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Abstract

University of Southampton
Faculty of Medicine, School of Cancer Sciences
Doctor of Philosophy
Investigating the Tumour Immune Microenvironment as a Determinant of Antigen
Presentation and Immune Response in Oesophageal Cancer
by William Boyce Pratt

Oesophageal cancer (OC), the 12" most common cancer (UK), presents with high clinical need
and poor survival. OC is histologically divided into adenocarcinoma (OAC) and squamous cell
carcinoma. Antigen presentation machinery (APM) is crucial for eliciting anti-tumoral
immune responses by cancer-antigen recognition. However, the genomic landscape of APM
genes and dysregulation of expression in OAC is unknown.

A bioinformatic approach has been employed to elucidate the landscape of genomic defects
in APM genes using large multi-omics datasets (TCGA and OCCAMS). Digital cytometry
methods were applied to determine the impact of APM expression on immune composition
within the tumour immune microenvironment (TiME). Additionally, immunohistochemistry
(IHC) of a large tissue microarray series for candidate APM genes and immune cell markers
(HLA-A/B/C/E/Class 2, CD3, CD4, CD8, Foxp3) was performed with digital histopathology
analysis to validate findings. Lastly, cell modelling and single-cell RNA sequencing were
implemented to determine the role of CSDE1 in regulating the expression of MHC class |
genes in OAC cell lines.

Genomic landscape analysis found APM mutation incidence to be infrequent and copy-
number segments complex over the HLA locus of chromosome 6; these results did not inform
survival analysis. However, the expression of APM genes showed a significant impact on
overall survival (0S), with the expression of 12 out of 18 MHC class I, 12/20 MHC class Il and
4/7 APM regulators were associated to altered OS. Following this analysis, the impact of APM
gene expression on the TIME identified 10/20 MHC class I, 7/20 MHC class Il and 3/7 APM
gene expression regulators associated with altered immune composition. Using these
approaches together, identified 17/45 assessed APM genes possessed both an association
with survival outcomes and altered immune composition, including CSDE1, HLA-E, ERAP2,
CD74, HLA-DRB1 and HLA-DRB5, among others.

IHC demonstrated that the low expression of HLA-E and HLA class Il and the high expression
of TAP1 and CSDE1 corresponded to shorter OS. T cell density alone did not associate with
OS. Yet the high expression of HLA-A/B/C combined with the low abundance of CD8+ T cells
resulted in shorter OS compared to high HLA-A/B/C protein expression and greater CD8+ T
cell density. CD3/8+ T-cell density correlated with greater HLA-ABC and HLA class 2 protein
expression and a correspondingly increased T-cell infiltrate.

Knockdown of CSDE1 expression produced greater JAK/STAT1 signalling and increased
expression of HLA-A/B/C transcripts, suggesting a significant negative regulator role in the
expression of MHC class | HLAs. CSDE1 was upregulated in single cancer cells compared to
healthy comparative cells, with evidence suggesting overexpression may be acquired in
premalignancy over increasing dysplasia (i.e., Barrett’s oesophagus).

This work has translational value for OAC patients. Firstly, APM expression presents a
potential marker of altered survival and immune composition, which has biomarker utility for
immunotherapy implementation. Secondly, CSDE1 may form an actionable pathway to
improve immune responses as a potential future target for vaccine therapies.
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Definitions and Abbreviations

APM .t Antigen presentation machinery

BE . et e e e Barrett’s oesophagus

BM .ot e Body Mass Index

CAR-T et et Chimeric antigen receptor therapy
CIN e Chromosomal instability

CTLS ettt e et Cytotoxic T lymphocytes

DACO.... et Data Access Compliance Office
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Chapter 1 General Introduction

1.1 Study rationale

Oesophageal cancer (OC) is the seventh most common cancer, globally attributed to
572,034 new cases being reported in 2018 and 508,585 deaths. In 2014-2016, 9,100 new
cases of OC were reported in the UK, placing OC as the 14th most common cancer type
nationally (1, 2). OC is split into two histological subtypes: adenocarcinomas (OAC) and
squamous cell carcinomas (ESCC). Although these diseases share the same primary site,
they possess several distinct risk factors, incidence trends, histology, and genomic
characteristics (3).

OAC refers to cancers originating from mucus-secreting cells in the lower third of the
oesophagus. OAC is positively associated with Barrett’s oesophagus (a precursor to OAC)
and is characterised by chromosomal instability (CIN) (Figure 1). Other risk factors of
OAC include obesity, smoking, age, use of non-steroidal anti-inflammatory drugs
(NSAIDs) and proton pump inhibitors (PPls), and race. In contrast, OSCC refers to cancer
of squamous epithelia in the upper and middle third of the oesophagus. OSCC is
characterised with amplification of CCND1, TP63/SOX2 and deletion of KDMG6A (Figure 1).
The significant risk factors of OSCC include smoking and alcohol intake; although smoking
is a risk factor for OAC and OSCC, the associated risk in OSCC is far greater (OR of 2.77 vs
5.63 at 60+ years packed smoking; OAC: OSCC) (4).

Antigen presentation is key in eliciting immune responses towards cancer, yet cancers
often somatically aberrate the components of this pathway are to reduce or prevent
immune response towards tumours. The landscape and impact of aberrations in antigen
presentation machinery (APM) are well-detailed in other cancers such as breast, lung,
colorectal and even OSCC. However, research into the impact of APM aberrations in OAC
is severely lacking (5-7). It is important to address this knowledge gap in OAC as it will
significantly impact current and future efforts in treating OAC with immunotherapeutics,
including immune checkpoint blockade therapy, CAR-T cell therapy and adoptive T cell
therapy (8).

To address this, we will focus on datamining publicly available datasets of OAC to
discover and landscape APM defects, determining their clinical impact on survival and
the immune cell subpopulations in the tumour immune microenvironment (TIME).

Furthermore, we shall validate these findings in situ using immunohistochemistry (IHC)
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methodology, whilst exploring the spatial expression of APM proteins and immune cell
spatial distributions. The implementation of single-cell RNA-seq (scRNA-seq)
methodology will allow us to examine how APM gene candidates are expressed in
different cell types. Through this, we can investigate the role of antigen presentation in
editing the immune microenvironment and immune suppression.

Overall, we expect several APM components that have been reported to impact TIME
and overall survival to possess a similar impact on our OAC cohorts. We are particularly
interested in MHC | machinery, such as HLA-A, which are known instigators of CD8+

cytotoxic T lymphocyte anti-tumoral activity (9).
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* KDMG6A deletion
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Figure 1 Diagram representing the anatomical location of gastroesophageal carcinoma
subtypes from the proximal oesophagus to the distal stomach. Colour bandwidth
represents the proportion of each subtype within the anatomic region. Notable subtypes
features are stated in each subtype heading (adapted from The Cancer Genome Atlas

Research Network) (3).
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1.2 Incidence of Oesophageal cancer

OAC occurs predominantly in males, in the US, the male: female incidence ratio (9:1)
shows a significant trend towards males (1, 10, 11). Similarly, in the UK, age standardised
(AS) rates displays males as the predominant sex in OAC, scoring an AS rate of 22.6
compared to females scoring 8.3 in 2016 (1). Male: female incidence ratios of OAC differ
geographically, with the highest ratios found in North America (7.6:1), Oceania (6.2:1),
Europe (6:1); lowest ratios located to Asia (4.4:1), Latin America/Caribbean (3.9:1) and
Africa (1:1) (12). OAC incidence also differs by geographical location. The highest rates
(OAC cases per 100,000) are found in Northern/Western Europe (3.4), North America
(3.5) Oceania (3.1) (12)(13). The lowest rates of OAC are located to South/Central
America/Caribbean (1.2), North/West Africa (0.7), Sub-Saharan Africa (0.4), Eastern
Europe (0.8) and Asia (0.6) (12)(13). Notably, the UK has the highest incidence of OAC
globally. This may be due to the obesity epidemic and other risk factors such as GORD

and Barrett's oesophagus. The incidence rates are 7.2 for males and 2.5 for females.

1.3 Risk factors of Oesophageal cancer

13.1 Sex and age

As noted, prior sex is a prominent risk factor for OAC, occurring primarily in men, with
high male to female ratios for OAC are exhibited in Northern America (7.6:1), Oceania
(6.2:1), and Europe (6.0:1), with lower ratios in Asia (4.4:1), Latin America and the
Caribbean (3.9:1), and Africa (1:1); these ratios have remained steady, but recent
research shows a steady increase in sex ratios in the UK and Netherlands (13, 14).

The risk of OAC increases with age; in the UK, the highest OAC incidence age group is 80+
years old (84.1 OAC cases per 100,000 and the lowest incidence age group is <49 years
old (up to 3.1 OAC cases per 100,000) (15).

Interestingly, all age groups (80+, 65-79, 50-69 and 40-49 years old) display an increase in
incidence since 1970; for instance, the incidence of OAC in 80+-year-old men increased
from 23.0 to 84.1 per 100,000, most likely relating to the obesity epidemic and GORD

incidence (15). Similarly, OSCC incidence increases with age with 24.9 OAC cases per
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100,000 in 80+-year-olds (UK); contrasting to OAC, the incidence of OSCC has decreased
since 1970 from 42.3 to 25.1 for 80 + year old men (15).

The difference in incidence between men and women in the UK and elsewhere is likely
because of compounded risk factor differences between the sexes, UK examples include;
obesity where 67% of men and 62% of women were classed as overweight; smoking
statistics from 2015 indicate 19.3% of men and 15.3% of women smoked cigarettes,
however, the difference between the incidence of smoking has been steadily falling since

1945 (16-18).

1.3.2 Gastro-oesophageal reflux disease (GORD) and Barrett’s oesophagus

One of the primary associated risk factors for OAC is Gastro-oesophageal reflux disease.
GORD is a globally prevalent disorder characterised by the chronic reflux of stomach acid
into the lower oesophagus and is significantly more prevalent in western populations (18
to 28%) compared to eastern populations (2 to 8%), characterised as the most significant
risk factor for OAC incidence (19).

Barrett’s oesophagus (BE) is a histological and genetic precursor to OAC, referring to the
formation of a metaplastic columnar epithelium with a crypt-like structure in the
oesophagus (resembling the intestinal epithelia) because of damage of the squamous
epithelium. Often, the damage caused to the squamous epithelium is caused by GORD
and stomach acid reflux; in response, specialised columnar cells form the oesophageal
epithelia and secrete mucins to protect the oesophagus from the refluxed acid (Figure 2).
The exact pathogenesis of BE was elusive, with two hypotheses arising. Firstly, in trans-
differentiation, a squamous epithelial cell first dedifferentiates into a transitional cell that
then differentiates into a columnar cell, this process may occur under a reflux-induced
inflammatory microenvironment, upregulating CDX2, pSMAD1, pSMAD5 and/or pPSMADS
expression (20-22). Alternatively, trans-commitment of progenitor cells may explain the
pathogenesis of BE; in this mechanism, pluripotent stem cells within oesophageal
submucosal glands undergo trans-commitment to form a columnar epithelium (23, 24). A
recent study has suggested a two-phase model for the development of BE with the first
phase possessing positive selection for homozygous mutation in CDKN2A and TP53.
These lineages will spread disproportionally across the segment, while mutations in

ARID1A and SMARCA4 may be positively selected for excess of functional mutations, but
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do not see large-scale spreading across the segment (25, 26). The second phase shows
stabilisation of the lineages in both likely cancer outcome and non-cancer outcome
lineages, with the cancer lineages possessing one or more risky lineages. These are
typically marked by TP53 mutations which undergo chromosomal instability, copy
number variation and structural alterations, and genome doubling with local expansion
of the unstable clones attributed to colonization during wound repair in the epithelial
layer (25, 26). A striking study in 2021 aimed to molecularly characterize all putative cell
origins for BE and explain whether all OAC subtypes originate from BE; within this study it
was determined BE originates from gastric cardia via c-MYC and HNF4A-driven
transcriptional programs with OAC most likely arising from undifferentiated Barrett’s

oesophagus cell types (27).

Barrett's Oesophageal
GORD :
Oesophagus adenocarcinoma
—_— —_—
Metaplastic Dysplasia Adenocarcinoma

Normal Oesophagus

Columnar epithelium -

Figure 2 Depiction of GORD-OAC cancer pathogenesis. Left: Gastric acid refluxes into
the oesophagus, damaging the normal squamous epithelium; Middle: Adaptive response

leads to the formation of a metaplastic columnar epithelium (BE), secreting mucus to
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protect the oesophagus; Right: Over a process of dysplasia, columnar epithelial cells gain
cancer driver mutations (TP53, CDKN2A, SMAD4, ARID1A and PIK3CA), forming an

adenocarcinoma. Created with Biorender.com.

133 Smoking and alcohol consumption

A strong association between cigarette smoking and OAC (OR of 1.96); the length of
smoking cessation is associated with decreased risk (<10 years of smoking cessation: OR
=0.82 and 210 years of smoking cessation: OR = 0.71) (28). In a recent study, ESCC also
displayed an association with smoking, though to a lesser degree than OAC with an OR of
1.49 for current smokers and 1.04 for ex-smokers (P = <0.001) (29).

However, when adjusting this data for alcohol consumption, the difference in risk
diminishes (OR of 1.12 for current smokers and 0.83 for ex-smokers; P = 0.191) (29).
following up this finding alcohol consumption was investigated; OR rates adjusted for
smoking highlighted alcohol consumption as a critical risk factor, with current drinkers
being at the highest risk (OR of 2.24) and ex-drinkers possessing lesser risk (OR of 1.51)
(29).

134 Obesity

Rising incidence of OAC has been correlated to the obesity epidemic faced by western
nations, with studies identifying this trend (30-33). Interestingly, the abdominal
diameter has been more explicitly correlated increase in OAC risk than BMI, with studies
associating abdominal obesity with OAC risk (31, 32). Obesity may be linked to OAC via
the incidence of BE with several studies identifying this link; obesity has showed a
significant and independent association to oesophageal inflammation and BE; it is
important to note that these studies focus on specifically abdominal obesity rather than

BMI as these show differing risk of BE and OAC (34-36).

1.35 Medication

Several studies have implicated the use of specific medications in OAC risk. This includes
proton pump inhibitors (PPIs) and Lower oesophageal sphincter (LES)-relaxing
medications. One study identified around half of the patients with OAC also take PPIs;

despite decreasing the acidity of refluxed stomach acid further investigation showed that

22



the reflux of bile salts alone may contribute Barrett’s oesophagus (described later) and
OAC transformation (37, 38). Whereas LES-relaxing medication increased the patient-
recorded incidence of reflux symptoms and increasing the risk of developing OAC (39).
Adjusting the data for reflux symptoms, diminished the positive relationship between
LES-relaxing medication and OAC, suggesting the relationship between LES-relaxing
medication and OAC is mostly because of the risk of developing gastro-oesophageal

reflux symptoms (38, 39).

1.3.6 Genomic associations

Despite the sparse number of publications in OAC on APM defects, a few papers describe
the impact of HLA genes on the risk of developing BE and subsequently OAC; the findings
of these papers are detailed below.

One study identified loss of HLA-A/B/C expression in BE epithelia compared to normal
epithelia by immunostaining (BE: 50% -positive, Normal: 68.3% -positive); whereas HLA-
DR staining was substantially higher in BE than normal tissue (BE: 51.6% -positive,
Normal: 11.7 % -positive); Expression of HLA-DP/DQ/DR was markedly upregulated in BE
compared to normal tissue BE: 73.4% -positive, Normal: 18.3% -positive) (39). Further
analysis discovered a total loss of HLA-A/B/C with a gain of HLA-DP/DQ/DR was clear in
37.5% of BE patients but none in the control patients; this MHC | loss/MHC Il acquire
phenotype was also positively associated with dysplasia (39).

Remarkably, polymorphisms within the MHC locus have been associated with BE risk,
predisposition, and risk of OAC. One study identified variants in two loci associated to BE
risk. Firstly, chromosome 6p21, rs9257809 within the MHC locus (OR 1.21) and
chromosome 16q24, rs9936833 closest to the protein-coding gene is FOXF1 (OR 1.14),
implicated in oesophageal development and structure; similar findings were identified in
two external studies which associated these variants BE, reflux-symptoms and OAC risk

(40-42).
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1.4 Medical intervention

14.1 Diagnosis

Most patients are diagnosed with OC after reporting symptoms of progressive dysphagia,
weight loss and anaemia (43). This is typically followed up with upper gastrointestinal
endoscopy with biopsies, examining oesophagus to identify obstructions in the lumen,
the wall of the oesophagus and outside the oesophagus compressing the lumen (43).
Unfortunately, OC is often diagnosed at a late-stage, because of the oesophageal
anatomy allowing for symptomless development (44). One study shows longer hospital
delays result in poorer patient short-term outcomes (higher overall morbidity and
mortality rates); however, long-term outcomes did not change (45). In the US, upon
diagnosis only approximately 25% of patients present with localised disease, limiting
available treatment options; this is reflected in the UK as 60-70% of patients present with
late-stage disease, and are deemed not suitable for treatment with curative intent (46-
48). However, the impact of the late diagnosis on survival is disputed; one study found
time to diagnosis (TTD) was associated to patient malnutrition but did not affect

resectability and both short- and long-term outcomes (44).

1.4.2 Staging and grading

OAC tumours are staged in two main systems in the UK, The TNM (T, primary tumour; N,
regional lymph node involvement; M, distant metastatic spread) classification system
(8th edition) and the number system (49). The TNM system allows staging to be
represented using distinct categories, displayed in Figure 3 and Table 1; the stratification
of tumours allows for stratification of patient survival, by patient survival decreasing with
increasing TNM stage group (numbers system; Table 2). T is used to classify the tumours
local invasion, which, in combination with metastases and the presence of cancer cell in
lymph nodes classifications depicts the tumours overall progression (50). notably, the
edition version is vital as continual improvements are made regularly to improve the
system. For instance, the transition from the 6th edition to the 7th edition resulted in
better prognostic stratification of overall survival in oesophageal cancers and was
especially performed greater in OAC (51). Secondly, histological grading is performed by

a pathologist to describe the differentiation of the cancer cells within a tumour section
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(Table 2); in oesophageal cancer histological grade is important as increasing histological
grade is associated with decreased survival for early-stage cancers and used to
distinguish stage | and stage IIA cancers by G1/G2 (well differentiated and moderately
differentiated; stage I) from G3 (poorly differentiated; stage 11A) (Table 1 & 2) (50).

Tis (HGD)

Epithelium
Basement membrane
Lamina propria
Muscularis mucosae
Submucosa

Muscularis
propria

Aorta

CCF
©2016

Pleura

Figure 3 TMN staging 8th edition. Representation of different TNM stages of OAC in
relation to human anatomy. Tis, high-grade dysplasia (HGD); T1, cancer invades lamina
propria, muscularis mucosae, or submucosa; T2, cancer invades muscularis propria; T3,
cancer invades adventitia; T4a, resectable cancer invading adjacent structures such as
pleura, pericardium, or diaphragm; and T4b, unresectable cancer invading other adjacent
structures, such as the aorta, vertebral body, or trachea. The N classifications are as
follows: NO, no regional lymph node metastasis; N1, regional lymph node metastases
involving one to two nodes; N2, regional lymph node metastases involving three to six
nodes; and N3, regional lymph node metastases involving seven or more nodes. M is
classified as follows: MO, no distant metastasis; and M1, distant metastasis. Adapted

from Rice et al., 2017 (Permission obtained) (52).
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Table 1 Table of TMN stage categories with descriptions specific to OAC. Adapted from

Rice et al., 2017 (Permission obtained) 48.

T CATEGORY N CATEGORY M CATEGORY
TO No evidence of primary tumour N1 Metastasis in 1-2 M1  Distant
regional lymph nodes metastasis
Tis High-grade dysplasia, defined as malignant N2  Metastasis in 3-6
cells confined by the basement membrane regional lymph nodes
T1 Tumour invades the lamina propria, muscularis | N3  Metastasis in =7 regional
mucosae, or submucosa lymph nodes
Tumour invades the lamina propria or NX  Regional lymph nodes
Tia muscularis mucosae cannot be assessed
Tumour invades the submucosa
Tib
T2 Tumour invades the muscularis propria
T3 Tumour invades the adventitia
T4 Tumour invades adjacent structures
Tumour invades the pleura, pericardium,
T4a azygos vein, diaphragm, or peritoneum
Tumour invades other adjacent structures,
Tab such as the aorta, vertebral body, or trachea

Table 2 Histological grades for tumour sections (52).

GRADE DEFINITION

GX Grade cannot be assessed stage grouping as G1

G1 Well-differentiated

G2 Moderately differentiated

G3 Poorly differentiated

G4 Undifferentiated stage grouping as G3 squamous

143 Treatment — the current standard of care in the UK

After staging, a management plan is devised, tailored to the patient’s stage; co-

morbidities, WHO performance status, considering the patient’s and family’s wishes (52).

In the UK, neo-adjuvant therapy followed by surgery represents the standard of care in

the UK (52). Patients that receive treatment with curative intent for OAC are advocated

to undergo preoperative chemotherapy or radiation therapy followed by surgery (53).

Several UK-based trials have promoted the preoperative use of cisplatin, 5-fluorouracil

and epirubicin in OC (Table 3), producing a significant survival advantage over surgery

alone (54, 55).
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Table 3 Preoperative chemotherapy drugs used in the UK for the treatment of OAC and

ESCC.

DRUG CHEMICAL NAME MECHANISM OF ACTION

NAME

Cisplatin cis-diamminedichloroplatinum (II) Binds purine residues and causes
deoxyribonucleic acid (DNA) damage in cancer
cells; oxidative stress (55, 56).

5-fluorouracil | fluoropyrimidine 5-fluorouracil Metabolites of 5-FU inhibit nucleotide synthetic

(5-FU) enzyme thymidylate synthase, and miss-

incorporates fluoronucleotides into RNA and
DNA, causing DNA and RNA damage (56).

Epirubicin Epirubicin hydrochloride Interferes with DNA, RNA and protein synthesis
via the intercalation of DNA, inhibition of
topoisomerase Il activity, generation of oxygen
and drug-free radicals (57).

Unfortunately, only 37.6% of patients are deemed suitable for treatment with curative
intent. The low eligibility is because of the majority of patients presenting with late-stage
disease, the US SEER (Surveillance, Epidemiology, and End results program)
demonstrates this phenomenon with approximately 40% of patients are diagnosed with
distant metastatic disease, 32% with regional disease, and only 18% of individual have

localised disease at the point of diagnosis (58-60).
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1.5 Histology

The histology of OAC typically displays the columnar epithelium compared to the
squashed squamous epithelium found in healthy oesophageal tissue; while normal tissue
shows a well-differentiated structure, OAC shows mass disruptions to structures such as
the epithelium and glandular structures (Figure 4) (61-63). Notably, there are several
three histologic types of columnar metaplasia which may cause adenocarcinoma
including cardiac-type columnar mucosa composed of only mucosal cells; fundic-type
columnar mucosa composed of mucosal cells, acid secreting parietal cells and chief cells;

and intestinal-type columnar mucosa characterised by the presence of goblet cells (66).

Figure 4 Histology of the human oesophagus. (A) Histology of normal squamous
epithelium of the oesophagus, displaying a squashed epithelium towards the lumen with
the lamina propria beneath divided by the basement membrane (65). (B) Histology of
OAC, characteristically exhibits a columnar epithelium with malformed glands beneath,
large irregular hyperchromatic nuclei may be found invading the submucosa (64).

Permissions obtained.
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1.6 OAC evolution, disease progression and metastasis

Evolution: As stated earlier, OAC is highly associated with GORD and Barrett’s
oesophagus. Occurring through a defined pathogenic pathway (Figure 2). However, the
exact mechanism behind this transformation is still unknown. Studies have suggested
that transdifferentiation may be a crucial part of the pathogenesis of Barrett’s
oesophagus; this process involves fully differentiated squamous epithelium cells
changing into differentiated columnar cells, with or without mitotic division (65, 66).
However, this mechanism is highly criticised as lineage-tracing studies have yielded no
transdifferentiation events which result in columnar cells (66). Other studies suggest
transcommitment; a process in which immature progenitor cells are reprogrammed to
alter their patterns of cellular differentiation may allow for the squamous-columnar
epithelial transition. The exact cell of origin for this process was elusive, yet recent
literature suggests BE originating from gastric cardia via c-MYC and HNF4A-driven
transcriptional programs with OAC arising from undifferentiated Barrett’s oesophagus
cell types (67, 68). Notably, somatically acquired genomic copy number alterations
increase as OAC develops with the median percentage of the genome with a diploid copy
number being 99.7% in Barrett’s oesophagus compared to the OAC median diploid copy
number at 62.4%. The most frequently affected candidate cancer genes among the
37.6% included GATA4, KLF5, MYB, PRKCI, CCND1, FGF3, FGF4, FGF19 and VEGFA (69).
Despite this notable change in copy number, the DNA mutational signatures overlap
between Barrett’s oesophagus, early and late adenocarcinoma. Only a small amount of
difference between early and late adenocarcinoma was noted, with 6.9% of the detected
mutations being OAC-unique. This may indicate that the progression from BE to OAC
driven by common mutagens and copy-number aberration rather than mutation. The
overlap between BE and OAC suggests they are genomically similar to each other, and it
has been further noted that 25% of OAC diagnosis occur within a year of BE diagnosis.
This has previously been interpreted to be OAC present but missed by endoscopy,
however, this may also be evidence of rapid progression of BE to OAC the pre-existing

genomically unstable lineages (69).

During the development of OAC, tumour cells begin to preferentially express PD-L2 over
PD-L1, potentially because of IL4/I1L13 cytokines from CD4+ Th2 cells within the

inflammatory environment produced during cancer development; also, preferential
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expression of PD-L1 in tumour infiltrating inflammatory cells (TIICs) over tumour cells was
detected in OAC, compared to the ESCC with the expression of PD-L1 in both tumour
cells and TIICs (70). Preferential expression of PD-L1 and PD-L2 is a recurrent immune
evasion mechanism found in OAC and other cancers. Specifically, Small-cell lung cancer
(71), squamous cell carcinoma of the oral cavity (72), cervical cancer (73), ovarian cancer,
breast cancer, melanoma, bladder cancer, head and neck cancer, soft tissue sarcoma and
prostate cancer (74, 75) have showed frequent copy-number increases of chromosome

9p24 where the PD-L1 gene (CD274) is located.

Disease progression: Deconvolution analysis comparing BE to OAC found the largest
expression changes in BE progression occurred in M2 macrophages, pro—B cells, and
eosinophils, whereas immunohistochemical analysis found OAC tumour sections were

relatively immune poor, with a rise in PD-L1 expression and loss of CD8+ T cells (76).

Metastasis: A recent study of 388 samples of OAC found that 90% of patients possessed
subclones from the primary tumour which spread rapidly from the primary site to form
multiple metastasis sites, including the lymph nodes and liver, supporting a clonal
diaspora model for metastases of OAC. Further analysis revealed high L1 transposon
activity in metastatic OAC compared to the primary site relating to a larger proportion of
structural variants in the metastatic samples, suggesting an increase in genomic

instability in later disease stages and potentially metastasis (77).

1.7 Immunotherapy trials

Interestingly, recent US trials focusing on immunotherapy have showed moderate
responses to checkpoint blockade inhibitors, Pembrolizumab and Nivolumab in OAC (78,
79). Pembrolizumab, an inhibitor of PD-1, became the first approved immune checkpoint
inhibitor in 2014 after a phase Ib trial in advanced melanoma (KEYNOTE-001) (80, 81).
Nivolumab, a fully human IgG4 monoclonal antibody targeting PD-1 with high affinity for
PD-1 inhibiting PDL1/PD-L2-PD-1 binding (Figure 5), received approval for treatment of
metastatic melanoma, non-small cell lung cancer, and renal cell carcinoma (82).
Strikingly, Nivolumab demonstrated positive responses in the treatment of

chemotherapy-refractory gastric and gastroesophageal junction in a double-blind phase 3
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trial for patients who have received two or more lines of chemotherapy and have not
been selected for PD-L1 expression (ATTRACTION-2) (83).

Ipilimumab is a monoclonal antibody targeted to CTLA-4, a transmembrane receptoron T
cells, capable of activating T cells in cancer settings (Figure 5). A recent study
(CheckMate-032) employed the usage of ipilimumab plus nivolumab in the treatment of
advanced oesophageal cancer, confirming dual treatment with ipilimumab and
nivolumab was superior to nivolumab monotherapy (84). The CheckMate-032 trial
demonstrates combination therapy of anti-CTLA-4 and Anti-PD-1/PD-L1 may be more
effective than monotherapies; this avenue of combination treatment options is being
investigated in several cancers advanced melanoma, metastatic osteosarcoma, colorectal
cancer, recurrent glioblastoma, and renal cell carcinoma with favourable responses to

these combination therapies (85-92).

CAR-T (Chimeric antigen receptor) cells may also provide an effective measure against
OAC in future with guanylyl cyclase C (GUCY2C) targeting CAR-T cells typically used to
target human colorectal cancer may apply to OAC, with several studies indicating
GUCY2C is highly expressed by OAC particularly in moderately to well-differentiated
tumours (93-95).

Overall, most immunotherapeutic efforts in OAC are focused on the use of checkpoint
blockade therapeutics including Pembrolizumab, Nivolumab and ipilimumab in
monotherapies or in combined therapies (79, 84, 96-103). A current literature search
(15/08/2021) could not identify any trials or publications using adoptive T cell therapies
in OAC; however, adoptive T cell therapy in combination with low-dose Nivolumab has
been trialled in two patients with OSCC which may indicate adoptive T cell therapies may

also present a future treatment for OAC (8).
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Figure 5: Mechanism of action of immune checkpoint inhibitors. (Left) PD-1 is
expressed on activated T cells which may bind to PD-L1 expressed on tumour cells,
leading to T cell exhaustion. CTLA-4 competes with the co-stimulatory T cell molecule
CD28 for B7 ligands, upon bonding CTLA-4 decreases T cell proliferation and cytotoxic
activities. (Right) Blockade of CTLA-4 by anti-CTLA-4 antibodies and PD-1 with anti-PD-1
or anti-PD-L1 antibodies stimulates T cell activity and inhibits tumour cell’s ability to
suppress T cell activity through the expression of PD-1 or CTLA-4 (104). (Created with

Biorender.com).
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1.8 The tumour microenvironment

The tumour immune microenvironment (TIME) is the network of interacting cancer and
immune cells found within a tumour. Notably, the mechanisms of immunity with these
niches differ significantly from those outsides of the tumour microenvironment niche,
because of cancers ability to manipulate and obstruct normal immune functions as a
mechanism to avoid anti-tumoral immunity. For its significant role in the development
and progression of tumours, the TIME is deemed as an emerging hallmark of cancer

(105).

Specifically, three general classes of TIME have been defined infiltrated-excluded,
infiltrated-inflamed and infiltrated-T lymphocytes. Infiltrated-excluded is defined by the
exclusion of cytotoxic T lymphocytes (CTLs) from the tumour core; instead, CTLs may be
found on the periphery of the tumour interacting with tumour-associated macrophages
or stuck in fibrotic nests; comparatively infiltrated-inflamed TIMEs are characterised by
the high abundance of PD-L1 expression on tumour and myeloid-derived cells, and
possess CTLs high in the expression of GZMB, IFNG and PDCD1; finally, infiltrated-T
lymphocytes possess tumour infiltrating lymphocytes (TLS) localised to immune cells

compositions similar to those found in lymph nodes.

Overall, the TIME is defined by the immunosuppressive role it performs to achieve anti-
tumoral immune evasion. However, fully characterising the TIME can be difficult because
of the number of cells and molecules involved in these processes. For example, the
cytokine network which forms the inter-cellular immune communication between
specialised immune cells forms a complex network, which may act to either suppress or

promote immune destruction of cancer cells (Figure 6).

Immune profiling of OAC in 47 samples identified high expression of checkpoint markers
including LAG3, TIM3, CTLA4 and CD276 compared to PD1/PD-L1, besides upregulated
CD38 and LILRB1 expression demonstrating multiple immune checkpoint mechanisms
suggesting immune checkpoint therapies should be used in combinations for the most

effective treatment (106).
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Immunochemical and deconvolution analysis have characterised the OAC
microenvironment by poor cytotoxic effector cell infiltration and increased immune
inhibitory signalling; between BE and OAC T cells no significant increases in CD4, CD8, or
Treg populations or subpopulations was detected, however, Thl and Th2 cells were

found increased in OAC (77).

Whilst the myeloid cell populations appeared unchanged overall, there was a difference
in the balance of M1/M2 macrophages with M2 macrophages found to be significantly
increased in OAC compared to BE, pro-B cells were also found increased in OAC as
compared to BE with the remaining B cell populations being unchanged (77). Overall,
these analyses identify much of the immune population remains similar to BE, however,
some distinct differences can be identified in the immune subpopulations; these notable
differences in the immune subpopulation balances expected and measured differences in
cytokines be found to modulate and impede immune functions such as IL6 and CXCL8

(77, 107).
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Figure 6: Cytokines forms an essential intracellular communication network which may

act to suppress anti-tumour immune response via several diverse mechanisms.

One key pathway of immunosuppression (Red lines) is located via MDSCs inducing M2

macrophage polarisation via secretion of IL-6 and IL-10 and Treg activity via IL-10 and

TGF-B secretion, this results in a greater concentration of IL-10 within the TME inhibiting

CD8+ and NK cell activity while M2 macrophages hinder the maturation of DCs reducing

presentation of tumour antigens to T cells. Conversely, tumour suppression (Green lines)

is also dependant on the usage of the cytokine network with M1 macrophages

communicating with CD8+, NK and Th1 T cells allowing tumour directed immune

rejection to occur.
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1.9 Antigen Presentation Machinery (APM) and pathways

Antigen presentation functions within host immunity for the recognition of self and non-
self. T cells may act to destroy infected host cells through the specific recognition of
antigens presented on antigen presentation molecules on the cell surface. Upon specific
recognition and with the co-stimulatory signal, the T cell may activate and direct
cytotoxicity towards the infected cell, aiding in the clearance of infection.

Antigen presentation may be functionally divided into endogenous and exogenous
pathways (See Figure 7). The endogenous pathway, also known as MHC | functions to
display intracellular peptides, such as self-proteins or incorporated viral proteins,
whereas exogenous pathways (MHC Il) function to display extracellular peptides,
engulfed by a professional antigen presenting cell (108). Interestingly, cancer cells may
also present cancer-specific antigens on the cell surface, which may be recognised by
cancer-specific T-cells, acting to suppress tumour formation by destroying cancer cells

(109).

The MHC | pathway is an antigen presentation mechanism characterised by displaying
endogenous peptides on MHC | molecules to CD8+ T cells (Figure 7A). MHC | pathways
are expressed in most cell types in the body, excluding non-nucleated cells such as red

blood cells which rely on CD47 markers for immune recognition and tolerance (110).
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Figure 7: MHC pathways in humans. Cellular interface of the Antigen Presentation

Pathways (A) MHC | presentation; endogenous peptides are presented to CD8+ T cells,
which specifically recognise the antigen with a T cell receptor (TCR), provided the T cell is
supplied with a recognisable antigen, co-stimulatory signals, and a lack of co-inhibitory
signals, the CD8+ T cell may activate and destroy the cell. B) MHC Il presentation;
exogenous peptides are presented to CD4+ T cells, specifically recognising the antigen
with a TCR, provided the T cell is supplied with a recognisable antigen, co-stimulatory
signals, and a lack of co-inhibitory signals, the CD4+ T cell may activate and function to

stimulate/support an immune response. (Created with Biorender.com).
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1.9.1 The MHC | pathway

The MHC | pathway is an antigen presentation mechanism characterised by displaying
endogenous peptides on MHC | molecules to CD8+ T cells (Figure 7A). MHC | pathways
are expressed in most cell types in the body, excluding non-nucleated cells such as red
blood cells which rely on CD47 markers for immune recognition and tolerance (110).
Endogenous peptides (normal, cancer-specific or pathogenic) are produced from proteins
within the cytosol which are degraded by the proteasome into peptide fragments;
several peptide fragments are transported into the endoplasmic reticulum (ER) lumen
through the ER membrane translocon, transporter associated with antigen processing
(TAP1/2) (110) (See Figure 8). The nascent heavy chain of the MHC | molecule is co-
translationally transported into the ER lumen by the translocon docking to the ribosome
on the cytoplasmic face of the ER membrane, then binds to calnexin until a dimer with
Beta-2-microglobulin (B2M) is formed. The MHC I- B2M complex is then released from
calnexin, binding to the chaperonin proteins calreticulin and ERp57, which transport the
complex to TAP, where the complex binds to TAP via Tapasin forming the peptide-loading

complex (PLC) (110).

At this stage, peptide fragments can now bind to the peptide-binding cleft of the MHC |
molecule, provided these fragments are 8-10 amino acids (AA) in length. However,
peptides longer than 8-10 AA in size may be trimmed further by ERAP1 and ERAP2. After
successful binding of a stable peptide to the peptide-binding cleft of an MHC | molecule,
the MHC-peptide complex leaves the PLC, effectively passing the ER quality control
process, allowing the MHC-peptide complex to be transferred to the Golgi apparatus

network, transporting the complex to the cell surface (Figure 8) (110).

The MHC I-peptide complex may then be specifically recognised by a CD8+ T cell receptor
(TCR), providing this T cell is supplied with a non-self/non-healthy MHC | presented
antigen, sufficient co-stimulatory signals (E.g. CD28-B7 interaction) and lack of co-
inhibitory signals (E.g. CD80/86-CTLA4 interaction) (110). Notably, MHC | molecules also
function as an inhibitory signal to NK cells which actively target cells which lose MHC |

expression (111).
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To evade immune destruction, cancer targets MHC | genes for somatic mutation,
effectively abrogating the MHC | pathway to hinder the presentation of cancer antigens
on MHC | molecules to the immune system. For example, one study identified B2M
somatic mutations early in cancer development, which are attributed to the loss of
function and reduced MHC | surface expression, thus forming a cancer immune evasion
mechanism (112). Further examples of somatically acquired APM defects have been
observed in the HLA class | genes including HLA-A/B/C, displaying roles in cancer immune
evasion by producing antigen loss variants that undergo selective immune pressure
during cancer development (113). Overall APM genes represent an inviting target for
somatically acquired aberration in cancer development and should be a key topic of

research as specific APM aberrations may impact the efficacy of immunotherapy (113).
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Figure 8 MHC | pathway overview. MHC | molecules are transcribed by ribosomes on
the ER, folded, then transported by chaperones to Tapasin (TAP1/2). Endogenous
peptides are degraded by proteasomes into peptide fragments then transported into the
ER lumen by Tapasin, peptide fragments exceeding 8-10 AA in size are degraded further
by ERAAP. In the ER lumen, antigen peptide fragments form complexes with MHC |
molecules which are then transported to the cell surface via the Golgi apparatus for

display. (Created with Biorender.com).
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1.9.2 The MHC Il pathway

The MHC Il pathway is characterised by the display of exogenous peptides on MHC II
molecules to CD4+ T cells (Figure 7B). MHC Il pathways are primarily expressed by
professional antigen presenting cells, such as dendritic cells and macrophages, as well as
some endothelial cells, thymic epithelial cells, and B cells. MHC gene evolution has been
a key topic of research over the past five decades, with only a few species being used to
make direct comparisons between MHC | and II. A few studies have identified pathogenic
selective pressure and the variation of MHC Il alleles has played a key role in the
evolutionary history of MHC Il genes; however, the evolutionary origin of these antigen
presenting cells is mostly unknown, meaning little evidence exists to determine the exact
origins of MHC Il genes (114, 115). Notably, MHC Il expression is present in epithelial cells
of the lung, intestine, and stomach; specifically gastric epithelial cells have demonstrated
in upregulate MHC Il expression in chronic inflammatory conditions, such as autoimmune

conditions and may extend to gastric cancers (116).

Exogenous peptides carriers, such as pathogenic bacteria are engulfed into phagosomes
which fuse with lysosomes forming phagolysosomes, these structures degrade
exogenous peptides with proteases into peptide fragments between 13 and 17 AA in size
(Figure 9). Meanwhile, MHC Il molecules are transcribed in the ER alongside the
invariant chain (li) which form a complex together, the complex is then transported to

the MHC Il compartment (MIIC) via the Golgi apparatus (110).

Following peptide degradation, the phagolysosome fuses with the MIIC releasing
degraded exogenous peptides and proteases into the MIIC; proteases CTSS or CTSL act to
cleave li into CLIP. CLIP is exchanged with an exogenous peptide fragment, catalysed,
and stabilised by HLA-DM, which itself is regulated by HLA-DO. Finally, the MHC I
peptide complex is transported to the cell surface for display via the endosomal network.
Alternatively, MHC II-li complexes can be transported directly from the ER to the cell

surface, which may be recycled back into the MIIC for antigen loading (110).
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The displayed MHC Il peptide-complex may stimulate and activate CD4+ T cells, which act
as helper cells supporting the immune response towards pathogen clearance, such as
secretion of immunostimulatory cytokines; specifically, the secretion of IL-1, IL-2, IL-12,
IFN-y and TNF-a from Th1 cells play a positive role in anti-tumoral immunity, bolstering

CD8+ and NK cell activity, survival and expansion (109, 117).
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Figure 9 MHC Il pathway overview. MHC Il molecules and invariant chains are

reticulum

transcribed by ribosomes on the ER, folded, bound, then transported to the MHC II
compartment (MIIC) via the Golgi apparatus. Exogenous peptides are internalised and
degraded by proteases in phagolysosomes, phagolysosomes then fuse with the MHC I
compartment, releasing proteases which cleave invariant chains on MHC Il molecules
into CLIP; CLIP is then exchanged with antigen peptides assisted by HLA-DM. MHC II-
antigen complexes are then transported by the endocytic network to the cell surface.

(Created with Biorender.com).
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193 Cross-presentation pathways

The mechanisms of presenting exogenous antigen on MHC | molecules are coined as
cross-presentation pathways. These pathways have been discovered predominantly in
dendritic cells (DCs), being tied to important functions including the generation of an
immune response directed towards viruses and tumours, immunisation and in the

induction of immune tolerance (118).

Two general pathways exist within this domain; the cytosolic pathway, where
internalised antigens are transported to the cytosol from the endosomal compartments,
exogenous cytosolic peptides are then degraded by the proteasome, transported into the
ER by TAP, allowing for the loading of exogenous derived peptides in the MHC | pathway;
the vacuolar pathway, internalised antigens are degraded by lysosomal proteases and
then loaded onto MHC | molecules within the endocytic compartment (Figure 10) (118).
Interestingly, Cathepsin S, not Cathepsin L and B have been shown to play a key role in
antigen degradation within the vacuolar pathway, demonstrated within DCs of TAP
deficient mice (119).

In cancer, cross-presentation of tumour antigens can occur via phagocytosis of dead
cancer cells; as the local tumour microenvironment can be pro-inflammatory cell death
of tumour cells can be significant, resulting in cellular debris (120). The debris from dead
cells can be engulfed into APCs then and presented on MHC | molecules via the cross-
presentation pathways (121). Interestingly, cross-presentation of tumour antigens can be
enhanced by tumour burden and may be conducted by CD1c dendritic cells and

macrophages, which may cause CD8+ anti-tumoral T cell responses (122, 123).

42



Finally, the cross-presentation mechanism may be exploited for future immunotherapy
efforts; several studies have identified immunotherapies focusing on enhancing DCs or
introducing tumour antigens to DCs could allow for greater T cell priming, as tumour
antigens would be presented to both CD4+ and CD8+ T cell, inducing an anti-tumoral

response (124-126).
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Figure 10 Cross-presentation cellular mechanisms. In both the vacuolar and cytosolic
pathway, exogenous peptides are engulfed by the cell and internalised into a
phagosome, which then fuses to the endoplasmic reticulum (ER), allowing it to obtain
antigen presentation machinery proteins such as TAP, Tapasin, MHC | molecules and
Sec61 translocons. In the cytosolic pathway the phagosome Some internalised
exogenous peptides are transported out to the cytosol, potentially via ubiquitination by
ubiquitin (Ub)-conjugating enzymes (UBCs) resulting in translocation of the peptides
through the Sec61 translocon; peptides translocated to the cytosol can be degraded by
proteosomes, allowing for the cleaved peptides to be transported back into the fused
phagosome through TAP permitting peptide binding to MHC | molecules using antigen
presentation machinery gained from the ER. In contrast, proteases degrade the vacuolar
pathway internalised peptides within the ER-fused phagosome by proteases, allowing
Tapasin the load the cleaved peptides onto MHC | molecules, then transported to the cell

surface. Adapted from Rock, K., 2003. (107).
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19.4 Regulation of APM gene expression

The activation of MHC class | genes except for HLA-G is mediated by multiple conserved
cis-acting regulatory promoter elements including ISRE (interferon-stimulated response
element) and the SXY-module (127). Interestingly, these regulatory promoter elements
are further involved in the transcriptional activation of the B2M promoter, but not TAP
and immunoproteasome promoters (127-129). Within this pathway for MHC class |
promotion, the enhancer A is bound by the nuclear factor NF-KB and ISRE is bound by
interferon regulatory factor (IRF) family members. Specifically, transcription factors NF-
kB and IRF-1 function as mediators of the TNFa and IFN-y pathway gene activation which
result in induction of MHC class | transcription. Notably, IRF-1 inactivation has been
uncovered in cancers. In leukaemia and pre-leukemic myelodysplasia (MDS) loss of
chromosome 5 or deletion within the long arm where the IRF-1 gene is located occurred
in 30% of MDS cases, 15% of de novo acute myelogenous leukaemia (AML) cases, 50% of
cases of secondary AML arising from MDS (130-132). Following the discovery of IRF-1 loss
in AML and MDS further research identified 50% of gastric tumours and 32% of invasive
breast carcinomas exhibit LOH at the 5q region implying a critical contribution of IRF-1 to
the development of stomach carcinoma and invasive disease in breast cancers (133,
134). Specifically, to oesophageal carcinoma, 5931.1 was reported as the smallest
commonly deleted region in 57% of the specimens tested (35/61 tumours); a further
study found expression of IRF-1 to be decreased and IRF-2 increased in OSCCs compared
with matched normal oesophageal tissue (135, 136). As prior mentioned, HLA-G
expression is not regulated by NF-kB or IRF-1, instead the HLA-G promoted can be
transactivated by the cyclic-AMP response element binding protein (CREB)-1. Whereas,
Ras-responsive binding protein-1 (RREB-1) acts as a transcriptional repressor of HLA-G via

chromatin remodelling of the HLA-G locus (137).

A Further regulator of MHC class | expression was discovered in 2010 by ChIP (Chromatin
Immunoprecipitation) analysis revealing NLRC5 associated to MHC class | promotors
regulating its transcriptional activity (138). NLRC5 functions via forming a MHC class |
enhanceosome together with the RFX-complex (RFX5, RFXAP, RFXANK), ATF1/CREB and
the NFY-complex, thus acting as a key co-activator for MHC class | expression (139). In a
pan-cancer study, preferential methylation, copy number and somatic mutations of

NLRC5 associated to impaired cytotoxic T-lymphocyte activity and decreased MHC class |
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expression in breast, skin, liver, ovarian, bladder, lung, and prostate cancers (140). The
pan-cancer study further identified the expression of NLRC5 was correlated with survival
of cancer patients with skin, rectal, bladder, uterine, cervical, and head and neck tumours

(140).

Class Il transactivator (CIITA) is a transcriptional coactivator that regulates y-interferon-
activated transcription of MHC class | and |l genes. CIITA structure possess a series of
regulatory domains including an activation domain , an acetyltransferase domain, a
proline/serine/threonine (PST) domain, a GBD (GTP binding domain) and a canonical LRR
(C-terminal leucine rich region) domain common to NLR (Nod-like receptor) proteins
(141). Notably, deficiency of CIITA results in aberrant MHC gene expression and has been
associated to autoimmune diseases such as Type Il bare lymphocyte syndrome.
Functionally, CITTA regulates MHC gene expression via two distinct mechanisms, as a
transcriptional activator and as a general transcription factor. In CITTA’s transcriptional
activator role CIITA nucleates an enhanceosome comprising the DNA binding
transcription factors RFX, cyclic AMP response element binding protein, and NF-Y. As a
transcription factor CIITA functionally replaces TAF1 a TFIID component. Similarly, to
TAF1, CITTA possesses acetyltransferase (AT) and kinase activities and actively

contributes to both MHC class | and Il transcription.

Recently, the role of CSDE1 as a regulator of MHC class | expression was discovered,
functioning via the stabilisation of TCPTP a tyrosine phosphatase which
dephosphorylates STAT1 in the IFN-y pathway. Within these studies, the greater
expression of CSDE1 in a melanoma cell line resulted in high dephosphorylation of STAT1
preventing translocation of STAT1 into the cell nucleus downstream of the JAK/STAT
pathway (142). This function inherently prevents STAT1 from binding to the y-activated
sequence (GAS), this inhibits the promotion of IRF1 which handles MHC class | promotion
by binding to ISRE a prior discussed transcriptional promoter of MHC class | expression,
decreasing the expression of MHC class | genes. Further investigation yielded the
regulation of CSDE1 occurs via SMYD3 trimethylation of CSDE1 locus. A further study
identified CSDE1 may form a target for therapy via oncolytic viruses, creating a selection
pressure towards an escape-associated tumour antigen via mutation of CSDE1 (C-T)

which may be a target for cancer vaccines, adoptive T-cell and CAR-T cell therapies (143).
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1.10 Candidate APM genes

Using prior literature several APM genes have been reported as possessing an impact on

survival and immune responses in other cancers and diseases, by assessing the known

APM defects in other cancers which impact prognostic values a list of defined APM gene

candidates for analysis in OAC was determined. These candidates and their respective

impact in other cancers are stated below in Tables 4 and 5.

Table 4 Key APM genes in the MHC | pathway with their associated APM processes and

published roles in cancers

APM PROTEIN; APM GENE FUNCTION EVIDENCE FROM LITERATURE
MHC | GENE
SYMBOL;
MHC |
TAPASIN TAPBP Assembly of the Tapasin is downregulated in multiple OSCC cell
MHC class | loading lines.
complex. Tapasin downregulation is associated with poorer
outcomes in triple-negative breast cancer (144,
145).
Loss of Tapasin correlates with diminished CD8+ T-
cells and disease progression in colorectal cancer
(149).
TAPBPR TAPBPL Assembly of the TAPBPR isoforms alter association with MHC |

MHC class | loading
complex; binds
peptide-free MHC
| molecules
(permitting peptide
editing)

HLA-A HLA-A Assembly of the
MHC class | loading
complex.
Antigen presenting
molecule.

HLA-B HLA-B Assembly of the
MHC class | loading
complex.
Antigen presenting
molecule.
HLA-C HLA-C Assembly of the
MHC class | loading
complex.
Antigen presenting

molecule.
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molecules; long isoforms may down-regulate

surface expression of MHC | molecules (150).

The HLA-A *11 allele is strongly associated to
OSCC risk (151).

HLA-A expression is regulated by the HER2
signalling pathway is OSCC and gastric cancers
(152).

The HLA-B*46 allele is strongly associated to
OSCC risk (151).

HLA-B expression is downregulated in gastric

cancer and in lymphatic metastasis (153).

HLA-C expression is down-regulated in CRC (154).



HLA-E

HLA-G

BETA-2
MICROGLOBULIN

ERP57

CALRETICULIN

CALNEXIN

ERAP1

ERAP2

TAP1

TAP2

HLA-E

HLA-G

B2M

PDIA3

CALR

CANX

ERAP1

ERAP2

TAP1

TAP2

Assembly of the
MHC class | loading
complex.
Antigen presenting
molecule.
Assembly of the
MHC class | loading
complex.
Antigen presenting
molecule.
Assembly of the
MHC class | loading
complex.

Antigen presentation

Assembly of the
MHC class | loading
complex.
Assembly of the
MHC class | loading

complex.

Assembly of the
MHC class | loading

complex.

Assembly of the
MHC class | loading
complex.
Degradation of
peptides in the ER
Assembly of the
MHC class | loading
complex.
Degradation of
peptides in the ER.

Peptide transport into

the ER lumen.

Peptide transport into

the ER lumen.

HLA-E+ gastric tumours carry poorer 5-year survival
than HLA- tumours (155).

HLA-G expression correlates with poor prognosis is

gastric carcinomas (156).

B2M mutations reduce the overall levels of cell
surface MHC-I molecules; B2M mutant tumours
possessed elevated cytotoxicity (124). B2M loss of
heterozygosity in metastatic melanoma
immunotherapy is enriched.
threefold in non-responders (~30%) compared to
responders (~10%) and associated with poorer
overall survival (157).

PDIA3high gastric tumours have improved
prognosis over PDIA3low tumours (158).

CALR expression is associated with infiltration of T-
cells; strong CALR expression with high CD3+ and
CD45R0O+ T-cell infiltration is associated with higher

5-year survival in colon cancer (159).

Calnexin downregulated in ~25% of primary
laryngeal squamous cell carcinoma lesions, number
of
infiltrating CD8+ T cells correlated with calnexin
expression (160).

ERAP1 down-regulation suffices to stimulate the
cytotoxic activity of NK cells and CTLs (against an
unknown cancer antigen), resulting in tumour
growth arrest (161, 162).

ERAP2 expression lost in 17 out of
26 liver carcinoma samples. Loss of ERAP1/2
expression is associated with a lack of surface HLA
class | molecules (163).

High expression of TAP1 by OAC correlated with
significantly shorter overall survival times in OAC
(164).

Increased levels of MIR125a-5p and MIR148a-3p
reduces levels of TAP2 in OAC, associated to poor
patient outcomes (164).
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PROTEASOME
BETA SUBUNIT
BETA1I
(INDUCIBLE)

PROTEASOME
BETA SUBUNITS
BETA2I
(INDUCIBLE)

PROTEASOME
BETA SUBUNITS
BETASI
(INDUCIBLE)

PSMB9 Peptide generation
and trimming.
PSMB10 Peptide generation
and trimming.
PSMB8 Peptide generation

and trimming.

Overexpression of PSMB8 and
PSMBS9 correlates to better survival and improved
response to immune checkpoint inhibitors of

melanoma patients (165).

LMP10 nuclear expression in HPV positive and
LMP10 cytoplasmic expression in the HPV-negative
tonsillar and base of tongue squamous cell
carcinoma patients correlated to better clinical
outcome (166).

Overexpression of PSMB8 and
PSMBS9 correlates to better survival and improved

response to immune checkpoint inhibitors of

melanoma patients (165).

Roles in cancer collected by literature search on PubMed
(https://www.ncbi.nlm.nih.gov/pubmed/) using the following search terms (1) *Gene
symbol* OR *Protein name* AND “Antigen presentation” AND “Cancer” (2) *Gene
symbol* OR *Protein name* AND “Antigen presentation” (3) (1) *Gene symbol* OR

*Protein name* AND “Cancer”.
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Table 5 Key APM genes in the MHC Il pathway with their associated APM processes and
published roles in cancers.

APM
APM
GENE
PROTEIN; GENE FUNCTION EVIDENCE FROM LITERATURE
SYMBOL;
MHC II
MHC I
Alpha:
LS Stabilisation and Decreased expression in B cell lymphoma (167);
HLA-DM loading of the MHC II Lack of HLA-DM in head and neck squamous cell
Beta: HLA-
complex carcinoma (168).
DMB
Alpha: Antigenic peptide
HLA-DO HLA-DOA chaperoning and Methylated promoters in RFX5-negative B-
Beta: HLA- loading into MHC |1 lymphoma cells (169).
DOB molecules.
Alpha: Assembly of the MHC . :
Low expression of HLA-DPA1, and HLA-DPB1 is
HLADPA1 class Il loading : : L o
HLA-DP associated with poor prognosis in paediatric
Beta: HLA- complex.
: : adrenocortical tumours (170).
DPB1 Antigen presentation.
Alpha:
HLA-
DQAT1, Assembly of the MHC
HLA-DQ HLADQA2 class Il loading HLA-DQA1*03 defined as a risk allele in lung
Beta: HLA- complex. adenocarcinoma (171).
DQB1, Antigen presentation.
HLA-
DQB2
Alpha: ; )
Methylated HLA-DR promoters in RFX5-negative
HLADRA
- Assembly/Stabilisation B-lymphoma cells (169).
efa:
and loading of the Low expression of HLA-DRA is associated with
HLADRB1, ; o o ;
HLA-DR . MHC Il loading poor prognosis in paediatric adrenocortical tumours
complex; antigen 170).
DRB4, P g (170)
ML presentation. The HLA-DRB1*1601 allele is strongly associated
with gastric cancer development (172).
DRB5
Assembly/Stabilisation
and loading of the
e Novel somatic gene fusion, CD74-NRG1 identified
INVARIANT CD74 (cell ) in lung adenocarcinoma (173).
loading complex;
CHAIN surface ) ) CD74 interacts with CD44 and enhances
antigen presentation; . . o
LI/CLIP form) tumorigenesis and metastasis in breast cancer
MHC Il complex
(174).
transport.

Antigen presentation.
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CATHEPSIN
S

CATHEPSIN
L

SPPL2A

AEP

GILT

CTSS

CTSL

SPPL2A

LGMN

IFI30

Degradation of li into
CLIP
(B cells, DCs,
CD74expressing
cells); peptide

generation.

Degradation of li into
CLIP
(Thymic cortical
epithelial cells);
peptide generation.

CD74 turnover from
the MIIC.

Peptide generation.

Peptide generation.

CTSS expression mediates gastric cancer cell
migration (175).
Down-regulation of cathepsin S suppresses triple-
negative breast cancer growth and metastasis
(176).

Expression Contributes to breast tumour

angiogenesis (177).

Knockout of SPPL2a results in build-up of invariant
chain N-terminal fragments, impaired endosomal
trafficking of MHC Il molecules in B cells (178).

miR-3978 inhibits gastric carcinoma and metastatic
progression in a mice model by regulating
legumain protein expression; confirmed in 20

human gastric carcinoma patients (179).

GILT expression is required for optimal
presentation of the melanoma antigen TRP1 (180).
Loss of GILT expression correlates with poor
survival and disease-free progression in diffuse
large B cell lymphoma and breast cancer (181,
182).

Roles in cancer collected by literature search on PubMed
(https://www.ncbi.nlm.nih.gov/pubmed/) using the following search terms (1) *Gene
symbol* OR *Protein name* AND “Antigen presentation” AND “Cancer” (2) *Gene
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symbol* OR *Protein name* AND “Antigen presentation” (3) (1) *Gene symbol* OR
*Protein name* AND “Cancer”.

1.11 The genomics of OAC & OSCC

Several studies to date have investigated the genomic alterations which may drive the
progression of OAC from BE through the Dysplasia-BE-OAC pathway, discussed in the
‘OAC evolution, disease progression and metastasis’ section. In 2013, Dulak et al.
analysed the genome sequencing of 149 OAC patient samples, with 15 sample being
analysed using whole genome sequencing; from this investigation, Dulak and colleagues
noted several genomic features of OAC. First, they established that a the highest rate of
A>C transversions in OAC was present in the noncoding areas, while within the coding
region a there was a distinct overrepresentation of under-expressed genes; further
investigation identified 26 frequently mutated key genes including TP53 (72%), ELMO1
(25%), DOCK2 (12%), CDKN2A (12%), ARID1A (9%), SMAD4 (8%) and PIK3CA (6%); these
findings were further validated by a study in 551 OAC samples reporting similar driver
mutation events (Figure 11) (183, 184).

Beyond genomic mutation, this study also identified frequent amplification of oncogenes
KRAS (21%), HER2 (19%), EGFR (16%), CND1 (10%) and MET (6%), and deletion of SMAD4
(34%), CDKN2A (32%) and ARID1A (10%) (183). Among these, TP53 aberration is the most
frequent; this a key tumour suppressor gene coding for the P53 protein, which function
to arrest the cell cycle upon the detection of DNA damage, allowing enactment of DNA
repair pathways or programmed cell death; this gene is frequently disrupted in many
cancers because of its key role in inhibiting carcinogenesis (185). Interestingly, ELMO1
and DOCK2 encode dimerization partners and intracellular mediators of the Rho family
GTPase, RACI; the frequency of alteration of these gene suggests aberrant RAC1
activation contributes to malignant transformation, mainly by enhancing cellular motility,

supported by studies of other cancers (186-190).

Finally, the loss of SMAD4 and ARID1A expression often observed in OAC cases have a
significant impact on the genome. SMAD4 acts within TFG-B signalling as the central
mediator of the pathway which results in the recruitment of transcriptional factors to

transactivate or repress target genes. Because of this function SMAD4 play a significant
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role as a tumour suppressor by inducing cell cycle arrest and apoptosis within the G1

phase (191, 192).
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Figure 11 The driver gene landscape of OAC. (A) Driver mutations or CNVs are shown for
each patient of 551 OACs. Amplification is defined as >2 copy number adjusted ploidy
(2x ploidy of that case) and extrachromosomal amplification as >10 copy number
adjusted ploidy (10x ploidy for that case). Driver associated features for each driver gene
are displayed to the left. On the right, the percentages of different mutation and copy
number changes are displayed, differentiating between driver and passenger mutations
using dNdScv, and the % of predicted drivers by mutation type is shown. Above the plot
are the number of driver mutations per sample with an indication of the mean (red line =
5). (B), Mean driver events per case in 551 OACs and comparison to exome-wide excess
of mutations generated by dNdScv. (C), Expression changes in OAC driver genes
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compared to normal intestinal tissues in RNA matched samples (n=116). Only genes with
expression changes of note are shown (184).

Founding investigations of ESCC using whole-genome sequencing methodology have
provided a solid basic understanding of the biology underlying the condition including
the alleles predisposing to ESCC. Lin et al. conducted whole-exome and targeted deep
sequencing of 139 paired ESCC cases, and analysed SCNVs from over 180 ESCC cases;
from these experiments Lin et al. reported frequent mutations in AT1, FAT2, ZNF750, and
KMT2D besides known commonly mutated genes (TP53, PIK3CA, and NOTCH1) (193).

Song et al. conducted a comprehensive genomic analysis of 158 ESCC cases (WGS of 17
cases, WES of 71, 53 WES case plus 70 cases underwent array comparative genomic
hybridization analysis) as part of the International Cancer Genome Consortium research
project (ICGC) (194). Using this methodology, they identified 8 significantly mutated
genes including 6 known (TP53, RB1, CDKN2A, PIK3CA, NOTCH1, and NFE2L2), 1 tumour-
associated gene (ADAM29), and mutations in FAM135B not previously linked to cancer
(194). The FAM135B was mutated in 6.8% of cases (6 of 88) and was associated to poorer
prognosis (p = 0.026, log-rank test); further analysis implicated FAM135B in promotion of
malignancy in ESCC. Exome sequencing on the 113 tumour-control pairs identified a
mean of 82 non-silent mutation per ESCC tumour, exhibited a mutational profiling
resembling other squamous cell carcinoma of tissue, but was distinct from OAC’s
mutational profile. Mutations in genes involve in cell cycle and apoptotic regulation
were mutated in 99% of the ESCC cases which underwent exome sequencing (TP53, 93%;

CCND1, 33%; CDKN2A, 20%; NFE2L2, 10%; and RB1, 9%) (194).

Research has explored the mutational pathways of ESCC, elucidating mutation in
epigenetic modulatory genes. With Song et al. identifying frequent non-silent mutations
in 48 genes which function in histone modification mechanism (53.4% of ESCC cases),
including KMT2D, ASH1L, KMT2C, SETD1B, CREBBP, and EP300; pathway analysis found
these somatic aberrations were mainly involved in the Wnt, cell cycle and Notch
signalling pathways (194). Gao et al. reported cell cycle, apoptosis and DNA damage
control pathways were ubiquitously dysregulated, owing mainly to TP53 mutation and
chromatin modification pathway genes (Notch, phosphoinositide 3-kinase, and Ras

pathways) to a lesser degree (194). Histone-modification related genes were frequently
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mutated including KMT2D (19%), KMT2C 6%), KDM6A (7%), EP300 (10%), and CREBBP
(6%); also, Hippo and Notch pathways were frequently dysregulated by mutations in
FAT1, FAT2, FAT3, or FAT4 (27%) or AJUBA (JUB; 7%) and NOTCH1, NOTCH2, or NOTCH3
(22%) or FBXW?7 (5%) (194). Notably, cases possessing mutations in EP300 had dismal
survival (P =0.0032) (194).

1.12 Literature review of molecular pathway defects of APM in OAC

and ESCC

OAC presents with high expression potential for neo-antigens with high affinity for HLA
class | binding (Median of 20 neo-antigens expressed per sample in the mutagenic
subgroup of OAC). Especially in cases with dominant T>G mutational patterns, suggesting

the use of immunotherapy may be effective in these cases (195).

Despite the known high neo-antigen loading of OAC, a few studies have highlighted
potential defects in MHC pathways of OAC; firstly, a study identified an increase HLA-DR
expression within the inflammation to cancer progression sequence (196). Furthermore,
the multivariant analysis demonstrated low expression of HLA-DR was correlated with
poor survival, suggesting HLA-DR may be useful as an independent prognostic indicator in
OAC patients (196). Another study identified increased levels of micro-RNAs, MIR125a-
5p and MIR148a-3p in OAC cell lines, reducing the level of TAP2 and MHC | expression,
which collarets to markers of adaptive immunes response and overall shorter survival

(164).

Two studies have indicated MHC variants may play a significant role in predisposition to
Barrett’s oesophagus and the risk of OAC; finding a specific MHC single nucleotide variant
(rs9257809 A>G allele; 9% in Caucasian) was strongly associated with a predisposition to
Barret’s oesophagus, finding an OR of 1.38 in males and 1.11 in females; interestingly,
the susceptibility to OAC also increases in individuals homozygous for rs9257809 with an
OR of 1.12 (Sex corrected) against heterozygous wildtype-variant with an OR of 0.79 (Sex
corrected) (197, 198)
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Overall, research using multi-omics datasets, into APM defects in OAC is lacking, and
many core components of the MHC | and Il pathways are yet to be fully investigated for

defects in OAC. One aim of this research is to address this.

In ESCC, defects in APM pathways are significantly more elucidated than in OAC. Within
ESCC, studies have explored the role of APM defects in risk, immune response, prognosis,
biological regulation, treatment, progression, and carcinogenesis. For example, a few
studies have implicated high expression of HLA-G in poorer patient outcomes, while
another study associated a high expression of HLA-I and HLA-F with cancer risk and
poorer overall survival (199-201). Other APM defects have also been associated with
ESCC carcinogenesis. Interestingly, Human Papilloma Virus (HPV) infection has been
associated with HLA-DRB1 alleles relating to carcinogenesis; HPV has also been shown to
regulate the methylation and expression of HLA-DQB1 further associated with ESCC

cancer risk and poor patient outcomes (202-204).

Overall, the literature investigating APM defects in ESCC is significantly more extensive
than OAC, demonstrated by a basic literature search (Figure 12); these research papers
have discovered several prognostically relevant defects, highlighting a need for further

investigation in the APM defects of OAC.
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Literature review: Antigen presentation
and Cesophageal cancer

150

100+

Number of
Publications

Figure 12 A bar chart representing literature search. Conducted (Date: 27/02/2023) on

the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/) using search terms for

OAC and ESCC (“Oesophageal Adenocarcinoma” OR “Oesophageal Squamous Cell

Carcinoma” OR “Oesophageal cancer” AND (Antigen presentation” OR MHC OR HLA).

The hits were filtered to primary research articles and reviewed individual to affirm

relevance to the antigen presentation and histological types of oesophageal cancer. The

findings of this literature search are displayed above.
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1.13 Research hypotheses, aims and objectives.

Prior research has indicated a role of APM alterations in patient outcomes in several
cancers, including gastric and OSCC; however, the current literature has not explored

APM alterations in OAC and their impact on patient outcomes.

Overall hypothesis: ‘The tumour micro-environment is a determinant of antigen

presentation and immune response in oesophageal adenocarcinoma.’

Thereby, forms the following aims and objectives:

Aim 1 (Results Chapter 3): Characterisation of the genetic and transcriptomic landscape

of Antigen Processing Machinery (APM) and MHC | & Il pathway abnormalities (‘defects’)
in OAC and their clinical relevance within two published genomic datasets; The Cancer
Genome Atlas (TCGA) and Oesophageal cancer clinical and molecular stratification

(OCCAMS) programs.

Objective 1a: TCGA and ICGC datasets will be analysed to measure the frequency of APM
candidate mutation, copy-number changes, and differential expression from normal
oesophageal mucosa; describing known somatic APM genomic events via COSMIC,
regarding the background literature and survival outcomes.

Objective 1b: TCGA and OCCAMS datasets will be analysed using maximally selected rank
statistics optimal cut-offs to measure the impact of APM candidate expression on overall
survival in univariate and multivariate analysis.

Objective 1c: TCGA and OCCAMS datasets will be analysed using correlation analysis to

determine the key regulatory factors associated to APM candidate expression.

Aim 2 (Results Chapter 4): Investigate immune infiltrate and activity in OAC and/ or

recurrent molecular defects in APM/ MHC | & Il pathways by digital cytometry utilising

deconvolution analysis of bulk transcriptomic data.

Objective 2a: Characterise the immune cell subpopulations in OAC with our cohorts using

CIBERSORT deconvolution and compare to known published immune populations in OAC.
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Objective 2b: Assess the impact of antigen processing machinery defects identified by
the chapter 3 datamining analysis on the immune cell subpopulations our OAC cohorts
(TCGA and OCCAMS).

Objective 2c: Determine the prognostic value of antigen processing machinery defects in

combination with immune cell distributions.

Aim 3 (Results Chapter 5): Validate the clinical significance of APM, MHC | & Il expression

and immune cell infiltrate in oesophageal adenocarcinoma by immunohistochemistry.

Objective 3a: Immune and APM protein staining data on a Southampton OAC TMA
series, will be analysed to measure the level OACT cell infiltrate in tumour cores,
determining the variance in marker expression and to valid my observations from Aims 1
& 2.

Objective 3b: APM staining scores and immune density data will be collated to identify
significant correlations between APM protein expression and T cell density.

Objective 3c: APM staining scores and immune density data will be analysed with
maximally selected rank statistics optimal cut-offs to measure the impact of APM protein
expression on patient outcomes (constructing Univariate and Multivariate models for
Overall survival, disease-free survival, and cancer-specific survival and important clinical

co-variates).

Aim 4 (Results Chapter 6): Model the regulatory role of CSDE1 expression on

prognostically significant APM genes in OAC cancer cell lines by transfection

knockdown/overexpression of CSDE1.

Objective 4a: Knockdown/overexpression of CSDE1 will be performed via siRNA and

validated at the mRNA and protein level in OAC cell lines.
Objective 4b: MHC class | mRNA and protein expression levels will be measured in

knockdown/overexpression CSDE1 cell models, determining the effect of CSDE1

expression on MHC class | expression.
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Objective 4c: phosphorylation status of STAT1 protein levels will be measured in OAC cell
lines to determine the effect of altered CSDE1 expression on the activation of the

JAK/STAT signalling pathway.

Objective 4d: CSDE1 mRNA expression will be repartitioned into single cell populations
from single-cell RNA sequencing data generated from primary human tumour tissue to
determine whether CSDE1 is over expressed in OAC cancer cells compared to normal

cells.
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Chapter 2 General Materials and Methods

2.1 Download and filtering TCGA data.

Data was selected and downloaded directly from the TCGA repository

(https://portal.gdc.cancer.gov/) using the TCGAbiolinks R package to specifically access

the TCGA-ESCA project for mutation, copy-number variation and expression counts data;
the data was filtered to cases of OAC or OSCC by querying subtypes aquire patient
barcodes for each subtype (205). Data was queried and downloaded as a summarised
experiment with attached relevant clinical data. File formats for downloaded TCGA data
were: mutation as MAF format, expression counts as summarised experiment, copy-

number variation as summarised experiment.

2.1.1 Clinical

Clinical data was quality controlled to determine the completeness of the data, observing
patient follow-up data, vital status, staging, sex, age, co-morbidity (Weight, smoker
status, alcohol history), grading/differentiation status; cases without this required data

was excluded from analysis.

2.1.2 Mutation

Mutation data was first quality controlled to remove duplicated mutations and filtered to
the cases of OAC using the patient barcodes from the filtered clinical data. Further
quality inspection compared the known mutational landscape of OAC from literature to a
summarised MAF using a TiTv plot which classifies Single Nucleotide Variants into
Transitions and Transversions and top mutated genes. Mutation data was then
processed using MAFtools into subsetted MAF files comprised of the MAF data for our
gene candidate list and known driver genes in OAC for ease of handling. Using the
summarised MAF data the mutations per sample was extracted to highlight hypermuted

cases. Mutation data was visualised using Oncoplots for our subsetted MAF files and
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annotated with the mutation per sample per patient column extracted from the earlier

summarise MAF.

213 Copy-number

Copy-number variation was quality controlled by TCGAs SNP 6.0 pipeline quality control
metrics at two stages using signal/noise ratio and number of segments, samples with
outlier values were excluded by the TCGA study. Further quality control was conducted
by comparing the summarised copy-number calls to known copy number alterations in
OAC. Copy number data was then paired with clinical annotations for stage, BMI
category, smoking, and alcohol history, ethnicity, and gender. Visualisation of copy
number data was conducted using Oncoprints for absolute copy number calls with
annotated clinical features mention above. Further visualisation focused on viewing the
copy number segment data using IGV viewer to observe the complexity of copy-number

segments on chromosome 6.

214 RNA Expression

Expression data was quality controlled by visualising library sizes, by filtering out non-
expressed genes, visualising count distributions using DEseq2 both before and after TMM
(Trimmed Mean of M) normalisation of the RNA-seq counts. Expression data was
processed as a summarised experiment using EdgeR to normalise the samples by TMM.
Next the TMM normalised counts were processed by filtering the count to our candidate
list and known drivers, these filtered counts were processed for clustering and PCA
analysis; expression data was combined with GTex normal oesophageal mucosa samples
and normalised to allow for differential expression analysis visualised by volcano plots.
Further processing mated the clinical data to the TMM counts to allow for survival
analysis using survminer() R program and maximally Selected Rank Statistics (206).
Visualisation was conducted using heatmaps to visualise the clustering of expression of
APM genes across the cohort; survival data was visualised in forest plot for CoxPH
analysis and Kaplan-Meier plots for survival analysis. Scripts for data mining analysis of

TCGA data are made available on GitHub (https://github.com/wp1g19/0AC-Thesis-

Antigen-processing-machinery-and-the-immune-microenvironment).
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Chapter 2

2.2 Download and filtering ICGC data.
221 Download

ICGC ESAD project data (release 28) was directly downloaded from the ICGC portal

(https://dcc.icgc.org/). Data downloaded included simple somatic mutation files, copy

number somatic mutation files and donor clinical files.

e Clinical
Patient clinical was quality controlled for complete clinical data on follow up times, vital

times, staging, gender, age, smoking, and alcohol history.

e Mutation
Mutation data first processed from the simple somatic mutation file format to the MAF
format using MAFtools on iridis 4 (script available at https://github.com/wp1g19/0AC-
Thesis-Antigen-processing-machinery-and-the-immune-microenvironment). After MAF
format conversion the MAF file was quality controlled to remove duplicate mutations
and summarised for quality inspection comparing the known mutational landscape of
OAC from literature to a summarised MAF using a TiTv plot which classifies Single
Nucleotide Variants into Transitions and Transversions and top mutated genes. Further
processing extracted the mutation count per sample from the summarised MAF file.
Mutation data was visualised into an Oncoplots in combination with copy-number
variation data and annotated with total mutation count per patient to identify
hypermutable cases. Copy-number quality control of copy-number data was conducted
by removing duplicated absolute copy number calls and by comparing the summarised
copy-number calls to known copy number alterations in OAC. Copy-number data as copy
number somatic mutation files were collated with the MAF mutation file using MAFtools

then visualised by Oncoplots with annotated total mutation count per patient sample.

2.3 Download and filtering OCCAMS data.

OCCAMs expression RNA-seq data was retrieved from the Southampton Underwood
group filestore in RNA count file format, access to this data can be obtained directly from

ICGC under a DACO application (https://daco.icgc.org/). Clinical data was also obtained

from the Underwood group filestore but can be openly accessed via the ICGC portal.
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Firstly, clinical data was filtered for tumour samples with complete clinical data on follow
up times, vital status, staging, age, gender, smoking, and alcohol history. RNA-seq count
files from OCCAMs were collated together using R cbind() functions and filtered to the
quality controlled clinical data. Expression data was quality controlled by visualising
library sizes, by filtering out non-expressed genes, visualising count distributions using
DEseq?2 both before and after TMM (Trimmed Mean of M) normalisation of the RNA-seq

counts.

e Clinical
OCCAMS Patient clinical obtained via the Underwood laboratory then quality controlled
for complete clinical data on follow up times, vital times, staging, gender, age, smoking,

and alcohol history.

e RNA Expression

RNA-seq expression data from OCCAMS was combined with TCGA expression data after
TMM normalisation using Combat-seq was processed using PCa analysis and hierarchal
clustering with Euclidean distance which was visualised by heatmaps (207). Further
processing combined OCCAMS/TCGA expression data with GTex normal oesophageal
mucosa samples for differential expression analysis using EdgeR. For survival analysis the
clinical data was integrated into the normalised counts and analysed using CoxPH
analysis besides survival analysis with maximally Selected Rank Statistics optimal cut
points visualised by forest plots and Kaplan-Meier plots, respectively. Multivariate
analysis was conducted using a CoxPH model with known prognostic clinical factors
ascertained from the 551 multivariate model (differentiation status, sex, age, and

treatment response).

24 Survival analysis

Survival analysis was conducted using R (4.2.1) employing Maximally ranked statistics
from the Maxstat package (determines the lowest p value comparing survival between

two groups with minimum proportions to maintain power) before conducting CoxPH
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univariate and multivariate survival using the finalfit() package in R (208, 209). This

approach was employed to formulate:

64

e Overall survival (OS) time (Months) which calculates the survival time of a patient
within the cohort.

e Cancer-specific survival (CSS) which excludes the impact of death events not
related to the cancer such as surgical complications.

e Disease-free survival (DFS) which details the length of time between treatment
and disease recurrence/progression.

Multivariate CoxPH analysis clinical model is constructed using key clinical features

including TNM staging, Age and Sex as used in prior studies employing the backwards

elimination model (210).



Chapter 3 Survival differences via expression of curated
APM gene candidates was determined using the
landscape of genomic defects of antigen presentation

machinery genes in OAC.

3.1 Introduction

Exploring the published literature identified a significant knowledge gap surrounding the
genomic landscape of APM defects in OAC and their association to altered TIME immune
distributions and clinical outcomes. To address the knowledge gap established in my
literature review | set an experimental hypothesis: ‘Genomic defects in antigen
processing machinery of oesophageal adenocarcinoma are dysregulated and associate
with clinical outcomes.’ To address this hypothesis, | selected two large OAC genomic
datasets (TCGA and ICGC/OCCAMS) to datamined the landscape of APM genomic was
performed to ascertain the incidence of genomic events in my APM gene candidates and
their respective impact on overall survival.

Current literature on the landscape of APM component defects in OAC is severely lacking
compared to other cancers, this leaves a knowledge gap on the details of APM
components and their associations to the TIME immune cell distributions and overall
survival. Using external references which demonstrate APM defects impact the TIME,
this study hypothesises that ‘The tumour micro-environment is a determinant of antigen
presentation and immune response in oesophageal adenocarcinoma.’ To address our
primary hypothesis, we will first data mine publicly available datasets to discover the
landscape of APM defects and their associations to the TIME immune cell distributions

and overall survival.

3.1.1 Antigen presentation and known pathway defects in OAC.

Antigen presentation is a key function within host immunity for the recognition of cancer
cells as T cells may act to destroy infected host cells through the specific recognition of
antigens presented on antigen presentation molecules on the cell surface. Upon specific
recognition and with the co-stimulatory signal, the T cell may activate and direct

cytotoxicity towards the infected cell, assisting in the clearance of infection. Because of
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its significant role in immune surveillance and its potential for anti-tumoral immunity,
antigen presentation pathway components are often somatically targeted by cancer to
evade immune destruction, these immune evasion mechanisms are discussed below

categorised by pathway and function in context to OAC and other cancers.

3.1.2 MHC | endogenous pathway

This pathway is crucial for T cell recognition of cancer, presenting endogenous peptides
to CD8+ T lymphocytes for recognition of cancer antigens which results in T cell
activation, expansion and anti-tumoral immune response. This pathway is composed of
several key components which can be divided into differing functions allowing the
process to present peptides on HLA molecules to CD8+ T lymphocytes.

Firstly, several genes participate in the assembly of the MHC | loading complex, these
include the major HLA genes (HLA-A/B/C/E/G) as well as CALR, CANX, B2M, ERp57,
ERAP1, ERAP2, TAPBPL and TAPBP. Genes involved in the assembly of the MHC | loading
complex are important for transport of the HLA molecule to the TAP transporter in the
endoplasmic reticulum preparing the molecule for peptide binding and eventual travel to
the cell surface via the Golgi Apparatus.

Defects (expression, mutation, copy number alteration) among genes required for MHC |
loading complex assembly can significantly impact the pathway impeding peptide loading
to the HLA peptide binding site. Defects in this subgroup of MHC | genes in OAC have not
been explored in the literature, with a singular reference to B2M as a novel driver gene in
OAC in the 551 OCCAMS study. This mutation was specifically associated with
hypermutated cases noting a three-way association among hypermutation, Wnt
activation and loss of immune-signalling genes including B2ZM which has been prior linked
to immune escape in colorectal cancer. This suggests an acquired immune evasion
mechanism to prevent immune surveillance for hypermutated tumours (176, 198-200).
The 551 OCCAMS study findings suggest our data mining should aim to explore the
prevalence of hypermutable cases with B2M mutations as this could be a recurrent

immune evasion mechanism implemented by OAC tumours.

Other cancers have identified defects in MHC | genes involved in MHC | loading complex
assembly. For example, TAPBP downregulation has been found in OSCC cell lines and

triple-negative breast cancer, with the impact on the immune microenvironment
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demonstrated in colorectal cancer indicating loss of Tapasin correlates with diminished

CD8+ T cell populations and disease progression (140-142).

Interestingly, B2M mutation defects has been identified outside of OAC with a pan-cancer
study using The Cancer Genome Atlas (TCGA) identified B2M mutations reduced the
overall level of cell surface MHC | molecules and reduced levels of cytotoxicity; B2M
mutation demonstrates defects in APM components which function to assemble the MHC
| loading complex may act to reduce antigen presentation of cancer antigens via
impedance of MHC | loading complex assembly, preventing the surface expression of
MHC | antigen presentation molecules.

The next category of MHC | genes are classified as genes functioning in peptide transport
into the endoplasmic reticulum lumen. This category encompasses two key genes TAP1
and TAP2, these genes functions together to form the Transporter associated with
antigen processing protein complex which acts to transport cytosolic endogenous
peptides into the lumen of the endoplasmic reticulum in proximity to the MHC | loading
complex. Defects in TAP1 have been noted in OAC with high expression of TAP1
correlating to significantly shorter survival times in a study of 51 patients (189). TAP2 has
also been noted to possess clinical prognostic value in OAC with reduced expression of
TAP2 due to increased MIR125a-5p and MIR148a-3p expression associated to poor
patients’ outcomes (189). The findings from the existing literature suggests that the RNA
expression of TAP1 and TAP2 should be explored to investigate the potential prognostic
value in our large datasets.

The final sub-category of MHC | genes are defined by their function in peptide generation
and trimming, these include ERAP1, ERAP2, PSMB9, PSMB10, PSMBS; these genes in
prior publications have demonstrated a significant impact on the peptide repertoire
available for antigen presentation, thereby they may be somatically targeted to reduce
cancer antigen presentation. There is a lack of knowledge of the impact of defects within
this sub-category in OAC, conversely, in other cancers these genes have been associated
to prognostic value for overall survival. For example, ERAP2 loss of expression was
identified in liver carcinomas and was associated to lack of MHC | surface molecules,
whereas PSMB9 over-expression in melanoma patients has been correlated to greater
survival and improved response to immune-checkpoint inhibitors (157, 201). Combined,
these findings suggest exploring the expression profile of these genes involved in peptide

generation may have prognostic value in OAC.
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Overall, the MHC | endogenous pathway is somatically downregulated in other cancers
(0-93%), however, there is a significant knowledge gap in the prevalence and prognostic
values of MHC | APM defects in OAC, forming a research goal to identify the incidence of
defects previously identified in OAC and other cancers and assess them for clinical

prognostic value (211).

3.1.3 MHC Il pathway

This pathway is also known as the exogenous pathway is characterised by the display of
exogenous peptides on MHC Il molecules to CD4+ T cells. MHC Il pathways are primarily
expressed by professional antigen presenting cells, such as dendritic cells and
macrophages, as well as some endothelial cells, thymic epithelial cells, and B cells.
Targeting cancer cells via MHC Il is less direct than the MHC | pathway, however, a known
mechanism which professional antigen presentation cells (APCs) may help target cancers
cells occurs via APCs engulfing peptides from fragments of dead cancer cells or secreted
tumour specific antigens (202). MHC Il components can be divided into sub-category
based on their similar functions which will be explored below.

Firstly, genes which function solely in the assembly, stabilisation and loading of the MHC
Il loading complex, which includes HLA-DR, HLA-DQ, HLA-DP, CD74, HLA-DM and HLA-DO.
Exploration of the literature identified several defects possessing prognostic value in
other cancers yet yielded no results on the prognostic value of these defects in OAC. An
example of these defects is found in paediatric adrenocortical tumours where low
expression HLA-DR and HLA-DP results in poor prognosis (162). A further example is
found in HLA-DM which is found under-expressed in B-Cell ymphoma and head and neck
squamous cell carcinoma cell which showed impeded immune recognition in B-cell
lymphomas (159, 160).

The second sub-category includes genes which function in peptide generation, including
LGMN, IFI30, CTSS and CTSL. The prognostic role of these genes in cancer immunity is
more ambiguous because of the multiple functional roles these genes. For example, IFI30
expression was associated with enhanced leucocyte mediated immune and inflammatory
response in Glioblastoma. However, within the same study /F/30 was found to activate
IL6-STAT6 signal pathway which has been linked to increased migration and invasion and
metastasis in colorectal cancers (203). Another example is found is GILT expression which

was crucial for optimal presentation of the melanoma antigen TRP1 in one study. In
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another absence of GILT was associated to poor patient survival in breast cancer
patients. However, another dual function arises as GILT also performs proliferation
inhibiting functions with the absence of GILT was positively correlated with adverse
characteristics of breast cancers, such as histological type, tumour size, lymph nodes
status, and pTNM stage (174).

These genes highlight the need for quality control and cautious evaluation of prognostic
value, as the impact on clinical outcome may not strictly relate to defective antigen
presentation.

Overall, the impact of MHC Il defects in cancer in the literature appear to be less
impactful on clinical outcomes and more infrequent, with cancer mostly somatically
targeting candidates in the MHC | pathway. MHC Il defects have demonstrated impact in
other cancers yet the impact of said defects in OAC is currently unknown forming a key

knowledge gap which this study aims to address.

3.14 Alternative processing of cancer antigens

Antigen presentation mechanisms are not strictly restricted to the MHC | endogenous
and MHC Il exogenous pathways, with alternative processing pathways which may allow
for cancer antigen recognition. One alternative pathway involves the MR1 gene which
has been demonstrated to be cable of presenting cancer antigens to MR1 restricted T
cells able to recognise pan-cancer (204). Despite the keen interest in MR1-restricted T
cell immunotherapies the expression of MR1 in cancers especially in OAC is not
documented. Therefore, understanding the landscape of MR1 defects plus expression
may function as both a prognostic and stratification tool for determining ideal candidates

for MR1-restricted T cell therapies in future.

An additional antigen presentation pathway centres around the CD1 family of genes
which present lipid molecules as opposed to the protein peptide fragments presented by
the MHC | and Il pathways. Interestingly, natural killer cells (NKT) are CD1D-restricted
cells capable of recognising cancer-specific lipids bound to CD1D molecules, and alter the
TIME by killing TAMs and altering the activity of effects of CD1d+ myeloid-derived
suppressor cells (MDSCs) mediated immune suppression preventing immune suppression

(205-207).
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Alternative antigen processing pathways have demonstrated impact in the literature
from current NKT cell responses reshaping the immunosuppressive microenvironment
via lipid antigen recognition to a potential pan-cancer therapy using MR1-restricted T cell
therapies. From the literature the expression and genomic defects of both CD1 family
and MR1 genes will be explored as they may possess impact on clinical outcomes in OAC,

as they have demonstrated in other cancers.

3.15 Hypothesis and research objectives

The literature search (in Section 2.2) identified a specific knowledge gap in the landmark
of APM gene defects in OAC by expression, mutation, and copy-number, whereas the in
OSCC several published papers were found in HLA molecules (See Figure 12).
Furthermore, the few publications focusing on APM defects in OAC did not focus on their
prognostic value and utility, leaving specific knowledge gaps which this chapter will

explore to address the following hypothesis, aims and objectives.

Hypothesis: ‘Antigen processing machinery of oesophageal adenocarcinoma are

dysregulated and associate with clinical outcomes.’

Aim 1: Characterisation of the genetic and transcriptomic landscape of Antigen
Processing Machinery (APM) and MHC | & Il pathway abnormalities (‘defects’) in OAC and
their clinical relevance within two published genomic datasets; The Cancer Genome Atlas

(TCGA) and Oesophageal cancer clinical and molecular stratification (OCCAMS) programs.

Objective 1a: TCGA and ICGC datasets will be analysed to measure the frequency of APM
candidate mutation, copy-number changes, and differential expression from normal
oesophageal mucosa; describing known somatic APM genomic events via COSMIC,
regarding the background literature and survival outcomes.

Objective 1b: TCGA and OCCAMS datasets will be analysed using maximally selected rank
statistics optimal cut-offs to measure the impact of APM candidate expression on overall
survival in univariate and multivariate analysis.

Objective 1c: TCGA and OCCAMS datasets will be analysed using correlation analysis to

determine the key regulatory factors associated to APM candidate expression.
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3.2 Methodology

3.2.1 Datasets

To address the assessment of the incidence and clinical prognostic value of defects in
APM genes of OAC large genomic datasets were employed to data mine the genomic
information the determine the incidence of defects within a cohort of OAC patients.
Datasets were selected based on availability, cohort size and quality of clinical data, from
this criterion two OAC datasets, TCGA and ICGC/OCCAMS and normal stomach tissue

dataset, GTEx was selected.

The TCGA project is a publicly available pan-cancer data repository which has molecularly
characterized over 20,000 primary cancer and matched normal samples spanning 33
cancer types, generating genomic, epigenomic, transcriptomic, and proteomic data (212).
For our interests, the TCGA-ESCA dataset will allow us to explore OAC and OSCC mutation
(MAF: Mutect2), copy-number variation, methylation (Affymetrix array) and mRNA
expression (Raw counts) data from 187 patients (81 OAC; 90 OSCC) .

The International Cancer Genome Consortium (ICGC) is also a pan-cancer data repository
which has collated clinical and molecular data from over 100,000 cancer patients
participating in therapeutic clinical trials from 84 worldwide cancer projects, including
OCCAMs project (184, 213). ICGC data is partially available to the public with mutation
and absolute copy number calls being open access, however, access to expression RNA-

seq data is closed access and requires application through DACO (https://daco.icgc.org/).

For this study we will access the ESAD-UK dataset within the ICGC project comprised of
409 OAC patient samples from UK sites, matching our available RNA-seq expression data

from 152 OCCAMS patient samples.

GTEx standing for Genotype-Tissue Expression project, collects post-mortem gene RNA-
seq expression data from multiple regions of the human body, including organs such as
heart, lung, liver, brain, and among others. From the analysis presented here, GTEx

stomach tissue comprising 324 normal stomach tissue samples with mRNA sequencing
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data as raw counts (Open Access available from

(https://gtexportal.org/home/tissue/Stomach?tissueSelect=Stomach ).

3.2.2 Power and sample size

| used power and sample size calculator (http://powerandsamplesize.com/Calculators/)

to assess the power of discovery in the cohorts using a prior publication exploring TCGA
pan cancer power for mutation (214). The datasets were quality controls for complete
clinical characteristics of age, sex and pTNM staging data, then combined in R to achieve

power of discovery for mutation, copy-number, and expression data.

3.23 Mutation/copy number analysis

Mutation data from TCGA in Mutation Annotation Format (MAF) format was queried and
downloaded into an R environment using TCGAbiolinks, then read imported into
MAFtools (215). Meanwhile, ICGC ESDA project simple-somatic-mutation data was
downloaded from the ICGC portal (Release 28) and converted into MAF format before
merging the two OAC dataset MAF files with MAFtools. Mutation frequency was
visualised using Oncoplots whilst mutation burden of OAC samples with/without APM
mutations was exported to GraphPad prism from visualisation and statistic comparison

using Mann-Whitney U tests.

3.24 Differential expression analysis

To achieve differential expression analysis (DEA), RNA-seq data was obtained via an
additional cohort of normal gastro-oesophageal junction samples (n=375) from the GTEx
dataset within the Recount2 project. The normal RNA-seq data was imported into R
using the Recount package, batch corrected to the TCGA/OCCAMS RNA-seq data using
ComBat in TMM format; batch corrected RNA-seq data was used for DEA analysis using
the DEseq2 package and visualised by EnhancedVolcano (207, 216-219). Batch corrected

OAC and OSCC data were also used in a DEA using the methods above.

3.25 Survival analysis (MRNA)

MRNA expression counts from TCGA and OCCAMS were converted to TMM then batch
corrected using ComBat (selected after comparing batch correction between limma and

ComBat via PCA), before mating with clinical data complete for Overall survival time
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(Months), survival status, cancer-specific survival, recurrence status, recurrence time
(Months), TNM staging, Age and Sex (207). Survival differences via expression of curated
APM gene candidates was determined using Maximally ranked statistics from the Maxstat
package (determines the lowest p value comparing survival between two groups with
minimum proportions to maintain power) before conducting CoxPH univariate and
multivariate survival in a backwards elimination model via the finalfit() package in R (208,

209).

3.2.6 Methylation analysis.

Methylation data was only obtainable from the TCGA OAC dataset, this data was obtained
using the Shiny Methylation Analysis Resource Tool (SMART) (Available from:

http://www.bioinfo-zs.com/smartapp/) for the entire TCGA-ESCA dataset; this tool was

employed because of its ability to integrate multi-omics and clinical data with DNA
methylation while avoiding the computation and time cost in aligning methylation data
from TCGA (220). Methylation analysis target genes were selected from APM candidate
genes and APM gene expression regulators possessing clinical survival associations at the
MRNA expression level. CpGs were selected on a per gene basis for CpG with significantly
different methylation compared to normal oesophageal tissue and with relevance to their
respective gene’s expression (i.e., CpG island within a proximal promoter of the gene of

interest).

Methylation of each gene was visualised in GraphPad prism 10

(https://www.graphpad.com/features) comparing OAC to normal tissue. Additionally,

differentially methylated CpGs within the HLA locus of chromosome 6 were queried in

SMART and presented in table form.

3.2.7 Statistical analysis

Chi-squared and Anova were performed in Graphpad prism 10 to compare the cohorts
characteristics including Age, sex and pTNM staging to determine whether cohorts
possess any significant differences between the datasets implemented in the analysis. T
tests were implemented using Graphpad prism 10 to compare the mutation rate between
APM mutated and non-APM mutated groups, to compare the methylation values for APM

genes.
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33 Results

331 Description of the study cohorts.

Firstly, | explored the cohort characteristics for my analysis across age, sex and pTNM
clinical features. These clinical features were selected to describe the cohort based upon
matching available characteristics across the different projects and their associated value
within clinical practice. Cohorts were combined to provide the greatest sample size
dependant on analysis. These combined cohorts included TCGA/OCCAMS for mRNA
gene expression analysis, TCGA/ICGC employed for mutation/copy number analysis
(Table 6). Additionally, individual cohorts were assessed for each analysis type
(expression, copy-number, mutation and methylation, Table 6).

For age, an average of 65-67 years were present across the cohorts and possessed a wide
range at their extremes of 27-87 years, using an unpaired t-test confirmed there was no
statistical difference in age among in comparing the cohorts and combined cohorts (p =
0.65) (Table 6).

The youngest patient among the cohorts was 27 years old present in the TCGA-ESCA
dataset and was of interest as OAC presents as a disease of age. This specific case
presents as a 27-year-old male diagnosed with Stage IIIA OAC which received curative
chemoradiotherapy, however, exploring the new tumour event data identified a distant
metastasis in the liver 160 days into treatment.

To address the early onset of disease comparative to the rest of my cohort and external
cohort | observed the patient possessed a history of reflux disease and was diagnosed
prior with Barrett’s oesophagus which may indicate the reason for the early onset of
OAC.

Sex in the incidence of OAC has prior been reported as a male dominant disease and my
cohorts exhibited this similar male dominance, among the OAC cohort the Male: Female
ratio varied minorly between the OAC cohorts from 79.4-87%:13-20.6% (Male: Female),
using a Chi-squared analysis these minor difference were determined to be non-
significant (p = 0.96:0.92; Male: Female) (221) (Table 6).

OAC tumours are most frequently diagnosed in pT 3, denoted in several studies, my OAC
cohorts confirmed this trend with the pT2-4 being the most frequent reported diagnosis
(pT2-4: 49.5-82.9%) compared to the reported diagnosis of pT0-1 (pT0-1: 5.1-24.6%) and
unknown pT-stage (pTNM: 12-30.9%), among the three pT stage categories both pT0-1
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and pT2-4 approached a significant difference (p=0.086;0.076) but were not significantly
different according to Chi-Squared analysis (222) (Table 6).

OAC tumours are often diagnosed with positive regional nodal spread, according to the
literature, within my OAC cohorts tumour positive lymph nodes were present in majority
of cases with a positive frequency (pN1-3) ranging from 40.2-63.2%, negative nodal
involved case frequency ranging from 23.2-29.9% and unknown lymph node involved
cases ranging from 9-26.1%, no statistically significant differences between the cohorts
was observed in Chi-Squared analysis (pNO p=0.99; pN1-3 p=0.33; pNNA p=0.14) (222)
(Table 6).

OAC is often diagnosed in the later stages often resulting in a relatively high metastasis
frequency of ~¥30% compared to other diseases. Among my selected OAC cohorts the
rate of metastasis is infrequent compared to external studies (pM1:0.1-7.3%), however
the frequency of non-metastasised OAC cases remains like external studies in three
cohorts (pMO0 34.7-77%) (Table 6). The low non-metastasized OAC case frequency is
particularly observed in the OCCAMS cohort (pM0:37.4%) also impacting the
TCGA/OCCAMS combined cohort, these differences in metastasis rates among the OAC
cohorts was determine as statistically significant by Chi-Squared analysis in pMO0 and pM-
NA reported cases (pMO: p=0.0045;pMNA: p=0.0008), this suggests a potential input

error in the OCCAMS dataset for metastasis at pathological diagnosis (Table 6).
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Table 6 Cohort characteristics across TCGA, OCCAMS and ICGC, plus combinations of

TCGA/OCCAMS and TCGA/ICGC.

TOTAL/% TOTAL/% CHI-
TOTAL/% TOTAL/% TOTAL/%
(COMBINED (COMBINED SQUARE
PARAMETER (TCGA) (OCCAMS) (ICGC)
N = 69 N = 107 N = 409 TCGA/OCCAMS) TCGAI/ICGC) (X2)/ANOVA
N =176 N =478 P VALUE
AGE (YEARS) 67.2 66.5 (Range 65.9 66.8 (Range 27-  66.6 (Range 0.65
(Range 45.1-87.7) (Range 87.7) 27-87)
28-87) 36-87)
SEX
MALE 60 (87%) 85 (79.4%) 351 145 (82.4%) 411 (86%) 0.26 (0.99)
FEMALE | 9 (13%) 22 (20.6%) (85.8%) 31(17.6%) 67 (14%) 0.96 (0.92)
58
(14.2%)
PT
0-1 17 21 (19.6%) 21 (5.1%) 38 (21.6%) 38 (7.9%) 8.2 (0.086)
2.4 (24.6%) 53 (49.5%) 339 91 (51.7%) 377 (78.9%) 8.5 (0.076)
NA 38 33 (30.9%) (82.9%) 47 (26.7%) 63 (13.2%) 5.0 (0.29)
(55.1%) 49 (12%)
14
(20.3%)
PN
0 16 32 (29.9%) 109 48 (27.3%) 125 (26.2%) 0.36 (0.99)
1-3 (23.2%) 43 (40.2%) (26.7%) 82 (46.6%) 302 (63.2%) 4.6 (0.33)
NA 39 32 (29.9%) 263 46 (26.1%) 51 (10.6%) 7.0 (0.14)
(56.5%) (64.3%)
14 37 (9%)
(20.3%)
PM
37
0 (53.6%) 40 (37.4%) 331 77 (43.8%) 368 (77%) 15.0
1| 5(7.3%) 1(0.1%) (80.9%) 6 (3.4%) 28 (5.9%) (0.0045)
NA 27 66 (61.7%) 23 (5.6%) 93 (52.8%) 82 (17.1%) 5.3 (0.25)
(39.1%) 55 19.0
(13.5%) (0.0008)

Sex, pT, pN and pM data categorized into discrete values and compared between cohorts using x2 analysis. Age data compared

between cohort using ANOVA. Difference in N number in combined cohorts compared to individual cohort N numbers is due to non-

matching clinical features.
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3.3.2 APM genomic aberrations.

An extremely low incidence of APM mutation occurred within my OAC cohort (ICGC-ESDA
and TCGA-ESCA combined) with 75/502 cases containing an APM mutation across all 46
candidate APM genes (See Figure 13). The highest incidence of mutation occurring in
CD1A/D/C at 2-3% of the entire cohort, though mostly comprised as missense mutations
which were not previously reported in the cosmic database (Figure 13). Although the
noted low mutation rate of APM gene candidates in the combined TCGA-ESCA/ICGC
dataset, several mutations may have a significant impact on the formation of APM
component proteins required for antigen presentation. Additionally, the mutational
burden of OAC tumour samples was significantly greater in samples containing an APM

mutation than those without (See Figure 14).
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Mutation/Copy number Oncoplots for OAC in the combined TCGA-ESCA/ICGC-ESAD cohort.
Depicting the frequency of mutation and type of mutation with the APM candidate genes is

Figure 13

paired with a mutation count above each sample. Mutations plotted to patients (columns)
and genes (rows) with mutation rate display left of each Oncoplot in percentages, total

mutation count of all genes annotated above each patient sample as a bar chart labelled

Mutcount.
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Figure 14 Mutation burden between samples possessing a mutation in APM genes and
those without, statistical comparison via Mann-Whitney U test (p < 0.0001).

B2M mutations (n=4) found in two OAC patients may have a significant impact on the
B2M protein and its function. As displayed in Figure 15 and Table 7, B2M mutations
within one sample (TUMOR SAMPLE BARCODE: TCGA-L5-A40I-01) demonstrated a

mutation within the translation start-site; similar mutations found within this site have
previously been identified in several cancers including haematopoietic and lymphoid

cancers, lung, ovarian, pancreatic, soft tissue, and gastrointestinal cancer (223-234);

additionally, mutations within this site are predicted a high pathogenicity FATHMM score

of 0.86. it is important to note 1 of the 2 samples possessing B2M mutations also

presented with high mutational burden. Within the cohort two multi-hit mutation

events within two ICGC patient samples are found with high mutation burden, including a

nonsense mutation and three frame shift deletions within the C1 domain of the B2M
gene. Furthermore, a frameshift deletion mutation identified within a separate sample

(TCGA-V5-AASX-01) occurs within an S-nitrosylation site likely impacting post-

translational modification (Figure 15; Table 7).
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Figure 15 Lollipop plot of B2ZM mutations in OAC cases within the TCGA-ESCA dataset;

mutation descriptions found in table 7. Plots retrieved from cBioportal.

Table 7 B2M mutation descriptions in OAC cases within the TCGA-ESCA dataset, labelled
to Figure 15.

LABEL SAMPLE CANCER PROTEIN MUTATION TYPE TOTAL

ID TYPE CHANGE MUTATIONS IN
SAMPLE

A TCGA-V5- Oesophageal Y46Cfs*10 FS del 327
AASX-01 Adenocarcinoma

B TCGA-L5- Oesophageal Y83Sfs*19 FS del 2043
A40I1-01 Adenocarcinoma

C TCGA-L5- Oesophageal M1? Stop Codon 2043
A40I1-01 Adenocarcinoma

D TCGA-L5- Oesophageal Y83F Missense 2043
A40I1-01 Adenocarcinoma
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HLA-B mutations were more frequent than B2M mutations in our datasets (Figure 16;
Table 8), with 4/8 mutations predicted to result in loss of function (nonsense and
frameshift), this relates to the literature where in OSCC mutations in the immunoglobulin
C1-set domain effect function by abrogating HLA-B-Tapasin interactions; interestingly, a
single known mutation in HLA-B (c.343+2T>C) was previously identified in colorectal and
stomach cancers being associated to positive selection in immune rich TIMEs (225, 235).
Mutation among APM gene expression regulators is infrequent among my cohort with
the highest frequency occurring in RFXAP with 4 patients consisting of nonsense,
missense, in Frame insertion and a frame shift insertion mutation; unfortunately,
because of the encoding available in the ICGC cohort the nonsense and in Frame

insertion cannot be evaluated qualitatively.
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Figure 16 Lollipop plot of HLA-B mutations in OAC cases within the TCGA-ESCA dataset;

mutation descriptions found in table 8. Plots retrieved from cBioportal.
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Table 8 HLA-B mutation descriptions in ordered by cancer type within the TCGA-ESCA dataset,
labelled to Figure 16, ordered by disease type.

LABEL SAMPLE ID CANCER TYPE PROTEIN MUTATION # MUT IN
CHANGE TYPE SAMPLE

B TCGA-L5- Oesophageal G276* Nonsense 297
A8NJ-01 Adenocarcinoma

C TCGA-V5- Oesophageal G261* Nonsense 327
AASX-01 Adenocarcinoma

G TCGA-L5- Oesophageal D357A Missense 122
A40P-01 Adenocarcinoma

H TCGA-L5- Oesophageal G276V Missense 297
A8NJ-01 Adenocarcinoma

A TCGA-JY- Oesophageal Squamous  E222* Nonsense 168
A93F-01 Cell Carcinoma

D TCGA-VR- Oesophageal Squamous  L17Rfs*82 FSins 117
A8EP-01 Cell Carcinoma

E TCGA-Z6- Oesophageal Squamous  X115_splice Splice 369
AAPN-01 Cell Carcinoma

F TCGA-JY- Oesophageal Squamous  V306F Missense 277
ABFG-01 Cell Carcinoma

The missense mutation in RFXAP occurred within the c-terminal binding domain and
possesses a high PolyPhen score suggesting the mutation is probably damaging (0.998)
but has not been prior described in the COSMIC database; the frame shift insertion
occurs in exon 1 of the RFXAP gene, however, the mutation does not appear in the
COSMIC database. Only 1 missense mutation was detected in /RF1 and CIITA with the
CIITA mutation labelled as benign by PolyPhen (Score of 0.02), the IRF1 mutation could
not be scored because of lack of annotation within the ICGC dataset. NLRC5 4 missense
mutations occur within the ICGC datasets but could not be qualitatively assessed because
of lack of annotation. RFXANK 1 missense mutation occurs in c-terminal binding domain
within the TCGA dataset and scores as benign by PolyPhen (0 score). Only a single CSDE1
missense mutation occurred within the ICGC datasets, lacking annotation for further
analysis. 3 mutations occurred in RFX5 1 splice intron (ICGC), 1 missense mutation

scoring as possibly damaging (0.544), and 1 translation start site mutation (ICGC).
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Comparing the tumour driver genes identified in the Frankell et al article, with my cohort
analysis found several of the associated driver gene mutations were similar in abundance

except for B2M mutation, which did not achieve similar representation (Figure 17) (236).
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Chapter 3

Within the copy number analysis, | observed high genome complexity in copy number
segments in the HLA-locus on chromosome 6 (6p21) with many of the amplified
segments overlapping with the VEGFA gene a known recurrent amplification event in
OAC (Figure 18).

The complexity of copy number segment over the locus was further identified in cases
with copy number segments spanning the HLA-locus displaying co-amplification/deletion
across multiple MHC class | & Il genes present in 7.6% of cases within the TCGA/ICGC
cohort (n =38/502). Because of the complexity in the HLA-locus with the majority of
copy-number events being described as an APM co-amplification/deletion group. The
clinical significance of APM gene copy number events could not be deconvoluted to the
single gene level, meaning survival association were based upon the amplification or
deletion of a group of APM genes; survival analysis of these co-copied groups did not find
any significance differences in overall survival. Next, | assessed the regulators of APM
gene expression, these gene are not located on chromosome 6 avoiding the associated
genomic complexity. Firstly, IRF1 displayed the highest frequency of copy-number
events among the candidate APM gene expression regulators with 46 patients exhibiting
IRF1 copy number events of which only a sole case displayed an amplification event with
the remainder possessing IRF1 deletion. The second highest frequency of copy-number
event among the APM gene expression regulators was found in RFXAP with 43 patients
possessing a copy-number event 25 of which exhibited amplification and 17 deletions.
CIITA copy number events were present in 32 patients with 8 amplification and 24
deletion events. RXANK copy number events occurred in 30 patients of which 24 were
deletion events and 6 amplifications. NLRC5 copy number events were present in 28
patients among these were 26 deletion and 2 amplification events. Within the cohort 27
patients possessed a copy number event in CSDE1 consisting of 18 deletion and 9
amplification events. Finally, 22 patients demonstrated RFX5 copy number events with 4

deletions and 18 amplifications.
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Figure 18: Representative copy number segments in the HLA-locus on chromosome 6 (6p21)
blue and red represents loss and gain respectively, each line on y-axis represents
individual patients.

85



Chapter 3
3.3.3 APM dysregulated mRNA expression.

Differential expression analysis of the TCGA/OCCAMS bulk RNA-seq data (n=176)
identified none of my APM gene candidates were differentially expressed when
comparing to GTEX normal stomach (n=359). Oesophageal mucosa tissue was selected
using prior literature assessing the top varying genes, reduced features from principal
component analysis, and encoded features from an autoencoder neural network (237).
Among the APM gene candidates which were only small fold changes in differential
expression were detected with the greatest increase of expression found in CTSS and
IRF1 (4.07E-02 and 3.19E-02 respectively), however both genes did not achieve
significance; similarly the greatest decrease in expression identified in TAP2 and HLA-
DPA1 (-1.45E-02 and -1.31E-02 respectively) was not significant in my differential
expression analysis (Table 9, Figure 19).

Unfortunately, differential expression analysis between OAC and OSCC did not yield any
significant fold change in the expression of our APM gene candidates, neither achieving a

Log2 fold change greater than +1/-1 nor the p value threshold (See Figure 20).

86



Table 9 A table of differential expression results for our APM candidate genes with log
fold change of gene expression comparing OAC to normal stomach tissue.

GENE BASEMEAN LOG2FOLDCHANGE LOG2 FOLD WALD PVALUE
CHANGE SE STATISTIC
CTSS 44.983196 4.07E-02 0.109 0.374 0.708
IRF1 43.761558 3.19E-02 0.0791 0.403 0.687
SPPL2A 45.669112 2.40E-02 0.0370 0.648 0.517
CANX 365.66515 2.36E-02 0.0634 0.372 0.710
RFXAP 4.4176 2.31E-02 0.0568 0.406 0.685
CSDE1 504.49757 2.19E-02 0.0509 0.431 0.666
RFX5 37.967755 1.96E-02 0.0404 0.485 0.628
NLRCS5 45.122318 1.64E-02 0.1036 0.158 0.874
ERAP1 59.02741 1.38E-02 0.0413 0.333 0.739
CIITA 40.130435 1.17E-02 0.0661 0.177 0.859
CTSL 57.124888 1.16E-02 0.0815 0.143 0.887
PDIA3 200.54399 9.96E-03 0.0561 0.178 0.859
CD1D 1.002181 9.58E-03 0.142 0.0673 0.946
MR1 22.019528 8.45E-03 0.0255 0.331 0.741
TAPBPL 21.283693 7.81E-03 0.0513 0.152 0.879
TAPBP 157.91175 5.31E-03 0.0455 0.117 0.907
LGMN 62.518148 3.85E-03 0.0466 0.0827 0.934
HLA-C 425.26405 2.12E-03 0.0601 0.0353 0.972
HLA-A 393.5236 2.02E-03 0.0531 0.0380 0.970
HLA-E 481.5501 7.32E-04 0.0426 0.0172 0.986
RFXANK 24.719202 -9.42E-05 0.0356 0.00264 0.998
HLA-B 534.29728 -7.38E-04 0.0647 0.0114 0.991
CD74 441.40637 -1.52E-03 0.0854 0.0178 0.986
HLA-G 6.649073 -2.30E-03 0.0720 -0.0320 0.974
HLA-DMA 25.072684 -3.12E-03 0.0865 0.0360 0.971
B2m 955.77353 -3.46E-03 0.0593 0.0582 0.954
PSMB10 17.868314 -5.32E-03 0.0473 -0.112 0.911
PSMB9 15.42342 -6.70E-03 0.0864 0.0775 0.938
PSMB8 39.852858 -6.76E-03 0.0587 0.115 0.908
CALR 319.23215 -7.02E-03 0.0549 0.127 0.898
TAP1 73.765951 -7.41E-03 0.0715 0.104 0.918
HLA-DRA 138.40034 -8.20E-03 0.143 0.0573 0.954
HLA-DRB1 95.535384 -8.66E-03 0.103 0.0844 0.933
HLA-DPB1 43.172828 -1.09E-02 0.0900 -0.121 0.904
HLA-DVB 13.371499 -1.31E-02 0.0803 0.164 0.870
TAP2 48.822086 -1.45E-02 0.0682 0.213 0.833
HLA-DPA1 66.933144 -2.03E-02 0.124 -0.164 0.870
ERAP2 25.460888 -4.01E-02 0.162 0.248 0.804
HLA-DQB2 3.754546 -4.50E-02 0.148 0.303 0.762
HLA-DQA1 18.632014 -6.43E-02 0.160 0.402 0.688

87



Chapter 3

HLA-DQA2 4.119687 -6.46E-02 0.166 0.389 0.697
HLA-DRB5 39.667806 -1.54E-01 0.197 0.778 0.437
HLA-DOA 7.489424 -1.68E-01 0.177 -0.954 0.340
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Figure 19 Volcano plot of differential expression analysis (DEA). Comparing APM gene
expression between TCGA/OCCAMS tumour samples and GTEx Normal stomach
Samples. log fold change, over -log10 p value, cut-offs: Log2 fold change 0.5, -log10 p

value 10e-5.
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OAC vs OSCC
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Figure 20 Volcano plot of differential expression analysis (DEA). Comparing APM gene
expression between TCGA/OCCAMS tumour samples and TCGA OSCC
samples. log fold change, over -log10 p value, cut-offs: Log2 fold change 0.5, -
log10 p value 10e-5.

3.34 APM genes associated with clinical outcomes and disease progression.

It is unknown whether the level of expression of my APM gene candidates possessed
prognostically significant associations with overall survival. Therefore, | sought to assess
the maximal differences in survival (overall survival, cancer-specific survival, and disease-
free survival) because of APM gene expression, which would allow me to filter out APM
gene expression profiles which are potentially non-informative in OAC. To achieve this, |
explored overall survival with maximally ranked statistics to select high and low survival
expression groups for each APM gene candidate for comparison, producing this analysis
yielded significant differential survival dependent on APM expression. Furthermore, the
significant associations in overall survival, cancer-specific survival and disease-free
survival were evaluated in a multivariate model to determine if the prognostic

significance was independent of prognostic clinical features.
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3.3.5 APM regulators and survival associations

Firstly, four prior mentioned regulators of APM gene expression were associated to
different survival outcomes in my OAC cohort. The high expression group of CSDE1
(n=130) possessed a significant association to poor overall survival in univariate survival
analysis (HR: 1.74, p=0.015). In multivariate survival analysis the significance of the
association between high CSDE1 expression and risk for poor overall survival grew (HR:
2.90, p=0.008) demonstrating itself as an independent prognostic factor (Figure 23, Table
12).

In univariate cancer specific survival analysis (CSS), only the high expression group of
CSDE1 (n=97) associated with poor prognosis with borderline significance (HR: 1.70,
p=0.051), but non-significant by multivariate survival analysis (Table 13). Univariate DFS
analysis identified the low expression group of CSDE1 (n=18) was associated with
increased risk of disease recurrence with high significance (HR: 2.81, p=0.003),
multivariate analysis this association retained high significance and increased in risk 1.6-

fold (HR: 4.39, p=0.015) (Table 14).

The RFX5 gene, an enhanceosome RFX-complex regulator of MHC class | and class I
expression also possessed association to overall survival. The low expression group of
RFX5 (n=138) associated to poor overall survival (HR: 2.10, p=0.013). In univariate CSS
analysis, the low expression group of RFX5 (n=109) associated with poor prognosis (HR:
2.81, p=0.017). Under multivariate analysis this association lost significance (Table 13).
Univariate disease-free survival (DFS) analysis identified the low expression group of
RFX5 (n=108) was associated with increased risk of disease recurrence with high
significance (HR: 2.81, p=0.024), in multivariate analysis this association possessed

borderline significance with similar risk (HR: 2.65, p=0.053) (Table 14).

Additionally, the high expression group of RFXAP (n=105) associated to poorer overall
survival (HR:1.63, p=0.022); in multivariate analysis the only RFX-complex gene to retain
its significance was RFX5 (HR:2.78, p=0.028) with RFXAP expression losing its prognostic
significance (HR:1.01, p=0.987); (Figure 23, Table 12).

90



The fourth APM regulator uncovered as prognostically significant was CITTA, a gene
responsible for expression of MHC class Il genes in professional APCs, of which the low
expression group was associated to poor survival in univariate analysis (HR:1.65,
p=0.016), yet did not remain significant in multivariate survival analysis (HR:1.40,
p=0.323). In univariate CSS analysis the low expression group of CIITA (n=64) associated
with poor prognosis with borderline significance (HR: 1.68, p=0.058), unfortunately
multivariate analysis this association lost significance and inversed the association with

risk (HR: 0.71, p=0.405) (Table 13).

3.3.6 Correlation analysis identifies correspondent expression between APM genes and
APM gene expression regulators.

To explore the potential mechanism between APM gene expression regulators and
survival outcomes | performed a correlation analysis between their expression and the
expression of MHC class | and Il genes. Firstly, within the MHC class | genes CSDE1
presents a significant negative correlation of HLA-A/B/C (p = 0.032, 0.028, 0.014; see
Figure 21), PSMB9 (R = -0.182; p = 0.015; see Figure 21) and TAPBPL (R =-0.176; p = 0.02;
see Figure 21), but a positive correlation with CANX (R = 0.197; p = 0.0086; see Figure 21).
Interestingly, CSDE1 expression also negatively correlates with other APM regulators
including NLRC5, IRF1 and CIITA (p = 0.0046, 0.05, 0.05; see Figure 21).

NLRC5 expression positively correlated to HLA-A/B/C/E, TAP1, TAP2, TAPBP, TAPBPL,
PSMB9/10 expression (p <0.01), and negatively correlated with CANX and CALR
expression (Respectively, R =-0.247, -0.216; p = 0.0009, 0.004; see Figure 21).

IRF1 expression correlated to MHC class | HLAs including HLA-A/B/C/E/G (p < 0.001; see
Figure 21), the Tapasin translocon components TAP1, TAP2, TAPBP and TAPBPL (p <
0.0001; see Figure 21), B2M (R = 0.349; p < 0.0001; see Figure 21) , and finally peptide
generation genes ERAP1, ERAP2 and PSMB8/9/10 (p < 0.0001; see Figure 21).

CIITA expression correlated with MHC class | HLAs HLA-A/B/C/E/G (p < 0.01; see Figure
21), Tapasin translocon components TAP1, TAP2, TAPBP and TAPBPL (p < 0.0001; see
Figure 21), B2M (R = 0.226; p = 0.003; see Figure 21) and peptide generation genes
ERAP2 and PSMB9/10 (p < 0.01; see Figure 21).
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The APM gene expression regulators which found correlation with MHC class || APM
expression included IRF1, RFX5, RFXAP and CIITA. CIITA possessed the strongest positive
correlations with MHC class Il expression in HLA-DMA/DMB, HLA-DOA, HLA-DPA1/B1,
HLA-DRA, HLA-DQA1/A2/B2, and HLA-DRB1/B5 (p < 0.0001; see Figure 22).

RFX5 also positively correlated with MHC class Il HLA expression in HLA-DMA/DMB, HLA-
DOA, HLA-DPA1/B1, HLA-DRA, HLA-DQA1/A2/B2, and HLA-DRB1/B5 (p < 0.05; see Figure
22), as well as, CD74 (R = 0.344; p < 0.001; see Figure 22), and peptide generation genes
CTSS, SPPL2A, and PDIA3 (p < 0.05; see Figure 22). Conversely, RFXAP possessed a
negative correlation with HLA-DMA and LGMN (Respectively, R =-0.160, -0.152; p < 0.05;
see Figure 22).

Finally, IRF1 displayed a positive correlation with MHC class Il HLA expression in HLA-
DMA/DMB, HLA-DOA, HLA-DPA1/B1, HLA-DRA, HLA-DQA1/A2/B2, and HLA-DRB1/B5 (p <
0.001; see Figure 22), CD74 (R = 0.386; p < 0.0001; see Figure 22), and peptide
generation genes CTSS and CTSL (Respectively, R = 0.308, 0.210; p < 0.01; see Figure 22).
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Figure 21 Correlation heatmap of MHC class | expression with APM regulators. Red
circles represent significant correlations (Pearson’s correlation: p < 0.05).
A: MHC class | expression with APM regulators. B: MHC class Il expression
with APM regulators.
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Figure 22 Correlation heatmap of MHC class Il expression with APM regulators. Red
circles represent significant correlations (Pearson’s correlation: p < 0.05). A:
MHC class | expression with APM regulators. B: MHC class Il expression with
APM regulators.

3.3.7 MHC class | APM gene candidates and survival associations

Out of the five examined MHC class | loading complex candidate genes only low HLA-A
expression was associated with altered OS (HR:1.80, p=0.015), CSS (HR: 2.06, p=0.023)
and DFS (HR: 2.25, p=0.021) in the OAC cohort (See Figure 23, Table 12 & 13). However,
the association between poor survival outcomes and low HLA-A expression did not
withstand multivariate model analysis (See Table 12 & 13). Additionally, HLA-B/-E/-G
demonstrated an association with altered CSS (HR: 1.77, p=0.033; HR: 2.09, p=0.036; HR:
1.77, p=0.031) within the OAC cohort (See Table 13). Despite these univariate CSS
findings within HLA-B/-E/-G expression groups, when applied to multivariate survival
analysis the significance was not retained. Furthermore, none of the survival outcomes

were associated with HLA-C expression.
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Examining the six candidate genes known to participate in the assembly of the MHC class
| loading complex, only low CALR expression was associated with both altered OS (HR:
1.91, p=0.018) and CSS (HR: 2.11, p=0.039), these findings retained significance in
multivariate modelling for OS, but not CSS analysis (See Table 12 & 13). Both low
expression of TAPBPL and TAPBP were associated with altered CSS (HR:2.00, p=0.009;
HR:2.20, p=0.014) and DFS (HR:2.05, p=0.036; HR:2.16, p=0.011); only low TAPBP
expression retained significance in multivariate CSS analysis (See, Table 13 & 14).

The remaining three gene candidates participating in MHC class | assembly (B2M, PDIA3

and CANX) did not possess any significant survival associations with OS, CSS or DFS.

Of the seven MHC class | gene candidates which function to generate peptides and
transport them into the endoplasmic reticulum, singularly the high expression group of
PSMB10 associated with altered OS (HR: 1.61, p=0.025), CSS (HR: 2.71, p=0.001), and DFS
(HR: 1.79, p=0.040) (See Table 12, 13 & 14). Despite the interesting univariate significance
of the high PSMB10 expression group, these results did not remain significant in
multivariate survival analysis. Among this subset of MHC class | genes, the low expression
group of ERAP2 demonstrated an association with poor OS (HR: 1.72, p=0.007) and CSS
(HR: 2.05, p=0.023) (See Table 12 & 13); multivariate survival analysis only association
with OS were retained. The high expression groups of ERAP1, PSMB8 and PSMB9
displayed an association with shorter CSS (HR:2.55, p=0.030; HR:2.32, p=0.016; HR:2.76,
p=0.003) (See Table 13). Despite finding significantly altered CSS from these genes in
univariate analysis, application of the multivariate model did not yield significance.
Finally, the expression groups of Tapasin translocon, TAP1 and TAP2 did not possess an
association with any survival measure (OS/CSS/DFS).

Overall, twelve out of the eighteen MHC class | gene candidates demonstrated an
association with patients’ outcomes, with only four of the twelve associations retaining

significance within the multivariate survival analysis (Table 10).
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Table 10 MHC | candidate gene expression association with survival outcomes among
the OAC cohorts (TCGA and OCCAMS). Significance respective to outcome.

APM GENE SYMBOL; MHCII EXPRESSION-SURVIVAL SIGNIFICANCE
ASSOCIATION UNIVARIATE MULTIVARIATE
TAPBP LOW EXPRESSION — SHORTER DFS * *
TAPBPL LOW EXPRESSION — SHORTER OS, NS, ** NS, NS
CSS
HIGH EXPRESSION — SHORTER DFS * NS
HLA-A LOW EXPRESSION — SHORTER OS, *, K x NS, NS, NS
CSS, DFS
HLA-B LOW EXPRESSION — SHORTER CSS * NS
HLA-C NO SURVIVAL ASSOCIATION NA NA
HLA-E LOW EXPRESSION — SHORTER CSS * NS
HLA-G LOW EXPRESSION — SHORTER CSS * NS
B2M NO SURVIVAL ASSOCIATION NA NA
PDIA3 NO SURVIVAL ASSOCIATION NA NA
CALR LOW EXPRESSION — SHORTER OS, *, *, NS
CSS
CANX NO SURVIVAL ASSOCIATION NA NA
ERAP1 LOW EXPRESSION — SHORTER CSS * *
ERAP2 LOW EXPRESSION — SHORTER OS, * *
CSS
TAP1 NO SURVIVAL ASSOCIATION NA NA
TAP2 NO SURVIVAL ASSOCIATION NA NA
PSMB9 LOW EXPRESSION — SHORTER CSS * NS
PSMB10 HIGH EXPRESSION — SHORTER OS, *, REE X NS, NS, NS
CSS, DFS
PSMBS8 LOW EXPRESSION — SHORTER CSS * NS

P values: NA = Non-applicable, NS = non-significant, * <0.05, ** <0.01, *** < 0.001.

3.3.8 MHC class Il APM gene candidates and survival associations

Findings with HLAs

Out of the fifteen examined MHC class Il loading complex/assembly candidate genes
eight demonstrated associations with altered survival outcomes (OS, CSS, DFS) (Table
11). Firstly, the low expression of CD74 was associated to shorter OS approaching
significance (HR:1.67, p=0.054); and achieving significance with a reduced CSS and DFS
time (HR: 2.88, p=0.006; HR: 2.04, p=0.050) (See Figure 23, Table 12, 13 & 14). However,
these associations are not retained in the multivariate clinical (See Figure 23, Table 12,
13 & 14). Low expression of the HLA-DMA gene transcript demonstrated the most

significant association with poor overall survival (HR:1.77, p=0.005; see Table 12).
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Despite possessing the highest significance within the univariate model, under
multivariate this association have borderline significance at the 5% level (HR:1.93,

p=0.051; see Table 12).

The next significant survival association observed was with lower expression of HLA-DRA
(OS HR:1.67, p=0.013; CSS HR: 2.07, p=0.01; DFS HR: 2.07, p=0.01); only the association
with shorter CSS remained significant in multivariate analysis (HR:2.07, p=0.027; see
Table 12, 13 & 14).

For HLA-DPA1 low expression was related to poorer OS, CSS and DFS (HR:1.53, p=0.035;
HR: 2.37, p=0.025; HR: 2.54, p=0.001; See Figure 23, Table 12, 13 & 14), but only poorer
OS and DFS, in the multivariant model (see Table 12 & 14). The low expression of HLA-
DRBS5 only related to increased risk of recurrence of disease with high significance (DFS
HR: 2.52, p=0.001) in univariate tests (see Table 14). Decreased HLA-DQA1 expression
demonstrated an association with CSS and DFS (HR: 1.85, p=0.054; HR: 2.35, p=0.003);

but neither remained significant in multivariate analysis (see Table 13 & 14).

Additionally, OAC patients with lower HLA-DRB1 expression corresponded with poorer
CSS (HR: 2.71, p=0.002) and an increased risk of recurrence (DFS HR: 2.34, p=0.006), but
only in univariate analysis (see Table 13 & 14). Decreased expression of HLA-DOA in OAC
patients corresponded with increased recurrence of disease (DFS HR: 2.20, p=0.013), yet
failed to withstand multivariate analysis (see Table 14). The final significant relationship
between MHC Class Il genes and survival outcome was between low HLA-DQA2
expression and recurrence of disease (DFS HR: 2.26, p=0.015), however in multivariate

analysis, this relationship lost significance (see Table 14)

Peptide generation

Within, this class of candidate genes three out of five candidate demonstrate association
with survival outcomes (See Table 11), high expression of SPPL2A (n=104) was associated
to poorer survival outcomes (OS HR:1.52, p=0.045), however this finding did not stand up
to multivariate testing against the clinical model (OS HR:1.07, p=0.831). In univariate CSS
analysis the high expression group of SPPL2A associated with poor prognosis with

significance (CSS HR: 1.52, p=0.045), multivariate analysis demonstrated a non-significant

trend with increased in risk (HR: 2.73, p=0.190) (Table 13).
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The low expression group of LGMN (n=60) was associated to lower patient overall
survival (HR:1.95, p=0.001), despite the high significance of this association the
significance is lost in multivariate testing against the clinical model (OS HR:1.66, p=0.165).
In univariate CSS analysis, the low expression group of LGMN (n=32) associated with poor
prognosis with great significance (HR: 2.55, p=0.001), in multivariate analysis this
association lost significance (HR: 1.33, p=0.625) (Table 13). Univariate DFS analysis
identified the low expression group of LGMN (n=68) was associated with increased risk of
disease recurrence with great significance (HR: 1.93, p=0.015), multivariate analysis failed
to yield significance.

Finally, the low expression group of CTSS corresponded with shorter CSS (HR:1.99,

p=0.010), but did not retain significance within the multivariate model (Table 13).
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Table 11 MHC Il candidate gene expression association with survival outcomes among
the OAC cohorts (TCGA and OCCAMS). Significance respective to outcome.

APM GENE SYMBOL; MHC I EXPRESSION-SURVIVAL SIGNIFICANCE
ASSOCIATION UNIVARIATE MULTIVARIATE
HLA-DMA LOW EXPRESSION — & NS
SHORTER 0S
HLA- NO SURVIVAL ASSOCIATION NA NA
DMB
LOW EXPRESSION — 2 NS
/23520 SHORTER DFS
HLA- NO SURVIVAL ASSOCIATION NA NA
DOB
HLA-DPA1 LOW EXPRESSION — oo * NS, NS
SHORTER OS, CSS & DFS
HLA- NO SURVIVAL ASSOCIATION NA NA
DPB1
HLA- LOW EXPRESSION — NS, ** NS, NS
DQA1 SHORTER CSS & DFS
HLA-DQA2 LOW EXPRESSION — * NS
SHORTER DFS
HLA- NO SURVIVAL ASSOCIATION NA NA
DQB1
HLA- NO SURVIVAL ASSOCIATION NA NA
DQB2
LA-DRA LOW EXPRESSION — TR * NS, NS
SHORTER OS, CSS & DFS
L A-DRBT LOW EXPRESSION — ** NS
SHORTER CSS
HLA- NO SURVIVAL ASSOCIATION NA NA
DRB4
HLA- LOW EXPRESSION — NS
DRB5 SHORTER DFS
CD74 (cell surface form) LOW EXPRESSION — NS, **. * NS, NS, NS
SHORTER OS, CSS & DFS
CTSS LOW EXPRESSION — ** NS
SHORTER CSS
CTSL NO SURVIVAL ASSOCIATION NA NA
SPPL2A HIGH EXPRESSION — NS, NS
SHORTER OS & CSS
LGMN LOW EXPRESSION — 050 G0 G0 NS, NS, NS
SHORTER OS, CSS & DFS
IFI30 NO SURVIVAL ASSOCIATION NA NA

P values: NA = Non-applicable, NS = non-significant, * <0.05, ** <0.01, *** < 0.001.
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Variable N Hazard ratio ]

RFX5 high 36 . Reference
low 138 ——— | 2,10 (1.17, 3.76) 0.013

SPPL2A ow 69 |M Reference
* high 105 + 1.52 (1.01, 2.30) 0.045

RFXAP low 69 . Reference
* high 105 + 1.63(1.07, 2.49) 0.022

CcD74 high 40 . Reference
low 134 | ———— 1.67 (0.99, 2.82) 0.054

ClITA high 86 . Reference
low 88 — . 1.65 (1.10, 2.47) 0.018

PSMB10 low 121 W Reference
% high 53 | [ 1,61 (1.06, 2.44) 0.025

LGMN high 114 . Reference
low 60 — 1.95 (1.30, 2.93) 0.001

TAPBPL high 124 - Reference
low 50 + 1.48 (0.99, 2.24) 0.058

CALR high 42 - Reference
low 132 — B | 1.91(1.12,3.28) 0.018

ERAP2 high 109 | Reference
low 65 — . 1.72 (1.16, 2.56) 0.007

HLA_DPA1 high 89 - Reference
low 85 + 1.53(1.03, 2.27) 0.035

HLA_DMA high 98 . Reference
low 76 ool 1.77 (1.18, 2.64) 0.005

HLA_DRA high g1 |m Reference
low 93 —— 167 (1.12, 2.49) 0.013

HLA_DRB5 high 104 - Reference
low 70 »—l—- 1.45 (0.98, 2.16) 0.065

HLA_A high 140 l Reference
low 34 —. 1.80 (1.12, 2.88) 0.015

CSDE1 low 130 | Reference
% high 44 — . 1.74 (1.11,2.71) 0.015

; s 3 25 335

Higher expression Survival « » L ower expression Survival

Figure 23 Univariate CoxPH forest plot of APM gene expression in the TCGA/OCCAMS
Cohort using maximally ranked statistics for optimal cut points between low/high
expression groups. Only significant/approximate significant results shown p<0.55. *

Represents genes which greater expression associates with greater risk.
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Table 12 CoxPH overall survival analysis in univariate and multivariate model.

VARIABLE LEVELS N (%) HR (UNIVARIABLE) N = 176 HR (MULTIVARIABLE) N = 78
Age Mean (SD) 66.8 (11.1)  0.99 (0.98-1.01, p=0.515) 1.01 (0.98-1.05, p=0.440)
Sex Female 31 (17.6) - -

Male 145 (82.4) 1.65 (0.90-3.01, p=0.105) 0.77 (0.31-1.91, p=0.576)
pT 0-1 38 (29.5) - -

2-4 91 (70.5) 1.39 (0.78-2.48, p=0.266) 0.48 (0.17-1.37, p=0.172)
pN 0 48 (36.9) - -

1-3 82 (63.1) 2.56 (1.45-4.52, p=0.001) 3.83 (1.41-10.45, p=0.009)
pM 0 77 (92.8) - -

1 6 (7.2) 7.07 (2.75-18.19, p<0.001) 8.04 (2.99-21.61, p<0.001)
CSDE1 low 130 (74.4) - -

high 44 (25.6) 1.74 (1.11-2.71, p=0.015) 2.90 (1.31-6.40, p=0.008)
RFX5 high 138 - -

low 36 2.10 (1.17-3.76, p=0.013) 2.78 (1.12-6.91, p=0.028)
SPPL2A low 69 - -

high 105 1.52 (1.01-2.30, p=0.045) 1.07 (0.56-2.07, p=0.831)
RFXAP low 69 - -

high 105 1.63 (1.07-2.49, p=0.022) 1.01 (0.52-1.93, p=0.987)
CD74 high 40 - -

low 134 1.67 (0.99-2.82, p=0.054) 1.12 (0.53-2.34, p=0.769)
CITA high 86 - -

low 88 1.65 (1.10-2.47, p=0.016) 1.40 (0.72-2.71, p=0.323)
PSMB10 low 121 - -

high 53 1.61 (1.06-2.44, p=0.025) 1.30 (0.65-2.61, p=0.456)
LGMN high 114 - -

low 60 1.95 (1.30-2.93, p=0.001) 1.66 (0.81-3.41, p=0.165)
TAPBPL high 124 - -

low 50 1.48 (0.99-2.24, p=0.058) 1.00 (0.48-2.06, p=0.991)
CALR high 42 - -

low 132 1.91 (1.12-3.28, p=0.018) 2.52 (1.01-6.32, p=0.048)
ERAP2 high 109 - -

low 65 1.72 (1.16-2.56, p=0.007) 3.15 (1.58-6.27, p=0.001)
HLA-DPA1 high 89 - -

low 85 1.53 (1.03-2.27, p=0.035) 1.98 (1.04-3.75, p=0.037)
HLA-DMA high 98 - -

low 76 1.77 (1.18-2.64, p=0.005) 1.93 (1.00-3.73, p=0.051)
HLA-DRA high 81 - -

low 93 1.67 (1.12-2.49, p=0.013) 2.07 (1.08-3.94, p=0.027)
HLA-DRB5 high 104 - -

low 70 1.45 (0.98-2.16, p=0.065) 1.70 (0.88-3.30, p=0.116)
HLA-A high 140 - -

low 34 1.80 (1.12-2.88, p=0.015) 1.30 (0.61-2.73, p=0.497)

Number in data frame = 138, Number in model = 65, Missing = 73, Number of events = 26, Concordance = 0.822 (SE = 0.034), R-
squared = 0.363(Max possible = 0.942), Likelihood ratio test = 29.321 (df = 6, p = 0.000). Determining significance independent

of the clinical model, top four variables form the clinical model each gene is assessed against.
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Table 13 CoxPH cancer specific survival analysis in univariate and multivariate model.

VARIABLE LEVELS N (%) HR (UNIVARIABLE) N = 176 HR (MULTIVARIABLE) N = 78
Age Mean (SD) 66.8 (11.1)  0.99 (0.98-1.01, p=0.515) 1.01 (0.98-1.05, p=0.440)
Sex Female 31(17.6) - -

Male 145 (82.4)  1.65(0.90-3.01, p=0.105) 0.77 (0.31-1.91, p=0.576)
pT 0-1 38 (29.5) - -

2-4 91 (70.5) 1.39 (0.78-2.48, p=0.266) 0.48 (0.17-1.37, p=0.172)
pN 0 48 (36.9) - -

1-3 82 (63.1) 2.56 (1.45-4.52, p=0.001) 3.83 (1.41-10.45, p=0.009)
pM 0 77 (92.8) - -

1 5(6.1) 7.07 (2.75-18.19, p<0.001) 8.04 (2.99-21.61, p<0.001)
CSDE1 low 41 (74.4) = -

high 97 (25.6) 1.70 (1.00-2.91, p=0.051) 2.06 (0.78-5.43, p=0.143)
HLA-E high 121 (87.7) - -

low 17 (12.3) 2.09 (1.05-4.15, p=0.036) 1.09 (0.28-4.31, p=0.899)
SPPL2A low 34 (24.6) = -

high 104 (75.4)  1.52 (1.01-2.30, p=0.045) 2.73 (0.61-12.26, p=0.190)
HLA-DPA1 high 123 (89.1) - -

low 15 (10.9) 2.37 (1.11-5.05, p=0.025) 1.15 (0.18-7.23, p=0.878)
PSMB9 high 122 (88.4) - -

low 16 (11.6) 2.76 (1.42-5.36, p=0.003) 0.55 (0.14-2.25, p=0.409)
HLA-B high 88 (63.8) - -

low 50 (36.2) 1.77 (1.05-2.97, p=0.033) 1.22 (0.48-3.09, p=0.672)
HLA-DRA high 102 (73.9) - -

low 36 (26.1) 2.07 (1.19-3.61, p=0.010) 0.75 (0.23-2.47, p=0.632)
PSMB8 high 122 (88.4) - -

low 16 (11.6) 2.32 (1.17-4.62, p=0.016) 0.43 (0.12-1.58, p=0.204)
HLA-DRBS high 115 (83.3) - =

low 23 (16.7) 2.08 (1.04-4.16, p=0.038) 1.39 (0.43-4.45, p=0.579)
HLA-DQA1 high 111 (80.4) - -

low 27 (19.6) 1.85 (0.99-3.46, p=0.054) 0.88 (0.35-2.22, p=0.790)
HLA-DRB1 high 116 (84.1) - -

low 22 (15.9) 2.71 (1.42-5.15, p=0.002) 1.05 (0.35-3.13, p=0.927)
TAPBP high 116 (84.1) - -

low 22 (15.9) 2.20 (1.18-4.11, p=0.014) 2.02 (0.73-5.62, p=0.176)
HLA-G high 85 (61.6) - -

low 53 (38.4) 1.77 (1.05-2.98, p=0.031) 1.64 (0.72-3.76, p=0.240)
HLA-A high 116 (84.1) - -

low 22 (15.9) 2.06 (1.11-3.85, p=0.023) 0.62 (0.18-2.17, p=0.452)
ERAP2 high 118 (85.5) - -

low 20 (14.5) 2.05 (1.03-4.08, p=0.040) 2.15 (0.64-7.21, p=0.214)
ERAP1 high 29 (21.0) - -

low 109 (79.0) 2.55 (1.09-5.94, p=0.030) 1.38 (0.45-4.25, p=0.577)
CALR high 35 (25.4) - -

low 103 (74.6)  2.11(1.04-4.31, p=0.039) 1.51 (0.55-4.18, p=0.425)
TAPBPL high 92 (66.7) - -

low 46 (33.3) 2.00 (1.19-3.37, p=0.009) 1.00 (0.44-2.29, p=0.994)
CTSL high 31 (22.5) - -

low 107 (77.5) 2.08 (0.98-4.42, p=0.056) 1.76 (0.57-5.39, p=0.324)
LGMN high 106 (76.8) - -

low 32 (23.2) 2.55 (1.48-4.40, p=0.001) 1.33 (0.42-4.19, p=0.625)
PSMB10 high 112 (81.2) - -

low 26 (18.8) 2.71 (1.52-4.86, p=0.001) 1.63 (0.64-4.12, p=0.305)
CIITA high 64 (46.4) - -

low 74 (53.6) 1.68 (0.98-2.87, p=0.058) 0.71 (0.31-1.60, p=0.405)
CcD74 high 125 (90.6) - -

low 13 (9.4) 2.88 (1.36-6.12, p=0.006) 1.66 (0.20-13.84, p=0.639)
MR1 high 85 (61.6) - -

low 53 (38.4) 1.68 (1.00-2.82, p=0.051) 1.45 (0.59-3.54, p=0.417)
CTSS high 86 (62.3) - -

low 52 (37.7) 1.99 (1.18-3.35, p=0.010) 1.47 (0.58-3.72, p=0.415)
RFX5 high 29 (21.0) - -

low 109 (79.0) 2.81 (1.21-6.55, p=0.017) 2.33 (0.78-6.97, p=0.132)

Number in data frame = 138, Number in model = 65, Missing = 73, Number of events = 26, Concordance = 0.822 (SE = 0.034), R-

squared = 0.363(Max possible = 0.942), Likelihood ratio test = 29.321 (df = 6, p = 0.000). Determining significance independent

of the clinical model, top five variables form the clinical model each gene is assessed against.
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Table 14 CoxPH disease-free survival analysis in univariate and multivariate model.

Determining significance independent of the clinical model, top five variables form the

clinical model each gene is assessed against.

VARIABLE LEVELS N (%) HR (UNIVARIABLE) N = 176 HR (MULTIVARIABLE) N = 78
Age Mean (SD) 66.8 (11.1)  0.99 (0.98-1.01, p=0.515) 1.01 (0.98-1.05, p=0.440)
Sex Female 31 (17.6) - -

Male 145 (82.4) 1.65 (0.90-3.01, p=0.105) 0.77 (0.31-1.91, p=0.576)
pT 0-1 38 (29.5) - -

2-4 91 (70.5) 1.39 (0.78-2.48, p=0.266) 0.48 (0.17-1.37, p=0.172)
pN 0 48 (36.9) - -

1-3 82 (63.1) 2.56 (1.45-4.52, p=0.001) 3.83 (1.41-10.45, p=0.009)
pM 0 77 (92.8) - -

1 6 (7.2) 7.07 (2.75-18.19, p<0.001) 8.04 (2.99-21.61, p<0.001)
RFX5 high 30 (21.7) - -

low 108 (78.3) 2.48 (1.13-5.47, p=0.024) 2.65 (0.99-7.13, p=0.053)
CTSS high 27 (19.6) - -

low 111 (80.4) 2.27 (0.97-5.28, p=0.058) 0.95 (0.29-3.12, p=0.927)
CD74 high 125 (90.6) - -

low 13 (9.4) 2.04 (1.00-4.17, p=0.050) 1.34 (0.36-5.05, p=0.663)
PSMB10 low 100 (72.5) - -

high 38 (27.5) 1.79 (1.03-3.13, p=0.040) 0.91 (0.37-2.22, p=0.878)
LGMN high 70 (50.7) - -

low 68 (49.3) 1.93 (1.14-3.28, p=0.015) 1.44 (0.64-3.23, p=0.375)
TAPBPL low 121 (87.7) - -

high 17 (12.3) 2.05 (1.04-3.85, p=0.036) 1.96 (0.44-8.33, p=0.375)
HLA-DPA1 high 125 (90.6) - -

low 13 (9.4) 2.54 (1.27-5.09, p=0.008) 1.87 (0.63-5.57, p=0.261)
HLA-DOA high 119 (86.2) - -

low 19 (13.8) 2.20 (1.18-4.11, p=0.013) 0.63 (0.22-1.83, p=0.401)
HLA-DQA2 high 122 (88.4) - -

low 16 (11.6) 2.26 (1.17-4.38, p=0.015) 2.03 (0.63-6.52, p=0.232)
HLA-DRA high 126 (91.3) - -

low 12 (8.7) 2.56 (1.24-5.26, p=0.011) 1.67 (0.50-5.59, p=0.406)
HLA-DRB5 high 113 (81.9) - -

low 25 (18.1) 2.52 (1.43-4.44, p=0.001) 1.77 (0.74-4.24, p=0.199)
HLA-DQA1 high 114 (82.6) - -

low 24 (17.4) 2.35(1.33-4.14, p=0.003) 0.97 (0.42-2.22, p=0.940)
HLA-DRB1 high 117 (84.8) - -

low 21 (15.2) 2.34 (1.27-4.31, p=0.006) 0.76 (0.28-2.07, p=0.591)
TAPBP high 112 (81.2) - -

low 26 (18.8) 2.16 (1.20-3.92, p=0.011) 2.35 (1.03-5.41, p=0.044)
HLA-A high 126 (91.3) - -

low 12 (8.7) 2.25 (1.13-4.46, p=0.021) 0.83 (0.28-2.45, p=0.740)
CSDE1 high 120 (87.0) - -

low 18 (13.0) 2.67 (1.40-5.09, p=0.003) 4.39 (1.33-14.53, p=0.015)

Number in data frame = 138, Number in model = 65, Missing = 73, Number of events = 26, Concordance = 0.822 (SE = 0.034),
R-squared = 0.363(Max possible = 0.942), Likelihood ratio test = 29.321 (df = 6, p = 0.000)
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3.3.9 APM epi-genomic aberrations.

Survival analysis suggests several genes in both MHC pathways as well as regulators of
their expression are associated to differential survival outcomes, however, it is unknown
what mechanism OAC may be leveraging to alter the expression of these genes.
Therefore, | have explored the epigenetics (Methylation) of genes of interest among my
candidate genes within the TGCA-ESCA dataset. Firstly, | observed the methylation across
the HLA locus, finding ten CpGs linked to MHC genes which exhibit differential
methylation between normal oesophageal tissue and OC. Six of these differentially
methylated CpGs are associated to HLA class |l genes HLA-DPA1/B1 with the remain four
CpGs linked to HLA-G and HLA-F genes, all of these sites are significantly hyper-

methylated compared to normal tissue (p<0.001; see Table 15).

Table 15 significant differentially methylated CpGs of the HLA-locus on chromosome 6.

LOG2(FOLD
PROBE CHANGE) P.VALUE ADJ.PVALUE START END GENE
CG18914211 1.951 7.20E-06 0.000209 29828038 29828039 HLA-G
CG03521696 1.476 2.00E-06 0.000111 29827818 29827819 HLA-G
HLA-DPA1; HLA-
CG19990651 0.921 0.00017943 0.00163 33080778 33080779 DPB1
HLA-DPA1; HLA-
CG09234582 0.743 0.000391344 0.00286 33080509 33080510 DPB1
HLA-DPA1; HLA-
CG01132696 0.878 2.63E-05 0.000444 33080781 33080782 DPB1
HLA-DPA1; HLA-
CG06437840 1.10 0.000254439 0.00209 33080752 33080753 DPB1
HLA-DPA1; HLA-
CG26645432 0.622 0.000384841 0.00283 33080725 33080726 DPB1
CG00126638 0.772 1.66E-06 0.000103 29827806 29827807 HLA-G
CG20617328 -0.847 0.000242639 0.00203 33072833 33072834 HLA-DPA1
CG24177217 -0.709 4.95E-06 0.000171 29734276 29734277 HLA-F; HLA-F-AS1

Next, | moved forward to assess the differential methylation of candidate genes which
possessed an association with survival via mRNA expression. Within the MHC class |

candidate genes five genes were selected for analysis based on their impact on survival.
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Among the HLAs of the MHC pathway only HLA-A and HLA-G demonstrated a significant
increase in methylation value comparing OAC to normal tissue (HLA-A: Normal B-value
mean 0.1972; Tumour B-value 0.4814; p < 0.0001. HLA-G: Normal B-value mean 0.2147.
; Tumour B-value 0.5560; p < 0.0001. See Figure 24); HLA-B was examined for differential
methylation between normal and OAC finding no significant differences. HLA-complex
assemble gene CALR and peptide generation gene ERAP2 was also assessed for
methylation differences in normal and OAC tissue finding a significant increase in CALR
methylation among tumour samples, but no significant methylation difference in ERAP2
(CALR: Normal B-value mean 0.7394; Tumour B-value 0.8472; p =0.0173. ERAP2: Normal
B-value mean 0.9187; Tumour B-value 0.8881; p = 0.4994. See Figure 24).

Two MHC class Il HLAs, HLA-DPA1 and HLA-DPB1 were assessed for differential
methylation between normal oesophagus and OAC tissue finding a significant increase in
methylation among OAC samples (HLA-DPA1: Normal B-value mean 0.3223; Tumour B-
value 0.7085; p < 0.0001. HLA-DPB1: Normal B-value mean 0.3324; Tumour B-value
0.7511; p <0.0001. See Figure 24).

Four APM gene expression regulators were assessed including a negative regulator CSDE1
and positive regulators CIITA and RFX5. The negative regulator, CSDE1, demonstrated a
substantial significant decrease in methylation of the proximal promoter for expression
(CSDE1: Normal B-value mean 0.5736; Tumour B-value 0.3550; p < 0.0001. See Figure 24).
The positive regulator of MHC class Il HLA expression, CIITA, displayed a significant
decrease in methylation in OAC samples compared to normal tissue (C/ITA: Normal B-
value mean 0.4355; Tumour B-value 0.2936; p = 0.0017. See Figure 24), whereas the
positive regulator of MHC class | HLA expression, RFX5, demonstrated an increased
methylation score in OAC compared to normal oesophagus (RFX5: Normal B-value mean
0.5685; Tumour B-value 0.6628; p = 0.0372. See Figure 24). Observing methylation over

cancer stage, did not yield any significant differences with tumour progression.
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Figure 24 Methylation of APM candidate genes compared between normal oesophagus
and OAC samples using Beta-methylation values. Statistical test represented are
Kruskal-Wallis tests with FDR correction (ns = non-significant, * = p < 0.05, ** = p < 0.01,

*%% = p < 0.001, **** = p < 0.0001).

Finally, | explored the correlation between methylation of the APM gene candidates with
significantly different methylation values compared to normal tissue presented in Figure
24, and their respective mRNA expression. Using this analysis, | found two APM gene
expression regulators, C/ITA and CSDE1, possessed a negative correlation between
methylation and gene expression (C/ITA: R =-0.25, p =0.027. CSDE1: R =-0.27, p = 0.016.
See Figure 25A/B and Table 16). Among MHC class | HLAs, HLA-B possessed an
unexpected positive correlation between methylation and expression, whereas HLA-G
possess the expected negative methylation to expression correlation (HLA-B: R=0.22, p =

0.049. HLA-G: R =-0.29, p = 0.0095. See Figure 25C/D and Table 16).
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Figure 25 Scatter plot of significant methylation to mRNA expression (TMM)
correlations of APM candidates which possessed significantly different
methylation in OAC compared to normal tissue. A: C/ITA. B: CSDE1. C: HLA-

B. D: HLA-G.

Table 16 methylation-expression (MRNA: TMM) correlations from APM candidates with
differential methylation in OAC tumour tissue and normal oesophagus.

GENE R P VALUE
HLA-A 0.1 0.37
HLA-B 0.22 0.049
HLA-G -0.29 0.0095
ERAP2 -0.078 0.5

CALR 0.02 0.86
HLA-DPA1 0.02 0.86
HLA-DPB1 0.03 0.8

CSDE1 -0.27 0.016
CIITA -0.25 0.027
RFX5 -0.1 0.39
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3.4 Discussion

3.4.1 Mutation incidence of APM genes in OAC is infrequent.

In this Chapter, the work aimed to identify somatic APM genomic alterations with clinical
value. Although mutation analysis did not yield many recurrent APM mutations, there
were several of interest in this study. The B2M mutations may be of interest as
mutations in B2M may result in loss of MHC class | expression, which would benefit
hyper-mutated tumours through the reduction in cancer antigen presentation. This
hypothesis appears to fit with our analysis showing a much higher mutation count a the
B2M mutated case. One study specifically identifies a B2M mutation found in our
analysis resulting in a Y46Cfs*10 reporting a lack of B2M expression
(Immunohistochemistry) in colorectal cancer patient samples harbouring this mutation
(238). This may represent a cancer immune evasion mechanism as B2M functions in the
assembly of MHC | molecules on the ER, lack of B2M expression would then restrict
cancer antigen presentation to tumour infiltrating lymphocytes preventing an anti-
tumoral response. Additionally, cases containing an APM mutation had increased
Tumour mutational burden, this could suggest cancer with higher mutational burden
seek somatic mutation of APM components to elicit immune evasion or higher
mutational burden simply results in a statistically higher probability of APM mutation.
Furthermore, we identified mutations of the immunoglobulin C1-set domain in HLA-B of
OAC cases; specifically, a mutation in the 220-227 a3 loop, E222 has been shown to
abrogate MHC | and Tapasin interaction, resulting in loss of function (239). Conversely,
mutation in HLA-B and B2M have been associated to poorer prognosis and further could
negatively impact the outcome for immunotherapies as somatic mutations of these APM
genes within the TCGA dataset (Pan-cancer) have been associated to high mutation
burden, increased neoantigen loading, and higher NK cell infiltrate with CD8+ T cell
infiltration; these effects are associated with immune evasion mechanisms. B2M
mutations in this instance reduces the overall level of surface MHC-I molecules while
mutations in HLA molecules disturb the overall composition of the MHC-I complex
landscape, aiding immune surveillance escape (240). However, this study did not explore
OAC or OSCC, instead opting to analyse colorectal, ovarian and lung cancer among
others, which in the case of colorectal cancer, T cell infiltrate is associated to higher

tissue inflammation which is further associated to poor prognosis (241).
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3.4.2 Copy number events are not informative in OAC but are frequent among APM genes
of the HLA-locus.

Copy-number analysis yielded two interesting subgroups, an amplification group, and a
deletion group, which share the copy-number events across a gene subset in the
TCGA/ICGC cohort which was present in approximately 7% of cases. Segment analysis
identified genes within a gene set of interest, within the minimally affected genomic
region, were located proximally to each other, and shared the same copy-number
segments, furthermore, these genes were proximally located to VEGFA a previously
identified frequently amplified gene in OAC (242).

However, the incidence of these groups was much higher in OAC than OSSC, and the
number of copy-number events in total was found to be significantly higher in OAC; this
greater number of events may be due to the complexity of copy-number segments found
in OAC compared to OSCC resulting from OACs characteristic chromosomal instability
(243). Overall, the amplification and deletion groups may be of interest for further study
to determine the impact on immune populations via deconvolution analysis.

The APM gene expression regulator candidates possessed a significant number of copy-
number events with the highest frequency being IRF1 consisting of mostly deletions. This
is interesting as loss of /RF1 could result in low APM expression, conversely IRF1 has also
been reported to inhibit anti-tumoral responses via the upregulation of PD-L1 in tumour

cells (244, 245).

343 APM gene candidates and differential expression in OAC.

In the expression analysis of the TCGA/OCCAMS OAC cohort the APM gene candidates
did not possess significant differential expression compared to normal stomach samples.
However, this lack of finding may be due to methodological factors such as using
unmatched normal samples from the GTEx dataset, or the lack of an appropriate normal
tissue. Unlike OSCC where normal squamous oesophageal epithelium forms an
appropriate normal control, cells which derive into OAC are more like that of stomach
epithelia, leading to difficulty in producing an accurate DEA. Additionally, the known
downregulation of APM machinery in OSCC has mostly been associated via
immunohistochemistry methodology rather than RNA-seq methods making comparisons

difficult between the histological subtypes (148).
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3.4.4 Expression of APM gene candidates associates with overall, cancer-specific, and
disease-free survival in OAC.

From assessment of the literature performed in the general introduction (Chapter 1), a
comprehensive analysis of the APM gene expression and their respective associations
with clinical outcome had not previously been published, therefore forming a substantial
knowledge gap, in OAC. This was addressed, by elucidating the association between the
list of curated APM genes and clinical outcomes including overall survival, CSS and DFS in
both a univariate and multivariate model with important co-variates used in the clinic

(Age, Sex, pT, pN and pM) and in biomarker studies in the literature.

Firstly, some of the regulators of MHC expression possessed a significant association with
outcome. For instance, high CSDE1 expression was significantly associated with overall
survival and DFS in both univariate and multivariate analysis. This observation fits with
the known role of CSDE1 downregulating MHC class | expression via stabilising TCPTP, a
phosphatase kinase enzymes, which in turn dephosphorylates STAT1 in the JAK/STAT
pathway downstream of IFN-y signalling (145). The IFN-y signalling pathway is a
significant driver of MHC class | expression, ultimately activating the ISRE regulatory
promoter elements allowing for further downstream promotion of MHC class |
expression by the known trans-activators of MHC class | expression (RFX5-family, NLRC5

and IRF-1) (130, 142).

Prior publications have demonstrated CSDE1 acts as a master regulator of MHC class |
expression, in cancer, the greater expression of CSDE1 in a melanoma cell line resulted in
high dephosphorylation of STAT1 preventing translocation of STAT1 into the cell nucleus
downstream of the JAK/STAT pathway as prior described (145).

Thereby, my analysis and literature suggest CSDE1 expression is OAC significantly
associates with poor outcomes, likely via downregulating MHC class | expression
resulting in immune evasion. Interestingly, these observations present an opportunity
for targeting CSDE1 in OAC. A recent paper presented a study of oncolytic viruses, where
the authors were successful in creating a selection pressure towards an escape-
associated tumour antigen via infection with a mutant form of CSDE1 which was highly
expressed and could be a potential target for cancer vaccines, adoptive T-cell and CAR-T

cell therapies (146). This may have potential in OAC, as CSDE1 is not a known target gene
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in OAC, nor a recurrently targeted passenger gene in our data (only 1 of 502 cases with a

missense mutation).

Expression of RFX5-family genes including RFX5 and RFXAP in the data analysis, identified
association with overall survival, CSS and DFS. The RFX5-family genes play a significant
role in the regulation of MHC class | expression forming the RFX-complex (RFX5, RFXAP,
RFXANK) within the MHC class | enhanceosome together with NLRC5 trans-activator,
ATF1/CREB and the NFY-complex which bind to the SXY-module for promoting MHC class
| expression (142). RFX5 has prior been published as a prognostic biomarker and
associated with immune infiltration in stomach adenocarcinoma. Within that study,
expression of RFX1, RFX3, RFX4, RFX5, RFX7 and RFX8 was significantly elevated in STAD
tissue versus adjacent normal tissue. Moreover, patients with high RFX5 and RFX7
expression had a better overall survival, first progression, post-progression survival and
significantly associated with the abundance of immune cells, the expression of immune

biomarkers and tumour mutational burden (246).

Evidence of the role of RFXAP in cancer is sparse, a single study identified RFXAP
expression correlated with tumour stage and poor prognosis, but associated these
findings with RFXAP overexpression upregulating KDM4A and attenuated methylation of
H3K36, thereby impairing DNA repair and enhancing the DNA damage induced by fisetin
(247). Considering my findings and the literature, | suggest RFX5 associates to survival
outcomes by regulating factor of MHC class | expression in OAC, this finding is justified by
the recent publication of its function in gastric cancers as prognostic biomarker
associated with immune infiltration (248). Further investigation of the expression of RFX5
and immune abundance may identify parallels with the stomach adenocarcinoma study
and OAC, the regulatory role of this APM regulator on MHC class | expression will be
assessed among the other APM regulators in the chapter 4 and 6. On the other hand,
RFXAP could not be validated by the literature and its association with survival outcomes
in OAC identified here may be only representative of the role of the MHC class |

enhanceosome or potentially alternative roles beyond APM gene regulation.

Lower CI/ITA expression was associated to poorer overall survival and CSS only in
univariate analysis. CIITA is a transcriptional coactivator that regulates y-interferon-

activated transcription of MHC class | and Il genes, of which mutation has been prior
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associated to autoimmune diseases such as Type Il bare lymphocyte syndrome (249,
250). In lung adenocarcinomas, loss of CIITA was associated to decreased MHCII
expression, low T cell infiltration and converted tumours from anti—PD-1 sensitive to
anti—PD-1 resistant (251). Additionally, high CIITA expression has been prior associated
to high MHC-II expression in Epstein—Barr virus-associated stomach adenocarcinomas,
potentially contributing to the highly immunogenic tumour microenvironment noted in
this specific tumour subset (252). Combining the known literature and my findings could
suggest CIITA plays a significant role in the immunogenicity of OAC tumours. Thereby,
cases with poor CIITA expression may also exhibit low anti-tumoral immunity leading to
poorer patient outcomes. Further analysis to observe the distribution of immune cells
within the OAC microenvironment among cases of low/high CIITA expression may yield
further insight into the overarching role in the immunogenicity of tumours to identify

parallels with stomach adenocarcinomas (See chapter 4).

Within my analysis IRF-1 and NLRC5 expression did not appear as a prognostic indicator
of survival outcome. This provides an interesting insight into the function of these genes
in OAC may not be intrinsic to modulation of MHC class | expression. Whereas, the prior
mentioned CSDE1 gene may be functionally responsible for said modulation as a master
regulator, thereby it is of import to assess the correlation between the known APM
expression regulators and APM expression. This is especially important as brief
examination of the OE19 OAC cell line demonstrates a loss in IRF-1 correlating to
substantially lower MHC class | expression in comparison to other OAC cell lines (OE33
and FLO-1) (253).

Overall, these findings support the premise of APM expression regulators may form a
prognostic marker of survival outcome in OAC, yet whether these genes may form a
therapeutic target in OAC is yet to be elucidated. CSDE1 is of interest due to its ‘master
regulator’ role in MHC class | expression, which | will follow up in modulating CSDE1

expression in OAC cell lines.

MHC class | gene expression have demonstrated significant associations with survival
outcomes in other diseases including OSCC and gastric cancers, and link to the
upregulation of adaptive anti-tumoral immune responses. Furthermore, MHC class |
gene expression downregulation has prior been associated with cancer pathogenesis and

alluded to be important for the efficacy of immune checkpoint blockade therapy.
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Within my analysis | found many parallels in the importance of MHC class | expression in

survival outcomes reported in the literature of other cancers.

The consequence of MHC class | HLA-antigen loading complex assembly/antigen
presentation gene expression prior published mirrors my finding reported in my OAC
cohort expression. Specifically, the low expression of HLA-A/B/E/G displayed a
correspondence with poorer survival outcomes, similar to a prior meta-analysis
publication in gastric cancers where HLA class | overexpression possessed a significant
positive association with OS (254). However, the same study notes negligible impact of
HLA class | overexpression on DFS, opposed to my findings in HLA-A which demonstrated
a link between low expression and shorter DFS in univariate analysis. This could indicate
minor differences in the importance of HLA class | expression between OAC and gastric
cancers in survival outcomes, however, the concordance between OS and HLA class |
expression in gastric cancer, the most similar cancer to OAC, lends confidence to my

findings in the expression survival associations highlighted in my analysis of OAC.

These findings among HLA class | molecules suggest CD8 T cell recognition via HLA in
cancers may have a profound impact on overall anti-tumoral immunity in OAC, however
this must be explored further to identify modulation of T cell subpopulations in OAC due

to HLA class | expression, which will be explored via digital cytometry in chapter 4.

The TAPASIN genes (TAP1, TAP2, TAPBP, TAPBPL and TAPBPR) have prior been associated
to survival outcomes and immune modulation in cancers including colorectal, malignant
melanoma, head and neck squamous cell carcinoma (HNSCC), renal cell carcinoma,
colorectal carcinoma, glioblastoma, lung carcinoma, and neuroblastoma (255-257).
Downregulation of TAPASIN genes has been closely tied to decreased HLA class |
presentation, restriction in neo-antigen repertoire and diminished CD8+ T cell responses
in cancer (255, 256). Within my data analysis only TAPBP and TAPBPL demonstrated
altered survival outcomes within OS, DFS and CSS; TAPBP functionally acts to localise HLA
molecules to the TAPASIN translocon in the ER allowing for optimal antigen loading, low
expression of TAPBP has been linked to poor patient survival in a pan-cancer analysis,

concordant with my OAC cohort findings of low TAPBP resulting in shorter DFS (258).

112



TAPBPL presents a more complex survival interaction with low expression associating to
shorter OS and CSS, but high expression linking to poorer DFS. Examining the literature
higher TAPBPL expression has been prior correlated to improved OS in breast cancer,
forming part of a prognostic model; however, TAPBPL has also been implicated as a novel
regulator within T cells resulting in inhibition of T cell responses and proliferation,
unfortunately, as my OAC cohort contains only bulk-RNA | could not determine the
distribution of TAPBPL expression across the cellular subtypes, leaving open the
possibility TAPBPL expression may represent a positive prognostic factor when expressed
in cancer cells (displayed in altered OS and CSS), but a negative prognostic factor when
expressed in T cell populations (259, 260). Exploration of differential immune
subpopulations due to TAPBPL expression via digital cytometry may indicate whether this

is a possibility and worth further investigation, this is explored in Chapter 4.

Within my analysis of the OAC cohort low expression of CALR resulted in shorter OS and
CSS; CALR functions in the early assembly of HLA class | molecules prior to association to
the TAPASIN translocon, several publications have associated the decreased expression
of CALR with either poorer or improved prognosis depended on the disease type. For
example, within colorectal, AML, glioblastoma, NSCLC, ovarian, urothelial cancers, high
expression of CALR associates to improved survival outcomes; conversely, in gastric,
bladder, MCL, neuroblastoma and pancreatic cancers, the increased expression of CALR
corresponds to poorer patient outcomes (261-276). Thereby, my analysis yields a striking
result as despite the similarity between gastric, pancreatic cancer and OAC, increased
CALR expression forms a positive prognostic indicator of survival; this result finds
validation with published analysis of OAC samples from the TCGA dataset demonstrating
improved relapse free survival with greater CALR expression (277). This analysis in
combination with the literature could support CALR as positive prognostic factor in OAC,
however, it is important to note the roles CALR can perform outside of antigen
presentation, including epithelial-to-mesenchymal transition (EMT) and metastasis,
reported in breast and gastric cancer, which is not assessed in my analysis (278, 279).
Importantly, assessing the impact of CALR on immune cell subpopulation distribution
may indicate whether the function of CALR in improved OAC patient outcomes is

immune related (presented in chapter 4).
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Peptide generation is incredibly important in cancer antigen presentation to produce
immunogenic neoantigens which can optimally bind to the HLA molecule peptide binding
cleft. This importance is reflected in the literature, for example, the ERAP genes (ERAP1 &
2) function within the ER to cleave peptides into the appropriate length for binding to
MHC class | HLAs (8-11). In cancer ERAP1 expression can alter the neo-epitope
repertoire, as demonstrated by ERAP1 inhibitors/knockout models which produce
increased neoantigen peptide length and greater cytotoxic T cell infiltrate (279-281).
Unfortunately, this does not find concordance with my analysis with low ERAP1
expression corresponding with shorter CSS, however, this cannot reflect inhibition or
knockout of ERAP1 as there is still functional quantity of ERAP1 in these cases. ERAP2
similarly to ERAP1 functions to cleave peptides for optimal HLA binding; in Squamous cell
lung carcinoma, high ERAP2 expression was identified as an independent positive
prognostic factor, this is concordant low ERAP2 expression shorter OS, CSS (282).
Conversely, ERAP2 inhibition in leukaemia has resulted in the presentation of novel
epitopes which could enhance the immunogenicity of tumour cells (283, 284).
Interestingly, approximately 25% of individuals possess a SNP which results in lack of
ERAP2 expression, which may simulate the altered epitope described in the leukaemia
publication, however assessing the samples in the OAC cohort which lacked ERAP2
expression did not indicate any altered survival outcomes in OAC (284). Further
investigation into the immune cell landscape with ERAP1/2 expression may yet yield

interesting findings beyond survival analysis, explored in Chapter 4.

The immunoproteasome is vital for peptide generation, degrading proteins in the cytosol
before peptide translocation to the ER. Within my mRNA expression analysis three
immunoproteasome component genes demonstrated an association with altered
survival. Specifically, the low expression of PSMB8/9 corresponded with shorter CSS,
whilst conversely greater PSMB10 correlated to shorter OS, CSS and DFS. This presents
an interesting dichotomy, between the impact of the immunoproteasome components
on survival in OAC; exploring the literature reinforces a known dichotomy due to the
multiple functions of the immunoproteasome. The functions of the immunoproteasome
include peptide generation, maintenance of protein homeostasis and promoting
tumorigenic cytokine expression. While playing a positive role in antigen presentation,

these components may possess differing roles, for example, PSMB8/9 expression is
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known to associate to improved prognosis due to its role in improved neo-antigen and
TAAs presentation. This has been demonstrated on melanoma cells, with downregulation
presenting a major mechanism accounting for MHC class | antigen loss in colorectal
cancer (284, 285).

Interestingly, the prognostic value of PSMB10 varies between disease type, for example,
greater PSMB10 expression in pancreatic cancer corresponds to longer OS, whereas, in
gastric cancer greater PSMB10 expression results in poorer OS (286). Without further
analysis it is difficult to infer which role each immunoproteasome component is
performing; however, this analysis suggests PSMB8/9 may be improving antigen
presentation by producing immunogenic peptides for presentation, whilst PSMB10 may
either be functioning to improve cancer cell survival by protein homeostasis or by
promoting tumorigenic cytokine expression. Further analysis observing the immune cell
distribution between prognostic expression groups of PSMB8/9/10 may vyield further

insight into the function of these immunoproteasome components in OAC.

MHC class Il genes are exclusively expressed by professional antigen presenting cells
(APCs) including dendritic, macrophages and B cells. Typically, the presence of APCs in
the immune microenvironment forms a positive prognostic factor, though the specific
subtype of macrophage possesses differing outcomes with M1 macrophages deemed a
positive prognostic feature in cancer and M2 a negative factor. In respect to my analysis
assessing the impact of MHC class Il on survival outcomes may in be indicative markers of
two factors, the presence/lack of APCs in the tumour immune microenvironment by
aggregate MHC class Il expression or differences immune composition. Justifying the
later point, prior publications have demonstrated M1 macrophages express higher levels
of MHC class Il molecules due to macrophages MHC class Il expression being inducible
rather than constitutive like dendritic cells. Thereby, identifying the significant survival
associations within MHC class Il gene expression should be paired with digital cytometry
to deconvolute the specific cell of origin potentially responsible for altered survival

outcomes (287-289).

Firstly, among the HLA-antigen loading complex assembly/antigen presentation genes,
nine out of fifteen candidate gene’s expression corresponded with altered survival
outcomes. Consistently, the low expression of these nine candidates possessed a similar

negative impact on survival outcomes, this could support the potential argument that
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this gene expression profile represents cases of high or low presence of APCs in OAC
tumours or indicate the polarisation state of macrophages in the OAC TIME. This finding
will be further explored in chapter 4 via digital cytometry methodology to characterise
APCs distribution related to differential expression of MHC class Il genes.

Exploring the literature finds support for the survival associations identified by my
analysis of MHC class Il gene expression in OAC; for instance HLA-DR of which HLA-DRA is
a component of has been prior identified as an independent positive prognostic indicator
in tumour epithelium of OAC. This may provide insight into the reasoning behind OAC
being characterised as an immune hot tumour type, as HLA-DR is reported to possess the
greatest correlation with cytotoxicity markers in cancer . Additional publications highlight
HLA-DR correlates to increased T cell infiltrate in lung adenocarcinoma and forms a
marker of immune hot tumours predicting responses to checkpoint blockade therapy in
NSCLC (196, 290, 291). In combination with published literature, the expression of HLA-
DRA in OAC may represent immune hot tumours which could form exceptional targets
for immunotherapy. These studies findings can be further extrapolated into my findings
in HLA-DRB1/5 which when lowly expressed associated to poor patient outcomes.
importantly, the subtype of APC which is responsible for this outcome is unknown,
further analysis conducted in chapter 4 will explore whether high HLA-DRA expression in

OAC can be attributed to a specific APC subtype.

The literature surrounding the importance of HLA-DMA expression in cancer survival is
sparely reported, studies so far have focused on the downregulation of these genes via
external mechanisms including C-MYC, however, two studies of interest identified
downregulation of HLA-DMA,; firstly, a pan-cancer analysis demonstrated HLA-DMA
correlates with cytotoxicity markers in cancer, though possess the smallest correlation
with cytotoxic activity; the second study demonstrates HLA-DMA is downregulated over
stage in cutaneous melanoma with higher expression corresponding to greater OS (292,
293). Aligning my findings with these publications suggests HLA-DMA may form a
component of immune response in OAC resulting in greater survival outcomes via
eliciting responses from CD4+ T cells, assessment using digital cytometry presented in

chapter 4 will explore this interaction.
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According to a recent publication HLA-DPA1 expression possesses the third greatest
correlation with cytolytic behaviour, thereby within the scope of OAC the expected result
would form an association between increased HLA-DPA1 expression and improved
survival outcomes due to improved immune suppression of OAC tumours. My analysis
demonstrates low HLA-DPA1 within OAC tumours corresponds with shorter OS, CSS and
DFS finding concordance with the known biological role of HLA-DPA1 in eliciting CD4+ T

cell responses, to be confirmed in digital cytometry analysis in chapter 4.

In my analysis | uncovered low HLA-DQ gene expression in the form of HLA-DQA1/2 in
OAC associated to shorter survival outcomes, aligning this finding to research in others
cancers identifies HLA-DQ genes highly correlates with cytolytic activity in tumours (293).
Despite this, publications in OSCC how linked the expression of HLA-DQA1 with poor
survival outcomes corresponding to increased immune evasion (294, 295). My findings
presented here highlight further differences in the TIME of OAC as compared to OSCC
and may clarify the role of HLA-DQ genes in OAC compared of OSCC, yet further analysis

into predicting the cells expressing these genes must be conducted (see chapter 4).

Lastly among the HLA class Il molecules, low expression of HLA-DOA corresponded to
shorter DFS; current literature places HLA-DOA as the least immunogenic among its
peers, despite this, HLA-DOA has been identified as a candidate within a 7-gene signature

which predicts improved DFS in Hepatocellular Carcinoma (296).

Decreased expression of CD74 within the OAC cohort demonstrated a correlation with
shorter OS, CSS and DFS, this provides an interesting perspective of the potential role of
CD74 in OAC. Notably, prior literature surrounding CD74 in cancer either demonstrates
the genes role as a positive or negative prognostic factor dependant on the disease type
and the role CD74 plays either within antigen presentation or non-antigen presentation
processes such as macrophage migration or mesenchymal epithelial transition (MET).
For example in gastric and colon cancers, fibroblasts which expressed CD74 increase
gastric cancer cell proliferation and drove MET of normal gastro-intestinal cells; this
finding is in opposition to my analysis (297). Though supporting arguments can be found
in breast cancer research which indicate CD74 expression may be a positive prognostic
feature of basal-like breast cancer and prostate cancer (286, 298). CD74 expression also

correlated to high mean density of CD8, CD4 and CD68 TILs in basal-like breast cancer,
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and increased macrophages, activated dendritic cells, and neutrophils in gliomas (298,
299). Examination of CD74 expression survival group via digital cytometry will be used in
chapter 4, to assess whether the expression of CD74 mirrors the increased infiltrate of

TILs seen in basal-like breast cancer.

Examination of SPPL2A expression within the OAC cohort found high expression
corresponds to shorter OS and CSS, this is a particularly interesting result following the
CD74 analysis, as SPPL2A functions to cleave CD74 in the MHC class || compartment.
Thereby, by extension the role of SPPL2A in OAC may mirror that of CD74, where high
cleavage prevents the optimal effect of CD74 in improving survival outcomes; observing
the literature find scarce detail on the function of SPPL2A in cancers especially within the
scope of antigen presentation. However, exploring the human protein database does
find in gastric cancers high expression results in longer OS, whereas high expression in
pancreatic cancer corresponds to shorter OS (286). This could potentially relate to either
SPPL2A functions producing an inflammatory microenvironment, altered DC
differentiation or the reported negative role of SPPL2A in the nuclear translocation of the
0ODZ1, a protein associated to poor patient outcome in glioblastoma (300-302). Thereby,
in my further analysis of SPPL2A | will determine whether the impact on survival
outcomes in OAC is related to any immunological differences in immune cell composition
regarding DC differentiation or by the association of the roles of CD74 and SPPL2A in

immune cell distributions of OAC (see chapter 4).

The remaining two MHC class Il genes, LGMN and CTSS are both proteases involved in
peptide generation for MHC class Il HLA loading, interestingly they both share the same
trend with survival with low LGMN expression corresponding to shorter OS, CSS, DFS and
low CTSS expression associating to shorter CSS. Mining the literature surrounding CTSS
and LGMN in cancer highlights a discordance between my OAC cohort and other cancers.
For example, high expression of CTSS in gastric and lung cancer relates to gastric cancer
cell migration, invasion and poor survival outcomes in both diseases. However, the role
of CTSS in these cancers has been associated to ECM remodelling, cell migration and
producing an inflammatory microenvironment, rather than its antigen presentation role,
even forming a potential treatment vector through inhibition (303-307). Conversely, CTSS

in the case of OAC may bolster immune responses as shown in other cancers where the
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expression of CTSS correlates to increased immunogenicity of tumours and immune
infiltrate including oesophageal, gastric and pancreatic cancers, further correlating to
TMB (308). This opens an interesting question on the role of CTSS as a positive prognostic
factor in OAC and the potential that the high TMB of OAC is responsible for the disparity
of survival outcomes between OAC and other cancers. Mirroring the literature of CTSS,
LGMN is also established as a negative prognostic factor in cancers including gastric,
colorectal and breast cancers, leveraging this effect by promoting tumour development
and TAMs stimulated cell proliferation, migration, and invasion (309-311). For these two
key proteases it is key to follow up the survival analysis with digital cytometry to explore
the alteration of the TIME due to their expression, this could potentially unravel the roles
CTSS and LGMN are playing in OAC which produces this dichotomy in survival outcomes

between OAC and other cancers.

The final APM gene candidate to exhibit altered survival outcomes with expression
belonged to an alternative APM pathway, high MR1 expression in OAC presents as a
positive factor in survival outcome, with only recent publications beginning to explore
the function role of MR1 in tumour immune. One such study explored the novel role
MR1 possesses in eliciting responses from MAIT cells to produce a specific anti-tumoral
response in a pan-cancer cell panel, suggesting MR1 is capable of presenting highly
immunogenic lipids to MAIT cells to target cancer (312). Interestingly, the survival impact
of MR1 expression in OAC has not yet been explored in the literature, thereby my
analysis suggests MR1 may be capable of eliciting immune responses in OAC,
unfortunately, by current deconvolution methodology MAIT cells cannot be
deconvoluted, yet digital cytometry analysis will endeavour to identify any other

adaptions in the TIME due to MR1 expression (See chapter 4).

3.4.5 Transcription regulation by genome methylation alters the APM landscape of mRNA
expression via regulation of known APM gene expression regulators.

To explore the mechanism potentially behind cancer regulation of APM genes which
possessed a significant association | conducted an epigenetic analysis of ten APM genes
comprised of five MHC class I, two MHC class Il HLAs and three APM gene expression
regulators. Notably, the methylation of CpG sites associated to eight of the ten gene

explored genes were differentially methylated in comparison to normal oesophagus.
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Of the eight differentially methylated genes, six demonstrated significantly higher
methylation including MHC class | components HLA-A/G and CALR, HLA-DPA1/B1 of the
MHC class Il HLAs and APM gene expression regulator RFX5. Significantly reduced
methylation of CpG probes associated to the expression of C/ITA and CSDE1 was also
identified with the remaining genes HLA-B and ERAP2 not reaching a significant
association.

Exploring the literature yielded interesting parallels in the methylation of the explored
genes, firstly, the methylation of CpG site for HLA-A identified in my analysis
(cg09803951) has been prior identified as possessing associated with reduced HLA-A
expression in pre-invasive squamous cell lung cancer (313). However, then assessing the
correlation between this CpGs site (cg09803951) methylation and expression within my
OAC cohort | did not find a significant correlation. Interestingly, the methylation of HLA-G
in OAC appeared significantly lower compared to normal tissue, with literature
demonstrating similarly events in HLA-G de-methylation in other cancers to exploit HLA-
G’s ability to elicit immune tolerance towards cancer cells and perturbed T/NK cell
infiltrate (314, 315). This argument is further supported by the analysis presented
displaying a statistically significant correlation between the methylation CpG associated
with HLA-G and its respective mRNA expression. Despite these results finding
concordance with the wider literature, the survival association between low HLA-G
expression and poorer survival still provides a confusing outlook on the function of HLA-G
in OAC, highlighting a further need to explore the dynamics of immune subpopulations
due to HLA-G expression (See chapter 4).

The final MHC class | gene investigated, CALR, demonstrates an increase methylation
status in OAC tissue, in the current literature CALR expression is presented as a negative
prognostic characterise of multiple cancers including OAC, thereby, the increase in
methylation was unexpected, however the CpG site which displayed the greatest
differential methylation in this case did not correlate to expression.

Both MHC class Il HLA-DPA1/B1 possessed increased methylation status in OAC tissue
compared to normal oesophageal tissue, however the same methylation site did not
correspond to gene expression. Notably, this result finds concordance with CRC and
serrated polyposis syndrome where HLA-DPA1 being hypermethylated compared to
normal tissue, conversely, the CpG site the publication differs from that selected within

my analysis (cg12858166) (316). This alternative CpG site within my analysis did not yield
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either a correlation with expression or differential methylation from normal tissue, which
could demonstrated key differences in the regulation of MHC class Il expression in OAC
compared to CRC (316). Interestingly, the methylation of HLA-DP (including alpha and
beta variants) has been prior associated with poorer overall survival in gastric cancer as
part of a four-gene methylation signature, which could suggest other CpG sites for HLA-
DP genes could have an impact on OAC survival due to the similarity between the
diseases (317).

Among the APM gene expression regulators, C/ITA and CSDE1 demonstrated altered
methylation as compared to normal oesophageal tissue. CIITA, which functions as a
trans-activator of MHC class Il expression and has been prior identified as a somatic
target for epigenetic silencing in cancer associating to poorer survival and disease
progression, demonstrated in rhabdomyosarcoma, haematopoietic tumour cells and
gastrointestinal cancers (318, 319). This provides a striking contrast to my OAC cohort
results (TCGA only) where methylation of CIITA decreased in OAC tumours compared to
normal tissue. Furthermore, the methylation of the CpG site associated to C/ITA did
correlate to CIITA expression in OAC suggesting APCs may upregulate CIITA expression in
OAC tumours as a positive immune response or a response to inflammatory cytokines
present in OAC tumours. Yet C/ITA upregulation is is not understood adenocarcinomas
(320). Reduced methylation of CSDE1 in my OAC cohort compared to normal oesophagus
mirrors a recent publication, which demonstrates cancer modifies methylation at the
CSDE1 locus via a methyltransferase SYMD3 which mediates H3K4 trimethylation of
CSDE1 locus in mouse melanoma cancer models with a more recent study replicating this

finding in oral squamous cell carcinoma (321, 322).

3.4.6 Limitations

During my data mining investigation a few notable limitations arose which require
explanation. Firstly, the clinical data could seek improvements in accurate reporting, for
instance, several samples did not accurately report the TNM staging within both the TCGA
and OCCAMS datasets, requiring these samples to be filtered out, decreasing the overall
sample size. This leads to a further issue as although the cohort did possess power of
detection for 20% incidence of genomic events (copy number, mutation, mRNA
expression). Study of the complete OCCAMS dataset (n=551) did detect B2M mutations as
a somatic driver mutation, this was not reflected in my OAC cohort potentially due to the

smaller sample size (242). Furthermore, issues in clinical data effected the results of the
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multivariate analysis due to the lack of metastasis reporting in the TNM staging resulting
in a reduced multivariate model N number.

Unfortunately, there is lack of methylation data within the OCCAMS dataset which
severely reduced the number of OAC samples to n = 87, which could not afford a decent
power of detection. An additional issue involves the complexity of copy number
segments over chromosome 6 preventing any attempt to deconvolute the impact of copy

number at the single gene level.

3.4.7 Conclusions

This data mining experiment has formed an excellent discovery for the landscape APM
genomic defects among OAC patients, despite limitations presented above. Overall, the
results of my data analysis suggest somatic mutations is infrequent among OAC patients
meaning APM machinery proteins are intact in OAC upon expression. Somatic copy
number in OAC over the HLA locus presented a complex issue where multiple HLAs of
both the MHC class | and |l were co-copied on the same segment, furthermore this may
be driven by selection of VEFGA, a well understood copy number amplification in OAC.
This led to exploring the mRNA expression, finding the expression of APM gene
candidates in OAC associates to survival outcomes. Additionally, the regulation of APM
gene expression was explored, finding CSDE1, IRF1, NLRC5, RFX5 and CIITA all formed a
component in APM gene expression regulation via correlation analysis, with CSDE1 and
RFX5 demonstrating association with survival outcomes. Importantly, the CSDE1 survival
association withstood multivariate testing, suggesting CSDE1 may be an independent
prognostic marker of survival. To explore the regulation of APM gene expression
regulators | observed the methylation status of these genes, with the most striking result
demonstrating demethylation of the CSDE1 locus in OAC compared to normal
oesophageal tissue. | have characterised the OAC APM genomic landscape, finding APM
gene expression and revealed several targets to analyse further, including HLA-A/B,
TAPASIN genes, and CSDE1 based on my findings and the wider literature. This research
also presents a holistic landscape of APM genomics in OAC which has not prior been
presented in such depth, unlike OSCC which has been greatly explored for APM genomic
defects. Excitingly, there is merit to further investigate APM gene candidate expression in
OAC and its impact on the OAC TIME. The next step in my analysis is to observe the

impact of APM gene expression which possessed prognostic significance on the
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distributions of immune cell subpopulations using digital cytometry (See Chapter 4), this
should potentially further elucidate the role of APM gene expression in the TIME and anti-

tumoral immunity.

Chapter 4 Investigating the relationship between
immune composition estimates and prognostic APM gene

defects.

4.1 Introduction

From the prior chapter, it is understood defects in APM gene expression within OAC
tumours can associate with patient overall survival, however, the mechanism by which
this survival impact is come about is not yet understood.

This chapter will focus on elucidating whether prognostically informative APM gene
expression (determined by OS association from Chapter 3 results) is tied to changes in the
tumour immune microenvironment (TIME), estimated by digital cytometry deconvolution
analysis to identify the proportions of immune cell subpopulations from the combined

TCGA and OCCAMS RNA-seq data.

411 Deconvolution methods

Determining immune cell compositions in tumour tissue relies on several conventional
methods including immunohistochemistry and flow cytometry, however, these
techniques often use single markers for cell types such as a CD8+ antibody to detect CD8+
T cells. Enumerating immune subsets using these methods suffer from limitations in
phenotypic markers and can be challenging to practically implement and standardise
(323) . With recent advancements in in silico methods and computational modelling (i.e.,
machine learning) allow for predicting fractions of multiple cell types in gene expression
profiles in sample mixtures, these methods have been coined as ‘immune profiling by
signature matrix deconvolution’ or ‘deconvolution’ for short. Multiple deconvolution
computation models have since been developed since the advent of more powerful
computation hardware including OLS, nnls, RLR, FARDEEP, and CIBERSORT (324-327).
Deconvolution analysis methodology can be divided into two broad categories, reference-
based (supervised) methods, which function by using a priori defined reference matrix

made of expected gene expression profiles of cell types. Mathematically, a reference
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matrix is represented as Hm x k, m representing expected value for markers for a
particular cell type and k representing cell types known to be present in the sample; using
the reference matrix a deconvolution methodology can use non-negative or constrained
linear regression methods to dissect cell types based upon the samples gene expression
matrix (328).

Reference-free (unsupervised) approaches contrast to referenced-based approaches by
using ad hoc feature selection, with the variability of each feature determining how
informative a feature is in the sample mixture; selected features are then used to dissect
cell types (329). A literature search of deconvolution methodology found the top
deconvolution methods used in publication (>100 articles) are CIBERSORT and Xcell.
CIBERSORT and the latest version CIBERSORTXx are supervised deconvolution methods
which infer cell type abundance and cell-type-specific gene expression from RNA profiles
of intact tissues; this methodology was first reported in 2015 with CIBERSORTx being
reported in 2019 (327, 330). Outside of the initial report, CIBERSORT was first published in
a pan-cancer analysis of the TCGA dataset identifying an association between 22 distinct
leukocyte subsets and cancer survival (331). CIBERSORTX also provides two distinct
reports on immune abundance, namely absolute and fractional values. Fractional scores
represent the proportion of a cell type targeted by the analysis, for example the
proportion of LM22 (Immune cells) which are CD4+ T helper cells, whereas absolute
scores scales cellular fractions to produce a score reflecting each cell type’s absolute
proportion allowing for direct comparison between samples and cell types (332).

Next Xcell deconvolution, first reported in 2017, outperformed the previous version of
CIBERSORT by not being reliant on Affymetrix microarray studies, instead integrating
single sample gene set enrichment analysis with deconvolution approaches and could
identify 64 cell types opposed to the 22 cell types CIBERSORT can deconvolute.
Importantly CIBERSORTx carries several advantages including estimation of sub-
population and total immune content using its absolute setting (333, 334). A recent study
benchmarked a number of deconvolution methodologies, assessing them with both bulk
and single-cell RNA transcriptomic reference data to determine the accuracy of each
using pseudo-bulk datasets with known cellular proportions using RMSE (root mean
square error) as a measure of accuracy (335). For the analysis of bulk RNA the top five
performing bulk deconvolution methods were determined to be OLS, nnls, CIBERSORTY,

RLR, and FARDEEP (in running order) due to their similarly low RMSE (335). Assessment of
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deconvolution methods in scRNA-seq data identified the DWLS, MuSiC, SCDC as the top
three as they achieved median RMSE values lower than 0.05, penalised regression
approaches such as lasso, ridge, elastic net regression, and DCQ performed worse in
scRNA-seq data achieving a median RMSE of approximately 0.1 (335). An external review
of deconvolution methods in immune-oncology examined the use of CIBERSORT, EPIC,
MCPcounter, quanTlseq, TIMER and Xcell; from this report xCell was suggested as it
performed best with the lowest RMSE; however, results of this analysis were much in
concordance with the prior benchmarking paper placing CIBERSORT and Xcell as the most
accurate deconvolution methods (332, 333, 336-340). Using the available literature
CIBERSORTX provides high accuracy, the second highest cell type distinction with the 22
LM immune panel (A validated signature matrix containing 547 genes that distinguish 22
human hematopoietic cell phenotypes), can be used to infer total immune content of a
sample and is by far the most published (A PUBMED literature search of “CIBERSORT” and
“Xcell” terms, resulted in: 761 vs 182 research articles). Thereby, by consulting the
literature the deconvolution analysis for our project will focus on the use of CIBERSORTX
to identify the proportions of the immune cells, whilst allowing analysis to determine

total immune content in OAC samples.

4.1.2 Limitations of deconvolution methodology

Despite the usefulness of deconvolution methodology in determining the immune cell
subpopulations in cancer there are several limitations associate with these techniques.
Firstly, the spatial location of the immune cell types cannot be determined by
deconvolution; the spatial location of immune cells is important as this can help elucidate
the mechanistic effects of these cells in the TME. For example, the location of CD8+ T
cells can help determine the immunophenotype of a specific tumour, with exclusion of
CD8+ T cells from the intratumorally space being a marker of an immunosuppressive
TIME (210). Secondly, only a specified number of immune cell phenotypes can be
classified by deconvolution methodology. For example, within the LM22 signature matrix
the signatures for CD4+ cells are CD4 naive, CD4 resting and CD4 activated, which does
not provide granular data on the immunophenotype of CD4 cells which can significantly
impact the TIME. This includes Th1/Th2 balance, requiring further exploration using
methodologies such as gene set enrichment analysis, as demonstrated in other
immunological studies (341, 342). Finally, RMSE values produced in deconvolution

analysis are significantly impacted by a priori knowledge, with sub-setting of known
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markers of cells prior to deconvolutions significantly lowering the RMSE, suggesting
sensitivity to input data. This sensitivity may mean that different datasets may not be
directly comparable; furthermore, this sensitivity was explored by removing a single
immune cell type from pancreatic samples finding that removing a cell type from the

reference matrix made MuSiC, NNLS, and CIBERSORT results less accurate (343).

4.1.3 Validation of deconvolution output

Despite deconvolution addressing the limitation of phenotypical markers presented in
immunohistochemistry (IHC), methodologies such as RNA-scope, spatial transcriptomics,
and flow cytometry should be employed to validate the findings of deconvolution

analysis (344, 345).

4.1.4 The Tumour Immune Microenvironment (TIME) of OAC

The TIME is the network of interacting cancer and immune cells found within a tumour.
Notably, the mechanisms of immunity within these niches are significantly different from
those outsides of the tumour microenvironment niche, due to cancers ability to
manipulate and obstruct normal immune functions as a mechanism to avoid anti-tumoral
immunity. For its significant role in the development and progression of tumours, the
TIME is deemed as a hallmark of cancer (346). A previous study of the TIME of 111
primary OAC resections (mean age 65; sex Male: Female, 96:15; T category T1: 33, T2: 10,
T3:65, T4:3; Lymph node metastasis: 52; distant metastasis: 4; Tumour grade G1-2: 64,
G3-4: 47) depict a high range of CD3+, CD8+, FoxP3+ TlLs distribution. See key results

summarised in Table 17.

Table 17 Summary of cell densities in OAC from Stein et al, 2017 (210).

IMMUNE CELL MARKER TUMOURAL LOCATION CELL DENSITY
(Intratumoural/Peritumoural)
CD3 INTRATUMOURAL 1-231/0.849 mm?
CD3 PERITUMOURAL 1-220/0.849 mm?
CD8 INTRATUMOURAL 1-130/0.849 mm?
CD8 PERITUMOURAL 1-145/0.849 mm?
FOXP3 INTRATUMOURAL 0-73/0.849 mm?
FOXP3 PERITUMOURAL 0-35/0.849 mm?

This study also identified the TILs counts for each T cell subtype (CD3+, CD8+ and FoxP3+)

correlated with each other and further correlated with the total inflammatory reaction

126



(210). Another study of 354 OAC tissue microarrays identified that OAC seems to
preferentially express PD-L2 over PD-L1, detecting PD-L2 in in 51.7% of OACs compared
to the 2% of cases with PD-L1 epithelial expression (73). Moreover, PD-L1 is expressed in
both tumour cells and tumour infiltrating immune cells in OSCC, but there is preferential
expression of PD-L1 in TIICs (Tumour infiltrating immune cells) rather than in tumour cells
in OAC (73). Notably, interleukin-6 (IL-6) is highly expressed in some OAC cases, being
especially expressed in cancer-associated fibroblasts (CAFs) (347). High secretion of IL-6
in OAC patients may impact the differentiation of monocytes from dendritic cells to
macrophages, effecting cell fate of monocytes in the TIME identifiable by deconvolution
analysis (347, 348). One study used the estimation of Stromal and Immune Cells in
Malignant Tumour Tissues Using Expression Data (ESTIMATE) algorithm, which calculates
a score based on the expression of immune signature genes (141 genes) including
markers of T cells; analysis of the TIME of OAC found the median immune score was
higher in female as compared to male patients and was correlated with tumour-node-

metastasis stage (349, 350).

Important cellular players of the TIME in OAC are described across the following sections

below.

4.1.5 B lymphocytes

B lymphocytes are cells that express clonally diverse cell surface immunoglobulin (Ig)
receptors that can recognise specific antigenic epitopes. These cells mediate multiple
functions essential for immune homeostasis; B cells are essential in the activation of T
cells demonstrated in mice depleted of B cells at birth using anti-lgM antiserum (351).
Other functions B cells perform in host immunity include antigen presentation to T cells,
cytokine secretion, Th1/Th2 cytokine balance and the regulation of dendritic cells (352-
354). In oesopho-gastric adenocarcinomas B cells were increased in tumour samples and
subset-analyses of TILs showed increased proportions of differentiated and activated B
cells and an enrichment for follicular T helper cells. These tumour-associated B cells
(TABs) in OAC were mainly organized in tertiary lymphoid structures (TLS), which are
similar structurally to secondary lymphoid organs (355). Additionally, B cells were
decreased in tumours with high expression of PD-L1 or impaired MHC | HLA expression
(355). From the literature, low proportions of B cells in OAC tumours from deconvolution

could link to high PD-L1 expression within prognostically significant APM expression
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groups, this is due to B cell infiltrate decreasing in tumours with HLA-loss and PD-L1

expression (355).

4.1.6 CD8 T cells

Naive CD8+ T cells specifically recognise antigens presented on APCs (antigen presenting
cells) MHC | molecules activating and maturing into cytotoxic T lymphocytes (CTLs). CTLs
provide immune defence against intracellular bacteria, viral, protozoa infections, in
addition to providing anti- tumoral responses(356). CD8+ T cells can specifically target
cancer cells, thus forming the majority of immune anti- tumoral responses, directing
cytotoxicity towards cancer cells by secreting cytotoxic granules. Cytotoxic granules
contain perforin, plus granzymes A and B, these respectively act to form pores in cell
membranes and induce apoptosis through activation of a caspase cascade establishing an
apoptosome (357). As CD8+ T cells can target cancer cells, their mechanisms of
engagement can be exploited by immunotherapies to boost anti-tumoral responses.
Immunotherapies such as anti-CTLA-4 has shown promise in keeping T-cells activated by
preventing tumour cell B7 ligand from binding to CTLA-4 receptors. This blockade of the
immune checkpoint allows T-cells to direct cell cytotoxicity towards cancer cells (358).
These therapies are currently being explored in OAC and gastric cancers, with the
presence of CD8+ TlLs being a major factor in in response to checkpoint blockade
therapies; thereby, APM expression which impacts the infiltration of CD8+ TILs in OAC
measured by deconvolution may be a prognostic tool in future to assess the likelihood of
patient response to checkpoint blockade in OAC (359). Interestingly, within CD8+ T cells
there can be found a CD8+ Treg population, this subset notably is capable of secreting
inhibitory cytokines and chemokines; including IL-10, transforming growth factor (TGF)-B,
IL16, IFN-y (360). Remarkably, CD8*CD28~ Tregs can render APCs tolerogenic, through
upregulation of immunoglobulin-like transcript (ILT)3 and ILT4 expression (361). CD8+
TILs correlate with improved survival in patients with OAC, with CD8+ TILS forming an
independent prognostic factor and were associated to significant pathological response
to neoadjuvant chemotherapy. Within the same study multivariate analysis increased
levels of CD4*and CD8* TILs were associated with significant local tumour regression,

lymph node downstaging and improved cancer specific survival (362).
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4.1.7 CDA4 T cells

CD4+ T cells often coined, ‘T helper’ cells due to their support functions in assisting most
aspects of the adaptive immune system from helping activate B cells to secrete
antibodies, macrophages to destroy ingested microbes and even assist in activating CD8*
cytotoxic T lymphocytes to kill cancer cells. CD4+ T cells can be divided into multiple cell
types; firstly, Th1 cells participate in responding to intracellular pathogen and cancerous
cells. In the presence of IFN-y and IL-12, and absence of IL-4 and IL-10, naive CD4* T cells
are driven to differentiate into Th1 cells (363). This maturation towards the Th;
immunophenotype is further driven by a positive feedback loop, resulting from Th1 cells
expressing IFN-y in the microenvironment, also suppressing generation of Thy, Thi7, and
Tregs (364-366). Moreover, secretion of IL-2 from Th cells promotes the proliferation of
lymphocytes, enhancing the activity of NK cells by upregulating IL-12 receptor and STAT4
expression; this interaction leads to increased secretion of IFN-y and TNF from NK cells
(367). Furthermore, IFN-y and IL-12 secreted from Th; cells may increase CD40
expression, thereby promoting macrophage functions, such as phagocytosis and
presentation of exogenous antigens (368). Th; cells participate in type-ll immune
responses towards parasites, but also play significant roles in allergies and atopic
illnesses (369). TCR activation and cytokine-mediated signalling are important during Th»
cell differentiation. TCR activation leading to NFAT, NF-kB and AP-1 activation results in
upregulation of IRF4 expression, this in combination with upregulation of GATA3 leads to
Th; differentiation. IL-4 and IL-13 can also promote Th; differentiation through binding
to IL-4 receptors, resulting in the upregulation of GATA3 via STAT6 (370). Interestingly,
squamous esophagitis to Barrett's oesophagus progression is accompanied by a
transition from a Thy to Th, immune response which is hypothesised to induce PD-L2
through the Th; cytokines IL-4 and IL-13 in the progression from squamous esophagitis to
Barrett's oesophagus, contributing to immune evasion of OAC (73). Thereby, detection of
a Tha dominant Th1/Th; balance in deconvolution analysis could relate to immune
suppression of TIME via PD-L2 induction. Thi7 cells are proinflammatory cells, these cells
mediate host defence against bacteria and fungi by secreting IL-17. Thi7 cells
characteristically express; RORyT, RORaq, IL-17A, and IL-17F (371, 372). Interestingly, Thiy
cells are polarised in the presence of TGF-B and IL-6 (371). However, unlike their Th1 and
Thy counterparts, Thi7 do not secrete IL-6, thereby do not possess a positive feedback

loop for the generation of Thiy cells. Instead, IL-21 is key to Thi7 expansion, promoting
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Th17 expansion via an IL-6 and TCR independent mechanism (373). In OAC IL-17 secreted
by Th17 cells promotes cell invasiveness and migration through ROS-dependent, NF-kB-
mediated MMP-2/9 activation (374). Furthermore, in reflux oesophagitis (RO) and BE an
increased ratio of Th17/Treg was observed when compared to normal controls, and the
proportion of Thi7/Treg in BE was also increased in comparison RO patients (375).
Expression levels of RORyT, IL-17, IL-6, and TGF- were elevated, while the levels of
Foxp3 and IL-10 were reduced in patients when compared to the controls, validating the

increase in Th17/Treg ratio (375).

4.1.8 T cells regulatory (Tregs)

CD4+ Tregs act to suppress immune functions, prevent autoimmune disease and to
promote self-tolerance by secreting specific cytokines such as IL-10 and TGF-B. Tregs
were first described as immunosuppressive CD4*CD25* T cells in 1995, prior to identifying
the roles of IL-2 and TGF-B in maintenance and development of T cells, and FoxP3 as a
master regulator of Treg functions (376). Notably, Tregs secrete immunosuppressive
cytokines including IL-10, IL-35, and TGF-B. These cytokines play additional roles
promoting promote tTreg (thymus Treg) and pTreg (peripheral site Treg) proliferation
and function, as well as, exerting suppression of other effectors cells. TGF-B secreted
from Tregs produces several biological responses, these include inhibiting transcription
of IL-2 and cyclin D expression, preventing effector cell proliferation. Furthermore, TGF-3
inhibits Tbet and GATA3, suppressing Thi, Tha, and CD8+ T cell responses. TGF-B also
induces FoxP3 expression on other Tregs in the microenvironment, whilst promoting T
cell survival by downregulating C-MYC and FasL expression, needed in activation-induced
cell death of lymphocytes (ACID) (377). In OAC and BE, an increase in the frequency of
Tregs compared with normal controls with patients possessing higher Treg counts in the
centre of the tumour associated with lower stage of disease and were positively
correlated with the density of CD8* CTLs (378). However, the presence of Tregs was not
an independent prognostic factor to CD8+ T cells in OAC suggesting the increase in Treg
numbers is related to increase the host defence mechanism overall. The literature on
Tregs suggest that Tregs could present a marker for overall immune host defence

mechanisms in our OAC cohort.
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4.1.9 Natural killer cells (NK)

NK cells are innate lymphocyte cells that mediate anti-tumour and anti-viral responses;
by secreting cytokines and chemokines NK cells can regulate immune responses, for
example, CC-chemokine ligand 5 (CCL5), XC-chemokine ligand 1 (XCL1) and XCL2 secreted
from NK cells promotes the recruitment of dendritic cells into solid tumours, this event
correlates with improved survival (379). Activated NK cells mediate cell cytotoxicity
through the release of granzyme B, inducing a cascade of caspases cleavages, resulting in
cell apoptosis (380). NK cells work synergistically with professional antigen presenting
cells, in secreting cytokines required to induce inflammation and recruit lymphocytes to
sites of inflammation, allowing the foundation of cellular adaptive response.
Furthermore, activated NK cells express HLA-DR that can initiate MHC Il-dependent CD4+
T-cell proliferation (381). Importantly, NK cells are capable of targeting cancer cells which
undergo loss of MHC | cell surface molecules directing cytotoxic activity towards the
cancer cells (382). In OAC, a high concentration of NK cells was associated to prolonged
overall survival independently from clinical and other immune cell proportions;
specifically, the best prognosis from this study was identified in patients high density of
either CD20* B cells or IGKC* plasma cells combined with high density of either high CD3*
CD8+, FoxP3* or NKp46* lymphocytes, with high density of NKp46* cells being
significantly associated with a lower tumour stage (383). From the literature, a high
fraction of NK cell in the TIME is a positive prognostic marker to investigate in the
deconvolution of our cohorts, furthermore the impact of APM gene expression on NK cell
subpopulation density can be explored; the evidence for this includes analysis of
CD569MCD16+ NK and CD56"CD16- NK cells in OAC which relates to disease

progression (384).

4.1.10 Monocytes

Monocytes perform a range of functions in cancer at distinct stages of tumour growth
and progression; protumour functions include differentiation in tumour associated
macrophages, metastatic cell seeding, suppression of T cell function and remodelling of
the extra cellular matrix (385-387). Antitumoral function of monocytes include tumour
cytotoxicity, prevention of metastasis, engulfment of tumour material, recruitment
of/correlation with NK cells and inhibition of Tregs (388-394). In deconvolution analysis

of our cohorts, the presence of monocytes may indicate either immune suppression or
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cytotoxic activity, observing the cytotoxic activity in high monocyte populations may

indicate their role in the OAC microenvironment.

4.1.11 Macrophages

Macrophages are crucial mediators of tissue homeostasis in the TIME, the function of
these cells are often distorted by tumours to stimulate proliferation, angiogenesis and
metastasis, the macrophages exploited by tumours are known as tumour associated
macrophages (TAMs). TAMS are often described in tumours as one of two phenotypes
M1 or M2 macrophages; M1 TAMs are pro-inflammatory and are activated by IFN-y and
lipopolysaccharide and promote tumour immunity by expressing elevated levels of
tumour necrosis factor (TNF) and inducible nitric oxide synthase. Conversely, M2 TAMs
are anti-inflammatory and pro-tissular, expressing MHC class Il molecules and pro-
tumorigenic when they express high levels of arginase 1, IL-10, CD163, CD204 or CD206
(395). In cancer, M1 macrophages are often polarised to the M2 phenotype by IL-4, IL-10
and TGF-B cytokines secreted into the TIME (396). In OAC prevalence of the M2 subtype
was found to predict lymph node metastasis, cellular invasion, and poor prognosis (397-

401).

4.1.12 Dendritic cells (DCs)

DCs are a specialised diverse group of professional APCs which play crucial roles in the
initiation and regulation of both innate and adaptive responses. Importantly, in the
TIME, DCs acquire and process tumour antigens presenting them on MHC Il molecules
with two other stimulatory signals, providing co-stimulation and stimulatory soluble
factors, shaping T cell responses to cancer (402, 403). Tumours often modulate the
function of DCs to achieve immune evasion including the inhibition of differentiation,
exclusion from the TIME, disrupting activation, direct inactivation, impaired handling of
the antigen presentation, metabolic stress and reducing viability (402). The presence of
DCs has been noted to increase from BE to OAC, this could suggest in OAC may impair
the function of these DCs shifting the DCs to an anti-inflammatory phenotype by
exploiting the IL-6/JAK/STAT3 pathway. This could produce functionally incompetent
dendritic cells as previously described in head and neck squamous cell carcinoma, non-
small cell carcinoma and breast adenocarcinoma (402, 404, 405). Overall, the population

of DCs should remain rare in comparison to other immune cell types, with resting DC
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being a potential marker of reduced anti-tumoral immunity via the aforementioned IL-

6/STAT3 pathway, my deconvolution analysis will aim to confirm this in OAC (406).

4.1.13 Mast Cells

Mast cells are long-lived secretory cells, belonging to the granulocyte family which
possess a multitude of functions in angiogenesis, homeostasis, innate and adaptive
immunity, and cytokine/chemokine release. In cancers mast secrete pro-angiogenic
factors, such as VEGF, bFGF, TGF-beta, TNF-alpha, and IL-8, supporting tumour growth
(407). Mast cells can act as either pro-tumoral or antitumoral; for example, mast cells can
secrete TNF-a and increasing antigen presentation by dendritic cells, promoting pro-
inflammatory T cell responses and monocyte/macrophage activation, or conversely, mast
cells can secrete IL-10 and thus block T cell proliferation (408, 409). The abundance of
Mast cells in OAC is known to correlate to improved OS, especially in cases with lymph
node metastasis (410). Additionally, pancreatic ductal adenocarcinoma (PDAC) Mast cell
concentration within the intertumoral space, but not the peritumoral or the
intratumorally space, was associated to poor prognosis (411). Due to the genomic
similarities between PDAC and OAC, there may be similarities between the concentration
of mast cells and prognosis in OAC as seen in PDAC. Thereby, in our analysis assessing
the impact of expression of our prognostically significant APM genes on the population of
mast cells by deconvolution analysis may elucidate the role of APM genes in mast cell
prevalence in OAC, suggesting potential crosstalk between specific APM genes and mast

cells or providing a biomarker for their presence.

4.1.14 Eosinophils

Eosinophils are innate immune cells, belonging to the granulocyte family which secrete a
diverse range of cytokines (412). In cancer, eosinophils can act to support anti-tumoral
responses by normalizing tumour vessels and enhancing infiltration of CD8+ T cells by
chemoattractant recruitment (413). The impact of eosinophils on survival has been
investigated in OAC, demonstrating eosinophil positive tumour possess longer overall
survival compare to eosinophil negative tumours in cases only treated with surgery (414).
Thereby, investigating the impact of APM gene expression on eosinophil subpopulations
in OAC by deconvolution may yield insights by which APM gene expression impacts the

innate immune response and overall survival.
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4.1.15 Neutrophils

Neutrophils are granulocytes which form most abundant leukocytes in the circulation
and function to capture and destroy invading microorganisms using phagocytosis and
intracellular degradation, release of granules, and by forming neutrophil extracellular
traps (415). In tumours, neutrophils are known as tumour-associated neutrophils and can
have antitumour and pro-tumour functions; pro-tumoral function include the released of
reactive oxygen species (ROS), secretion of pro-tumour cytokines and chemokines (TGF-
B, HGF, CCL4, CXCLS, IL17) (416-418). In OAC patients with elevated levels of TANs
(Tumour associated neutrophils) were associated to poorer prognosis. This suggests the
deconvolution analysis should aim to identify any significant difference in neutrophil
populations for each candidate gene. Differences in neutrophil populations associated to
APM gene expression may indicate APM gene expression could be affecting survival
through impacting the number, function, and phenotype of neutrophils. Interestingly,
Mast cell positive tumour possess longer overall survival compare to Mast cell negative

tumours (414).

4.2 Hypothesis and research objectives

The prior datamining investigation of the landscape of genomic defects in APM genes
identified the expression of several APM genes was prognostically significant in our
cohorts, however, the impact of APM gene expression on the TIME immune cell
subpopulations is unknown. To explore how APM gene expression impacts the immune
subpopulations of OAC, deconvolution analysis will be conducted to elucidate the
proportions of TIME immune cell subpopulations and thereby investigate the immune

response associated with altered APM gene expression.

Hypothesis 2: The expression of prognostically significant antigen presentation machinery
genes defines the immunophenotype of OAC by editing the distribution of immune cell
subpopulations in the TIME.

Aim 2 (Results Chapter 4): Investigate immune infiltrate and activity in OAC and/ or

recurrent molecular defects in APM/ MHC | & Il pathways by digital cytometry utilising

deconvolution analysis of bulk transcriptomic data.
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Objective 2a: Characterise the immune cell subpopulations in OAC with our cohorts using
CIBERSORT deconvolution and compare to known published immune populations in OAC.
Objective 2b: Assess the impact of antigen processing machinery defects identified by
the chapter 3 datamining analysis on the immune cell subpopulations our OAC cohorts
(TCGA and OCCAMS).

Objective 2c: Determine the prognostic value of antigen processing machinery defects in

combination with immune cell distributions.
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4.3 Methodology

4.3.1 Samples and data

Samples for deconvolution analysis were extracted from the prior data mining analysis for
176 samples from the combined TCGA-OCCAMS cohort. The data used for deconvolution
included RNA-seq counts normalised using TPM, batch corrected between the two
datasets (Combat-seq) and clinical data parsed to include survival times, survival events

and optimal cut point classifiers for each APM gene (207).

4.3.2 CIBERSORTX

Deconvolution functions on a linear model which focus on a gene expression profile as a
linear equation of pre-defined signatures of immune genes at different ratios. These
linear regression models are applied to estimate gene coefficients used to infer the
immune cell abundances (323). CIBERSORTXx specifically, is a deconvolution method using
v-support vector regression method to estimate the immune cell proportions (relative)
from a gene expression profile (323).

Firstly, the prerequisite mixture files for TCGA and OCCAMs were prepared for analysis.
The mixture file contains the gene expression profiles of the samples, this forms a table
where the first row consists of column headers containing the sample labels and the first
column consists of row headers containing the gene name or symbols, with the data
points occupying the remainder of the table. For our analysis, the mixture files were
produced from the TPM normalised RNA-seq counts batch corrected using ComBat-seq
produced in a tab-delimited (.txt) format. Next the mixture files were uploaded into to

the CIBERSORT file storage (https://cibersort.stanford.edu/upload.php), then input into

the CIBERSORT basic configuration parameters on the CIBERSORT webpage
(https://cibersortx.stanford.edu/); parameters used for each run are as follows:

- Job type: Impute Cell Fractions

- Signature matrix file: LM22.update-gene-symbols.txt
- Mixture file: MIXTURE.txt

- Batch correction: enabled

- Batch correction mode: B-mode

- Disable quantile normalization: false

- Run mode (relative or absolute): absolute

- Permutations: 100
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These parameters were selected based on advice provided in the CIBERSORTXx publication,
permutations set to 100 to produce “meaningful p values” (i.e. significant level down to
p-value 0.01), Batch correction disabled as data was prior batch corrected, quantile
normalisation disabled as data in RNA-seq format, finally, absolute mode used as these

results provide comparable results between samples and cell types (323).

433 Statistical analysis of deconvolution data

For the combined dataset, CIBERSORT analysis for all immune cell phenotypes were
simplified into the broad categories by adding together absolute values of immune cells
(B cells, Plasma cells, T cells CD8, T cells CD4, T cells regulatory (Tregs), NK cells,
Macrophages, Dendritic cells, Granulocytes, Monocytes) then z-score scaled prior to
passing data to pheatmap function (pheatmap package) in R version 4.0.2, clustered using
Euclidean distance with ward.d2 linkage (419). Heatmaps were annotated with the TPM
expression of GZMA, GZMB, PRF1, the absolute TILs score and CYTscore (A score
representing immune cytotoxicity via degranulation) calculated from the geometric mean
of GZMA and PRF1 expression (v GZMA x PRF1) (420).

To confirm the accuracy and optimise the CIBERSORTx analysis, variations on the
CIBERSORTXx analysis were conducted and compared to Methyl-CIBERSORT data
(orthogonal standard/ calibrator method using paired DNA methylation data with high
accuracy to the flow cytometry gold standard) for matching TCGA samples (gifted by Dr
Tim Fenton with permission to re-use). Variations in data sources and batch corrected
data types tested included TIMER 2.0 TPM, CIBERSORTx B-mode batch corrected TPM
(only TCGA samples), CIBERSORTx B-mode batch corrected TPM (combined OCCAMS and
TCGA samples) and finally CIBERSORTx ComBat-seq batch corrected TPM (combined
OCCAMS and TCGA samples) (327, 421).

Using the RNA-seq data from Chapter 3 results | produced a correlation analysis,
correlating the expression of prognostically significant APM genes identified in Chapter 3
with the immune cell subpopulation CIBERSORTx absolute values produced using
methods explained above, these results were placed in a correlation heatmap using the R
ggcorplot() function edited to identify significant correlations (Alpha set at the 5% level)

(422).
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To assess differences in immune cell distributions due to APM gene expression,
upper/lower mRNA expression quantile cut points (<0.25 and >0.75 quantiles) for APM
genes were introduced to dichotomise the CIBERSORT analysis, then passed to GraphPad
prism 9 for statistical analysis and visualisation using boxplots (423). The normality of the
CIBERSORT results in each expression group was assessed using Shapiro-Wilk tests, then
central tendencies (means or medians) for each cell phenotype between the high/low
APM gene expression groups were directly compared using unpaired T-tests (Parametric
data) or Mann-Whitney U tests (non-parametric) based on data normality. The prior
dichotomisation was repeated though using the upper and lower quantiles of APM gene
expression to divide the CIBERSORT results, then passed to GraphPad prism 10 repeating
the analysis described above. Results were corrected for false discovery using “Two-stage

set-up method of Benjamini, Krieger and Yekutieli” in GraphPad prism.
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4.4 Results

4.4.1 Validation of CIBERSORTXx analysis

Firstly, | correlated the sample-level variation of CIBERSORTx analysis to
MethylCIBERSORT data to select the most reliable batch correction method for
CIBERSORTXx using the CD8+ T cell estimates as a benchmark. CD8+ estimates were
selected as they had the highest performance of CIBERSORTx estimated cell fractions in
line with flow cytometry (R?=0.86) (330).

CD8+ T cell scores derived from the publicly available TIMER 2.0 CIBERSORT analysis
(using the original CIBERSORT algorithm) yielded a R? = 0.54 (see Figure 26A) with
MethylCIBERSORT, with CD8+ T cell scores derived from CIBERSORTx using B-mode (TCGA
samples only) displayed an improvement in correlation with a R? = 0.58. However, once
combining the TCGA and OCCAMS datasets with B-mode CIBERSORTx analysis
demonstrated a significant drop in correlation for TCGA cases, producing a R? = 0.39. This
limitation was addressed by using ComBat-seq to batch correct RNA-seq counts between
TCGA and OCCAMS before producing TPM data for input into CIBERSORTX analysis with B-
mode enabled (Figure 26D).

These CD8+ Rho values are in line with flow cytometry derived cell type fraction versus
CIBERSORT fraction sample correlation (Rho) values (0.5-0.86) from Newman et al. (Figure
3 in Newman, et al. 2019) (330). Using this analysis, | was able to determine that using
TPM normalised RNA-seq counts which was batch corrected using ComBat-seq would be
sufficient to make comparisons between TCGA and OCCAMS samples and was used for all

downstream analyses in this chapter.
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Figure 26: Scatter plots with linear regression comparing MethylCIBERSORT with
variations of CIBERSORTXx analysis. A: CD8 MethyICIBERSORT Absolute score
vs CD8 Absolute score TIMER 2.0. B: CD8 MethylCIBERSORT Absolute score vs
CD8 Absolute score CIBERSORTx B-mode (TCGA only). C: CD8
MethyICIBERSORT Absolute score vs CD8 Absolute score CIBERSORTx B-mode
(combined OCCAMS and TCGA samples) D: CD8 MethyICIBERSORT Absolute
score vs CD8 Absolute score CIBERSORTx ComBat-seq batch corrected
(combined OCCAMS and TCGA samples).

44.2 A description of the TIME in OAC

| moved to elucidate the TIME of OAC by clustering the CIBERSORTX estimated immune
cell subtype distributions. This analysis identified four distinct clusters, The first cluster
was driven by the presence of monocytes and granulocytes, the second represents an
immune hot group with excessive amounts of effector cells including CD8+ T, CD4+ T and
NK cells, with high macrophages (See Figure 27 & 28). A third cluster presented as
immune cold relatively lacking a high subset of immune cell types (See Figure 27 & 28).
Finally, the fourth cluster was characterised by B cells, however a subset of these samples

does also have high plasma cells estimates (See Figure 27 & 28).
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OAC immune abundances by simplified CIBERSORT ABSOLUTE (176 samples)
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Figure 27 Z-scored heatmap of CIBERSORT simplified data in the entire OAC cohort (n = 176), clustered using Euclidean distance with ward.d2 linkage,
four distinct clusters of immune phenotypes, the expression of GZMB and PRF1 (TPM, Z-scored) and absolute TILs labelled in the top annotation.
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Immune composition of heatmap clusters
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Figure 28 Stacked bar chart of CIBERSORT fractional values by heatmap cluster
displayed in Figure 27.

Interestingly, comparing the absolute TIL between the heatmap clusters found a
significant difference between all clusters except cluster 1 & 2 (See Figure 29A). Cluster 3
possessed a significantly lower TILs compared to all other clusters, while cluster 2
possessed a significantly greater TlLs absolute score to all other clusters excepting cluster
1 (See Figure 29A). Expanding the comparisons between the clusters | observed cluster 3
also possessed a significantly lower expression of granzyme-B (GZMB) compared to
cluster 2, of which cluster 2 also possessed a significantly greater GZMB expression
compared to cluster 4 (See Figure 29B). Similarly, the expression of perforin-1 (PRF1) was
significantly reduced in cluster 3 compared to cluster 2 and 4 (See Figure 29C). These
results place cluster 1 and 2 with the most potential cytotoxicity, followed by cluster 4
with the remaining cluster 3 with the least potential cytotoxicity (See Figure 29C).
Calculating the CYT score demonstrated a significantly lower cytotoxicity potential of

cluster 3 compared to cluster 2 (See Figure 29D).
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Figure 29 Box and Whisker plots of immune characteristics compared between heatmap
clusters of immune phenotypes displayed in Figure 27. A: The absolute TILs

score derived from CIBERSORTx by heatmap cluster. B: The expression of
GZMB by heatmap cluster. C: The expression of PRF1 by heatmap cluster. D:
CYT score by heatmap cluster. Statistical test Mann-Whitney U test with FDR
correction, p values*<0.05, **<0.01, ***<0.001, NS = non-significant.

Lastly, in my cluster analysis | assessed the impact of my four immunophenotype clusters

(IP-cluster) on survival outcomes. In CoxPH overall survival analysis did not identify any

significance differences between the immunophenotype clusters in both univariate and

multivariate analysis, though cluster 3 did possess the highest, but non-significant hazards

ratio among the clusters (See Figure 30 & Table 18).
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Figure 30 Forest plot of CoxPH survival analysis comparing the heatmap clusters of
immune phenotypes derived from Figure 27.

Table 18 CoxPH survival analysis comparing the heatmap clusters of immune
phenotypes derived from Figure 27.

LABEL LEVELS ALL HR (UNIVARIABLE) HR (MULTIVARIABLE)

CLUSTER 1 9 (5.2) _ -
2 55(31.6)  0.98 (0.35-2.81, P=0.977) 0.47 (0.06-3.90, P=0.487)
3 45(25.9)  1.65 (0.57-4.82, P=0.358) 0.34 (0.04-3.28, P=0.352)
4 65(37.4)  1.39(0.50-3.87, P=0.529) 0.60 (0.08-4.72, P=0.627)

ABSOLUTE

SCORE HIGH 139 (79.9) - -
LOW 35(20.1)  1.91(1.14-3.19, P=0.014)  3.16 (1.00-10.03, P=0.051)

CYTSCORE HIGH 124 (71.3) - -
LOW 50 (28.7)  0.69 (0.43-1.09, P=0.110) 0.75 (0.36-1.56, P=0.436)

AGE MEAN 66.7

(SD) (11.0) 0.99 (0.98-1.01, P=0.515) 1.01 (0.98-1.04, P=0.691)

SEX FEMALE 31 (17.8) - -
MALE  143(822) 1.65(0.90-3.01, P=0.105) 0.84 (0.34-2.08, P=0.708)

PT 0-1 8 (29.9) - -
2-4 9(70.1)  1.39(0.78-2.48, P=0.266) 0.46 (0.19-1.12, P=0.087)

PN 0 8 (37.5) - -
1-3 0(625) 256 (1.45-4.52, P=0.001)  4.20 (1.63-10.77, P=0.003)

PM 0 7 (89.0) - -
1 2(11.0)  2.91(1.32-6.43, P=0.008)  6.26 (2.39-16.40, P<0.001)

Number in data frame = 174, Number in model

91, Missing = 83, Number of events = 50, Concordance = 0.729 (SE = 0.041),

R-squared = 0.250( Max possible = 0.982), Likelihood ratio test = 26.175 (df = 8, p = 0.001)
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443 Correlation of prognostically significant APM genes and immune subpopulations in
OAC

Moving forward, | sought to determine if APM gene expression (MRNA) associated with
altered OS correlated to individual immune cell subpopulation CIBERSORT absolute scores
in OAC. This analysis would allow for further filtering of APM genes for downstream
analysis by refining APM gene candidates which correlate with altered immune cell

compositions.

This process resulted in significant correlations between eleven MHC class | genes and
immune populations, twenty-three for MHC class I, nine of alternative APM (A non-
conventional antigen presentation gene outside the typical MHC class I/Il pathways) and
two finally for APM gene expression regulators for all samples (See Figure 31).

However, assessing individual immune phenotype clusters reveals further significant
correlations; starting in cluster one, correlations are observed include five between MHC
class | genes and immune subpopulations, five correlations between MHC class Il genes
and immune subpopulations, two between alternative APM genes and immune
subpopulations, and five between APM gene expression regulators and immune
subpopulations (See Figure 32). Cluster 2 reveals few significant correlations between
APM genes and immune subpopulations consisting of five MHC | class correlations, seven
MHC class Il correlations, eight alternative APM correlations and a lack of APM gene
expression regulators with a significant correlation (See Figure 32). Cluster 3
demonstrates significant correlations between APM genes and immune subpopulations
including seven MHC | class correlations, thirteen MHC class Il correlations, three
alternative APM correlations and a single APM gene expression regulator with a
significant correlation (See Figure 32). Finally, cluster 4 possessed significant APM gene
correlations with immune subpopulations for five MHC | class correlations, nine MHC
class ll correlations, and two APM gene expression regulators with a significant
correlation (See Figure 32). The following results subsections will break down these

correlations.
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Correlation of MHC genes and APM regulators n = 176
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Figure 31 Correlation heatmap of APM mRNA expression to CIBERSORT ABSOLUTE
scores for immune cell subpopulations, with negative values representing a negative
correlation and positive values a positive correlation. * = p <0.05. Drawn using ggcorrplot

inR 4.0.2.
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Figure 32 Correlation heatmap of APM mRNA expression to CIBERSORT ABSOLUTE
scores for immune cell subpopulations with heatmap clusters identified in Figure 27.

Negative values representing a negative correlation and positive values a positive

correlation. Statistical test Pearson with Holm’s method p value adjustment * = p <0.05.

Drawn using ggcorrplot in R 4.0.2.
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4.43.1 Effector and Treg populations

Among effector cells, several APM genes demonstrated a significant correlation to
immune cell subpopulations including CD8+, CD4+, NK and Treg cells.

Firstly, MHC class | (HLA-A/ B/ C) and APM expression of CALR, TAPBPL and HLA-E
correlated significantly to increased CD8+ T cell scores (Respectively: R =-0.19, 0.19, 0.16;
p <0.05; See Figure 31). Breaking down the clusters, further correlations between MHC
class | genes and CD8 T cells were observed including HLA-A and PSMB10 in cluster 1
(Respectively: R =0.77, 0.67; p <0.05; See Figure 32) and CALR in both cluster 2 and 4
(Respectively: R = -0.28, -0.36; p <0.05; See Figure 32). The expression of MHC class I
genes did not demonstrate any correlations with CD8+ T cell scores, though CD74 did
trend towards a correlation (R =0.13; p = 0.09). Lastly, for CD8+ T cells, the APM
regulator, CSDE1 correlated with CD8+ T cell ABSOLUTE scores approaching significance (R
=-0.13; p = 0.09; See Figure 31). Observing individual clusters yielded two further
correlations with CTSS in cluster 1 (R = 0.95; p < 0.0001; See Figure 32) and SPPL2A in
cluster 2 (R =-0.29; p < 0.05; See Figure 32).

For CD4+ T cell - APM gene expression correlations, a single MHC class | (ERAP2) and
alternative APM gene (CD1D) found correlation to CD4+ T cell populations (Respectively:
R =0.25, 0.34, 0.16; p <0.01; See Figure 32). A further correlation was observed in cluster
2 with CD1D (R =0.53; p < 0.0001; See Figure 32) and an additional three correlations in
cluster 3 with CD1D, HLA-A, ERAP2 (Respectively: R = 0.39, -0.37, 0.34; p < 0.05; See
Figure 32). A larger number of CD4+ T cell correlations were found with MHC class Il gene
expression including CD74, HLA-DQA1, HLA-DRA and HLA-DPA1 (Respectively: R = 0.24,
0.17, 0.16, 0.1; p <0.05; See Figure 31). No significant correlation was observed between
APM gene expression regulators and CD4+ T cell abundance. Cluster 1 displays a further
correlation is observed in SPPL2A (R = 0.34; p < 0.0001; See Figure 32), cluster 2
demonstrates a correlation in HLA-DQA1 (R = 0.33; p < 0.05; See Figure 32) and finally a

single correlation in cluster 3 with HLA-DPA1 (R = 0.38; p < 0.05; See Figure 32).
Only two APM genes found correlation of NK cell populations, both belonging to the MHC

class | pathway ERAP1 and PSMB10 (Respectively: R =0.15, 0.19; p <0.05; See Figure 31).

Cluster 1 revealed a further two correlations in HLA-A and TAPBP (Respectively: R =0.72,
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0.70; p <0.05; See Figure 32); cluster 3 demonstrates a further four correlation with

ERAP1, HLA-B, and PSMBS8 (Respectively: R = 0.45, 0.33, 0.32; p <0.05; See Figure 32).

Treg populations correlation with APM genes including two MHC class | genes TAPBPL and
PSMB10 (Respectively: R = 0.15, 0.21; p <0.05; See Figure 31), and one alternative APM
gene, namely CD1D (R = 0.29; p <0.01; See Figure 31). Six MHC class Il genes correlated
to Treg populations including CD74, CTSS, HLA-DRB1, HLA-DQA1, HLA-DRA and HLA-DPA1
(Respectively: R =0.33,0.17, 0.27, 0.23, 0.23, 0.21; p <0.05; See Figure 31).

Finally, an APM gene expression regulator, C/ITA, positively correlated to Treg populations
(R=0.27; p < 0.01; See Figure 31). Tregs demonstrate further correlations HLA-DRB5 in
cluster 1 (R =0.73; p < 0.05; See Figure 32), CD1D and HLA-DQAI1 in cluster 2
(Respectively: R =0.44, 0.27; p <0.05; See Figure 32). Cluster 3 correlations with Tregs
includes CIITA, HLA-DQA1, HLA-DPA1, CD74, HLA-DRB1 and HLA-DRA (Respectively: R =
0.54,0.5,0.5,0.47,0.42, 0.39; p <0.01; See Figure 32); cluster 4 correlations with Tregs
includes PSMB10, LGMN, CD74, SPPL2A, TAPBP, HLA-A, PSMB8 and CTSS (Respectively: R
=0.34,0.33,0.27,0.27,0.27, 0.26, 0.25, 0.25 ; p <0.05; See Figure 32)

4.4.3.2 Myeloid cell populations

Among the myeloid cell populations several APM genes with OS associations found
correlation to subpopulation density in OAC including macrophages, DCs, granulocytes

and monocytes.

Macrophage populations displayed correlation with MHC class I/Il and alternative APM
genes within my OAC cohort. Firstly, only one MHC class | gene ERAP2 showed a
significant positive correlation to macrophage populations (R = 0.17; p <0.05; See Figure
31). MHC class Il genes possessed a positive correlation to macrophage absolute scores
including CD74, LGMN and CTSL (Respectively: R =0.2,0.22,0.27; p <0.01; See Figure 31).
Finally, for Macrophages, alternative APM genes CD1D and MR1 displayed a positive
correlation to macrophage population (Respectively: R =0.32, 0.17; p <0.05; See Figure
31). Within individual clusters several correlations between APM genes and macrophages
were observed, namely, in cluster 1 a correlation with CD1D (R = 0.88; p <0.01; See Figure
32); in cluster 2 CD1D correlates with macrophages (R = 0.36; p <0.01; See Figure 32). A

further eight correlations with macrophages are observed in cluster 3 including LGMN,
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CTSL, MR1, CD1D, HLA-DRB5, HLA-E, HLA-DPA1 and HLA-DQA1 (Respectively: R = 0.62,
0.57,0.5,0.46, 0.33,0.33, 0.33, 0.32; p <0.05; See Figure 32); a single additional
correlation was identified in CTSL within cluster 4 (R = 0.28; p <0.01; See Figure 32).

Among DCs only CD1D demonstrated a correlation to their score within my OAC cohort
(Respectively: R =0. 26; p <0.001; See Figure 31). A further three correlations were
identified within the heatmap clusters including HLA-B in cluster 1 (R =-0.71; p <0.01; See
Figure 32), CD1D in cluster 2 (R = 0.42; p <0.01; See Figure 32), and finally LGMN in cluster
3 (R=-0.32; p <0.01; See Figure 32).

The granulocyte population positively correlated to the expression of one MHC class Il
gene, CTSS (R =0.22; p <0.01; See Figure 31), and one alternative APM gene, CD1D (R =
0.25; p <0.001; See Figure 31). Further correlations within clusters included CD1D in
cluster 1 (R =0.79; p <0.001; See Figure 32), PSMB10 and ERAP1 in cluster 2
(Respectively: R =0.38,0.27; p <0.05; See Figure 32), ERAP2 in cluster 3 (R=0.49; p
<0.001; See Figure 32) and HLA-DPA1 in cluster 4 (R =-0.27; p <0.001; See Figure 32).
Finally, among myeloid populations, monocytes positively correlated to the expression of
three MHC class Il genes, LGMN, CTSL, and HLA-DRB5 (Respectively: R =0.19, 0.32, 0.19; p
<0.01; See Figure 31), and one alternative APM gene CD1D (R = 0.25; p <0.01; See Figure
31). Within cluster analysis of correlations with monocytes cluster 1 revealed a further
correlation with HLA-DRB5 (R = 0.73; p <0.05; See Figure 32), cluster two additional
correlation for CD1D and CTSL (Respectively: R = 0.44, 0.32; p <0.05; See Figure 32), and

lastly, a single correlation in cluster 3 with ERAP2 (R = 0.34; p <0.05; See Figure 32).

4.4.3.3 B lineage cell populations

Separately, B cells significantly negative correlated to one MHC class | gene, CALR (R = -
0.17; p < 0.01; See Figure 31) and positively correlated to one alternative APM gene,
CD1D (R =0.35; p <0.001; See Figure 31). A further three significant correlations
between B cells and MHC class Il was detected for CD74, SPPL2A and HLA-DQA1
(Respectively: R=0.31,-0.17, 0.18; p <0.05; See Figure 31). For B cells additional
correlation were observed within individual clusters, including CIITA and CSDE1 in cluster
1 (Respectively: R =-0.80, 0.72; p <0.05; See Figure 32), CD1D, CD74, HLA-DQA1, HLA-
DPA1, MR1 and PSMBS8 in cluster 2 (Respectively: R =0.64, 0.37,0.34, 0.31, 0.31, -0.27; p
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<0.05; See Figure 32). Lastly, for B cell correlations, SPPL2A negatively correlated to B cell

abundance in cluster 3 (R = -0.31; p <0.05; See Figure 32).

Conversely to B cells, plasma cells only found positive correlation with APM gene
expression for eight genes. Only one MHC class | gene, TAPBPL, correlated to plasma cell
absolute scores (R =0.19; p <0.01; See Figure 31), also only one alternative APM gene,
CD1D found a positive correlation with plasma cells scores (R = 0.27; p <0.001; See Figure
31). Six MHC class Il gene found positive correlation including CD74, HLA-DRB1, HLA-
DQA1, HLA-DRA and HLA-DPA1 (Respectively: R =0.31, 0.16, 0.16, 0.24, 0.27; p <0.05; See
Figure 31). No significant correlations were observed between APM gene regulators and
plasma cell abundance in the total sample correlation analysis. However, within the
cluster analysis CSDE1, RFX5 and CIITA found correlation with plasma cell abundance in
cluster 1 (Respectively: R =-0.80, 0.68 0.73; p <0.05; See Figure 32), with a further
correlation in cluster 1 found in CD74 (R = 0.70; p <0.05; See Figure 32). Within cluster 2
two further correlations with CD1D and CD74 (Respectively: R = 0.41, 0.35; p <0.05; See
Figure 32) and an additional seven correlations in cluster 4 including SPPL2A, HLA-DRA,
TAPBPL, HLA-DPA1, CSDE1, CD74 and RFX5 (Respectively: R = 0.44, 0.34, 0.32, 0.32, 0.27,
0.26, 0.25; p <0.05; See Figure 32).

444 The impact of APM gene expression on immune effector/Treg cell populations in the
OAC TIME.

Moving forward from correlation analysis, | progressed to statistically evaluate the
difference in means/ medians for immune cell subpopulations CIBERSORT absolute scores
by APM genes, which both possess a significant association to OS and a correlation
between mRNA expression and immune cell subpopulation absolute scores from
CIBERSORT analysis. This analysis would use the mRNA expression quantiles to
dichotomise the CIBERSORT absolute scores. Starting with effector/Treg subpopulations,
| firstly observed whether any statistically significant mean alterations between the

low/high MHC class | mRNA expression groups as determined by quantile cut points.

Using quantile expression groups for MHC class | genes to dichotomise the CIBERSORT
results for effector/Treg cell populations did find significant difference in mean scores in
three of the ten correlations assessed. Foremost, | observed the association between

HLAs loading complex assembly and alternative antigen presenting genes, finding the
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lower quantile of CALR expression exhibited significantly greater CD8+ T cell abundance
compared to the upper quantile (Upper: 0.09266 vs Lower: 0.1555; p = 0.0386; See Figure
33 & Table 19). Conversely, the lower quantile of HLA-E expression exhibited significantly
lower CD8+ T cell abundance compared to the upper quantile (Upper: 0.1738 vs Lower:
0.1064; p = 0.0433; See Figure 33 & Table 19). Additionally, the lower quantile of CD1D
expression related to a significant reduction in CD4+ T cell abundance (Upper: 1.093 vs
Lower: 0.7891; p = 0.0027; See Figure 33 & Table 19).

Moving forward to the peptide generation genes, | found the lower quantile of PSMB10
expression exhibited significantly lower Treg abundance compared to the upper quantile
(Upper: 0.2008 vs Lower: 0.1438; p = 0.0135; See Figure 33). Conversely, the lower
quantile of PSMB8 expression exhibited a greater abundance of CD4+ T cells (Upper:
0.7762 vs Lower: 0.9827; p = 0.001; See Figure 33 & Table 19). Observing the ERAP genes
| identified the lower quantile of ERAP1 expression corresponded to a reduced presence
of CD4 and NK cells in my OAC cohort (Respectively: Upper: 0.9234, 0.1844 vs Lower:
0.7459, 0.1309; p = 0.0335, 0.0241; See Figure 33 & Table 19). The final association
observed among effector cells demonstrates the lower quantile of ERAP2 expression in
OAC is associated to reduced CD4+ T cell infiltration (Upper: 1.069 vs Lower: 0.8232; p =
0.0163; See Figure 33 & Table 19).
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Figure 33 Boxplot of effector/Treg cell CIBERSORT absolute scores by quantile
expression for MHC class | and alternative APM genes. Colours represent
cluster of origin for the sample (Red: Cluster 1; Green: Cluster 2; Cyan: Cluster
3; Blue: Cluster 4). Statistical tests Mann-Whitney U test with FDR correction,
p values*<0.05, **<0.01, ***<0.001, NS = non-significant.

Moving Beyond MHC class |, | assessed whether any statistically significant mean
alterations between the low/high MHC class Il mRNA expression groups as determined by
quantile cut points. Consistently, the upper quantile of MHC class Il expression in these
five gene corresponded to increased Treg abundance including CD74 (Upper: 0.2101 vs
Lower: 0.1210; p = 0.0190; See Figure 34 & Table 19), the lysozyme CTSS (Upper: 0.2045
vs Lower: 0.1274; p = 0.0228; See Figure 34 & Table 19), and MHC class Il HLAs, HLA-DRB1
(Upper: 0.2042 vs Lower: 0.1143 ; p = 0.0220), HLA-DRA (Upper: 0.1973 vs Lower: 0.1159;
p = 0.0365), HLA-DRB5 (Upper: 0.1940 vs Lower: 0.1299; p = 0.0347), HLA-DQA1 (Upper:
0.1177 vs Lower: 1.019; p = 0.0166) and HLA-DPA1 (Upper: 0.1997 vs Lower: 0.1045; p =
0.0098) See Figure 34 & Table 19).

Increased CD4+ T cell abundance was identified among four HLA loading complex
assembly genes of the MHC class Il system, namely CD74 (Upper: 1.014 vs Lower: 0.7823;
p = 0.0274; See Figure 34 & Table 19), HLA-DPA1 (Upper: 1.110 vs Lower: 0.7712; p =
0.0018; See Figure 34 & Table 19), HLA-DQA1 (Upper: 1.019 vs Lower: 0.7241; p = 0.0034;
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See Figure 34 & Table 19), and HLA-DRA (Upper: 1.032 vs Lower: 0.7833; p = 0.0174; See
Figure 34 & Table 19).

Immune effector cell distribution
by MHC class Il expression
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Figure 34 Boxplot of effector cell CIBERSORT absolute scores by quantile expression for
MHC class Il genes. Colours represent cluster of origin for the sample (Red: Cluster 1;
Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4). Statistical tests Mann-Whitney U test
with FDR correction, p values*<0.05, **<0.01, ***<0.001, NS = non-significant.

Finally, for effector cells | explored the impact on CI/ITA and CSDE1 using quantile cut point
dichotomisation on Treg and CD8+ T cell abundance scores, respectively. Here | found
significant differences in mean scores for each interaction, with the upper quantile of
CSDE1 mRNA expression relating to lower CD8+ T cell abundance (Upper: 0.08498 vs
Lower: 0.1597; p = 0.0217 See Figure 35 & Table 19), and the upper quantile of CIITA
expression relating to greater Treg abundance (Upper: 0.2071 vs Lower: 0.1328; p =
0.0111 See Figure 35 & Table 19). Additionally, the upper quantile of C//ITA expression
corresponded to greater CD4+ T cell abundance within my OAC cohort (Upper: 1.066 vs
Lower: 0.7869; p = 0.0064; See Figure 35 & Table 19). The final effector T cell APM

expression regulator was observed in RFX5, where the lower quantile of expression
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presented a reduction in Treg populations (Upper: 0.1914 vs Lower: 0.1472; p = 0.0433
See Figure 35 & Table 19).

Immune effector cell distribution
by APM gene expression regulators
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Figure 35 Boxplot of effector cell CIBERSORT absolute scores by quantile expression for
APM regulator genes. Colours represent cluster of origin for the sample (Red:
Cluster 1; Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4). Statistical tests
Mann-Whitney U test with FDR correction, p values*<0.05, **<0.01,
*%%<0.001, NS = non-significant.

445 The impact of APM gene expression on myeloid cell populations in the OAC TIME.

Next, | explored the impact of APM gene expression on myeloid population cells including
macrophages, DCs, granulocytes and monocyte subpopulations dichotomised by quantile

cut points, mirroring the above CIBERSORTx analysis.

Among HLA loading complex assembly genes, both HLA-E and TAPBPL demonstrated a
corresponding increase in myeloid populations, specifically, the upper quantile of HLA-E
expression related to increased monocyte populations (Upper: 0.1218 vs Lower: 0.05796;

p = 0.0437; See Figure 36 & Table 19), while, the upper quantile of TAPBPL associated to
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greater macrophage abundance (Upper: 0.6645 vs Lower: 0.4917; p = 0.0479; See Figure
36 & Table 19). Two peptide generation genes within the MHC class | gene candidates
associated to altered myeloid populations; the upper quantile of PSMB10 expression
corresponded to lesser dendritic cell abundance (Upper: 0.1130 vs Lower: 0.1684; p =
0.0244; See Figure 36 & Table 19), conversely, the upper quantile of ERAP1 expression
related to greater granulocyte populations in OAC (Upper: 0.6066 vs Lower: 0.4048; p =
0.0061; See Figure 36 & Table 19).

Exploring myeloid population abundance differences due to quantile expression of
alternative APM gene CD1D, of which the upper quantile of expression related to
increased macrophage populations (Upper: 0.7612 vs Lower: 0.1520 ; p = 0.0022; See
Figure 36 & Table 19), an increased monocyte abundance (Upper: 0.1433 vs Lower:
0.07333; p =0.0381; See Figure 36 & Table 19), and lastly an increased granulocyte
abundance (Upper: 0.6459 vs Lower: 0.4181; p = 0.03; See Figure 36 & Table 19). Another
alternative APM gene, MR1, also found association to macrophage abundance with the
OAC cohort with the upper quantile of expression resulting in greater macrophage

populations (Upper: 0.7109 vs Lower: 0.5358; p = 0.0455; See Figure 36 & Table 19).

Observing the impact of MHC class Il expression on myeloid cell CIBERSORT scores yielded
nine significant differences in myeloid subpopulations. Observing the HLA loading
complex assembly genes of the MHC class Il system, the upper quantile of CD74
expression group there was a notable increase in macrophage (Upper: 0.7401 vs Lower:
0.5040; p = 0.0345; See Figure 37 & Table 19) and granulocyte populations (Upper:
0.6757 vs Lower: 0.4550; p = 0.0127; See Figure 37 & Table 19).
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Figure 36 Boxplot of myeloid cell CIBERSORT absolute scores by quantile expression for
MHC class | genes. Colours represent cluster of origin for the sample (Red:
Cluster 1; Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4). Statistical tests
Mann-Whitney U test with FDR correction, p values*<0.05, **<0.01,
*%%<0.001, NS = non-significant.

The upper quantile of four MHC class Il HLA genes corresponded to increased
macrophage abundance, including HLA-DPA1 (Upper: 0.7567 vs Lower: 0.4706; p =
0.0043; See Figure 37 & Table 19), HLA-DQA1 (Upper: 0.7537 vs Lower: 0.4878; p =
0.0073; See Figure 37 & Table 19), HLA-DRA (Upper: 0.7202 vs Lower: 0.5175; p = 0.0354;
See Figure 36), and HLA-DRB5 (Upper: 0.6992 vs Lower: 0.4833; p = 0.0251; See Figure 37
& Table 19).

Finally, MHC class Il peptide generation gene expression demonstrated association with
altered myeloid populations, firstly, the upper quantile of CTSL expression group
persisted a similar increase in macrophage score (Upper: 0.7968 vs Lower: 0.4802; p =
0.0163; See Figure 37 & Table 19); The upper quantile of LGMN expression group
persisted a similar increase in macrophage score (Upper: 0.7412 vs Lower: 0.5395; p =

0.0375; See Figure 37 & Table 19).
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Lastly, the upper quantile of CTSS expression group persisted a similar increase in
granulocyte abundance (Upper: 0.6260 vs Lower: 0.4208; p = 0.0156; See Figure 37 &
Table 19).

Myeloid cell distribution
by MHC class Il expression
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Figure 37 Boxplot of myeloid cell CIBERSORT absolute scores by quantile expression for
MHC class Il genes. Colours represent cluster of origin for the sample (Red:
Cluster 1; Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4). Statistical tests
Mann-Whitney U test with FDR correction, p values*<0.05, **<0.01,
**%<0.001, NS = non-significant.

4.4.6 The impact of APM gene expression on B lineage cell populations in the OAC TIME

Lastly, | explored the impact of APM gene expression of B lineage cell population within
my OAC cohort using quantile mRNA expression for APM genes. Assessing the MHC class
|/alternative APM expression comparing quantile expression of the genes identified only
two genes, namely CD1D, produced a significant reduction in B cell abundance within my
OAC cohort (Upper: 0.6486 vs Lower: 0.3797; p = 0.0015; See Figure 38 & Table 19). The
second association observed displayed the upper quantile of CALR expression possessed
greater B cell populations in OAC (Upper: 0.4489 vs Lower: 0.6470; p = 0.0491; See Figure
38 & Table 19).
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Figure 38 Boxplot of B lineage cells CIBERSORT absolute scores by quantile expression
for MHC class | genes. Colours represent cluster of origin for the sample (Red:
Cluster 1; Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4). Statistical tests
Mann-Whitney U test with FDR correction, p values*<0.05,
**<0.01,***<0.001, NS = non-significant.

The impact of MHC class Il expression on B lineage cell distribution using the quantile cut
points for MHC class Il genes. Using this approach, | discovered five MHC class Il genes
which expression resulted significantly different B lineage cell abundance. The HLA
loading complex assembly genes associated to altered B lineage cell populations, such as,
the upper quantile of HLA-DQA1 expression contained greater B cell abundance
compared to the lower quantile of expression within my OAC cohort (Upper: 0.5555 vs
Lower: 0.3072; p = 0.0130; See Figure 39 & Table 19). The upper quantile of HLA-DRB1
expression within my OAC cohort scored higher for plasma cell abundance (Upper: 0.3470
vs Lower: 0.1647; p = 0.0320; See Figure 39 & Table 19). Interestingly. the upper
quantile of HLA-DRB5 expression corresponded to both increased B cell (Upper: 0.4738 vs
Lower: 0.3166; p = 0.0320; See Figure 39 & Table 19) and plasma cell (Upper: 0.2686 vs

Lower: 0.1238; p = 0.0276; See Figure 39) concentrations within my OAC tumours.
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Finally, a peptide generation gene of the MHC class Il system, SPPL2A, demonstrated an
association with B cell populations, with the upper quantiles of expression corresponding

to lower B cell abundance (Upper: 0.4228 vs Lower: 0.6135; p = 0.0115; See Figure 39 &

Table 19).
B lineage cell distribution
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Figure 39 Boxplot of B lineage cells CIBERSORT absolute scores by quantile expression
for MHC class Il genes. Colours represent cluster of origin for the sample
(Red: Cluster 1; Green: Cluster 2; Cyan: Cluster 3; Blue: Cluster 4). Statistical
tests Mann-Whitney U test with FDR correction, p values*<0.05, **<0.01,
**%<0.001, NS = non-significant.
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Table 19 Summary of significant immune cell content difference between upper and
lower APM gene expression quantiles.

IMMUNE CELL UPPER-LOWER QUANTILE
GENE TYPE IMMUNE CONTENT A P VALUE
CTSs TREG 0.077 0.0008
GRANULOCYTES 0.21 0.016
CD1D \ACROPHAGES 0.33 0.0009
GRANULOCYTES 0.23 0.0038
B CELL 0.27 0.0015
CD4+ T CELL 0.30 0.0027
MONOCYTES 0.070 0.038
PSMB10 TREG 0.072 0.001
DENDRITIC CELL -0.055 0.024
HLA-DPAT TREG 0.099 0.0012
CD4+ T CELL 0.34 0.0018
MACROPHAGES 0.29 0.0043
HLA-DRB1 TREG 0.090 0.0013
PLASMA CELL 0.18 0.032
CD74 TREG 0.089 0.0031
GRANULOCYTES 0.22 0.013
MACROPHAGES 0.24 0.017
CD4+ T CELL 0.23 0.027
DI-(I;\L‘; CD4+ T CELL 0.29 0.0034
B CELL 0.24 0.0034
MACROPHAGES 0.29 0.0073
TREG 0.067 0.017
ERAPT  GRANULOCYTES 0.20 0.0061
CD4+ T CELL 0.18 0.034
NK CELL 0.054 0.024
CHTA  cp4+ T CELL 0.28 0.0064
MACROPHAGES 0.22 0.019
TREG 0.074 0.0113
RLA-DRA TREG 0.081 0.0066
CD4+ T CELL 0.249 0.017
MACROPHAGES 0.20 0.035
PSMB8  cpg+ T CELL -0.21 0.010
SPPL2A B CELL -0.19 0.012
ERAP2  cpg+ T CELL 0.25 0.016
HLA-DRBS  \jACROPHAGES 0.22 0.025
PLASMA CELL 0.15 0.028
B CELL 0.16 0.032
TREG 0.064 0.035
CALR  cpg+ T CELL -0.076 0.026
B CELL -0.20 0.049
LGMN " \MACROPHAGES 0.20 0.038
CSDET  cpg+ T CELL -0.068 0.042
HLA-E  cpg+ T CELL 0.076 0.043
MONOCYTES 0.064 0.044
RFX5 TREG 0.044 0.043
TAPBPL  \ACROPHAGES 0.17 0.048
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4.5 Discussion

The analysis in this chapter, allows for broad investigation of the relationship of our
prognostically significant APM genes and the TIME using the results of deconvolution
themselves in context with the known literature on the TIME in cancers. A key outcome
of this chapter was the potential of altered immunity due to the expression of several
prognostically significant APM genes which were identified in Chapter 3, forming novel

knowledge on the immunity of OAC tumours.

45.1 The TIME of OAC is diverse and is broadly defined into four phenotypes.

The first significant finding of this Chapter’s analysis was the observation of four distinct
immunophenotypes. These immunophenotypes can be broadly classified by their
constituent immune abundances. Cluster 1 is a small cluster (n =9/176, 5.1% of cases)
and can be defined as a monocyte-high immunophenotype; exploring the literature
surrounding the function of monocytes provides insight into the variable functions within
cancer, finding both pro-tumoral and anti-tumoral roles of monocytes. Examples of pro-
tumoral roles of monocytes include the suppression of T cell functions in colorectal
tumours (Mouse model) and pancreatic cancer, and the recruitment of Tregs in
pancreatic ductal adenocarcinoma (Mouse model). Anti-tumoral roles of monocytes
include tumour cytotoxicity in ovarian cancer and antigen presentation in B16 melanoma
(Mouse model) (424-427). Unfortunately, no significant survival differences could be
determined in this cluster compared to other clusters, despite this, cluster 1 possessed
the lowest hazard ratio for overall survival, this trend could suggest the presence of a high
monocyte immunophenotype could be a positive for overall survival. However, without a
greater sample size this finding cannot be validated. Interestingly, the value of this first
immunophenotype has been prior publication supporting the presence of monocytes in
OAC is a positive predictor of immunochemotherapy outcomes (428).

The second cluster could be described as a classical ‘immune hot’ immunophenotype,
possessing high effector cell content compared to the other clusters; this
immunophenotype represents the greatest opportunity for immunotherapy applications
such as checkpoint blockade. Furthermore, thisimmunophenotype displays greater
potential T cell derived cytotoxicity as predicted by my analysis (429-431). Interestingly,
this may be reflected in OAC with the attempt to create a ‘cancer-immune set point’,

which describes the immune profile threshold of intrinsic factors such as immune cell
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abundance, cytokine secretion and genetic composition and extrinsic factors including gut
microbiota and the presence of infection, which is required to pass to predict sensitivity
to immune checkpoint inhibition (432). However, results also point to an unfortunate
outcome in determining patient care pathways with only 55/176 (31.3%) patients (cluster
2) may be potentially able to benefit from checkpoint blockade therapy. The third cluster
forms an opposing immunophenotype to cluster 2, this immunophenotype can be
characterised describe as immune cold, presenting a lack of TlLs compared to the other
three clusters. Immune cold tumours present a significant issue in producing an effective
immunotherapy to drive anti-tumoral immunity. Interestingly, this immunophenotype
did present with the greater hazard ratio for overall survival, despite not being a
significant finding, this could therefore represent a problematic cluster of patients
forming approximately a quarter of all patients (n = 45/176, 25.6%), which are unlikely

the benefit from ICB immunotherapy and possess a survival disadvantage (433).

However, the gross categorisation of tumours as immune cold is currently being
challenged; where intermediate immunophenotypes may yield alternative approaches to
immunotherapy application with the literature suggesting new definition such as immune
exclude and immunosuppressed which may need these alternative approaches (434,
435). Thereby, the identification of this cluster within my OAC cohort supports the
argument of immune cold tumours are highly frequent in OAC dissuading a single
approach should be taken in the immunotherapy of OAC, instead observing
immunological feature prior to treatment to determine the appropriate treatment

pathway.

The final immunophenotype is a characterised as a high B cell type; the presence of B
cells in oesophageal adenocarcinoma and gastric carcinomas with their positive role in
survival has been prior published, suggesting the presence of CD20+ B cells associates
with survival outcomes and the recruitment of other effector cells including T cells and NK
cells (383, 436, 437). The identification of this immunophenotype which makes up the
majority of OAC patients (n = 67/176, 38.1%) demonstrates immunotherapy approaches
focusing on the interaction of B lineage cells in the TIME of OAC may present an inviting
opportunity for future immunotherapies. For example, the presence of B cell has
correlated to suppression of T cell responses via upregulating PD-L1 expression in the

TIME, as demonstrated in breast and pancreatic cancers; targeting these B cell enriched

163



Chapter 4

patients with PD-1/L1 inhibitors may yield greater T cell responses in these cases (438,
439).

Overall, this analysis has outlined the diversity of immunophenotypes present in OAC,

understanding the immunophenotypes may guide future efforts to stratify patients to

apply the most appropriate treatment pathway. Unfortunately, this analysis highlights
checkpoint blockade therapy may not be applicable in all cases; thereby, using this

approach provides justification selecting immune hot patients for checkpoint blockade.

4.5.2 Effector cell populations are increased in cases with high expression of MHC class | in
OAC

Observing effector cell populations, several subpopulations appeared altered due to the
expression of MHC class | genes. This result was expected, as the MHC class | system is
responsible to eliciting responses from effector cells, directly interacting with CD8+ T
cells.

Most of the MHC class | genes which influence effector cell populations were peptide
generation genes. Firstly, the increased expression of PSMB8 in OAC tumours appears to
result in lesser CD4+ T cells. This appears to oppose prior literature in multiple cutaneous
malignant melanoma showing the expression of PSMB8 correlated with M1 macrophages,
CD8 T cells, CD4+ T cells, follicular helper T cells, y6 T cells, regulatory (Tregs) T cells, and
activated NK cells. However, within this study PSMB8 did negatively correlate to MO
macrophages, resting mast cells, and CD4 resting memory T cells (440). This could suggest
the impact on reducing CD4 resting memory T cells is greater than potentially increase in

other CD4+ T cells in OAC.

The greater expression of PSBM10 in my analysis resulted in greater presence of Tregs,
exploring the literature did not yield any prior publication demonstrating an interaction
between PSMB10 expression and Treg populations. This could suggest Treg abundance is
not directly impacted by the expression of PSMB10, instead the increase in their presence
may be due to other immune cells as PSMB10 also alters other cells, such as dendritic
cells demonstrated in the literature (441).

The latter peptide generation genes to demonstrate altered effector cell abundance were
ERAP1 and ERAP2. Greater ERAP1 expression corresponded to increased CD4 and NK cell

populations within my OAC cohort; for CD4+ T cell increases this could be explained by

164



the literature which details in ankylosing spondylitis the silencing of ERAP1 results in
suppressed CD4+ Th17 cell expansion by preventing the binding of HLA-B27 free heavy
chains to KIR3DL2, suggesting this mechanism may be present in cancers such as OAC
(442, 443). The interaction between ERAP1 and NK cells as shown in my analysis has been
prior demonstrated in cancer via a similar mechanism, in a transfected cell model of acute
lymphoblastic lymphoma which demonstrated the inhibition ERAP1 renders HLA-B*51:01
molecules less eligible for KIR3DL1 binding (444, 445). Thereby, using the literature in
combination with my analysis it can be suggested ERAP1 in OAC alters HLA-B allotype
binding to KIRs, which results in altered CD4+ T cell and NK cell recruitment and
expansion. ERAP2 expression correlating with CD4+ T cell density has prior been
demonstrated in squamous cell lung carcinoma, yet no mechanism is yet determined

(282).

Next, | observed the associations between effector cell populations and HLA loading
complex assembly genes and alternative APM genes. Firstly, greater HLA-E expression
within my cohort resulted in higher CD8+ T cell abundance; the impact of HLA-E
expression on CD8 T cells in OAC may relate to alternatively spliced isoforms of the
antioxidant enzyme peroxiredoxin 5 peptides bound to HLA-E capable of being recognised
by HLA-E-specific CD8 T cells; this interaction may further relate to findings that
Peroxiredoxin 5 overexpression has been identified in gastric adenocarcinomas (367,
368).

Higher CALR expression within my OAC cohort corresponded to decreased CD8+ T cells,
this opposes the literature which reports the loss of CALR expression negatively affects
immunosurveillance, with the expression of CALR correlating with TILs in three cancer
types including colorectal, breast and ovarian (446, 447). Unfortunately, the literature
could not help to explain my analysis results in this case, further exploration of this novel

result may be warranted in future investigations.

Finally, CD1D expression in my OAC cohort related to increased CD4+ T cells, this can be
explained via publication demonstrating CD4+ CD1d-restricted NKT cells exist within
immune microenvironments, thereby, CD1D may be directly interacting with these
specific NKT cells in the tumour immune microenvironment of OAC (448, 449).

Unfortunately, this specific subset of NKT has not been identified in oesophageal
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adenocarcinoma to date, thereby, future analysis using flow-cytometry methodology

could pinpoint this interaction in OAC (not attempted within my study).

Overall, my analysis presented here demonstrates the importance of MHC class | in
eliciting effector cell responses in OAC, especially, peptide generation genes of the MHC
class | system could specifically alter interactions with CD4+ T cells and NK cells. Exploiting
these genes to produce future immunotherapies for OAC may yield an effective therapy
for those possessing the upper quantile of ERAP1/2 expression in the population
(n=44/174). Assessing these results highlights the importance of intact and well-
expressed MHC class | molecules to produce effective T cell responses in OAC, in
particular, the expression of peptide generation genes may produce altered immunity by
regulating the peptide epitope as already prior literature has found for the PSMB8/9/10
and ERAP1/2 genes (450-454).

453 Effector cell populations are greater in cases with characteristically high expression
of MHC class Il in OAC

Next within my study, | observed altered effector cell populations, due to the expression
of MHC class Il genes. This result was expected, as the MHC class Il system is solely
present on professional APCs which engage in T cell education, directly interacting with
CD4+ T cells.

For the specific CD4+ T cell density associations four HLA-loading complex assembly genes
found a correspondence between greater expression and higher CD4+ T cell abundance,
while six MHC class |l genes were associated to increased Treg populations, including five
HLA-loading complex assembly genes and a single peptide generation gene.

Firstly, CD74 demonstrated a positive association with CD4+ T cell and Treg abundance;
this gene’s primary function is to function as a chaperone which regulates antigen
presentation, though a secondary function is found as cell surface receptor for the
cytokine macrophage migration inhibitory factor (MIF). The literature does demonstrate
this relationship (CD74:CD4+ T cell) persists in breast cancer where the expression of
CD74 presents as a positive prognostic factor in basal-like breast cancer attributed to
greater densities of TILs including CD4+ T cells (298). Interestingly, CD74 in the literature
has prior exhibited an ability to perform dendritic cell cross-priming of CD8+ T cells in viral

infections, yet no increase in CD8+ T cell populations was attributed to CD74 expression
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within my study, this could suggest cross-presentation within dendritic cells is not a
frequent occurrence within OAC (455). The increase of Treg populations attributed to the
expression of CD74 has prior been approached in the recent literature; here CD74 is
thought to support the accumulation and functions of Tregs. Specifically, CD74 was
located to the surface Tregs in non-small cell lung cancer and was overexpression in
tumour-associated Treg as opposed to blood circulating Tregs, this could suggest CD74
expression may be a marker of increased tumour-associated Tregs, but must be further

assessed in future research of OAC to prove the relationship (456).

The expression of HLA-DPA1 corresponded to an increase in CD4+ T cell density within my
OAC cohort, this can be explained via HLA-DPA1/CD4 mediating cell crosstalk between
CD4 + T conv cells and pDC cells demonstrated in head and neck squamous cell
carcinomas, suggesting the results observed in OAC may be mediated by dendritic cells in
the TIME (457). HLA-DPA1 also corresponded to Treg populations, unfortunately, this
exact relationship did not find explanation in the literature, however, this association may
be simply driven by co-recruitment of activated effector cells to inflammatory
microenvironments observed in OAC (458). The greater expression of HLA-DQA1
appeared to result in greater CD4+ T cells and Tregs within OAC. This could suggest
expression of this gene within professional APCs corresponds to the activation and
recruitment of CD4+ T cells within OAC patients to the tumour site as demonstrated in
breast cancer. Whereas, extracellular HLA-DQA1 may be a component in inducing Tregs

as shown in celiac disease, but not yet observed in cancer (459, 460).

Similarly the higher expression of HLA-DRA was also associated to increased abundance of
CD4+ T cells and Tregs within of OAC microenvironment. The correspondence with CD4+
T cells has prior been identified in non-small cell lung cancer and renal cell carcinomas
and potentially is produce via two mechanisms. Namely, the recruitment and activation
role of HLA-DR proteins bound to APCs on CD4+ T cells, and/or the expression of HLA-DR
on CTLs (291, 461-464). Mirroring the CD4+ T cell relationship, the HLA-DRA and Treg
association may also relate to expression of HLA-DRA on Tregs as shown in cervical
squamous cell carcinoma; however, in a disease similar to OAC, gastric cancer, a
publication suggests HLA-DR expression on pDCs, myeloid DCs (mDCs), macrophages, and
B cells may relate to /ICOS-L expression by these cells the activation of Tregs (ICOS+ Treg

induction) (465, 466).
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The final HLA-loading complex assembly genes to find association to effector cells were
HLA-DRB1 and HLA-DRBS5 with Treg populations, the relationship observed here may
relate to prior discussed expression of these genes in Tregs as shown colorectal cancer

liver metastases and ovarian cancer (467).

Lastly, the single peptide generation gene to associate with increased Tregs was identified
in CTSS, where similarly to some HLA molecules, CTSS has been shown to be expressed in
Tregs of bladder cancer, and relates to increased CD8+ T cell proliferation and apoptosis
of cancer cells (468). Unfortunately, no relationship between CTSS and CD8+ T cell
abundance was observed within my analysis, thus weakening the above suggestion in

OAC.

Overall, the direct interaction of MHC class Il antigen presenting molecules and CD4+ T
cells appears to be an occurrence in OAC, and the expression of these molecules may
impact activity of the CD4+ T cell subset. However, Tregs present a more complex finding
with the literature supporting several of the HLA-loading complex assembly genes may be
expressed by tumour associated Tregs or Treg activation may be linked to interaction with
DCs expression of these genes. Which of these outcomes is most likely can be determined
when exploring the associations between HLA-loading complex assembly genes and

myeloid populations later in this discussion.

454 Myeloid cell populations are altered in cases due to MHC class | expression in OAC.

Following my analysis of effector cells and their association to APM genes, | explored the
alteration of myeloid cell populations, due to the expression of APM genes.

Starting with MHC class | genes, | observed altered myeloid cell subset abundances linked
to specific MHC class | genes including two involved in each function of HLA-loading
complex assembly, peptide generation and alternative antigen presentation. This result
was less expected, as the MHC class | system is present on professional APCs, but
presentation between cancer cells and myeloid cells does not occur in a conventional

manner.
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Firstly, greater expression of HLA-loading complex assembly genes TAPBPL and HLA-E lead
to increased abundance of macrophages and monocytes, respectively. The TAPBPL
relationship may be explained by its expression in macrophages and the expression-cell
abundance correlation has prior been identified in breast cancer, with the low expression
of TAPBPL relating to increased risk (260, 469). Increased HLA-E expression in OAC related
to greater abundance of monocytes, an explanation ground in cancer was not found in
cancer studies. However, in juvenile idiopathic arthritis, a disease with a highly
inflammatory microenvironment akin to cancer, the upregulation of HLA-E expression
was noted in B cell and monocyte populations with an interesting down-regulation of
HLA-E among T cell populations (470). This does propose an interesting question about
the cell of origin or mechanism the relation between HLA-E and monocytes employs in
OAC, which could be explored in future studies.

The increased expression of peptide generation genes PSMB10 and ERAP1 corresponded
to increased abundance of dendritic cells and granulocytes, respectively. The former
relationship has been prior elucidated in dendritic cells as the expression of
immunoproteasome components appears integral to the maturation of these cells, Furth
more, the lack of PSMB10 expression in myeloid populations results in deficient MHC
class | expression within DCs and correlates to poor survival outcomes (471-473). The
later relationship between higher ERAP1 expression and increased presence of
granulocytes could not be explained by the literature in a cancer setting, despite this,
lymphocytes stimulated by ERAP1/2 expressing choriocarcinoma cells in a preeclampsia
setting resulted in the increase of granulocyte-macrophage colony-stimulating factor
(GM-CSF). GM-CSF functions to enhance neutrophils and macrophages activity and has
prior been investigated in human gastrointestinal infections and cancer, suggesting
activation and migration of myeloid cells such as neutrophils to inflammation sites may be
regulated by this cytokine (474-476).

Finally, observing alternative APM genes found greater MR1 expression related to
increased macrophage populations; within the literature this relationship provides a
complex contradiction, firstly MAIT cells which MR1 directly interacts with appears to
lead to phenotype shift of liver macrophages and within the same study MR1 was shown
to be expressed in Kupffer cell macrophages (477). On the other hand, a study of the
human intestinal mucosa found a lack of expression of MR1 in macrophages (478).

Thereby, at this stage the exact mechanistic relationship between MR1 expression and
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macrophage populations cannot be explained, made especially difficult by the limitations
on cell type evading MAIT cell in CIBERSORTx.

CD1D expression positively corresponded to increased populations of monocytes,
macrophages and granulocytes within the OAC microenvironment, notably, this is an
expected result in monocytes and macrophages as CD1D is a marker for these cell types
(479). However, the relationship with granulocytes is more interesting and may relate to
CD1D-restricted NKT cells encompassed by the granulocyte immune cell type,
demonstrating a potential NKT cells may be reacting with monocytes and macrophages
present in OAC tumours (480). Additionally, a prior publication demonstrates the CD1D-
restricted NKT cells may produce granulocyte—macrophage colony-stimulating factor to
recruit neutrophils (479).

Holistically this analysis demonstrates that although few direct conventional interactions
occur between MHC class | genes and myeloid population, the expression of MHC class |
genes can influence myeloid populations, however, difficulty arises when attempting to
deconvolute the mechanisms behind such associations as several MHC class | and

especially alternative APM genes can form markers of myeloid populations.

4.5.5 Myeloid cell populations are altered in cases with high MHC class Il expression in
OAC.

Following the associations between myeloid cells and MHC class | expression, | moved
forward to assessed myeloid relationships to MHC class Il expression, this analysis
presents with added complexity as myeloid cells express MHC class Il system genes as
part of their primary function to directly interact with and educate CD4+ T cells. Thereby,
in discussing these results particular attention must be paid in determining the likelihood
that an association observed is a product of a function of a particular MHC class Il gene or
whether the association is likely due to the gene being a marker of a myeloid cell
population.

Starting with the HLA-loading complex assembly genes of the MHC class Il system, the
higher expression of CD74 corresponded to increased macrophage and granulocyte
populations, CD74 itself is expressed by macrophages, but is not expressed on the surface
of neutrophils and mast cells (481, 482). Therefore, the expression of CD74 associating to
high macrophage populations may be indicative of macrophages constituent expression

of the gene. However, an alternative suggestion can be made which encompasses the
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relation between CD74 expression and both macrophages and granulocyte increased
populations. CD74, apart from functioning as a chaperone for HLAs of the MHC class Il
system also functions as a receptor for macrophage migration inhibitory factor (MIF) with
studies in gastrointestinal tract diseases demonstrating MIF binding to CD74 can result in
the upregulation of cytokines including IL-1, IL-6, IL-8, and TNF-a (483). The increased IL-8
secretion due to MIF binding CD74 would relate to increased neutrophil populations with
IL-8 role as a key chemoattractant for this cell type; this relationship has also been
observe in breast cancer, however, this mechanism functions through CD74 binding of
TIMP1 which can be associated to granulopoiesis and neutrophilia in mouse models (484-
487).

Greater expression of HLA-DRA and HLA-DRBS5 both correlated to increased macrophage
populations within my OAC cohort. Interestingly, this opposes findings in OSCC data
where lower expression of HLA-DR positively correlated with high-density of M2 TAMs
promotes malignant behaviour of OSCC cells, however, this is attributed to phenotypic
switching from M1 to M2 macrophage phenotype with the publication not exploring
overall macrophage density (488). Thereby, the expression of HLA-DR genes including
HLA-DRA and DRB5 may relate to the phenotype of macrophages, with the corresponding
relationship observed within my OAC cohort occurring due to macrophages expressing
HLA-DR as observed in lung cancer (489).

The expression of the final two HLA-loading complex assembly genes, HLA-DPA1 and HLA-
DQA1 corresponded to increased macrophages in the OAC TIME; once again these genes
are constitutively expressed by macrophages and exploration of these genes in the
literature did not find analysis which successfully deconvolutes the role of these genes
from its use as a biomarker (490, 491).

The remaining MHC class Il genes to associated to myeloid populations are functionally
grouped into peptide generation genes, namely, CTSL, CTSS and LGMN. Both increased
expression CTSL and LGMN corresponded to increased macrophage populations in the
OAC cohort samples, the expression of CTSL has prior been reported to modulate the
polarisation of macrophages driving them towards an M2 phenotype in breast cancer
(492). However, the expression of CTSL may be indicative of macrophages being
stimulated by IL-4 in the TIME of OAC leading to expression of CTSL, this suggestion is

supported by studies of gastric carcinomas where IL-4 is often overexpressed (493, 494).
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Lastly, increased CTSS expression in OAC corresponded to increased granulocyte
populations, this may be due to CTSS playing a role in truncating chemokines CXCL1/2/3/5
by N-terminal processing creating the active form of these chemokines which function to

recruit neutrophils (495).

Overall, this analysis in combination with the literature provides several potential
mechanisms by which myeloid populations may be altered by the expression of MHC class
Il genes, however, a number of these genes are constitutively expressed by myeloid cell

subpopulations thus are not informative.

4.5.6 B lineage cell populations in the OAC TIME are altered by the expression of CALR and
CD1Din OAC

Observing the B cell associations with MHC class | expression found only two genes
corresponded with increased B cell populations, namely, the chaperone gene CALR and
the alternative APM gene CD1D. The interaction with CALR has prior been reported in
renal cell carcinoma where the expression of CALR positively correlated with B cell
infiltration plus immune modulators PD-1 and LAG3, while the immune cell correlation
was observed with my OAC samples, the correspondence to PD-1/LAG3 expression was
not identified. CD1D expression is noted in B cell populations, thereby using this
approach could not disentangle the probability CD1D plays a functional role in B cell
recruitment or whether this gene just forms a marker for the presence of B cells as CD1D
plays a major role in B cell development (496). Overall, little mechanistic understanding
can be gathered from the literature on the role of these two genes, excluding the

knowledge of CD1D marking the presence of B cells.

4.5.7 B lineage cell populations in the OAC TIME are increased by the expression of MHC
class Il genes

My final observations investigated the association between MHC class Il gene expression
and the abundance of B lineage cells, finding four HLA-loading complex assembly genes
and a single peptide generation gene of the MHC class Il system found a corresponding
relationship. B cell populations were elevated in cases with high HLA-DQA1, HLA-DRB5
and SPPL2A; HLA-DQA1 have demonstrated this impact in prior studies of colorectal
cancer which its expression correlated with immune infiltrate in right side colorectal

cancer, but not left side (497). Greater HLA-DRB1/5 expression increased plasma cell
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abundance in OAC, however, this may relate to HLA-DR being expressed on
CD19+CD24-CD38hi plasma cells in the study of immunoglobulin G4 (IgG4)-related
disease, gastric cancer, and melanoma (498-500). As gastric cancer is genomically similar
to OAC and shares similarities in their TIME this provides confidence to this finding within
my OAC cohort (501). Increased HLA-DRBS5 expression in the OAC cohort also
corresponded to increased B cell populations, HLA-DR proteins are expressed on B cells,
making this finding likely due to B cell expression of HLA-DRB5; the expression of HLA-DR
in OAC epithelium has been prior reported to associate poor survival forming an

independent prognostic marker (196).

Finally, the greater expression of SPPL2A corresponded to increased B cell populations
within my OAC cohort, this finding may be due to SPPL2A role in clearance of CD74 n-
terminal fragments (NTF), mouse models have demonstrated lack of SPPL2A expression in
the TIME can result in the accumulation of CD74 NTF leading to the arrest of B cell
maturation in the translational stage (502-504). Therefore, in OAC the expression of
SPPL2A may result in adequate maturation of B cells compared to cases with a lack of
SPPL2A expression. This analysis in combination with the literature demonstrates that B
lineage cell abundance in the OAC microenvironment may be altered by the expression of
MHC class Il genes, however, with B lineage cells being capable of expressing MHC class |l
genes, the relationships observed may be displaying MHC class Il expression as a marker
of B lineage cells. Despite, these interesting results can be observed, especially in the
case of SPPL2A which relates to a known mechanism which impacts to function of B cells

in tumours.

4.5.8 Effector cell populations are altered in cases due to APM gene expression regulators
in OAC.

Lastly, for immune effector cells | observed the impact of APM gene expression regulator
genes including CIITA, RFX5 and CSDE1, the impact of these genes determines the
expression of MHC class | and Il genes within cells, in turn impacting their ability to elicit
immune responses to cancer. Firstly, | observed C/ITA which primarily regulates MHC
class Il expression with some evidence suggesting a secondary role in the regulation of
MHC class | expression. The expression of this regulator associated to the presence of
CD4+ T cells and Tregs within my OAC cohort, this is explained in the literature as

resulting from greater expression of MHC class || molecules in APCs promoting CD4+ T cell
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priming, with greater CD4+ T cell priming an expected result would be co-recruitment of
Tregs (458, 505).

RFX5 is a component of the RFX complex which acts as form an enhanceosome for MHC
class Il expression, in OAC the increased expression of the RFX5 gene appears to
correspond to increased Treg abundance, interestingly, a similar report has prior been
published in gastric cancers with RFX5 expression correlating to increased TlLs and
positively correlated to FOXP3+ biomarker (248).

Finally, greater CSDE1 expression in OAC corresponded to reduced CD8+ T cell abundance
in the OAC microenvironment, this is attributed to CSDE1’s role as a negative regulator of
MHC class | expression. Functionally reducing STAT1 signalling in the JAK/STAT pathway
which functions downstream to promote MHC class | expression. This has currently been
observed in melanoma which demonstrated CSDE1 is capable of stabilising TPTCP, a
tyrosine kinase which dephosphorylates pSTAT1 prevent its translocation to the nucleus,
thus inhibiting pSTAT1 binding to the upstream promoter of the HLA-locus. Thereby, |
propose the expression of CSDE1 in OAC tumour cells functions to reduce the
immunogenicity of cells, this will be further explored in chapter 5 and 6 (321).

Overall, this demonstrates that APM gene expression regulators may impact the MHC
class | and class Il system holistically in their respective expression resulting in multiple
MHC genes being altered in cancer, thus leading to altered immunity. Further exploration
of CSDE1 may yield interesting results using immunohistochemistry in tumour tissue to
discovery expression localisation and knockdown models to assess the genes impact on

expression of HLAs within the MHC class | pathway (Chapter 5 & 6).

4.5.9 Limitations

Deconvolution analysis of bulk-RNA from the TCGA and OCCAMS datasets have identified
several prognostically significant genes from the datamining analysis impact the immune
cell subpopulations in OAC. Furthermore, deconvolution is still limited to making broad
evaluations as exact cell location cannot determined from the RNA ‘soup’, the exact cell
location can be highly significant as TILs presented in the intratumorally space of OAC
possess a significant impact on survival whereas TILs located in the peritumoral space do
not (282). A further limitation of this analysis is the inability to determine cellular
function specifically, for example no distinction is made in CIBERSORT between CD8 T

cells at a resting or activate state. The final limitation of this analysis is found in immune
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cell markers, with our analysis we used APM expression groups as determined by our
datamining to assess differences in immune cell subpopulations, however, a number of
APM genes form markers for immune cell subpopulations. For example, CD1A and CD1D
are markers for dendritic cells, thereby in our analysis a high presence of dendritic cells in
sample samples with high CD1A and/or high CD1D expression is most likely due to the
APM gene being a marker of the cell type, rather than the APM gene impacting the TIME
immune subpopulation (365, 366).

4.5.10 Conclusions

In conclusion this analysis has suggested the expression of MHC class I/11, alternative APM
and APM gene regulation regulators in OAC is important in immune cell distribution and
whilst elucidating the diversity found in the immunophenotypes of OAC tumours.
However, these association must be thoroughly examined to account for MHC class Il and
alternative APM genes which may form markers of individual immune subset cell
populations. Out of the twenty-seven candidates which possessed an association to OS
discovered in chapter 3 twenty-one APM genes could be associated to altered immune
cell subsets in the TIME of OAC.

In particular, effector cell abundance was associated to the expression of six MHC class |
genes, one alternative APM gene, seven MHC class Il genes and three APM gene
expression regulators; myeloid cell abundance related to the expression of four MHC class
| genes, two alternative APM genes and eight MHC class Il genes, with no association to
APM gene expression regulators; finally, B lineage cell populations associated to the
expression of one MHC class | gene, one alternative APM gene and three MHC class |l
genes.

Using the literature in combination with these findings allows for further filtering of APM
gene candidates, namely, HLA-A/B/C/E, ERAP2, TAP1 and HLA Class Il for later
investigation via immunohistochemistry to validate the findings.

These candidates must be selected using a strict criterion, including available antibody
markers, the gene’s impact on survival outcomes, the gene’s association to altered

immunity and finally the literature surrounding the role of the gene in tumoral immunity.
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Chapter 5 Clinical and immunohistochemical validation
of prognostic APM genes

5.1 Introduction

The results gathered from the datamining section and the deconvolution section
combined suggest APM gene expression in OAC does possess a significant impact on both
survival and the immune cell proportions in OAC. However, the analysis thus far
conducted has used bulk-RNA of OAC tumours, which measures the average expression
level for each gene across the sample, due to this the data may mask exact cell types, and
importantly cannot be used to determine the special positioning on immune cells in
tumours. Understanding the limitation of bulk-RNA analysis the project aims to validate
the findings of the bulk-RNA seq analysis whilst exploring further data gathered by
immunohistochemistry (IHC). IHC is a methodology by which protein markers are stained
for using antibodies which specifically target them, then a secondary antibody may be
applied which is conjugated to a horseradish peroxidase (HRP) or an immunofluorescent
tag. IHC is typically used on sections of tissue cut and mounted to slides using a slide-

sectioning machine to produce thin sections which may be observed under microscope.

5.1.1 Immunohistochemistry for scientific and clinical applications

As prior described IHC is a versatile method which is used for the detection of specific
molecules (primarily proteins) in tissues, though fixed cells may also be assessed using
this method. Primarily, two factors of information can be gathered from IHC, firstly, the
presence/density of a given protein within a sample and the subcellular location of the
proteins stained. In the clinic IHC has been employed as an additional tool beyond simple
H&E histology to determine the presence of specific proteins which are indicative of
prognosis and may guide treatment, foremost of these proteins is HER2 (human
epidermal growth factor receptor 2) in breast cancer which forms a dominant driver of
cell proliferation and survival. HER2+ IHC staining of biopsy samples has been used to
recommend trastuzumab in patient care, resulting in 50% reduction in the risk of
recurrence (506-508). Since the use of IHC to recommend anti-HER2 treatment for HER2+
breast cancer, this has expanded to include other cancers overexpressing this protein
including gastric with some evidence this treatment may be applicable to OAC (509, 510).

However, a recent trial opposed earlier suggestion trastuzumab may be useful in the
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treatment of HER2-overexpressing OAC, finding no significance improvement in patient
outcomes, yet the application of trastuzumab did not lead to increased toxicity so could
provide benefit in future combining treatment studies with other HER2 targeting agents
in OAC (511). An additional IHC prognostic marker related to OAC is COX2 which is a rate-
limiting enzyme for the conversion of arachidonic acid to prostaglandins and performing a
multitude of functions including, those relevant here, such as immune evasion,
angiogenesis, and proliferation. COX2 is noted as overexpressed in OAC with therapeutic
intervention using inhibitors in cases of Barrett’s oesophagus shown to be protective
against the development of OAC (512-515). In addition to these two proteins, systematic
review of IHC analysis in OAC have also indicated the importance of protein markers CD3,
CDS8, EGFR, p53, LgR5, Ki67 and VEGF have clinical values. Yet a number of these markers
has only been successfully applied within research failing to yield significance in clinical

trials (516).

5.1.2 Immunohistochemistry investigation of OAC immunity and antigen presentation
machinery

As described above staining for immune cell markers using IHC is an important scientific
and prognostic tool leveraged in both research and the clinic, this is especially the case in
cancer where a substantial number of publications are available in multiple cancer types
and prognostic features are derived from tissue samples, this includes OAC.

Firstly, a publication by Noble et al. in OAC correlated the presence of tumour infiltrating
lymphocytes with improved survival; by staining with CD3+, CD4+, CD8+ and FOXP3+
antibodies in human OAC tissue three independently prognostic factors were identified
between surgery-only treatment (p = 0.015), completeness of resection (p = 0.001),
increased CD8+ TILs (Tumour infiltrating lymphocytes) (p < 0.0001) and reduced
pathological N stage (p < 0.0001) (362). This directly shows the presence of CD8+ T cells as
a key factor in cancer specific and disease-free survival in OAC patients, this finding was
further supported in the Noble et al. study finding higher levels of TILs in patients
associated to favourable responses to neoadjuvant therapy (517).

Multivariant analysis further found the increased levels of CD4+ and CD8+ TILS in patient
samples were associated with significant local tumour regression and lymph node
downstaging. Overall, this study established the link between the presence of TlLs and

survival in OAC, a finding previously reported in other cancers.
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In the same year, another study in OAC identified High intratumoural but not peritumoral
inflammatory host response was associated to better prognosis, with the intratumoural
inflammation being tied to high counts of intratumoural FoxP3+, CD3+, CD8+ TILs (210).
Furthermore, the combination of TILs CD3+/CD8+/FoxP3+ was further divided into three
prognostic groups, triple high (all T cell subsets high infiltrate)/mixed/triple low (all T cell
subsets low infiltrate) (210).

In the progression of BE to OAC, multiplex immune cell marker staining for CD3 (T cells),
CDS8 (cytotoxic T cells), CD163 (macrophages) and FoxP3 (Tregs) found within the stroma,
a notable significant increase of these cell types from BE to low grade dysplasia and, to
high grade dysplasia (79). Additionally, significant decline in CD3+CD8+ cytotoxic T cells in
OAC samples compared to BE with high grade dysplasia (79). IHC has also been used to
explore reoccurrence in OAC. With the presence of CD8+ T cells, despite being an overall
positive prognostic indicator, may also be a potential predictor of OAC recurrence, with a
higher mean densities of CD8+ T cells being detected in patients which reoccur; however,
these findings were not statistically significant within this study (518).

A recent publication used IHC in OAC to explore adaptive immune and immune
checkpoint landscape of neoadjuvant treated OAC. Within this project tissue microarrays
from 329 OAC cases were subjected to IHC staining for adaptive immune cell markers
CD3, CD4, CD8 and CD45R0 and immune checkpoint biomarkers (ICOS, IDO-1, PD-L1, PD-
1); this investigation produced a number of findings, firstly, OAC tumours could be
broadly divided into immune hot and immune cold tumours, depicted as expressing high
level of CD45R0, ICOS, CD3, CD4, CD8, PD-1 and PD-L1 in contract to the immune cold
cases (519). Furthermore, high expression activated T cell markers CD45R0O/ICOS also
displayed a significant survival advantage.

The study would move forward to use multiplex IHC to explore the spatial expression of T
cell activation in OAC tumours, this methodology found in immune hot cases a
substantially higher count of cells co-expressed CD45RO/ICOS in the tumour stroma in
comparison to the immune cold cases (519). This demonstrates the significant power
multiplex IHC staining possesses in the identification of specific cells co-expressing cell
markers to a localised area of a tumour.

External to OAC, studies in pancreatic ductal adenocarcinoma (PDAC), a cancer type with
similarities to OAC, have characterised the immune microenvironments as immune

escape, immune rich and immune exhausted by the immune cells present in IHC. In
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immune escape TIMEs PDACs display highly immunosuppressive, with high counts of
Tregs and M2-polarised macrophages, whilst showing low numbers of effector T cells,
these patients typically have poorer prognosis compared to the other two immune
phenotypes (520). Conversely, the immune rich phenotype is characterised by high
counts of effector CD4+ and CD8+ T cells and M1 macrophages, there is also the frequent
presence of tertiary lymphoid tissues in these cases; reduced numbers of
immunosuppressive immune cell populations including Tregs and M2 macrophages are
also typical inimmune rich TIMEs. Lastly, a mixed TIME phenotype called immune
exhausted can arise, these share similar feature to their immune rich phenotypes,
however, there is a distinct lack of tertiary lymphoid tissues in immune exhausted TIMEs
with T cell exhibiting cell exhaustion features such as PD1, CTLA4, TIM3, and LAG3 (520,
521). This forms a model which may be in future explored in our IHC analysis of OAC to
characterise the impact of APM defects on the TIME immune phenotype.

IHC based studies have also explored antigen presentation machinery in OAC and other
cancer types; one specific study used IHC methodology to identify the loss of TAP2
expression in OAC due to the expression of MIR125a-5p. the same study reaffirmed prior
literature in recurrence linking the increased presence of CD8A T cells in OAC to
recurrence (164). Another study explored locally advanced OAC tumours using IHC,
identifying the distribution of TILs, as well as the presence of PD-L1, present in 21.2% of
cases, in OAC as an immune evasion mechanism. Specifically, patients with a high count
of T cell infiltration (CD3 and CD8 staining) in the tumour centre displayed a significant
survival advantage of 41.4 months compared to 16.3 months in T cell poor tumours
(p=0.025) (522). However, T cell infiltration into the invasive zone of the tumours was
not correlated with survival; a notable loss of MHC class | protein expression on tumour
cells was present in 32%, relating to the downregulation of APM protein expression in
OAC (522).

Overall, IHC is a powerful tool which has been used to explore the immune
microenvironments and antigen processing machinery of OAC and other cancers. Using
prior literature on the use of IHC we can identify the immune phenotype characteristics
and survival outcomes based upon them, then move further to prioritise and associate
our APM gene candidates which possess maximal prognostic value with clinical survival

data and impact on the TIME.
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5.1.3 Limitation of immunohistochemistry

Despite the robust nature of the IHC methodology there are several well-known pitfalls

when attempting to apply this methodology in the clinic and within research projects.

Firstly, immunohistochemistry does not directly show the target of interest, instead the
detected emission either a fluorescent tag or a coloured substrate is visible, therefore,
extra care must be applied to the staining to reduce the possibility detection is a result of

off-target binding of antibodies (often referred to as background staining) (523, 524).

Secondly, the lack of observable staining in IHC may not reflect the complete absence of
the target molecule. This may form out of multiple causes including insufficient affinity of
the antibody to the target protein, poor tissue pre-processing or IHC technique, masking
of the epitope, poor permeabilization of tissue and lack of signal amplification (solved by
amplification techniques such as Avidin—Biotin Complexes) (523). Therefore, using IHC
methodology a claim of complete target molecule absence should be avoided, instead

relying on more sensitive methodologies such as western blotting.

The third issue forms from the assumption a tissue should not produce a signal if no
target is present, however, in practice this often IHC antibodies can bind to other targets
with lower affinity presenting staining which may appear on target but is not.

Lastly, IHC staining may fall victim to poor interpretation as the positive detection of a
target relies heavily on additional information including knowledge of the targets
expression and subcellular location (523). This could refer to issues in ubiquitous proteins
expressed in the majority of cells such as signalling molecules which may appear diffuse
across a tissue rather than cell localised or the potential of being misled by known
additional information such as a protein appearing to stain in the nuclei rather than its
known membrane location. However, IHC alone cannot provide enough data to discard

this result as non-specific as the protein may have translocated to the nucleus.
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5.1.4 Hypothesis and chapter aim and objectives.

The prior datamining and deconvolution investigation of the landscape of genomic
defects in APM genes and their association to altered immune population identified the
expression of several APM genes was prognostically significant that possessed
significantly different immune cell subpopulations in the OAC cohorts. However, these
findings lack validation. To validate my findings from chapter 3 and 4
immunohistochemistry (IHC) analysis will be conducted providing confidence between
the association of TIME immune cell subpopulation proportions of and APM gene
expression. Additionally, | will gather information of spatial localisation of APM protein

expression in OAC tissue.

Hypothesis 3: ‘Expression of Antigen Presentation Machinery proteins in primary

oesophageal adenocarcinoma tissue impacts survival and the T lymphocyte abundance.’

Objective 3a: Immune and APM protein staining data on a Southampton OAC TMA series,
will be analysed to measure the level OAC T cell infiltrate in tumour cores, determining
the variance in marker expression and to valid my observations from Aims 1 & 2.
Objective 3b: APM staining scores and immune density data will be collated to identify
significant correlations between APM protein expression and T cell density.

Objective 3c: APM staining scores and immune density data will be analysed with
maximally selected rank statistics optimal cut-offs to measure the impact of APM protein
expression on patient outcomes (constructing Univariate and Multivariate models for
Overall survival, disease-free survival, and cancer-specific survival and important clinical

co-variates).
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5.2 Methodology

5.2.1 TMA samples and clinical data

Tissue microarray samples for IHC analysis were secured from the Southampton General
Hospital tissue bank, this consists of the OES TMA 2 tumour blocks containing 185
patients, cored in triplicate. These are labelled:

e OES Tumour1

e OES Tumour 2

e OES Tumour 3
Tissue microarrays (TMAs) were constructed using triplicate, randomly selected, paraffin-

embedded 1-mm tumour cores and sectioned into 4-um sections.

5.2.2 Staining

The IHC TMA staining was conducted by the Research histology group at the
Southampton general hospital (ResearchHistology@uhs.nhs.uk) using a DAKO auto-
Stainer.

Within my experimental design, | selected immune and APM stains; firstly, the Immune
cell panel to cover common T cell subsets which includes CD3+ (All T cells), CD8+
(Cytotoxic T cells), CD4+ (T helper cells) and FoxP3+ (T regulatory cells). Secondly, antigen
processing machinery markers HLA-A/B/C, HLA-Class || TAP1, ERAP2 and HLA-E.
Optimisation of antibody dilution was optimised by dilution series surrounding
manufacturer recommendation in positive control tissues (i.e., tonsil) and negative
controls (without primary antibody). The details of the antibodies, dilutions and positive
controls are in Table 20. Stains were confirmed by a histologist in the research histology

group at University Hospital Southampton General.
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Table 20: Table of antibodies used in IHC staining.

ANTIBODY CATALOG SPECIES/HOST POSITIVE CHOSEN
TARGET CLONE SUPPLIER NUMBER ISOTYPE CONTROL  DILUTION
HLA-Class | Human
(ABC) EMRS8-5 Abcam ab70328 Mouse Tonsil 1:2000
HLA-Class Il
(HLA Human
DR/DP/DQ) CR3/43 Abcam ab7856 Mouse Tonsil 1:200
Human
HLA-E MEM-E/02 Abcam Ab2216 Mouse Tonsil 1:100
Human
breast
CSDE1/NRU EPR17414 Abcam ab201688 Rabbit cancer 1:500
Human
pancreatic
cancer,
Human lung
TAP1 Polyclonal Proteintech 11114-1-AP Rabbit cancer 1:200
Human
CD3 F7.2.38 DAKO M7254 Mouse Tonsil 1:50
Human
CD8 C8/144B DAKO M7103 Mouse Tonsil 1:100
Human
CD4 4B12 DAKO M7310 Mouse Tonsil 1:80
Human
FOXP3 236A/E7 Abcam ab20034 Mouse Tonsil 1:100
5.2.3 Imaging

Whole slide imaging will be conducted at the Biomedical imaging unit at Southampton

General Hospital using Zeiss axio scan Z1 High Throughput Slide Scanner in brightfield

scanning. Scanned slide images in .CZI format will be automatically uploaded to the

Underwood slide scanning database for ease of remote access and long-term storage.

5.2.4

Automated analysis

Analysis was performed in an automated fashion using Qupath (0.4.4), this aimed to

provided consistent and standardised analysis results across TMA block and stains.

Images were converted from .CZI format to Big TIFF format with pyramids in Zeiss Zen

(blue edition), these Big Tiffs were loaded in Qupath (0.4.4) using bio formats and labelled

as H-DAB images. Standardised analysis achieved by recording my workflow in Qupath

using the “Create workflow” command to produce groovy scripts which were run for each

TMA image analysis. The scripts broadly covered three functions broken down below.

Firstly, the TMA was de-arrayed to identify each core in a grid array, each core was

visually assessed to discount cores which exhibit core loss or histological structures not

consistent with the OAC histological structure. Following this, a tissue detection script
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(available at https://github.com/wp1g19/0AC-Thesis-Antigen-processing-machinery-and-

the-immune-microenvironment) was processed to select only areas with tissue within a

core, discounting areas with no tissue.

Next, the stain vectors were estimated using the estimate stain vectors function in
QuPath software for each image before running a stain quantification script, stain
quantification were conducted via two methods placed in consistent scripts. Firstly, a
percentage positive score was obtained by using the positive pixel count function
(depreciated) which outputs the percentage of positive DAB-stained pixels. Secondly, a
H-score was generated using scripts adapted from Ram, et al. 2021 study of H-scoring
methodology to produce a H-score value of 0-300 (525). H-scoring functions by labelling
cells as high (H), medium (M), low (L) and negatively (N) stained cells, then places them in
an equation which produces a ratio of the weighted sum of the number of positive cells to
the total number of detected cells.

H—score=((0xN)+(1xL)+2xM)+ (3xH))

Equation 1: H scoring equation for scoring diffuse IHC stains.

Immune cell density was calculated for CD3+, CD4+, CD8+ and FOXP3+ cells with the fast
cell counts function in Qupath (0.4.4) using a script (available at

https://github.com/wp1g19/0AC-Thesis-Antigen-processing-machinery-and-the-immune-

microenvironment) for each stain to produce a cell count per mm?. Results were

compared to staining intensity and coverage determinations by an expert histologist in

the research histology group at university hospital Southampton General Hospital.

5.24.1 Super-pixel segmentation and object classification

Lastly, super-pixel segmentation analysis was conducted to firstly segment out structures
using the DoG (Difference of Gaussians) super-pixel segmentation function in a script

(available at https://github.com/wp1g19/0AC-Thesis-Antigen-processing-machinery-and-

the-immune-microenvironment). This functions by calculating the difference between

two smoothed versions of the same image then applies two Gaussian kernels with
differing standard deviations, by subtracting of these kernels and the original input image,

edges can be detected to produce segments (526).
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Following segmentation an object classifier was trained on a subsection of CSDE1-stained
TMA cores to identify tumour, stroma and immune populations based on histopathologist
report that CSDE1 stained immune and cancer populations with greater intensity than
stroma cell populations, the object classifier was trained to distinguish between tumour,
immune and stromal cell populations using cell size, shape, and intensity of CSDE1 stain.

Then the object classifier was applied to the entirety of CSDE1 stained TMA images.

5.2.5 Statistical analysis

TMA stain quantified scores and immune cell counts (Percentage positivity and H-scores)
were z-scored scaled prior to passing data to pheatmap() function (pheatmap package) in
R version 4.0.2, clustered using Euclidean distance with ward.d2 linkage (411). Optimal
number of clusters was determined using the clValid() R package using hierarchical and
kmeans tests (527). To assess the most accurate method of scoring diffuse stains between
percentage positivity and H-scoring | performed a Bland-Altman analysis in GraphPad
prism 9 which represents which scoring system is over/under predicting the value of
protein expression. Correlation analysis was conducted to assess the correlation of
immune cell abundance and APM stain scores using Pearson’s correlation analysis with
the RemdrMisc() R package rcorr() function, which was visualised in ggplot() correlation
heatmaps (528, 529). The prior deconvolution analysis was validated using Pearson
correlation analysis with p-value adjustment (using the RcmdrMisc() R package rcorr()
function) for CD4+, CD8+ and FOXP3+ T cells in TMA samples which overlapped with
OCCAMS data, then visualised in ggplot() generated correlation heatmaps (528, 529).
Finally, survival analysis was processed for overall survival using the workflow presented
in chapter 3 with CoxPH univariate and multivariate OS, CSS and DFS with the finalfit()
package in R (209). Multivariate model included immune and APM stain scores with age,
sex and pTNM staging; this model was selected due to available clinical data and using

prior IHC publications.

5.2.6 Power and sample size calculations

| used power and sample size calculator (Available at:
https://biostat.app.vumc.org/wiki/Main/PowerSampleSize) to assess the power of
discovery in the TMA cohort using a prior OAC staining from the Noble et al. paper

comparing the high/low survival expression groups between the studies (517, 530).
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5.3 Results

5.3.1 TMA quality control and stain scoring optimisation.

Firstly, | explored the sample size available from the stain TMA images to determine the
quality of the TMAs being affected by core loss from entirely missing cores and cores
which did not contain OAC histology as describe in the methodology. Performing this
analysis revealed 175/185 patient samples possessed at least one recorded TMA stain
measurement. However, exploring the individual stains, the HLA-ABC+ stain possessed
the greatest sample size of 158/185 patients and the CSDE1 stain possess the lowest
sample size of 114/185 patients (See Figure 40). The sample size which successfully
measured all IHC stains (i.e., no missing data) was only 69/185 samples, with the sample
size of patients with all immune stains (CD3+, CD4+, CD8+ and FOXP3+) reaching 126/185
samples and patients recording all APM stains reaching only 88/185. Only 174/185 of
patient samples possessed complete clinical data (survival status, follow-up time, pTNM
staging, age and gender) (See Figure 40). Using this analysis, | determined further
analysis should avoid omitting all samples with missing staining to maintain power of

discovery of 20% incidences.
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Figure 40 Consort diagram of TMA sample size available post IHC staining, including
quality control, clinical data and individual stains available.
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After determining the sample size due to core loss, | developed an automated detection
and scoring of APM stains for my TMA images. Firstly, | explored the staining present for
HLA-ABC+, HLA-E+ and TAP1+ which all appeared diffuse and with some HLA-Class I+
positive stains appearing diffuse (See Figure 41). Using this information and the current
literature surrounding image analysis, | determined percentage positive and H scoring as
the most effective manner to measure APM stains and proceeded to optimise the H
scoring by visualising the staining intensity calls per cell in each APM stain and confirming
these results with a histologist (See Figure 41) (525).

H-scoring was determined to be the most effective way to quantify IHC staining using
Bland-Altman analysis of percentage positivity and H scores for HLA-A to determine
whether percentage positivity under/overestimates staining quantification, finding that
percentage positivity presents with a bias to underestimating HLA-A stains opposed to H
scoring, though percentage positive and H scores are mostly agreement (bias = -2.38,

Figure 42).
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APM IHC stains
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Figure 41 IHC APM staining and H scoring. Top: IHC staining of APM proteins in OAC
TMAs (HLA-ABC+, HLA-Class I+, HLA-E+ and TAP1+). Bottom: APM stain
scoring using H-scoring (Blue: Negative, Cream: Low stain, Green: Medium
stain, Purple: High stain).
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Bland-Altman of percentage positivity
and H scoring for HLA-A stains
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Figure 42 Bland-Altman plot comparing percentage positivity to H scores.
A negative bias here represents underestimation of HLA-A stain quantification.

Additionally, immune stains including CD3+, CD4+, CD8+ and FOXP3+ were analysed to
determine in staining appropriately matched the known staining pattern confirming the
appropriate cell membrane staining for CD3+, CD4+ and CD8+ markers and nuclei staining
of FOXP3+ cells. The density of these cells was compared to a histologists report finding
concordance, beyond this automated detection of these markers was conducted to
calculate the density of positively stained cells (See Figure 43).

Lastly, | conducted DoG (Difference of Gaussian) super-pixel segmentation on OAC TMAs
stained with CSDE1 which identified OAC tumour core structure, this allowed for an
object classifier to be trained based on knowledge CSDE1 stained tumour cells and
immune cells with greater intensity than stromal populations (confirmed by a histologist,

See Figure 44).
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Immune IHC stains
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Figure 43 IHC immune cell staining and detection. Top: IHC staining of immune cells in
OAC TMAs (CD3+, CD4+, CD8+ and FOXP3+). Bottom: automated immune cell
detection (CD3+ Stain; Blue: Negative, Red: immune cell).
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Superpixel
analysis

Figure 44 Super-pixel structure prediction. A: super-pixel DoG (Difference of Gaussian)
segmentation of histological OAC tumour structures. B: Classification of OAC
structures determined by neural networks (Red: Tumour, Green: Stroma,
Purple: Immune cells).

5.3.2 Exploratory data analysis reveals high heterogeneity in APM protein expression in
OAC.

After quality control the TMAs and confirming the accuracy of staining and stain scoring, |
moved to assess the heterogeneity of APM protein expression detected via IHC. | found
five distinct clusters of APM protein expression via percentage stain coverage, the first
cluster had a lack of TAP1+ staining with low HLA-E and HLA-ABC staining (number of
patients? = 16/88) with low T cell density across all T cell subsets, a second cluster was
the largest cluster describing a high HLA-Class I+ cell population with greater HLA-ABC
positivity than cluster 1 (12/88) and contained greater T cell density than cluster 1; cluster
3 was the largest cluster mostly driven by high HLA-ABC and TAP1 protein expression
(31/88), this cluster also appears to present two distinct subclusters, a HLA-ABC positive
and negative subclusters of which the HLA-ABC positive subcluster containing greater
CD3+ and CD8+ T cell density; cluster 4 expressed high HLA-E protein compared to all
other clusters (9/88) and possesses the highest CD3+ T cell density (See Figure 45).
Finally, cluster 5 contained high CSDE1 expression with a subcluster lacking HLA-ABC
percentage score (20/88), two distinct subclusters also appear in the cluster and HLA-ABC
high and low subcluster, with the HLA-ABC high subcluster possessing greater CD3+ T cell
density (See Figure 45).
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OAC APM percentage scores by IHC (88 samples)
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Figure 45 Z-scored heatmap of APM percentage positive staining (n = 88), clustered
using Euclidean distance with Ward.D2 linkage, five distinct clusters of APM expression
among OAC patients.

Interestingly, despite five clusters also being derived from H scoring of APM proteins in
the OAC TMA cohort, these clusters do not match the clusters derived from percentage
scores. The first cluster was the smallest and represented high HLA-ABC, HLA-E, HLA-
Class Il and TAP1 (3/88) and possesses the highest CD3/8+ T cell density among the
clusters (See Figure 46). The second cluster was driven by HLA-ABC and TAP1 protein
expression with some cases possessing high HLA-Class 1l (8/88) with a large proportion of
patient samples also containing high CD3/4/FOXP3+ T cell density (See Figure 46). A third
cluster described high CSDE1 with lesser HLA-ABC/E/Class Il expression (7/88) appearing
to possess lower T cell density than cluster 1/2 (See Figure 46). Interestingly, clustering
analysis did identify a small cluster with high CSDE1 protein expression (H score) did
possess both low HLA-ABC protein expression and low T cell infiltrate (See Appendix A).
Cluster 4 is the second largest cluster, possessing low TAP1 protein expression compared
to the other clusters (27/88), interestingly this cluster appears with the lowest T cell
density across all subsets within the clusters. Lastly, cluster 5 had the greatest sample

size and presents with high heterogeneity of APM protein expression matched with high
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heterogeneity of T cell infiltration, however, notably a subset forms with high HLA-ABC
and CSDE1 expression (43/88) (See Figure 46).

OAC APM H-scores by IHC (88 samples)
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Figure 46 Z-scored heatmap of APM H scores (n = 88), clustered using Euclidean distance
with Ward.D2 linkage, five distinct clusters of APM expression among OAC
patients.

5.3.3 Exploratory data analysis reveals high heterogeneity in immune cell densities in
OAC.

Observing the immune populations within the TMA cohort identified four distinct clusters
of T cell immunophenotypes in OAC. The first cluster was the largest (64/126) presenting
as an immune desert subset of patients lacking T cell infiltration, cluster 2 as the second
largest cluster (31/126) presents with high FOXP3+ Tregs, lacking in CD8+ T cells
suggesting this cluster represents as an immune suppressed group of tumours (See Figure
47). The third (13/126) and fourth clusters (22/126) are immune hot clusters with high
CD3+ and CD8+ T cell infiltrate, though only cluster 4 possessed high CD4+ T cell infiltrate
(See Figure 47).
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OAC immune abundances by IHC (126 samples)
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Figure 47 Z-scored heatmap of immune cell density (n = 126), clustered using Euclidean
distance with Ward.D2 linkage, five distinct clusters of immune populations.
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5.3.4 Correlation analysis identifies relationship between APM protein expression and
immune composition in OAC.

Following the identification of APM protein expression and T cell immunophenotype
clusters | proceeded to analyse the correlation between immune cell densities and APM
protein expression. Using this approach, | found CD3+ T cell density positively correlated
with TAP1, HLA-E, HLA-Class I, and HLA-ABC H scores (Respectively: R = 0.28-0.38; p <
0.05) and percentage positivity (Respectively: R = 0.20- 0.36; p < 0.05; see Figure 48).
CD8+ T cell density found positive correlation with TAP1, HLA-E, HLA-Class Il, and HLA-ABC
H scores (Respectively: R = 0.20-0.36; p < 0.05; see Figure 48) plus HLA-Class Il and HLA-
ABC percentage positivity (Respectively: R =0.37, 0.38; p < 0.05; see Figure 48).

The density of CD4+ T cell positively correlated to CSDE1 percentage positivity and H
score (Respectively: 0.44, 0.32; p < 0.05; see Figure 48), HLA-E percentage (R = 0.25; p <
0.05; see Figure 48) and HLA-ABC H score (R = 0.35; p < 0.05; see Figure 48).

Finally, Treg density (FOXP3+) positively correlated to CSDE1 percentage positivity and H
score (Respectively: 0.42, 0.37; p < 0.05; see Figure 48), HLA-Class Il percentage positivity
and H scores (Respectively: 0.3, 0.25; p < 0.05; see Figure 48) and HLA-ABC H score (R =
0.36; p < 0.05; see Figure 48).

Further investigation of correlations among my APM protein expression H scores found
correlation, firstly, between HLA-ABC percentage positivity scores and all other APM
markers (R values: CSDE1 H score =-0.2, TAP1% = 0.49, TAP1 H score = 0.43, HLA-E %
staining = 0.32, HLA-E H score = 0.37, HLA-Class 11% = 0.43, HLA-Class || H score = 0.44; p <
0.05; see Figure 48). HLA-Class Il percentage positivity positively correlated to TAP1 H
scores (R =0.22; p < 0.05; see Figure 48) HLA-E percentage positivity and H score
(Respectively: R=0.26, 0.27; p < 0.05; see Figure 48). HLA-E positive coverage correlated
to TAP1, HLA-ABC and HLA-Class Il percentage positivity (Respectively: R =0.18, 0.32,
0.26; p < 0.05; see Figure 48) and TAP1, HLA-ABC, HLA-Class Il H scores (Respectively: R =
0.18-0.34; p < 0.05; see Figure 48). TAP1 percentage positivity positively correlated to
HLA-ABC and HLA-E percentage positivity (Respectively: R =0.43, 0.18; p < 0.05; see
Figure 48), as well as HLA-ABC, HLA-Class Il, and HLA-E H scores (Respectively: R =0.21-
0.27; p < 0.05; see Figure 48).

Following the percentage positivity analysis, | explored the correlation between APM H

scores and other APM markers. Firstly, HLA-ABC H scores positively correlated with 6
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measures of APM staining scores including CSDE1, TAP1, HLA-E and HLA-Class I
percentage positivity (Respectively: R =0.23-0.47; p < 0.05; see Figure 48) and TAP1, HLA-
E and HLA-Class Il H scores (Respectively: R = 0.41-0.54; p < 0.05; see Figure 48).

HLA-E H scores correlated to percentage positivity scores from TAP1, HLA-ABC and HLA-
Class Il (Respectively: R =0.18-0.32; p < 0.05; see Figure 48) and H scores from TAP1, HLA-
ABC, HLA-Class Il (Respectively: R = 0.36-0.44; p < 0.05; see Figure 48).

HLA-Class Il H scores positively correlated to percentage positivity of HLA-ABC, TAP1 and
HLA-E (Respectively: R = 0.21-0.44; p < 0.05; see Figure 48) and H scores of HLA-ABC,
TAP1 and HLA-E (Respectively: R = 0.34-0.54; p < 0.05; see Figure 48). Lastly, TAP1 H
score found positive correlation with HLA-ABC, HLA-Class I, and HLA-E percentage
positivity (Respectively: R = 0.18-0.49; p < 0.05; see Figure 48) and H scores (Respectively:
R =0.34-0.44; p < 0.05; see Figure 48).

Correlation of APM stain scores and immune cell density (n = 175)
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Figure 48 Correlation heatmap of APM staining scores and immune density. p values
determined by Pearson’s correlation test, * < 0.05.
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5.3.5 Quantile APM protein expression analysis demonstrates altered immune
composition in OAC.

Beyond correlation analysis | sought to explore the association of APM protein expression
clusters identified in earlier analysis (See Figure 45 & 46) and T cell density. Due to the
low sample size number of the APM high clusters, these clusters were combined to reflect
APM high vs low protein expression in the TMA cohort. Using this approach, | identified
high APM protein expression using percentage positivity as a measure possessed greater
mean CD3+ T cell density within my OAC TMA cohort (High: 863.5 vs Low: 595.1, p <
0.0001, See Figure 49) and greater mean CD8+ T cell density (APM Mean, High: 524.8 vs
Low: 362.5, p = 0.015, See Figure 49). This result was reflected in analysis of H score APM
high vs low protein expression with APM high possessing greater mean CD3+ T cell
density within my OAC TMA cohort (High: 1192 vs Low: 621.8, p < 0.0001, See Figure 49)
and greater mean CD8+ T cell density (APM Mean, High: 622.3 vs Low: 403.5, p = 0.0281,

See Figure 49).
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Figure 49 Boxplots of T cell density between APM protein expression groups (High vs
Low). A: T cell density compare between high/low percentage positivity APM
protein expression groups. B: T cell density compare between high/low H
score APM protein expression groups. Statistical test: Mann-Whitney U test,
p values*<0.05, ¥**<0.01, ***<0.001, NS = non-significant.

After observing APM expression clusters associated to altered T cell density within the
OAC TMA cohort, | proceeded to explore the association between quantile IHC protein
staining scores (percentage positivity and H scores) for each protein quantified and T cell

density.
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Starting with MHC class | HLAs, the upper quantile of percentage positivity of HLA-ABC
staining possessed greater mean CD3+ and CD8+ T cell density (Respectively: Upper:
854.9 vs Lower: 414.7, p < 0.0001; Upper: 519.7 vs Lower: 234.5, p < 0.0001, See Figure
50). This result was replicated in the H score quantile analysis HLA-ABC staining
possessed greater mean CD3+ T cell density (Upper: 906.4 vs Lower: 526.4, p < 0.0001,
See Figure 51). Next the upper quantile of HLA-E percentage positivity associated with
greater CD3+, CD4+ and CD8+ T cell density (Respectively: Upper: 761.9 vs Lower: 433.7, p
< 0.0001; Upper: 220.3 vs Lower: 68.26, p = 0.0138; Upper: 417.1 vs Lower: 275.9, p =
0.0211, See Figure 50), these results were mirrored in the HLA-E H score upper quantile
for greater CD3+, CD4+ and CD8+ T cell density (Respectively: Upper: 806.9 vs Lower:
413.8, p < 0.0001; Upper: 189.5 vs Lower: 61.38, p = 0.0375; Upper: 502.6 vs Lower:
274.8, p < 0.001, See Figure 51).

Next, | explored the association between the TAPASIN translocon protein TAP1 and T cell
density finding the upper quantile TAP1 of both percentage positivity and H score protein
quantification associated with greater CD3+ T cell density (Respectively: Upper: 670.6 vs
Lower: 510.8, p = 0.0160; Upper: 717.1 vs Lower: 434.5, p <0.0001, See Figure 50 & 51).
Following the MHC class | proteins | observed the association between HLA-Class Il
protein expression quantiles and T cell density finding the upper quantile of percentage
positivity and H score corresponded to greater CD3+, CD4+ and CD8+ T cell density
(Percentage positivity Respectively: Upper: 801.3 vs Lower: 492.6, p <0.0001; Upper:
516.9 vs Lower: 271.5, p<0.0001; H score Respectively: Upper: 880.4 vs Lower: 438.4, p
<0.0001; Upper: 569.8 vs Lower: 228.5, p<0.0001, See Figure 50 & 51). Lastly, |
investigated the association between protein expression of the APM gene expression
regulator CSDE1 and T cell density, observing the upper quantile of CSDE1 protein
percentage positivity scores corresponded to lesser CD3+, CD4+ and CD8+ T cell density
(Respectively: Upper: 534.8 vs Lower: 748.4, p <0.01; Upper: 50.46 vs Lower: 261.7,
p<0.01; Upper: 271.8 vs Lower: 421.0, p = 0.0414, See Figure 50). However, the lower
guantile of CSDE1 H scores only reflected the percentage positivity results with lesser
CD3+ and CD8+ T cell density (Respectively: Upper: 763.1 vs Lower: 569.0, p = 0.0102;
Upper: 313.3 vs Lower: 594.8, p <0.01, See Figure 51); conversely, CD4+ T cell density was
greater in the upper quantile of CSDE1 H scores (Upper: 219.9 vs Lower: 56.79, p =
0.0308, See Figure 51).

199



Chapter 5

A

T cell count

T cell count
per mm?

per mm?

T cell density Upper vs Lower
quantile HLA-ABC percentage coverage

%k Kk ns %k %k k ns
o8y T 1 T 1 T 1 T 1
R
°T .
o6 les
2e8s
it
" 1+ i
" 5
et B 3
5 .t 2
o3 ry 3
-
o2
] .
e . 3
e’ ! y
o1
14 T T T T T T T T
& & & 5 & & & 5
& & & &
PO & & &P
[ 5 [ [ [ ) & &
< <
T cell:Quantile protein expression
T cell density Upper vs Lower D
quantile TAP1 percentage coverage
s * ns ns ns
etm

e’

e6]

et

o3

et

T cell count

T cell:Quantile protein expression

E

*k

per mm?

per mm?

T cell density Upper vs Lower
quantile HLA-E percentage coverage

s, %%k Kk * * ns
1 r 1 I 1 T 1 T 1
o7
o6
&5
et
e
o2
el
0
et T T T T T T T T

& & & & ¢ 5 ¢ &
R N L N
& il s o ol ol < &
[9) [9) [9) [9) [ (9 °+ °+
< <
T cell:Quantile protein expression
T cell density Upper vs Lower
quantile HLA-Class Il percentage coverage
%%k Kk ns * %k ns
et T 1 T 1 T 1 T 1
e’ i
o6 . oot
- ! - .
o5} E i[e Hi
et~ . N ofe
e~ * 2 .
e2- 3
et -
0
o1
® T T T T T T T
& & & & & ) & &
o & & & & & 0 &
X N (N 2> o N £ %)
& & & & & S
< <

T cell:Quantile protein expression

T cell density Upper vs Lower
quantile CSDE1 percentage coverage

et r 1 T 1
o7
o] 2
o5
o

o3

T cell count
per mm?

o2

et

o0

e

T T
o
&
o
&

S
N2
ob-
(9

eQQe

Y
o

":QQQ )
Po

&

T cell:Quantile protein expression

Figure 50 Boxplots of T cell density between quantile APM protein expression groups by
percentage positivity (Upper vs Lower). A: Upper vs Lower quantile of HLA-
ABC percentage positivity. B: Upper vs Lower quantile of HLA-E percentage
positivity. C: Upper vs Lower quantile of TAP1 percentage positivity. D: Upper
vs Lower quantile of HLA-Class Il percentage positivity. E: Upper vs Lower
quantile of CSDE1 percentage positivity. Statistical test: Mann-Whitney U
test, p values*<0.05, **<0.01, ***<0.001, ****<0.0001, NS = non-significant.
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Figure 51 Boxplots of T cell density between quantile APM protein expression groups by
H score (Upper vs Lower). A: Upper vs Lower quantile of HLA-ABC H-score. B:
Upper vs Lower quantile of HLA-E H-score. C: Upper vs Lower quantile of
TAP1 H-score. D: Upper vs Lower quantile of HLA-Class Il H-score. E: Upper vs
Lower quantile of CSDE1 H-score. Statistical test: Mann-Whitney U test, p
values*<0.05, **<0.01, ***<0.001, ****<0.0001, NS = non-significant.
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Lastly, | sought to confirm the histologists report of CSDE1 staining tumour cells with
specificity in OAC, thereby | conducted a correlation analysis between CSDE1 H scores and
predicted tumour content via super pixel segmentation. Using this approach, | observed
a positive correlation between CSDE1 H scores and tumour percentage in OAC (R?= 0.69,

p<0.0001. See Figure 52).

Correlation of tumour percentage and
CSDE1 expression in OAC

2501 =2 g 69, p < 0.0001

200+ -

150+ . .

CSDE1 H.score

Percentage.Tumour

Figure 52 Scatter plot with linear regression comparing predicted tumour percentage
and CSDE1 H scores in OAC TMAs. Dotted red lines represent 95% confidence
interval.
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5.3.6 Validation of deconvolution by immunohistochemistry

Moving forward, | proceeded to attempt to validate my deconvolution analysis presented
in Chapter 4. To achieve this, | compared the T cell density of CD4+, CD8+ and FOXP3+ T
cells from my IHC staining to the corresponding cell absolute abundances in my
deconvolution analysis for samples which overlap between the TMA cohort and the RNA-
seq cohort (CD4/8: N = 14; Tregs: N = 13). | could not establish a strong linear relationship
between these variables with the closest correlation to approach significance being CD8+
T cell populations (R =0.21, p = 0.09, See Figure 53); CD4+ and FOXP3+ T cell correlation
displayed no appreciable correlation between IHC staining and deconvolution scores
(Respectively: R> =0.005, p = 0.81; R>=0.027, p = 0.58, See Figure 53). However, there is
a high potential the sample size is too small to determine any significant correlation to
this analysis.

To address this shortfall, | explored the using TIL percentage infiltration derived from
TCGA biospecimen data (paired sample size of 14) produced from histopathologist
analysis. Here | did observe a significant relationship between TILs percentage infiltration
and my deconvolution of TILs, although the model possesses a low R? suggesting the
model is weak (combine absolute values of CD4, CD8 and Tregs; (R? =0.34, p =0.017, See
Figure 54).
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A CD8 Deconvolution vs
CD8+ IHC density
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Figure 53 Scatter plot with linear regression comparing IHC T cell density with
CIBERSORT Absolute score. A: IHC CD8+ T cell density vs RNA-seq CIBERSORT
Absolute score. B: IHC CD4+ T cell density vs RNA-seq CIBERSORT Absolute
score. C:IHC FOXP3+ T cell density vs RNA-seq CIBERSORT Absolute score.
Dotted red lines represent 95% confidence interval.
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TCGA TILs percentage vs
CIBERSORT absolute TILs score

*J R?=0.34, p = 0.003

Lymphocyte
infiltration (%)
N
o
s | 3 3 3 2 3 3

-
o
PE I I I A

0.0 0.5 1.0 1.5 2.0
Absolute score

Figure 54 Scatter plot with linear regression comparing TCGA-ESCA OAC lymphocyte
percentage with TILs CIBERSORT Absolute score. Dotted red lines represent

95% confidence interval.
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5.3.7 Univariate survival analysis demonstrates significant impact of APM protein
expression and immune composition on patient outcomes.

Beyond identifying a link between APM protein expression and the density of T cell
subsets, | sought to assess the association between APM protein expression, T cell density
and overall survival using optimal cut points. Among my assessed T cell markers, CD8+ T
cell density associated to altered survival with low CD8+ T cell density displaying
increased risk in OS (HR: 1.84, p = 0.04, See Figure 55); additionally, lower FOXP3+ T cells
also corresponded to increased risk in OS (HR: 1.64, p = 0.05, See Figure 55). However,
neither CD3 nor CD4 T cell density associated to altered OS (See Figure 55). Investigating
APM protein expression their respective OS outcomes yielded four APM protein measures
possessed altered OS; firstly, lower HLA-E H scores corresponded to increased risk of
death (HR: 1.58, p = 0.05, See Figure 55), with HLA-E percentage positivity approaching
significance (HR: 1.51, p = 0.06, See Figure 55). Interestingly, lower HLA-Class Il protein
expression using both percentage positivity and H score measure results in shorter OS
(Respectively: HR: 1.65, p = 0.02; HR: 1.83, p = 0.02, See Figure 55). Lastly, high CSDE1 H
scores corresponded to shorter OS in the OAC TMA cohort (HR: 1.69, p = 0.04, See Figure

55).

Variable N Hazard ratio p
CD3countpermm2 high 56 | Reference

low 95| ———— 1.24 (0.81, 1.91) 0.33
CD4countpermm?2 high 96 | Reference

low 58| —@—— 1.29(0.86, 1.94) 0.21
CD8countpermm2 high 141 | Reference

low 17 ——{1.84 (1.02, 3.32) 0.04
FOXP3countpermm2 high 45 | Reference

low 98 —— 1.64(0.99,2.71) 0.05
HLA_ABC.percentage.positive low 49 [ | Reference

high 107 |———— 1.15(0.74, 1.79) 0.53
HLA_ABCHscore high 83 [ ] Reference

low 55 ——— 1.26 (0.82, 1.95) 0.29
HLA_E.percentage.positive high 66 l Reference

low 67 —— 1.51(0.98, 2.33) 0.06
HLA_EHscore high 117 W Reference

low 34 —— 1.58 (1.01, 2.49) 0.05
HLA_C2.percentage.positive high 108 | | Reference

low 45 —a— 1.865(1.08, 2.50) 0.02
HLA_C2Hscore high 44 | | Reference

low 104 —— (1.83(1.12,3.01) 0.02
TAP1.percentage.positive low 58 | Reference

high 96 i 1.44 (0.94,2.23) 0.10
TAP1Hscore low 53 | | Reference

high 100 - 1.39(0.89,2.17) 0.15
CSDE1.percentage.positive low 45 | Reference

high 69 —_—— 1.48 (0.90, 2.41) 0.12
CSDE1Hscore low 42| W Reference

high 71 —— 1.69 (1.02, 2.80) 0.04

Figure 55 Forest plot of CoxPH univariate OS for TMA IHC APM protein expression and T
cell density.
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5.3.8

expression and immune composition in OAC.

Multivariate survival analysis identifies independent prognostic APM protein

Following univariate OS analysis where | observed the APM proteins HLA-E, HLA-Class II,

the APM gene expression regulator CSDE1 and T cells (CD8+ and FOXP3+) associated with

altered survival, | proceeded to investigate whether these findings withstood a

multivariate survival analysis using a simple clinical model. Among my assessed APM

proteins, | observed only HLA-Class Il protein scores produced an independent marker of

survival, with lower HLA-Class |l resulting in poorer OS both H scores and percentage

positivity (Respectively: HR: 2.27, p =0.022; HR: 2.24, p = 0.01, See Table 20 & 21).

Table 21 CoxPH multivariate OS for TMA IHC APM protein expression (H score).

VARIABLE LEVEL N (%) HR (UNIVARIABLE) HR (MULTIVARIABLE)
MEAN 70.1

AGE (SD) (10.6) 0.97 (0.96-0.99, P=0.001)  0.99 (0.95-1.03, P=0.601)

SEX F 19 (10.9) - -
M 155 (89.1)  0.96 (0.52-1.75, P=0.885)  0.63 (0.27-1.48, P=0.288)

PT 0-1 35 (20.1) - -
2-4 139 (79.9)  3.07 (1.68-5.60, P<0.001)  1.92 (0.70-5.27, P=0.207)

PN 0 76 (43.7) - -
1-3 98 (56.3)  3.03(1.99-4.60, P<0.001)  2.22 (1.11-4.43, P=0.023)

PM 0 164 (97.0) - -
1 5(3.0)  1.78(0.65-4.85, P=0.262)  1.35(0.14-13.21, P=0.798)

HLA-ABC H SCORE HIGH 83 (60.1 - -
LOW 55(39.9)  1.26(0.82-1.95, P=0.293)  1.30 (0.66-2.57, P=0.444)

HLA-Class Il H SCORE HIGH 44 (29.7) - -
Low 104 (70.3)  1.83 (1.11-3.03, P=0.017)  2.27 (1.12-4.55, P=0.022)

HLA-E H SCORE HIGH 117 (77.5) - -
LOW 34 (22.5)  1.58(1.01-2.49, P=0.047)  1.89 (0.81-4.39, P=0.140)

TAP1 H SCORE LOW 53 (34.6) - -
HIGH 100 (65.4)  1.39 (0.89-1.38, P=0.15)  1.67 (0.83-3.33 , P=0.072)

CSDE1 H SCORE LOW 42 (37.2) - -
HIGH 71(62.8)  1.69 (1.02-2.78, P=0.04) 1.28 (0.65-2.50, P=0.220)

Number in data frame = 174, Number in model = 88, Missing = 86, Number of events = 54, Concordance =
0.756 (SE = 0.037), R-squared = 0.403(Max possible = 0.992), Likelihood ratio test = 45.390 (df =19, p =

0.001)
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Table 22 CoxPH multivariate OS for TMA IHC APM protein expression (percentage

positivity).
VARIABLE LEVEL N (%) HR (UNIVARIABLE)  HR (MULTIVARIABLE)
MEAN 70.1 0.97 (0.96-0.99, 0.98 (0.95-1.01,
AGE (SD) (10.6) P=0.001) P=0.228)
SEX F 19 (10.9) . .
155 0.96 (0.52-1.75, 0.90 (0.35-2.32,
M (89.1) P=0.885) P=0.826)
PT 0-1 35 (20.1) - -
139 3.07 (1.68-5.60, 2.12 (0.73-6.16,
2-4 (79.9) P<0.001) P=0.165)
PN 0 76 (43.7) - -
3.03 (1.99-4.60, 1.78 (0.81-3.95,
1-3 98 (56.3) P<0.001) P=0.153)
164
PM 0 (97.0) - -
1.78 (0.65-4.85, 1.46 (0.17-12.59,
1 5 (3.0) P=0.262) P=0.729)
HLA_ABC.PERCENTAGE.POSITIVE ~ LOW 49 (31.4) - -
107 1.15 (0.74-1.79, 0.90 (0.45-1.78,
HIGH (68.6) P=0.526) P=0.764)
106
HLA_C2.PERCENTAGE.POSITIVE HIGH (70.2) - -
1.65 (1.08-2.50, 2.24 (1.21-4.14,
LOW 45 (29.8) P=0.019) P=0.010)
HLA_E.PERCENTAGE.POSITIVE HIGH 66 (49.6) - -
1.51 (0.98-2.33, 1.27 (0.69-2.32,
LOW 67 (50.4) P=0.064) P=0.440)
TAP1.PERCENTAGE.POSITIVE LOW 58 (37.7) - -
1.44 (0.94-2.23, 1.27 (0.61-1.27, P=
HIGH 96 (62.3) P=0.096) 0.694)
CSDE1.PERCENTAGE.POSITIVE LOW 45 (39.5) - -
1.48 (0.90-2.41, 1.12 (0.61-2.08,
HIGH 69 (60.5) P=0.120) P=0.409)

Number in data frame = 174, Number in model = 94, Missing = 80, Number of events = 57, Concordance =
0.732 (SE = 0.033), R-squared = 0.338(Max possible = 0.992), Likelihood ratio test = 38.792 (df =19, p =

0.005)

Moving forward | assessed whether T cell density of CD8+ and FOXP3+ T cells withstood

multivariate analysis, unfortunately, neither T cell subset found significance in

multivariate analysis (See Table 23).
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Table 23 CoxPH multivariate OS for TMA IHC T cell density.

VARIABLE LEVELS N (%) HR (UNIVARIABLE) HR (MULTIVARIABLE)
MEAN 70.1
AGE (SD) (10.6) 0.97 (0.96-0.99, P=0.001)  0.97 (0.95-1.00, P=0.025)
SEX FEMALE 19 (10.9) - -
MALE  155(89.1) 0.96 (0.52-1.75, P=0.885)  0.72 (0.35-1.48, P=0.375)
PT 0-1 35 (20.1) - -
2-4 139 (79.9)  3.07 (1.68-5.60, P<0.001)  1.62 (0.70-3.76, P=0.264)
PN 0 76 (43.7) - -
1-3 98 (56.3)  3.03(1.99-4.60, P<0.001)  3.78 (2.03-7.01, P<0.001)
PM 0 164 (97.0) - -
1 5(3.0)  1.78(0.65-4.85, P=0.262)  1.92 (0.45-8.19, P=0.378)
CD3 COUNT PER
MM2 HIGH 56 (37.1) - -
LOW 95(62.9)  1.24 (0.81-1.91, P=0.327)  1.59 (0.90-2.82, P=0.110)
CD4 COUNT PER
MM2 HIGH 96 (62.3) - -
LOW 58 (37.7)  1.29(0.86-1.94, P=0.214)  1.01 (0.59-1.74, P=0.963)
CD8 COUNT PER
MM? HIGH 141 (89.2) - -
LOW 17 (10.8)  1.84 (1.02-3.32, P=0.042)  1.15 (0.56-2.34, P=0.704)
FOXP3 COUNT PER
MM2 HIGH 45 (31.5) - -
LOW 98 (68.5)  1.64(0.99-2.71, P=0.050)  1.50 (0.79-2.87, P=0.215)

Number in data frame = 174, Number in model = 130, Missing = 44, Number of events = 81, Concordance =
0.741 (SE = 0.025), R-squared = 0.361(Max possible = 0.995), Likelihood ratio test = 58.122 (df = 18, p =

0.000)

Lastly, | assessed whether high HLA-ABC H score combined with high CD8+ T cell density

would result in improved survival as this could represent intact antigen presentation with

localised cytotoxic T cells capable of recognising antigens presented on these surface

molecules impacts survival and by extension immunity. Here | observed the presence of

high HLA-ABC, but low CD8+ T cell density resulted in poorer OS compared to high HLA-

ABC and high CD8+ T cell density in multivariate analysis (HR: 2.88, p = 0.002, See Table

24).
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Table 24 CoxPH multivariate OS for TMA IHC HLA-ABC H score:CD8 T cell density.

VARIABLE LEVEL N (%) HR (UNIVARIABLE) HR (MULTIVARIABLE)
70.5 0.97 (0.95-0.99,
AGE MEAN (SD)  (10.4) P<0.001) 0.98 (0.96-1.00, P=0.027)
SEX F 17 (11.8) - -
127 1.06 (0.55-2.06,
M (88.2) P=0.857) 0.96 (0.49-1.90, P=0.917)
PT TO-1 30 (20.8) - -
114 3.57 (1.83-6.95,
T2-4 (79.2) P<0.001) 2.46 (1.16-5.20, P=0.019)
PN 0 62 (43.1) - -
3.64 (2.25-5.90,
N1-3 82 (56.9) P<0.001) 2.91 (1.73-4.88, P<0.001)
PM - 2 (1.4) - -
137 0.61 (0.15-2.50, 2.40 (0.55-10.49,
0 (95.1) P=0.494) P=0.244)
0.67 (0.09-4.77, 3.56 (0.45-28.04,
1 3(2.1) P=0.690) P=0.228)
0.57 (0.05-6.28, 2.85 (0.25-33.00,
X 2 (1.4) P=0.645) P=0.403)

HIGH:HIGH 26 (18.1) -
2.15 (1.12-4.15,

HLA-ABC : CD8 HIGH:LOW 66 (45.8) P=0.022) 2.88 (1.47-5.66, P=0.002)
1.49 (0.74-2.98,
LOW:LOW 52 (36.1) P=0.264) 1.69 (0.83-3.44, P=0.147)

Number in data frame = 144, Number in model = 144, Missing = 0, Number of events = 89, Concordance =
0.736 (SE = 0.026), R-squared = 0.320(Max possible = 0.996), Likelihood ratio test = 55.461 (df =9, p =
0.000)
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5.4 Discussion

5.4.1 APM gene expression in the OAC TMAs presents with high heterogeneity and
clusters in five distinct groups.

The motivation for this investigation is to validate my findings from the RNA-seq
datamining and deconvolution analysis presented in Chapters 3 and 4 at the protein
expression level in tumour tissue. This approach allows for high confidence of the APM
and immune landscape of OAC, whilst affirming APM-T cell relationships prior observed.
Furthermore, these findings can be assessed directly to prior literature using IHC
methodology of APM genes and T cell distributions. Lastly, | pursued to confirm the
presence of a negative regulatory role of CSDE1 protein on the expression of MHC class |

HLAs.

Within my analysis | identified distinct clusters of APM protein expression within my OAC

TMA cohort. Specifically, five clusters appear for both H scoring and percentage positivity
analysis, these clusters reflected the high heterogeneity of OAC APM proteins and mostly
overlap allowing them to be broadly described as 5 clusters with similar characterising

features.

The first cluster is described as a TAP1 low cluster, demonstrated by the percentage
positivity and H score values with relatively low T cell density, which does correspond
with known literature suggesting TAP1 is downregulated in oesophageal cancer among
other cancers (531). Despite this, the wider literature could not explain specific
downregulation of this protein’s expression in OAC but could be explained by the
presence of miR-125a-5p bound to untranslated regions of TAP2 transcripts in OAC, as
TAP1 is dependent on TAP2 protein for stability. Unfortunately, no antibody for miR-
125a-5p is available to access this in IHC methodology although future studies could
assess whether miR-125a-5p binding to TAP2 is present in OAC via immunoprecipitation
analysis (532). However, an alternative explanation may be these cases are tumours with
low inflammation as TAP1 expression corresponds to interferon response gene sets in

gene-set enrichment analysis as this pathway acts to promote TAP1/2 expression (531).

The second cluster is described as possessing high HLA class Il protein expression, which
would represent that these tumours have high infiltration of professional APCs such as

dendritic cell or macrophages. Interestingly, elevated dendritic cells has been prior noted
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in OAC (533). However, as HLA-Class Il is expressed by multiple subsets of APCs it is
unknown whether these results reflect increased dendritic cells, specifically with
deconvolution data presented in chapter 4 not demonstrating increased dendritic cell
abundance due to HLA-Class Il gene expression rather noting an increase in macrophage

and granulocyte populations.

Next a cluster presented with high HLA-A/E protein (Figure 45). Firstly, a heterogenous
cluster in percentage positivity analysis forming the largest cluster within my OAC TMA
cohort, possessing relatively higher HLA-ABC percentage positivity, this parallels a
publication reporting HLA-ABC positivity in 77.8% of OAC samples (355). Secondly, a H
score cluster reflected high HLA-E and HLA-ABC protein expression, this cluster
represented a smaller proportion of patient samples compared to prior published analysis
using percentage positivity (positivity), suggesting using this measure could be
overestimating which samples are truly reflecting high HLA-ABC/E protein expression
(525). Interestingly the proportion of high HLA-E patients within my TMA cohort did not
reflect the proportion reported in gastric cancer, which could highlight differences
between APM protein expression between OAC and gastric cancer (534).

An additional cluster observed high TAP1/HLA-ABC protein expression and low CSDE1
protein expression, this could reflect these patients have intact MHC class | presentation
making them a prime target for immunotherapies based in the adaptive immune system,
such as checkpoint blockade (535, 536). However, to date, checkpoint blockade therapy

application is not stratified by patient MHC class | HLA expression (determined by biopsy)
(9).

The final cluster observed displayed high CSDE1 protein expression, but did not
completely lack HLA-ABC protein expression by H scores as expected from the literature,
this could reflect CSDE1 expression is specific to a subset of cells (cancer cells), with HLA-
ABC expression being unaffected in stromal cell populations; an alternative explanation
may be the presence of HLA-A protein expression is observed due to high interferon
signalling in these tumours recovering HLA-A expression, though this cannot be
determined as these TMA were not stained for IFN-y. However, using percentage
positivity indicated high CSDE1 and low HLA-ABC protein expression, this negative

relationship between these proteins was expected as CSDE1 acts as a negative regulator
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of MHC class | HLA expression by stabilising the tyrosine kinase TCPTP which degrades
phosphorylated STAT1 preventing pSTAT1 translocation to the nucleus, which is key for
promoting MHC class | HLA expression (461). Suggesting CSDE1 as a key MHC regulator in
OAC for the first time.

5.4.2 T cell density reflects known immunophenotypes from deconvolution analysis.

Prior analysis of T cell distributions in OAC have observed the majority of OAC cases

possess T cell infiltrate, yet the number of cases which possess prominent levels of T cell
infiltrate is low (362). More recent T cell analysis in other cancers have sought to instead
classify tumours into immunophenotypes including immune desert, immune suppressed

and immune inflamed (537).

In my analyses in this chapter, using T cell density clustering | observed known
immunophenotypes of cancer, first of which was the largest cluster forming the immune
excluded phenotype lacking T cells of any type, suggesting this is cluster containing mixed
immunophenotypes. The high proportion of tumour cores with low T cell density
presented here reflects prior analysis in OAC suggesting only a low proportion of patients
possess high T cell infiltration, though does not label these cases an immune excluded
(538). The analysis presented here expands upon this earlier analysis as these cases can
be labelled as immune excluded rather than immune suppressed as they lack the typical
increased FOXP3+ Treg populations of immune suppressed cases which are present in the
second immune cluster. Although a positive correlation between FOXP3+ T cells and
CD3/4/8+ is demonstrated in my later correlation analysis, the lower abundance of CD8+
T cells in this cluster does support the suggestion these cases are immune suppressed.
The last two immune clusters belong to the immune hot phenotype with high density of
effector T cells (CD3/4/8+) and present as the most inviting target for checkpoint
blockade therapy (539).

5.4.3 APM protein expression correlates with T cell density in OAC.

Correlation analysis of APM protein expression demonstrated positive correspondence to
T cell density within my analysis. This included expected positive correlations such as
HLA-ABC and CD3/4/8+ T cells as HLA-ABC is responsible for eliciting responses from CD8+

T cells, and CD4+ T cell is often co-recruited with other T cells. This is further supported
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with the upper quantile of HLA-ABC protein expression corresponding to increased CD8+
T cell density. Interestingly, HLA-E H scores and not percentage positivity found positive
correlation to CD8+ T cell density, supported by evidence the upper quantile of HLA-E
expression possesses increased CD8+ T cells, suggesting a potential for specific cells
expressing HLA-E may act to elicit HLA-E restricted T cells in the OAC TIME (540). TAP1
may be important in the activation and expansion of T cells in OAC with H scores
correlating to high CD3/8+ T cell, yet the quantile analysis only demonstrated increased
CD3+ T cells in the upper quantile. TAP1 has prior been demonstrated to correlate with
immune cell infiltration in a pan-cancer study and relates to the potential of TAP1

expression to affect the immune epitope of cancer (531, 541).

Strikingly, the expected correlation between HLA-Class Il protein expression and CD4+ T
cell density was not observed within my OAC cohort (462), this results is surprising due to
HLA-Class Il roles in presenting antigens to CD4+ T helper cells. Instead HLA-Class Il
correlated to CD3/8+ T cells and Tregs with quantile analysis only displaying increased
CD3/8+ T cells in the upper quantiles of HLA-Class Il protein expression. However, it is
difficult to suggest a potential mechanism this may occur through as HLA-Class Il is
expressed by multiple APC subtypes. However, one suggestion could form as high HLA-
Class Il represents tumours with increased IFN-y known to induce HLA class Il expression
and is a marker of CD8+ T cell activation (462). Interestingly, CSDE1, a known negative
regulator of MHC class | HLA expression did reflect its role in OAC with a negative
correlation between CSDE1 H scores and HLA-ABC percentage positivity, however this
also presents a complication as a positive correlation is observed between CSDE1
percentage positivity and HLA-ABC H scores (321). Overall, this reflects that CSDE1
expression may be localised to a subset of cells, which was noted in the histologists report
CSDE1 stained tumour and immune cell populations in cancer, this finding requires
further investigation which will be explored in single cell RNA-seq data analysis

(Presented in chapter 6).

Furthermore, the upper quantile of CSDE1 protein expression in OAC possessed
significantly lower CD3/8+ T cell populations but increased CD4+ T cell populations.
Overall, this suggests CSDE1 expression may be localised to tumour cells in OAC and acts

to reduce HLA-ABC protein levels in these tumour cells, resulting in lower tumour cell
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immunogenicity and CD8+ T cell activation. This suggestion is further supported by my
super pixel segmentation analysis which identified a relationship between predicted
tumour content and CSDE1 protein expression within my TMA cohort (shown in Figure

52).

5.4.4 APM protein expression associates to altered survival outcomes in OAC.

In Chapter 3 | observed the expression of my APM gene candidates associated to altered
OS in OAC. To confirm these genes effected survival outcomes | analysed them at the
protein level in my TMA cohort. Interestingly, only lower HLA-E and HLA-Class Il protein
possessed significantly reduced OS. Conversely to gastric cancer, HLA-E appeared as a
positive indicator of univariate OS, where in gastric cancer HLA-E is noted for producing
NK inhibition (542). Instead these results reflect more the observation in OSCC with HLA-
E stain positivity corresponded to increased OS, as gastric cancer is considered more
similar to OAC than OSCC is to OAC. This raises an important question surrounding the
role of each APM protein in OAC, and whether prior assumptions of similarity in
determining their respective roles is inaccurate, in relation to tumour immunity (543).
This could suggest that although cancer cell gene expression in OAC is more akin to gastric
cancers in prognostic gene expression programs, there may exist immunological
differences in APM gene expression which play differing roles from gastric cancer, sharing
features with OSSC instead. Although, this finding must be explored more directly
applying the methodological approach | used for my IHC analysis in a future study of OSSC

and gastric cancers to highlight the differences.

5.4.5 T cell density associates to altered univariate survival outcomes in OAC

T cell density has prior been published to associate to altered survival in OAC and gastric
cancer, with greater intratumoural CD8+ T cells corresponding to improved OS (210, 362).
Unfortunately, | did not observe this within the OS analysis of the OAC TMA cohort, this
could be explained by a substantial majority of tumours in this cohort not expressing
prominent levels of HLA-ABC, resulting in reduced anti-tumoral activity. To confirm this, |
analysed the interaction between high/low HLA-ABC and CD8 T cell density finding high
HLA-ABC with low CD8+ T cell density produced prognostically independent shortened OS
compared to high HLA-ABC and high CD8+ T cell density. This suggests that neither HLA-
ABC nor CD8+ T cell density alone impact OS, instead the presence of high CD8+ T cells in

OAC tumours expressing high HLA-ABC results in improved OS due to anti-tumoral activity
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of cytotoxic T cells. This finding is novel compared to prior studies which indicate CD8+ T
cell density in OAC tumour cores is not an independent prognostic factor and future
studies investigating T cell behaviour in OAC should stratify their results by HLA-ABC to
elucidate the potential for anti-tumoral responses in OAC. Furthermore, there may be
potential for this finding to possess translational value in stratifying patients which are
likely to have high efficacy for checkpoint blockade therapy, by selecting patients with
high CD8+ T cell density and high HLA-ABC protein expression by biopsy as well as staining
for PD1/PD-L1.

5.4.6 Limitations and future work

One of the significant issues when performing this analysis was core loss over staining,
with the final stain, CSDE1, experiencing significant core loss due to each section of tissue
cut expending the remaining TMA. Thereby, future research effort exploring this cohort
must first create new TMA from available tissue to ensure high sample size; additionally,
an external cohort could be employed as further validation of these findings. A further
limitation in performing TMA analysis forms from the small sample area stained, using a
full section for analysis instead of tumour cores could explore further details of the
heterogeneity of APM protein and immune populations. For example, whole tissue
sections could be used to define tumours as either immune excluded or immune
suppressed, with immune excluded tumour exhibiting denser immune populations in the
tumour periphery, lacking immune populations in the tumour core and immune
suppressed lacking immune cells in both the core and periphery. Additionally, the staining
performed in my analysis was conducted on different sliced sections, which can reduce
how comparable the staining is between sections, to improve upon this and confirm the
accuracy of my results presented here future efforts could explore the use of multiplex
IHC methods to overlap the staining of APM and immune markers. Additionally, the
addition of cancer cell markers and immune activity markers into a multiplex IHC panel
could explore the activity of T cells in proximity to cancer cells is dependent on the level

of different APM protein expressions.

5.4.7 Conclusion

In conclusion, the results presented here confirm APM gene/protein expression is related

to survival outcomes and the abundance of T cell subpopulations in OAC as uncovered in
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Chapter 3 and 4. Furthermore, an important finding demonstrates CD8+ T cell alone is
insufficient for immune rejection of OAC tumours, requiring high HLA-ABC expression to
elicit these responses. Additionally, the expression of CSDE1 at both the mRNA and
protein negatively corresponds to MHC class | HLA expression and should be explored
further to confirm this relationship in cellular models of OAC (Chapter 6). Overall, my
results suggest the future efforts in either producing new immuno-therapeutics or
stratifying OAC patients for existing immune checkpoint blockade therapy should consider

APM expression for maximizing the efficacy of patient responses.
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Chapter 6 Cellular modelling of MHC class | expression
regulation by CSDE1 in OAC

6.1 Introduction

6.1.1 Known immune evasion strategies used by cancer and current knowledge in OAC.

Immune evasion mechanisms are strategies often employed by cancer to evade immune
detection and subsequent anti-tumoral immune responses. The immune system is
equipped to monitor the microenvironment for cancer cells to detect these cells and
eliminate them, however, cancer cells may develop somatically driven mechanisms to
prevent recognition or promote immune cell anergy. Understanding these evasion
strategies and their pathogenesis is key for the development of effective
immunotherapies and for stratifying patients which are likely to respond to existing
immunotherapeutic strategies. Broadly, tumour immune evasion strategies can be
broken down into seven distinct categories including altering gene expression in cancer
cells and adapting the tumour immune microenvironment by recruiting specific cell types

and secreting immunosuppressive cytokines (544).

The seven distinct immune evasion strategies are described as follows; firstly, multiple
cancers are known to downregulate the expression of MHC class | molecules to evade
detection by CD8+ T cells in the immune microenvironment by hindering the presentation
of tumour-associated antigen to these cytotoxic T cells (See section 6.1.2). Examples of
this mechanism have been reported in OAC with miR125a-5p binding 3’ untranslated
region of the TAP2 mRNA and miR148a-3p binding 3' untranslated regions of HLA-A, HLA-
B, and HLA-C mRNAs to negatively regulate their respective expression (164).
Characterisation of alternative mechanisms of downregulation of MHC class | molecules

has not yet been fully elucidated before the current study.

An additional mechanism of cancer immune evasion is found in tumour antigen

heterogeneity, this describes the heterogenous antigen epitope presented by cancer cells
and presents a significant challenge in producing effective anti-cancer engineered T cells.
Specifically, the heterogeneity of tumour-associated antigens among cancer cells within a

microenvironment means the recognition of a single tumour antigen usually does not
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result in complete anti-tumoral immunity by CD8+ T cells against all cancer cells and
results in clonal selection (and survival) of cancer cells which do not present the target
antigen (545). Although, tumour antigen heterogeneity is not well characterised in OAC,
recent analysis of OAC epitopes of seven patient samples only revealed one putative
antigen from a single patient, demonstrating among OAC patients tumour antigens differ
presenting a translational issue with developing immunotherapies targeted to a single
antigen as the expression of a target antigen may not be ubiquitous among the patient

population (546).

Immune checkpoints are critical in inhibiting immune responses towards host cells to
prevent autoimmune disease. However, cancer cells often upregulate immune
checkpoint molecules such as PD-L1 to promote CD8+ T cell anergy. Prior studies
reported PD-L1/2 was upregulated in 40% of gastroesophageal cancers, yet the survival
outcomes presented a complex picture, with increased PD-L1 expression resulting in
significantly reduced OS and DFS in univariate analysis, but multivariate analysis found
PD-L1 expression was an independent predictor for improved DFS, suggesting lack of
immunosuppressive signalling may be protective against recurrence (101, 547-549).
Despite the complex findings in PD-L1 expression in OAC, the current therapy of prior
chemo-radiotherapy treated resected OAC tumour patients has recently changed in the

UK to include nivolumab to target the PD-1/PD-L1 axis (550).

Cancer cells also seek to suppress immune cell responses by secreting immuno-
suppressive factors such as TGF-B and IL-10, with TGF- capable of supressing cytotoxic
expression programs and T cell proliferation and IL-10 supressing CD4+ T cells and
promoting Tregs in the tumour immune microenvironment (551, 552). Interestingly,
dysfunctional TGF-P signalling by loss of TGF-B being noted in OAC cells (553, 554).
Tumour also act to suppress immune response by recruiting immune regulatory cells or
by polarising macrophages to an M2 phenotype to enact immune suppression.
Specifically, tumours recruit Tregs and myeloid-derived suppressor cells (MDSCs) to
suppress the immune response and inhibit T cell expansion in the tumour immune
microenvironment. Interestingly, increased recruitment of Tregs in OAC has been
associated to negative prognostic impact (CSS), however, the specific recruitment factors
were not disclosed, whereas in OSSC the expression of Eomesodermin (Eomes) was

found to promote progression by recruiting Tregs (555, 556).
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The presence of MDSCs in oesophagogastric junction adenocarcinoma has been reported
to promote progression, positively correlating with advanced staging, low grade, lymph
node metastasis, and HER2- status (557). The polarisation of macrophages to the M2
phenotype was noted in OAC with nodal positivity and associated to worse overall
survival, these M2 macrophages act to suppress immune responses by secreting factors
by secreting immunosuppressive factors such as IL-10, arginase and TGF- 3 (401, 558,

559).

T cells also require co-stimulatory signals to activate their responses towards cancer cells,
such as CD80 which interacts with CD28 on T cells and acts to promote activation of
responses (560). However, cancer can downregulate CD80 expression to evade T cell
responses as evidenced in OAC where significant downregulation has been reported

which inversely correlates with TGF-$ and IL-10 expression (561).

Lastly, stromal cells components (such as cancer-associated fibroblasts) can contribute to
tumour immune evasion by secretion of immunosuppressive factors, building dense
extracellular matrices and supporting tumoral vascularisation (562). Notably, increased
rigidity of the extracellular matrix was reported in OAC and increased collagen in Barrett’s
oesophagus, the increase rigidity and density of the extracellular matrix in other cancers
is noted to lead to immune exclusion preventing T cells and other immune effectors from

reaching the tumour core (563-565).

6.1.2 The regulatory signalling pathways of MHC class | expression.

The expression of MHC class | genes is present in most cells in OAC tissue and has become
a focus point in exploring the immunogenicity of cancer cells as antigens presented on
HLAs of the MHC class | system are responsible for eliciting anti-tumoral immune
responses from CD8+ cytotoxic T lymphocytes. Notably, a known immune escape
mechanism in cancer is to reduce the expression of MHC class | genes to abrogate
responses to tumour antigens by CD8+ T cells (566). These cancer cells can leverage
regulatory elements for MHC class | expression which are present in normal healthy cells,

which will be explored below.
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Firstly, transcriptional regulation of MHC class | is enacted by multiple trans-activators,
these include CIITA, which is a key transcription factor associated to MHC class Il
expression, however, studies indicate CIITA is also a key element in promoting MHC class |
expression in cells via binding to the MHC class | promoters and thus enhancing the

transcription of these genes (567).

RFX5-family genes also perform a similar role to CIITA by forming the RFX5-enhancersome
consisting of the protein subunits RFX5, RFXAP, and RFXANK. The RFX5-enhacersome can
bind to both CIITA and NLRC5 proteins to form the MHC class | enhanceosome which then

associates to the SXY module promoting downstream MHC class | expression (568).

The transcription factors NF-kB, IRF1 (Interferon Regulatory Factor 1), and STAT1 (Signal
Transducer and Activator of Transcription 1) act to positively regulate the expression of
MHC class | genes. Specifically, STAT1 becomes phosphorylated (pSTAT1) within the
JAK/STAT signalling pathway after IFN- y binds the interferon-1 receptor on the cell
surface, following phosphorylation, pSTAT1 dimers enters the nucleus and binds to the y-
activated sequence (GAS) which promotes the expression of IRF1, this is described as the

type Il IFN- y response (569).

IRF1 after transcriptional promotion by pSTAT1 dimers binding GAS can then bind to the
interferon response element (ISRE) which acts to promote MHC class | expression (570).
However, the ISRE element can also be bound by a STAT1/STAT2-IRF9 complex called
interferon-stimulated gene factor 3 (ISGF3) which forms downstream of the type I/11l IFN-

y receptor which can result in promotion of MHC class | expression (See Figure 56) (571).
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Figure 56 Type |, Il and lll Interferon signalling pathways for their respective receptors.
Interferons bind the type |, Il and Il receptors which propagate downstream signalling. In
Type | responses interferons excluding IFN- y bind the type | IFN receptor which results in
the phosphorylation of STAT1/2 forming a dimer, this dimer binds IRF9 forming ISGF3
which translocates to the nucleus binding to ISRE to promote interferon-stimulated genes
(ISGs). The formation of ISGF3 can also result from IFN- y. Type Il IFN receptor are bound
by IFN- y which results in a pSTAT1 dimer which translocate to the nucleus, then binds to
GAS which leads to promotion of IRF1 (Created by Biorender).

Lastly, NF-kB also acts to promote MHC class | expression by binding two NF-kB binding
sites in the enhancer A region, a requirement for induction of MHC class | expression
(572). Notably, the trans-activators and transcription factors act synergistically and

simultaneously to promote MHC class | expression (See Figure 57).
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Figure 57 The MHC class | promotor region.

Translocated pSTAT1 binds GAS to promote the expression of IRF1. NLRC5/CITTA
translocates into the nucleus forming the MHC class | enhanceosome with the RFX5-
complex, ATF1/CREB and the NFY-complex which acts to bind the SXY module to promote
the transcription of MHC class I. NLRC5/CIITA then can recruit chromatin modifiers and
transcriptional elongation and initiation factors. IRF1 binds to the ISRE element within
the MHC class | promotor region. NF-kB binds to Enhancer A to induce the expression of
MHC class | genes (Created with Biorender).

6.1.3 The novel role of CSDE1 in antigen presentation machinery gene expression
regulation

CSDE1 is a gene coding for Cold Shock Domain Protein E1 and is implicated in several
cellular processes including RNA stabilization, translational reprogramming, and protein
homeostasis (573, 574). Among these roles, recent publications have indicated CSDE1
can function as a negative regulator of MHC class | expression in cancer. The first study to
uncover this role studied the effect of CSDE1 expression on JAK/STAT signalling to
produce reduced downstream promotion of MHC class | expression; this analysis was
founded on the initial observation of a significant correlation between CSDE1 mRNA
expression and the expression of MHC class | genes (HLA-A/B/C, TAPBP and TAP1/2)
within the TCGA-SKCM (skin cutaneous melanoma) dataset (n = 471) (575). Following this
observation CSDE1 knockout cell models of melanoma and breast cancer were generated,
these cell models demonstrated increased MHC class | mMRNA expression and gene
ontology analysis revealed increased JAK/STAT signalling pathways. Further investigation
observed CSDE1 knockout cells possessed greater pSTAT1, suggesting CSDE1 participated
in inhibiting JAK/STAT signalling; interestingly, CSDE1 knockout cell models observed
reduced PTPN2 (protein tyrosine phosphatase non-receptor type 2) mRNA stability
uncovering the role of CSDE1 in stabilising PTPN2.
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The importance of PTPN2, also known in its protein form as TCPTP (T cell protein tyrosine
phosphatase), was highlighted in this study by its function to dephosphorylate pSTAT1
within the JAK/STAT signalling pathways downstream of the IFN receptors (575). The
dephosphorylation of pSTAT1 inhibits translocation of STAT1 dimers into the nucleus,
preventing binding to either GAS or ISRE thus restricts the promotion of /RF1 and MHC
class | gene expression (See Figure 58) (575). Lastly, this publication identified CSDE1 is
regulated in tumorigenic cells via the SMYD3-mediated H3K4 trimethylation which results
in transcription activation, though TCGA analysis only revealed a minor correlation
between SYMD3 and CSDE1 expression suggesting only nuclear SMYD3 may strongly
correlate to CSDE1 expression (575).
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Figure 58: CSDE1 as a negative regulator of MHC class | expression via the JAK/STAT
pathway. (A) CSDE1 stabilises TCPTP protein in the cytosolic compartment
(Panel A reproduced, with permission from, Galassi and Galluzi, 2023)(576,
577). (B) Stabilisation of TCPTP results in pSTAT1 dephosphorylation inhibiting
pSTAT1 translocation to the nucleus preventing binding of STAT1/2
homodimers/heterodimers to promoters of IRF1 and MHC class | HLA genes.
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6.1.4 Biological functions of CSDE1

CSDE1 (Cold Shock Domain Containing E1) is a gene which possesses cellular multiple
functions. Unfortunately, the 3D structure of CSDE1 has been not been fully
characterised, however, it is known like other cold shock binding proteins, CSDE1 possess
a five-stranded all-antiparallel B-barrel structure, with two cold shock domains, RNA-

binding domains and low complexity regions (578).

The first known role of CSDE1 protein is found in RNA Binding, where it functions to
regulate mRNA stability, translation, and localisation, processes crucial for gene
expression regulation. The mRNA binding role of CSDE1 has been explored in Drosophila
models, where is binds msl2 and roX mRNA which plays a key role in the control of X-
chromosome dosage compensation (579). An additional role of CSDE1 is in stress
response, specifically as a regulator of oxidative stress, where CSDE1 and STRAP (Signal-
transducing adaptor protein) proteins interact to convey sensitivity to oxidative stress

(580).

A further role describes CSDE1 protective role from DNA damage within the NER
(nucleotide excision repair) and DSB (double strand break) pathway and then promote
cell growth by modulating the expression of RPA2, CHOP, PERK and GRP78 (581).

CSDE1 has also been implicated in the regulation of embryonic development, with loss of
CSDE1 accelerating neural differentiation and potentiates neurogenesis, with ectopic
expression of CSDE1 impairing neural differentiation. Specifically, CSDE1 binds the fatty
acid binding protein 7 (FABP7) and vimentin (VIM) mRNAs, and transcripts involved in

neuron projection development which regulates their stability and translation (582).

Lastly, aberrant expression or dysregulation of CSDE1 has been prior published to be
critical to maintain invasive phenotype of colorectal cancer via positively regulating c-MYC
and associates with epithelial-to-mesenchymal Transition (583). Specifically, this article
identified CSDE1 expression was greater in colorectal tumour samples compared to
normal tissue and in metastatic origin cell lines compared to primary cell lines (583).
Additionally, downregulation of CSDE1 reduced cell viability and migration during restrain

of epithelial-to-mesenchymal transition experiments, increasing sensitivity to apoptosis
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(583). Lastly, they observed high CSDE1 expression associated with poor prognosis,

positively correlating to c-MYC expression in colorectal cancer tissue and cell lines (583).

6.1.5 CSDE1 As a target for therapy in cancer

Interestingly, a small number of recent publications identified CSDE1 as a potential target
for immunotherapy after oncolytic therapy derived by rhinoviruses as, CSDE1 expression
is required for translation of rhinoviruses (146). This article found CSDE1 possessed a
selective pressure to somatically mutate in cancer treated with a oncolytic rhinovirus to
produce a C-T mutation to produce a proline to serine change at amino acid 5 (p.P5S); this
mutation was found to produce a neo-epitope recognized by non-tolerized T cells, which
suggests a potential to form a trap-ambush type of therapy using an oncolytic virus to
produce the CSDE1¢T escape variant with vaccination to prevent tumour escape (See
Figure 59) (146). This investigation was followed up by exploring the use of T cells primed
with CSDE1P*S peptides, finding an optimal priming regiment possessing increased IFN-y
upon challenge. Furthermore, the research group observed responses to cells presenting
CSDE1P*S neo-epitopes could be improved with the use of the CD200AR-L checkpoint
inhibitor (584).

Overall, this presents CSDE1 as a key factor in MHC class | expression and as a targetable
feature in cancer cells. Yet this mechanism has only been directly described in melanoma
and breast cancer cell models, with data mining analysis indicating the mechanism may
be observed in stomach adenocarcinoma, breast cancer or bladder urothelial carcinoma,
colon adenocarcinoma (TCGA-COAD) and liver hepatocellular carcinoma (TCGA-LIHC)

(575).
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Figure 59 Oncolytic trap and ambush strategy. Targeting initial treatment failure with a
highly targeted, escape-selective oncolytic virus then applying
immunotherapeutic therapy to target escape variants. Conceptual framework
from Kottke et al, 2021 (585).

6.1.6 Manipulating gene expression in vitro experiments

Gene expression manipulation describes the control or alteration of the genes ability to
produce downstream proteins, this methodology is important in the field of functional
biology to determine the roles of genes in cellular functions and possesses clinical value in
the manipulation of genes to produce clinically favourable outcomes. Gene expression
can be manipulated using multiple differing methods depending on the application.
Broadly, gene manipulation covers mRNA targeting molecules which acts to reduce the
expression of specific mMRNA from target genes, knockout methods which aim to prevent
gene expression by modifying the genomic DNA of a host cell; overexpression methods
which aim to increase a genes expression by knocking in a target gene or transfecting in
mRNA for a target gene and finally, epigenetic modification which aims to alter the
epigenetic regulation of a genes expression; these methods will be expanded on below

(586, 587).
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Firstly, siRNA standing for small interfering RNA describes short, double-stranded RNA
molecules that can specifically target complementary sequences of genes to inhibit their
expression (588). Specifically, siRNA function by guiding the protein complex RNA-induced
silencing complex (RISC) to a specific messenger RNA, the siRNA binds a complementary
sequence of the target mRNA, which is followed by the RISC complex cleaving the mRNA
or suppresses the mRNA’s translation (588). Interestingly, siRNA has already been
employed in previous publication to investigate CSDE1’s role in the regulation of c-MYC

and epithelial-to-mesenchymal transition and the role of micro-RNA in cancers (583, 589).

Short hairpin RNA (shRNA) functions similarly to siRNA, but possess a hairpin-like
structure, with a stem-loop, double-stranded RNA region as a precursor to forming siRNA
(590). The key difference in shRNA is the biogenesis, where typically shRNA is expressed
from viral or plasmid packages, then cellular machinery forms a mature shRNA (590, 591).
Mature shRNA then binds complementary sequences of mRNA directing RISC to cleave
the respective mRNA or prevent translation. The study prior described to investigate the
role of CSDE1 in MHC class | expression employed shRNA to discover CSDE1 is a negative

regulator of MHC class | expression in melanoma (592).

Gene knockout refers to techniques which aim to deactivate or delete a target gene so it
cannot be expressed. Generally, this involves using a targeting method such as CRISPR
(clustered regularly interspaced short palindromic repeats) or zinc-finger motifs packaged
in a delivery vector which is complementary to a genomic sequence, which then allows
for cleavage of the DNA by an enzymes such as CAS9 in the case of CRISPR to form a
double stranded break, which introduces mutation of the gene via insertion or deletion
rending the gene non-functional (593, 594). Usually when performing a gene knockout a
selection marker is simultaneously introduced such as an antibiotic resistance gene,
allowing for the selection of knockout clones (593). These methods can possess
translational value such as attempting to knockout the HLA-A gene via the CRISPR-CAS9
system to reduce the incidence of alloreactive immune responses triggered by

incompatible HLA molecules after organ transplantation (595).
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Overexpression technique differ from those prior described as their purpose is to increase
the expression of a target gene. The vector to achieve overexpression involves plasmid
type vectors which functionally achieves overexpression of a target gene by either gene
cloning where a gene is cloned into a plasmid, controlled by a strong promoter, which is
transfected into a host cell which then expresses the target gene. Or by an inducible
system which incorporates an inducible promoter, allowing for control of a target genes
expression (596). An additional vector system involves using transposons, which are DNA
sequences that can relocate within the genome, allowing for an engineered transposon
system which carries a target gene which can be inserted into the host genome resulting
in gene expression (597). Lastly, a modified CRISPR-CAS9 system can be implemented to
activate constitutive gene expression by fusing a transcriptional activator to the CAS9
protein then targeting the gene of interest to induce expression (598). An interesting use
case of overexpression in antigen presentation research, involved overexpressing HLA-C
in colorectal cancer cells. Where the overexpression of HLA-C in these cells resulted in
down-regulation of were highly enriched in cancer-related signalling pathways such as

JAK/STAT, ErbB, and Hedgehog signalling pathways (154).

An alternative method to affect the expression of a target gene would be achieved by
epigenetic modification, for example the use of 5-Azacytidine, which was trialled in
myelodysplastic syndromes (599). Azacytidine functions by covalently binding DNA
methyltransferase resulting in DNA hypomethylation and prevents DNA synthesis,
however, this mechanism is untargeted leading to a requirement of targeted epigenetic
modifying tools (600). Targeted epigenetic modification have thus far been developed
using zinc-finger nucleases (ZFNs), transcriptional-activator like effectors (TALEs) and
CRISPR which are bound to a methyltransferase that act to methylate a target gene
inhibiting transcription (601). Using methylation inhibitors such as 5-aza-2'-deoxycytidine
has already been implemented to investigate MHC class | HLA expression in healthy donor
cells, which notes increased HLA-A expression after treatment of the cells with a DNA
methyltransferase inhibitor (602). Furthermore, this approach observed HLA-A allelic
lineage-specific methylation patterns located to the HLA-A promoter region, suggesting
HLA-A allelic lineage-specific variation may be partially driven by epigenetic modification

(603).
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6.1.7 Cell models of OAC

Cell models are critically important tools in the study of cancer, allowing researcher to
perform functional studies genes and proteins involved in cancer development and
progression. These frequently make use of genetic manipulation technologies, such as
gene knockout/down or overexpression experiments designed to explore the roles of
specific genes as examples in the above investigation of CSDE1 functional roles in

melanoma and breast cancer using CRISPR-CAS9 to knockout CSDE1 (145, 589).

Eight cell lines have commonly been used for the investigation of OAC (See table 25);
firstly, OE33 is one of the most common OAC cell lines in use for the investigation of OAC
was established from a lower oesophagus adenocarcinoma of a 73-year-old female
patient in pathological stage IlA and poor differentiation (604). Notably, OE33 expresses
HLA-A/B/C genes constitutively, which allows OE33 to be used as a cell model of MHC
class | expression in OAC to explore the impact of genomic manipulation of HLA-A/B/C
expression. An example of OE33 use in research can be found in the observation of FLOT
(Fluorouracil, Leucovorin, Oxaliplatin and Docetaxel) directly upregulated PD-L1 on the
surface of OE33 cells, which could be targeted with checkpoint blockade to improve
lymphocyte killing of FLOT treated OE33 cells; these pre-clinical studies provided
justification to explore the use of checkpoint blockade therapy in prior chemotherapy

resected OAC tumours (605, 606).

FLO-1 is another OAC cell line used for functional genomics; FLO-1 was established from a
primary distal OAC of a 68-year-old male (607). Interestingly, FLO-1 has prior been
exploited to investigate AURKA (Aurora kinase A) role in regulating JAK2—STAT3 activity in
OAC finding JAK2 mediates AURKA-induced phosphorylation of STAT3 (608). This process
was found to promote the expression of cytokines, growth factors, and pro-survival genes
that act within multiple cellular processes including survival, cell cycle and invasion (609).
Despite the practicality of using cell lines in cancer studies, it is important to understand
there are significant limitations in employing cell lines to investigate functional genomics
in cancer. These limitations include genetic drift where cell lines can undergo genetic
changes over time due to continuous passaging, the lack of tissue complexity meaning
these models not accurately represent the interaction present in the tumour

microenvironment, and the inability to reproduce in vivo complexity among others (610).
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Overall, to perform functional genomic research to investigate the influence of CSDE1

expression on MHC class | expression sought by this chapter, the commercially available

cell lines must be assessed to determine if the cell model possesses the correct genomic

and expression profile to do this robustly.

Table 25 Commonly used OAC cell lines in literature.

LITERATURE IN
ANTIGEN
CELLLINE AGE SEX ETHNICITY HISTOLOGY PRESENTATION
INVESTIGATION
ESO26 56 MALE CAUCASIAN ADENOCARCINOMA - YES (611)
GASTROESOPHAGEAL JUNCTION
ESO51 74 MALE CAUCASIAN DISTAL OESOPHAGEAL NO
ADENOCARCINOMA
FLO-1 68 MALE CAUCASIAN DISTAL OESOPHAGEAL YES (532)
ADENOCARCINOMA
KYAE-1 60 MALE ASIAN DISTAL OESOPHAGEAL NO
ADENOCARCINOMA
47 FEMALE CAUCASIAN BARRETTS ADENOCARCINOMA, NO
OACM5.1 C ADENOCARCINOMA OF DISTAL
OESOPHAGUS
72 MALE CAUCASIAN ADENOCARCINOMA - GASTRIC YES (532)
OE19 CARDIA/OESOPHAGEAL GASTRIC
JUNCTION
OE33 73 FEMALE CAUCASIAN OESOPHAGEAL YES (605)
ADENOCARCINOMA
89 MALE CAUCASIAN WELL-DIFFERENTIATED YES (605)
SK-GT-4 OESOPHAGEAL
ADENOCARCINOMA
MFD-1 55 MALE CAUCASIAN OESOPHAGEAL NO

ADENOCARCINOMA
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6.1.8 Hypothesis and chapter aim, and objectives.

From my prior analysis | found evidence suggesting CSDE1 expression may function as a
negative regulator of MHC class | HLA expression in OAC, however, this analysis requires
further supporting evidence to substantiate this claim. To address this, | aimed to assess
the impact of modulating CSDE1 expression on the mRNA and protein level of MHC class |
HLAs in an OAC cell model and explore single cell RNA-seq to confirm the distribution of
CSDE1 expression in OAC and compare expression between cancer cells and normal

comparative cells.

Hypothesis 3: ‘Expression of CSDE1 in oesophageal adenocarcinoma cells down-regulates
MHC class | HLA expression.’

Objective 4a: Knockdown/overexpression of CSDE1 will be performed via siRNA and

validated at the mRNA and protein level in OAC cell lines.

Objective 4b: MHC class | mRNA and protein expression levels will be measured in
knockdown/overexpression CSDE1 cell models, determining the effect of CSDE1

expression on MHC class | expression.

Objective 4c: phosphorylation status of STAT1 protein levels will be measured in OAC cell
lines to determine the effect of altered CSDE1 expression on the activation of the

JAK/STAT signalling pathway.

Objective 4d: CSDE1 mRNA expression will be repartitioned into single cell populations
from single-cell RNA sequencing data generated from primary human tumour tissue to
determine whether CSDE1 is over expressed in OAC cancer cells in comparison to normal

cells.
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6.2 Methodology
6.2.1 Cell expression profiling

Cell mRNA raw counts data was sourced from Sanger cell model passports for OE33, OE19

and FLO-1 (https://cellmodelpassports.sanger.ac.uk), mRNA raw counts for MFD-1 cells

were downloaded from the Underwood Research file store. mRNA raw counts were then,
filtered to remove lowly and highly expressed transcripts and normalised using TMM
(allowing for within and between sample normalisation) to explore the cells lines for

CSDE1 and HLA-A/B/C expression values (612).

6.2.2 General principles of cell culture

Cell culture is a methodology to allow for cellular expansion in vitro using nutrient
medium. This technique allows for manipulation of cells if required and provides cellular
read-outs and DNA, RNA, and proteins for downstream analysis. For my experiments
routine cell culture was performed within a laminar flow hood with the tissue culture
reagents and nutrient media being stored within sterile containers at 4°C. To avoid cold
shock of cells, media and reagents were placed in a water bath at 37°C prior to use. All
cell cultures were grown at 5% CO2 in a humidified environment of an incubator (37°C).

Cell lines were validated by STR-PCR in the Underwood laboratory.

6.2.2.1 Thawing cell stocks

Cell stocks stored in vials were removed from liquid nitrogen were placed at room
temperature for 5-10 mins until completed thawed. Thawed cell stock was transferred to
15 ml tubes (BD Falcon), where 5 ml of cell media (DMEM/RPMI containing 10 % w/v heat
inactivated foetal Bovine serum (FBS), 2.0 mM L-glutamine, 50 IU/ml of penicillin (100
U/ml) and 50 pg/ml of streptomycin) was added before centrifugation at 800 g for 5
minutes to produce a cell pellet. After discarding the supernatant, the remaining cell
pellet was re-suspended in complete growth medium and transferred to a cell culture

flask (25 cm? volume; Corning®) containing fresh cell culture media.
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6.2.2.2 Cell culture

Cell lines were cultured within a humidified cell incubator at 37 °C with 5 % CO? for OE33,
FLO1 and MFD1 cells. For OE33 cells complete growth medium of Roswell Park Memorial
Institute 1640 medium (RPMI) supplemented with 10 % w/v heat inactivated foetal
Bovine serum (FBS), 2.0 mM L-glutamine, 50 IU/ml of penicillin (100 U/ml) and 50 ug/ml
of streptomycin. MFD-1 and FLO-1 cells were cultured in Dulbecco’s modified eagle
medium (DMEM) supplemented with 10 % w/v heat inactivated foetal calf serum (FCS),

2.0 mM glutamine, and 50 IU/ml of penicillin and 50 pug/ml streptomycin.

Cell cultures were grown as adherent monolayers in sterile cell culture flasks (25cm?, 75
cm?or 175 cm? volume; Corning®) in a humidified incubator (5 % CO2) at 37 °C. Media
was changed every 3 - 4 days or when 80-90 % confluence was achieved.

Confluent cells were passaged at a 1:3 to 1:5 ratio of depending on the growth rate of the
cells. To achieve passage. The existing medium was discarded, then the cell layer within
the cell culture flask was washed with PBS heated to 37 °C removing the remaining
media. Pre-warmed trypsin/TrypLE™ Express Enzyme (0.05 % trypsin (w/v) / 5 mM EDTA,
Cat#25200056, ThermoFisher/TrypLE™ Express Enzyme (1X), no phenol red,
Cat#12604013, ThermoFisher) was added to coat all cells, then incubated for 5 mins at 37
°C. FBS containing media was then added to detached cells to inactivate the
trypsin/TripLE by inhibiting enzyme reaction. Finally, the free-floating cells in media
suspension were divided into new tissue culture flasks and topped up with complete cell

culture media.

6.2.2.3 Cell count

To perform cell counts, 0.25 ml of cells solution was added to a 0.5 ml Eppendorf, with
0.25 ml of Trypan Blue Solution (0.04 % Trypan Blue, Cat# 15250061, ThermoFisher). 10
pL of Trypan Blue + cell solution was pipetted into a C-chip haemocytometer (Neubauer
Improved C-Chip Disposable Haemocytometer (2 channel), Cat#DHC-N01-50,
NanoEnTek). The haemocytometer was then placed under a microscope at 10x
magnification (Nikon Diaphot) and focused on the grids. Next five 1 mm? area grid
squares were then counted; the average cell count of the five grid squares was then

calculated, then multiplied by the dilution factor to give the cell count per mL.
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6.2.3 CSDE1 knockdown by siRNA transfection

CSDE1 siRNA knockdown of FLO-1 cells was achieve via lipofection. This required plating
cells at 0.25-1 x 108 in 6 well plates until 60 % confluent overnight at 37°Cin 5 % CO2.
Cells were then transfected overnight in Opti-MEM® Medium using Lipofectamine®
RNAIMAX Reagent (Lipofectamine™ RNAiIMAX Transfection Reagent, Cat#13778075,
Invitrogen) with a concentration of CSDE1 siRNA smart pool (sSiGENOME Human CSDE1
(7812) siRNA — SMART, Cat#: M-015834-01-0010, Horizon Discovery/Dharmacon) pool of
60 pmol in 250 pL Opti-MEM® Medium (Opti-MEM™ | Reduced Serum Medium, Cat#
31985062, Gibco). Following overnight incubation cell media was replaced with complete

RPMI media and incubated for 3 days before harvesting the cells.

6.2.4 CSDE1 overexpression by nucleofection

CSDE1 overexpression of OE33 was attempted during my analysis. This was conducted
using a nucleofection kit (SE Cell Line 4D-Nucleofector™ X Kit S, Cat# V4XC-1032, Lonza).
This required adding 2 x 10° to each 20 pL Nucleocuvette with 0.4 pg of pmaxGFP™
Vector and 20 uL SE Cell Line 4D-Nucleofector™ X Solution then placed into a
Nucleofector unit where 7 different Nucleofector® programs plus 2 controls were
conducted. Post nucleofection the cells were incubated in 12 well plates in complete
media at 37 °Cin 5 % CO2 overnight, before imaging until a fluorescent microscope.
Imaged cells were analysed to determine which program produced the most successful
nucleofection marked by GFP. Beyond this stage the most optimal program would have
been selected for nucleofection with 0.2—1 pg of CSDE1 plasmid [CSDE1 (NM_001130523)
Human Tagged ORF Clone, Cat#RC226183, Origene]. Unfortunately, after imaging it was
determined cells had been infected and my remaining time in the laboratory did not allow

for optimisation nor experiment conditions (see results section 6.4.5).

6.2.5 RNA isolation and purification

Extraction, isolation, and purification of RNA was conducted with use of RNeasy Mini Kit
(RNeasy Mini Kit, Cat#74104, Qiagen). The protocol for this procedure made use of highly
denaturing buffer containing guanidine-thiocyanate on lysed and homogenized samples
to inactivate RNases, then selection of RNA occurs using the binding properties of a silica-

based membrane using spin columns with ethanol.
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The RNeasy Mini spin column allows binding of total RNA to the silica membrane with
unbound elements being washed away, which isolates RNA from other cellular lysates.
The RNA was extracted from cell solution which were centrifuged 300 x g for 5 mins with
the supernatant discarded. Cells were first disrupted with 350 uL RLT cell pellet. Cell
lysates were then homogenized using a sonicator for 30 s (3 x 10 seconds sonication with
15 second rests). The homogenized lysates were then transferred to the gDNA spin
column and centrifuged for 30s at 8,000 g. The gDNA column was then discarded and the
supernatant flow-through was collected, next 350 puL 70 % ethanol was added to the
collected solution and thoroughly mixed. Next 700 pL of the lysate solution was
transferred into a RNeasy spin column then centrifuged at 28000 x g for 15s allowing
binding of RNA to the silica column. Following this step, the flow through was discarded,
700 plL of RW1 buffer was used to wash the column, with further centrifugation at 28000
x g for 15s. A further wash using 500 pL RPE buffer was then conducted twice, an
additional centrifugation at 28000 x g for 15s with the flow-through being discarded.
Finally, the spin column was transferred into a 1.5 ml collection tube and eluting the RNA
with 30 uL of RNase-free water. This collection tube was closed and centrifuged at 8,000

x g for 1 minute then stored at -80°C.

6.2.6 Nucleic acid quantification

To quantify purified mRNA and derived cDNA methods used a Nanodrop 1000
Spectrophotometer (ThermoFisher Scientific, UK). This required using 1 pL of nucleic
acid-free water which was pipetted onto the nanodrop pedestal as calibration of the
spectrophotometer. Next 1 puL of cDNA or mRNA in solution was read with the pedestal
being cleaned thoroughly between readings. The DNA and RNA content for each sample
were recorded in ng/uL, with the purity of the mRNA/cDNA being determined by
260/230nm and 260/280 ratios. DNA samples were satisfactory when the 260/280nm
absorbance ratios; expected purity measurements for qualified further analysis were
required to be within a 260/280 ratio of 1.8-2.0 for RNA and cDNA and between 2.0-2.2
for 260/230 ratio. Quantified cDNA stored at -20°C, for future analysis.
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6.2.6.1 Reverse transcriptase polymer chain reaction (PCR) for cDNA synthesis

To provide ample quantity of nucleic acid (RNA) for downstream analysis copy DNA
(cDNA) was produced via reverse transcription of 1 ug of RNA (High-Capacity cDNA
Reverse Transcription Kit Cat#4368814, Applied Biosystems). The principles of reverse
transcription involve firstly deoxy-thymine nucleotides with a short sequence [Oligo (dT)]
which contains a complementary primer to the poly-A tail, and which also provides a free
3’-OH end for extension by reverse transcription. To achieve reverse transcription, a
master mix of 2 uL reverse transcription buffer, 0.8 dNTP Mix, 2 pL random primers, 1 pL
MultiScribe Reverse Transcriptase and 4.2 pL of nucleic acid-free water was combined for
a total of 10 pL of master mix per sample. Next the required concentration of RNA was
calculated to provide 40 ng/uL in 10 uL of nucleic acid-free water for all samples to allow
a total of 20 pL for each samples PCR reaction (master mix + sample RNA). The solution
was then placed in a thermocycler to the following program: 25°C - 10 minutes, 37°C —
120 minutes, 85°C — 5 minutes and 4°C — stop to generate complementary DNA (cDNA).

cDNA was then stored at -20°C, for future analysis.

6.2.7 Quantitative Real-Time PCR (qRT-PCR) by TagMan

gRT-PCR is a method used to quantify specific sequences of cDNA allowing the researcher
to extrapolate the quantity gene expression as it is amplified by PCR in real time. The
premise of TagMan is the use of a primer and probe which are specific to the gene under
study. Specifically, an oligonucleotide probe is fluorescently labelled as a reporter on the
5’ end and a quencher molecule on the 3’ end. The importance of the quencher dye is to
reduce the fluorescence emitted by the reporter dye whilst the probe is intact, upon
polymerisation the gene probe anneals downstream of the primer site allowing extension
by the Tag DNA polymerase, cleaving the reporter dye. The cleavage of the reporter dye
allows for detection of the reporter dye since as it is removed from the proximity to the
guencher dye. This signal is further amplified by the cleavage of the quencher dye by
exonucleases during the PCR cycle. These two cleavage events also allow primer
extension to continue, thereby, fluorescence emitted in TagMan gPCR is directly
proportional to the number of copies of cDNA produced per cycle. The PCR reactions
here are quantified when the overall fluorescence exceeds a set threshold to produce a Ct
value which represents the number of PCR cycles needed to reach the required

fluorescence threshold.
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Therefore, a higher Ct value would represent lower expression gene under study. To
establish the levels of CSDE1 cDNA, HLA-A, HLA-B and HLA-C cDNA or control gene GAPDH
cDNA in cells, gRT-PCR was performed with the QuantStudio Flex Real-Time PCR System
(QuantStudio™ 7 Flex Real-Time PCR System, 384-well, desktop, Cat# 4485701, Applied
Biosystems) with measurements being conducted using the standard curve method. To
estimate gene expression of the genes of interest the log of cDNA concentration was
plotted against Ct values for known quantities of cDNA derived from a dilution series from
normal fibroblasts and the equation of this standard curve used to calculate the amount

of CSDE1, HLA-A, HLA-B, HLA-C or GAPDH cDNA present in cells.

Commercially available primers for CSDE1 (Hs00918650_m1, Cat#4331182, ThermoFisher
Scientific), HLA-A (Hs01058806 g1, Cat#4331182, ThermoFisher Scientific), HLA-B
(Hs07292706_g1, Cat#4351372, ThermoFisher Scientific), HLA-C (Hs00740298 g1,
Cat#4331182, ThermoFisher Scientific) and GAPDH (Hs01060665 g1, Cat#4448489,
ThermoFisher Scientific) were used to measure cDNA levels for each gene of interest in
knockdown cells. 1 uL cDNA was suspended and made up to 10 pL with 3.5 pL nuclease
free water, 0.5 pL of TagMan Assay (20X) and 5.0 pL of TagMan Fast Advanced Master
Mix (TagMan™ Fast Advanced Master Mix for qPCR, Cat#4444557, Applied Biosystems).
To ensure that the solutions were mixed thoroughly and then to remove bubbles,
samples were vortexed. Following this the samples were loaded in triplicate into a 384
well then centrifuged for 300 x g for 1 min. The PCR plate was then sealed and loaded
into the PCR machine and ran through 50°C (2 minutes), 95°C (20 seconds), then 40 cycles
of 95°C (1 second), and 60°C (20 seconds). To effectively calculate the level of gene
expression the output Ct of each gene of interest was applied to the standard curve of
known RNA quantity using the equation below (y = Ct value, m = slope, x = log(quantity),

b = y-intercept (613).

Standard curve:y = mx + b

e y b
Quantification:x = —— —
m m

Equation 2: Standard curve and mRNA quantification equations for TagMan analysis.
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6.2.8 Western blotting

6.2.8.1 Cell lysis

Cell pellets (~3.6 x 10° cells) were re-suspended in 1ml of PBS in an Eppendorf tube, and
centrifuged at 8000 x g for 4 mins at 4°C. The supernatant was removed off the cell pellet
and ice, reducing the potential for protein degradation. Next 20 pL of Radio-
immunoprecipitation assay (RIPA) buffer and 5 L of protease inhibitor and 5 uL of
phosphatase inhibitor (Halt phosphatase inhibitor cocktail, Cat#78420, ThermoFisher
Scientific) was added to each cell pellet, then briefly vortexed, following being placed on
ice for 30 minutes. Lysed cell mixture was then centrifuged at 8000 x g for 5 minutes at

4°C. Finally, supernatant was moved to a new Eppendorf and stored at -20°C.

6.2.8.2 Estimation of protein concentration

To allow for optimal protein loading | first determined the protein concentration achieved
after cell lysis via a Bradford assay (BCA) using Bio-Rad Protein Assay Dye Reagent
Concentrate (Bio-Rad Protein Assay Dye Reagent Concentrate, Cat#5000006, Bio-Rad).
This assay functions by producing a colour change of Coomassie brilliant blue G-250 dye
which occurs when binding amino acid residues present in protein. This colour change
can then be read by a spectrophotometer set for absorbance (595nm). Bovine serum
albumin (BSA) protein standards were produced using a dilution series to create set
protein concentrations of 0, 125, 250, 500, 750, 1500, 2000, 4000 and 5000 ug/ml. To
achieve the analysis firstly 250 uL of the dye concentrate was prepares at a dilution of 1:5
with deionized water then pipetted into a sterile 96-well plate, following this 1ul of
protein lysate for each sample was pipetted into wells in triplicate, as well as a triplicate
of 1:10 dilution of protein lysate in deionized water and the protein standards in
triplicate.

The plate was then incubated for 15 minutes at 37 °C, then placed into a Varioskan Flash
plate reader (Varioskan Flash, Cat#5250030, ThermoFisher Scientific) and read at 590 nm
absorbance. The absorbance measurements for the protein standards were then used to
produce a standard curve, with the unknown sample protein concentrations being
guantified using this standard curve in Microsoft Excel using the equation below (X=

unknown protein quantity, Y= absorbance, m= gradient and c= y-intercept).
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X={—-c)/m

Equation 3: Protein quantification equation for BCA assay.

6.2.8.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)

Proteins are separated by electrophoresis using a 1.5 mm thick pre-moulded
polyacrylamide gel (NuPAGE 10 %, Bis-Tris 1.5 mm Mini Protein Gel, Cat#NP0306BOX,
Invitrogen. The gel was placed in the electrophoresis tank and the chamber filled with
running buffer (NUPAGE Tris-Acetate SDS Running Buffer, Cat#LA0041, Invitrogen). The
first step in the SDS-PAGE process was to prepare the protein samples for loading by
adding 7.5 pL of sample buffer (NUPAGE™ LDS Sample Buffer (4X), Cat#NP0007,
Invitrogen), 3 ulL of reducing agent (NUPAGE™ Sample Reducing Agent (10X), Cat#NP0004,
Invitrogen) and adding nucleic acid-free water to control the concentration up to a total
of 30 pL for loading into the wells. These prepared samples were heated it at 70 °C for 10
minutes, vortexed, then placed on ice. Protein samples were loaded into wells of the
polyacrylamide gel together with a protein weight ladder (PageRuler™ Pre-stained Protein
Ladder, 10 to 180 kDa, Cat#26616, Thermo Scientific). Lastly, the electrophoresis was
conducted for 35 minutes at 200 V constant. After running the gel was then removed and

submerged in transfer buffer (NUPAGE™ Transfer Buffer (20X), Cat#NP0O0O6, Invitrogen).

6.2.8.4 Immunoblotting

After running the SDS-PAGE gel, the separated protein was then transferred to a
nitrocellulose blotting membrane (Nitrocellulose Membranes, 0.2 um, Cat#88013,
Thermo Scientific), sandwiched between 2 filter paper and sponges then compressed,

in a Mini Blot Module (Mini Blot Module, Cat#B1000, Invitrogen), and immersed in
transfer buffer up to the fill line of the Mini Gel Tank (Mini Gel Tank, Cat#A25977,
Invitrogen). Proteins were transferred onto the membrane at 10V, 160 mA for 60
minutes. After protein transfer, the membrane was covered in Ponceau S (Ponceau S, 0.1
% v/v soln. in 5% acetic acid, Cat# J63139.AP, ThermoFisher Scientific Chemicals) to
confirm successful transfer. Following successful transfer, the membrane was placed
inside a 50 ml BD Falcon tube with 5 ml of 5 % BSA to block non-specific proteins, and
gently agitated for 90 minutes on a roller (180 rpm) at room temperature.

After blocking the membrane was washed 3 times with 5 ml of PBS/Tween at 5 mins and

gently agitated for 90 minutes on a roller at room temperature. The membrane was then
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incubated in a Falcon tube with 5 ml of diluted primary antibody in 5% BSA (See table 26)
overnight on a roller (180 rpm) at 4°C.

After primary antibody incubation the stained membrane was washed 3 more times, in
PBS/Tween for 5 minutes, then incubated with a secondary antibody for 1 hour on a roller
at room temperature. A final wash was conducted 3 in PBS/Tween for 5 minutes at room
temperature with bound antibody being detected via chemiluminescence (SuperSignalTM
West Pico/Femto, Cat#34577/34094, ThermoFisher Scientific), then imaged on a
ImageQuant™ 800 Western blot imaging system (ImageQuant™ 800 Western blot imaging
system, Cat# 29399481, Amersham). GAPDH was probed as a loading control and
subsequent re-probing of membrane for other target proteins involved stripping off the
bound antibody with 5ml of stripping buffer (Restore Western Blot Stripping Buffer, Cat#
21059X4, ThermoFisher Scientific), 15 minutes at room temperature after a single wash
for 5 minutes with TBS (Tris-buffered saline) at room temperature on a roller. After
stripping the membrane was washed three times with 5 ml of PBS/Tween for 5 minutes at
room temperature, followed by primary antibody incubation for the next protein target.
Quantification of target protein was conducted in Image J, to produce a score of intensity
of target protein normalised to the housekeeping intensity (GAPDH, used after laboratory
testing confirming this protein expression is unchanged by non-targeting siRNA control)

(614). Antibodies used in this method are detailed in Table 26.

Table 26 Antibodies used in immunoblotting of target proteins in western blot analysis.

ANTIBODY CATALOG  SPECIES/HOST
TARGET CLONE SUPPLIER NUMBER ISOTYPE DILUTION
HLA-CLASS |
(ABC) EMR8-5 ABCAM AB70328 MOUSE 1:5000
CSDE1/NRU  EPR17414 ABCAM AB201688 RABBIT 1:1000
STAT1 ALPHA  EPYR2154 ABCAM AB92506 RABBIT 1:5000
PHOSPHO
STAT EPR3146 ABCAM AB109461 RABBIT 1:5000
GAPDH 6C5 ABCAM AB8245 MOUSE 1:5000
ANTI-RABBIT - ABCAM AB6721-1 GOAT 1:5000
ANTI-MOUSE - ABCAM AB97023 GOAT 1:5000
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6.2.9 Single-cell RNA-seq analysis

Single-cell RNA-seq data was obtained from previous analysis conducted (Provided by the
Matthew Rose-Zerilli/Underwood laboratory group) (615). This process involved
disaggregating patient tissues into single cell suspensions using a modified protocol for
fibroblast characterisation (616). Disaggregated tissue was processed through modified
DropSeq protocol v3.1, allowing single cells to be co-encapsulated with a barcoded bead
within a nanolitre droplet (617). These droplets were then broken, and the bead
encapsulated yield were reverse transcribed followed by exonuclease and PCR steps. 500
pg of cDNA were used for a Nextera XT library prep kit (Nextera XT DNA Library
Preparation Kit, CAT# FC-131-1024, Illumina) per sample before sequencing on a NextSeq
500. The raw reads were then demultiplexed and converted to Fastq files through
bcl2fastq (lllumina). Converted Fastq file then underwent Dropseq Core Computational
Protocol v2.1 pipeline, aligned to the HG38 genome using STAR 2.6.0a. Downstream
analysis was conducted using Seurat in R (Version 4.4.0) (618). Data visualisation of single-
cell RNA expression was conducted using UMAPs, Violin plots, AddModuleScores (scoring

gene sets) and Dot plots functions in Seurat.

6.2.10 Statistical analyses

Statistical analysis compared CSDE1 knockdown to controls in mRNA and protein
expression was conducted in GraphPad prism 10 using one-sample T-tests for protein
comparisons, as only one repeat of non-targeting and wildtype was available for
comparison and T-tests for mRNA quantity comparisons (619). For T tests, significance
was determined at a p value <0.05 after Bonferroni multiple testing correction;
Bonferroni was selected due to greater power in testing a small number of comparisons
compared to the Tukey method (620). Pearson correlation analysis was employed in
GraphPad prism 10 the correlation of APM protein expression, CSDE1 and STAT1
signalling level. Lastly, paired T-tests was performed in R for single-cell RNA-seq analysis
of CSDE1 expression of intestinal metaplasia of precancerous lesions and comparative

analysis of OAC cancer cells versus normal healthy cells.
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6.3 Results

6.3.1 Cell model selection and characteristics

To determine which available cells lines would be most appropriate for knockdown and
overexpression experiments for CSDE1. The mRNA count data was downloaded (from
Cell Model Passports) for accessible OAC cell lines (See Table 25) then normalised using
TMM in EdgeR (621). Exploring the mRNA expression level of CSDE1, other canonical APM
gene expression regulators and MHC class | genes revealed interesting observations for
each of the cell lines. Firstly, the expression of CSDE1 was found to be the highest in
OACM5-1, ESO26, ESO51 and FLO-1 cells with the greatest HLA-A/B/E found in ESO26
cells (See Figure 60). The lowest expression of MHC class | molecules was located in
cluster 1 which included OE19, OACM5-1 and SK-GT-4 cells; the low MHC class |
expression of OE19 could relate to OE19 cells also possessing the lowest expression of
IRF1, NLRC5 and the highest expression of PTPN2 (TCPTP), exploring the available data for
OE19 reveals a copy number loss event over the IRF1 gene locus (See Figure 60). Cluster 2
represents cell containing high TAPBP, IRF1 and TAP2 expression; among cluster 2, FLO-1
cells demonstrated low MHC class | expression with high CSDE1 expression (See Figure
60). These finding suggests FLO-1, OACM5-1 and SK-GT-4 cells contain lower MHC class |
expression, excluding TAP2/TAPBP with intact APM regulators and high CSDE1 expression
making FLO-1 and OACM5-1 cells suitable candidate models for CSDE1 siRNA knockdown.

Conversely, the greatest MHC class | expression was located to cluster 3 which included
OE33, ESO26 and ESO51 cell lines. OE33 possessed the greatest B2M, and HLA-C/E
expression accompanied by high NLRC5 and IRF1 expression among OAC cell lines and
highly expressed CSDE1 (See Figure 60). ESO26 possessed the greatest MHC class |
expression within cluster 3, but also contained high CSDE1 expression (See Figure 60).
MFD-1 possessed the greatest HLA-A/B, TAP2 and TAPBP coupled with high IRF1
expression (See Figure 60). These results suggest OE33, and MFD-1 cell models are
immediately available and would form effective models for CSDE1 overexpression, whilst

FLO-1 cells are ample for knockdown experiments.

Lastly, | explored the expression of the HMGA2 (High Mobility Group AT-Hook 2) gene,
which is thought to be regulated by SMYD3 similarly to CSDE1.
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Here | observed a similar pattern of HMGAZ2 expression in the OAC cell lines compared to
CSDE1 with the greatest expression being in OACM5-1 cells and the lowest expression in

OE19 and ESO26 cells.

OAC cell line MHC classl/regulator gene expression profile
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Figure 60 Heatmap of TMM normalised expression of CSDE1, MHC class | gene
expression regulators, MHC class | genes and HMGA2 for available OAC cell
lines. Z-scored, Minkowski distance, ward.D2 linkage.

244



6.3.2 Validation of CSDE1 knockdown in OAC cell model

After knocking down CSDE1 expression in FLO-1 cells, | decided to validate the success of
the knockdown at the protein level using a western blot (3 repeats). Using this approach,
| observed a reduction of CSDE1 protein expression in CSDE1 knockdown cells.
Specifically, a 55% reduction in CSDE1 protein was noted between knockdown and non-
targeting control (NC), a 55% reduction between knockdown and wildtype (WT) and a
61% reduction between knockdown and lipofectamine treated FLO-1 cells (See Figure 61
& 62). This result determines that CSDE1 was successfully knocked down in FLO-1 cells
using 60 pmol of CSDE1 siRNA, allowing for further investigation of the impact of CSDE1
knockdown on MHC class | HLA expression and STAT1 signalling in this OAC cell line.
Observing the lipofectamine and non-targeting siRNA control (NC) at the mRNA
expression level found no significant increase in CSDE1, HLA-B and HLA-C expression,
however, NC treatment did exhibit an increase in HLA-A mRNA expression in FLO-1 cells

compared to WT (See Figure 63).
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Figure 61 Western blot of CSDE1 and GAPDH expression following CSDE1 knockdown in
FLO-1 cells. NC: Non-targeting control, KD: Knockdown CSDE1 60 pmol siRNA.
Full images available in appendix 2A and E.
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CSDE1 knockdown
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Figure 62 Protein quantification of CSDE1 normalised to GAPDH following siRNA
knockdown in FLO-1 cells. NC: Non-targeting control. Error bar: Standard
deviation. Statistical test: one-sample T-test comparing knockdown to NC, p
values*<0.05, **<0.01, ***<0.001, ****<0.0001.

6.3.3 APM gene expression in OAC cancer cells is downregulated by the expression of
CSDE1.

Following successful knockdown of CSDE1 expression in FLO-1 OAC cells measured at the
protein level, | aimed to confirm CSDE1 knockdown at the mRNA level and identify an
association between lower CSDE1 expression and greater MHC class | HLA (HLA-A/B/C)
expression in FLO-1 OAC cells. Here | observed a significant reduction in CSDE1 mRNA in
FLO-1 cells with a 94% reduction in CSDE1 mRNA in knockdown conditions (both 60 and
25 pmol of CSDE1 siRNA) compared to NC, a 94% reduction compared to WT and lastly, a
93% reduction compared to lipofectamine treated FLO-1 cells (p<0.0001, See Figure 63);
no significant difference was observed between CSDE1 mRNA expression between 60 and
25 pmol siRNA treatment.

Following confirmation of CSDE1 knockdown at the mRNA level, | moved to investigate
the impact of the knockdown on MHC class | HLA gene expression, here | present CSDE1
knockdown (60pmol siRNA) resulted in a significant increase of in HLA-A and HLA-B

compared to WT, 34% and 68% respectively (p<0.05, See Figure 63).
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However, no significant increase in was noted between CSDE1 knockdown and NC for

HLA-A/B, however, this may be potentially due to the NC siRNA control possessing

significant increase of 18% in HLA-A and 62% increase HLA-B mRNA expression compared

to the WT suggesting the NC may result in increased HLA expression. Lastly, although
HLA-C mRNA expression was not significantly higher in knockdown CSDE1 FLO-1 cells
there is depicted an increase of 12% in quantity of HLA-C mRNA in 60pmol CSDE1 siRNA

condition over NC and an increase of 14% over WT (See Figure 63).
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Figure 63 mRNA quantification of CSDE1, HLA-A, HLA-B and HLA-C expression following
CSDE1 knockdown in FLO-1 cells. A: CSDE1 gene expression following CSDE1
knockdown. B: HLA-A gene expression following CSDE1 knockdown. C: HLA-B

gene expression following CSDE1 knockdown. D: HLA-C gene expression

following CSDE1 knockdown. NC: Non-targeting control. Error bar: Standard

deviation. Statistical test: Mann-Whitney U test, p values*<0.05, **<0.01,
***<0.001, ****<0.0001. Percentage differences compared to wildtype
available in appendix 3A-D.
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6.3.4 APM protein expression in OAC cancer cells may be downregulated by the
expression of CSDE1 as a modulator of the STAT1/JAK pathway.

After qualifying a successful knockdown of CSDE1 in FLO-1 cells and observing increased
HLA-A/B expression in these knockdown cells | decided to explore if these results are
reflected at the protein level using 60pmol CSDE1 siRNA. Unfortunately, | did not observe
a significant increase in HLA-ABC level in CSDE1 knockdown though a minor increase of
17% was noted in HLA-ABC compared to NC, the lack of significance here may be due to
the small number of repeats (See Figure 64 & 65). However, CSDE1 knockdown did
demonstrate significant increase in pSTAT1/STAT1 ratio of 46%, suggesting STAT1

signalling is greater with reduced CSDE1 (p<0.05, See Figure 64 & 65).
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Figure 64 Western blot of CSDE1, HLA-ABC, pSTAT1, STAT1 and GAPDH expression
following CSDE1 knockdown in FLO-1 cells. NC: Non-targeting control, KD:
Knockdown CSDE1 60 pmol siRNA. Full images for each stain available in
appendix 2A-E.
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Figure 65 Protein quantification of CSDE1, HLA-ABC, pSTAT1, STAT1 and GAPDH
expression following CSDE1 knockdown in FLO-1 cells. NC: Non-targeting control. Error
bar: Standard deviation. Statistical test: one-sample T-test comparing knockdown to NC,
p values*<0.05, **<0.01, ***<0.001, ****<0.0001, NS = non-significant.

Lastly, | moved to explore the correlation of CSDE1, pSTAT1/STAT1 ratio and HLA-ABC at
the protein level in all cell conditions. Here | observed a trend between STAT1 signalling
and HLA-ABC protein expression (R? = 0.07, p = 0.61, See Figure 66); and the negative
correlation between CSDE1 protein expression and STAT1 signalling trended towards
significance (R2=0.59, p = 0.076, See Figure 66). Additionally, CSDE1 protein expression
demonstrated a trend towards a negatively correlation to HLA-ABC protein expression (R?

= 0.66, p = 0.096, See Figure 66).
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Figure 66 Correlation analysis of protein expression (CSDE1, HLA-ABC and
pSTAT1/STAT1) in FLO-1 OAC cells. A: pSTAT1/STAT1 signalling and CSDE1
protein expression. B: CSDEland HLA-ABC protein expression. C:
pSTAT1/STAT1 signalling and HLA-ABC protein expression. Dotted line: 95%
confidence interval. Statistical test: Pearson’s.
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6.3.5 Attempted CSDE1 overexpression in OE33 cells.

After performing the CSDE1 knockdown experimental work above, | attempted to
overexpress CSDE1 using plasmid nucleofection in OE33 cells. Unfortunately, after
imaging the optimisation stage using GFP as a marker of successful nucleofection, the cell
morphology indicated excessive amounts of cell death, shortly after the nucleofection it
was determined the cell culture were infected and dying and subsequently disposed of

(See Figure 67).

Figure 67 fluorescence microscopy of GFP nucleofected cells. Green fluorescence
identifying successfully transfected cells. Large cells with poor morphology
demonstrating cell stress/death. x40 magnification (Nikon Diaphot).
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6.3.6 The expression of CSDEL1 is high in single cancer cells from human OAC tumours.

From my prior analysis presented in chapter 5, results suggested CSDE1 expression in
OAC may be localised to cancer cells as a potential mechanism of tumour immune
evasion by downregulating MHC class | expression. However, to qualify this finding |
sought to interrogate single-cell RNA sequencing data to assess the expression of CSDE1
in OAC cancer cells within the tumour microenvironment, identified by canonical markers
used in a prior study of OAC, compared to comparative normal healthy cells (615). To first
validate this, | visualised the expression pattern of CSDE1 expression finding a subset of
cancer cells and T cells (Tregs) from both gastric cancer and OAC appeared to express

CSDE1 in higher quantity as compared to normal gastric cardia cells (See Figure 68).
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Figure 68 UMAP of single cell CSDE1 gene expression in OAC and gastric tumours. Left: Cell type labelled UMAP. Right: CSDE1 gene
expression at the single cell level. Single-cell gene expression level indicated by the colour bar. Red circle: Cancer cells.
Green Circle: Normal healthy cells. Blue circle: T cells.
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After identifying CSDE1 expression in gastric and OAC cancer cells appear greater than
normal gastric cardia cells, | sought to assess the HLA-A and CSDE1 mRNA co-expression
among gastric and OAC tumours. Here | identified co-expression of HLA-A and CSDE1 in
OAC and gastric cancer cells, though a small proportion of these cells possessed high
CSDE1 with low HLA-A mRNA expression or low CSDE1 with high HLA-A mRNA (See Figure
69). Interestingly, T cells appeared to co-express CSDE1 and HLA-A highly, while
differentiating to differentiated squamous cells mostly possess a high CSDE1

accompanied with low HLA-A mRNA expression (See Figure 69).
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Figure 69 UMAP of single cell CSDE1 and HLA-A gene co-expression in OAC and gastric cancer tumours. Green: CSDE1 high
and HLA-A low expression. Yellow: CSDE1 HLA-A co-expression. Red: HLA-A high and CSDE1 low expression. Red
circle: Cancer cells. Green Circle: Normal healthy cells. Blue circle: T cells.
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Additional analysis observing the co-expression of CSDE1 and HLA-A in only OAC cancer
cells revealed a high proportion of OAC cancer cells possessed high HLA-A and low CSDE1
mMRNA expression which cluster together, with the remaining cells mostly exhibiting co-
expression both genes excluding a small number of cells with high CSDE1 and low HLA-A

MRNA expression (See Figure 70).

256



UMAP_2

101

HLA-A CSDE1 HLA-A_CSDE1
i 101 10 .
& ¥ 3
0. Q | 1
1 T . by
: %
0 . 0
. ' : s
. ? o : o .1
1 : :
.20 -20
-10 0 10 20 -10 0 10 20 -10 0 10
UMAP_1 UMAP_1 UMAP_1

CSDE1

Color threshold: 0.5

Figure 70 UMAP of single cell CSDE1 and HLA-A gene co-expression in OAC cells. Green: CSDE1 high and HLA-A low expression.
Yellow: CSDE1 HLA-A co-expression. Red: HLA-A high CSDE1 low and expression.



Chapter 6

Following the analysis demonstrating OAC cancer cells possess a high ratio of CSDE1: HLA-
A mRNA ratio | decided to compare the cells with comparative normal healthy cells and
the distribution of ratio across cells within tumour samples. Here | observed a distinct
shift towards high CSDE1: HLA-A mRNA ratio, furthermore, the HLA-A:CSDE1 ratio in OAC
cells was significantly greater than differentiated foveolar cells (See Figure 71).
Interestingly, OAC cells appear to possess a higher proportion of cells with extremely high
CSDE1: HLA-A mRNA ratio (>10) which are in greater abundance compared to

comparative normal healthy cells and gastric cancer cells (See Figure 71).
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Figure 71 Violin plot of CSDE1:HLA-A mRNA ratio in OAC cancer cells with
comparitive normal healthy gastric cardia cells. Red line
represents median ratio. Statistics: Wilcoxon signed-rank test,
Kruskal-Wallis test. CSDE1 expression in OAC cancer cells
compared to comparative healthy cells available in appendix D.
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Lastly, | explored the expression of CSDE1, MHC class | HLAs, interferon response gene
sets (Alpha and Gamma) and regulators of the interferon signalling pathway among the
low HLA-A: CSDE1 mRNA ratio group (High HLA-A, Low CSDE1 mRNA expression) and the
high HLA-A:CSDE1 mRNA ratio group (Low HLA-A, High CSDE1 mRNA expression). Here |
observed under low HLA-A:CSDE1 mRNA ratio CSDE1 expression was highly expressed in
average expression and the percentage of cells (~75% of cells). This was paired with low
expression of MHC class | HLAs (HLA-A/B/C), positive regulators of interferon signalling
(IRF1/9), negative regulators of interferon signalling (PTPN2) and low expression of
interferon response gene sets (Alpha and Gamma) (See Figure 72). The exact opposite
expression profiles were observed in the high HLA-A:CSDE1 mRNA ratio group with low
CSDE1 average expression with CSDE1 being expressed by a smaller percentage of cells
(<25% of cells) coupled with high expression of MHC class | HLAs (HLA-A/B/C), positive
regulators of interferon signalling (IRF1/9), negative regulators of interferon signalling

(PTPN2) and interferon response gene sets (Alpha and Gamma) (See Figure 72).
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Figure 72 Dot plot of CSDE1, MHC class I, PTPN2 and interferon signalling response
genes for high/low CSDE1: HLA-A mRNA ratio. Circle size represents the
precentage of cells expressing the gene and the blue colour scale indicates the
level of scaled expression in each population of cells.
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Following my analysis of CSDE1: HLA-A ratio among cancer cells, | sought to elucidate the
heterogeneity of CSDE1 and interferon signalling downstream gene expression with OAC
cancer cells using clustering of single cell RNA-seq data; this approach would also allow

me to further assess the relationship between CSDE1 gene expression level and relevant

interferon signalling downstream gene expression.

Here | observed 4 distinct clusters of OAC cells regarding the expression of these markers.
The first observed cluster (1061/4304 cells) is driven by the high CSDE1 expression,
notably this cluster lack /IRF9 and IFN-a/y response gene expression but retains the
expression of HLA-A/B/C (See Figure 73). The second cluster (1459/4304 cells) possesses
a lack of CSDE1 and IRF1 expression with a notable reduction in the expression of MHC
class | HLAs and IFN-a/y response gene expression (See Figure 73). The third observed
cluster (650/4304 cells) is driven by high IRF1 expression; interestingly, the expression of
CSDE1 is lower in the third cluster compared to the first cluster, yet no observable
increase in the proportion of cells expressing MHC class | HLAs and IFN-a/y response
genes was identified (See Figure 73). The final cluster (1134/4304 cells) have two distinct
subclusters; firstly, a high IFN-a/y response gene expression subcluster of which some
cases possess high IRF1 expression with lower CSDE1 expression compared to cluster 1.
The second subcluster contains lower IFN-a/y response gene expression, lacks IRF1
expression, but retains HLA-A/B/C expression (See Figure 73). Interestingly, the heatmap
clustering analysis found cancer cells from the same patient of origin did not predict
cluster assignment, suggesting shared transcriptional states in OAC cancer cells (See

Figure 74).
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CSDE1 and IFN downstream gene expression in cancer cells (scRNA-seq)
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Figure 73 Heatmap of single cell RNA-seq TPM normalised expression of CSDE1, MHC
class | genes and interferon response genes. Z-scored, maximum distance, Ward.D2

linkage with top annotation of patient of origin and cluster.

Observing expression of CSDE1 and APM at the patient level using scRNA-seq analysis of
OAC cancer cells revealed 4 distinct clusters among patients. The first cluster (6/24
patients) demonstrated low HLA-C expression, yet two subclusters (3 per subcluster)
arose characterised by either high CSDE1 and low IFN-Gamma/Alpha response gene or
low CSDE1 and high IFN-Gamma/Alpha response gene expression (See Figure 74). Cluster
2 (6/24 patients) was driven by low CSDE1 and high expression of IFN-Gamma/Alpha
response and MHC class | HLA gene expression; the third cluster (5/24 patients)
represented high HLA-B/C gene expression and retained moderate expression of CSDE1,
but with a notable lower HLA-A gene expression (See Figure 74). The final cluster (7/24
patients) represented the potential of CSDE1 to inhibit the promotion of gene
downstream of interferon signalling, characteristically expression high amounts of HLA-A
and CSDE1 mRNA yet possessed little expression of IFN-Gamma/Alpha response genes
and HLA-B (See Figure 74).
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CSDE1 and IFN downstream gene expression in OAC patients (scRNA-seq; n = 24)
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Figure 74 Heatmap of single cell RNA-seq (patient level) TPM normalised expression of
CSDE1, MHC class | genes and interferon response genes. Z-scored,
correlation distance, Ward.D2 linkage with top annotation of patient of origin
and cluster.

Moving forward, | assessed the expression of CSDE1 in precancerous lesions from gastric
and oesophageal adenocarcinoma (Barrett’s oesophagus) over intestinal metaplasia and
dysplasia. Using a single cell RNA-seq approach | observed the proportion of cells
expression higher levels of CSDE1 mRNA increased with the extensity of intestinal
metaplasia and dysplasia (See Figure 75). Interestingly, the expression of CSDE1 was
significantly greater in cases with higher grade dysplasia and intestinal metaplasia

compared to cases with lower grade dysplasia and intestinal metaplasia (See Figure 75).
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Figure 75 Violin plot of CSDE1 mRNA expression in precancerous lesions (Barrett’s
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metaplasia with high grade dysplasia (HGD). C: Pairwise statistical comparison
of intestinal metaplasia.



6.4 Discussion

6.4.1 CSDE1 expression is a key regulator of MHC class | expression by modulating STAT1
signalling in FLO-1 OAC cells.

The premise of this investigation was to explore the impact of CSDE1 on MHC class |
expression via modulation of the JAK/STAT1 signalling pathway. The rationale of this
experiment arises from prior publication demonstrating CSDE1 was capable of stabilising
TCPTP which acts to dephosphorylate STAT1 preventing MHC class | promotion in
melanoma cells. This study moved forward to suggest CSDE1 and its respective effect on
MHC class | expression could be present in other cancers including gastric cancer, thereby

| explored this mechanism in the context of OAC.

Firstly, | hypothesised the expression of CSDE1 would perturb STAT1 signalling in OAC,
finding CSDE1 expression in OAC, negatively correlated with STAT1 signalling
(pSTAT1/STAT1 ratio) and CSDE1 knockdown increased STAT1 signalling in FLO-1 cells.
This finding reflects the research which inspired this investigation, which reported CSDE1
expression was a key negative regulator of STAT1 signalling via the stabilisation of TCPTP,
suggesting this mechanism is active in OAC cells (145).

Interestingly, a significant increase in HLA-A/B and an observed non-significant increase in
HLA-C mRNA expression was observed in CSDE1 knockdown OAC cells, further supporting
the mechanism of CSDE1 acting to hinder the expression of MHC class | HLAs by

modulating the JAK/STAT signalling pathway as prior observed in melanoma (145).

Unfortunately, the pSTAT1/STAT ratio did not correlate to MHC class | HLA protein
expression, nor did any significant increase in MHC class | HLA protein level occur in
CSDE1 knockdown OAC cells, however, this may relate to the low number of repeats, as
well as, the long half-life and endosomal recycling of MHC class | HLAs (622, 623).
Conversely, the level of CSDE1 protein did negatively correlate to HLA-ABC protein
expression, which could suggest an alternative mechanism by which CSDE1 may hinder
MHC class | HLA protein expression. Unfortunately, at this stage it is unknown whether
CSDE1 impact MHC class | HLA mRNA stability, though CSDE1 has prior demonstrated
association to protein homeostasis and is capable of post-transcriptional repression

through translational inhibition by binding to Pumilio homolog 1 (PUM1) (624).
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To eliminate this possibility, future investigation should explore the role of CSDE1 in post-

transcriptional/translational repression of MHC class | HLAs.

| did not have time to explore the impact of TCPTP expression on STAT1 signalling, with
the original study suggesting CSDE1 is capable of binding PTPN2 mRNA for stability, this
leaves future work to explore directly TCPTP expression on STAT1 signalling. Also not
explored in this investigation is the prior published role of the histone lysine
methyltransferase, SMYD3, which is responsible for the upregulation of CSDE1 expression
which has also been published to be linked to the expression of High Mobility Group AT-
Hook 2 (HMGA2). This is involved in the maintenance of cancer stem cell properties and
regulates oral squamous cell carcinoma development and progression (625, 626). This
further complicates the potential of CSDE1 to impact survival outcomes, with further
testing to determine if the survival differences prior observed are due to perturbed STAT1
signalling resulting in lower MHC class | expression or by H3K4me3-mediated HMGA2

transcription (627).

6.4.2 Localisation of CSDE1 mRNA expression in patient tumour samples

From my prior analysis presented in chapter 5, CSDE1 protein expression appeared to be
localised to cancer cells and T cells according to an expert histologists assessment and
Superpixel classification of tumour histology (Figure 44). To confirm the localisation of
CSDE1 expression to OAC cancer cells and T cells an analysis of single cell OAC tumours
was performed and found CSDE1 expression is greater among OAC cancer cells compared
to comparative normal healthy cells. Additionally, CSDE1 expression was greater among
Tregs within tumour microenvironments, providing further useful information on top of
my previous work. Furthermore, the mRNA expression ratio of CSDE1: HLA-A in cancer
cells appeared to be shifted towards a higher ratio compared to normal comparative
healthy cells. These findings suggest CSDE1 expression may be somatically overexpressed
in OAC cancer cells, potentially by epigenetic modification of the CSDE1 locus mediated
by SMYD3 as prior published, yet this mechanism remains unproven in OAC at this stage
(321). Interestingly, CSDE1 and HLA-A appeared to be co-expressed in a large proportion
of OAC and gastric cancer cells, but a distinct proportion of cancer cells did possess
exclusive expression of HLA-A or CSDE1 suggesting the CSDE1-mediated mechanism to

downregulate the expression of MHC class | may be overcome by interferon signalling as
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demonstrated in melanoma cell lines which overexpress CSDE1 (321). This suggestion is
supported by evidence in the high HLA-A: CSDE1 mRNA expression group possessing
greater expression of interferon response gene sets whilst possessing similar expression
of positive regulators of interferon signalling (IRF1/9). However, it is important to note
the significant limitation in using single-cell datasets, as they do not always sample all

transcripts in a cell and may produce false negatives in read counts.

Intratumoural heterogeneity was well represented using heatmap clustering, where |
uncovered 4 distinct clusters of cells expressing CSDE1, IRF1, MHC class | HLAs and
interferon response genes. Interestingly, these clusters represented a high marker gene
expression heterogeneity. The first cluster was driven by high CSDE1 expression, which
also possessed a lack of IRF1 expression suggesting the high CSDE1 expression could
result in reduced promotion of /IRF1 expression in these cells as suggested in the
melanoma study of CSDE1. Yet, the expression of MHC class | HLAs was retained in these
cells. However, as noted in the prior study the mechanism of CSDE1 negative regulation
of interferon downstream promotion of gene expression may be overcome with high
interferon microenvironments which are present in OAC (321). The second cluster lacked
CSDE1, IRF1 and interferon response gene expression with a observable lower proportion
of cells highly expressing MHC class | HLAs; this cluster does not support the proposed
mechanism discussed in the literature of CSDE1 as a master regulator of MHC class |
expression, however, an alternative explanation could be made these cells are not under
extensive interferon signalling producing this cellular phenotype (321). A third cluster
further supports the suggestion the lack of CSDE1 expression in OAC tumour cells may
result in greater JAK/STAT1 signalling to allow for increased IRF1 promotion by possessing
high IRF1 expression, MHC class | HLA and interferon response gene expression and lower
CSDE1 gene expression compared to the first cluster forming the opposite effect observed
in the first cluster (321, 628). The final cluster presented with two interesting subclusters,
the first small subcluster had a notable increase in interferon response gene expression
with a number of cells possessing high IRF1 expression, these cells could be undergoing
high interferon signalling to result in a promotion of this gene expression profile (628,
629). The second subcluster was observed to possess lower interferon response gene set
expression compared to the first subcluster and lacked /RF1 expression yet retained MHC
class | HLA expression excepting several cells lacking HLA-A expression. Cells belonging to

this subcluster would require further investigation to determine the factors such as the
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level of interferons in the tumour microenvironment which may influence their
expression profile of genes downstream of interferon signalling (628).

Additional analysis was conducted to explore the expression of CSDE1 in premalignancy
i.e., Barrett’s oesophagus; here | observed an increased proportion of cells expressing
higher levels of CSDE1 with increasing intestinal metaplasia and dysplasia. This result
suggests that CSDE1 overexpression could be somatically acquired over dysplasia in
premalignant conditions as an immune evasion mechanism. However, this suggestion
would require further investigation to fully elucidate the stage of pathogenesis where
CSDE1 overexpression is acquired to produce inhibition of the JAK/STAT1 pathway
downstream of interferon signalling which is responsible for the promotion of the MHC
class | HLA locus. Furthermore, CSDE1 has demonstrated other roles in cancer such as the
induction of oncogene-induced senescence to produce senescence-associated secretory
phenotype cells which help form the tumour microenvironment niche, thereby this raises
a new question on the role of CSDE1 in tumorigenesis of OAC.

Overall, these findings support the hypothesis of CSDE1 overexpression may be
somatically acquired to evade anti-tumoral immunity during the pathogenesis of OAC
tumours. However, this leaves several new research questions including if the
mechanism OAC exploits to overexpress CSDE1 involves SMYD3-mediated epigenetic
modification of the CSDE1 locus or by an alternative mechanism, and the exact stage of

pathogenesis of OAC which exploits CSDE1 gene expression.

6.4.3 Limitations/future work

My initial plans in this investigation were to employ multiple OAC cell lines (OE33, FLO-1
and MFD-1) to overexpress and knockdown CSDE1 gene expression and monitor the
impact on the expression of MHC class | HLAs using multiple biological replicates, which
unfortunately was unachievable due to candidature time constraints. As alluded to in my
discussion, a significant limitation of this investigation is the sparse number of repeat
experiments, future investigations should aim to validate these results using a larger
number of repeats and using multiple OAC cell lines. Additionally, due to infection of cell
culture, the attempt to overexpress CSDE1 via nucleofection of OE33 cells failed, this
approach should be repeated to successfully over-express CSDE1 in OE33 cells to
demonstrate an opposing effect on STAT1 signalling and MHC class | HLA expression

compared to CSDE1 knockdown.
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A further limitation is presented in the long half-life of MHC class | HLA proteins which
may mask the potential of CSDE1 expression hindering the expression of MHC class | HLA
protein expression. To prevent this factor impacting results a knockout CSDE1 OAC cell
line should be explored which has shown success in pancreatic cancer cell lines (630).
Lastly, the role of CSDE1 in post-transcriptional/translational modification should be ruled
out for MHC class | expression using immunoprecipitation experiments.

This study also cannot confirm the mechanism exploited by OAC to overexpress CSDE1 to
achieve immune evasion, with future work this could be explored to investigate the role
of SMYD3 in epigenetic modification of the CSDE1 locus as prior published in melanoma
(321). Lastly, although CSDE1 overexpression in OAC appears somatic due to comparisons
with normal healthy cells of the tumour microenvironment further research should be
conducted to explore the stage of pathogenesis CSDE1 overexpression occurs at, this
could focus on comparing the level of CSDE1 expression between healthy tissue, Barrett’s

oesophagus and over OAC transformation and progression.

6.4.4 Conclusion

Overall, my results in combination with the known literature suggests the expression of
CSDE1 reduces the expression of MHC class | HLAs in OAC, mirroring prior publications in
melanoma. However, further investigation with a larger sample size and multiple cell
models with the addition of investigating the relationship between CSDE1 and TCPTP
must be conducted to fully support the mechanisms presence in OAC. Furthermore, the
role of CSDE1 in repressing MHC class | HLA expression by post-transcriptional and post-
translational modifications external to this mechanism must be ruled out. Lastly, recent
publication suggests the expression of HMGAZ2 resulting in poorer survival outcomes in
oral squamous cell carcinoma is partly mediated by SMYD3, akin to CSDE1 with brief
analysis of OAC cell lines suggested CSDE1 and HMGAZ2 are both regulated by SMYD3
warranting further investigation to deconvolute the impacts of SMYD3-mediated gene

expression.
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Chapter 7 General Discussion

Prior to my research, antigen presentation machinery (APM) had been published to
associate to survival outcomes and immune composition in multiple cancer types
including oesophageal squamous cell carcinoma, as well as, being noted as important for
high immunotherapy efficacy, yet the role of APM defects in OAC patient outcomes and
immunity was not well reported (631-635). Thereby, the ultimate focus of this research
was to elucidate the landscape of APM genomic defects in OAC and assess the
relationship between these defects on the immune cell populations of OAC and patient

outcomes.

The first aim was to characterise the genetic and transcriptomic landscape of antigen
processing machinery. Here | used a datamining approach in large publicly available OAC
datasets containing mutation, copy-number, epigenetic and RNA sequencing data to
assess the frequency of somatic aberration among an expertly curated candidate list of

APM genes to determine the value of APM genomic defects on patient outcomes.

A further research question aimed to investigate the association between genomic
defects in APM genes, APM gene expression regulators and immune compositions in OAC
to determine whether recurrent APM genomic defects may alter the tumour immune
microenvironment. This involved the employment of digital cytometry methods to
predict the immune composition of OAC patient samples, which in turn were
dichotomised by prevalent APM genomic defects to statistically identify significantly
altered tumoral immunity due to the respective defect in APM. Furthermore, using this
approach allowed for digital cytometric immunophenotyping of OAC RNA sequencing

data which had not been performed prior to my work.

A follow-up research question focused on investigating altered APM protein expression in
OAC tissue. To reach this goal, immunohistochemistry of a large TMA cohort sourced
from Southampton General Hospital was stained for prognostically significant APM
proteins, an APM regulator (CSDE1) and T cell markers followed by digital pathology
analysis. Combined this analysis allowed for validation of prior findings and spatial

assessment of candidate APM protein expression in OAC tissue.
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My final goal was to assess the role of RNA binding protein, CSDE1 in the regulation of
MHC class | expression in OAC. Achieving this goal, | employed cellular models and assays
to knockdown CSDE1 and measure MHC class | gene and protein expression in

comparison to isogenic control samples.

In my studies | identified several major headlining findings. While | demonstrated within
the landscape of APM genomic defects, mutation presented as infrequent and copy-
number differences on Chromosome 6 were incapable of being deconvoluted to a single
gene effect. | did identify patterns of APM gene expression that possessed an association
to altered survival outcomes using multivariate analysis. A highly unexpected result was
found with Tapasin components such as TAPBPL which in univariate analysis
demonstrates low expression associated to shorter CSS, yet high expression
corresponded to greater risk of recurrence. This presents an interesting contradiction in
the role of TAPBPL in survival outcomes to be discussed further here. Additionally, low
TAPBP expression in univariate and multivariate analysis associated to increased risk of
recurrence, further complicating the potential role of TAPASIN components in OAC

survival outcomes.

Follow-up analysis also demonstrated these prognostically significant APM gene
expression profiles possess associations with altered immune composition including HLA-
A/B/E and CSDE1, suggesting the differing survival outcomes may be mediated by APM
gene expression driven altered immunity. Interestingly, CD8+ T cells were observed in
higher abundance with greater HLA-E expression, yet increased CALR and CSDE1
corresponded lower CD8+ T cell abundance. These results could indicate HLA-E restricted
CD8+ T cells may be present in OAC and play a significant role in anti-tumoral immunity.
These results were confirmed by protein level analysis of my TMA cohort using IHC and
digital pathology methodology which provided validated insight into the specific roles of
each APM gene candidate in determining the potential function of the tumour immune
microenvironment of OAC. Additionally, IHC methodology allowed for observation of
APM protein staining across OAC tissue, finding HLA-ABC stained across the entire tissue,
HLA-E/Class Il stained either stained specifically to cancer cells or diffusely across the
tissue and TAP1 staining was diffuse across OAC tissue. Complete loss of APM staining

was not observed, yet only a small subset of OAC tumours possessed relatively high HLA-
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ABC/E/Class Il expression with most patients exhibiting relatively lower protein
expression of these markers. Additionally, approximately 20% of patients presented with
low TAP1 protein expression which corresponded to lower CD3+ T cell abundance, which
was not observed in mRNA analysis this could potentially relate to TAP1 protein being

representative of TAPAPSIN dimers (TAP1/2) rather than mRNA of TAP1 alone.

My in vitro investigations determined CSDE1 expression in OAC acts as a negative
regulator of MHC class | expression demonstrating knockdown of CSDE1 produced greater
HLA-A/B/C expression within an OAC cell line; furthermore, CSDE1 expression was found
to be highly localised to OAC cancer cell and Treg cell populations within the tumour
microenvironment, with cancer cells displaying greater CSDE1 gene expression compared
to comparative normal healthy cells. These results provide confirmatory evidence that
the mechanism by which CSDE1 downregulates MHC class | HLA molecules is conserved
between melanoma (ss previously published by others) and OAC (321). Yet my results
also provide greater granularity on the distribution of CSDE1 expression within the
individual cell types of OAC tumours and suggests CSDE1 overexpression may yield lower
tumour immunogenicity to produce effective immune evasion from CD8+ T cell

responses.

272



7.1 Genomic disruption of APM in OAC and its impact on immune
response and clinical prognosis.

In Chapter 3, | sought to elucidate the landscape of genomic defects within APM of OAC
and ascertain the clinical value of APM genomic defects frequently observed among a
large multi-omics OAC cohorts. Here | produced new findings which contributes to the
current understanding of antigen presentation in OAC. First of which | explored the
mutation incidence of APM genes and associated regulators, here | observed a low
frequency of mutation among my APM gene candidates with the highest incidence of
mutation occurring in CD1A/C/D (in only 2-3% of the cohort), this presents an interesting
argument that APM defects are not frequently targets for somatic mutation in OAC.
However, this finding may be in contradiction to other studies perspectives including a
study of 551 OAC tumours which revealed B2M as a recurrently mutated driver gene, this
could potentially relate to either the reduced sample size or potentially sampling bias
available for my study or the method employed to determine recurrent mutation in the
551 study, which values the frequency of multi-hit mutations (242).
Following this analysis, | explored the copy-number incidence among my APM gene
candidates, finding approximately 7.6% of OAC tumours possessed multiple
deleted/copied APM genes.
Exploring the copy-number segments found high genomic copy number segment
complexity over chromosome 6 proximal to the HLA locus. The complexity of the OAC
genome has prior been published and there are reports of VEGFA being frequently
amplified (636). Interestingly, VEGFA is proximal to the HLA locus on chromosome 6 with
copy number segments often overlapping VEGFA and APM genes of the HLA-locus
suggesting APM amplification may be driven by VEGFA amplification (637). Unfortunately,
the impact of copy-number status on individual APM genes on survival outcomes could

not be conducted due to difficulties deconvoluting the co-copied/deleted genes.

Within Chapter 3 and 4, | explored the association between APM gene expression and
altered survival outcomes and immune composition. Specifically, the expression of 12/18
MHC class | genes were associated to altered survival, for example, low expression of
HLA-A was associated to shorter OS, CSS, DFS in univariate survival analysis, but did not
withstand multivariate testing. Yet, the low expression of TAPBP resulted in shorter DFS
in both univariate and multivariate survival analysis; interestingly, low TAPBP has prior

been associated recurrence in triple-negative breast cancer and non-small cell lung cancer
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(147, 638). This association potentially relates to poor immune control of tumours,
evidenced by the downregulation of TAPBP being observed in multiple cancer cell lines
including small-cell lung carcinoma, pancreatic carcinoma, colon carcinoma, head and
neck squamous cell carcinoma, renal cell carcinoma cell lines and prostate cancer. This
associates to low MHC class | cell surface expression, suggesting low TAPBP expression
could result in poor immune recognition by CD8+ T cells (639). Additionally, restoring
TAPBP expression in a lung carcinoma model produced greater immune infiltrate (CD4+,
CD8+, CD11C+) and was associated to improved disease-free survival (640). These results
confirmed MHC class | expression in OAC may impact survival outcomes, but required
further analysis to determine whether these genes may elicit altered survival via
modulating the immune composition and respective immune response. To explore this
question, | used digital cytometry to deconvolute the immune signature of OAC and
dichotomised patients by prognostically significant MHC class | gene expression. Using
this approach, | observed the expression of 8/18 MHC class | genes associated with
altered immunity, for example, the upper quantile of HLA-E expression possessed greater
abundance of CD8+ T cell and monocytes compared to the lower quantile. These results
suggest that the landscape of MHC class | APM component expression may be a predictor
of survival outcomes in OAC via modulation of CD8+ T cell responses to presented tumour

associated antigens.

However, this poses further questions on the abundance of these presented antigens due
to the expression of MHC class | machinery in OAC which could be explored using
immunopeptidomics focused on prognostically significant MHC class | gene expression
presented in this study. This new knowledge also differentiates the impact of expression
of specific MHC class | genes between OAC and other cancers, such as CANX expression in
OAC was not prognostic, but it is prognostic in colorectal carcinomas; these findings may
potentially by harnessed in future efforts in OAC prognostication and may also be
explored to explain potential differences in response to immunotherapies between OAC
and closely related cancers (641). Specifically, a pan-cancer analysis exploring the
subtypes of cancer (i.e., adenocarcinomas and squamous cell carcinomas) to highlight
differences in survival and immune composition associations may potentially explore the

impact of APM genes in modulating the immune niches of cancer subtypes.
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| identified 12/20 MHC class Il candidate genes were also associated to altered survival
outcomes, this included HLA-DRA of which lower expression associated to shorter OS, CSS
and DFS in univariate analysis with shorter OS withstanding multivariate analysis. These
results suggest the expression of MHC class Il components within the OAC
microenvironment by professional APCs may alter the immune microenvironment
composition, by eliciting responses from CD4+ T cells for beneficial anti-tumoral
immunity. Additionally, MHC class Il expression represents a marker for increase
infiltration of professional APCs, which have prior been reported as a positive prognostic
indicator in OAC (642). Additionally, 9/20 MHC class Il candidate genes expression
associated to altered immunity, for instance, the upper quantile of HLA-DPA1 expression
contained greater abundance of Tregs, CD4+ T cells and macrophages compared to the

lower quantile.
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These results demonstrate MHC class |l gene expression in OAC is a key regulator of
immune composition, however, a complication forms with MHC class Il expression, as the
cell origin for expression cannot be determined using digital cytometry methods.
Specifically, MHC class Il expression can form a marker of professional APC such as
macrophages, which in turn may affect immune composition by secreting recruitment
factors or directly interacting with CD4+ T cells. Interestingly, the literature provides
evidence OAC cells within highly inflammatory microenvironments may induce MHC class
Il expression, yet the impact of induced MHC class Il expression on the surface OAC cells
induced by extreme interferon signalling on the tumour immune microenvironment as
not yet been elucidated (642). However, assessment of cancer cell specific MHC class Il
expression in lung adenocarcinoma correlated with response to anti-PD1 therapy and
increased CD4+ T cell infiltration, suggesting this could be an interesting avenue for future

research (251).

Lastly, | observed 4/5 APM gene expression regulators were associated to altered survival
outcomes, including CSDE1 of which high expression corresponded to shorter OS and
corresponded with a significant decrease in CD8+ T cell infiltration. Overall, these results
suggest APM gene expression regulators may impact APM expression in OAC cancer cells
and elicit altered survival by modulating the immune composition, yet currently the
relationship between APM gene candidate, immune composition and immune checkpoint

gene expression is unknown.

In Chapter 5, | validated my findings from Chapter 3 & 4 for HLA-ABC, HLA-E, HLA-Class ||
and TAP1 demonstrating low HLA-E, HLA-Class Il and high CSDE1 protein expression
associated to shorter OS in univariate analysis with low HLA-Class Il expression associating
to shorter OS in multivariate analysis. Furthermore, the protein expression of these APM
markers demonstrated altered immune composition, for example, low HLA-ABC protein
expression possessed significantly lower CD3/8+ T cell abundance. These results validate
my prior findings and suggests APM machinery expression is a key modulator of survival

and the tumour immune microenvironment.

These findings expand upon prior published work from others which did not explore as

large of a APM gene candidate list nor assessed these APM candidates for impact on
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tumour immune composition, highlighting the landscape of APM gene expression as a key
factor in survival outcomes potentially enacted by altering the cellular interactions of
immune recognition within the tumour immune microenvironment. There may be
translational value to the findings presented throughout this study, such as assaying APM
protein expression in OAC biopsies to predict efficacy to immunotherapy as suggested in
prior studies (643-646). This translational value for immunotherapy is evidence by
investigation of melanoma APM expression demonstrating greater MHC class | and I
expression corresponded to improved responses to checkpoint blockade therapies.
Unfortunately, the value of APM expression in immunotherapy responses other cancers
including OAC and gastric cancer have been elusive, yet more recent trials data may be

assessed in future to address this knowledge gap (647).

There were several limitations within my analyses. Firstly, in combining the available
clinical data | found significant lack of detail and missing clinical data leading to a
restriction in the clinical model used in multivariate survival analysis and the sample size
due to exclusion of samples lacking basic clinical data, a future prospective study may
allow for higher quality metadata to include a greater quantity of patients within the
models. Higher quality clinical data would be of great value as it would allow for the
addition of further clinically accepted co-variates for survival outcomes in multivariate
models such as tumour regression grading and histological tumour grading, which are
known factors in survival outcomes (648, 649). Additionally, assessing bulk-RNA seq data
did not allow for partitioning the expression into single cell populations, which could
mask the impact of APM cancer cell expression, therefore future analysis using single-cell
RNA-seq data could explore APM expression in OAC cancer cells compared to

comparative normal healthy cells as demonstrated in a recent study (428).

Whilst some single-cell RNA-seq data was available in my laboratory for this type of
investigation, due to a small sample size and lack of cases treated with immunotherapy
(n=1) this detailed analysis could not be conducted. Using a single-cell approach could
also explore the distribution of MHC class Il expression in OAC cancer cells and assess the
role of APM expression on other tumour cell populations such as cancer associated
fibroblasts and the sub-populations known as antigen-presenting fibroblasts could be of
particular interest (650). Furthermore, this study could not explore the influence of HLA-

allotypes in OAC to determine if patients expressing specific polymorphisms/ allotypes of
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HLA molecules can possess a significant survival advantage and/or altered immunity.
HLA-allotypes have been prior reported to affect the immunopeptidome, response to
immunotherapy and survival outcomes in cancers including OAC (546, 651, 652). Lastly,
by using IHC staining protocols, they produced restrictions in which markers which could
be stained, for example, HLA-ABC was staining using a single antibody, preventing
separation of impact of individual HLA-A/B/C proteins on survival and relationships with

immune composition in OAC tumour tissue.

Overall, in addressing the landscape of antigen presentation genomic defects in OAC and
association to survival outcomes and altered microenvironments, | have uncovered
evidence to support my initial hypothesis, with the expression of key APM components
corresponding to altered survival outcomes and immune composition, which in future

could provide great translational value in the field of cancer immunotherapy.
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7.2 Potential mechanism of dysregulated APM/ MHC in OAC -
therapeutic axis?
Recent work identified gene knockout of CSDE1 produced greater MHC class |
expression in a melanoma cell model. The research paper proposed CSDE1 enacts a
role of a negative regulator of MHC class | expression via stabilisation of TCPTP, which
functions as a tyrosine kinase able to dephosphorylate STAT1 (321). The importance
of phosphorylated STAT1 (pSTAT1), is found within the JAK/STAT signalling pathway
downstream of interferon receptors; CSDE1 stabilised TCPTP dephosphorylates
homodimers of pSTAT1 which prevents translocation into the nucleus (321). pSTAT1
homodimers are functionally important for the promotion of MHC class | HLA locus as
they bind to GAS which promotes the expression of IRF-1/9. IRF-1/9 binds the
interferon response element to promote the expression of MHC class | HLA locus

(653).

My initial bioinformatic analysis on CSDE1 observed greater expression of CSDE1
transcripts corresponded to shorter survival outcomes and altered immunity with
lower CD8+ T cell abundance. Further investigation confirmed this relationship at the
protein level in immunohistochemistry analysis of OAC tissue microarrays; strikingly,
CSDE1 protein expression correlated with the tumour cell abundance in OAC tissue
suggesting CSDE1 expression is localised to OAC cancer cells. To validate this finding
single cell RNA-seq analysis of OAC and gastric tumours was conducted, finding CSDE1
gene expression was notably greater in OAC and gastric cancer cells in comparison
comparative normal cells in the OAC microenvironment. Furthermore, CSDE1
expression was observed to be greater in Treg populations in comparison to effector T
cells (CD4+/CD8+) and other cells of the OAC microenvironment (Figure 68); the
reason this may occur in OAC is not currently clear. However, TCPTP plays significant
roles in inhibiting pathogenic loss of Foxp3 driven by IL-6, thereby the increased
expression of CSDE1 in Tregs may play a role in sustaining the immunosuppressive
function of Tregs in OAC, yet this hypothesis requires further investigation (654).
Exploring the current literature, to date no analysis have confirmed CSDE1 to be
upregulated in OAC, thus these findings provide potentially the first insight into the

expression of CSDE1 within the OAC microenvironment.
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After observing the localisation of CSDE1 to cancer cells in the OAC microenvironment
my later research efforts focused on measuring the impact of CSDE1 expression on
MHC class | HLA expression in a cell model and in human tumours profiled by single

cell RNA-seq.

Firstly, knocking down CSDE1 mRNA expression (siRNA) produced an increase in MHC
class | HLA expression in a OAC cell model (FLO-1) including HLA-A/B/C at the mRNA
and protein level with greater STAT1 signalling. This suggests CSDE1 enacts a negative
role in STAT1 signalling in OAC as prior identified in melanoma, involving CSDE1
stabilising TCPTP to elicit dephosphorylation producing downregulation of MHC class |
HLA expression (321).

Further evidence to support the prevalence of this mechanism was observed in single
cell RNA-seq analysis, which identified high CSDE1 and low HLA-A gene expression in
OAC cancer cells in comparison to normal healthy cells in the OAC microenvironment.
This indicates CSDE1 plays a negative regulatory role in MHC class | expression in OAC
cancer cells. Furthermore, CSDE1 upregulation was noted during dysplasia of
Barrett’s oesophagus. This analysis suggests CSDE1 somatic overexpression occurs
during the pathogenesis of Barrett’s oesophagus dysplasia towards OAC, however, the
mechanism driving the overexpression from early pre-cancerous lesions through to

OAC is unknown and requires further investigation.

Interestingly, mouse melanoma models suggest CSDE1 may provide a therapeutic axis
for the treatment of OAC with recent publications proposing a trap-ambush
therapeutic method (585). This details the use of rhinovirus based oncolytic virus
which produce a selective pressure towards CSDE1%T (Cytosine to Thymine) point
mutations forming a proline to serine amino acid change at aa5, as CSDE1 is required
for rhinovirus infection. The mutations produced from this selective pressure form
escape-associated tumour antigens which can be recognised by CD8+ T cells. By
providing vaccination specific to these escape-associated tumour antigens, cancer
cells which mutate CSDE1 to evade the oncolytic virus are thus targeted by primed T

cells forming a trap-ambush therapeutic method (585).



Further investigation within a mouse melanoma model also demonstrated using
immune checkpoint blockade with the CD200 activation receptor ligand (CD200AR-L)
peptide was capable of enhancing the response to cancer cells harbouring CSDE1
escape-associated tumour antigens (584). Subsequently, the analysis | present in my
investigation of the role of CSDE1 in OAC immunogenicity support this therapeutic
approach could be effective in the treatment of OAC, due to the specific
overexpression of CSDE1 in OAC cancer cells in comparison to normal healthy cells of
the OAC microenvironment. This would suggest selective pressure formed from an
engineered Rhinovirus or Rhabdovirus derived oncolytic virus target Type | IFN-
defective cells, such as CSDE1 overexpressing OAC cells, would actively select for
CSDE1“T mutation in OAC, which could further be treated by a vaccine specific for

CSDE1“T antigens.

Throughout my investigation of the role of CSDE1 in OAC immunogenicity several
limitations arose which future experimentation should strive to address. Namely, due
to time constraints and difficulty with OAC cell cultures | could not perform further
cell model experiments. Firstly, the experiment plans included a CSDE1
overexpression experiment, in which CSDE1 plasmids were to be used to over express
CSDE1 to demonstrated opposing effects to the knockdown experiment perform, i.e.,
MHC class | HLA expression to fall with increased CSDE1 expression level. This
approach is standard in functional genomics to provide an insight into the specific
function of a gene of interest; in this instance, demonstrating CSDE1 as a negative
regulator of MHC class | expression would be achieved by overexpressing CSDE1,
whereas knockdown could demonstrate targeting CSDE1 by a targeted therapy could
result in increased MHC class | expression.

Secondly, to provide further confidence in my results, | had planned to conduct a
series of CSDE1 knockdown/overexpression experiments on different cell backgrounds
providing further repeats to rule out results due to chance and the biological

heterogeneity association with this mechanism in OAC.
Additionally, throughout my experiments | did not measure the impact of CSDE1

expression on the level of TCPTP protein as conducted in prior publication in a

melanoma model; performing this analysis would provide further confidence in the
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proposed mechanism of action for CSDE1 driven downregulation of MHC class | HLA

expression via inhibition of JAK/STAT1 signalling.

Provided additional time, my investigations could have explored the impact of CSDE1
knockout (e.g., with CRISPR) which could provide further insight than the conducted
knockdown experiments conducted, due the limitations of siRNA knockdown methods
such as off-target effects, incomplete knockdowns, and the impact of protein half-life

(591).

A further limitation of the current analysis is its inability to measure immune
responses due the expression level of CSDE1 in OAC cancer cells, this potentially could
be achieved either by in-vitro immune cell — cancer co-culture experiments in which
CSDE1 knockdown, wildtype and overexpressing OAC cancer cells could be exhibited
to primed matching T cells; here immune activity could be assessed using flow
cytometry for T cell activation markers. An alternative approach could use humanised
mouse xenograft models to explore the impact of CSDE1 expression on immune
recognition of tumours measuring survival and T cell activation using either
immunohistochemistry or flow cytometry. Lastly, prior publication observed the
impact of CSDE1 overexpression on reduced JAK/STAT1 signalling could be
recapitulated under high IFN-y stimulation elevated in gastrointestinal cancers (321,
655). As the OAC microenvironment is thought to be highly inflammatory this analysis
should be conducted within OAC cell models, as these results could provide further
insight into the impact of CSDE1 expression in OAC tumours with highly inflammatory

microenvironments (656).



7.3 Conclusion

In conclusion, this study has employed a bioinformatic data mining approach to elucidate
the landscape of APM genomic defects, identifying the significance of APM gene/protein
expression in producing altered survival and shaping the immune composition of the OAC
tumour immune microenvironment. Furthermore, using a cell modelling and single cell
RNA-seq approach, this project has demonstrated CSDE1 may be a significantly
overexpressed gene in OAC and corresponds to reduced expression of MHC class | genes.
Thereby, these findings propose the immune composition of OAC is determined by APM
gene expression in OAC, CSDE1 is somatically overexpressed in OAC and may form an

actionable target for a trap-ambush therapeutic approach.

7.4 Future directions

The further experimental work required to address the findings from the current project
have been discussed at length in the individual chapter and general discussion sections.
However, in addition to these possibilities, the results presented in this thesis open many

avenues for further research in other areas including:

e Analysis of the effect of siRNA knockdown and overexpression of CSDE1 in
multiple OAC cell lines. Future analysis should repeat the experiment presented in
Chapter 6 and explore the impact of CSDE1 overexpression. In addition to this
investigation, providing insight into the role of CSDE1 expression on the function

of TCPTP to elicit perturbed MHC class | HLA expression should be conducted.

e Interestingly, evidence has arisen demonstrating OAC cells may express MHC class
Il molecules in the presence of high IFN-y stimulation with this phenomenon being
induced in the OE33 cell line (657). Yet no current analysis has attempted to
observe the distribution of MHC class Il expression in OAC cancer cells from
tumours. This could be achieved using scRNA-seq approaches to determine the
expression level of MHC class Il genes within OAC cancer cells in low
comparatively low inflammatory microenvironments compared to high

inflammatory microenvironments.
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Determining the impact of APM gene expression and APM gene expression
regulators in response to immunotherapy. A very recent publication employed
the use of scRNA-seq in the investigation of a trial exploring response to
immunotherapy in OAC (LUD2015-005; https://ega-
archive.org/datasets/EGAD00001009401), with ERAP2, HLA-DQA2, HLA-DOA, HLA-

DMB, HLA-DPB1 and HLA-DRA being overexpressed in patients receiving
checkpoint blockade therapy (658). Future investigation could access this data to
explore the potential of prognostically significant APM gene expression, APM gene
regulator expression and altered composition of the tumour immune

microenvironment in predicting immunotherapy response.

Determining the mechanism of CSDE1 upregulation in OAC cancer cells. From
prior publication, the upregulation of CSDE1 gene expression was tied to the role
of SMYD3 in mediating H3K4 trimethylation of CSDE1 locus, however, this
mechanism was only explored in melanoma (321). Therefore, replicating the
methods observed within the publication could help determine whether the same
mechanism to upregulate CSDE1 expression is present in OAC, or an alternative

mechanism may be implicated (321).

The effect of CSDE1 on the tumour immune microenvironment has yet to be fully
elucidated. Specifically, observed differences in immune composition due to
CSDE1 gene expression in bulk-RNA sequencing analysis was noted in my
investigation. Yet, the impact of high CSDE1 expression within OAC cancer cells on
immune composition has not been explored by the analysis presented here.
Therefore, further investigation focused on determining differences in immune
composition due to OAC cancer cell expression of CSDE1 using a combined scRNA-
seq approach and multiplex immunohistochemistry may provide further insight

into this associated impact.

Within Chapter 6, high CSDE1 expression was observed both OAC/Gastric cancer
cells and Tregs. Observation of the literature did not identify publications
elucidating the role of Treg specific expression CSDE1. Therefore, future analysis

could explore further data analysis to provide further insight into the distribution


https://ega-archive.org/datasets/EGAD00001009401
https://ega-archive.org/datasets/EGAD00001009401

of CSDE1 expression in T cell populations and may move forward to perform

functional genomic investigation of the role of CSDE1 in Treg populations.

Lastly, the role of RNA-binding proteins in immunogenicity of oesophageal
adenocarcinomas and precancerous conditions such as Barrett’s oesophagus is
currently unknown. Publications have demonstrated RNA-binding proteins such
as Insulin-like growth factor 2 mRNA-binding proteins can play a negative
regulation role in IFNB and IFNy-stimulated genes within mouse melanoma
models, while CSDE1 has demonstrated a crucial role in producing a senescence-
associated secretory cell phenotype which may alter immunosurveillance via
secreted chemo/cytokines in the melanoma tumour immune microenvironment
(659, 660). This propagates further research questions on the role of RNA-binding
proteins in the regulation of tumour cell immunogenicity and immunosurveillance
within the OAC microenvironment which could be explored using data mining

analysis and cell modelling.
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Appendix A APM H scores and Immune composition

heatmap

APM H scores and T cell composition (n=78)
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Supplementary Figure 1: Z-scored heatmap of APM H scores and immune cell density (n
= 78), clustered using Canberra distance with Ward.D2 linkage, four distinct
clusters of immune populations.
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0
Western blots of CSDE1 knockdown experiment

Supplementary Figure 2A: Full image of Western blot of CSDE1, expression following
CSDE1 knockdown in FLO-1 cells. Left to right - NC: Non-targeting control,
KD: Knockdown CSDE1 60 pmol siRNA.
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Supplementary Figure 2B: Full image of Western blot of HLA-ABC, expression following
CSDE1 knockdown in FLO-1 cells. Left to right - NC: Non-targeting control,
KD: Knockdown CSDE1 60 pmol siRNA.
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Supplementary Figure 2C: Full image of Western blot of pSTAT1, expression following
CSDE1 knockdown in FLO-1 cells. Left to right - NC: Non-targeting control,
KD: Knockdown CSDE1 60 pmol siRNA.

Supplementary Figure 2D: Full image of Western blot of STAT1, expression following
CSDE1 knockdown in FLO-1 cells. Left to right - NC: Non-targeting control,
KD: Knockdown CSDE1 60 pmol siRNA.
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Supplementary Figure 2E: Full image of Western blot of GAPDH, expression following
CSDE1 knockdown in FLO-1 cells. Left to right - NC: Non-targeting control,
KD: Knockdown CSDE1 60 pmol siRNA.
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Appendix B Percentage difference qPCR of CSDE1

knockdown experiment
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Supplementary Figure 3: Percentage difference of mRNA quantification of CSDE1, HLA-
A, HLA-B and HLA-C expression following CSDE1 knockdown in FLO-1 cells
comparing to wildtype. A: CSDE1 gene expression following CSDE1
knockdown. B: HLA-A gene expression following CSDE1 knockdown. C: HLA-B
gene expression following CSDE1 knockdown. D: HLA-C gene expression
following CSDE1 knockdown. NC: Non-targeting control. Error bar: Standard

deviation.
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Appendix C CSDEI1 expression in OAC cancer cells

compared to healthy comparative cells.

CSDE1

Expression Level

Identity

Supplementary Figure 4: Violin plot of CSDE1 mRNA expression in OAC cancer cells with
comparitive normal healthy gastric cardia cells. Red line represents median

ratio.
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Glossary of Terms

Term

Glossary of Terms

Definition

Adenocarcinoma

Antigen presentation machinery

Antigen presenting cells

Barrett’s Oesophagus

Complementary DNA (cDNA)

Cytotoxic T cells

Differential gene expression analysis

Gastro-oesophageal reflux disease (GORD)

Human Leukocyte Antigen (HLA)

Malignant tumour arising from glandular
epithelial structures.

Refers to a system of interacting proteins
which function to process, package, and
present peptide antigens on the cell surface
for immune recognition.

A group of immune cells that engulf, process
and present exogenous peptides on the cell
surface via the MHC class Il system to activate
immune responses towards non-self/healthy
antigens.

A premalignant condition arising from gastro-

oesophageal reflux disease which involves
metaplasia of the distal oesophagus resulting
in replacement of the squamous epithelium to
a columnar epithelium structure with goblet
cells.

DNA synthesised from single stranded RNA
template catalysed by the reverse
transcriptase enzyme.

A subset of thymic derived lymphocytes that
possess the CD8 T cell receptor and can
specifically target cells expressing non-
self/healthy antigens on the cell surface for
immune destruction.

Statistical analysis used to quantify
normalised gene expression fold-changes
between a control and experimental group.
A condition which involves the reflux of
stomach acid into the gastro-oesophageal
junction, causing irritation to the oesophagus
squamous cell lining.

A group of cell surface proteins involved in
presenting antigens to proximal T

lymphocytes for immune recognition.
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Immune checkpoint inhibitors

Major histocompatibility Complex class |

Major histocompatibility Complex class Il

Neoadjuvant therapy

Neoantigen

RNA-binding proteins

Tumour immune microenvironment

T regulatory cells (Tregs)

An immunotherapeutic agent which blocks
the action of immune inhibitory mechanisms
often upregulated to evade immune
destruction of cancer cells.

An endogenous system presents in almost all
cells presenting antigens derived from
cytosolic peptides to CD8+ T cells on cell
surface HLA molecules.

An exogenous system present professional
antigen presenting cells which presents
antigens engulfed by professional antigen
presenting cells to CD4+ T cells on cell surface
HLA molecules.

A treatment method involving the application
of chemo/chemoradiotherapy prior surgery.
A novel peptide produced in cancer cells due
to mutation of DNA which may be presented
on cell surface MHC HLA molecules.

A varied class of proteins that interact with
RNA to influence the regulation of gene
expression, RNA processing, RNA
transportation, localisation of RNA and RNA
stability.

Describes the complex dynamic interactions
of cellular and acellular factors which dictate
the immune response or suppression in
tumours.

A subpopulation of T helper cells expressing
CD4 and FOXP3 proteins that typically
function to suppress immune functions to

enforce self-tolerance.
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