 

induced in the OE33 cell line (657).  Yet no current analysis has attempted to 

observe the distribution of MHC class II expression in OAC cancer cells from 

tumours.  This could be achieved using scRNA-seq approaches to determine the 

expression level of MHC class II genes within OAC cancer cells in low 

comparatively low inflammatory microenvironments compared to high 

inflammatory microenvironments. 
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• Determining the impact of APM gene expression and APM gene expression 

regulators in response to immunotherapy.  A very recent publication employed 

the use of scRNA-seq in the investigation of a trial exploring response to 

immunotherapy in OAC (LUD2015-005; https://ega-

archive.org/datasets/EGAD00001009401), with ERAP2, HLA-DQA2, HLA-DOA, HLA-

DMB, HLA-DPB1 and HLA-DRA being overexpressed in patients receiving 

checkpoint blockade therapy (658). Future investigation could access this data to 

explore the potential of prognostically significant APM gene expression, APM gene 

regulator expression and altered composition of the tumour immune 

microenvironment in predicting immunotherapy response. 

 

• Determining the mechanism of CSDE1 upregulation in OAC cancer cells.  From 

prior publication, the upregulation of CSDE1 gene expression was tied to the role 

of SMYD3 in mediating H3K4 trimethylation of CSDE1 locus, however, this 

mechanism was only explored in melanoma (321).  Therefore, replicating the 

methods observed within the publication could help determine whether the same 

mechanism to upregulate CSDE1 expression is present in OAC, or an alternative 

mechanism may be implicated (321). 

 

• The effect of CSDE1 on the tumour immune microenvironment has yet to be fully 

elucidated.  Specifically, observed differences in immune composition due to 

CSDE1 gene expression in bulk-RNA sequencing analysis was noted in my 

investigation.  Yet, the impact of high CSDE1 expression within OAC cancer cells on 

immune composition has not been explored by the analysis presented here.  

Therefore, further investigation focused on determining differences in immune 

composition due to OAC cancer cell expression of CSDE1 using a combined scRNA-

seq approach and multiplex immunohistochemistry may provide further insight 

into this associated impact. 

 

• Within Chapter 6, high CSDE1 expression was observed both OAC/Gastric cancer 

cells and Tregs.  Observation of the literature did not identify publications 

elucidating the role of Treg specific expression CSDE1.  Therefore, future analysis 

could explore further data analysis to provide further insight into the distribution 

https://ega-archive.org/datasets/EGAD00001009401
https://ega-archive.org/datasets/EGAD00001009401
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of CSDE1 expression in T cell populations and may move forward to perform 

functional genomic investigation of the role of CSDE1 in Treg populations. 

 

• Lastly, the role of RNA-binding proteins in immunogenicity of oesophageal 

adenocarcinomas and precancerous conditions such as Barrett’s oesophagus is 

currently unknown.  Publications have demonstrated RNA-binding proteins such 

as Insulin-like growth factor 2 mRNA-binding proteins can play a negative 

regulation role in IFNβ and IFNγ-stimulated genes within mouse melanoma 

models, while CSDE1 has demonstrated a crucial role in producing a senescence-

associated secretory cell phenotype which may alter immunosurveillance via 

secreted chemo/cytokines in the melanoma tumour immune microenvironment 

(659, 660). This propagates further research questions on the role of RNA-binding 

proteins in the regulation of tumour cell immunogenicity and immunosurveillance 

within the OAC microenvironment which could be explored using data mining 

analysis and cell modelling. 
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Appendix A APM H scores and Immune composition 

heatmap 

Supplementary Figure 1: Z-scored heatmap of APM H scores and immune cell density (n 
= 78), clustered using Canberra distance with Ward.D2 linkage, four distinct 
clusters of immune populations. 
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Western blots of CSDE1 knockdown experiment

Supplementary Figure 2A: Full image of Western blot of CSDE1, expression following 
CSDE1 knockdown in FLO-1 cells.  Left to right - NC: Non-targeting control, 
KD: Knockdown CSDE1 60 pmol siRNA.  

Supplementary Figure 2B: Full image of Western blot of HLA-ABC, expression following 
CSDE1 knockdown in FLO-1 cells.  Left to right - NC: Non-targeting control, 
KD: Knockdown CSDE1 60 pmol siRNA.  
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Supplementary Figure 2C: Full image of Western blot of pSTAT1, expression following 
CSDE1 knockdown in FLO-1 cells.  Left to right - NC: Non-targeting control, 
KD: Knockdown CSDE1 60 pmol siRNA.  

Supplementary Figure 2D: Full image of Western blot of STAT1, expression following 
CSDE1 knockdown in FLO-1 cells.  Left to right - NC: Non-targeting control, 
KD: Knockdown CSDE1 60 pmol siRNA.  
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Supplementary Figure 2E: Full image of Western blot of GAPDH, expression following 
CSDE1 knockdown in FLO-1 cells.  Left to right - NC: Non-targeting control, 
KD: Knockdown CSDE1 60 pmol siRNA.  
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Appendix B Percentage difference qPCR of CSDE1 

knockdown experiment 
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Supplementary Figure 3: Percentage difference of mRNA quantification of CSDE1, HLA-
A, HLA-B and HLA-C expression following CSDE1 knockdown in FLO-1 cells 
comparing to wildtype.  A: CSDE1 gene expression following CSDE1 
knockdown.  B: HLA-A gene expression following CSDE1 knockdown.  C: HLA-B 
gene expression following CSDE1 knockdown.  D: HLA-C gene expression 
following CSDE1 knockdown.  NC: Non-targeting control.  Error bar: Standard 
deviation.  
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Appendix C CSDE1 expression in OAC cancer cells 

compared to healthy comparative cells. 

Supplementary Figure 4: Violin plot of CSDE1 mRNA expression in OAC cancer cells with 
comparitive normal healthy gastric cardia cells. Red line represents median 
ratio.
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Glossary of Terms 

Term Definition 

Adenocarcinoma Malignant tumour arising from glandular 

epithelial structures. 

Antigen presentation machinery Refers to a system of interacting proteins 

which function to process, package, and 

present peptide antigens on the cell surface 

for immune recognition. 

Antigen presenting cells A group of immune cells that engulf, process 
and present exogenous peptides on the cell 
surface via the MHC class II system to activate 
immune responses towards non-self/healthy 
antigens. 

Barrett’s Oesophagus A premalignant condition arising from gastro-

oesophageal reflux disease which involves 

metaplasia of the distal oesophagus resulting 

in replacement of the squamous epithelium to 

a columnar epithelium structure with goblet 

cells. 

Complementary DNA (cDNA) DNA synthesised from single stranded RNA 

template catalysed by the reverse 

transcriptase enzyme. 

Cytotoxic T cells A subset of thymic derived lymphocytes that 

possess the CD8 T cell receptor and can 

specifically target cells expressing non-

self/healthy antigens on the cell surface for 

immune destruction. 

Differential gene expression analysis Statistical analysis used to quantify 

normalised gene expression fold-changes 

between a control and experimental group. 

Gastro-oesophageal reflux disease (GORD) A condition which involves the reflux of 

stomach acid into the gastro-oesophageal 

junction, causing irritation to the oesophagus 

squamous cell lining. 

Human Leukocyte Antigen (HLA) A group of cell surface proteins involved in 

presenting antigens to proximal T 

lymphocytes for immune recognition. 
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Immune checkpoint inhibitors An immunotherapeutic agent which blocks 

the action of immune inhibitory mechanisms 

often upregulated to evade immune 

destruction of cancer cells. 

Major histocompatibility Complex class I  An endogenous system presents in almost all 

cells presenting antigens derived from 

cytosolic peptides to CD8+ T cells on cell 

surface HLA molecules. 

Major histocompatibility Complex class II  An exogenous system present professional 

antigen presenting cells which presents 

antigens engulfed by professional antigen 

presenting cells to CD4+ T cells on cell surface 

HLA molecules. 

Neoadjuvant therapy A treatment method involving the application 

of chemo/chemoradiotherapy prior surgery. 

Neoantigen A novel peptide produced in cancer cells due 

to mutation of DNA which may be presented 

on cell surface MHC HLA molecules. 

RNA-binding proteins A varied class of proteins that interact with 

RNA to influence the regulation of gene 

expression, RNA processing, RNA 

transportation, localisation of RNA and RNA 

stability. 

Tumour immune microenvironment Describes the complex dynamic interactions 

of cellular and acellular factors which dictate 

the immune response or suppression in 

tumours. 

T regulatory cells (Tregs) A subpopulation of T helper cells expressing 

CD4 and FOXP3 proteins that typically 

function to suppress immune functions to 

enforce self-tolerance. 
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