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A B S T R A C T   

Mn-catalysed C–H activation has emerged as a useful sustainable methodology for the formation of new C–C 
bonds. To date most of the protocols are described in organic solvents. Water as solvent, on the other hand, 
would be highly advantageous, but is often incompatible with organometallic chemistry. Herein, we describe the 
C–H activation of indoles using an unmodified, commercially available manganese catalyst in water. Two types 
of valuable allyl groups can be added and a good substrate scope is described. Substitution at the C-3 group is 
tolerated, allowing access to medicinally important frameworks, and the reaction works on a gram scale. Finally, 
harnessing the tolerance of water as the reaction medium, D2O can be used as an inexpensive source of deuterium 
for the C-2 labelling of indoles.   

1. Introduction 

The formation of carbon-carbon (C–C) bonds is a fundamental 
transformation in organic chemistry. The approach often takes the form 
of reacting a carbon electrophile with a carbon nucleophile [1]. Since 
the discovery of alkylzinc compounds by Frankland [2], the use of 
organometallic nucleophiles has developed through significant contri
butions from Reformatsky [3], Barbier [4], Grignard [5] and Gilman [6]. 
In the last few decades, catalytic palladium (Pd) cross-coupling has 
emerged as a critical tool in the organic chemists’ toolbox [7–10] and 
has been widely applied in numerous industrial processes [11]. More 
recently, ‘Earth Abundant Metals’ (EAMs) have emerged as useful al
ternatives to precious metals. One particularly useful avenue to exploit 
is the EAM catalysed C–H functionalisation [12]. C–H Functionalisation 
involves the direct cleavage of an otherwise inert C–H bond. This 
approach avoids the installation of activating groups on both coupling 
partners, and the associated waste. 

Manganese catalysed C–H activation has several advantages 
compared to precious metal (palladium, platinum, rhodium, iridium, or 
ruthenium) mediated catalysis [12] and has been reviewed by Acker
mann [13] and McGlacken [14]. Manganese is the third most abundant 
transition metal, after iron and titanium, and the twelfth most abundant 
element in the Earth’s crust, making bulk manganese quite affordable. 
The low toxicity and low cost of manganese renders it a particularly 
attractive alternative to the typically used transition-metal catalysts 

[15]. Early work by Stone and Bruce in 1970 used Mn(Me)(CO)5 for 
stoichiometric C–H activation [16] while in 2007, Kuninobu and Takai 
[17] reported a catalytic manganese-directed C–H activation. Following 
these seminal reports, a wide variety of Mn catalysed C–H activation 
reactions have been developed [13,14]. Despite the flurry of activity in 
this space, there remains significant interest in the development of 
manganese-based systems as more sustainable alternatives to precious 
metal catalysis. 

Mn-catalysed C–H activation chemistry has, to date, been mainly 
conducted in organic solvents. This limitation will become more prob
lematic with the increasing general concern over the use of fossil- 
derived organic solvents [18–20]. Water represents the greenest and 
most ideal solvent and is thus considered the logical reaction medium 
for the future of sustainable organic synthesis [21–24]. However, the 
challenge of carrying out organometallic transformations in water is 
multifaceted [25–27]. The two main challenges are 1) insolubility of the 
substrates, reagents, and catalysts and 2) incompatibility of the organ
ometallic intermediates with water [28]. The former problem can be 
approached by structural modification to more water-soluble ligands, 
for example [29]. On occasion, the insolubility of substrates in water can 
actually improve reaction efficiency [25,30–33]. While recent efforts to 
undertake organometallic chemistry in aqueous medium have been 
impressive [34–39], these represent the exception rather than the rule. 
Most classical organometallic compounds, including manganese com
pounds, are strong bases and thus can potentially abstract a proton 
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easily from water. Even trace amounts of moisture can prove highly 
problematic, which has meant that much chemistry, underpinned by 
organometallic species, is carried out under Schlenk or glove-box con
ditions [40]. 

In this paper, we attempt to address this issue with the use of un
modified, phosphine free, manganese catalysts for C–H activation in 
aqueous media. To date, there is little literature precedent involving the 
use of MnBr(CO)5 in aqueous media for C–H functionalisation although 
alkenylation, decarbonylation and amidations have been reported 
[41–43]. Herein we describe a Mn-catalysed C–H allylation of indoles 
[44–50], in aqueous medium, providing access to a number of useful 
products. Finally, the compatibility of the methodology with water 
allowed the use of D2O as a deuterium source and installation of the 
label in excellent isotopic purity. This cheap source of deuterium for 
indole labelling is significant in the context of physical organic chem
istry measurements, biological labelling studies and recent progress in 
the approval of deuterated drugs [51–55]. 

2. Results and discussion 

Initial optimisation: The study initiated with the allylation of 1 
with ester 2 using MnBr(CO)5 (10 mol%) and NaOAc (30 mol%), in 
various solvents at 85 ◦C for 24 h under air (Table 1). Varying the ratios 
of 1 to 2 yielded different conversions to the allylated indole (3), with 
the highest observed at 96%, and an isolated yield of 85% (Entry 5). A 
test was carried out using a micellar solution of 5% TPGS-750 M (Entry 
6), however, a similar conversion was observed. We then reduced the 
catalytic loading to 7.5, 5, 2.5 mol% (Entry 7, 8, 9). While the reaction 
worked well at 2.5 mol% (70% conversion), we chose 5 mol% as our 
loading for further studies (98% conversion/81% isolated yield). Mi
crowave conditions (Entry 10) did not improve the reaction yield (86% 
conversion/68% isolated yield). Finally, the reaction did not progress 
without the catalyst (Entry 11) and performed poorly without base (58% 
conversion, Entry 12). In the absence of the pyridine directing group, no 
reaction was observed at C2 or C3 position of the indole. However, it is 
known that C3 functionalisation can occur with other methods in water 
[56–60]. A plausible mechanism for the C–H activation at the C2 posi
tion is published by Ackermann’s group [48]. 

We then sought to explore whether a less reactive allylation reagent 
could be used to generate a useful 3-carbon terminal alkene moiety. 
Initially, we used similar conditions to that uncovered in Table 1, with 
ester 2 being replaced by allyl acetate (Table 2). We were disappointed 
to see the dramatic drop off in conversion to 22% (Entry 1 and 2) for 
allylated product 4 when 5 mol% catalyst loading was used. However, 
when we increased the catalytic loading to 10 mol%, the conversion 
improved to 35% (Entry 3) and finally to 80% conversion (with 60 mol% 
base), with an isolated yield of 64% (Entry 4). Conditions from entry 4 
was used for the substrate scope reactions. 

Substrate scope: With the optimised conditions in hand for coupling 
partner 2, the scope of potential indole partners was explored using the 
optimised condition from Table 1, entry 8 (Scheme 1). Considering the 
potential congestion at C2–C3, substitution at C3 of the indole was very 
well-tolerated and gave isolated yields of 82, 93 and 47% for compounds 
5, 6 and 7. It is notable that the C3 aldehyde on compound 6 remains 
intact in this process. Substitution of the indole with electronically 
donating and withdrawing groups also gave the corresponding products 
(compounds 8–10) in mostly excellent yields (82 and 92% for 8 and 9), 
although the nitro derivative gave a poor yield (20% for compound 10). 
The medicinally relevant melatonin derivative was also allylated nicely 
in 51% isolated yield (to give compound 11). Importantly, we conducted 
a gram scale reaction and a 94% yield of product (9) was obtained. 

A similar scope was investigated using allyl acetate as the alkylating 
agent (Scheme 2) using the conditions from Table 2, entry 4. C3- 
Substituted indoles were allylated to give 4, 12, 13 and 14 in 64, 54, 
59 and 45% isolated yield respectively. Substitution of the indole (with 
an -OMe or -Br group) allowed access to the corresponding allylated 
products 15 and 16. Finally, melatonin derivative 17 could be formed in 
48% isolated yield. Use of the nitroindole analogue with allyl acetate 
represented the limiting point of this study and only a trace of product 
18 could be detected by 1H NMR spectroscopy. 

Table 1 
Optimisation of Mn-catalysed C–H allylation using MBH adduct 2. 

Entry Equiv. (2) [Mn] mol% Solvent (% Conversion)a 

% Isolated Yieldb 

1c 2 10 1,4-dioxane 79 
2 2 10 DCE (99) 
3 1 10 Water (70) 
4 1.2 10 Water (78) 
5 2 10 Water (96) 85 
6 2 10 TPGS-750 M (96) 80 
7 2 7.5 Water (100) 
8 2 5 Water (98) 81 
9 2 2 Water (70) 
10d 2 5 Water (86) 68 
11 2 0 Water (0) 
12e 2 5 Water (58) 
13f 2 5 Water (64) 
14g 2 5 Water (72) 
15h 2 5 Water (88) 
16i 2 5 Water (27)  

a Conversions indicated by parentheses. All conversions were determined by 
1H NMR by integration of the pyridin-indole peak at 8.57 ppm relative to the 
product peak at 8.63 ppm. 

b Isolated yield. 
c Solvent dried over 4 Å molecular sieves, reaction carried out at 80 ◦C for 16 

h. 
d Carried out under microwave conditions. 
e Carried out without NaOAc. 
f Reaction carried out for 8 h. 
g Reaction carried out for 16 h. 
h Reaction carried out at 70 ◦C. 
i Reaction carried out at 55 ◦C. 

Table 2 
Optimisation of C2 allylation using allyl acetate. 

Entry NaOAc (mol%) [Mn] mol% (Conversion)a 

Isolated Yieldb (%) 

1 30 5 (22) 
2 60 5 (22) 
3 30 10 (35) 
4 60 10 (80) 64  

a Conversions indicated by parentheses. All conversions were determined by 
1H NMR by integration of the pyridin-indole peak at 8.56 ppm relative to the 
product peak at 8.64 ppm. 
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3. Deuteration studies 

Deuterium (D/2H), with an increased mass relative to protium (1H), 
results in a lower vibrational frequency, and subsequently a higher C–H 
bond dissociation energy [61]. In the context of medicinal chemistry, 
deuterated molecules display superior metabolic stability, which, in 
practical terms, results in altered pharmacokinetics [62]. Direct 
hydrogen isotope exchange of aromatic C–H bonds using organometallic 
reagents is often challenging due to the instability of the active catalyst 
in D2O (or DCl for example) [63]. A significant advantage of the 
methodology described herein, is the presumed compatibility of D2O 
with the Mn catalytic cycle. Thus, we initiated a study using the previ
ously optimised conditions for the allylation of indole 1. Initially, we 
achieved full deuteration at the C2 position (and 10% deuteration at C3) 
after 24 h. When we reduced the reaction time to only 1 h, we still 
achieved 90% deuteration in C2, but with a slightly reduced deuteration 
at C3 (8%) (Scheme 3[a]). 

Using the same conditions, we then attempted to deuterate indole 
20. However, only 23% deuterium incorporation was observed at C2. 
When the temperature was elevated to 120 ◦C, we observed an increase 
in deuteration of up to 77%. When we carried out the deuteration re
action in the absence of base, full deuterium incorporation at C2 was 
observed (Scheme 3[b]). This result implies that base is not necessary for 
the deuteration at C2 position. Finally, we note that in the absence of the 

pyridine directing group [64], deuteration at the C2 position is not 
viable, and deuteration occurs exclusively at C3 (Scheme 3[c]). Finally, 
the removal of the pyridine directing group under mild conditions is 
well-established [65]. 

4. Conclusion 

The application of earth abundant metals in transformations previ
ously held within the domain of precious metals remains a priority in 
modern green chemistry research. The obligate use of organic solvents 
and high catalytic loadings in Mn(I) catalysis is a significant impediment 
in realising its significant potential in sustainable organic synthesis. In 
this report, we have developed an efficient methodology for the allyla
tion of various indole substrates in water with catalyst loadings of 5-10 
mol%. Various electron-withdrawing and electron-donating substituents 
are tolerated on the indole thus marking this as a potentially useful 
strategy in medicinal chemistry. The applicability of this approach in 
drug discovery is also demonstrated through the development of a gram 
scale variant and a base-free, C2 C–H deuteration reaction. 
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Scheme 1. – Scope of indole partners in the Mn-catalysed allylation with ester 2.  

S.L. Ko et al.                                                                                                                                                                                                                                     



Tetrahedron Green Chem 2 (2023) 100019

4

Scheme 2. – Scope of indole partners in the Mn-catalysed allylation with allyl acetate.  
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[27] J. García-Álvarez, E. Hevia, V. Capriati, Reactivity of polar organometallic 
compounds in unconventional reaction media: challenges and opportunities, Eur. 
J. Org. Chem. 2015 (2015) 6779–6799, https://doi.org/10.1002/ejoc.201500757. 

[28] H.W. Roesky, M.G. Walawalkar, R. Murugavel, Is water a friend or foe in 
organometallic chemistry? The case of group 13 organometallic compounds, Acc. 
Chem. Res. 34 (2001) 201–211, https://doi.org/10.1021/ar0001158. 

[29] W.L. Ounkham, B.J. Frost, Introduction to aqueous organometallic chemistry and 
catalysis, in: Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & 
Sons, Ltd, 2017, pp. 1–26, https://doi.org/10.1002/9781119951438.eibc2518. 

[30] S. Narayan, J. Muldoon, M.G. Finn, V.V. Fokin, H.C. Kolb, K.B. Sharpless, “On 
water”: unique reactivity of organic compounds in aqueous suspension, Angew. 
Chem. Int. Ed. 44 (2005) 3275–3279, https://doi.org/10.1002/anie.200462883. 

[31] M.C. Pirrung, Acceleration of organic reactions through aqueous solvent effects, 
Chem. Eur J. 12 (2006) 1312–1317, https://doi.org/10.1002/chem.200500959. 

[32] K.-T. Tan, S.-S. Chng, H.-S. Cheng, T.-P. Loh, Development of a highly 
α-regioselective metal-mediated allylation reaction in aqueous media: new 
mechanistic proposal for the origin of α-homoallylic alcohols, J. Am. Chem. Soc. 
125 (2003) 2958–2963, https://doi.org/10.1021/ja029276s. 

[33] M. Lautens, A. Roy, K. Fukuoka, K. Fagnou, B. Martín-Matute, Rhodium-Catalyzed 
coupling reactions of arylboronic acids to olefins in aqueous media, J. Am. Chem. 
Soc. 123 (2001) 5358–5359, https://doi.org/10.1021/ja010402m. 
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