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A B S T R A C T   

Introduction: The risk of complications associated with transvenous ICDs make the subcutaneous implantable 
cardiac defibrillator (S-ICD) a valuable alternative in patients with adult congenital heart disease (ACHD). 
However, higher S-ICD ineligibility and higher inappropriate shock rates-mostly caused by T wave oversensing 
(TWO)- are observed in this population. We report a novel application of deep learning methods to screen pa
tients for S-ICD eligibility over a longer period than conventional screening. 
Methods: Adult patients with ACHD and a control group of normal subjects were fitted with a 24-h Holters to 
record their S-ICD vectors. Their T:R ratio was analysed utilising phase space reconstruction matrices and a deep 
learning-based model to provide an in-depth description of the T: R variation plot for each vector. T: R variation 
was compared statistically using t-test. 
Results: 13 patients (age 37.4 ± 7.89 years, 61.5 % male, 6 ACHD and 7 control subjects) were enrolled. A 
significant difference was observed in the mean and median T: R values between the two groups (p < 0.001). 
There was also a significant difference in the standard deviation of T: R between both groups (p = 0.04). 
Conclusions: T:R ratio, a main determinant for S-ICD eligibility, is significantly higher with more tendency to 
fluctuate in ACHD patients when compared to a population with normal hearts. We hypothesise that our novel 
model could be used to select S-ICD eligible patients by better characterisation of T:R ratio, reducing the risk of 
TWO and inappropriate shocks in the ACHD patient cohort.   

1. Introduction 

Sudden cardiac death (SCD) is a major cause of mortality in adult 
congenital heart disease (ACHD) patients, accounting for 19–26 % of 
deaths, the majority caused by ventricular arrhythmia [1]. The overall 
SCD incidence in ACHD patients is also higher than in the age-matched 
population without congenital heart disease [2]. As more patients with 
congenital heart disease survive into later life, rates of SCD are expected 
to rise as longer life expectancy increases the prevalence of arrhythmias 
owing to structural remodelling. 

While the decision to implant ICD for secondary prevention is 

relatively straightforward, the decision to implant ICD for primary 
prevention in ACHD can be more challenging due to the lack of robust 
evidence in the ACHD population and is usually guided by the presence 
or absence of multiple risk factors: non sustained ventricular tachycardia 
(VT), impaired systemic ventricular function, inducible VT and syncope 
[1,3]. 

The subcutaneous implantable cardiac defibrillator (S-ICD) may 
especially be valuable for ACHD patients as potential anatomical chal
lenges of transvenous lead implantation in ACHD patients can be over
come with a subcutaneous approach. Adult congenital heart disease 
patients are also younger and require several generator replacements 
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during their lifetime increasing the risk of potential complications 
associated with TV-ICDs making them less appealing. Unfortunately, not 
all patients are eligible for S-ICD therapy. The eligibility for S-ICD is 
identified during a mandatory pre-implant screening process that is 
undertaken in all potential S-ICD recipients using guidelines by the de
vice manufacturer. Surface ECG recordings taken in multiple body 
postures on the day of the screening are used as surrogates for S-ICD 
vectors to non-invasively assess vector morphology and determine S-ICD 
eligibility. Patients with an ECG morphology that does not meet the 
screening criteria are deemed to be at high risk of oversensing and 
inappropriate shocks and are subsequently deemed ineligible for an S- 
ICD. One major determinant of S-ICD eligibility is the T:R ratio. In fact, 
the most common cause of a vector failing S-ICD screening is a large T:R 
ratio [4,5]. 

Literature concerning the eligibility for S-ICD in patients with ACHD 
is scarce with only a handful of published studies with varying results. 
Alonso et al. conducted a study to test S-ICD eligibility specifically in 
ACHD patients at high risk of SCD and 69 (68 %) of Tetralogy of Fallot 
patients and 26 (80 %) of systemic RV patients were deemed eligible for 
a S-ICD [6]. In another study by Wang et al., 101 ACHD patients were 
screened and only 61 patients (60 %) passed the S-ICD screening [7]. 
Garside et al. also conducted prospective analysis on the S-ICD eligibility 
for 102 ACHD patients and 25 (24.5 %) patients failed the S-ICD 
screening criteria [8]. 

All the above-mentioned studies aside from the high variability of 
their outcomes demonstrated higher ineligibility rates in the ACHD 
population when compared with the general population. This may be 
due to abnormal T-wave morphology, resulting from the unique 
anatomical and physiological features that characterizes ACHD such as 
cardiac chamber enlargement, abnormal cardiac orientation, mechani
cal strain, and augmented repolarization patterns. 

In the first reported analysis comparing use of the S-ICD in patients 
with and without ACHD, D’Souza et al. conducted a pooled analysis of 
patients in the EFFORTLESS S-ICD registry and the U.S. IDE study. 19 
patients with structural congenital heart disease were compared to 846 
patients without ACHD. The overall complication rates were similar in 
the ACHD and non-ACHD groups (10.5 % vs. 9.6 %), with inappropriate 
shocks for T-wave oversensing being the only complication in the ACHD 
group; however, the rate of T-wave oversensing was higher (10.5 %) in 
ACHD patients when compared with non-ACHD patients (4.4 %). This 

analysis demonstrated that the S-ICD is a safe option for patients with 
ACHD deemed to be at high risk for SCD without having pacing in
dications [9]. 

In this study, we report a novel application of deep learning methods 
to screen ACHD patients for S-ICD eligibility over a longer period than 
conventional screening. We hypothesise that this screening approach 
might achieve better patient selection and optimise S-ICD vector selec
tion in ACHD patients. 

2. Methods 

Healthy volunteers with structurally normal hearts and patients with 
a known diagnosis of ACHD were prospectively enrolled and asked to 
wear a seven lead/three channel Holter monitor for 24 h. Patients were 
advised to maintain normal activity during the recording period. The 
leads for the Holters were positioned so that they mimic and correspond 
to the three vectors (primary, alternate, and secondary) of an S-ICD, see 
Fig. 1. 

The Holter monitors were not assessed for the presence of underlying 
arrhythmia episodes. If the participants required Holter monitoring for 
diagnostic purposes, this was left at the discretion of their clinical team 
as per usual standard clinical care. 

Patients’ demographics were obtained from the medical records. 
There was no requirement for further patient follow up. The study was 
granted REC (17/SC/0623) and R&D (RHMCAR0528) approvals. 

As the main cause of inappropriate shocks in the S-ICD population is 
T wave over-sensing (TWO), the T:R ratio was specifically monitored 
throughout the 24 h due to it being one of the main determinants of S- 
ICD eligibility. A T:R ratio eligibility cut-off of 1:3 was chosen based on 
the manual S-ICD screening tool following the manufacturer’s guide
lines; although the manual screening method is now largely superseded 
by automatic screening methods, they follow the same principles. 

2.1. Utilisation of artificial intelligence in screening 

Machine learning methods are already being used in the classifica
tion and the prediction of various cardiovascular diseases through ECG 
data analysis [10–18]. A well-recognized technique for processing ECG 
data is to create its phase space reconstruction matrix (PSR), a popular 
tool in waveform analysis for representing non-linear characteristics of 

Fig. 1. Showing the typical S-ICD vectors on the left and on the right, the Holter® surface ECG positions. 
1 = 1 cm infero-lateral to the xiphisternum 2 = 14 cm superior to position 1 
3 = 5th intercostal space, parasternal position 4 = 6th intercostal space left mid axillary line 
6 = Adjacent to 2 7 = Adjacent to 4 
Holter Channel A records between points 1 and 4 = surrogate of S-ICD primary vector 
Holter Channel B records between points 2 and 3 = surrogate of S-ICD alternate vector 
Holter Channel C records between points 6 and 7 = surrogate of S-ICD secondary vector 
5 = 5th intercostal space right mid clavicular line = neutral electrode 
Image prior to annotation © Boston Scientific Corporation or its affiliates. 
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time series data using delay maps. 
The tool we developed is specifically designed to track and analyse 

the T:R ratios for the leads corresponding to the S-ICD vectors over the 
24-h recordings. Raw data from the Holters were first downloaded in 
ASCII format at a frequency of 500 Hz (Hz), then were split into 10 s 
segments. Baseline drift correction techniques were then applied, fol
lowed by adaptive band stop filtering to suppress power-line noise with 
a frequency of 50 Hz while a low pass filter was used to remove the 
remaining high frequency noise. Then PSR was utilised to convert the 
ECG signal into 32x32 pixel PSR images, one image for each 10 s worth 
of ECG data. A deep learning model was trained to predict the T:R ratio 
from these PSR images with a high degree of accuracy. Our method 
diverges from standard approaches by using the whole PSR matrix as the 
input to this model, a technique which, to the best of our knowledge, has 
not been attempted before. The proposed method is capable of auto
matically extracting a set of features that are much more descriptive 
than those that are found manually with more time-consuming methods. 
This model is used to predict the T:R ratio for each 10-s segment of the 
24-h recording from their corresponding PSR images. The end result is a 
plot showing the variation of the T:R ratios for each lead/S-ICD vector 
over the recorded period [19]. 

2.2. Tool validation 

The deep learning tool was trained using 10-fold cross validation. 
ECG segments with pre-determined, manually measured T:R ratios were 
used to train the tool, while a proportion of the segments were blinded 
from the tool and were subsequently used for a series of experiments to 
assess the tool for accuracy. The outcome of the tool (predicted T:R 
values) was compared to the previously manually measured T:R values. 
Several standard accuracy parameters were used to assess the accuracy 
of the tool; Mean squared error (MSE) = 0.0122, Root mean squared 
error (RMSE) = 0.0938, and mean absolute error (MAE) = 0.046. 
Having an MAE of 0.046 means that on average the difference between 
the tool-predicted T:R ratio and the manually measured T:R was 0.046. 
The results of these accuracy parameters were very favourable denoting 
high level of accuracy for the tool. Dunn et al. have reported a detailed 
description of the creation of this model previously [20]. 

2.3. Statistical methods 

Data analysis was done using RStudio 1.4.1106 running R 4.0.5. The 
distribution of the data was assessed using histograms, QQ plots and 
normality tests. The categorical data were represented as n/N (%) and 
continuous data as mean (SD). Welch two-sample t-test was used to 
compare between the two studied groups. 

3. Results 

13 patients were enrolled in the study. The mean age of the partic
ipants was 37.4 ± 7.89 years; there were 8 (61.5 %) males and 5(38.5 %) 
females. 6 of the participants were in the ACHD group (mean age 39 ±
16.36 years, 83.3 % male) and 7 (mean age 36 ± 6.11 years, 42.9 % 
male) in the control group of healthy volunteers. From the ACHD group, 
2 had tricuspid atresia and Fontan’s procedures, 1 had partial atrio
ventricular defect, 1 had double outlet right ventricle, dextrocardia and 
repaired ventricular septal defect, 1 had ventricular septal defect and 
patent ductus and 1 patient had common arterial trunk with previous 
complete repair. All the healthy volunteers did not have any underlying 
cardiac conditions, see Table 1 for patients’ demographics. 

When the results from all the leads/S-ICD vectors were combined, 
there was a statistically significant difference in the mean, median and 
the standard deviation (SD) of the T:R ratios measured in 24 h between 
both groups. The mean T:R ratio was higher in the ACHD (0.29 ± 0.18 
versus 0.1 ± 0.05, p < 0.001). The median T: R was higher in the ACHD 
group (0.29 ± 0.18 versus 0.1 ± 0.06, p < 0.001) and the SD of the T:R 

ratio was also higher in the ACHD group (0.09 ± 0.05 versus 0.06 ±
0.04, p = 0.042). in other words, the T:R ratio was higher and exhibited 
more tendency to fluctuate (SD) in the ACHD group when compared to 
the healthy volunteers, see Table 2 and Fig. 2. 

T:R ratios were also assessed in each of the three S-ICD vectors 
separately. Mean T:R ratios were higher in the ACHD group in all vec
tors; (0.245 versus 0.118, p = 0.11) in the primary vector, (0.346 versus 
0.096, p = 0.039) in the secondary vector and (0.269 versus 0.097, p =
0.051) in the alternate vector. Median T: R ratios were higher in the 
ACHD in all vectors; (0.244 versus 0.118, p = 0.13) in the primary 
vector, (0.288 versus 0.088, p = 0.02) in the secondary vector and 
(0.282 versus 0.091, p = 0.043) in the alternate vector. The SD of the T: 
R ratios were also higher in the ACHD for all vectors; (0.076 versus 
0.065, p = 0.65) for the primary vector, (0.086 versus 0.061, p = 0.15) 
for the secondary vector and (0.119 versus 0.069, p = 0.12) for the 
alternate vector. This means that, for the ACHD group, the secondary 
vector had the highest T:R ratio (least favourable from S-ICD perspec
tive) at the baseline, followed by the alternate vector then the primary 
vector. However, T:R ratio demonstrated highest degree of fluctuations 
in the alternate vector followed by the secondary then the primary 
vectors in the ACHD group. Differently, for the healthy volunteers’ 
group, the primary vector had the highest T: R ratio at the baseline and 
all the vectors exhibited the same degree of T: R ratio fluctuations, see 
Table 3 and Figs. 3–5. 

Our tool is designed to give the T:R ratio for every 10 s of data/ECG 
signals – equivalent to a standard 12-lead ECG or a standard ECG strip 
used for current S-ICD screening process [21] - this allowed the assess
ment of every individual lead/S-ICD vector eligibility for every 10 s for 
the whole 24-h screening. From there, the probability of each vector 
failing the current screening methodology if the screenings were done at 

Table 1 
Patients’ demographics.  

Total Number of Participants N = 13 ACHD 
group 

Healthy 
Volunteers 

N = 6 N = 7 

Demographics: Mean age [years ± 95 % 
CI] 

37.4 
± 7.89 

39 ±
16.36 

36 ± 6.11  

Male 8 
(61.5 
%) 

5(83.3 
%) 

3(42.9 %) 

Underlying cardiac anatomy:  
Structurally normal heart  0 7  
Tricuspid atresia and 
Fontan’s procedure  

2 0  

Partial atrioventricular 
defect  

1 0  

Double outlet right 
ventricle, dextrocardia and 
repaired ventricular septal 
defect  

1 0  

Ventricular septal defect 
and patent ductus  

1 0  

Common arterial trunk 
with previous complete 
repair  

1 0  

Table 2 
Mean, median, and SD of the T:R ratios measured in 24 h for the all the Leads/S- 
ICD vectors.  

Parameters N Underlying Anatomy p-valuea   

ACHD, N = 18 Normal, N = 21  
Mean T: R ratio 39 0.29 (0.18) 0.10 (0.05) <0.001 
SD of T:R ratio 39 0.09 (0.05) 0.06 (0.04) 0.042 
Median T: R ratio 39 0.29 (0.18) 0.10 (0.06) <0.001 

N = total number of the Leads/S-ICD vectors. ACHD = adult congenital heart 
disease. SD = standard deviation. IQR = interquartile range. 

a Welch Two Sample t-test. 
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any time of the day was calculated. Where the probability of failure =
number of 10-s segments with unfavourable (>1:3) T:R ratio/total 
number of 10-s segments (8640) in a 24-h recording. 

The probability of an S-ICD vector failing the screening for our ACHD 
cohort averaged at 0.36 ± 0.31, 0.36 ± 0.28, and 0.38 ± 0.25 for the 
primary, alternate, and secondary vectors, respectively. While the 
probability of a vector failing the screening in our healthy volunteers’ 
group was significantly lower at 0.04 ± 0.08, 0.03 ± 0.04, and <0.01 for 

the primary, alternate, and secondary vectors respectively, see Table 4. 

4. Discussion 

The concept of the potential varying of S-ICD vectors eligibility over 
time was introduced before in a published study by Wiles et al. The study 
has demonstrated that the vector score, which determines S-ICD eligi
bility, is in fact dynamic in real-life ICD population [22]. The clinical 
significance for this dynamicity is not clear but it sheds the light on the 
possibility that acquiring screening data over a much longer period than 
for conventional screening across the three S-ICD vectors can enable 
more reliable and descriptive screening of the vectors and can aid pa
tient and vector selection in S-ICD candidates. 

We reported a novel application of artificial intelligence and deep 
learning methods used to screen patients for S-ICD eligibility. Screening 
data was acquired over a much longer period than for conventional 
screening approaches and provides an in-depth description of the 
behaviour of the T:R ratio over that period across the S-ICD vectors [19]. 

This novel approach allowed the detailed description of the behav
iour of the T: R ratio over prolonged screening periods. This has 
demonstrated that one of the main determinants of S-ICD eligibility – the 
T: R ratio – is dynamic. Upon analysing the results down to the indi
vidual level, the clinical significance became apparent. These small 
changes in the T:R ratio parameters can dictate the S-ICD eligibility as 
dynamic changes in the T:R ratio in some of the vectors that were 
observed were significant enough in some instances to cause the T:R 
ratio to cross the threshold for the S-ICD screening. It comes as a no 
surprise that the probability of S-ICD vectors failing the screening in the 
ACHD group was much higher than that of the healthy volunteers with 
structurally normal hearts in our study, which is in line with previously 
published [6–8] This may be due to abnormal T-wave morphology, 

Fig. 2. Mean, median, and SD of the T:R ratios measured in 24 h for the all the Leads/S-ICD vectors in ACHD and healthy volunteers with normal hearts groups.  

Table 3 
Mean, median, and SD of the T:R ratios measured in 24 h classified according to 
the S-ICD vector.  

Parameters N ACHD (N 
= 6) 

Normal (N 
= 7) 

P- 
Value 

95 % CI 

Mean T: R Pr. 
vector 

13 0.245 0.118 0.105 (-0.288,0.034) 

Mean T: R S. 
vector 

13 0.346 0.096 0.039 (-0.481, 
− 0.019) 

Mean T: R Alt. 
vector 

13 0.269 0.097 0.051 (-0.345,0.001) 

Median T: R Pr. 
Vector 

13 0.244 0.118 0.126 (-0.299,0.046) 

Median T: R S. 
vector 

13 0.288 0.088 0.021 (-0.354, 
− 0.045) 

Median T: R Alt. 
vector 

13 0.282 0.091 0.043 (-0.375, 
− 0.008) 

SD T: R Pr. 
Vector 

13 0.076 0.065 0.649 (-0.065,0.043) 

SD T: R S. vector 13 0.086 0.061 0.15 (-0.060,0.011) 
SD T: R Alt. 

vector 
13 0.119 0.069 0.119 (-0.116,0.016) 

N= Number of patients. Pr. Vector, S. vector, and Alt. vector = Primary, sec
ondary, and alternate vectors respectively. 
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resulting from the unique anatomical and physiological features that 
characterizes ACHD such as cardiac chamber enlargement, abnormal 
cardiac orientation, mechanical strain and augmented repolarization 
patterns. 

This novel screening approach could enable more reliable assess
ment of ACHD patients’ eligibility for S-ICD implantation and guide 
patient selection for S-ICD therapy with lower risk of inappropriate 
shock therapy due to TWO. This is important as inappropriate shock 
therapies can have detrimental effects on the quality of life, 

psychological wellbeing and can even result in the induction of ven
tricular arrhythmias [23]. 

It is not uncommon for multiple vectors to pass the S-ICD screening. 
In current practice, the choice of which vector to use for programming is 
arbitrary since the outcome of the screening is binary (pass or fail) and 
there are no “degrees” awarded for an S-ICD vector for passing the 
screening. Our tool can guide the selection of the most favourable vector 
for programming the S-ICD. The most favourable vector would be the 
most stable or the one that is least likely to fluctuate and cross the 

Fig. 3. Mean T:R ratios measured in 24 h classified according to the S-ICD vector.  

Fig. 4. Median T:R ratios measured in 24 h classified according to the S-ICD vector.  
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screening threshold during prolonged screening and thus pose the least 
risk of TWO and inappropriate shocks. 

ACHD is a broad term covering a wide array of underlying anatom
ical variants. It is as such expected that there would be a high degree of 
variability not only of the S-ICD screening passing rate, but also of which 
of the S-ICD vectors that are likely to pass the screening in the ACHD 
population. It is prudent that vector selection for S-ICD programming 
should be individualised for each patient and our novel screening 
approach could enable more reliable and descriptive assessment of the S- 
ICD vectors behaviour over prolonged screening periods allowing cli
nicians to make more informed decisions on vectors selection in S-ICD 
eligible patients. This can be translated into lower risk of TWO and 
inappropriate shock therapy. 

The cut-off T:R ratio of 1:3 used for current screening practice 

incorporates a safety margin to accommodate for the fluctuations of the 
ECG signal amplitudes over time without affecting the sensing of the S- 
ICD. Currently, patients who do not possess at least a single S-ICD vector 
meeting this T:R ratio cut-off are deemed ineligible for S-ICD therapy, a 
significant limitation to their care, particularly in ACHD patients where 
S-ICD provides a valuable and, in some cases, their only option for 
defibrillation protection therapy. Our screening approach using our 
proposed tool can accurately measure the degree of the T:R ratio fluc
tuation over the screening period potentially eliminating the need to 
incorporate a “safety-margin” into the eligibility threshold of the T:R 
ratio. Clinically, this can be translated into higher rates of S-ICD eligi
bility without having to compromise with a higher risk of TWO and 
inappropriate shocks. Further prospective studies with real-life S-ICD 
candidates and long-term follow up will be needed to give insight into 

Fig. 5. Standard deviation (SD) of the T:R ratios measured in 24 h classified according to the S-ICD vector.  

Table 4 
Shows the probability of S-ICD screening failure for all the S-ICD vectors in the study.  

ID Group Primary Vector Alternate Vector Secondary Vector   

10-s segments of T: R >
1/3 

Probability of failing 
screening 

10-s segments 
>1/3 

Probability of failing 
screening 

10-s segments 
>1/3 

Probability of failing 
screening 

1 ACHD 2450 0.28 1235 0.14 4364 0.51 
2 ACHD 7106 0.82 6077 0.7 6998 0.81 
3 ACHD 0 0 4800 0.55 4538 0.52 
4 ACHD 7488 0.87 6573 0.76 3733 0.43 
5 ACHD 1411 0.16 34 <0.01 35 <0.01 
6 ACHD 0 0 1 <0.01 122 0.01   

Mean 3756 ± 2720 0.36 ± 0.31 3120 ± 2435 0.36 ± 0.28 3298 ± 2185 0.38 ± 0.25  

7 Normal 3 <0.01 0 0 23 <0.01 
8 Normal 2613 0.3 19 <0.01 0 0 
9 Normal 17 <0.01 51 <0.01 0 0 
10 Normal 1 <0.01 3 <0.01 1 <0.01 
11 Normal 0 0 452 0.05 14 <0.01 
12 Normal 2 <0.01 12 <0.01 277 0.03 
13 Normal 1 <0.01 1074 0.12 3 <0.01   

Mean 377 ± 731 0.04 ± 0.08 230 ± 301 0.03 ± 0.04 45 ± 76 <0.01  
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the optimal T:R ratio that could be utilised for prolonged screening for S- 
ICD eligibility. 

4.1. Limitations 

There are several limitations to our study. The number the patients 
recruited in this study is small and ACHD is treated as a single entity for 
the sake of our analysis when in reality ACHD covers very different 
underlying pathologies with various degrees of complexities and larger 
adequately powered studies are needed to consolidate our findings. 
Second, none of the patients recruited in our study had an indication for 
a S-ICD. In addition, while participants were advised to maintain normal 
activity during the recording period of 24 h, to try to mimic an average 
day of a potential S-ICD recipient. Participants were not asked to keep a 
diary of their activities/postures at a given time or their sleeping 
schedule on that day which could provide significant insights on the 
postural as well as the diurnal variation in the T:R ratios. We recommend 
that this should be considered in further work. 

Also, our study focuses on the T:R ratio as the major determinant of 
S-ICD eligibility, not counting any other parameters which can 
contribute to the passing or failing of the S-ICD screening. Furthermore, 
while a statistical analysis comparing our tool outcomes against manual 
measurement of the T:R would have been of great value. It was not 
practically feasible to manually measure the T:R ratios for the recordings 
due to the sheer magnitude of the data collected for our study (>3 
million QRS complexes). 

Our proposed methodology also does not consider relatively newer 
algorithms such as SMART PASS that are integrated into the S-ICD that 
can help it differentiate between R and T waves based on other char
acteristics rather than just their amplitudes. Finally, the clinical rele
vance of our findings is not very evident; while we have demonstrated 
that there is a variation of T:R ratio in ACHD patients, there is no evi
dence that this would inadvertently lead to TWO or inappropriate 
shocks. Theoretically, our tool could be potentially used to predict the 
risk of TWO events and allow informed decisions to be made by the 
physicians and patients alike prior to committing to S-ICD therapy. 
However, further work is needed before it is possible to apply our tool to 
clinical practice. 

5. Conclusions 

T:R ratio, one of the major determinants for S-ICD eligibility, is 
significantly higher and exhibited more tendency to fluctuate in ACHD 
patients when compared to normal hearts populations. Our novel model 
utilises artificial intelligence and deep learning methods to provide an 
in-depth description of the behaviour of the T:R ratio across the S-ICD 
vectors. This could be used to better assess S-ICD eligibility and guide S- 
ICD vector selection, thus reducing the risk of TWO and inappropriate 
shocks particularly in the ACHD patients’ cohort. 
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