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Abstract
SPARQL CONSTRUCT queries allow for the specification of data processing pipelines that transform

given input graphs into new output graphs. Input graphs are now commonly constrained through

SHACL shapes allowing for both their validation and aiding users (as well as tools) in understanding

their structure. However, it becomes challenging to understand what graph data can be expected at

the end of a data processing pipeline without knowing the particular input data: Shape constraints on

the input graph may affect the output graph, but may no longer apply literally, and new shapes may

be imposed by the query itself. In our recent work, From Shapes to Shapes: Inferring SHACL Shapes for
Results of SPARQL CONSTRUCT Queries, we studied the derivation of shape constraints that hold on all

possible output graphs of a given SPARQL CONSTRUCT query by axiomatizing the query and the shapes

with the 𝒜ℒ𝒞ℋ𝒪ℐ description logic. This extended abstract summarizes our previous work.
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1. Introduction

Some graph query languages are composable (i. e., they construct new graphs as results) and

thereby allow for the fruitful composition of queries into data processing pipelines. Examples

for such languages are SPARQL (in particular, its CONSTRUCT [1] queries) for RDF graphs and

more recently G-CORE [2] for property graphs. When graphs existing in the context of such

composable query languages are validated using constraints specified in a shape description

language such as SHACL [3] or ProGS [4], an interesting problem arises: Even though the

input to a query is well-defined with SHACL or ProGS shapes, it becomes unclear which shapes

apply after executing the query. Constraints that applied to the input graph may be invalidated

by the query, e. g., because some required edges were removed, and new shapes may arise

from the queries’ construction template as well. Indeed, both downstream applications (e. g.,

programming languages [5]) and software developers working with graph data must understand

what a query may output.
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Figure 1: (a,b) Input graphs for 𝑞1 valid with respect to 𝑆1. (c,d) Results of 𝑞1 on 𝐺1 and 𝐺2.

Problem Description In our recent paper [6], we define the problem of computing a set of

SHACL shapes that characterises the possible output graphs of a SPARQL CONSTRUCT query.

We represent queries as rules 𝐻 ← 𝑃 where the template 𝐻 and pattern 𝑃 are sets of assertions

with variables. Bindings for variables in 𝑃 are used to construct a new graph according to 𝐻 .

We express SHACL shapes as 𝒜ℒ𝒞ℋ𝒪ℐ axioms (cf. [7]).

Formally, we define the problem OutputShapes with signature (𝒮in, 𝑞) ↦→ 𝒮out-max, where

𝑞 is a query and 𝒮in and 𝒮out-max are two sets of shapes, called the input and output shapes.

The set 𝒮out-max is the maximum set of shapes such that for every graph 𝐺in that satisfies the

input shapes – we write valid(𝐺in,𝒮in) – the graph resulting from evaluating 𝑞 on 𝐺in, denoted

J𝑞K𝐺in , satisfies the output shapes, i. e., valid(J𝑞K𝐺in ,𝒮out-max).

Running Example Consider a problem OutputShapes with a query 𝑞1 and a set of shapes

𝑆1 as input. Let 𝑞1 = {y:𝐸, z:𝐵, (y, z):𝑝} ← {(w, y):𝑝, y:𝐵, (x, z):𝑝, z:𝐸}. Given a graph 𝐺in,

query 𝑞1 finds bindings for variable y that are 𝐵, and bindings for variable z that are 𝐸, both

with incoming edges with role name 𝑝 in 𝐺in. Then, the query constructs the output graph,

𝐺out = J𝑞1K𝐺in , consisting only of these bindings for z and y, with inverted concept annotations

and 𝑝-edges between them. Note, that we color-code the namespace of the input versus output

graphs, since the extensions of the involved concept and role names are not the same.

Let 𝑆1 = {𝑠1, 𝑠2, 𝑠3} where 𝑠1 = 𝐴 ⊑ ∃𝑝.𝐵, 𝑠2 = ∃𝑟.⊤ ⊑ 𝐵 and 𝑠3 = 𝐵 ⊑ 𝐸. The graphs

𝐺1 (a) and 𝐺2 (b) in Figure 1 are valid with respect to 𝑆1. Graphs J𝑞1K𝐺1 (c) and J𝑞1K𝐺2 (d) in

Figure 1 are the respective output graphs for 𝑞1 over 𝐺1 and 𝐺2, respectively.

Some expected output shapes are 𝐸 ⊑ ∃𝑝.𝐵 and 𝐸 ⊑ 𝐵. The first shape follows directly

from the query template. Each node labelled 𝐸 has an outgoing edge to a node labelled 𝐵. The

second shape 𝐸 ⊑ 𝐵 is valid because 𝐵 ⊑ 𝐸 holds on all input graphs: As a result, we can infer

that all bindings for y are also bindings for z, such that 𝐸 ⊑ 𝐵 follows from the query template.

Proposed Algorithm In this paper, we summarize the algorithm we presented in [6] (an

extended version with proofs is available in [8]), which constructs a sound (but not complete)

approximation 𝒮out ⊆ 𝒮out-max.

To this end, we split the problem into two subproblems: First, the problem of deciding whether

any given shape must be included in the output, and secondly the problem of generating a set

of candidate shapes. The second problem turns out to be rather trivial, as the set of candidates

is finite: We consider a subset of SHACL that is (syntactically) finite for a finite vocabulary, and

show that all relevant candidates are indeed from the finite vocabulary of the query. In our

extended version, we show that this also holds for a much larger subset of SHACL.

Thus, we focus on the first problem in Section 2 and Section 3.



𝑎𝐴, 𝑉𝑤, 𝑉𝑥 𝑏
𝐵, �̇�, �̈�, 𝑉𝑦,

𝐸, �̇�, �̈�, 𝑉𝑧

𝑝, �̇�

𝑝, 𝑟

�̈�
𝑎𝐴 𝑏 𝐵,𝐸

𝑝

𝑝, 𝑟

(a) 𝐺in

𝑎 𝑏 �̇�, �̇�

�̇�

𝑝, 𝑟

(b) �̇�med

𝑎 𝑉𝑤, 𝑉𝑥

𝑏 𝑉𝑦, 𝑉𝑧

(c) 𝐺V

𝑏 �̈�, �̈��̈�

(d) �̈�out

Figure 2: On the left the graph 𝐺ext as the union of 𝐺in (a), �̇�med (b), 𝐺V (c), and �̈�out (d).

2. Axiomatizations Over Query Executions

As hinted earlier, different occurrences of the same concept name do not have the same exten-

sions: A query matches on input graphs, determines valuations (as subsets of the input), and

constructs new graphs. We distinguish between the inputs, intermediate bindings, as well as

the constructed output by rewriting input symbols 𝐴, 𝑝 into fresh symbols �̇�, �̇� after the first

step, and into �̈�, �̈� after the second step. These rewritten symbols allow us to encode assertions

that are valid for only specific states of query execution. Variable bindings, on the other hand,

hold throughout: We codify a variable binding 𝜇(𝑥) = 𝑎 as a concept assertion 𝑎:𝑉𝑥, where 𝑉𝑥

is a fresh concept name.

In order to axiomatize how (all possible) input graphs are connected to (all possible) output

graphs, we define a (virtual) extended graph 𝐺ext, that unifies the different steps, and therefore

allows us to reason about them: 𝐺ext := 𝐺in∪�̇�med∪𝐺V∪�̈�out, where𝐺med is

⋃︀
𝜇(𝑃 )⊆𝐺in

𝜇(𝑃 )
(i.e., the union of all graphs 𝜇(𝑃 ) resulting from replacing every variable 𝑥 in 𝑃 with 𝜇(𝑥)),
𝐺out is J𝑞K𝐺in , and 𝐺V is the graph containing an assertion 𝑎:𝑉𝑥 if and only if there exists a

valuation 𝜇 such that 𝜇(𝑃 ) ⊆ 𝐺in and 𝜇(𝑥) = 𝑎. Figure 2 shows the extended graph and its

components for the running example query 𝑞1, and the graph 𝐺1 in Figure 1 .

Proposition 1. Given a graph 𝐺in and a query 𝑞, let the graphs 𝐺ext, 𝐺med, and 𝐺out be
the extended graph and its components. For every axiom 𝜙 that does not include names with
dots (e. g., names �̇�, �̈�, �̇�, or �̈�), the following equivalences hold: valid(𝐺in, {𝜙}) if and only if
valid(𝐺ext, {𝜙}), valid(𝐺med, {𝜙}) if and only if valid(𝐺ext, {�̇�}), and valid(𝐺out, {𝜙}) if and
only if valid(𝐺ext, {�̈�}).

Given the notion of extended graphs, we can prove Proposition 1 (see [8] for the proof),

which is essential to our method. Utilizing this proposition, we can show as a corollary that

given a set of axioms Σ such that valid(𝐺ext,Σ) for all extended graphs of a query 𝑞, if Σ |= �̈�
then valid(𝐺out, {𝑠}) for every output graph 𝐺out of q. Thus, what remains is to show how to

construct such a set of axioms Σ.

3. Axioms Valid on Extended Graphs

Let us now consider what axioms can be inferred, by inspecting the running example. First,

we can notice that the input shapes 𝒮in are valid on all input graphs, by definition. Thus, we

include them in our knowledge base Σ.

Some axioms of the validation knowledge base (unique name, closed world and domain

closure assumptions) can be approximated by investigating the query 𝑞. The unique name



assumption is limited to individual names that occur in the query; in the running example there

are none. Since a query does not determine the set of individual names, no axioms related to the

domain closure assumption can be inferred. On the other hand, a query does restrict concept

names that appear in the query with respect to the closed world assumption (CWA).

For the running example, we can thus infer {�̇� ≡ 𝐵⊓𝑉𝑦, �̇� ≡ 𝐸⊓𝑉𝑧}, because e. g., concept

�̇� in the extended graph is defined by filtering𝐵 with variable𝑉𝑦 , based on the query pattern y:𝐵
in 𝑞1. We can also infer axioms {𝑉𝑤 ≡ ∃𝑝.𝑉𝑦, 𝑉𝑥 ≡ ∃𝑝.𝑉𝑧, 𝑉𝑦 ≡ ∃𝑝.𝑉𝑤 ⊓𝐵, 𝑉𝑧 ≡ ∃𝑝.𝑉𝑥 ⊓𝐸}
since variable concepts are defined by constraints to the variable in the query pattern. For

example, 𝑉𝑦 is constrained by patterns (w, y):𝑝 and y:𝐵 in 𝑞1, and thus bound by ∃𝑝.𝑉𝑤 ⊓𝐵.

This is a crucial step, since concept and role names in the extended graph are defined in

terms of these variable concepts: {�̈� ≡ 𝑉𝑧, �̈� ≡ 𝑉𝑦} since e. g., concept �̈� in the extended

graph is defined by 𝑉𝑧 , as it only occurs in the single construct pattern z:𝐵. With similar

reasoning, {∃�̇�.𝑉𝑦 ≡ 𝑉𝑤,∃�̇�.𝑉𝑧 ≡ 𝑉𝑥,∃�̇�.⊤ ≡ (𝑉𝑤 ⊓ ∃�̇�.𝑉𝑦) ⊔ (𝑉𝑥 ⊓ ∃�̇�.𝑉𝑧)} as well as

{∃�̈�.𝑉𝑧 ≡ 𝑉𝑦,∃�̈�.⊤ ≡ 𝑉𝑦 ⊓ ∃�̈�.𝑉𝑧} (and their inverse counterparts) can be constructed with

respect to role names.

Query 𝑞1 has two components 𝑃1 = {(w, y):𝑝, y:𝐵} and 𝑃2 = {(x, z):𝑝, z:𝐸} not sharing

variables. The CWA encoding does not entail 𝑉𝑦 ⊑ 𝑉𝑧 , even though this axiom is both valid in

all extended graphs, and required for inferring, e. g., the result shape 𝐸 ⊑ 𝐵. In another step of

the algorithm, we infer these additional subsumptions by constructing variable mappings ℎ
between query components, that are potentially extended with input shapes. In this case, we

know based on input shape 𝑆1 that 𝐵 ⊑ 𝐸. We can utilize this knowledge to extend component

(w, y):𝑝, y:𝐵, adding the pattern y:𝐸 which does not alter the queries results. Then, we can find

the mapping ℎ(x) = w, ℎ(z) = y such that ℎ(𝑃2) ⊆ 𝑃1, which implies 𝑉𝑤 ⊑ 𝑉𝑥 and 𝑉𝑦 ⊑ 𝑉𝑧 .

4. Conclusion

We presented an algorithm for inferring a set of shapes that validate the possible output graphs

of a CONSTRUCT query, where input graphs of this query can be constrained by a set of shapes

as well. This enables the inference of shapes over result graphs of data processing pipelines (i. e.,

compositions of CONSTRUCT queries), which can be used both for validation purposes when

working with these result graphs, and informatively, aiding developers directly.

Our approach differs from related work (e.g., [9, 10, 11, 12, 13, 14]) in that we infer shapes from

statically known information (query and input shapes) and not from instance data. Thus, it is

similar to approaches for inferring constraints over views on relational databases (e.g., [15, 16, 17,

18]), but utilizing a modelling approach that is feasible and supports crucial constraints for typing

knowledge graphs. Some approaches construct SHACL from static information [19, 20, 21], such

as RML rules or direct mappings, though they are limited in either a less expressive mapping

language, or lack support for constraints on the input data. An implementation [22] for the

algorithms presented in our work is available on GitHub
1
.
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