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Enhancing Privacy and Scalability of Permissioned Blockchain

by Gilberto Zanfino

Blockchain is an emerging technology that offers fascinating properties of data
integrity and non-repudiation. As the name suggests, it consists of consecutive
chained blocks, replicated on all network nodes, containing asset transactions. Blocks
are linked together via hashing procedures and created in a distributed fashion with
consensus protocols. Besides, blockchain provides smart contracts, self-executable
programs that allow to realise fully decentralised and tamper-proof applications. In
this thesis, we analyse five prominent blockchain platforms, i.e. Bitcoin, Ethereum 2.0,
Algorand, Ethereum-private and Hyperledger Fabric. We evaluate their security
according to the used consensus algorithm, the overall infrastructure and the smart
contracts vulnerabilities. We then focus on permissioned blockchains, operated by
authenticated parties. Although they can enforce access control rules and are more
efficient compared to permissionless, they still lack of data privacy and present
scalability issues. A typical privacy solution is to encrypt data before being stored on
blockchain, but the downside is that smart contracts can no longer execute functions
on them. We thus propose to combine blockchain with Homomorphic Encryption
(HE), a cryptographic model that allows to perform computations on ciphertexts. We
show how blockchain coupled with HE can be beneficially applied to Smart Grid to
realise privacy-preserving energy billing and trading. HE has a limitation, however: it
precludes computations on data encrypted with different keys. To overcome this, we
extend the previous integration with Multi-Key HE (MKHE). We thus present
PANTHER, a MKHE-integrated permissioned blockchain, where users can run smart
contracts over ciphertexts created with different keys. Results of MKHE computations
are then decrypted in PANTHER via secure multiparty protocols among users. For
scalability instead, blockchain exhibits an intrinsic problem: adding new nodes to
cope with increasing demands worsens performance, due to a lengthening of the time
to reach consensus. We thus present SHERLOCK, a permissioned blockchain in which
consensus nodes are split into committees and disposed on a two-layer ring-based
architecture. SHERLOCK uses the sharding technique to assign incoming transactions
to committees, which process them in parallel, thereby boosting performance.
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Chapter 1

Introduction

The technology landscape has recently evolved into an environment of an increasing
number of Internet-connected devices, which interact with existing online systems for
a wide variety of purposes. They range from entertainment platforms, such as video
streaming, music libraries, instant messaging, e-commerce and e-games, to business
platforms like cloud infrastructure, tools for managing development and analysing
data. This has led to an intensifying demand for services, resources and processing
tasks requested by the end-users. Consequently, the need arises for these online
systems to be built so as to guarantee security, fault tolerance, and high standards in
terms of availability and performance. Blockchain is one of the most attractive and
emerging technologies on the IT market that promotes delivering these attributes to a
system. Firstly employed as a public ledger within Bitcoin’s cryptocurrency
(Nakamoto et al. (2008)), nowadays blockchain technology is considered as a
paradigm for multi-party systems of organisations and enterprises. Besides the
well-known, news-making, iconic applications to cryptocurrency, blockchain is
breathing new life into subjects such as distributed and decentralised computing, as
well as data assurance. In such fields, the impact of blockchain is showcased by its
unmatched potential to transform ‘work’ into ’trust’, which can change the face of
computing in untrusted environments.

Indeed, blockchain is a peer-to-peer distributed network of nodes that share a
replicated data structure without a central authority. The shared data structure, also
called the ledger, consists of chained blocks, each one linked to the previous through
referencing its hash digest. Each block contains a list of records that witness
transactions occurred among participants. Such transactions represent an exchange of
assets between a network’s nodes (e.g., exchange of crypto-coins in the Bitcoin
blockchain). The process of block creation is called mining, and is carried out by
special nodes of the network called miners, which periodically activate a distributed
consensus algorithm to select new blocks to be added to the chain. Once consensus is
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achieved, all the nodes update their local copy of the blockchain and agree on the
same state.

The blockchain’s linked data structure allows all the nodes in the network to have the
same view of the ledger. This means that they agree on all the previous blocks and on
their relative order, which leads to high consistency of the information shared on the
blockchain and its history. Indeed, even if only one record of a past block were
modified or deleted on a single node, its hash digest would differ, and the following
block would keep pointing to the original, unmodified block. In other words, in order
to modify a block effectively, a node would need to also modify all subsequent blocks,
each with the new hash of the precedent block, till the end of the chain. Furthermore,
for these changes to be reflected on other nodes’ local copies of the blockchain, a global
agreement would be required. Hence, unless all nodes agree on all such changes, the
consistency of the ledger would be unmistakably compromised. This is indeed a
crucial feature of blockchain, which ensures integrity and non-repudiation of the shared
data, and therefore gives rise to a trusted system that does not rely on any centralised
trusted third-party authority. Due to these security and data assurance guarantees,
blockchain pushed its boundaries beyond the realm of cryptocurrencies and became a
subject of study in several other fields, notably including supply chain, provenance,
IoT and other sectors where multiple parties want to share a computing/storage
infrastructure. Indeed, modern blockchains have been endowed with nearly
Turing-powerful programming languages that can be used to implement, deploy and
execute fully decentralised and tamper-resistant applications, called smart contracts.

Notwithstanding its promising advantages, blockchain raises issues of security,
scalability and performance that limit its deployment in real systems.
Blockchain-based systems being distributed over multiple nodes, they typically
present a broad attack surface, as each one of the participants can come under attack.
A crucial aspect of such distributed system is their chosen consensus algorithm, i.e.,
the protocol that in each blockchain the parties employ to agree on the occurrence and
ordering of transactions. State-of-the-art consensus algorithms provide two sets of
security properties, dubbed respectively safety and liveness. Safety states that the
consensus algorithm should not do anything wrong during its normal execution:
when an honest node accepts a transaction, then all the other honest nodes will make
the same decision. If safety is violated at some point in time, it will never be satisfied
again after that time. Liveness, instead, states that eventually something good
happens: there is a time at which all honest nodes agree on the same order of
transactions. Together they are used to ensure that the system protocols keep making
progress towards an end, i.e. to verify and order transactions. Consensus algorithms
differ on the properties they afford to users and the assumptions they make on the
underlying network model. Several works have been proposed in the literature to
evaluate such differences, as e.g. (Cachin and Vukolić (2017); Vukolić (2015); Xu et al.
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(2017); Shehar et al. (2019)), although a fair comparison is elusive due to several
contrasting assumptions. Consensus is a paramount component of blockchain
systems, since it strongly affects not just security, but also scalability and performance.
As a matter of fact, there currently is no optimal approach, as each of the existing
protocols offers a suboptimal trade-off between all desired properties.

Against this backdrop, the study and understanding of the security of blockchain
becomes paramount, both in terms of the properties afforded by the technology and in
terms of its vulnerabilities. As a starting point of this thesis, we propose a
comprehensive evaluation of blockchain’s security. We refer to the well-established
concepts of security and dependability, broadly used in distributed systems, to
identify the fundamental security properties relevant to a blockchain. Thus, we use
such properties to evaluate five of the most prominent blockchain platforms. In
particular, we study three permissionless blockchains, namely Bitcoin, Ethereum 2.0,
Algorand, and two permissioned blockchains, namely Ethereum-private and
Hyperledger Fabric. We conduct a study of their security over three dimensions, i.e.
the consensus protocols, infrastructure, and smart contracts.

Afterwards, as the main thematic of this thesis, we focus on permissioned blockchains
where users and network nodes are authenticated, and authorised to execute
operations only with proper permissions. Permissioned blockchains are a good fit in
scenarios that require data authorisations and better performance. Indeed, the fact that
participating nodes are authenticated allows to enforce access control policies and use
more efficient consensus algorithms. Despite this, permissioned blockchain present
two problematic aspect: the lack of data privacy and the lower scalability of network
nodes. Indeed, on one hand, the inherent data transparency of blockchain does not sit
well with situations where data providers are not keen to share their data with others.
Although permissioned blockchains enforce access control rules to data, some
privileged users of the system are still authorised to read others’ data, or a large part
thereof. Solutions based on storing encrypted data in the ledger have the limitation
that smart contract computations cannot be carried out on these data. From the other
hand, although permissioned blockchains are more efficient than permissionless ones,
they still present bottlenecks when the magnitude of users’ transactions is very large.
To cope with a growing demand, in standard distributed systems it is possible to add
nodes to the network and spread the workload among them. Conversely, in
permissioned blockchains the nodes operate on the same bunch of transactions by
collectively participating in consensus protocol. As a consequence, the addition of
new nodes causes more message exchanges and a longer time to reach agreement on
transactions ordering, which with cascading effect worsens performance.

Therefore, we investigate in this thesis how to enhance permissioned blockchains
under the two directions of privacy and scalability. In the following, we detail their
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respective problems and the research questions they raise. Then, we briefly describe
the ideas we propose to address them.

Blockchain privacy

The data integrity and non-repudiation are not the sole properties the blockchain
possesses. Blockchain additionally provides data transparency: being the ledger
replicated on all network nodes, the transactions it contains are visible to all
participants. This effect is amplified in permissionless blockchains, where any node
can participate in the network without restrictions. Although a total transparency is a
desirable feature for many public systems, there are several scenarios in which users
prefer to keep their data confidential. Permissioned blockchains deal with this privacy
requirement by establishing access rules on data. Users can see that a transaction has
occurred in the system, but they can access its content only with proper permissions.
However, permissioned settings only offer a trade-off between transparency and
privacy. High privilege users with high-ranking permissions (e.g., organization
admins) are legitimately authorised to read all data owned by low privilege users.
One viable solution to keep users’ data confidential, before they are permanently
stored in the ledger, is to encrypt them. However, this approach opens up a new
challenge. Once users’ data have been encrypted in the ledger, blockchain can no
longer perform any kind of computation on them via smart contracts. This restricts
blockchain functioning to data storage only, and inhibits its deployment in scenarios
requiring computations. Consider, for instance, a decentralised auction system based
on blockchain, where users want to keep their bids secret. Then, each user encrypts
her bid and submit it to the blockchain network. The only way for blockchain nodes
to compute the winning bid is to decrypt users’ bids, thus unsealing the bids and
violating privacy. Hence, we ask ourselves the following research question:

How can we enable blockchain to perform computations on encrypted data?

To answer such question we investigate the exploitation of the Homomorphic
Encryption (HE) model. Particularly, HE is a cryptographic-based computing model
that allows computations to be performed on encrypted data without having to
decrypt them first. This fascinating property can empower smart contracts to compute
functions over ciphertexts stored in the ledger, and thus the blockchain system to
realise privacy-preserving applications. The result of a HE-based computation is also
encrypted, and can be securely stored in the blockchain ledger. Only the owner of the
cryptographic key can later decrypt it to discover the function outcome. We thus
propose in this thesis to integrate HE into a permissioned blockchain, creating an
architecture whereby users can encrypt data and still avail of smart contract functions.
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In order to demonstrate the benefits of this integration, as use case, we apply it to a
cutting-edge Smart Grid system driven by IoT-devices. Besides improving
decentralisation and system management, we show that the HE-equipped
permissioned blockchain simultaneously gives Smart Grid the means (i) to guarantee
the integrity and privacy of users’ data (ii) and to carry out privacy-preserving
operations. We implement this system in Hyperledger Fabric, enforcing
authentication and authorisation policies to participants, i.e. both users and
blockchain nodes. Considering the aforementioned advantages, we then propose a
generalisation of this solution combining blockchain and HE to other IoT-based
scenarios.

Notwithstanding the HE integration permits the blockchain to perform computations
on ciphertexts, it comes with an intrinsic constraint. The homomorphic property of
HE ensures that the result of a function executed on ciphertexts, once decrypted,
matches the result of the function executed on the corresponding plaintexts. In
traditional HE schemes this property only holds if the ciphertexts are encrypted under
the same key, reason why are typically dubbed single-key. Indeed, in our previous
solution for Smart Grid, we provide each system user with a single-key scheme, by
which she encrypts her personal data. Although the smart contracts are able to
execute per-user functions, they are not able to execute functions involving data from
multiple users, as they are encrypted with different keys. A feasible workaround
could be to employ one single-key HE scheme for the entire system, share the
encryption key to all users, and leave the matching decryption key in the hands of a
system administrator. However, with this workaround users just feed the system with
their data and are not independent: even if they can autonomously call a smart
contract with input ciphertexts, they will not be able to decrypt its result as they lack
the decryption key. To overcome all these limitations we extend the previous
HE-based solution with Multi-Key HE (MKHE), a recent HE model wherein the
homomorphic property is also valid for ciphertexts encrypted with distinct and
unrelated keys. We thus propose PANTHER, a permissioned blockchain integrated
with MKHE, in which each user can encrypt data with her own key and smart
contracts computations are enabled on ciphertexts of different users.

Blockchain scalability

The scalability is the ability of a system to maintain an adequate level of performance
in the face of a growing workload. There are two methods that can be applied to make
a system scalable, i.e. scale up or scale out. The former consists of expanding the
resources of a node, whereas the latter consists of adding nodes to the network.
Scaling up can help a blockchain node to increase its ledger size (by expanding disk
space) and to run smart contracts faster (by upgrading CPU), but does not help it to
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process more transactions. This is because the transaction processing is driven by the
consensus protocol, and both the processing time and the number of transactions
processed depend on the consensus implementation rather than on the resource
power of the participating nodes. Indeed, in permissioned settings, the consensus
protocol is based on a communication-bound voting mechanism, where the
performance of the protocol depends on the number of message exchanged. By
contrast, scaling out a permissioned blockchain means increasing the number of
nodes participating in the consensus, thus a higher message overhead and a longer
time to reach agreement on transactions. As a result, the scale out method worsens
performance instead of improving it. This scalability problem restricts the types and
dimensions of a system where a permissioned blockchain can be employed, hindering
its application in scenarios composed by a huge volume of users. Hence, we ask
ourselves the following research question:

How can we improve blockchain performance by adding nodes to its network?

To answer such question we investigate the exploitation of the sharding technique.
Particularly, sharding spreads users’ transactions across network nodes, in a way that
each of them holds a shard of the overall data, thus distributing and balancing the
workload. In this thesis, we present SHERLOCK, a permissioned blockchain
characterised by a two-layer ring-based architecture for nodes engaged in the
consensus protocol. The first layer divides the nodes in committees, such that each
committee is an instance of consensus protocol. This enables blockchain to parallelise
the processing of transactions, i.e. transactions execution, ordering, and blocks
creation. SHERLOCK then uses hash-based sharding to evenly spread the transactions
across committees, which concurrently and in isolation create provisional blocks.
Periodically, the committees in first layer send their generated blocks to the second
layer, composed by a single committee of nodes responsible for finally providing a
total order to received blocks. Adding new nodes to SHERLOCK means forming new
committees and augmenting the parallelisation, towards a performance improvement.

Contributions

The contributions of this thesis can be summarised as follows:

• we analyse five prominent blockchain platforms and we evaluate their security
according to the consensus protocol in place, their infrastructure and their smart
contracts vulnerabilities (De Angelis et al. (2019, 2022));

• we propose a novel permissioned blockchain architecture integrated with the
HE model, which provides data privacy while enabling smart contracts to carry
out functions on ciphertexts;
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• we extend the previous solution by proposing PANTHER, a novel permissioned
blockchain integrated with the MKHE model, which further allows to perform
computations on data encrypted under different keys and is secure against
byzantine adversaries;

• we propose SHERLOCK, a novel permissioned blockchain featured by a
two-layer ring-based architecture and sharding technique, which enhances
scalability, transactions processing and performance.

Thesis structure

In Chapter 2 we first outline the context, by introducing the blockchain technology, the
HE and the SMC models. We describe how they are composed, their functionalities,
and the properties they provide. Then, in Chapter 3 we study the security of five
different blockchain platforms, i.e. Bitcoin, Ethereum 2.0, Algorand, Ethereum-private
and Hyperledger Fabric. We define the security and dependability properties of their
different consensus protocols and infrastructure, along with an identification of smart
contract issues that can affect them. According to this taxonomy we evaluate the
security of examined blockchain platforms. In Chapter 4 we begin our research on
enhancing blockchain privacy. We propose a novel blockchain architecture integrated
with HE, capable of performing privacy-preserving functions via smart contracts. We
apply it to a Smart Grid system to privately calculate energy bills and manage energy
trading auctions. In Chapter 5 we present PANTHER, a permissioned blockchain
integrated with MKHE and MPC, which extends the previous solution by enabling
homomorphic computations on data encrypted under multiple unrelated keys. We
detail PANTHER’s protocols and security guarantees. In Chapter 6 we shift our
research focus on enhancing blockchain scalability. We present SHERLOCK, a
permissioned blockchain that uses sharding to allocate transactions across committees
of consensus nodes. We detail how these committees in SHERLOCK parallelise the
consensus process and improve the system performance. Finally, Chapter 7 sums up
the thesis and discusses future research directions.
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Chapter 2

Background and context

A distributed system is a set of autonomous and independent computational entities
that work together in a way to appear as a single coherent system to the end-user.
These entities, computers or software processes, coordinate their actions by
exchanging messages over a communication network towards achieving a common
goal, e.g. solve a computational problem, share resources, provide services. In this
context, the network size may vary from a handful to millions of devices, which can
be geographically dispersed and linked with wired and/or wireless connections.
Compared to centralised systems, where there is one single central entity that serves
all the other network nodes, a distributed system offers a better reliability and avoids
performance bottlenecks. This because there is not a single point of failure and the
system can add new nodes to cope with a growing number of end-user requests. Data
availability can be enhanced by replicating the data among multiple nodes, as well as
the system performance can be boosted by parallelising the tasks execution. Indeed,
data replication guarantees an always-on system response even in the presence of
faulty nodes, whereas parallel computation helps to smooth out and mitigate the
workload. The expected objectives of distributed systems are:

• availability: provide users with constant access to the system’s remote resources
and services;

• scalability: increase the number of system nodes and/or their hardware
specifications when the number of users’ requests grows;

• end-user transparency: hide the whole system infrastructure and internal
functional mechanisms from the end-user viewpoint;

• extendability: openness of a system to be extended or re-implemented.

Fulfil these objectives while building up a distributed system is, however, challenging.
Some occurring pitfalls are related to the unreliability and heterogeneity of the



10 Chapter 2. Background and context

network, and that its topology may change at runtime. Furthermore, some malicious
parties, whether internal or external to the network, can attack the system to obtain
confidential information or disrupt the offered services. If proper protocols are not put
in place these factors undermine the security and stability of the system, and
consequently the users’ confidence in using it. There are two main properties for a
distributed system that relate to the security of users’ data:

• data confidentiality: prevent malicious parties from acquiring sensitive
information. This can be achieved through various degrees of privacy. A system
can enforce authentication and access control policies, i.e. data can be accessed
only with proper authorisations. A system can enforce cryptographic
techniques, data can accessed only by the owner of the decryption key;

• data integrity: prevent malicious parties from altering data. A system can enforce
verification processes based on cryptography to check whether data have been
tampered with.

These two properties together with data availability form the so-called CIA triad of
data security, typically used as a standard to assess the system vulnerabilities.

Examples of distributed systems cover various application fields:

• data storage: Blockchain, Cassandra (Lakshman and Malik (2010)), Amazon
Dynamo (DeCandia et al. (2007));

• stream processing: Apache Storm (Apache Software Foundation (2011b)), IBM
Spade (Gedik et al. (2008));

• cryptographic computing: Secure Multiparty Computation, Homomorphic
Encryption

• message brokering: RabbitMQ (Mozilla (2010)), Apache Kafka (Apache Software
Foundation (2011a));

• file sharing: BitTorrent (Cohen (2003)).

These implementations differ in form, purposes, and particularly in features they
offer. For instance, blockchain provides trust among network nodes but present
scalability issues when new nodes are added. On the contrary, distributed stream
processing systems are able to scale but, since generally they are distributed over
nodes within a single organisation domain, they simply assume trust.

In this thesis, we study the blockchain technology by analysing its manifold
constructions and the different properties they provide. In Chapter 3 we describe five
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different blockchains platforms and we evaluate their security. Following this
evaluation, we further investigate permissioned blockchains and we lead our research
in finding solutions to improve their privacy and scalability. To this aim, in Chapter 4
and Chapter 5 we present solutions to empower the blockchain with
privacy-preserving computations, and in Chapter 6 we present a solution to scale out
the blockchain nodes boosting performance. For enabling private computations, we
investigate the combination of blockchain with Homomorphic Encryption (HE) and
Secure Multiparty Computation (MPC) distributed computing models. Beyond
providing privacy to blockchain data, these integrations vice-versa provide strong
integrity to encrypted data generated and exchanged in HE and MPC models. For
enabling scalability instead, we design a new architecture for blockchain nodes based
on the sharding technique.

Thus, in this chapter we provide a succinct introduction to the blockchain, which will
be expanded and deepened in Chapter 3, and we describe in detail HE and MPC,
which will be applied to permissioned blockchain in Chapter 4 and Chapter 5.

Chapter structure

In Section 2.1 we first describe the blockchain technology, its cryptographic data
structure, its distributed consensus protocol and the different settings it provides, i.e.
permissionless and permissioned. Then, we describe two cryptographic-based
distributed computing models, namely the MPC and HE. In Section 2.2 we describe
MPC, detailing the secret sharing and secure computation techniques in Section 2.2.1
and Section 2.2.2 respectively, along with the MPC security in Section 2.2.3. In
Section 2.3 we describe HE, detailing its properties (Section 2.3.1) and its MPC-based
variants, i.e. Threshold HE (Section 2.3.3) and Multi-Key HE (Section 2.3.4). Also,
Section 2.3.2 presents CKKS, a fully HE scheme performing arithmetic with
approximate numbers.

2.1 Blockchain

Blockchain is a novel technology that has appeared on the market in recent years and
has gained lots of attention in different applications, ranging from money and energy
trading to supply chain and healthcare management. It was firstly used as a public
ledger for the Bitcoin cryptocurrency (Nakamoto et al. (2008)) and consists of
consecutive chained blocks containing transactions, that are replicated and stored by
nodes of a peer-to-peer network. These transactions, occurred between some nodes of
the network, can represent a cryptocurrency (e.g., the Bitcoin) or other kinds of assets.
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Figure 2.1 shows a piece of the chain where each block is a container that aggregates
transactions. Additionally, each block of the chain keeps track of its predecessor by
using hashing procedures. At block creation, a hashing function takes in input the
content of previous block and generates in output a one-off value, the hash, which
makes previous block uniquely identifiable (Rogaway and Shrimpton (2004)). Before
appending a block with the newly processed transactions to the chain, the hash of the
previous block is stored inside it. As side-effect, any tampering attempt of a block’s
content will result in a change of its associated hash, which will make it different from
the hash stored in following block.

The blocks are created in a distributed fashion by means of a general agreement
among network nodes, without relying on a central trusted authority (e.g., banks or
financial institutions). Specifically, when transactions occur on a blockchain, they are
first validated and then included in a block by some distinguished nodes of the
network. In Bitcoin these nodes are called miners and their block construction method
is performed by a computational intensive hashing task, called Proof-of-Work (PoW),
which defines a global order on transactions. This global ordering is known as
consensus, and only once the network majority reaches it then the newly generated
block is appended to blockchain. Different kinds of consensus algorithms with
different properties have been developed and utilised within blockchain (Mingxiao
et al. (2017)), like Proof-of-Stake (PoS), Proof-of-Authority (PoA) or Practical
Byzantine Fault Tolerance (PBFT). The consensus process, together with the full data
replication on a large number of nodes, allow blockchain to enjoy strong properties
related to data integrity. Indeed, when a block is part of the chain, all the miners have
agreed on its content and, hence, it is non-repudiable and persistent. The tampering
with a block requires that its entire following chain must be modified, which is
extremely difficult according to the consensus protocol in place. This because
consensus protocols require a majority to create a block, which is a majority of hash
power for PoW, a majority of stake for PoS and 2/3 of honest nodes for PBFT.

Differently from Bitcoin, new types of blockchain such as Ethereum (Wood et al.
(2014)) have emerged introducing smart contracts, which are self-executable programs
running across blockchain network. Smart contracts are more versatile and
complicated than simple currency transactions. Being able to express conditions,
constraints and business logic, they perfectly encompass and model the terms of a
contract among entities to exchange assets (e.g., services or products). Smart contracts
executions become traceable, verifiable and irreversible within blockchain ecosystem,
thus enforcing the business logic contained therein and the agreement among
involved parties. Furthermore, smart contracts permit creating the so-called
decentralised applications, i.e. applications that operate autonomously and without any
control by a system entity and whose logic is immutably stored on blockchain. For
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FIGURE 2.1: Blockchain data structure

instance, a smart contract can carry out a vote, an auction, calculate a bill, or it can
even implement data mining and machine learning algorithms.

Bitcoin and Ethereum belong to a group of blockchain systems called permissionless, in
which any node on Internet can join the blockchain network, write to the shared
ledger by invoking transactions, and participate in the consensus process to form new
blocks. Contrarily to this setting, other blockchain systems exist that offer an
authentication and authorization layer, such as R3 Corda (Brown et al. (2016)) and
Hyperledger Fabric (Androulaki et al. (2018)). They are known as permissioned
blockchains and are operated by known entities. They can be either members of a
consortium across multiple organizations or belong to one organization only. In
permissioned blockchains the nodes are identified and enabled to issue transactions
or to be involved in consensus process only with proper permissions. This allows to
employ consensus schemas lighter than the PoW, like PoA or PBFT, making
permissioned blockchains faster by design (Cachin and Vukolić (2017)). A comparison
between the two settings is proposed by Swanson (2015). From one hand,
permissionless blockchains exhibit better information transparency and auditability,
but sacrifice privacy and mostly performance. On the other, permissioned blockchain
show higher transactions processing rate and flexibility in changing and optimising
the network rules, thus resulting in cost reduction.

2.2 Secure Multiparty Computation

In distributed systems context, and particularly in the field of distributed computing,
one of the main objectives for a cluster of servers is to carry out some function on data
they hold (e.g., data mining, elections, auctions). Considering the case in which these
data are confidential, the first requirement is ensuring that nothing else about the data
is leaked except the outcome of a pre-agreed function. Secure Multiparty Computation
(MPC) is a sub-field of cryptography able to provide this functionality ensuring strong
privacy guarantees on data handled. This is made possible by concealing the data
being processed and also the whole elaboration logic. MPC has been a subject of
academic studies since the 1980s, when the first constructions were proposed (Yao
(1982)), but nevertheless a first attempt to use it for a real scenario only took place in
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early 2000s (Bogetoft et al. (2009)). Thereafter, many MPC platforms have been
developed with different type of MPC protocols available.

Specifically, MPC is a distributed computing model that allows a set of multiple
untrusted parties to jointly perform functions on their private data, in such a way that
each of them learns the result value of a chosen function but not each other’s inputs
data. MPC enables such privacy-preserving property by means of cryptographic
protocols whose building blocks are:

• Secret sharing of data: Each party shares only a fragment of its data to the other
parties involved;

• Computation on data fragments: Each party individually computes the function
taking in input the fragments received from other parties involved.

At the end, all involved parties can discover the final result value of a chosen function
by jointly merging the outputs coming from each party’s computation on fragments.

2.2.1 Secret sharing

Secret sharing is a MPC technique introduced by Shamir Shamir (1979) and
Blakley Blakley (1979) in 1979, where a secret value (e.g., a decryption key) is split in
fragments, called shares, indistinguishable from random values. One share is delivered
to one of the participating parties, in a way that none of them knows the secret and
they can reconstruct it (only) by joining the shares they hold. For instance, assuming a
secret S given by a sequence of bits, and N parties where n = |N|, we can construct a
protocol to sharing S with N using XOR operation (i.e., ⊕). At first, generate n− 1
random fragments (a.k.a. nonces) s1, . . . , sn−1 of the same length of S. Then, set:

sn = S⊕ s1 ⊕ · · · ⊕ sn−1

and send the ith fragment si to the ith party in N. Hence, it follows that S can be
reconstructed only by xoring all the shares, namely S = s1 ⊕ · · · ⊕ sn. Note that this
protocol is information-theoretically secure (i.e., it cannot be cryptographically broken
even if an adversary has an infinite computational power) because: (i) even if the
adversary knows n− 1 shares it does not know enough information to reconstruct S,
and (ii) actually knowing n− 1 shares does not give more information than knowing
one share.

Based on this preliminary method, Shamir proposes in Shamir (1979) a scheme called
(k, n)-threshold secret sharing so defined:

Definition 2.1 (Shamir Secret Sharing). Given a secret S and a pair (k, n), where the
threshold k is k > 1 and k ≤ n, find n shares s1, . . . , sn such that:
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FIGURE 2.2: Secret fragments over the Cartesian coordinate system

• Knowledge of k or more shares makes it possible to reconstruct S;

• Knowledge of k− 1 or fewer shares leaves S completely undetermined, in the
sense that all its possible values are equally likely.

Note that in the case (n, n) all n shares are required to reconstruct the secret. To create
this scheme Shamir leverages on the polynomial interpolation over finite
fields Cramer et al. (2015). Specifically, it selects a prime number p bigger than both S
and n, and creates a polynomial of the form

h(x) = ak−1xk−1 + · · ·+ a1x1 + a0 mod p

where a0 is S and coefficients ak−1, . . . , a1 are picked at random over finite field Fp.
Then, the ith share si is the tuple of points (i, h(i)). An example of the interpolation
polynomial on the Cartesian coordinate system is depicted in Figure 2.2, where the
abscissae and fragments can be identified.

Using the Lagrange formula Cramer et al. (2015) is possible to reconstruct S with any
combination of k shares.

Definition 2.2 (Lagrange formula). Given a set of k + 1 data points

(x0, y0), . . . , (xj, yj), . . . , (xk, yk)

where no two xj are the same, the interpolation polynomial in the Lagrange form is a
linear combination

L(x) =
k

∑
j=0

yjlj(x)
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of Lagrange basis polynomials

lj(x) =
m ̸=j

∏
0⩽m<k

x− xm

xj − xm
=

(x− x0)

(xj − x0)
...
(x− xj−1)

(xj − xj−1)

(x− xj+1)

(xj − xj+1)
...

(x− xk)

(xj − xj−k)

Some of the useful properties of this (k, n) threshold secret sharing scheme are:

• The size of each fragment is not bigger than size of the secret (|si|, |S| < |p|);

• If k is kept fixed, fragments can be dynamically added/deleted without affecting
the other fragments;

• It is straightforward to generate a new set of fragments randomly building a
new polynomial;

• It is possible to assign higher weights to involved parties by giving them more
than one fragment.

• Each fragment can be delivered to one of the MPC computing nodes and then,
as proposed in the BGW protocol (Ben-Or et al. (1988)), the sum operation can be
calculated locally by performing sums on the collected fragments, while
products and other functions can be calculated through interactions between the
nodes.

2.2.2 Secure computation

The core of MPC model is represented by the secure computation protocol, in which
involved parties individually compute over shares created with a secret sharing
protocol. The term individually in this process means that each party locally and in
parallel perform the same computation of the others but taking in input different
shares. This because the secret sharing protocol splits data in shares and each party
has one of them. The tasks range from simple mathematical operations, such as
addition, multiplication or comparison, to more complex functions like searching a
common keyword in a collection of confidential documents. Similar to secret sharing
protocols, a secure computation protocol leverages on modular arithmetic to handle
the shares without knowing the actual value they represent.

In order to make a proper distinction, the MPC model separates the actors according
to the role they play. During a secret sharing protocol they are identified as input
parties, whereas in secure computation protocol they are called computational parties.
Another role is played by the result parties, which are those that request a desired
function to be executed on the data of input parties. In particular, following the same
logic of Section 2.2.1 for reconstructing the original value from shares, the result
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FIGURE 2.3: A MPC addition performed by three computational parties

parties merge the outputs of computational parties to locally reconstruct the outcome
of pre-agreed function. Generally these groups are disjoint in a system employing the
MPC model, although it can happen that they overlap and a party plays multiple
roles, e.g. an input party can be a computational party. The separation of roles helps
the MPC model to be more efficient, keeping the number of computing parties small
and reducing the number of shares to be produced by input parties.

In a system where the MPC is in place, the typical working flow starts with each input
party creating n shares for each of its confidential data (e.g., medical records, financial
data or asset transactions) through secret sharing protocol, where n is the number of
computational parties. Each share is delivered to exactly one party belonging to
computational group. When a system user among the result parties requests to
perform a desired function, then each computational party individually executes a
secure computation protocol on shares it received from various input parties. Once
the computation is completed, each computational party obtains a transient result,
indistinguishable from a random value. Finally, the requesting result party collects all
transient results produced by all computational parties and merge them together to
reveal the outcome of the desired function.

An example of how this process works is shown in Figure 2.3, where a student queries
the University system, composed by three servers, to learn the sum of other students
scores. The MPC model is employed within such system to preserve data privacy of
students (i.e., their scores), but at same time to allow statistical analysis on their data
(e.g., average of scores, etc.). The students ”A” and ”B” represent input parties, the
three servers represent computational parties, and the student ”C” represents a result
party. The input parties execute a secret sharing protocol for splitting their scores in
shares. Specifically, each of them picks two random numbers and creates three shares,
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one for each computational party, using addition in modular arithmetic. Once
received shares from input parties, each computational party fulfils result party’s
request by individually executing an addition-based secure computation protocol on
shares it holds. The outputs deriving from secure computation protocols of servers are
delivered to the result party to be later reconstructed. The student C finally learns the
sum of A’s and B’s scores, while they both remain private. Regarding the overall
system security, for the sake of completeness it is notable that no server knows neither
the score of each student, nor the final sum.

2.2.3 Security of MPC-based protocols

As can be noted from previous sections, the combined usage of secret sharing and
secure computation protocols of MPC model enables a system to store data in an
encrypted form and subsequently to process them without decrypting. Such
MPC-based protocols are conducted so that certain security properties, like privacy
and correctness, are preserved. Specifically:

• Privacy: The only thing that a party can learn it is the output of the prescribed
function, thereby no party should learn other parties inputs. For example in an
election the winning candidate will be revealed with the relative total number of
votes taken, but not who precisely voted for her;

• Correctness: The output of the prescribed function will always be correct. In the
election example, this means that the candidate with the highest number of
votes is guaranteed to win, and no party can influence this;

These properties should be ensured even if some of the participating parties or an
external entity maliciously attack the protocol, i.e. the so-called corrupted parties. A
corrupted party is passive (a.k.a. honest-but-curious) when it follows the protocol but
tries to deduce secret information, whereas is active (a.k.a. byzantine) when it
arbitrarily deviates from protocol. Generally speaking, privacy and correctness belong
to a set of requirements that should be met and held for any secure protocol, and
particularly for MPC they are:

• Independence of inputs: Corrupted parties should not be able to choose the inputs
to be submitted according to those of the honest parties. Continuing with
election example, a set of cheating parties cannot submit their votes knowing
those of the honest ones, because this would allow them to subvert the election
result;

• Guaranteed output delivery: Corrupted parties cannot prevent honest parties from
receiving the function’s output. Thus, in example, the adversary cannot
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intercept and/or destroy the output in transit towards an honest party, nor
hinder the computation;

• Fairness: Corrupted parties will receive function’s output if and only if the
honest parties also did. Thus, in example, election’s result has to be received by
all participating parties, regardless they wish to attack the protocol or not,
otherwise the corrupted ones can gain crucial information (i.e., the winning
candidate).

If these requirements are fulfilled the inputs of honest parties remain private and the
corrupted parties cannot cause the computation result to deviate from the function
determined by honest parties.

Goldreich et al. (1987) establish some feasibility results about MPC protocols,
demonstrating that any distributed function can be securely compute in the presence
of active adversary. Let n denote the number of parties participating in MPC protocols
and let t denote those that may be corrupted:

1. For t < n/3, MPC protocols with fairness and guaranteed output delivery can
be achieved for any function under computational security assuming a
synchronous point-to-point network with authenticated channels, and under
information-theoretic security assuming the channels are also private.

2. For t < n/2, MPC protocols with fairness and guaranteed output delivery can be
achieved for any function under both computational and information-theoretic
security, assuming that the parties also have access to a broadcast channel.

3. For t ≥ n/2, MPC protocols without fairness or guaranteed output delivery can
be achieved.

2.3 Homomorphic Encryption

In 1978, the early days of the asymmetric cryptography breakthrough, Rivest et al.
(1978) suggested an innovative paradigm under the name “privacy
homomorphisms,” which introduces the ability to perform various algebraic
functions on encrypted data without having to decrypt them first. This paradigm
relies on an interesting homomorphic property exhibited by some public-key schemes,
whereby the encrypted result of a function executed on ciphertexts, once decrypted,
matches the result of the same function executed on corresponding plaintexts. In other
words, a function F applied on two ciphertexts c1 = Enc(m1) and c2 = Enc(m2),
resulting from the encryption of two plaintexts m1 and m2, produces an encrypted
output c that decrypted is equal to the function applied on plaintexts,
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Dec(c) = F (m1, m2). In particular, Rivest et al. (1978) observed that the RSA
encryption scheme presents this homomorphic property for multiplication of
encrypted values. Since then, many cryptographers have devised several encryption
schemes that support computations on ciphertexts. Featured by the homomorphic
property such novel schemes take the name of Homomorphic Encryption (HE) schemes.

Formally, a HE scheme is defined as follow, where the plaintext space isM ∈ {0, 1},
and the set of algebraic functions it can carry out are represented in the form of
boolean circuits C (Vollmer (1999))

Definition 2.3 (C-Homomorphic Encryption). For a class of circuits C, a C-HE scheme is
a tuple of algorithms E = (KEYGEN, ENC, EVAL, DEC) with the syntax:

• KEYGEN(1λ)→ (pk, sk, ek) : For a security parameter λ, outputs a public key pk,
a private key sk, and a (public) evaluation key ek;

• ENC(pk, m)→ (c) : Given a public key pk and a message m, outputs a ciphertext
c;

• EVAL(ek,F , c1, . . . , ct)→ (c) : Given an evaluation key ek, a (description of a)
boolean circuit F and t ciphertexts c1, . . . , ct, outputs a ciphertext c;

• DEC(sk, c)→ (m) : Given a private key sk and a ciphertext c, outputs a message
m.

We require that for each kth circuit Fk ∈ C, all tuples (pk, sk, ek) in the support of
KEYGEN(1λ) and all plaintexts (m1, . . . , mt) and ciphertexts (c1, . . . , ct) such that ci is in
the support of ENC(pk, mi), if c = EVAL(ek, F , c1,. . . , ct), then DEC(sk, c) =
F (m1, . . . , mt). The computational complexity of E ’s algorithms is polynomial in the
security parameter λ, and in the case of the evaluation algorithm, the size of the
circuit.

We refer to ciphertexts produced by ENC as fresh ciphertexts, whereas the ones
produced by EVAL as evaluated ciphertext. The first generation of C-HE schemes is
usually called Partial HE (PHE), since initially the schemes were composed of circuits
that allow only one type of algebraic operation, either addition or multiplication, but
not both. A PHE scheme is additively homomorphic if its class of circuits C contains
only additions, or alternatively is multiplicative homomorphic if C contains only
multiplications. Addition and multiplication are respectively expressed in boolean
circuits as XOR (i.e., ⊕) and AND (i.e., ∧) logic gates. Let c1 = ENC(pk, m1) and c2 =
ENC(pk, m2) then:

DEC(sk, EVAL(ek,⊕, c1, c2)) = m1 + m2;

DEC(sk, EVAL(ek,∧, c1, c2)) = m1 ·m2.
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Examples of additively PHE schemes are Paillier (Paillier (1999)), DGK (Damgård
et al. (2007)) and GM (Goldwasser and Micali (1982)), whereas multiplicative PHE
schemes are RSA (Rivest et al. (1978)) and ElGamal (Elgamal (1985)).

Although the PHE schemes have revolutionised the world of cryptography by making
it possible to compute on encrypted data, they are limited to support the execution of
only one type of operation, i.e. one between addition and multiplication. That is the
case until 2009, when the groundbreaking work of Gentry Gentry (2009a) establishes
for the first time a blueprint to realise HE schemes capable of evaluating arbitrary
types of functions, i.e. both addition and multiplication. This significant improvement
goes under the name of Fully HE (FHE). Specifically, a FHE encryption scheme E is a
C-HE for the class C of all circuits, composed by both ⊕ and ∧ logic gates. The work of
Gentry was followed by a sequence of rapid advancements (Brakerski et al. (2012);
Brakerski and Vaikuntanathan (2011); Gentry et al. (2013); Van Dijk et al. (2010)),
which have brought various optimisations to FHE from efficiency and security
perspectives.

2.3.1 Properties of HE-based schemes

As defined by Goldwasser and Micali (1982), one essential property for a public-key
scheme is semantic security, also called indistinguishability under chosen plaintext attack
(IND-CPA). Generally, such property is represented in the form of a game between an
adversary and a challenger. The adversary is modelled with a probabilistic
polynomial-time (PPT) Turing machine, meaning that it terminates in a polynomial
number of steps. The challenger generates a pair of public-private keys and gives the
public key pk to the adversary, which it may use to generate any number of
ciphertexts. The adversary sends two equal-length messages m0 and m1 to the
challenger, which selects one of them to be encrypted by randomly choosing a bit
b ∈ {0, 1}. Then, the challenger sends back the ciphertext cb=ENC(pk, mb) to the
adversary, which has to guess whether cb is the encryption of m0 or m1. The adversary
sends b′ ∈ {0, 1} to the challenger and wins if b′ = b. The underlying cryptosystem is
IND-CPA if the PPT adversary is not able to determine b′ = b with a probability
significantly greater than 1/2. This required the ENC algorithm to possess a
component of randomness, so that cb is only one of many valid ciphertexts for mb.
Otherwise, the adversary could simply deterministically encrypt m0 and m1, and then
compare the resulting ciphertexts with cb to successfully guess the challenger’s choice.

The IND-CPA is a property required also for C-HE schemes. Indeed PHE schemes like
RSA, ElGamal, Paillier, DGK and GM are semantically secure. Semantic security of a
C-HE scheme follows directly from the semantic security of the underlying
(asymmetric) encryption scheme in the presence of the (public) evaluation key ek
(Goldwasser and Micali (1984); Halevi (2017)). This is because EVAL is a public
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algorithm with no secrets, and it does not give any additional information to the
adversary. Formally, we define semantic security for a C-HE scheme as follow:

Definition 2.4 (Semantic Security). A C-HE scheme is semantically secure if for every
PPT adversary A, a sufficiently large λ, every equal-length messages m0, m1 ∈ M (i.e,
|m0|=|m1|), an index bit b ∈ {0, 1}, and a negligible function ε, then

KEYGEN(1λ)→ (pk, sk), (2.1)

ENC(pk, mb)→ (c), (2.2)

Pr
[︂
A(pk, m0, m1,c) = b : (2.1), (2.2)

]︂
=

1
2
+ ε(λ).

The probability of the adversary A guessing b, i.e. guessing whether c is the
encryption of m0 or m1, knowing pk, is 1/2 plus a negligible amount in λ.

The semantic security belongs to a group of properties that any C-HE scheme should
possess. Formally, they are:

Definition 2.5 (Correctness). Let C be some class of circuits. A C-HE scheme E =
(KEYGEN, ENC, DEC, EVAL) is correct for C if it correctly decrypts ciphertexts
generated from both ENC and EVAL algorithms. Namely, for all λ ∈ N, the following
two conditions hold:

• For any m ∈ M,

ENC(pk, m)→ (c),

Pr
[︂

DEC(sk, c) = m
]︂
= 1;

• For every circuit F ∈ C and for any possible combinations of t ciphertexts
c1,. . . ,ct, where ci = ENC(pk, mi),

EVAL(ek,F , c1, . . . , ct)→ (c),

Pr
[︂

DEC(sk, c) = F (m1, . . . , mt)
]︂
= 1.

Definition 2.6 (Compactness). A C–HE scheme is compact if the size of evaluated
ciphertexts does not grow with the complexity of evaluated circuits, but it only
depends on the security parameter λ. Namely, if there exists a polynomial P, such that
for all λ ∈ N, for every circuit F ∈ C and for any ciphertext c generated from
EVAL(ek,F , c1, . . . , ct), where ci = ENC(pk, mi),

Pr
[︂
|c| ≤ P(λ)

]︂
= 1.

Definition 2.7 (Circuit Privacy). A C–HE scheme, correct for the class of circuits C, is
circuit private for C, if for every circuit F ∈ C, and any possible combination of t
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ciphertexts c1, . . . , ct, where ci = ENC(pk, mi), the distributions (2.3) and (2.4):

EVAL(ek,F , c1, . . . , ct) (2.3)

ENC(pk,F (m1, . . . , mt)) (2.4)

taken over the randomness of each algorithm are (statistically) indistinguishable, in
symbols (2.3) ≈ (2.4).

Note that Definition 2.7, also known as function privacy, refers to the
indistinguishability between the probability distributions of EVAL and ENC

algorithms. Basically, this states that even if two ciphertexts c′ = EVAL(ek, F , c1,. . . , ct)
and c′′ = ENC(pk, f (m1,. . . , mt)) are different in value and in generation process, they
belong to the same distribution. The interpretation of such property is that c′ can be
generated by ENC(pk, F (m1,. . . , mt)), and vice-versa c′′ is a valid output from
EVAL(ek, F , c1,. . . , ct). Therefore, it is difficult to determine which circuit has been
applied resulting in c′, since c′ can likewise result from the encryption of a particular
plaintext m̃ corresponding to F (m1, . . . , mt). For the correctness property, only when
decrypted c′ and c′′ are equal, i.e., DEC(sk, c′) = DEC(sk, c′′). Hence, a ciphertext
generated by EVAL does not reveal anything about the evaluated circuit, beyond its
output value.

2.3.2 CKKS: a FHE scheme

The CKKS scheme Cheon et al. (2017), also called Homomorphic Encryption for
Arithmetic of Approximate Numbers (HEAAN), is a FHE scheme that relies as a
computational model on polynomial and modular arithmetic over the rings (Shoup
(2006)). Unlike many HE schemes that primarily work with integers, CKKS supports
computations with real and complex numbers. This makes it particularly well-suited
for applications where numerical precision is crucial, such as in machine learning
models and data analytics. In particular, CKKS provides a mechanism to encode
complex values into polynomials with integer coefficients, and vice-versa decode
polynomials back into complex values. Encryption, decryption and evaluation
algorithms are then applied to these polynomials. In CKKS, additions and
multiplications perform an approximate computation, which means that after being
decrypted and decoded the evaluation output is an approximate result. The accuracy
of this approximation depends on a scale factor ∆ applied during encoding and a
rescaling procedure applied during decoding. This rescaling procedure is also used by
CKKS in the evaluation algorithm to reduce the magnitude of the evaluated ciphertext
following a multiplication. Moreover, CKKS is built upon the Ring Learning With
Errors (RLWE) mathematical problem Lyubashevsky et al. (2013), and the security of
the scheme relies on the hardness of solving it. Indeed, as in the RLWE problem, the
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CKKS scheme include a noise during encryption to make the polynomial ciphertext
indistinguishable. The main idea behind CKKS is to treat this RLWE noise as part of
error occurring during approximate computations. That is, the encryption takes in a
message m and a noise e as input, and generates a ciphertext of m′ = m + e
representing an approximate value of the message. If e is much small compared to m,
the noise is not likely to destroy the significant figures of m and the whole value
m′ = m + e can replace the original message in approximate arithmetic. The
combination of this approach with the scaling and rescaling procedures enables CKKS
to reduce the precision loss due to noise.

2.3.2.1 Notation

We use regular letters for integers and polynomials, and bold letters for vectors. Let n
be a power of two and q be an integer. We denote byR = Z[X]/(Xn + 1) the
polynomial ring of the (2n)-th cyclotomic field andRq = Zq[X]/(Xn + 1) the residue
ring ofRmodulo q. For an integer q, we use Z ∩ (− q

2 , q
2 ] as a representative of Zq. We

denote [a]q the reduction of an integer modulo q. For a real number r, we denote by
⌊r⌉ the nearest integer to r, rounding upwards in case of a tie. When applied to
polynomials, these operations are performed coefficient-wise. For a polynomial a inR
orRq, we denote its infinity norm by ∥a∥∞.

We use x ← D to denote that x is sampled from the distribution D. For a finite set S,
we denote U (S) as the uniform distribution on S. For σ > 0, we denote by Dσ a
distribution overR sampling n coefficients independently from the discrete Gaussian
distribution of variance σ2, and Bσ an (overwhelming probability) upper bound of Dσ

with respect to the infinity norm.

2.3.2.2 Ring Learning With Errors

RLWE is a mathematical problem in the field of lattice-based cryptography
Lyubashevsky et al. (2013). Given the parameters (n, q, ψ,Xσ), consider the
polynomial number of samples (ai, bi) ∈ R2

q, where ai ← U (Rq), bi = s · ai + ei

(mod q) and error ei ← Xσ for a fixed private key s← ψ from the key distribution ψ.
We consider that the private key s has ternary coefficients in {−1, 0, 1}. The RLWE
assumption states that the distribution of RLWE samples (ai, bi) is computationally
indistinguishable from U (R2

q). That is, in other words, it is computationally hard for
an adversary that does not know s and ei to distinguish between the distribution of
(ai, s · ai + ei) and that of (ai, ci) where ci ← U (Rq).
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FIGURE 2.4: Ciphertext structure in the CKKS scheme.

2.3.2.3 Plaintext and ciphertext spaces

In CKKS, both the plaintext and ciphertext spaces include elements of the polynomial
ringRq = Zq[X]/(Xn + 1), where q is called the coefficient modulus and Xn + 1 is an
irreducible polynomial called the polynomial modulus. Elements ofRq are
polynomials with integer coefficients bounded by q, i.e. they can take any value
between 0 and q− 1. The degrees of polynomials inRq are bounded by n. In CKKS,
plaintexts differ from ciphertexts in the number of polynomials they contain. An
instance of plaintext contains one polynomial, whereas an instance of ciphertext
contains two polynomials, of which one containing the encrypted message and the
other dedicated to decryption.

Figure 2.4 shows the structure of a CKKS ciphertext. For ease of illustration, we
simply report the polynomial of the ciphertext containing the message, and that the
polynomial is of degree 0 (i.e., is equal to aX0 where a is the coefficient). In Figure 2.4,
MSB stands for the most significant bit, q is the coefficient modulus, m′ = m + e is the
approximate message with the noise on the LSB (least significant bit). The space is
bounded by the value of q, and the approximate message m′ can freely move in this
space, where the grey-colored area is the open space remaining. Before the message
encryption, CKKS scales the message m by the scale factor ∆, moving the most
significant bits of m to the left, further away from e. Such scaling procedure ensures
that e does not distort or corrupt the value of m, and that m′ is a good approximation
of m. The reason is that the least significant bits of m, which will be distorted by
adding e, are not of great importance since they will be rounded off after rescaling m′.

2.3.2.4 Parameters

The RLWE-based parameters n and q have an impact on both security and
performance of the CKKS scheme. Larger n increase the security, but at the same time
decrease the performance. For a fixed n, a larger q implies both lower security and
lower performance. Hence, n and q should be chosen carefully to suit the intended
use of the scheme. The homomorphic encryption standard Albrecht et al. (2018)
suggests pairs of (n, q) for different levels of security (i.e., 128, 192 or 256 bits).
Specifically, for a given n, it recommends a value of q which will achieve a given level
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of security, e.g. 128. Moreover, it should be noted that the CKKS is a scale-variant
scheme. When a homomorphic multiplication is performed, the ciphertext is scaled
down by ∆. This results in reducing the size of q by ∆ and producing a polynomial
whose coefficient modulus is q′ = q

∆ . Hereafter, we refer to the coefficient modulus at
level l by ql , where 1 ≤ l ≤ L, and L is the level of a fresh ciphertext. Therefore, CKKS
ciphertext coefficients are related to each other by:

qL > qL−1 > . . . > q1

Beyond the aforementioned parameters q, n, and ∆, CKKS uses the following
additional RLWE-specific distributions in its instantiation:

• R3: is the (private) key distribution that uniformly samples polynomials with
integer coefficients in {−1, 0, 1}.

• Xσ: is the error distribution defined as a discrete Gaussian distribution overR of
variance σ2, bounded by some integer Bσ. According to the current version of
the homomorphic encryption standard Albrecht et al. (2018), (σ, Bσ) are set as
( 8√

2π
≈ 3.2, ⌊6 · σ⌉ = 19).

• U (Rq): is a uniform random distribution overRq.

2.3.2.5 Encoding and decoding

The encode algorithm of the CKKS scheme takes in input a n
2 -vector of complex

numbers z ∈ C
n
2 and outputs a polynomial m from ringR. The CKKS decoding does

the reverse, by taking in a polynomial m and returning a vector of complex numbers.
The following Equation 2.5 and Equation 2.6 show the encoding and decoding
respectively. The map π is the complex canonical embedding which is a variant of the
Fourier transform (Cheon et al. (2017)).

ECD(z, ∆) = ⌊∆ · π−1(z)⌉ = m (2.5)

DCD(m, ∆) = π

(︃
1
∆
·m

)︃
= z (2.6)

In the encode algorithm, the scaling is performed by multiplying the message by ∆,
and removal of least significant fractional parts is performed via rounding. In the
decode algorithm, this procedure is reversed by dividing by ∆.
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2.3.2.6 Relinearization and rescaling

As in any FHE scheme, in CKKS the magnitude of an evaluated ciphertext grows after
multiplication. Consider two input ciphertexts c′ = (c′0, c′1) and c′′ = (c′′0 , c′′1 ) both in
Rql , and perform multiplication between them:

c′ · c′′ = (c′0, c′1) · (c′′0 , c′′1 ) = [c′0 · c′′0 ]ql , [c
′
0 · c′′1 + c′1 · c′′0 ]ql , [c

′
1 · c′′1 ]ql = (c̃0, c̃1, c̃2) = c̃

The ciphertext c̃ contains three polynomials as opposed to input ciphertexts c′ and c′′

that contain two. CKKS uses the relinearization procedure to reduce the size of c̃ to two
polynomials. That is, the goal of relinearization is to find a c̄ = (c̄0, c̄1) such that:

DEC(c̄, sk) = c̄0 + c̄1 · sk = DEC(c̃, sk)

= DEC(c′, sk) · DEC(c′′, sk)

= (c′0 + c′1 · sk) · (c′′0 + c′′1 · sk)

= c′0 · c′′0 + (c′0 · c′′1 + c′1 · c′′0 )sk + c′1 · c′′1 · sk2

= c̃0 + c̃1 · sk + c̃2 · sk2

In order to achieve this equality, the reduced ciphertext needs to be defined as
(c̄0, c̄1) = (c̃0, c̃1) + p where p is a pair of polynomials by which:

DEC(c̄, sk) = DEC((c̃0, c̃1), sk) + DEC(p, sk) = c̃0 + c̃1 · sk + c̃2 · sk2

To compute p, the relinearization uses the evaluation key ek = (b, a) ∈ R2
P·ql

, where
b = [−a · sk + e + P · sk2]P·ql , a← U (RP·ql ), e← Xσ and P is a big integer. The idea is
to multiply ek by c̃2 and divide by P to reduce the noise (since c̃2 is a big polynomial).
Hence, p = ⌊P−1 · c̃2 · ek⌉ (mod ql) and its decryption is:

DEC(p, sk) =
c̃2

P
(−a · sk + e + P · sk2) +

c̃2

P
· a · sk =

c̃2

P
· e + c̃2 · sk2 ≈ c̃2 · sk2

After the relinearization, the non-expanded ciphertext c̄ ∈ R2
ql

encrypts the product of
c′ and c′′ but with a squared scale factor ∆2. This because the plaintexts m′ and m′′,
encrypted by c′ and c′′ respectively, are both scaled up by ∆ during encoding. Thus,
CKKS applies the rescaling procedure to c̄ that scales it down by ∆ and generates an its
equivalent ciphertext ĉ ∈ R2

ql−1
with a reduced coefficient modulus ql−1. Equation 2.7

defines the rescaling algorithm:

RSC(c̄, ∆) =
1
∆
· [c̄]ql = [ĉ]ql−1 (2.7)
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FIGURE 2.5: CKKS multiplication and rescaling.

The rescaled ciphertext ĉ encrypts the same plaintext of c̄, i.e. m′ ·m′′ with a reduce
scale factor and reduced noise, which results in a coefficient modular reduction from
level l to level l − 1. Figure 2.5 shows this procedure. For each ciphertext we simply
report the polynomial containing the message (i.e., c′0, c′′0 , c̄0, ĉ0), and we assume that
the polynomial is of degree 0.

2.3.2.7 HE primitives

Figure 2.6 shows an high level view of the CKKS scheme. Firstly, a n
2 -vector of

complex numbers z ∈ C
n
2 is encoded into a plaintext m ∈ R, whereR is the ring

Z[X]/(Xn + 1). Recall that during the encoding, z is scaled by a factor ∆. Then, m is
encrypted with the public key pk, which is composed by a pair of polynomials
(pk1, pk2) defined as:

pk1 = [−a · sk + e]qL

pk2 = a← U (RqL)

The polynomial sk is the private key sampled fromR3, a is a random polynomial
sampled uniformly fromRqL , and e is a random error polynomial sampled from Xσ.
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FIGURE 2.6: The CKKS algorithms and their interactions.

The encryption of the plaintext m generates the ciphertext c ∈ R2
ql

, i.e. c is composed
by two polynomials (c0, c1) of this form:

c0 = [pk1 · u + m + e1]ql

c1 = [pk2 · u + e2]ql

The polynomial u is sampled fromR3, and the random polynomials e1 and e2 are
sampled from Xσ. Note that the CKKS encryption generates ciphertexts at any level l.

Then, c is evaluated with the function f () that generates the evaluated ciphertext
c′ = f (c) inR2

ql
, which is decrypted by multiplying the private key sk with c′1 and

adding it with c′0. That is:

[c′0 + c′1 · sk]ql = [pk1 · u + m′ + e1 + (pk2 · u + e2)sk]ql

= [(−a · sk + e)u + m′ + e1 + (a · u + e2)sk]ql

= [m′ + e · u + e1 + e2 · sk]ql

≈ m′ = f (m)

Finally, the plaintext m′ is decoded returning the message z′ ∈ C
n
2 of complex values,

which is an approximate result of f (z). Recall that during the decoding, z′ is rescaled
by ∆−1.

Formally, a CKKS scheme is defined as follow:

Definition 2.8 (CKKS scheme). Let d > 0 be a fixed base for scaling in approximate
computations and q0 be a modulus, and let ql = dl · q0 for 0 < l ≤ L. A CKKS scheme
is a tuple of algorithms E = (KEYGEN, ENC, DEC, ADD, MUL, RSC) with the syntax:
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• KEYGEN(1λ)→ (pk, sk, ek) : For a security parameter λ, outputs a public key pk,
a private key sk, and a (public) evaluation key ek.

• ENC(pk, m)→ (c) : For a given polynomial m ∈ R, outputs a ciphertext c ∈ R2
qL

.

• DEC(sk, c)→ (m) : For a ciphertext c ∈ R2
ql

at level l and a private key sk,
outputs a polynomial m ∈ R.

• ADD(c1, . . . , ct)→ (c) : For t ciphertexts c1, . . . , ct encrypting polynomials
m1, . . . , mt, outputs a ciphertext c ∈ R2

ql
that is the encryption of their

approximate addition ∑t
i=1 mi. The level l of c is the minimum between the

levels of the input ciphertexts and an error of c is bounded by sum of errors in
input ciphertexts.

• MUL(ek, c1, . . . , ct)→ (c) : For an evaluation key ek and t ciphertexts
c1, . . . , ct ∈ R2

ql
encrypting polynomials m1, . . . , mt, outputs a ciphertext c ∈ R2

ql

that is the encryption of their approximate multiplication ∏t
i=1 mi. A pairwise

multiplication between input ciphertexts is ci · cj = (ci0 · cj0, ci0 · cj1 + ci1 · cj0) +

⌊P−1 · ci1 · cj1 · ek⌉ (mod ql), where P is a big integer.

• RSC(c)→ (c′) : For a ciphertext c ∈ R2
ql

at level l resulting from a multiplication,
outputs a ciphertext c′ ← ⌊ ql′

ql
c⌉ inR2

ql′
where l′ < l, i.e. c′ is obtained by scaling

ql′
ql

to the entries of c and rounding the coefficients to the closest integers.

2.3.3 Threshold Homomorphic Encryption

The idea of including MPC-based protocols (Chapter 2.2) in HE schemes was first-time
presented by Cramer et al. (2001). In such work they proposed the usage of a MPC
secret sharing protocol (2.2.1) to generate the cryptographic keys of a semantically
secure PHE scheme. More precisely, it allows parties of a PHE scheme to collectively
agree on a common public key, and to split the matching private key in fragments, so
that each party holds one of them. The parties can then encrypt their individual inputs
under the common public key and evaluate their desired functions homomorphically.
To decrypt evaluated ciphertexts another MPC protocol is enforced, where parties
reconstruct the private key by putting together their fragments. Cramer defines this
new form of HE as Threshold HE (THE), because a fixed threshold of fragments is
needed to reconstruct the private key and enable decryption. Depending on the
application context, the required threshold of fragments can vary, albeit the most
secure configuration is a threshold equals to the number of parties, which forces a
malicious adversary to take control of all parties to obtain all fragments.

Following Cramer’s insight, in his PhD thesis (Gentry (2009b)) Gentry presents the
notion of Threshold Fully Homomorphic Encryption (TFHE) with the purpose of applying
FHE on multiparty setting. Basically, a TFHE scheme is a FHE scheme with the



2.3. Homomorphic Encryption 31

difference that KEYGEN and DECRYPTION are now N-party MPC protocols instead of
non-interactive algorithms.

Formally, we define a TFHE scheme for a group of N parties as follows, where the
threshold of fragments required to decrypt is set to N:

Definition 2.9 (Threshold Fully Homomorphic Encryption). Let N = {P1, . . . , Pn} be a
group of parties, where n = |N|. Each Pj holds a FHE scheme Ej. A group {E1, . . . , En}
of schemes is threshold fully homomorphic TFHE, if each Ej = (MPC-KEYGEN, ENC,
EVAL, DEC, MPC-DEC) has the following sintax:

• MPC-KEYGEN(P1, . . . , Pn, 1λ)→ (pk, sk j, ek) : Given all N parties and a security
parameter λ, outputs a common public key pk, a fragment of the private key sk j

for Pj, and a (public) evaluation key ek, by executing a MPC protocol among N;

• ENC(pk, m)→ (c) : Given a public key pk and a message m, outputs a ciphertext
c;

• EVAL(pk, ek,F , c1, . . . , ct)→ (c) : Given a public key pk, an evaluation key ek, a
(description of a) boolean circuit F and t ciphertexts c1, . . . , ct, outputs a
ciphertext c;

• DEC(sk j, c)→ (cj) : Given a private key sk j and a ciphertext c, outputs a partial
decryption ciphertext cj;

• MPC-DEC(P1, . . . , Pn, c)→ (m) : Given all N parties and an evaluated ciphertext
c, outputs a message m by executing a MPC protocol among N.

We require absence of decryption failures and compactness of ciphertexts. Formally,
for the class C of all circuits (i.e., both ⊕ and ∧ logic gates), all sequences of n key
tuples (pk, sk j, ek)j∈N each of which is in the support of MPC-KEYGEN(P1, . . . , Pn, 1λ),
all plaintexts (m1, . . . , mt) and ciphertexts (c1, . . . , ct), such that ci in the support of
ENC(pk, mi), EVAL satisfies the following properties:

• Correctness: Let c = EVAL(pk, ek,F , c1, . . . , ct). Then MPC-DEC(P1, . . . , Pn, c)
= F (m1, . . . , mt);

• Compactness: Let c = EVAL(pk, ek,F , c1, . . . , ct). There exists a polynomial p such
that |c| ≤ p(λ, n). In other words, the size of c is independent of t and |C|. Note,
however, that we allow the evaluated ciphertext to depend on the n number of
keys.

Note from definition 2.9 that the MPC-DEC algorithm requires all fragments of the
private key to correctly decrypt an evaluated ciphertext, i.e. the threshold is
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N-out-of-N. This provides a high level of security, since even a collusion of n− 1
parties cannot reconstruct the private key. However, with a N-out-of-N threshold, if a
party decides to join or leave the protocol, then is necessary to create a new set of
fragments for the new set of parties by re-running the MPC-KEYGEN algorithm. It
causes an extra parties’ computational effort and can lead to serious performance
issues if the number of parties wanting to join or leave significantly increases.

Last considerations about TFHE concern its efficiency compared to traditional HE
schemes. As can be noted, the presence of MPC protocols in TFHE brings additional
communication and computational overhead. Nevertheless, if the employed MPC
protocols are efficient in terms of round of interactions among parties, then the overall
TFHE scheme remains feasible and efficient. In this context is worth mentioning the
work of Asharov et al. (2012) on TFHE, which proposes an efficient 3-round MPC
protocol: one round for keys generation, one round for evaluation, and one round for
decryption. In addition, they propose to outsource the bulk of computation, i.e. the
EVAL algorithm, to an external Cloud service with the aim of further alleviating
parties’ effort.

2.3.4 Multi-key Homomorphic Encryption

In 2012, López-Alt et al. (2012) introduce the concept of Multi-Key HE (MKHE), a new
HE model capable of performing computations on data encrypted under multiple
unrelated keys of different parties. In MKHE each party generates its own
cryptographic keys and encrypts its confidential data with its public key. When a
function needs to be evaluated on some input ciphertexts c1, . . . , ct, where ci is
encrypted with pki, then each ith input ciphertext ci is extended with the other t− 1
public keys. Typically, extending a public key of a ciphertext with another is referred
in literature as key-switch or relinearization (Brakerski and Vaikuntanathan (2011);
Brakerski et al. (2012)). To later decrypt an evaluated ciphertext c̃ in MKHE model, all
parties who supplied an input ciphertext in c̃ collectively run a MPC protocol using
their respective private keys.

Formally, we define MKHE for a group of N parties as follows, where each party
holds a C-HE scheme and can run MPC decryption protocols:

Definition 2.10 (Multi-Key C-Homomorphic Encryption). Let C be a class of circuits. Let
N = {P1, . . . , Pn} be a group of parties, where n = |N|. Each Pj holds a C-HE scheme
Ej. A group {E1, . . . , En} of schemes is multi-key homomorphic MKHE, if each Ej =
(KEYGEN, ENC, EVAL, DEC, MPC-DEC) has the following sintax:

• KEYGEN(1λ)→ (pk j, sk j, ek j) : For a security parameter λ, outputs a public key
pk j, a private key sk j, and a (public) evaluation key ek j for party Pj;
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• ENC(pk j, m)→ (c) : Given a public key pk j and a message m, outputs a
ciphertext c;

• EVAL(F , (c1, pk1, ek1), . . . , (ct, pkt, ekt))→ (c) : Given a (description of a) boolean
circuit F along with t tuples (ci, pki, eki), each comprising of a ciphertext ci, a
public key pki, and an evaluation key eki, outputs a ciphertext c;

• DEC(sk j, c)→ (m) : Given a private key sk and a ciphertext c, outputs a message
m;

• MPC-DEC(P1, . . . , Pt, c)→ (m) : Given a set T = {P1, . . . , Pt} of parties, where
T ⊆ N, and an evaluated ciphertext c produced with t = |T| public keys,
outputs a message m by executing a MPC protocol among T.

We require absence of decryption failures and compactness of ciphertexts. Formally,
for every kth circuit Fk ∈ C, all sequences of n key tuples (pk j, sk j, ek j)j∈N each of
which is in the support of KEYGEN(1λ), all sequences of t tuples (pki, ski, eki)i∈T each
of which is in (pk j, sk j, ek j)j∈N , and all plaintexts (m1,. . . , mt) and ciphertexts (c1,. . . , ct)
such that ci in the support of ENC(pki, mi), EVAL satisfies the following properties:

• Correctness: Let c = EVAL(F , (c1, pk1, ek1), . . . , (ct, pkt, ekt)). Then MPC-DEC(P1,
. . . , Pt, c) = F (m1, . . . , mt);

• Compactness: Let c = EVAL(F , (c1, pk1, ek1), . . . , (ct, pkt, ekt)). There exists a
polynomial p such that |c| ≤ p(λ, n). In other words, the size of c is independent
of t and |C|. Note, however, that we allow the evaluated ciphertext to depend on
the n number of keys.

On the basis of this Definition 2.10 we define Multi-Key Fully HE (MKFHE) as follows:

Definition 2.11 (Multi-key Fully Homomorphic Encryption). A group of encryption
schemes {E1, . . . , En} is multi-key fully homomorphic MKFHE, if each Ej is multi-key
for the class C of all circuits.

As per C-HE, semantic security of MKFHE follows directly from the semantic security
of the underlying encryption schemes in the presence of the evaluation keys
ek1, . . . , ekN . This is because, given a subset ek1, . . . , ekt, the adversary can execute the
algorithm EVAL by herself. Note that taking N = 1 in Definition 2.10 and
Definition 2.11 yield the standard definitions of C-HE and FHE.

In a later extension of their work, in 2013, López-Alt et al. (2013) propose to use the
onion encryption technique to extend input ciphertexts instead of conventional
relinearization techniques. Practically, onion encryption wraps each ci around t− 1
layers of encryption recursively. That is, input ciphertext ci is first encrypted with pkt,
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its result is encrypted with pkt−1, and so on until pki+1. The resulting ciphertext is
then encrypted with pki−1 and so again up to pk1, finally producing the ”onion”
ciphertext zi. This creates a new set z1, . . . , zt of onion ciphertexts, by which F can be
homomorphically evaluated.

A different realisation of MKFHE under the Learning with Errors (LWE) (Regev (2005))
assumption has been proposed by Clear and McGoldrick (2015). The proposed
MKFHE scheme supports an arbitrary number of parties by relying on a common
reference string that must be known at key-generation time. Later on, the LWE-based
MKFHE model was significantly simplified by Mukherjee and Wichs (2016) and
further improved by Peikert and Shiehian (2016).
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Chapter 3

Evaluating Blockchain systems: A
comprehensive study of security and
dependability attributes

Blockchain replaces traditional centralised infrastructures through a distributed
network of entities that collectively fulfil operations without the need of trusting each
other. It fosters the decentralisation of the infrastructure, in which there is not any
trusted authority in control of the network. The advantages of decentralisation are
threefold: there is not a single point of failure, trust is distributed across the network,
and the whole system results harder to compromise (Troncoso et al. (2017)). However,
the enhancements of decentralisation do not come at free cost. To ensure correctness
and reliability, blockchains require complex distributed computing procedures. The
lack of trust and the increased complexity can turn into system vulnerabilities. In
particular, an adversary can take advantage of a wide attack surface to wreak havoc
on the network and compromise its security. For instance, in 2021 about US$ 1.3B got
stolen in decentralised finance applications (CertiK (2021)) by exploiting code
vulnerabilities related to smart contracts - programs deployed and executed on the
blockchain.

Security is nowadays a paramount need for blockchains. In traditional distributed
systems, security is often paired with dependability. Those properties include a set of
attributes that identify the reliability, availability, confidentiality, and integrity of a
system during its execution (Avizienis et al. (2004, 2001)). In a blockchain context,
where several parties exchange value via peer-to-peer transactions, it is crucial
ensuring that the system remains secure and dependable thus avoiding problems like
double-spending. However, blockchain systems entail several infrastructures and
architectural choices such as the use of either a permissionless or permissioned
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network, the consensus protocol, and the use of smart-contracts for applications. As a
result, assessing the security of each component might be a challenging task.

In literature, some effort has been devoted to studying security in consensus protocols
employed for blockchain systems (Cachin and Vukolić (2017); Shehar et al. (2019);
Vukolić (2015)). However, a fair comparison is elusive due to several contrasting
assumptions. Moreover, some works attempted to provide security evaluation of
blockchains applications by assessing exploited vulnerabilities of smart contracts
(Mense and Flatscher (2018); Atzei et al. (2017); Samreen and Alalfi (2021)), however,
most of these studies mainly focus on the Ethereum platform (Wood et al. (2014)).

In this chapter, we provide a comprehensive evaluation of security in blockchains. To
this extent, we propose a refined definition of security and dependability properties
by referencing traditional CIA Triad - confidentiality, integrity, and availability, and we
additionally introduce two new properties, namely profiling and fairness. The former
determines the ability of a blockchain to authenticate participants and to define access
control rules. The latter models the willingness of a system to be accessible by any
participant and to process operations democratically. We therefore analyse blockchain
systems by evaluating those properties with respect to three dimensions, namely
consensus, infrastructure and smart contracts. We consider five most prominent
blockchain platforms, namely Bitcoin (Nakamoto et al. (2008)), Ethereum 2.0 (Ethereum
(2022b)), Algorand (Gilad et al. (2017)) Hyperledger Fabric (Androulaki et al. (2018)) and
a private instance of Ethereum, called Ethereum private (Go-Ethereum Docs (2022)).
Firstly, we study the architectural models of these platforms to assess their security at
the infrastructure level. Therefore, we focus on their underlying consensus protocol,
i.e. the mechanism used by the network to democratically agree on the order
operations. In particular we consider five consensus protocols, respectively called
Proof-of-Work (PoW) (Nakamoto et al. (2008)), Casper Proof-of-Stake (PoS) (Ethereum
(2022a)), Pure Proof-of-Stake (PPoS) (Gilad et al. (2017)), Practical Byzantine Fault
Tolerance (PBFT) (Castro and Liskov (1999)), and Proof-of-Authority (PoA) (De Angelis
et al. (2018)). Although consensus aims at guaranteeing security-by-design, any
implementation relies on different assumptions under which the correctness of the
protocol is guaranteed (Cachin and Vukolić (2017)). To this extent, we propose an
analysis based on the tolerance to attacks. Specifically, we distinguish three different
types of attack vectors that target assets, i.e. ‘computing’ in PoW and ‘stake’ in PoS, or
network nodes, i.e. the maximum number of subverted nodes that PoA and PBFT can
tolerate. Finally, we drift the analysis to the application layer built on top of the smart
contracts capabilities of blockchains. We provide a detailed description of well-known
code issues affecting smart contracts and thus evaluate how each issue impacts the
security properties. The analysis evaluates then how the three smart contract enabled
platforms considered in this study, i.e. Ethereum, Algorand and Hyperledger Fabric,
address those issues and their mitigation effects.
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Contributions

The content of this chapter has been published in De Angelis et al. (2019) and
De Angelis et al. (2022). The contributions of this work are:

• a refinement of the security and dependability attributes of blockchain systems,
by introducing and defining two novel security properties, i.e. profiling and
fairness;

• a comprehensive security evaluation of the five prominent blockchain platforms,
i.e. Bitcoin, Ethereum 2.0, Algorand, Ethereum-private and Hyperledger Fabric,
with respect to their consensus algorithm, infrastructure, and smart contracts.

Chapter structure

Section 3.1 describes the distinction between permissioned and permissionless
blockchain. Section 3.2 introduces the blockchain platforms we consider in our study
and Section 3.3 describes their underlying consensus protocols, whereas Section 3.4
presents a collection of smart contract code issues. Then, Section 3.5 defines the
refined security and dependability properties and the security analysis of those
properties at consensus, platform and smart contract layers. Finally, Section 3.6 sums
up the results.

3.1 Permissionless versus Permissioned

Blockchain systems can be classified on the basis of access rules under different
permission models. Participants of a blockchain network have rights of: (i) accessing
data on the blockchain (Read), (ii) submitting transactions (Write) and (iii) running a
consensus protocol ad updating the state with new blocks (Commit).

BitFury Group and Garzik (2015) define blockchain systems on the basis of these
rights. Specifically, regarding Read operations a blockchain can essentially be divided
in two classes:

• public blockchain: no restrictions applied on Read operations;

• private blockchain: a predefined list of entities is allowed to run Read operations.

The Write and Commit operations in turn identify other two classes of blockchain:
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read write commit
public

anyone anyone anyone
permissionless

public
anyone

authorised all or a subset of
permissioned participants authorised participants

private restricted to a subset of authorised all or a subset of
permissioned authorised participants participants authorised participants

TABLE 3.1: Operations allowed on permissionless and permissioned blockchains

• permissionless blockchain: no restrictions on Write and Commit operations;

• permissioned blockchain: only a predefined list of entities is allowed to Write and
Commit operations.

In other words, in permissionless blockchain, anyone can join the network and
execute Commit and Write operations. On the opposite side, nodes of a permissioned
blockchain are known at the outset, thanks to an authentication mechanisms, and only
those authorised nodes can participate in Commit and Write on the blockchain
network. Regardless of the identification process, a permissioned blockchain can be
either public or private, according to whether only authorised nodes are able to
execute Read operations. Table 3.1 shows a comparison between the identified
models. Public permissionless blockchains, as e.g. Bitcoin, operate in hostile
environments and require the deployment of crypto-techniques to coerce participants
to behave honestly. These crypto-techniques involve the usage of a cryptocurrency
(e.g. ether on Ethereum) to reward participants, which can be stored on a digital
wallet. Indeed, a cryptocurrency wallet stores the public and/or private keys for the
accounts, and can be used to track ownership, receive or spend cryptocurrencies.
Contrarily, private permissioned blockchains operate in environments where
participants are authenticated. For this reason, permissioned blockchain can hold
participants accountable for misbehaviour in ways that permissionless
implementations cannot. Thanks to accountability, systematic violations can be
detected over time and resolved optimistically. This is a substantial simplification, and
permissioned systems benefits from fairness property that derive from it.

3.2 Blockchain platforms

In this section, we describe the blockchain platforms considered in our analysis,
namely Bitcoin, Ethereum, Algorand, Ethereum-private and Hyperledger Fabric. We
briefly introduce the architectures, yet an overview of their performance and security.
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3.2.1 Bitcoin

Bitcoin (Nakamoto et al. (2008)) is the first, open-source, permissionless blockchain
born for electronic machine-to-machine payment without need of any central authority.
Bitcoin transactions are processed in a fully decentralised manner and their ordering
is guaranteed by an underlying lottery-based (i.e. probabilistic) consensus mechanism,
i.e., the PoW. Such a solution allows a consistent, immutable, and therefore
trustworthy, public ledger of transactions ever made. However, since the lottery-based
consensus makes miners work in a decentralised way, multiple valid blocks can get
mined at the same time; this makes it possible to fork the blockchain in multiple valid
branches. However, forks eventually converge to a single branch through the
longest-chain probabilistic rule. To compromise a block an attacker needs to acquire
(or make collude) the 51% of the computational power of the miners. Compromising
more than 6 blocks is considered computationally infeasible, therefore a block is
considered final after ≈ 6 blocks. To avoid double spending and/or avoid spending
tokens not owned, Bitcoin uses the UTXO model, i.e., each transaction is composed of
a list of unspent transactions indicating the balance of accounts. Besides, the sender of
a transaction is charged a mining fee (in BTC, the Bitcoin cryptocurrency) whose
amount depends on the size (in byte) of the transaction, i.e., the number of UTXO
addresses used. Miners must produce blocks with a maximum block size equal to
1MB. To ensure strong (eventual) integrity Bitcoin sacrifices performance, indeed the
throughput is only about 5 txn/s with a block confirmation period of about 10
minutes. The difficulty of the PoW is adjusted over time according to the
computational power to keep a fixed block confirmation time of about 10 minutes.

3.2.2 Ethereum

Ethereum (Wood et al. (2014)) is the second main open-source blockchain project. The
underlying idea is to make the blockchain programmable through smart contracts, i.e.,
immutable pieces of code deployed and executed autonomously on the so-called
Ethereum Virtual Machine (EVM). Smart contracts are developed in Solidity (Ethereum
(2018b)), a Turing-complete programming language which can be interpreted by the
EVM. The first version of Ethereum is based on the PoW consensus, like Bitcoin, but
with a shorter confirmation time (about 14 seconds) which increases the throughput to
about 30 txn/sec. This makes Ethereum more prone to forks than Bitcoin which are
similarly solved with a longest-chain rule. The PoW makes Ethereum vulnerable to
51% attacks, like Bitcoin, therefore a block is considered final after 6 blocks. Ethereum
does not employ a UTXO model to manage transactions, but an account-based model,
i.e., each account has its balance stored within the state of the ledger. There are two
types of accounts: externally owned accounts (EOA) and contract accounts. The former
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are similar to standard Bitcoin accounts, whereas the latter can perform smart contract
execution. Each transaction is charged according to:

• gas price: the amount of ETH (the Ethereum’s cryptocurrency) to be paid for each
computational step of the transaction’s execution;

• gas limit: a scalar value representing the total amount of gas that can be
consumed by the transactions in a block. It also determines the number of
transactions handled in a block.

Each transaction has an overall limit to the gas it can consume to prevent runaway
transactions, which accidentally or maliciously engage in never-ending computations.

3.2.2.1 Ethereum 2.0

It is the most important update of the Ethereum protocol to cope with scalability and
performance issues. Among others, it proposes two major improvements, such as the
shift from PoW to a new PoS implementation called Casper Proof of Stake, and the
implementation of Shard Chains. The upgrade to PoS should evolve to a more
energy-efficient platform, while Shard Chains may drastically improve scalability by
changing the way the blockchain is replicated across the nodes of the network.
Indeed, the traditional Ethereum implementation has a single blockchain replicated
over thousands of nodes, conversely, sharding implies splitting the blockchain into
smaller pieces, i.e., shards, which are distributed among a set of nodes which are
responsible to handle only data of its shards. This allows the parallel execution of
transactions, enabling the achievement of better throughputs. However this will come
at a security cost since each shard is not managed by the entire network, thus it would
be easier to tamper with it.

3.2.2.2 Ethereum Private Networks

Many implementations of the Ethereum protocol offer the possibility to be used in
private settings. We refer them Ethereum-private. Two of the most common Ethereum
clients are Geth (Ethereum (2013)), the Ethereum implementation in Golang language,
and Parity (Ethereum (2018a)), a Rust-based implementation. Both permit the creation
of a private instance of Ethereum, in which transactions are visible only to a subset of
network participants. These Ethereum clients for private networks enable the
integration of pluggable lightweight consensus algorithms. These types of chains are
mainly used as testnets, where distributed applications are tested and debugged
before deployment on the main Ethereum blockchain. Nevertheless, they are getting
increasingly popular for business-to-business private enterprise settings which
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require higher performance (hundreds of txn/sec) and higher privacy guarantees. The
security of Ethereum-private does not depend on computational power, but on the
number of nodes, the attacker can control (referred to as byzantine). The attacker needs
to control at least 1/3 of nodes, but a wrong consensus implementation may
drastically increase the probability of attack success.

3.2.3 Algorand

Algorand (Algorand Foundation (2017); Chen and Micali (2019)) is a novel
permissionless blockchain platform that aims at solving the so-called blockchain
trilemma, namely, scalability, decentralisation, and security. Algorand embeds a
distributed computation engine, i.e., Algorand Virtual Machine (AVM), that runs on
every node of the network and executes smart contracts, similarly to Ethereum.
Algorand’s smart contracts are self-verifiable pieces of code that run on the blockchain
and automatically approve or reject transactions according to a certain logic. The AVM
interprets smart contracts written in an assembler-like language called Transaction
Execution Approval Language (TEAL). The transaction model is similar to Ethereum,
namely is account-based. Algorand’s core innovation is its new consensus protocol,
PPoS, which can reach agreement in large networks without giving up neither
scalability nor security. Algorand blockchain is designed not to fork ever, transactions
are considered final as soon as executed and included in a block. This makes Algorand
much faster than Ethereum with a block time of about 4.5 sec and throughput of about
1000 txn/s. Compromising Algorand requires an attacker to control 1/3 of the stake.

3.2.4 Hyperledger Fabric

Hyperledger Fabric (Androulaki et al. (2018)) is a permissioned blockchain platform
featured by a modular architecture in which each component can be plugged,
including the consensus algorithm. The distinguishing characteristic of Fabric is that
it splits the transactions ordering, i.e. the consensus process, from transactions
execution, i.e. the operations on users’ assets. The assets within the ledger state are
represented as a collection of key-value pairs, and through smart contracts (called
chain-codes in Fabric’s jargon), it is possible to combine their values to carry out
complex functions according to users’ needs, e.g. to perform an auction. Being
permissioned, Fabric offers an authentication layer that identifies the system entities by
issuing X.509 digital certificates. Additionally, the authentication process enforces
authorisation policies on the operations. In such a permissioned context, the risk of a
participant intentionally introducing malicious code is diminished. All actions,
whether submitting transactions, modifying the configuration of the network or
deploying a smart contract, are first endorsed and then recorded on the blockchain
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only if deemed valid. Differently from other blockchain platforms, Fabric introduces
the concept of channels. Each channel represents a private blockchain restricted to
specifically authorised members of a consortium. Transactions within a channel
remain private and shared only across channel participants, enabling data isolation
and confidentiality. The network of Hyperledger Fabric is composed by various actors
with different roles:

• organisation administrators: in charge of deploying smart contracts on selected
peers and releasing permissions to client applications;

• client applications: used to request read or write operations to a channel ledger
and invoke smart contracts, if holding proper permissions;

• peers: hold a ledger for each channel they are registered in. Additionally, and if
so designated, run and endorse smart contracts to execute functions on ledger
data;

• orderers: responsible for consensus, i.e., ordering the transactions which occur in
all channels, packaging them in blocks and then distributing such blocks to
nodes of appropriate channels.

Among these actors the orderers play a vital role, because they validate transactions
and implement consensus, so realising the immutable storage of blocks on a channel
ledger. Differently from Bitcoin and Ethereum, which rely on probabilistic consensus
algorithms and may cause forks in the ledger, consensus in Fabric is carried out in
through voting, and therefore avoids forks at the outset. In other words, any block
generated by the ordering service is guaranteed to be final and correct. Thus any
network participant has the same view of the accepted order of transactions. As the
operating environment is more trusted than a permissionless setting, it allows
employing of lighter consensus schemas, for instance, PBFT, which results in better
performances (3000 txn/sec), whereas tolerating up to 1/3 of subverted nodes.

3.3 Blockchain consensus protocols

A core component of blockchain systems is the underlying consensus protocol. It is
employed to guarantee total agreement on the order of transactions and have decisive
impact on the performance and security of a blockchain protocol. Consensus in
blockchain networks is achieved essentially following one of two different
approaches:

• lottery-based, whereby a randomly elected leader proposes new blocks on the
chain;
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• voting-based, whereby a voting mechanism is carried out to elect a new leader.

These approaches target different blockchain models. In particular, lottery-based
algorithms can scale to a large number of nodes, hence are more feasible in
permissionless networks where the elected leader simply propose a new block by a
broadcast to the rest of the network. However, in this protocols the election of a leader
can be extremely expensive in terms of time and resources, leading to a potentially
crippling performance degradation. On the other hand, the voting-based approach is
advantageous for permissioned networks, where the number of participants is limited
and known. Voting consensus protocols afford lower latencies than the lottery-based:
as soon as a majority of nodes agrees on a transaction, consensus is achieved. Yet,
voting-based algorithms typically require intense message exchanges. Therefore, the
higher the number of nodes in the network, the higher message exchanges is required
to reach consensus. For this reason, in presence of large-scale networks, voting-based
protocols performance may degrade due to intense communications, leading to very
bad scalability.

Even though blockchain systems boast distributed consensus, the lottery-based
approach differs from classical strong consistent consensus protocols, which
implement total order broadcast and state machine replication. Indeed, blockchain
lottery-based algorithms may admit multiple winners and, therefore, lead to forks in
the blockchain. In this sense, such protocols can only guarantee a sort of eventual
consensus, where the forks that potentially arise are eventually resolved in the future.
Eventual consensus is a fundamental concept in blockchain systems. It is often referred
to as absence of consensus finality, whereby a valid transaction can never be removed
from the blockchain once its block is appended to it (Vukolić (2015); Vukolic (2016)).
Instead, blockchains powered by the voting-based approach implement the classical
strong consistent distributed consensus. This implies the use of classical Byzantine
Fault Tolerance (BFT) protocols, which ensure low latencies and high performance as
well as guaranteeing consensus finality to blockchain. However, due to the inherent
scalability limits of BFT, many hybrid protocols have been recently proposed by the
blockchain community, such as PPoS and PoA. These are based on a combination of
lottery and voting approaches. They aim to boost the power and applicability of
blockchain platforms by overcoming both the scalability issues of voting-based
protocols and the performance issues of lottery-based protocols.

In rest of this section, we describe the consensus underlying the blockchain platforms
mentioned in the previous section, namely PoW, CPoS, PPoS, PoA and PBFT.
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FIGURE 3.1: Proof-of-Work as a computational puzzle to solve a block

3.3.1 Proof-of-Work

The PoW is a lottery-based consensus schema consisting of computationally-intensive
hashing tasks executed by some distinctive network nodes, called miners. Specifically,
miners create a block by retrieving transactions from a mempool and compete with
each other to find a random number (a.k.a., guess) such that, if concatenated with the
transactions included in a block, makes the hash of the block lower than a target
number (see Figure 3.1). Such target number is adjusted over time according to a
desired difficulty, which is chosen to keep constant the block period, i.e., the average
time required by miners to solve the puzzle. The more the global computational
power of the network, the higher the difficulty, thus the lower is the target number.

Once resolved the guess, the miner can broadcast the corresponding block to the
network for being accepted by other nodes. If accepted, all the correct nodes consider
it as the latest block in the chain and start mining new blocks on top of it. In the event
that multiple miners concurrently create and propose new blocks, a transient fork is
created. It is the responsibility of the platform implementing the PoW to find a
strategy to cope with forks. The standard approach used by Bitcoin and Ethereum, as
mentioned in the previous section, is the longest-chain rule. Miners are incentivised to
support the network honestly through a rewards mechanism: for each mined block,
the miner receives a reward according to a certain (platform) policy. Besides,
transactions may include a mining fee to incentive miners to pick that from the
mempool. As side-effect, nevertheless, transactions with zero or low mining fees may
never be included in a block generating starvation (BitFury Group (2015); Nakamoto
et al. (2008)). The verification and subsequent acceptance procedures happening in
PoW make a block persistent unless an attacker controls the majority of the miners’
hash power (the aforementioned 51% attack), which enables it to create a chain fork
with modified transactions. However, being based on computational power rather
than several nodes, it is not vulnerable to sibling attacks.

Although they provide strong integrity properties, PoW-based blockchains have a
main drawback: performance. Their lack of performance is mainly due to the
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broadcasting latency of blocks on the network and to the time-intensive task of PoW.
Indeed, thousands of miners spread all over the network are required to concur if
PoW is to render tampering with transactions computational infeasible. To broadcast
blocks over network of this size and topology can take very long. Thus, as a matter of
fact, each transaction stored on a blockchain has a high confirmation time, which
causes an extremely low transaction throughput. In Bitcoin, the average latency is 10
minutes, and the throughput is about 7 transactions per second. Moreover, PoW is
energetically inefficient, leading a huge waste of money and resources to make the
hashing computations.

3.3.2 Casper Proof-of-Stake

The Proof-of-Stake (PoS) works by deterministically selecting a set of validators
according to their cryptocurrency holdings, i.e. their stake. Any node committing a
stake can become a validator by sending a special type of transaction that locks up
their stake amount into a deposit. The validators propose and vote on the next block,
and the weight of each validator’s vote depends on the deposit amount. In
Ethereum’s PoS implementation (Ethereum (2022a)), called Casper (CPoS), each
validator’s turn is determined by one of the following techniques:

• Chain-based PoS: the algorithm pseudo-randomly selects a validator during each
time slot to propose a block. The block is then appended to the blockchain;

• BFT-style PoS: validators are randomly assigned the right to propose blocks. The
block agreement is found through a multi-round process, in which each
validator sends its vote for a specific block. At the end of the process, all (honest
and online) validators permanently agree on whether or not any given block is
part of the chain.

Conversely to PoW, the CPoS protocol causes no waste of energy since it does not
requires computational tasks to be solved, therefore, performance can be much better.
In PoS validators earn a reward proportional to their deposit stake, for every
proposed block that is accepted by the majority, which induces them to act honestly. If
a validator does not follow the consensus rules, PoS applies penalties. Attacking a PoS
requires an attacker to control the majority of committed staking, making it not
vulnerable to sibling attacks. However, it is crucial not to make predictable the leader,
otherwise, the attacker just needs to compromise a much smaller set of M nodes that
may be elected as a leader; in this case, the security drops from the ideal majority of
committed staking to M compromised nodes.
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3.3.3 Pure Proof-of-Stake

The PPoS (Gilad et al. (2017)) is the underlying consensus of Algorand. It leverages on
the Verifiable Random Functions (VRF) concept (Micali et al. (1999)) to significantly
decrease the high volume of exchanged messages occurring in traditional
voting-based and lottery-based consensus. The VRF makes PPoS similar to a
weighted lottery in which instead of mining, the probability depends on
cryptography and the stake. Indeed, the more stake a user owns, the better chance the
user has to be elected as leader and propose a block. PPoS works as follows: it
proceeds in rounds, and for each round there are three phases: block proposal, soft vote,
and certify vote. When a round starts, users use the VRF to select themselves as leader
and/or committee members. VRF then randomly choose among them for the round.
The leader’s role is to propose a block, whereas committee’s role is to vote and
validate that proposal. The usage of randomness, besides allowing anyone in the
network to participate in the consensus, discourages adversaries from compromising
consensus nodes, since they randomly change in each round. The phases for each
round in PPoS proceed as follows:

1. Block Proposal: the leader selected by the VRF propagates the proposed block
along with the VRF output, which proves that the account is a valid proposer;

2. Soft Vote: a selected committee of users vote on the block proposals. Given that,
for each round, multiple users might be elected as a leader and propose a block,
this phase filters the number of proposals down to one, guaranteeing that only
one block gets certified in a round. Users only select the block proposal with the
lowest VRF output. This phase terminates when a quorum of votes from the
committee members is reached;

3. Certify Vote: a new committee checks the validity of the block proposed at the
soft vote stage. If valid, the new committee votes again to certify the block. When
a quorum of certified votes is reached, the block is committed and the round
terminates. If a quorum is not reached by a certain timeout, then the network
will enter recovery mode to agree on a new leader and initiate a new round.
This approach ensures safety when partitions occur without making the
blockchain fork.

PPoS can achieve higher throughput and lower block time than traditional PoS due to
a reduced message exchange. Furthermore, the VRF makes the leader unpredictable,
dismissing the possibility of M-points-of-failure of traditional PoS.
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3.3.4 Practical Byzantine Fault Tolerance

The PBFT consensus protocol (Castro and Liskov (1999)) is an extension of the
Paxos/VSR (ViewStamped Replication) (Lamport (2002)) family and it is characterised
by a single-leader and view-change approach. The algorithm proceeds in views, for
each view there exists a leader and a set of replicas. Each view executes a three-phase
protocol where consensus nodes exchange messages to reach the total order of
transactions:

• Pre-prepare: in the first phase the leader broadcasts to replicas the set of incoming
transactions for the current view.

• Prepare: Once checked the signature of pre-prepare message and the validity of
its contained transactions, each replica orders transactions and broadcasts them
to others (including the leader).

• Commit: the leader and the replicas first verify the signatures of received prepare
messages. Then, they check whether the prepare messages are coherent with
those of pre-prepare phase: they are from the same view, proposed by the same
leader, and with the same transactions set. If these conditions are satisfied they
finally commit on the transactions ordering.

In case of leader misbehaviour, all the correct replicas run a view change operation
which starts a new view and elects a new leader. In an eventually-synchronous
network, where messages are delayed and network partitions may happen but are
eventually resolved if an adversary controls f of the N network nodes, the PBFT
consensus protocol guarantees strong consistency provided that f < N/3. It has been
proved that in this scenario N ≥ 3 f + 1 nodes is a condition necessary and sufficient
to guarantee byzantine fault tolerance (Castro and Liskov (1999)). Furthermore, this
algorithm is vulnerable to sibling attacks, since it cannot distinguish if an attacker is
falsely impersonating multiple nodes. This makes PBFT unusable on permissionless
settings.

3.3.5 Proof-of-Authority

PoA was originally proposed as part of the Ethereum consortium for private networks
and implemented with the protocols called AuRa (Parity (2017)) and Clique (Szilágyi
(2017)). PoA algorithms rely on a set of trusted miners called authorities, identified by
a unique id. Consensus in PoA relies on a mining rotation schema, which distributes
the responsibility of block creation among authorities (BitFury Group and Garzik
(2015); Gaetani et al. (2017)). Time is divided into steps. In each step, an authority is
elected as block proposer, i.e. as a leader. The way authority is elected differs in the
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FIGURE 3.2: Example of message exchanges during a step for Aura and Clique. In
both there are 4 authorities with id 0, 1, 2 and 3, and the step leader is authority 0.

two consensus protocols. AuRa proposes a deterministic function based on UNIX
times, which requires strong synchronisation assumptions on the network.
Conversely, Clique computes leaders according to the number of the next block on the
blockchain. As can be gathered from Fig. 3.2, these two PoA implementations work
quite differently: both have a first round where the new block is proposed by the
current leader, the so-called block proposal; then Aura requires a further round, called
block acceptance, while Clique does not.

The PoA is a hybrid consensus protocol between the lottery-based and voting-based
approaches, where leaders are elected according to a deterministic function. PoA
protocols guarantee eventual consensus on transactions. Indeed, the lightweight
leader election may lead to forks that eventually are resolved. Consequently, PoA
cannot achieve instant finality but this is delayed in time. According to the concept of
the longest chain, a block in PoA is considered final when a majority of further blocks
have been proposed, under the assumption that blocks are proposed at a constant rate
Parity (2017). These algorithms are vulnerable to sibling attacks, and thus cannot be
used in permissionless settings.

3.4 Smart Contract issues

Beyond secure-by-design due to consensus algorithms, a prominent security role is
played by smart contracts. In this section, we evaluate potential issues that affect the
smart contract-enabled platforms, such as Ethereum, Algornad, and Hyperledger
Fabric, thus we consider possible preventions/mitigation methods.

(I1) Reentrancy. This vulnerability occurs when a caller contract invokes a function of
an external callee contract. Specifically, a malicious actor can call back from the callee
contract funds withdraw function of the caller contract, i.e., reentrancy, before the
execution of the caller triggering an infinite loop of calls. This allows the attacker to
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bypass the validity checks of the caller and iterate infinitely. Ethereum is vulnerable to
reentrancy and its exploitation may lead to indefinite withdrawal calls which
terminate once the caller contract is drained of ETH or the transaction runs out of gas.
Two reasons cause this vulnerability (Rodler et al. (2018)): (i) validity checks are
handled by state variables that the contract does not update until the execution of
other transactions terminates, (ii) no gas limit is required when handling interactions
between external smart contracts. Prevention methods consists in (i) update the state
variables before calling external contracts; (ii) introduce a mutex lock (Ethereum
(2018b)) in the contract state so that only the owner can update such state and avoid
reentrant calls to an external contract from a caller; (iii) use the transfer (Ethereum
(2018b)) method to approve payment transactions to external contracts as this
function avoids infinite loops because only provides 2300 gas to the callee. Similarly,
Hyperledger Fabric suffers reentrancy since chaincodes-to-chaincodes are allowed
with no limitations inter-channel. Fabric mitigates such issues through a timeout,
however, it is important to note that reentrancy has a limited impact on private
settings since no cryptocurrencies are involved. Conversely, Algorand does not suffer
reentrancy since contract-to-contract calls are allowed one way only, thus if smart
contract A calls a smart contract B, the latter cannot call back A.

(I2) Integer overflow and underflow. This vulnerability occurs when a function computes
an arithmetic operation that falls outside a specific datatype. Such vulnerability may
affect both platform’s software and smart contracts. It is unrealistic to state that a code
cannot be affected by overflow, thus every platform and related smart contracts (if
any) may be vulnerable. A prominent role is played by the programming language.
Furthermore, some protections there exist both natively or through an external library.
Ethereum does not provide native prevention for smart contracts, but some
recommendation has been defined, such as (i) using SafeMath library (OpenZeppelin
(2017)) to check on underflow/overflow, (ii) using Mythril library (ConsenSys (2020))
to check the security of EVM bytecode before its execution. Algorand does not need
any prevention library as TEAL natively copes with under/overflow issues.
Hyperledger Fabric, being based on golang makes us of the native under/overflow
management or common libraries such as overflow.

(I3) Frozen Token. This vulnerability causes users’ funds deposited in the contract
account to be locked and impossible to withdraw back, effectively freezing them into
the contract. Both Ethereum and Algorand are vulnerable to such an issue. The causes
of this vulnerability are twofold: (i) the deposit contract account does not provide any
function to spend funds using a function from an external contract as a library, (ii) the
callee contract function (selfdestruct for Ethereum, ClearState for Algorand) is
executed without checks. Prevention method (Chen et al. (2020); Samreen and Alalfi
(2021)): a deposit contract shall assure that the mission-critical functions or
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money-spending functions are not outsourced to external contracts. Hyperledger
Fabric is not vulnerable since no cryptocurrencies are involved.

(I4) DoS with unexpected revert. This issue occurs if the execution of a transaction is
reverted due to a thrown error or a malicious callee contract that deliberately
interrupts the execution. Ethereum, Algorand and Hyperledger Fabric are vulnerable.
For Ethereum, a best practice to mitigate the issue regards the transaction sender to
provide to the callee a certain amount as a reward for the execution of a transaction so
that the callee is not incentivized to revert. Algorand does not have mitigation in place
since no reward fees are available. Fabric, similarly, does not have solutions to avoid
it, due to the absence of cryptocurrencies.

(I5) DoS with GasLimit. This vulnerability causes transactions to be aborted due to
exceeding the gas limit. This affects only Ethereum due to the presence of gas. This
vulnerability is caused by unbounded operations in a contract (Chen et al. (2020);
Samreen and Alalfi (2021)). To mitigate this issue the contracts should not execute
loops on EOA accessible data structures. Therefore loops should be controlled, such
that the execution always terminates, even when transactions are aborted.

(I6) Insufficient signature information. This vulnerability causes a digital signature to be
valid for multiple transactions. This happens when a sender uses a proxy contract
rather than sending multiple transactions (Chen et al. (2020); Samreen and Alalfi
(2021)). A proxy contract acts as a deposit that stores funds for one or more authorised
receivers. An authorised receiver owns a digitally signed message delivered off-chain
from the sender. The receiver withdraws funds from the proxy, which must verify the
validity of the digital signature. However, if the signature is malformed (missing
nonces, or proxy contract address), a malicious receiver can reuse the signature to
reply to the withdrawal transaction and drain the proxy balance. Prevention method:
The contract shall check the contract address and the nonce for each withdrawal
transaction used with digitally signed messages. Both Ethereum and Algorand are
vulnerable to this issue, while Hyperledger Fabric is not since it authenticates network
nodes.

(I7) Generating randomness. This vulnerability concerns smart contracts using
pseudorandom number generators (PRNG) to create random numbers for
application-specific use cases. Specifically, this vulnerability affects methods using
random numbers created by a PRNG, in which the base seed of the generator is a
parameter controlled by miners, e.g. Solidity’s block.number, block.difficulty. A
malicious miner can manipulate the PRNG to generate an output that is advantageous
for itself. Ethereum, Algorand and Hyperledger Fabric are all affected by this issue.
For mitigation, mining variables should not be used in control-flow decisions.
Therefore, off-chain approaches to PRNG should be used, such as the use of oracles.
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(I8) Block Timestamp manipulation. This vulnerability affects smart contracts that use
timestamp parameter in the control-flow (e.g., timestamp used to schedule periodic
payments) or as source of randomness (Chen et al. (2020)). As miners can control this
parameter, a malicious miner could adjust its value so that to change the logic of
functions that use the timestamp, to take profit. Ethereum is vulnerable to such issues
and a prevention method consists in avoiding the parameter in any control-flow
decision logic. Algorand is not vulnerable since it employs a maximum timestamp
offset of 20 seconds between two blocks. Similarly, Hyperledger Fabric has no
constant block time, but it depends on the transactions available to include in a block.

(I9) Transaction ordering dependence. This vulnerability is caused by a malicious
manipulation of the transactions priority mechanism used in Ethereum. Transactions
include a gas price which determines the reward a miner receives to execute a
transaction. It is usually used to prioritise the execution of certain transactions over
others (Wood et al. (2014)). However, malicious miners can alter this procedure and
always prioritise their transactions regardless of the gas price, hence manipulating the
global state of the blockchain in its favour (Samreen and Alalfi (2021)). Mitigation
method: hide the gas price from transactions using cryptographic committees or
guard conditions (Chen et al. (2020)). Algorand and Hyperldger Fabric are not
affected by this issue since they do not use gas.

(I10) Under-priced opcodes. This vulnerability is caused by under-priced opcodes that
can be executed at low cost and that consume a large number of resources. Misuse of
the opcodes, or a malicious actor, might trigger several invocations of these opcodes
wasting the majority of resources. This vulnerability regards Ethereum and it is
caused by misconfigured gas price parameters (Chen et al. (2020)). The Ethereum
protocol has been upgraded to limit opcodes under-pricing. Algorand is not affected
since the cost is set 1 to all opcodes with a limit of 700 per application. Hyperledger is
not affected due to the nature of private blockchains’ costless computation.

(I11) Token lost to orphan address. This vulnerability is caused by a lack of validation
checks on payment transactions. Ethereum only checks the recipient’s address format
but not if such an address is valid nor if it exists. If a user sends money to non-existing
addresses, Ethereum automatically creates a new orphan address Atzei et al. (2017).
An orphan address is neither an EOA nor a contract address, hence the user can’t
move the money which is indeed lost. Algorand has the very same issue, with a small
client-side check of existence as mitigation implemented in all the official clients and
SDKs. The only effective prevention method at the time of writing is to manually
assure the correctness of the recipient’s address (Chen et al. (2020)). Hyperledger
nodes are instead authenticated, thus it is not affected.

(I12) Short address. This vulnerability affects only Ethereum and it is caused by the
EVM missing validation check on addresses. Recall that inputs are expressed as an
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ordered set of bytes, in which the first four bytes identify the callee’s function, then
other inputs are concatenated in chunks of 32 bytes. In case of arguments with fewer
bytes, EVM auto-pads with zeros to generate the 32 bytes chunk. An attacker could
manipulate this process to execute malicious actions. For instance, if we consider the
transfer(address addr, uint tokens) function and a bad formatted addr with one
missing byte, the auto-pad adds extra zeros at the end of addr, and consequently
increases the number of tokens to transfer (Chen et al. (2020)). To prevent that, write
functions that validate the length of the transaction’s inputs. Algorand has prevention
by design, it does not add extra zeros as padding and the transaction fails in case of a
short address. Hyperledger Fabric, as above, is not affected due to the authentication
of nodes.

(I13) Erroneous visibility. This vulnerability takes advantage of Ethereum’s public
nature. Transactions (including data, balances and contract codes) are visible to any
user. However, Solidity provides four types of visibility to restrict the access to a
contract’s functions, namely public open to everyone, external only externally from
the contract, internal only internally (the contract and its related contracts) , and
private only within the contract. By default, Solidity assigns the type public to
functions, hence in case of erroneous visibility configuration, an attacker might be able
to call the function from the external (Chen et al. (2020)). To avoid this, with Solidity
0.5.0 and above, it is mandatory to specify the function visibility. Algorand conversely
has all functions public only. Hyperledger can hide data in several methods such as
Trusted Execution Environment with Intel SGX, channels, or MPC (Benhamouda et al.
(2019)).

(I14) Unprotected suicide. In Ethereum, Solidity contracts can be killed or deleted using
the suicide or self-destruct methods. Usually, only the contract’s owner, or
authorised external users, can invoke these functions. However, there might be cases
in which the owner is not verified by the functions, or the owner itself is malicious, in
that case, an attacker can invoke one of these methods and kill the contract. The very
same situation happens with Algorand through the ClearState function. Prevention
method: enhance security checks with, permissions mechanisms, to assure that the
suicide/self-destruct and ClearState calls are approved by different parties.
Hyperledger Fabric is not affected.

(I15) Unrequested Token. In Ethereum ERC-20 tokens can be sent to an arbitrary
address. This is used as a common phishing technique where a malicious actor creates
an ERC-20 token and sends some amount to random addresses. The token is designed
with a sell smart contract function which drains the wallet. When a phished user
attaches his wallet to the application controlling this contract, the user unintentionally
authorises the smart contract to steal his funds. Algorand mitigates this issue via
opt-ins. Hyperledger Fabric is not affected since no cryptocurrencies are involved.
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3.5 Evaluation of security properties for Blockchain

In this section we introduce security and dependability attributes for blockchains and
we evaluate them over three dimensions, i.e., consensus, infrastructure and smart
contracts. The proposed analysis follows a qualitative evaluation that takes into
account the descriptions of the platforms and protocols detailed in the previous
sections. Therefore, the analysis considers how the identified properties are met in
each system. We assume a deployment of n nodes responsible for consensus, which
communicate over an eventually synchronous network (Dwork et al. (1988)), which
realistically describes the Internet network, where messages can be arbitrarily
delayed, but eventually delivered within a fixed time-bound.

A distributed protocol is considered secure if satisfies safety and liveness properties
(Cachin and Vukolić (2017)). However, in a blockchain context, the traditional
definition of such properties does not straightforwardly apply. For instance,
transactions are asynchronously committed by the network after the execution of a
consensus protocol. For this reason, safety and liveness must be refined in order to
explicitly reflect the behaviour of a blockchain system. To cope with this limitation,
we start from the traditional definitions of safety and liveness (Cachin and Vukolić
(2017)) to introduce two novel properties, namely persistency and termination. We also
provide a new metric for blockchains, i.e. the fairness property. Following seminal
work by Francez (1986), we distinguish two aspects of the fairness: validator fairness,
valid for consensus protcols and client fairness, valid for infrastructures. The security
attributes for consensus can be summarised as follows:

1. Persistency: nothing wrong happens during the consensus execution; unwanted
executions must be prevented. When an honest node accepts a transaction, then
all the other honest nodes will make the same decision, which is irreversible. If
persistency is violated after a certain threshold (i.e. confirmation time), it will
never be satisfied again. Persistency is also referred to as finality (Vukolić (2015)).

2. Termination: ensures that a protocol makes progress towards an end, hence
transactions correctly terminate, i.e. the block including those transactions
reaches persistency.

3. Validator fairness: in a blockchain, the consensus mechanism is fair if any honest
node can be potentially selected to the set of nodes that will participate in the
agreement to select the next block.

Table 3.2 summarises the consensus resilience of the five algorithms acting in presence
of possible adversaries. Firstly, we observe that PoW and CPoS enjoy strong
termination. This property follows because the probabilistic leader election is based
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PoW CPoS PPoS PBFT PoA
persistency eventual eventual yes yes eventual
termination yes yes eventual n ≥ 2 f + 1 eventual

validator fairness
hw stake stake

yes yes
dependent dependent dependent

TABLE 3.2: Security evaluation of blockchain consensus protocols

on mining, and staking. Transactions are guaranteed to be added to the blockchain as
soon as the mining proceeds, or there is a majority of stake-holders. Conversely,
probability in leader election affects persistency of PoW and CPoS, because of the
possibility of having forks. In this case, persistency is not guaranteed due to
inconsistent views of the blockchain. However, such forks will eventually be resolved,
according to the specifics of the platform. For this reason, the persistency of such
protocols must be classified as eventual. Conversely, the PPoS protocol does not allow
forks, and blocks are instantly finalised, prioritising persistency over termination
(Gilad et al. (2017)). Indeed, to ensure persistency, the PPoS allows stalls from
malicious behaviours or network issues. However, PPoS’ recovery mechanism
ensures the protocol’s continuation after a stalling problem, hence its termination is
classified as eventual. Both PoS protocols ensure security until a majority of the stake
remains in honest hands. If this condition is not verified, such systems can be easily
compromised. Validators with the majority of the stake can determine the next blocks
straightforwardly, i.e. the richest users will be advantaged in the proposal of new
blocks. This behaviour is reflected with the validator fairness property in Table 3.2.
Differently in PoW, such property is strongly related to the hardware capabilities and
miners with a lot of computational power will have more chances to solve new blocks.

Moving to permissioned blockchains, these systems rely on a higher level of trust than
the permissionless ones, due to the presence of node authentication. The consensus
protocols used in this context are either classical voting-based ones, such as PBFT, or
hybrid, as for PoA. PBFT has been broadly demonstrated to guarantee persistency in
the eventually synchronous model, as long as there are n ≥ 3 f + 1 active nodes in the
network, where f represents the number of potentially faulty nodes. Whereas, as soon
as n ≥ 2 f + 1 remain honest, termination can be also guaranteed. On the other hand,
in PoA, persistency is only eventually guaranteed, because PoAs are open to forks.
Termination is instead dependent on the number of honest validators, hence classified
as eventual. As long as a majority of validators are active, termination is guaranteed,
otherwise, the protocol stalls and transactions are not finalised. In both protocols,
validator fairness is guaranteed, since every honest node has the same chance of being
elected as a leader as the others.

Turning to the security evaluation of blockchain platforms, we define six attributes
based on the traditional definitions of security and dependability (Avizienis et al.
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Bitcoin Ethereum 2.0 Algorand Hyperledger Ethereum-private
confidentiality no no co-chains channels private txs

integrity
majority of majority of majority of

up to 3 f + 1 eventual
hash power stake stake

availability yes yes yes up to 2 f + 1 eventual
accountability partial partial partial yes yes
authorisation no no no yes yes
client fairness no no yes yes yes

TABLE 3.3: Security evaluation of blockchain platforms

(2004)), i.e. the CIA triad and the user’s profiling. We identify the relevance of the
properties of accountability and authorisation. Such properties lead to constraints which
can be used to detect misbehaving participants. Hence, our suggested attributes of
security and dependability properties to assess blockchains’ infrastructures and smart
contracts are:

1. Confidentiality: the possibility to keep some transactions confidential; absence of
unauthorised leaking of sensitive information owned by one or more nodes;

2. Integrity: absence of improper alterations of the blockchain data from
unauthorised users;

3. Availability: the ability of the system to run correct services without
interruptions;

4. Authorisation: the ability of the system to specify access rights and privileges to
resources and to define permission roles for participants;

5. Accountability: the ability of the system to trace back the operations and the
behaviour of a certain user identity/physical entity;

6. Client fairness: the willingness of the system to democratically accept
transactions from any client without any preference.

Table 3.3, shows our infrastructures analysis understudy over the aforementioned six
attributes. We observed that the integrity of Bitcoin, Ethereum 2.0, and Algorand is
strongly linked to where hash power and stake lie. Indeed, an attacker owing the
majority of the hash power (or stake), could break the consensus protocol as already
mentioned, hence maliciously injecting a fork with a subverted chain (Bonneau et al.
(2015)). In contrast, in Hyperledger and Ethereum-private, the integrity property is
strongly tied to the persistency property of their underlying consensus algorithms.
Fabric employs PBFT, which ensures persistency under the assumption of n ≥ 3 f + 1,
while Ethereum-private adopts PoA algorithms, which can only guarantee eventual
persistency. Despite strong availability, the full replication of the blockchain in the
Bitcoin, Ethereum 2.0, and Algorand platforms leads to a lack of confidentiality due to
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Issue ID Security Issues
Native Resistance/Mitigation

Ethereum Algorand HL Fabric
I1 CI + authorisation ✓
I2 CI + authorisation ✓ ✓
I3 A + authorisation ✓
I4 A
I5 A ✓ ✓
I6 CI + authorisation ✓
I7 I + authorisation
I8 IA ✓ ✓
I9 IA + accountability ✓ ✓
I10 A ✓ ✓
I11 I ✓
I12 I + authorisation ✓ ✓
I13 CI + authorisation ✓ ✓
I14 all ✓
I15 authorisation ✓ ✓

TABLE 3.4: Taxonomy of security issues and native resistance/mitigation

the public nature of the information stored on these blockchains (Henry et al. (2018)).
Indeed, each node in the network has access to the entire ledger of transactions, and it
is possible with forensics activities to trace the behaviour of specific users (Karame
et al. (2015)). However, if for Bitcoin and Ethereum 2.0 there is no way to mitigate this
issue, Algorand recently designed a solution which combines the public,
permissionless network with several private networks interconnected, a.k.a.,
Co-Chains (Micali (2020)). Contrarily, confidentiality in both Hyperledger and
Ethereum-private can be guaranteed through the use of channels and private
transactions, respectively. Hyperledger Fabric and Ethereum-private can enforce the
so-called profiling properties of authorisation and accounting. This is because nodes
are authenticated. Authorisation is guaranteed by managing the permission of each
node. Accountability is achieved by tracing the interaction of nodes with the
blockchain (Herlihy and Moir (2016)). This is not so in public permissionless
blockchains like Bitcoin, Ethereum 2.0, and Algorand where identities are
pseudo-anonymous (Henry et al. (2018)) and users are not authenticated. However,
although actions are difficultly attributable to specific entities, it is possible to analyse
the behaviour of specific accounts. Therefore, the public, permissionless nature of
these blockchains ensures that anyone can access the history of transactions and trace
behavioural patterns. We deduce that permissionless blockchain offer partial
accountability (Karame et al. (2015); Möser (2013)). On the other hand, being these
systems public and decentralised, authorisation is not provided.

Lastly, we evaluate the property of client fairness. Permissioned blockchain benefits
from fairness guarantees in that each client’s transactions are processed without any
preference or priority. On the contrary, the execution of transactions in Bitcoin and
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Ethereum 2.0 is costly (either hardware or staking), hence making incentive
mechanisms for miners and validators necessary. Bitcoin miners receive fees for
processing transactions, while Ethereum 2.0 transactions are embedded with a reward
(gas). This means that low-rewards transactions may be stalled forever waiting to be
processed (Weber et al. (2017)). Incentives mechanisms for permissionless blockchain,
like Bitcoin and Ethereum 2.0, lead therefore to a lack of client fairness. Differently, in
the Algorand blockchain, every transaction counts the same, and there is not a
mechanism to incentivise users to behave honestly. Everything in Algorand is
handled by PPoS cryptography and the computation of VRFs. This allows Algorand
to have very low transaction fees, which are thus distributed to rewards accounts for
the users, and to ensure client fairness.

We conclude our analysis with smart contracts. Table 3.4 shows a classification of the
CIA triad and profiling security properties against the issues described in Section 3.4.
From the table emerges that most of the smart contract issues may cause violation of
confidentiality, integrity, and authorisation properties. The platform that shows a
better resilience results in Hyperledger Fabric and this is clearly due to its
permissioned nature. Indeed, the authorization layer prevents security issues due to a
trustless network. Among the public blockchain instead, Algorand outperforms
Ethereum for many issues. This is due mainly to the usage of a constant fee for
transactions and opcodes conversely to Ethereum which is based on gas with a
different amount for opcodes. Also, the programming language used plays a key role.
Both Hyperledger Fabric and Algorand use languages that give some primitive
control to avoid issues, such as control against under/overflow concerning Ethereum.
Finally, some design choice related to the management of asset and smart contract
calls makes Algorand more secure than Ethereum. For instance, reentrancy (I1) in
Algorand cannot happen by design, and tokens require to be opted-in before they can
be received (I15). The Ethereum naive solutions and lack of controls make it the worst
in terms of security. The only situation where Ethereum outperforms Algorand is for
erroneous visibility (I13), indeed it allows to build private functions within a smart
contract, while Algorand does not.

3.6 Discussion

In this chapter we studied the security aspects of modern blockchain systems. We
defined the security and dependability attributes which are relevant in the context of a
blockchain. Thus, we analysed how five blockchain platforms, namely Bitcoin,
Ethereum (with its variants Ethereum 2.0 and private chains), Algorand, and
Hyperledger Fabric, guarantee those attributes. The analysis we proposed is divided
into three dimensions, i.e. consensus, infrastructure, and smart contracts. Firstly, we
highlighted the infrastructures’ characteristics and how they differ in terms of
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performance (infrastructure). Then, we described their built-in consensus protocols,
respectively, PoW, Casper PoS, PoA, Pure PoS and PBFT, analysing the approaches
they adopt to order transactions and create blocks in a byzantine, eventually
synchronous, network model (consensus). Then, we listed smart contract issues
evaluating whether blockchains are vulnerable and their native resistance/mitigations
(smart contracts).

From our study emerged that permissioned blockchains like Hyperledger Fabric and
Ethereum-private can guarantee fairness and confidentiality while providing
accountability and authorisation. However, these platforms require strong
assumptions on the underlying network and the number of possibly subverted nodes
to also ensure integrity and availability. This is also reflected in the consensus protocol
they adopt, specifically PBFT guarantees persistency at the cost of eventual
termination, whereas in PoAs, both properties are ensured only eventually.
Conversely, permissionless platforms such as Bitcoin, Ethereum 2.0, and Algorand
offer better integrity and availability, despite failing on profiling, confidentiality, and
client fairness properties. Finally, by studying smart contract issues we observed that
Ethereum is the most vulnerable smart contract platform compared to Algorand and
Hyperledger Fabric.

In the next chapters, we investigate how to enhance the blockchain security and
performance, proposing novel solutions to respectively guarantee data privacy and
increase the scalability. Chapters 4 and 5 describe two blockchain systems integrated
with HE and MPC computing models, where data are encrypted on the ledger and
smart contracts can still perform computations with these data despite being
ciphertexts. Chapter 6 describes a blockchain system with a new architecture based on
the sharding technique, which enables to scale out the nodes engaged in the
consensus protocol and improve performance.

Considering the study made in this chapter, we decided to apply the solutions in
Chapters 4, 5 and 6 to permissioned blockchains. There are two reasons behind this
choice for Chapters 4 and 5. Firstly, nodes in the permissioned blockchain, both clients
and validators, are assigned with verifiable cryptographic keys, which are used for
authentication and authorisation. We leverage these keys to verify the HE
computations performed by smart contracts and messages exchanged during the
execution of a MPC protocol. Secondly, permissioned blockchains rely on
voting-based consensus algorithms, which are more performant than those
lottery-based of permissionless blockchains. This become a factor when we integrate
HE and MPC into blockchain, as they add performance overheads. Indeed, the HE
primitives of keys generation, encryption, decryption and evaluation have a
computational cost. Smart contracts take longer to perform HE computations on
ciphertexts than on plaintexts. On the other hand, the MPC protocols have a cost due
to the exchange of messages between participants.
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For Chapter 6, instead, the choice of a permissioned blockchain is a natural
consequence of the work proposed in Chapters 4 and 5, to face the scalability issue in
the same setting and system model. Indeed, the purpose of this thesis is to provide
two novel, effective and viable solutions that can be both applied on the same
permissioned system, simultaneously solving the blockchain problems of privacy and
scalability. Notwithstanding, we believe that the solutions in Chapters 4, 5 and 6 can
also be applied to permissionless blockchains with the appropriate adjustments. We
leave this research path as future work.
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Chapter 4

Applying Blockchain and
Homomorphic Encryption to Smart
Grid

The presence of IoT devices is considerable nowadays. They simplify and improve
people’s daily activities by monitoring the surrounding environment, gathering
information, and taking automatic decisions. As an example, consider the smart
meter: when installed in a property it records the actual consumptions and transmits
the data in real-time, enabling the energy supplier to calculate the bills accurately and
to have a more precise estimation of the energy usage. This brings a two-fold benefit,
the landlord saves money and the energy supplier does not waste energy. Despite
their great potential, IoT devices come with some downsides, mostly related to the
lack of security measures. Adversaries can intercept the data in transit, eavesdrop
their content and also tamper with them. Surveys on IoT security are presented in
(Alaba et al. (2017); Vashi et al. (2017); Yang et al. (2017)), where the IoT vulnerabilities
are analysed at different layers of its architecture, along with a classification of the
possible attacks to which each layer can be exposed. The Smart Grid systems, relying
on smart meters, suffer from a subset of these IoT attacks. Energy data can be altered
causing erroneous bills, with money-losing implications for either energy companies
or prosumers. If an energy trade or an auction is in place, prosumers can buy or sell
energy to wrong prices. All these security concerns create scepticism about the Smart
Grid adoption.

In this chapter we present a novel Smart Grid system featured by blockchain that we
developed under the UKIERI research programme. A blockchain node is deployed for
any prosumer of the Smart Grid. It is responsible for retrieving energy data from the
smart meter, storing this data on the ledger and processing tasks via smart contracts.
With its cryptographic functions and consensus protocol, the blockchain lends strong



62 Chapter 4. Applying Blockchain and Homomorphic Encryption to Smart Grid

integrity properties to energy data collected by smart meters: once appended to the
ledger they can no longer be altered. Smart contracts, by consulting the ledger data,
can automatically calculate bills or execute energy trading, and their correctness is
verified by all nodes of the network during consensus. These blockchain qualities
streamline the Smart Grid management and enhance its security, thus raising trust
among the parties involved.

After the end of the UKIERI research project, we focused on how to improve the
proposed Smart Grid blockchain system from the privacy perspective. Users may be
wary of sharing their energy data, which disclose how much they consume, spend, or
produce if equipped with energy generators. In addition, energy data may
inadvertently reveal the habits of users. An ill-intentioned adversary, for example, can
inspect weekly consumptions to understand when users are away from home. In
order to resolve these privacy concerns and prevent possible threats, a typical solution
is to encrypt data. However, this raises a problem for blockchain-based systems: smart
contracts can no longer perform computations on the data, as they are encrypted.
Hence, our previous blockchain system is no longer able to calculate energy bills,
restricting its functionality to secure data storage. To cope with this hindrance we
propose to integrate the Homomorphic Encryption (HE) model into blockchain, thus
enabling smart contracts to carry out Smart Grid tasks while preserving users’ privacy.

Contributions

The content of this chapter has been partially included in the UKIERI research project.
Particularly, this work provides the following two back-to-back contributions:

• a novel blockchain-based Smart Grid system devised for the UKIERI project. My
contributions to the project was to design the system architecture and develop
the blockchain network on Hyperledger Fabric, i.e. the clients, peers, orderers
and smart contracts.

• an improvement of the previous system by combining blockchain with HE. The
two-fold advantage is (i) ensuring data privacy, i.e. system data are no longer in
clear, and (ii) enabling private computing, i.e. computations can be performed
on ciphertexts.

Chapter structure

Section 4.1 outlines the UKIERI research project, by detailing its objectives and our
involvement. We describe the architecture that integrates blockchain into a Smart Grid
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system, and its implementation on Hyperledger Fabric. In Section 4.2, we first
highlight the privacy shortcomings of this blockchain-based solution. Then, we
describe our proposal of integrating HE to fill this gap and whilst enabling smart
contract computations on ciphertexts. Section 4.2.1 outlines the computational costs
due to the introduction of HE. Section 4.2.2 and Section 4.2.3 describe how this
HE-equipped version can be used for energy trading and applied to other IoT-based
scenarios, respectively. Section 4.3 presents the state-of-the-art about the integration
between Smart Grid and blockchain. Finally, Section 4.4 concludes and discusses the
work.

4.1 Case study: the UKIERI research project

The UK-India Education and Research Initiative (UKIERI)1 is a research and innovation
programme that promotes the collaboration between UK and India. As for the UK
side, we2 participated to this programme from 2018 to 2020 in partnership with the
India’s Central Mechanical Engineering Research Institute (CMERI). Robust Cyber
Security Framework for Longitudinal Smart Energy Monitoring Device Data (CS-SED) is
the name given to the research project. The objective of CS-SED is to provide a
resilient and secure infrastructure for IoT-based Smart Grid systems, addressing a
variety of security threats and creating economic values. CS-SED aims at giving UK
and India a strategic lead and a global competitive edge in this field of research,
besides bringing about energy efficiency through an energy-aware neighbourhood
reporting live data consumption.

The role of India’s CMERI is to set up a Smart Grid environment. Hence, it concerns
the development of low cost smart meter units and their subsequent installations in
buildings, facilitating a smart IoT infrastructure for real time-stamped data collection
reporting residential energy consumptions. Specifically, the Smart Grid system
measures live power consumption by sampling voltage and current signals. On the
other hand, our role is to create a blockchain network to enhance the security of the
Smart Grid data and to support energy reporting and billing. Specifically, smart
contracts convert the consumed KWH to Rupees after multiplying the former with
constant power tariff. The result of these computations are securely stored on the
ledger, to subsequently display online power consumption, both in terms of
consumed KWH and balance Rupees. In the following, we present in Section 4.1.1 the
blockchain-based Smart Grid architecture we developed for CS-SED, and in
Section 4.1.2 its implementation on Hyperledger Fabric.

1http://www.ukieri.org
2A team of the Cyber Security group of the University of Southampton, to which I belong.
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4.1.1 A Smart Grid system featured by Blockchain

In this section we present the high-level architecture that embeds a blockchain
network into a Smart Grid system. Particularly, the architecture connects all the
prosumers, i.e. energy consumers and/or producers, of a Smart Grid with an overlay
blockchain network to securely manage the energy data. Each prosumer hosts a smart
meter able to monitor energy status on the premises. It records the consumptions in
real-time, specifically the readings collected are: voltage, current, power, energy
frequency and power factor. Additionally, if the prosumer holds energy generators,
e.g. solar panels or wind turbines, the smart meter records the amount of accumulated
energy, which can be potentially traded. Smart meters are then able to communicate
these collected data via wireless connections. It is assumed that these wireless
communications are reliable, i.e. data are eventually delivered to the recipient, but
they do not provide security, i.e. do not employ cryptographic measures.

We develop a software module, called Secure Energy Transaction (SET), acting as an
intermediary between prosumers and the blockchain network. The SET module
includes an ad-hoc client application appointed to:

• retrieve energy data from the smart meter;

• send data to blockchain or call smart contract executions.

Hence, the SET client in its code embeds a smart meter listener and implements APIs
to bilaterally interact with the blockchain. These API-requests to the blockchain are
regulated by appropriate authorisations. Each prosumer of the Smart Grid connects
with a SET client instance. SET clients are identified and assigned to prosumers by
means of digital certificates released by a Certificate Authority (CA). We indeed employ
a permissioned blockchain platform, Hyperledger Fabric, that first authenticates the
clients by checking their identity, and then approves or rejects their API-requests
according to access control rules. In order to allow democratic control over the Smart
Grid information, we configure the SET module to include a blockchain node for every
prosumer, so that each of them holds a copy of the ledger and can actively participate
in the consensus protocol. Blockchain nodes have smart contracts deployed, and upon
a prosumer’s demand they can perform Smart Grid functions, e.g. calculating bills.
Being the blockchain setting permissioned, the blockchain nodes are identified and
their operations are verified and endorsed by the entire network.

Figure 4.1 shows an example of the proposed blockchain-based Smart Grid network
with 4 prosumers. Smart meters are physically connected to the energy supply (dotted
orange lines in the figure) and can wirelessly communicate energy data to SET clients.
SET blockchain nodes, forming the blockchain network, are connected to each other
wirelessly (dotted blue lines in the figure). For the sake of readability, in Figure 4.1 we
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FIGURE 4.1: A blockchain-based Smart Grid network composed by four prosumers

omit to depict the CA and its interactions with SET to release digital certificates to both
client and blockchain node. The novel Smart Grid system runs as follows. The SET
client of a prosumer listens to the data that the smart meter continuously transmits,
and as they arrive, it creates packets to be sent to the blockchain. The client includes
data packets into a transaction, which it cryptographically signs with the private key
of its digital certificate. Transaction is then sent to blockchain via the appropriate API.
For example, as in Figure 4.1, client-2 listens to the prosumer-2’s smart meter. Once
collected data, client-2 prepares a transaction txn signed with its private key sk2. The
txn is then sent to the blockchain node-2, used as a gateway for the blockchain
network. As per standard execution of a permissioned blockchain, node-2 firsts checks
that sk2 is correct and then initiates the consensus for txn. Note that the signature
check prevents adversaries from impersonating a prosumer and injecting fake data on
her/his behalf. Signature verification also applies to smart contracts calls, ensuring
that only authorised prosumers can request Smart Grid functions (on certain data).

4.1.2 Prototype implementation on Hyperledger Fabric

The blockchain part of the architecture presented in Section 4.1.1 has been
implemented with the Hyperledger Fabric platform. Particularly, we implemented
different layers to represent the SET module on Fabric:
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FIGURE 4.2: Hyperledger Fabric architecture layers for the SET module

• membership layer: it consists of a CA that issues credentials, in the form of
cryptographic keys, to each participant to Fabric network, i.e. clients, peers and
orderers. Clients use these credentials to authenticate their transactions, peers to
authenticate smart contract executions and endorsements, orderers to
authenticate their decisions during consensus. Furthermore, this layer enforces
access control rules to authorise or reject client requests.

• application layer: It consists of clients that invoke API-requests to either read data
from ledger, write to it, or execute functions via smart contract.

• storage and computation layer It consists of peers that hold the channel ledger and
have smart contracts deployed. It exposes APIs for clients to respectively
read/write data and run smart contracts.

• consensus layer: It consists of orderers that order transactions into blocks by
running the consensus protocol, i.e., Raft (Ongaro and Ousterhout (2014)). The
orderers start the consensus by generating the genesis block, which contains the
channel configuration, i.e., the public credentials of all members involved, the
client authorisation rules, and the transaction endorsement policies.

• network layer: it is the Fabric channel that connects peers and orderers.

Figure 4.2 shows how two prosumers and their SET modules are disposed over these
layers. The membership layer is depicted outside the network because the CA is not a
component of the blockchain. Indeed, in Fabric it is a pluggable service, and Fabric
offers an in-house CA that we use to issue credentials to SET submodules, i.e. clients
and blockchain nodes. The application layer contains the clients that act as brokers
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between prosumers and the blockchain. A SET client connects to the network layer
using its associated SET blockchain node as gateway. In particular, when a prosumer-2
needs to send a transaction to the network layer, her SET client-2 creates the
transaction txn and sends it to the associated node-2. Then, the node-2 performs two
tasks: (i) executes txn producing txnout; (ii) broadcasts both txn and txnout to other
blockchain nodes in the network (e.g., node-1, node-3, node-4). Upon receiving such
message, each blockchain node in turn re-executes txn and broadcast its txnout. In
Fabric, this execute-and-broadcast phase is used to endorse that txn of prosumer-2 is
valid and that the majority of peers produce the same txnout (Androulaki et al. (2018)).

We create a channel in Fabric and we activate inside it peers and orderers. As stated in
Section 4.1.1, with the aim of delivering fairness between prosumers and democratic
control of the system, we design the SET blockchain node to include both a peer and an
orderer. This enables each prosumer to hold the ledger and smart contracts (as a peer)
and to participate in the system’s consensus protocol (as a orderer). Consequently,
each of them possesses the Smart Grid information, can execute functions, and can
validate-and-order the system transactions. Indeed, as Figure 4.2 shows, they both
ideally belong to the same blockchain node component. Practically, in Fabric peers
and orderers are separated because they have different roles. To solve the problem, we
thus create in the Fabric channel as many organisations as prosumers, and each
organisation owns only one peer and one orderer. That is, for example, organisation-3
stands for prosumer-3, and owns peer-3 and orderer-3. Then, peers and orderers act on
two distinct layers. In the storage and computation layer the peers expose APIs to
clients, which are implemented through Fabric built-in SDK. Considering that the
blockchain ledger in Fabric is represented as a collection of key-value pairs, the APIs
we expose are:

• read-ledger(k): given a key k, it returns the associated value v. In this use case,
a key k is a prosumer’s unique id within the system, and the associated value v

is a set of attributes: the prosumer’s account balance 3, her list of energy
consumptions and her list of bills. Note that the list of energy consumptions is
updated by the prosumer by sending data to the blockchain, whereas the
account balance and the bills are automatically updated by smart contracts.

• store-energy(k, e): it sends the energy consumptions as a pair (k, e), and it
returns a confirmation whether the pair is inserted into the ledger or not. A
prosumer use her unique id as k to send her energy consumptions in e. If the
transaction is successful, the attributes of k are updated with e in the ledger.

• sc-billing(k, t): it invokes a smart contract to calculate the energy bill of k
for a time-frame t, it then stores the result into the ledger and returns a

3For the sake of simplicity, in this use case we consider the balance as an integer initialised to 0 and
decremented after the bill calculation to show the amount due.
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confirmation. A prosumer invokes this smart contract using her unique id and
as result the smart contract updates the prosumer’s bills list and balance.

As regards the sc-billing(k, t) API, we implemented the corresponding smart
contract in Go 4 (Google (2009)). Specifically, the smart contract first ascertains who
the requesting prosumer is by checking the client signature on the transaction. Then, it
enforces access control policies and checks whether the requesting prosumer is the
same as the one specified in k. If these checks are successful, the smart contract
retrieves the energy consumptions of prosumer with id k from the ledger over a
time-frame t. Finally, it calculates the bill by multiplying the consumptions with a
pre-agreed tariff 5, hardcoded in the smart contract, and stores the result into ledger
by updating the balance and the list of bills of k. If, at a later stage, there is a need to
change the tariff, Fabric allows the smart contract(s) to be updated with the new tariff
and re-installed in the peers.

Note that, we assume each prosumer’s SET peer to have the billing smart contract
installed, and according to Fabric implementation (Androulaki et al. (2018)), each of
them runs the smart contract when an API request sc-billing(k, t) arrives. In
Fabric, this is related to the endorsement process occurring between peers to verify
the smart contract execution. For example, consider the Smart Grid network
composed by four prosumers as in Figure 4.1. When the client-1 calls the API
sc-billing(k, t), it is executed by all peers peer-1, peer-2, peer-3, peer-4. Once an API
is endorsed, its corresponding transaction is handed from the peer to the orderer, to be
later included in a block and appended to the ledger. In the consensus layer we use
Raft, the default consensus algorithm in Fabric, by which orderers first validate and
then order the received transactions. When a consensus is reached, the orderers notify
the peers to either commit the block in the ledger or reject transactions. The peers in
turn notify clients with the outcomes of API-requests.

4.2 Privacy improvement: combining Blockchain and HE

Privacy is an important requirement for any distributed system, especially for those
based on IoT devices, which use their sensing capabilities to gather information from
surrounding environment. Because of their limited computational power, IoT devices
are not able to perform complex encryption and decryption quickly enough to
transmit collected data securely in real-time. This is relevant in Smart Grid, where
energy data may inadvertently reveal users daily activities. In Section 4.1 we

4Hyperledger Fabric SDK for Go available at: https://pkg.go.dev/github.com/hyperledger/

fabric-contract-api-go
5In this use case, we assume that there is a single energy supplier who agrees the tariff with prosumers.

In a more sophisticated scenario, where there are several energy suppliers, an oracle can be implemented
in smart contracts to seek the best tariff on the market.

https://pkg.go.dev/github.com/hyperledger/fabric-contract-api-go
https://pkg.go.dev/github.com/hyperledger/fabric-contract-api-go
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presented a Smart Grid system that uses a permissioned blockchain as underlying
infrastructure to strengthen data security. However, that solution lacks of data
privacy: energy data are transmitted in clear from the source, i.e. the smart meter, to
the blockchain network where they are stored on the ledger. Besides being exposed to
eavesdropping over communication links, energy data are replicated on all blockchain
nodes. If one of these becomes compromised, an adversary can analyse the data of all
prosumers to discover their habits.

Although on one hand encrypting data solves this privacy deficit, on the other it
introduces another problem: smart contracts can no longer carry out data operations.
After the conclusion of UKIERI project we deepened this aspect and investigated
alternative strategies. We identify in the HE model as the approach that better fits the
previous system, without the need to revolutionise it. Indeed, with HE embedded in
the system, in the blockchain side, it is possible to simultaneously preserve data
privacy and perform computations over encrypted data by means of smart contracts.

With reference to the architecture proposed in Section 4.1.1, we present an upgrade of
the SET module that integrates the HE model. Figure 4.3 shows the HE-based SET
module. Particularly, we include the HE algorithms keygen, encryption, decryption at
SET client, whereas the HE evaluation algorithm is included as software library within
smart contracts at SET blockchain node. Moreover, compared to previous architecture,
we add a Virtual Private Network (VPN) tunnel between the smart meter and the client.
The communications under VPN are encrypted with per session encryption keys: they
are either changed any time a new connection is established or re-generated after a
preset timeout. This guarantees the privacy of energy data in transit from the smart
meter to the client. If an adversary, whether internal or external to the Smart Grid
network, attempts to eavesdrop that communication links, it only obtains ciphertexts.

The keygen algorithm generates prosumer’s HE keys 6. The HE private key is held
off-chain by the client in a separate (private) database, i.e. outside the blockchain
boundaries. Hence, blockchain nodes, both peers and orderers, cannot decrypt data
contained inside transactions. The encryption algorithm allows the client to encrypt the
energy consumptions received by the smart meter. When the client prepares the
transaction to be sent with the store-energy API, it attaches in its values the
prosumer’s HE public keys. The corresponding ledger record will then contain the
encrypted energy and its related encryption and evaluation keys. This information
empowers peers to perform homomorphic computations via smart contracts. The
decryption algorithm allows the client to decrypt encrypted values it receives as output
of a read-ledger request. On the peer side instead, the evaluation algorithm allows
smart contracts to execute functions, e.g. calculate energy bills, with ciphertexts as
input. Specifically, any arithmetic function a smart contract has to perform can be
converted into boolean circuits: a model of computation using logic gates, such as xor

6Note that the HE keys are distinct from keys issued by the CA within identity certificates.
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FIGURE 4.3: The SET blockchain module equipped with HE

(i.e., ⊕) and and (i.e., ∧) on input bits (Vollmer (1999)). For example, the multiplication
between the energy consumptions and a pre-agreed tariff to calculate the bill can be
realised through ∧ gates. The smart contract can then apply these circuit gates over a
set of ciphertexts by relying on their associated pair of encryption and evaluation
keys. As described in Section 2.3, we stress that the homomorphic property of these
computations only holds for ciphertexts encrypted under the same key. That is, the
smart contract cannot run the evaluation algorithm with input ciphertexts belonging to
different prosumers, and thus encrypted with different encryption keys. As per HE
formulation, the circuit output is an encrypted result that will be later stored by the
smart contract to the ledger. The prosumer can finally find out its energy bills by
requesting the client to retrieve-and-decrypt them from the blockchain ledger.

4.2.1 Overheads introduced by HE

In this section, we report experimental results from the implementation of the
aforementioned HE-equipped SET in Hyperledger Fabric. These results show the
computational and message overheads introduced by HE in SET. All experiments are
performed on a machine with 1 CPU Intel(R) Core(TM) i9-9980HK @ 2.40GHz and
12GB RAM running Ubuntu 22.04 LTS. We use Go (Google (2009)) as programming
language for developing the SET client and the smart contract of SET peer. As the HE
scheme to be integrated in SET, we select the CKKS scheme described in Section 2.3.2.
We stress that CKKS works with complex and real numbers, which perfectly suit the
Smart Grid use case, and its HE computations return an approximate result. Also,
CKKS is a FHE scheme providing both addition and multiplication on ciphertexts. We
implement CKKS as a Go module by leveraging the Lattigo library v2.3.0 Lat (2021).
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Keys generation Encryption Evaluation Decryption
Time 832.87 ms 277.37 ms 21.36 ms 148.05 ms

Size
sk 8.90 MB

cf 14.80 MB ce 14.80 MBpk 17.80 MB
ek 213.66 MB

TABLE 4.1: CKKS computational time and data size

This CKKS Go module provides the algorithms for keys generation, encryption,
evaluation and decryption. In particular, as shown in Figure 4.3, we include keys
generation, encryption and decryption algorithms in SET client, and the evaluation
(both addition and multiplication) algorithms in the SET peer’s smart contract.
According to the homomorphic encryption standard Albrecht et al. (2018), for the
CKKS scheme in SET client and SET peer’s smart contract, we use the following
parameters to achieve the security level 128 bits:

• log2 n = 15 ;

• log2 q = 880 ;

• ∆ = 240 ;

• σ = 3.2 .

The key distributionR3 samples each coefficients from {0,±1} with probability 0.25
for each of −1 and 1 and with probability 0.5 for 0. The error distribution Xσ is a
discrete Gaussian distribution of variance σ2.

We simulate a scenario where the SET client collects energy consumptions in real
number format, encrypts them with HE public key, and then submits the ciphertexts
as a transaction to the SET peer (by calling the API store-energy(k, e)). Later on,
the SET client invokes the SET peer’s smart contract to compute the bill (by calling the
API sc-billing(k, t)). The smart contract first adds homomorphically the
encrypted energy consumptions and then multiplies by the tariff, generating an
encrypted result which is sent back to the SET client. Upon the delivery, the SET client
decrypts the evaluated ciphertext with the HE private key and finds out its bill.
Table 4.1 reports the computation time of each CKKS algorithm, i.e. keys generation,
encryption, evaluation and decryption, and the size of each generated CKKS data, i.e.
private key sk, public key pk, evaluation key ek, fresh ciphertext c f and evaluated
ciphertext ce. Note that the evaluation is composed by addition and multiplication, i.e.
ce = (∑m

i=1 c f ,i) · t, where m is the number of the energy consumptions and t is the
plaintext encoding the tariff. The experimental results show that the CKKS algorithms
have a computational cost in the order of milliseconds. Specifically, the total overhead
introduced by CKKS in the SET client is around 1.25s, whereas in the SET peer’s smart
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contract is around 21.36ms. The size of CKKS data is in the order of megabytes,
among which ek is the largest, with a size of 255MB.

4.2.2 Privacy-preserving energy trading

Within the UKIERI project, we restricted the smart contracts only to calculate energy
bills according to prosumer’s consumptions. The introduction of HE in the blockchain
architecture guarantees the privacy of these data, both when they are stored on the
ledger and processed by smart contracts. Besides these benefits to energy billing, the
HE model opens up the possibility for Smart Grid to privately realise another key
functionality: the autonomous energy trading among prosumers. In this section we
present how to enrich the Smart Grid with private energy trading by leveraging on the
SET module previously presented in Figure 4.3. We propose to establish decentralised
auctions via smart contract, where prosumers can buy/sell to each other directly,
rather than dealing with other third parties, e.g. energy suppliers and their brokers.

In order to permit smart contracts to deal with bids made by different prosumers we
need to make some adjustments to SET. Indeed, as depicted in Figure 4.3, we
configure the SET client to include the HE keygen algorithm, such that each prosumer
running an its instance possesses personal HE keys. This is useful for energy billing:
each prosumer can encrypt its consumptions and delegate the computation to smart
contracts. However, since the homomorphic property of the HE evaluation algorithm
holds only for input ciphertexts encrypted under the same key, such approach does
not work for energy auctions. If each prosumer encrypts its bid with its personal HE
public key, then the smart contract is no longer able to compare bids and determine a
winner. To solve the problem we introduce a sort of key-dissemination phase during
an auction. Specifically, when a prosumer needs to sell exceeding energy it requests
the blockchain (via smart contract) to create an auction and to disseminate its personal
HE public key, which will be then used to encrypt the bids by other prosumers. This
dissemination does not actually take place via message exchanges, but rather via the
ledger. Indeed, the (seller) prosumer invokes a smart contract, which sets up the
auction and stores its attributes to the ledger, including the seller’s HE public key. In
particular, we assume that the smart contract generates a unique id for the auction,
and also stores in the ledger its amount of energy, its suggested price and the auction
deadline. That is, we represent an energy auction in the ledger with the key-value pair
(k, v), where k is the auction unique id and v = {q, p, pk, t, bs}, where q is the
energy quantity, p is the starting price, pk is the seller’s HE public key, t is the
deadline and bs is the list of bids collected until t. When a (bidder) prosumer is
interested in joining an auction, she/he retrieves the associated HE key from the
ledger, encrypts her bid and sends it to the blockchain. Upon the predefined timeout,
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the auction is closed and the smart contract automatically calculate the winner. We
therefore expose four new APIs at SET peer:

• store-plus-energy(k, e): it sends the amount of exceeding energy as a pair
(k, e), and it returns a confirmation whether the pair is inserted into the ledger
or not. A prosumer use her unique id as k to send her exceeding energy in e.

• sc-create-auction(q, p, pk, t): it invokes a smart contract to create an
auction for an energy quantity q, with a starting price p, a HE public key pk to
encrypt bids, and a timer t. It creates a unique id k for the auction and a void list
bs to collect the bids, stores the record (k, v = {q, p, pk, t, bs}) into the
ledger and returns a confirmation containing the pair (k, v).

• get-auctions(): it returns a list of open auctions (ki, vi).

• sc-bidding(k, p): it invokes a smart contract to make a bid with price p for an
auction k. It stores the bid into bs of k, and returns a confirmation.

We assume that the smart meter sends the amount of exceeding energy e to the SET
client, which in turn calls a store-plus-energy(k, e) API to store such quantity into
the ledger. The API sc-create-auction() is called by a seller, while the APIs
get-auctions() and sc-bidding(k, p) are called by possible buyers. The energy
trading smart contract handles the APIs sc-create-auction() and sc-bidding()

with two separate threads. Before running both threads, the smart contract verifies the
requester identity and controls whether it is allowed to sell or buy. These latter checks
are made against the ledger, and consist of ensuring that sellers and buyers have
enough energy and money 7 respectively. We assume that for each prosumer the
ledger records the balance of her account. Then, the smart contract concurrently runs
the two threads. When it creates the auction, it stores the corresponding attributes into
the ledger and starts the timer t. Upon the timeout, the smart contract retrieves from
ledger the auction bids bs, finds the maximum bid with the HE evaluation algorithm,
elects the associated prosumer as auction winner and finally stores the outcome on the
ledger. Whereas, when it receives a bid from a prosumer, it retrieves from ledger the
auction record and updates the list of its bids bs with the one received.

Moreover, as Figure 4.3 shows, the prosumer can specify her/his energy policy in an
ad-hoc file, which defines the set of rules on the way energy has to be traded, e.g.
which price constraints have to be complied with. These rules may vary during daily
hours: set a cheap starting price for night auctions, when energy purchase has a lower

7Hyperledger Fabric does not provide a native token (i.e., a crypto-currency) for its platform, thus
we do not refer to money as crypto-currencies and to account balance as traditional blockchain wallet
containing crypto-currencies. However, Fabric allows an asset to be represented as either a fungible or
non-fungible token. For simplicity, in this use case we consider transferred money and prosumer balance
as integers, and we note that this implementation can be extended straightforwardly by creating a fungible
token representing the application’s money.
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priority. The energy policy file is used by the SET client to tune the API parameters of
both sc-create-auction() and sc-bidding(). Note that the prosumer’s energy
policy is stored off-chain. A standard energy trading proceeds as follows:

1. The prosumer’s smart meter regularly monitors the on-site energy supply and
sends to the SET client, via VPN connections, the quantity of energy available to
be traded;

2. The SET client executes two listeners:

2.1. A listener that receives data from the smart meter. Upon the delivery of
exceeding energy, the client processes the prosumer’s policy against the
current conditions, and automatically decides the quantity of energy to sell
q, its minimum sale price p and the auction deadline t. The client calls the
sc-create-auction(q, p, pk, t) API by attaching as parameter its HE
public key pk.

2.2. A listener that constantly queries the ledger for open auctions. The client
calls the get-auctions() API and displays to the prosumer the list of
auctions and their associated parameters. The client processes the
prosumer’s policy against the list of auctions to automatically make a bid
for an auction k. Alternatively, the prosumer can pick from the list. The
client encrypts the bid with the auction key pk via HE encryption. Then, it
calls the sc-bidding(k, p) API with the encrypted bid p as parameter.

3. When an auction k reaches its timeout t, the smart contract first calculates the
maximum bid and the winning prosumer via HE evaluation. Then, it stores the
auction result into the ledger.

4. Each SET client participating in an auction k, at the end of its deadline t, calls
the read-ledger(k) API to find out who is the winner, and finally notifies the
corresponding prosumer.

After winning the auction, the prosumer pays the bid amount to the energy seller,
which in turn transfers the auctioned energy to it. We assume that these steps take
place outside the blockchain. Nevertheless, this energy trading application can be
expanded by enabling the blockchain to automatically carry out the payments with
crypto-coins. Additionally, the SET client can further implement a function that
queries the smart meter to ensure that energy has been transferred.

4.2.3 Generalisation for other IoT-based scenarios

As a fringe contribution, we present how the architecture combining blockchain and
HE of Section 4.2 for Smart Grid can be generalised to other IoT-based scenarios. The
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FIGURE 4.4: The SIOTA blockchain module equipped with HE

idea is to maintain the same backbone, with a HE-equipped software client working
as intermediary between the on-site IoT device(s) and the blockchain entities. We
consider a user hosting a generic IoT device, which automatically monitors and
catches information from the surrounding environment. We envisage a
general-purpose software module, called Secure IoT Application (SIOTA) composed by
a client and blockchain node. They both have the same features and duties of those in
SET, but are arranged for the IoT application they have to carry out. Indeed, the SET
client is only responsible for collecting data from the smart meter, and sending these
data to the blockchain to be later processed by smart contracts for billing. The SIOTA
client, instead, can additionally query the IoT device to obtain further information
from another IoT device nearby. For example, Smart Home systems typically employ
various IoT appliances in different rooms, which can communicate between each
other. In order to fulfil a specific task, the client may request to one of them to collect
data from the others. Moreover, as in the energy auction setting (Section 4.2.2), the
SIOTA client enforces user’s policies to determine what operations to trigger. As
regards the SIOTA blockchain node in contrast, it differs from SET only in terms of
smart contract operations, which strictly depend on the IoT scenario.

Figure 4.4 shows the SIOTA module. Similarly to SET, both client and peer contain HE
algorithms. Specifically, SIOTA client includes keygen, encryption and decryption,
respectively used for generating HE keys, encrypting IoT sensitive data, decrypting
ciphertexts. Whereas, the SIOTA peer includes the evaluation algorithm as software
library within smart contracts code. Furthermore, as in SET, the communications
between the IoT device and the client are encrypted inside a VPN tunnel.



76 Chapter 4. Applying Blockchain and Homomorphic Encryption to Smart Grid

4.3 Related work

The promising characteristics of blockchain have caused a lot of interest in energy
sector, fostering the realisation of several research works focused on enhancing the
security of the emerging Smart Grid and optimising its functions. Authors of papers
(Noor et al. (2018); Mannaro et al. (2017); Pipattanasomporn et al. (2018); Hahn et al.
(2017); Sabounchi and Wei (2017)), propose to leverage on smart contract to trade
energy and create auctions among prosumers. Noor et al. (2018) present a
blockchain-based model for micro-grid to align prosumers supply/demand and
stretch capacity limits of the main-grid, so to reduce the peak-to-average ratio and to
maximise benefits for both prosumers and energy supplier. The blockchain is in
charge of verifying the identities of prosumers, handling the trading process via smart
contracts and endorsing the energy payments. Mannaro et al. (2017) propose a system
where robot-advisors suggest the best selling strategy to prosumers, and the smart
contracts are used to automatically transact energy and cryptocurrency at suggested
price. Pipattanasomporn et al. (2018) use Hyperledger Fabric to authenticate
prosumers within an isolated micro-grid and to manage via smart contracts in place
energy trading. Hahn et al. (2017), instead, propose a Smart Grid featured by
Ethereum. Their proposed system supports the energy trading among prosumers by
means of smart contracts implementing a Vickrey auction8. Likewise, Sabounchi and
Wei (2017) use Ethereum to realise energy auctions via smart contracts for prosumers
of a micro-grid. Authors of papers (Kounelis et al. (2017); Luo et al. (2018)) instead
exploit the blockchain either as secure data storage or as parallel tool for payments
between promusers. Kounelis et al. (2017) propose Helios, where solar energy can be
produced by prosumers and stored in next-generation batteries. They use Ethereum
smart contracts to distribute the exceeding generated energy and receive coins as
reward. Luo et al. (2018) exploit blockchain in their proposed platform as a distributed
database to securely store the energy trading transactions, which are formed in a
multi-agent system designed to support prosumers network.

Although all the mentioned papers propose blockchain to streamline the energy
trading process and to enhance the Smart Grid security, none of them considers the
privacy aspect. Laszka et al. (2017) describe a solution to maintain prosumers
anonymity and privacy while trading energy. They provide an anonymous
communication service by combining the onion routing9 technique with blockchain
anonymous addresses assigned to prosumers. Micro-grid members then cannot
identify by which prosumer the energy was produced or consumed, and in case of a
trading who the stakeholders actually are. Likewise, Aitzhan and Svetinovic (2016)
introduce a platform that uses blockchain along with multi-signatures and

8In Vickrey auction, the highest bidder wins, but the price paid by the winner is second-highest bid.
9Onion routing is a technique for anonymous communications, in which messages are encapsulated in

bundles of encryption.
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anonymous encrypted messaging streams. The system enables prosumers to
anonymously negotiate energy prices and securely transact energy. Furthermore,
three are two recent papers that propose to combine blockchain with HE for providing
privacy. Singh et al. (2021) propose a Smart Grid where energy consumptions of users
are encrypted and aggregated via HE, and the ciphertexts are stored in a blockchain
deployed on a cloud. Instead, Li et al. (2022) propose a blockchain-based energy
market where prosumers negotiate energy prices. The authors use HE, smart contract
and ZKP the create a secure two-party protocol between two prosumers negotiating a
price to withstand against the collusion attack.

Both papers (Laszka et al. (2017); Aitzhan and Svetinovic (2016)) propose solutions to
deliver prosumer anonymity and also privacy of the energy data. However, the
blockchain is merely used in their system to assign users with crypto-addresses and to
securely store encrypted deals. Particularly, the trading negotiations, concerning the
quantity of exchanged energy and its price, take place outside the blockchain
network, without using smart contracts. Compared to this current state-of-the-art,
although our solution does not provide users anonimity, it uses the blockchain to
decentralise, automatise and streamline the Smart Grid functions of energy billing and
trading, removing either energy brokers or consultants. Additionally, due to the
integration of HE model, our solution executes these functions by guaranteeing the
privacy of data while are processed by smart contracts. Conversely, Singh et al. (2021)
and Li et al. (2022) actively use blockchain and smart contracts to perform operations
in a Smart Grid, i.e. aggregating consumptions and negotiating prices respectively.
Also, they both integrate HE in these processes. Nevertheless, our work present some
differences with Singh et al. (2021) and Li et al. (2022). Differently from Singh et al.
(2021), we use HE for energy billing and trading, so we focus on the prosumer and the
benefits it can obtain from these decentralised functions. We note, however, that our
approach is similar: prosumers sends data encrypted via HE to blockchain, which
performs HE computations and store the result in the ledger. Speaking of approach,
ours is completely different from that of Li et al. (2022). They do not implement an
energy trading, but a two-party negotiation protocol for the energy tariff via smart
contract, which is secured via HE and ZKP. The purpose of this protocol is to defend
against the collusion attack of neighbour prosumers. To the best of our knowledge, we
believe this one of the first work that integrates blockchain and HE into Smart Grid
environment to perform decentralised and privacy-preserving energy billing and
trading.

4.4 Discussion

In this chapter we presented a novel Smart Grid system featured by a permissioned
blockchain that we developed for CS-SED project of the UKIERI research programme.
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This integration is motivated by the several benefits that blockchain brings to Smart
Grid. Firstly, blockchain used as underlying data storage guarantees strong integrity
and non-repudiation properties to data collected by IoT devices, i.e. the smart meters.
Secondly, its built-in smart contracts eliminate the need for a central authority, i.e. the
energy supplier, to coordinate the Smart Grid and verify the accuracy of energy
invoices. Thirdly, due to the permissioned setting, the blockchain enforces
authentication and authorisation checks that enhance the trust among prosumers
participating in the system. We therefore presented the architecture that connects the
Smart Grid prosumers with an overlay network of blockchain nodes. We proposed a
new software module, named SET, that acts as intermediary between the prosumer’s
smart meter and the blockchain. Specifically, we implemented the SET module in
Hyperledger Fabric, a permissioned blockchain platform offering authentication and
access control services. We designed SET to be composed by a client and a blockchain
node. The former is used to collect energy consumptions from the smart meter and to
invoke blockchain functions. Whereas the latter maintains a copy of the ledger and
runs smart contracts that automatically calculate the energy bills.

Although this blockchain-based solution strengthens the security of Smart Grid and
streamlines energy billing, it lacks privacy. Indeed, the energy consumptions, as well
as energy bills, are both transmitted and saved on the ledger as plaintexts. This
exposes them to be eavesdropped by an external adversary or maliciously inspected
by a compromised blockchain node. Alongside it, the simplistic encryption of energy
consumptions would prohibit smart contracts from calculating bills on them.
Therefore, we upgraded the previous system by combining the blockchain with HE.
The new HE-equipped SET module is then able to simultaneously encrypt the
consumptions and calculate the bills on their ciphertexts using the blockchain. The
results of our experimental evaluation show that the overhead introduced by HE is
low in SET client (approximately 1s), and particularly low in SET peer’s smart
contract (approximately 20ms), demonstrating that the HE-equipped version
performs as well as the one without HE.

Furthermore, we enriched the SET module with HE-based energy trading operations.
In particular, we empowered SET to create decentralised privacy-preserving auctions
via smart contracts when prosumers have surplus energy to sell. The auction is
conducted over encrypted bids by relying on the HE properties. Summarising, the
permissioned blockchain coupled with HE hence brings the following benefits to
Smart Grid:

• It makes the overall Smart Grid system more cost-effective by enabling
autonomous energy billing and decentralised energy trading. The energy
supplier no longer has to deal with billing, while prosumers can trade energy
among themselves without paying brokers or consultants.



4.4. Discussion 79

• It enhances the Smart Grid security and prosumers trust, by relying on the
security properties offered by the combination of blockchain and HE. Prosumers
are authenticated and access control rules are in force. Energy consumptions,
bills and auction details become both immutable and private. Energy billing and
trading turn into privacy-preserving operations.

Considering these advantages, we then proposed SIOTA, a generalisation of
HE-equipped SET applicable to other IoT-based scenarios. Notwithstanding, HE
poses a limitation that hinders the application of SIOTA in IoT systems geared
towards performing users’ statistics. Schemes belonging to HE are typically referred
to as single-key, because they only permit computations on data encrypted under the
same key. The SIOTA module, as well as SET, is designed to equip the user with a
single-key HE scheme. Each user can then generate personal HE keys, encrypt,
decrypt or delegate the blockchain to evaluate on its encrypted data. As a result, the
blockchain ledger contains ciphertexts encrypted with distinct HE keys. If the IoT
system is formed with the objective of pooling and analysing users’ data, the different
single-key schemes at play prevent SIOTA from accomplishing it.

In the next chapter we present a solution to this problem. In particular, we present a
novel permissioned blockchain integrated with Multi-Key HE, an innovative HE
model that allows computations on data encrypted under different keys.
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Chapter 5

PANTHER: A privacy-preserving
permissioned Blockchain integrated
with Multi-Key Homomorphic
Encryption

The blockchain technology has brought significant advances in terms of integrity and
availability of data, indeed an adversary would require extensive resources to tamper
with or prevent access to the transactions stored in a blockchain. A blockchain can
also perform computations through smart contracts, which define the code to execute
as a transaction and, therefore, enjoy the same integrity and availability properties.
Another important feature of blockchain concerns data transparency, indeed stored
transactions can be read by any user having access to a node of a blockchain network.
Permissionless blockchains such as Bitcoin and Ethereum, where any device is
allowed to become a node of the network, provide the highest degree of transparency.
Although desirable in some contexts, several scenarios require some level of privacy,
for example when stored data is confidential. This aspect is partially addressed by
permissioned blockchains, where only a fixed set of nodes can be part of the network,
and access control rules can be enforced to regulate who can access what data.
However, stored transactions are still replicated over all the blockchain nodes, and
high privilege users of these machines can access this data anyway. For example,
Hyperledger Fabric enforces policies 1 to govern user authorisations on ledger data,
but among users, network admins always have read permissions. Fabric also
introduces the concept of private data 2 to further restrict the data access to subgroups
within the same network: the ledger contains only the hashes of the data, and the
actual content its available to subgroups according to pre-agreed policies. Yet, all

1https://hlf.readthedocs.io/en/latest/policies/policies.html
2https://hlf.readthedocs.io/en/latest/private-data/private-data.html

https://hlf.readthedocs.io/en/latest/policies/policies.html
https://hlf.readthedocs.io/en/latest/private-data/private-data.html
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users of a subgroup can access the data content. An effective solution to ensure
confidentiality of stored transactions consists in encrypting them before submission to
the blockchain. The downside of this approach relies in the inability to perform any
smart contract computation on ciphertexts. For example, in a blockchain-based
healthcare system where patients’ data is stored encrypted, doctors could not rely on
smart contracts to carry out required medical assessments, such as calculating the
monthly average of blood glucose in patients suffering from diabetes.

That limitation can be overcome using Homomorphic Encryption (HE). HE is a
cryptographic tool to execute functions on cyphertexts and generate encrypted results,
which, once decrypted, are equal to the results that would have been obtained by
executing the functions on plaintexts. Integrating HE in a blockchain can ensure the
privacy of stored transactions without preventing the possibility to carry out smart
contract computations over them. However, traditional HE schemes are single-key,
which means that computations are correct only if performed on data encrypted
under the same key. Therefore, running smart contract computations on transactions
submitted by different users and encrypted using different keys would produce
incorrect results. With reference to the blockchain-based healthcare system example
mentioned before, it would not be possible to run statistical analyses on medical data
of a set of patients.

To solve this problem, in this chapter we propose to integrate a permissioned
blockchain with Multi-Key Homomorphic Encryption (MKHE), a recent HE model that
enables computations on data encrypted under different encryption keys. We detail
how this integration can be realised by presenting the design of PANTHER
(Permissioned blockchAiN mulTikey Homomorphic EncRyption), which allows a user to
privately store her data on the blockchain, and yet take full advantage of smart
contracts to execute functions even with data encrypted by others. To decrypt the
result of a MKHE computation, a Secure Multiparty Computation (MPC) protocol is set
up in PANTHER, involving only those parties that contributed to the computation
with an input ciphertext. Specifically, during a MPC decryption protocol, each
involved party sends its partial decryption to the others, and by combining them the
result of the computation can be decrypted.

Contributions

The novel contribution of this work consists in proposing to integrate MKHE with a
permissioned blockchain, since all existing related works are based on single-key HE.
Furthermore, we present a novel MPC decryption protocol for MKHE. Compared to
existing MKHE models, which rely on complex cryptographic procedures to deliver
decryption correctness against a byzantine adversary, our protocol leverages
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blockchain and its data integrity property. Indeed, in PANTHER, a MKHE
computation is performed by blockchain nodes via smart contracts and, only if a
majority of them compute it correctly, is the result added to the ledger. In our MPC
protocol, the parties then verify that the ciphertext to be decrypted is consistent with
the one stored in the ledger, which can be considered immutable and, thus, trusted to
be correct. The other contributions provided are:

• a comprehensive discussion of the current blockchain solutions coupled with
HE, where limitations are outlined;

• the architecture and protocols of PANTHER to enable data privacy and private
operations via smart contracts;

• a qualitative message complexity comparison of the proposed MPC protocol
with the state of the art;

• an extensive security analysis of PANTHER, where we prove that privacy,
integrity and availability of PANTHER’s data are preserved against a byzantine
adversary;

• the implementation of MK-CKKS, a MKHE scheme based on CKKS (Cheon et al.
(2017)) and written in Go that provides primitives to carry out MPC decryption
protocols;

• a benchmark of PANTHER’s performance, where experimental results show that
MKHE introduces a small overhead into the blockchain.

Chapter structure

Section 5.1 presents a literature review on the integration between blockchain and HE,
showing current advancements and open challenges in this research field. In
Section 5.2 and Section 5.3, we define the blockchain system model and the adversary
model, respectively. Section 5.4 introduces the requirements to meet to preserve the
privacy of users’ data. Then, in Section 5.5, we highlight the downsides of the current
solutions that rely on single-key HE and threshold HE schemes (Section 5.5.1), and we
propose our privacy-preserving blockchain architecture, which integrates MKHE into
different layers of a permissioned blockchain (Section 5.5.2). Section 5.6 details the
protocols run by clients and blockchain nodes. A qualitative performance analysis of
the proposed MPC decryption protocol is discussed in Section 5.7. A rigorous security
analyses of PANTHER is provided in Section 5.8. The implementation of PANTHER is
outlined in Section 5.9, along with its benchmark. Finally, Section 5.10 concludes and
discusses the work.
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5.1 Related work

According to recent surveys (Feng et al. (2019); Bernal Bernabe et al. (2019); Zhang
et al. (2019)), the HE model has been identified as one of the main methodologies to
cope with the lack of data privacy of current blockchain systems. As claimed by Feng
et al. (2019), the application of HE within blockchain offers the opportunity to perform
privacy-preserving operations over data recorded on ledger, even though they have
previously been encrypted. This peculiarity prompted the realisation of several
academic works based on HE and blockchain in heterogeneous scenarios, e.g.
e-voting, supply-chain, IoT systems.

Du et al. (2020a) propose a new supply-chain platform on Hyperledger Fabric which
embeds the Paillier cryptosystem into smart contracts to encrypt trade data (e.g.,
prices, quantities) and to perform on them addition operations (e.g., add/remove
goods quantities). She et al. (2019) propose a framework on Hyperledger Fabric to
manage the users’ data collected by the IoT devices in smart home environments. In
this blockchain system the authors use the Paillier cryptosystem to encrypt the
sensitive data of users and perform on them analysis. Similarly, Shen et al. (2019)
propose a framework for performing machine learning analysis on data collected by
IoT devices in smart city environments. Specifically, they employ the Paillier
cryptosystem as privacy-preserving building block of the machine learning compiler,
and a blockchain ledger as tamper-proof data storage.

Moreover, in literature can be found some work where HE comes with
Zero-Knowledge-Proof (ZKP) mechanism. Formulated in 1989 by Goldwasser et al.
(1989), the ZKP allows a party possessing a secret information to prove other parties,
using a statement, that he/she knows it without revealing any knowledge of the
information itself. Such functionality can be useful to enforce the verifiability of
HE-based operations in contexts where a certain level of transparency is desirable
alongside confidentiality. Ma et al. (2021) propose an abstract framework based on
Ethereum for supply-chain systems, where a PHE cryptosystem is used to encrypt the
transactions content and to update the accounts balances. In addition, they create two
statements with ZKP to show that encrypted buyer’s balance is greater than dealt
encrypted amount, and that the encrypted balances of both buyer and seller are
updated accordingly to transferred money amount. Killer et al. (2020) propose
Provotum, an e-voting Ethereum framework that employs the ElGamal cryptosystem
to encrypt users’ votes and execute the tallying via smart contract. The ZKP is used to
demonstrate the correctness of both voting and tallying phases. Notably, the authors
use ElGamal under the Threshold HE (THE) model, first-time defined by Cramer et al.
(2001), and combine via a MPC protocol the public keys of users to produce a system
public key. As in MKHE, also in THE a MPC protocol occurs among users to decrypt.
Yu et al. (2018) implement an e-voting system on Hyperledger Fabric where the
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Paillier cryptosystem is embedded inside smart contract logics as software libraries.
Indeed, they perform the tallying of encrypted votes via smart contract and, in
addition, they employ the ZKP to demonstrate the correctness of voting procedure.
Similarly, Yang et al. (2020) propose an approach that merges ElGamal with the
group-based encryption to encrypt users’ votes of an e-voting system. Differently
from Killer et al. (2020) and Yu et al. (2018), Yang et al. (2020) use the blockchain as
database to store the votes and perform the tallying phase without leveraging on
smart contract.

Differently from papers mentioned so far, Mitani and Otsuka (2020) propose a
protocol featured by a FHE scheme, which enables users of a permissioned blockchain
to encrypt their transactions and update their balances according to the encrypted
assets exchanged. The authors use ZKP to prove that the correctness and traceability
of these encrypted data can be verified from users of a permissionless blockchain.
Table 5.1 shows a comparison of the aforementioned papers, conducted in terms of:

• Which kind of HE model is used;

• Whether or not smart contracts implement HE-based computations;

• Whether or not the ZKP is used along with HE to strengthen the truthfulness of
encrypted data;

• Which kind of blockchain setting is considered, i.e. permissionless or
permissioned.

The first aspect to note in Table 5.1 is that all papers adopt single-key HE schemes
within their respective blockchain environment. In the single-key PHE and FHE
models the correctness property 2.5, and its inherent homomorphism, does not hold
for data encrypted with different unrelated keys. This is the case of papers (Ma et al.
(2021); Mitani and Otsuka (2020)). In both systems a user is equipped with a personal
pair of HE-keys. Although she can execute the HE-based computations on her own
data, encrypted with her public key, she cannot execute it on data of different users.
Thus, users are not allowed to combine their data and perform functions on them,
restricting the advantages of HE. Attempting to overcome such limitation, and enable
computations on joint data of different users, the other cited papers propose various
approaches. Papers (Du et al. (2020a); She et al. (2019); Shen et al. (2019); Yu et al.
(2018)) employ only one public key for the entire system, while the matching private
key is retained by an administrator in charge of evaluating data. Similarly, in Yang
et al. (2020), system admins distribute to users a small set of public keys associated
with candidates of an election, and retain the private keys. Users encrypt their votes
and the admins perform HE-based computations to count the votes of each candidate.
However, with this approach users have to trust the admin distributing the system
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Papers
HE model HE private computations HE with Blockchain

used into smart contract ZKP setting
Du et al. (2020a) PHE Yes No Permissioned

Killer et al. (2020) PHE - THE Yes Yes Permissioned
Ma et al. (2021) PHE No Yes Permissionless

Mitani and Otsuka (2020) FHE No Yes Both
She et al. (2019) PHE No No Permissioned

Shen et al. (2019) PHE No No Permissionless
Yang et al. (2020) PHE No Yes Permissionless

Yu et al. (2018) PHE Yes Yes Permissioned
This work MKHE Yes No Permissioned

TABLE 5.1: Work combining blockchain and HE

public key, who may behave dishonestly. Moreover, users are passive. Not having the
decryption key, they cannot autonomously execute HE-based computations and are
merely restricted to feed the system with their data. Another interesting approach is
applied by Killer et al. (2020). The authors employ THE model, and aggregate the
individual public keys of users into a single system public key. However, as detailed
and further elaborated in Section 5.5.1, THE model requires users to run a MPC
protocol to create the common public key, which implies that all of them need to be
always online. In the light of these considerations we decided to adopt the MKHE
model as a solution to these drawbacks.

The second aspect to note is that, among the cited work, only the papers Du et al.
(2020a); Killer et al. (2020) and Yu et al. (2018) provide smart contracts executing
privacy-preserving computations via HE. By contrast, all other papers opt to run the
HE computations outside the blockchain, and then to just store the results of its
executions into the ledger. This limits the blockchain to merely operate as a database
and turns out to not be a true integration between blockchain and HE. Thus, similarly
to Du et al. (2020a); Killer et al. (2020) and Yu et al. (2018), we conceive an architecture
in which the HE computations are implemented straight through smart contracts,
enabling users to delegate their desired computations to blockchain while preserving
the privacy of involved data.

Another aspect emerged from this literature review is the exploitation of ZKP along
with HE. The ZKP has shown to be very useful in different use cases (Ma et al. (2021);
Killer et al. (2020); Yu et al. (2018); Yang et al. (2020); Mitani and Otsuka (2020)) to
prove some statement about the data encrypted via HE. For instance, Ma et al. (2021)
use ZKP to allow a buyer to prove that her encrypted account balance is greater than a
certain purchase price. Considering ZKP characteristics and drawbacks, we opt to not
include it in our architecture for two reasons. Firstly, the functionality of ZKP is
worthwhile just in particular use cases, where some transparency about secret data is
needed. Recalling the paper Ma et al. (2021), the statement created via ZKP releases an
extra detail about the account balance, i.e. that it is above a certain amount.
Conversely, our aim is to provide privacy for blockchain data without releasing any
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additional information about them, i.e. without any degree of transparency. Secondly,
relying on complex cryptographic procedures to create the proofs, ZKP requires a
significant computing power and it is time-consuming. Thus, employing ZKP to
prove the correctness of computations performed via HE, as in papers Killer et al.
(2020); Yang et al. (2020); Yu et al. (2018), means further contributing to slightly
worsen the system performance. Conversely, we rely on the dependability and
non-repudiability of smart contracts executed on the blockchain to prove the
correctness of HE computations. Indeed, when a HE computation is performed by
blockchain, it is only approved and committed into the ledger only if a majority of
network nodes (tipically 2/3) validate its execution of the smart contract.
Notwithstanding, we leave the door open to apply in future ZKP on top of our
architecture in order to release some degree of transparency.

Table 5.1 reports also which kind of blockchain setting is chosen in each cited work.
Papers (Shen et al. (2019); Ma et al. (2021); Yang et al. (2020)) employ a permissionless
blockchain, whereas papers (Du et al. (2020a); She et al. (2019); Killer et al. (2020); Yu
et al. (2018)) employ a permissioned. It is worth noting the work of Mitani and Otsuka
(2020) where both settings are employed, i.e. the transactions of a permissioned
blockchain are privately recorded in a permissionless blockchain.

To sum up, the integration between blockchain and the HE model is at early stage,
and current academic work seek to accomplish this by focusing on single-key HE
schemes. To the best of our knowledge, we believe this is the first work that integrates
the blockchain with a multi-key HE scheme, capable of performing computations
even on data encrypted with different keys. Furthermore, this work is one of the few
that proposes to implement a HE scheme via smart contracts, preserving the privacy
of processed data and enhancing the blockchain security.

5.2 System model

We consider a permissioned blockchain system composed by multiple organizations,
each of which supplies at least one node to set up a private network. We refer to the
network nodes as peers. In permissioned blockchain context, peers are identified and
each of them has assigned a publicly available digital certificate, which is released by a
trusted Certificate Authority (CA) and contains a set of verifiable attributes relating to
its holder, e.g. its hostname and the organization it belongs to. Additionally, each ith
peer in the network has a set of cryptographic credentials, namely a pair of
public-private keys (Cpki, Cski). The public key is included as attribute in peer’s
digital certificate. The private key is used to digitally sign transactions processed by a
peer. We also consider that each peer holds a local copy of the ledger, where are
recorded all transactions occurred in the system, and is endowed with smart contracts
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to perform computations on data. We refer to peers that execute smart contracts as
computing peers. We assume asynchronous communication between peers to validate a
transaction, instead we rely on partially synchronous communication between those
peers engaged in the consensus protocol, as per PBFT system model Castro and
Liskov (1999), to guarantee its liveness property.

We refer to members of organizations as users. Analogously to peers, each jth user
owns a certificate and a pair of cryptographic keys (Cpkj, Cskj), which she can use to
digitally sign the transactions she sends to the blockchain. Depending on the role a
user covers within her organization, she can have different rights and permissions for
carrying out operations with the blockchain. These authorisations are associated with
the user’s certificate and are stated in the blockchain configuration. Each user can
interact with the blockchain network through an application software (e.g., web or
mobile app), for submitting transactions and retrieving data from the ledger. We refer
to it as client. We assume asynchronous communication between clients. Also, we
assume that a client sends asynchronous and uniquely indexed requests to peers, and
that peers eventually reply to a request (i.e., partially synchronously).

We assume that every pair of system parties is connected by a bidirectional link, and
that these point-to-point links are reliable in the face of crashing parties, i.e. a correct
party eventually delivers a message sent to it by another correct party (Cachin et al.
(2011)). Links reliability implies that messages are continuously retransmitted until
reach their destination, and network partitions will be eventually solved. Thus, even
in the case of loss of some messages due to a temporary link failure, the probability for
a message to reach its destination is non zero. We assume parties use reliable
broadcast primitives for one-to-many communications, i.e. if a correct party delivers a
message then eventually all correct parties deliver it (Cachin et al. (2011)).
Furthermore, we assume that the communication channels per se do not provide
privacy, i.e. they do not apply cryptographic methods over carried data.

5.3 Adversary model

Bearing in mind the system model described in Section 5.2, there exist multiple
potential attacks to which participating actors might be exposed. The aim of our
system is to defend by-design against these threats by leveraging both blockchain and
HE security strengths. We thus define the capabilities of an adversary willing to
undermine the privacy, integrity or availability of the system data. We consider
computationally bounded adversaries, i.e. PPT adversaries. According to the network
assumptions made in Section 5.2, we consider that even if an adversary drops some
retransmissions of a message, it cannot drop them all and eventually the intended
recipient delivers the message. Formally:
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Definition 5.1 (Byzantine blockchain adversary). Let S be a permissioned blockchain
system, composed by N clients and M peers. Each jth client holds a MKHE scheme Ej

and runs MPC protocols with other clients to decrypt evaluated ciphertexts. Peers are
equipped with an EVAL algorithm by which they can perform computations on
ciphertexts via smart contract. Then, a PPT adversary A attacking S can corrupt either
clients or peers, and control them with a behaviour byzantine (a.k.a. malicious or
active), i.e. the corrupted parties can deviate from their prescribed protocol. If A is in
control of a party, whether client or peer, can send incorrect data. If A controls a client
can collude with other corrupted clients to subvert a MPC decryption protocol.
Whereas, if A controls a peer (i) can tamper with data of received transactions or
stored in its ledger, (ii) can alter a smart contract or snoop on its processed data, (iii)
can avoid to process transactions and reply to clients. In addition, A can attack the
communication channels of S by:

• eavesdropping messages among clients and peers;

• tampering with data contained inside messages;

• discarding some messages, but not all.

We assume that the number fp of byzantine peers is fp < |M|/3, as per PBFT
implementation Castro and Liskov (1999). As detailed in Cachin et al. (2011), any set
of

⌈︂
|M|+ fp+1

2

⌉︂
or more peers is a quorum tolerating fp byzantine peers, and among

them there is at least one quorum Q̃p entirely composed by honest peers.
Furthermore, to guarantee decryption correctness, we require that, for any MPC
decryption protocol where T ⊆ N clients participate, the number ft of byzantine
clients is ft <

|T|
3 . We consider that the set N of clients and the set M of peers are

disjoint, and so any set T is disjoint from M. Hence, ft and fp are not related. This
implies that compromising fp peers does not give any advantage to an adversary
willing to undermine the MPC decryption protocol executed by T. Viceversa,
compromising ft clients gives no advantage to an adversary willing to undermine the
blockchain consensus.

5.4 Requirements

In this section we point out the requirements that a permissioned blockchain system
should meet in order to enforce the privacy of users’ data. We consider that users
want to keep confidential their transactions, such that only the stakeholder of a
transaction can know the corresponding content. Then, users should employ
cryptographic tools to conceal their data in the ledger, which actually by default
allows any participant to read all the transactions recorded inside it. We consider also
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that a user may outsource some computations to the blockchain on her own
confidential data (e.g., compute the average of its monthly expenses), or alternatively
with confidential data belonging to other participants (e.g., compare its expenses with
those of another user to discover who spends more). Then, the blockchain should
perform these computations in a privacy-preserving fashion, which means that only
the appropriate users can find out the corresponding result, and also no computing
peer can know the actual value of data used in the computation. Hence:

R1 No user can find out the content of other users’ transactions retrieving data from
the ledger;

R2 A user can delegate the blockchain, via smart contracts, to perform
privacy-preserving computations on her own confidential data;

R3 A user can delegate the blockchain, via smart contracts, to perform
privacy-preserving computations on joint confidential data, owned by different
users.

5.5 PANTHER architecture

This section presents the architecture of PANTHER by first justifying the choice of
using an MKHE scheme rather than a single-key one (Section 5.5.1) and, then,
detailing the system components and their interfaces (Section 5.5.2).

5.5.1 Design choices

As explained in Section 2.3, the homomorphism property of traditional single-key HE
schemes only holds over ciphertexts encrypted under the same key, which makes it
hard to meet Requirement R3. This limitation has been addressed in different ways by
the related works discussed in Section 5.1. The majority of works (Du et al. (2020a);
She et al. (2019); Shen et al. (2019); Yu et al. (2018); Yang et al. (2020)) provide all users
with the same public key without sharing the corresponding private key. However,
with this approach users cannot autonomously decrypt the evaluated ciphertexts
computed on their data.

Another method consists in applying the THE model, as proposed by Killer et al.
(2020), where all users combine their public keys to create a single ‘system-level’ public
key. The downside of THE is that all the users take part to the initial MPC protocol to
generate the system-level public key, therefore all of them are required to be involved
for any MPC decryption. Also, issues arise whenever the set of users changes. For
example, if a new user joins the system, then it is necessary to run again the MPC
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protocol to generate a new system-level public key, re-encrypt the data and perform
the computation again. As another example, if a user leaves the system, then no MPC
decryption can terminate and, again, a new system-level public key needs to be
generated. These restrictions can be mitigated by setting a lower threshold on the
number of users required to complete an MPC decryption. The threshold can be
decreased at most up to the majority of users, or up to 2/3 of them to tolerate
byzantine adversaries. Nevertheless, depending on the total number of users, their
majority may still be too large a number, especially in the situation where HE
computation is carried out with input data belonging to a small subset of users.

An alternative THE model is to have subset of users who need to execute a function
on their data generate a ‘function-level’ public key by running an MPC protocol. There
are two downsides to this approach. Firstly, an MPC protocol needs to be executed
whenever a new set of users want to perform a computation on their data. Secondly,
the same data of a user may need to be stored in the blockchain several times, each
time encrypted with a different function-level public key.

A dual approach is to split a system-level private key among users via secret sharing,
as originally proposed by Cramer et al. (2001), which avoids users running an MPC
protocol for generating a shared public key. However, this strategy has three
disadvantages. Firstly, all the users need to be involved in the decryption, even if a
user just wants to run computations on her own data, as per Requirement R2.
Secondly, a THE scheme like this requires a specific entity to generate the system-level
public key, which entails centralisation and, therefore, introduces a
single-point-of-failure. Thirdly, issues arise whenever the set of users changes, because
the system-level private key needs to be re-shared among the new set of participants.

We decide to adopt the MKHE scheme in PANTHER to overcome the limitations
described above and meet R1, R2 and R3. PANTHER differs from the existing
approaches in the following aspects:

• each user has their own pair (HEpkj, HEskj) to decrypt autonomously, as per
Requirement R2, and collectively via MPC protocols, as per R3;

• the users involved in an MPC decryption for some ciphertext c̃ are only those
which contributed their data as input for the computation of c̃;

• users do not have to run MPC generation protocols;

• a user encrypts their data only once using their own HEpkj, thus avoiding
redundancy in the ledger;

• whenever a user joins or leaves the system, no new key needs to be generated
and distributed.
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Adopting MKHE enables having the blockchain peers generate the computation
public keys, instead of the users, which streamlines key management and reduces
significantly the effort on users. We achieve this in MKHE by employing the
key-switching tool, which allows extending a ciphertext with another public key. In
particular, when peers are requested to run an HE computation on t ciphertexts
encrypted with t different public keys, they first combine all the t keys into a single pk̃,
then extend each of the t ciphertexts with pk̃. After this pre-processing stage, the peers
run the EVAL algorithm on the t ciphertexts to produce a single ciphertext c̃. Later on,
the corresponding t users can run an MPC decryption on c̃ to find out the function
result.

Moreover, existing HE models with MPC decryption, as in papers Asharov et al.
(2012); López-Alt et al. (2012); Mukherjee and Wichs (2016), use ZKP or succinct
arguments Bitansky et al. (2012) to prove decryption correctness and achieve security
against a byzantine adversary. Specifically, considering a MPC decryption protocol
among T parties for decrypting an evaluated ciphertext c̃ produced by a server S,
papers Asharov et al. (2012); López-Alt et al. (2012); Mukherjee and Wichs (2016) use
such techniques to prove that:

1. the ciphertext c̃ is correct and valid. The server S needs to generate a proof that c̃
is the output of EVAL = (F , c⃗, pk, ek), where c⃗ are the input ciphertexts of T.

2. partial decryptions of T are well-formed. Each ith party in T needs to generate a
proof that the private key ski used in its partial decryption of c̃ is consistent with
the public key pk encrypting its input ci for c̃ computation.

For example, the MKHE scheme proposed in López-Alt et al. (2012) uses (i) SNARG
and SNARK to generate a proof for the correct execution of EVAL, and (ii) ZKP to
generate proofs for the consistency between private and public keys of each party in
T. Note that in López-Alt et al. (2012) (as well as Asharov et al. (2012); Mukherjee and
Wichs (2016)), each party in T needs to generate a ZKP proof for its private key
because all partial decryptions of T are required to decrypt.

Differently from existing HE models, in PANTHER we leverage the blockchain to
deliver correctness of MPC decryption in the face of byzantine adversary. Indeed,
considering a MPC decryption occurring in PANTHER among T for decrypting c̃, we
rely on blockchain properties of data integrity and trustworthiness to ensure that:

1. the evaluated ciphertext c̃, stored on the ledger, has been generated correctly by
computing peers.

2. each honest party in T partially decrypts the correct c̃ and broadcasts the result
to the correct set T.
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Firstly, in PANTHER each peer executes EVAL = (F , c⃗, pk⃗ , ek⃗) via smart contract,
where c⃗, pk⃗ and ek⃗ are the input ciphertexts, public and evaluation keys of T
respectively. Then, each peer broadcasts to others the result of this computation, i.e.,
the evaluated ciphertext c̃, for endorsement. If a 2/3 majority of peers send the same
value of c̃, it is deemed correct and thus included in the set of transactions to be
ordered in the next consensus round. Once the consensus round completes, c̃ is
permanently saved in the ledger. Therefore, parties in T can be assured that c̃ is
correctly produced and not altered.

Secondly, unlike López-Alt et al. (2012), PANTHER requires a threshold of partial
decryptions greater than |T|+ ft

2 to decrypt c̃. As long as the number of byzantine
parties in T is ft <

|T|
3 , there exists a quorum of honest parties able to decrypt. A party

starts the MPC protocol by broadcasting to T a message containing its partial
decryption and the associated pair (c̃, T). Upon delivery of such message, the parties
check that (c̃, T) are consistent with the trustworthy ones stored in the ledger, and if it
fails, they decide not to join the protocol. This forces a byzantine initiator to broadcast
the correct (c̃, T), which ensures that each honest party generates a correct partial
decryption of c̃ and broadcasts it in turn to correct set T. All honest parties eventually
receive a quorum of correct partial decryptions that meets the threshold and
successfully decrypts.

Using the blockchain for the aforementioned verifications is simpler and less
computationally expensive than using ZKP or succinct arguments, as it just requires a
standard interaction with blockchain peers to check data correctness.

5.5.2 MKHE-equipped permissioned Blockchain

Figure 5.1 shows the architecture of PANTHER, where the MKHE scheme is
integrated with a permissioned blockchain. Each participating user relies on a client to
interact with the blockchain network, and holds a private database (PDB) to securely
store their private keys. We refer to N as the set of PANTHER’s clients. The
blockchain network comprises M computing peers that process transactions and
execute user-selected functions via smart contracts. Each peer stores the same version
of the ledger. We stress that N and M are two disjoint sets.

As any permissioned blockchain, PANTHER includes a CA that enables the
authentication of all system parties by issuing verifiable digital certificates. Each client
BC ∈ N and each peer CP ∈ M uses its certificate private key Csk 3 to sign the
messages it sends within PANTHER. The authentication enabled by the CA also
allows enforcing read permissions on the data stored in the ledger. When a peer

3Note that there is no relationship between the keys associated with the CA digital certificate and the
HE keys generated by the KEYGEN algorithm.
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FIGURE 5.1: PANTHER architecture

receives a read request, it first verifies that the requester’s digital certificate matches
the set of authorised clients. Then, data are handed back to the requester only if a 2/3
majority of peers approves the request. However, if the data is encrypted then its
actual value remains concealed. Note that this authorisation mechanism is also
enforced when a client requests data owned by another client as input for a
computation.

A client submits transactions to the blockchain network and retrieves data stored in
the ledger. There are three types of transactions:

• STORE: to record user’s data in the ledger. If confidential, data can be stored
encrypted;

• COMPUTE: to request the peers to compute a desired function on some data
recorded in the ledger;

• READ-LEDGER: to read desired data from the ledger.

As a distinguishing characteristic of PANTHER, each BCj implements 4 out of the 5
MKHE scheme algorithms, namely KEYGEN, ENC, DEC and MPC-DEC.

The KEYGEN algorithm allows a client to generate the user’s personal HE keys (HEpkj,
HEskj, HEekj). The user keeps HEskj secret in their personal PDBj, separately from the
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blockchain network. The ENC and DEC algorithms are executed when the client needs
to encrypt user’s data before submitting a STORE request, or to decrypt ciphertexts
upon receiving a READ-LEDGER response, respectively.

A client starts an MPC-DEC protocol when it wants to decrypt an evaluated
ciphertext to which other clients too contributed with their own data. Specifically,
when a client receives an evaluated ciphertext c̃ in response to a READ-LEDGER

request, it starts an MPC decryption protocol with the T clients that contributed to c̃,
i.e., those clients that provided their own data as inputs to the EVAL algorithm to
produce c̃. The MPC decryption protocol proceeds in steps. Firstly, the jth client
decrypts c̃ with HEskj, producing a partial decryption pcj that is then broadcast to the
clients T. Once received pcj, each client in T decrypts c̃ and produces its partial
decryption that is then broadcast to the others. When a client in T receives enough
partial decryptions, depending on the preset threshold, it can combine them to extract
the value of c̃. In PANTHER, we set the decryption threshold as equal to the size of
quorum tolerating byzantine clients, i.e., greater than |T|+ ft

2 . Hence, any quorum of
honest clients in T can decrypt c̃.

Peers process the transactions submitted by the clients. Each peer in M executes smart
contracts to process COMPUTE transactions. In PANTHER, smart contracts implement
the MKHE EVAL algorithm to perform functions on ciphertexts. We consider the
MKHE integrated in PANTHER to be a fully HE scheme, i.e. MKFHE, where is
possible to perform both addition and multiplication (and any combination of them).
Note that when peers execute a EVAL = (F , c⃗, pk⃗ , ek⃗) computation, they only know
what function F is requested. Peers do not know the actual value of either the inputs
or the output, because these data are encrypted. Only the clients in T will discover the
output of EVAL (by running a MPC-DEC protocol), and they are entitled to discover
it. Hence, there is no leakage of information during the execution of a smart contract,
apart from the function it performs.

Furthermore, each peer in M participates in the blockchain consensus. We assume
that peers run the PBFT consensus algorithm Castro and Liskov (1999) to withstand
against a byzantine adversary. PBFT proceeds in rounds, for each round there is a
leader and a set of backups that order incoming transactions and enclose them in a
block. At the end of a round, each peer deterministically appends the new block to its
local copy of the ledger.

5.6 PANTHER protocols

This section presents the protocols executed by clients and peers in PANTHER. We
first introduce the notation used to define the protocols. We use round brackets ( ) to
denote a tuple and curly brackets { } to denote a set. We use the symbol ⊥ to denote
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the undefined value, ∅ to denote the empty set, and ∥ for string concatenation. We use
the notation name[tag] = values to denote an instance of a map called name, in which
values are mapped to a singular tag. The type of tag is integer, whereas values can be of
any type, including a tuple, a set or even a map. We use the function SHOW to display
string messages to users, which comprise the peers’ replies if in plaintext, and the
decryption outputs if in ciphertext. We use the function ONLEDGER to verify whether
some data received as input corresponds to that stored on the ledger. To ease
readability, we omit to describe the steps that involve interactions with the CA.
Nevertheless, we use the functions CA-RELEASE to obtain digital certificates from a
CA, CREATESIG to digitally sign a string with the certificate private key, and
VERIFYSIG to verify whether a given string is properly signed and has not been
tampered with. We use the functions RETRIEVEDATA, RETRIEVEKEYS, and
RETRIEVEOWNERS to let a peer to retrieve data details from its local copy of the
ledger. We use the function PBFT to let a peer start a new round of consensus, and
UPDATELEDGER to append the block produced by the last consensus round to the
ledger.

The Protocols 5.1 and 5.2 are executed by each blockchain client BCj. In particular,
Protocol 5.2 is the continuation of Protocol 5.1. At first, BCj sets up the maps decs and
replies, initialising them to empty maps.

• The decs map handles the MPC decryption protocol instances; a tag represents a
transaction id and a value represents a tuple (info, partial). The field info is itself a
tuple storing (i) the ciphertext to be decrypted in the enctxt field and (ii) the set
of clients to be involved in the decryption in the parties field. The field partial
instead is the set where partial decryptions are collected.

• The replies map collects peers’ responses for a requested transaction; a tag
represents a transaction id and a value represents a map peers, which in turn has
a peer id as a tag and a tuple (res, bcs) as a value. The field res records the data
received, while the field bcs represents the set of the owners of that data.

Each BCj receives a certificate from the CA for the keys (Cpkj, Cskj) and generates its
HE cryptographic keys (HEpkj, HEekj, HEskj) using the KEYGEN algorithm.

When a user intends to submit transactions to the blockchain network, they can
choose between STORE, COMPUTE and READ-LEDGER types. Before submission, each
transaction is signed to enable verification by the peers. If a user wants to submit
confidential data, they can encrypt it using the ENC algorithm and send the resulting
ciphertext into a STORE transaction. As a result of a READ-LEDGER request, the client
BCj receives from peers replies that contain the requested object d and the set T of
clients associated to d. Upon the delivery of a reply from peer CPx, BCj verifies its
signature and, if valid, updates the maps replies with the values received from CPx.
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Once BCj has received a tuple (d, T) from a quorum |M|+ fp
2 of peers, it then processes

the reply:

1. if d is only encrypted under HEpkj, then it is simply decrypted using HEskj

2. if d is encrypted under multiple keys, then the BCj starts an MPC decryption
protocol among all the clients in T by calling the function MPC-DEC (see
Protocol 5.2)

3. if BCj is not included in T, then it is not allowed to decrypt because d results
from an EVAL in which no input data was provided by BCj.

We formally define the properties of the client protocols.

Definition 5.2 (Properties of the client protocol). Let BCj be a PANTHER’s blockchain
client (j∈N), equipped with an MKHE scheme Ej = (KEYGEN, ENC, DEC, MPC-DEC).
We say that PANTHER satisfies the security properties for a client BCj with respect to
an adversary A if:

(A) Privacy: BCj cannot learn either the content of transactions in transit or the data
of other clients stored in the ledger. This includes the outputs of EVAL

executions for which BCj is not involved.

(B) Integrity: if A intercepts a message in transit intended for BCj and tampers with
its contents, then BCj notices the modifications and discards the tampered
message.

(C) Availability: even if A drops a message in transit intended for BCj, eventually
BCj delivers the message.

In Protocol 5.2, a client BCj starts an MPC protocol to decrypt an evaluated ciphertext
d. It firstly decrypts d using its HEskj to produce a partial decryption pcj. Then, via an
SD1 message, it broadcasts pcj, along with a signature of the tag id ∥ d ∥ pcj, to the
group of clients T that were involved in the creation of d. This initiates the phase one
of the MPC decryption protocol. Once a client in T delivers SD1, it firstly verifies that
the signature is valid by comparing the attributes received with the signed tag, and
checks the integrity of d and T by ensuring that they match the versions stored on the
ledger. In addition, it checks that an MPC decryption for that specific id does not
already exist. If these conditions are satisfied, each client in T creates a record for this
MPC protocol instance in its decs map, by populating the sets info and partial, and
proceeds to partially decrypt d. At this point, each client broadcasts to all the others its
partial decryption and the corresponding signature in an SD2 message, which starts
the second and last phase of the protocol. Note that, since we rely on asynchronous
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Protocol 5.1 Blockchain Client BCj

1: Init:
2: N = {BC1, . . . , BCn}; M = {CP1, . . . , CPm};
3: (HEpkj, HEekj, HEskj) = KEYGEN(1λ);
4: (Cpkj, Cskj) = CA-RELEASE();
5: initialise decs, replies;
6:
7: upon request to create transaction do
8: id = CREATETXNID();
9: select txn ∈ {STORE, COMPUTE, READ-LEDGER}

10: if txn == STORE ∧ d is confidential then
11: ciphertext = ENC(HEpkj, d);

12: signature = CREATESIG(Cskj, id ∥ txn);
13: broadcast SUBMIT(id, txn, signature) to M;
14:
15: upon delivery REPLY(id, d, T, sig) from CPx do
16: if VERIFYSIG(CPx, Cpkx, id ∥ d ∥ T, sig) then
17: replies[id].peers[CPx] = (d, T);
18:
19: upon finding (id, d, T) such that
|{CPi ∈ replies[id].peers with replies[id].peers[i].res = d

∧ replies[id].peers[i].bcs = T}| > |M|+ fp
2 do

20: if BCj ∈ T then
21: if |T| > 1 then
22: MPC-DEC(id, d, T);
23: SHOW(“decrypting with T clients”);
24: else
25: SHOW(id, DEC(HEskj, d));

26: else
27: SHOW(“not allowed to decrypt, ask to T”);

communication between clients, all SD1 and SD2 messages exchanged during an
execution of Protocol 5.2 are asynchronous.

We denote with ft the number of byzantine clients in T. Each client in T waits that the
size of the set partial is larger than |T|+ ft

2 , i.e. the threshold required to decrypt. Then it
tries to locally complete the decryption of d by combining (i.e., summing) the partial
decryptions received. This operation is attempted for all the quorums Qz that are
subsets of partial, where the size q of each Qz is

⌈︂
|T|+ ft+1

2

⌉︂
and z ranges from 1 to

binomial (|T|q ). Note that the decryption threshold is equal to the size of a quorum of
clients tolerating ft.

We refer to ∑ Qz as the sum of all partial decryptions in Qz, saved in the temporary
variable merge. If the partial decryptions in Qz are provided by honest clients, then
merge contains the correct plaintext result of the requested computation. We assume
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Protocol 5.2 MPC decryption of BCj (follows Protocol 5.1)

1: function MPC-DEC(id, d, T) ▷ with T ⊆ N
2: pcj = DEC(HEskj, d);
3: sig = CREATESIG(Cskj, id ∥ d ∥ pcj);
4: broadcast SD1(id, d, T, pcj, sig) to T;

5:
6: upon delivery SD1(id, d, T, pcx, sig) from BCx do
7: if VERIFYSIG(BCx, Cpkx, id ∥ d ∥ pcx, sig)

∧ONLEDGER(d, T) ∧ BCx ∈ T ∧ decs[id] == ⊥ then
8: decs[id].info = (d, T);
9: decs[id].partial = pcx;

10: if BCj ̸= BCx then
11: pcj = DEC(HEskj, d);
12: sig = CREATESIG(Cskj, id ∥ d ∥ pcj) ;
13: broadcast SD2(id, d, T, pcj, sig) to T;

14:
15: upon delivery SD2(id, d, T, pcx, sig) from BCx do
16: if VERIFYSIG(BCx, Cpkx, id ∥ d ∥ pcx, sig) then
17: if ONLEDGER(d, T) then
18: if decs[id] == ⊥∧ BCx ∈ T then
19: do lines 8-13;
20: else if first SD2(id,. . . ) from BCx

∧ BCx ∈ decs[id].info.parties
∧ pcx /∈ decs[id].partial then

21: decs[id].partial = decs[id].partial∪ {pcx};
22:
23: upon finding decs[id] such that

|decs[id].partial| > |decs[id].info.parties|+ ft
2 do

24: for all Qz ⊆ decs[id].partial
∧ |Qz| ==

⌈︂
|decs[id].info.parties|+ ft+1

2

⌉︂
do

25: merge = ∑ Qz ;
26: if merge is in plaintext then
27: SHOW(id, merge);
28: break;

that any plaintext result of this kind has a predefined structure that can be verified. If
instead some partial decryption in Qz is provided by a byzantine client, then merge
does not contain the correct plaintext result of the requested computation. Although
in this latter case the probability ϵ that merge is compliant anyway with the predefined
structure is not zero, we assume it to be small enough to safely rely on merge structure
validation to determine whether the obtained result is in plaintext (see line 26 in
Protocol 5.2). As we prove in Section 5.8, eventually every honest client finds a Qz˜ that
decrypts correctly, as long as ft < t/3.

Figure 5.2 shows an execution of the MPC decryption protocol. BC1 receives from
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FIGURE 5.2: An execution of the MPC decryption protocol

peers replies indexed by id. After collecting the same tuple (d, T) for id from more than
|M|+ fp

2 peers, BC1 internally calls the MPC-DEC function for decrypting d with T. The
set T is composed by BC1, BC2, BC3 and BC4. BC1 creates the partial decryption pc1

and broadcasts it to T in SD1 messages indexed with id. Upon receiving this message,
BC2, BC3 and BC4 update their local map decs[id].info with the tuple (d, T). Then, they
create their respectively partial decryptions pc2, pc3, pc4 and broadcast them to T in
SD2 messages indexed with id. Upon the delivery of an SD2 message, each BCi

updates its map decs[id].partial with the received partial decryption. Finally, each BCi

decrypts d once its set partial is greater than |T|+ ft
2 . In the example shown in Figure 5.2,

this happens after the delivery of pc3 sent by BC3.

We formally define the properties for a MPC decryption protocol, i.e. the MPC-DEC

of the MKHE model:

Definition 5.3 (Properties of MPC decryption). Let T = {BC1, . . . ,BCt} be a set of
PANTHER’s clients, where t=|T| and each BCj holds an MKHE scheme Ej. Let c̃ =
EVAL(F , (c1, pk1, ek1), . . . , (ct, pkt, ekt)) be an evaluated ciphertext, where the jth key
tuple (pk j, ek j) belongs to BCj and it is in the support of KEYGEN(1λ), and each
cj=ENC(pk j, mj). We say that PANTHER satisfies the security properties for a
MPC-DEC(BC1, . . . ,BCt, c̃) = m̃ if:

(A) Privacy: the only information a client BCj can learn is the output m̃, i.e., the
decryption of c̃.

(B) Correctness: the output m̃ is always the correct plaintext of c̃, i.e.,
m̃ = F (m1, . . . , mt).

(C) Fairness: corrupted clients obtain the output m̃ if and only if the honest clients
also do.
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(D) Validity: any operation executed by honest clients during the protocol refers only
to c̃ and involve only the T clients that contributed to c̃.

(E) Agreement: if a honest client correctly decrypts c̃, then all the other honest clients
eventually decrypt c̃.

(F) Termination: if a BCj starts the protocol then, all the honest clients eventually
complete it.

The Protocol 5.3 is executed by each computing peer CPi. At first, CPi starts the
variable round to serialise the PBFT consensus in rounds and sets up the maps
endorseTxns and consensusTxns, initialising them to empty maps.

• Map endorseTxns pools transactions for endorsement before consensus; a tag is a
transaction id and a value is a tuple (info, peers). The field info is a tuple (type, req,
owners), and the field peers is a map indexed by peer id and with a tuple (data,
keys) as a value.

• Map consensusTxns pools (endorsed) transactions for ordering in the next
consensus round; a tag is a transaction id and a value is a tuple (type, req, owners,
data, keys).

Variable type records the transaction type, req the requester client, data the transaction
data, and the two sets keys and owners collect the keys and the list of the clients
associated with data, respectively. When CPi receives a transaction indexed by id from
some BCx, its signature is firstly verified and then it is handled according to its type.
In case of a STORE transaction, CPi updates its local map endorseTxns[id] with all
submitted attributes (e.g., data and keys) and broadcasts these values to M for
endorsement. In case of a COMPUTE transaction, CPi performs the requested function
via smart contract by calling the EVAL algorithm. Then, CPi updates endorseTxns[id]
with the computation result, i.e. the evaluated ciphertext and its associated HE public
keys, and broadcasts these values to M for endorsement. In case of a READ-LEDGER

transaction, CPi retrieves the requested value and its owners from the ledger, then
sends them back to the requester client BCx. 4 The endorsement phase takes place
whenever a peer handles a STORE or COMPUTE transaction. During this phase, peers
have to verify that all honest among them are working with the same transaction
details before entering the next consensus round. For transaction STORE this means
that honest peers have received the same data to store, whereas for COMPUTE means
that honest have performed the computation correctly and thus produced the same
result (i.e., the same evaluated ciphertext). Therefore, each peer broadcasts to others

4Note that, being permissioned, the blockchain system enforces access control policies on data stored
in the ledger. Thus, a client can (i) request to read a value or (ii) perform computations on data owned by
other clients, if and only if it has read permissions on such data.
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Protocol 5.3 Computing Peer CPi

1: Init:
2: N = {BC1, . . . , BCn}; M = {CP1, . . . , CPm};
3: (Cpki, Cski) = CA-RELEASE( );
4: initialise round, endorseTxns, consensusTxns;
5:
6: upon delivery SUBMIT(id, txn, sig) from BCx do
7: if VERIFYSIG(BCx, Cpkx, id ∥ txn, sig) then
8: case txn is STORE(d, HEpkx, HEekx) then
9: keys = (HEpkx, HEekx);

10: endorseTxns[id].info = (txn, BCx, BCx);
11: endorseTxns[id].peers[CPi] = (d, keys);
12: sig = CREATESIG(Cski, id ∥ d ∥ keys);
13: broadcast ENDORSE(id, d, keys, sig) to M;
14: case txn is COMPUTE(F , d1, . . . , dt) then
15: res = ⊥; keys = ∅; bcs = ∅;
16: for k = 1 to t do
17: keys = keys ∪ RETRIEVEKEYS(dk);
18: bcs = bcs ∪ RETRIEVEOWNERS(dk);
19: res = EVAL(F , d1, . . . , dt, keys);
20: endorseTxns[id].info = (txn, BCx, bcs);
21: endorseTxns[id].peers[CPi] = (res, keys);
22: sig = CREATESIG(Cski, id ∥ res ∥ keys);
23: broadcast ENDORSE(id, res, keys, sig) to M;
24: case txn is READ-LEDGER(request) then
25: d = RETRIEVEDATA(request);
26: owners = RETRIEVEOWNERS(request);
27: sig = CREATESIG(Cski, id ∥ d ∥ owners);
28: trigger REPLY(id, d, owners, sig) to BCx;
29:
30: upon delivery ENDORSE(id, d, keys, sig) from CPx do
31: if VERIFYSIG(CPx, Cpkx, id ∥ d ∥ keys, sig) then
32: endorseTxns[id].peers[CPx] = (d, keys);
33:
34: upon finding (id, d, keys) such that
|{CPz ∈ endorseTxns[id].peers with

endorseTxns[id].peers[z].data = d
∧ endorseTxn[id].peers[z].keys = keys}| > |M|+ fp

2 do
35: consensusTxns[id] = (endorseTxns[id].info, d, keys);
36:
37: upon delivery PBFT-COMMIT(block) do
38: UPDATELEDGER(block);
39: round = round + 1;
40: PBFT(round, consensusTxns);
41: empty consensusTxns;
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the id, data and keys of the handled transaction. Once CPi receives the same
transaction values from a quorum |M|+ fp

2 of honest peers, it then endorses the
transaction and updates its local map consensusTxns[id] with the transaction attributes.

The PBFT consensus of PANTHER proceeds in rounds. When the current round ends,
CPi receives the message PBFT-COMMIT containing the block with the transactions
ordered. Then, CPi appends the block to its local copy of the ledger and enters the
next round by proposing the endorsed transactions it collected. We omit to describe
the details of the PBFT protocol executed by the peers in each round Castro and
Liskov (1999).

We formally define the properties of Protocol 5.3 as follows:

Definition 5.4 (Properties of peer protocol). Let CPi be a PANTHER’s computing peer
(i∈M), equipped with a smart contract that implements the EVAL algorithm of
MKHE. We say that PANTHER satisfies the security properties for a peer CPi with
respect to an adversary A if:

(A) Privacy: CPi cannot learn either the content of received transactions or the
clients’ data stored in its ledger. Moreover, CPi cannot deduce secret information
from an execution of the EVAL algorithm.

(B) Integrity: if A intercepts a message in transit intended for CPi and tampers with
its content, then CPi notices the modifications and discards the tampered
message. If CPi is corrupted by A, although it can tamper with received
transactions or alter its smart contracts, CPi will not be able to append tampered
data onto the ledger.

(C) Availability: even if A drops a message in transit intended for CPi, eventually CPi

delivers the message. If CPi is corrupted by A, although it can avoid to process
transactions or reply to clients, eventually honest peers handle these tasks.

5.7 Efficiency of MPC protocol

We analyse the efficiency of the MPC decryption protocol (Protocol 5.2) in terms of
number of messages exchanged between involved clients. Then, we compare it
qualitatively with other two representative MPC protocols proposed in literature,
namely Mukherjee and Wichs (2016) and Asharov et al. (2012), to show that they have
the same message complexity.

An instance of the MPC decryption protocol in PANTHER starts when a client
BCj ∈ T receives an evaluated ciphertext encrypted under t = |T| unrelated keys. This
starts a 2-round of interactions among clients in T:
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1. BCj produces its partial decryption pcj and broadcasts it to all the clients in T;

2. After receiving pcj, each client in T (but BCj) produces its own partial decryption
and broadcasts it to all the others. Once a client collects a quorum of partial
decryptions, it can locally combine them to obtain the plaintext result.

Note that Protocol 5.2 does not include other steps that MPC protocols usually
encompass, such as providing encrypted inputs and computing the EVAL function.
These steps are asynchronous in PANTHER with respect to the MPC decryption
protocol execution, since they are carried out at different times and with different
input data. For instance, a group T of clients can initially just store their data and,
later on, one of them can decide to request a computation on a subset T′ ⊂ T. In terms
of communication complexity, the first round of MPC decryption has an asymptotic
cost of O(t) because the initiator sends a message to T, and the second round has an
asymptotic cost of O ((t− 1)t) because each client in T but the initiator sends a
message to all the others. Therefore, the overall message complexity of Protocol 5.2 is
O(t2).

Mukherjee and Wichs (2016) propose a 2-round MPC protocol that works as follows:

1. Each party encrypts its own input under its own public key and broadcasts the
ciphertext. After receiving other parties ciphertexts, each party locally produces
an evaluated ciphertext by running the EVAL algorithm on the desired function;

2. Each party broadcasts its partial decryption of the evaluated ciphertext. After
collecting a threshold of partial decryptions, each party can combine them to
recover the function output in plaintext.

Only round 2 of this protocol can be compared with Protocol 5.2, because round 1
covers steps that PANTHER performs in other protocols (as explained above).
Considering t parties are involved in Mukherjee’s and Wichs’s MPC decryption
protocol, its message complexity is O(t2) because each party sends a messages to all
the other parties.

Asharov et al. (2012) propose instead a 3-round MPC protocol based on the THE
model:

1. Each party broadcasts its public key. When a client receives the public keys of all
the others, it combines them to generate a common public key;

2. Each party broadcasts an encryption of its input under the common public key.
At the end of this round, each party locally produces an evaluated ciphertext by
running the EVAL algorithm on the desired function;
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3. Same as round 2 of Mukherjee and Wichs (2016).

The same considerations made for Mukherjee and Wichs (2016) apply to Asharov
et al. (2012), therefore the message complexity of this protocol is again O(t2).

In conclusion, the message complexity of Protocol 5.2 matches that of state-of-the-art
MPC decryption protocols.

5.8 Security analysis of PANTHER

We analyse the security of PANTHER and its inherent operating protocols, in the face
of a byzantine adversary attacking the system as per Definition 5.1.

5.8.1 Client security

Theorem 5.5 (Data privacy for clients in PANTHER). The data of a client in PANTHER
remains private since they are submitted via transactions until they are stored into the ledger,
so meeting Property (A) of Definition 5.2.

Proof. The privacy property (A) of Definition 5.2 follows from the semantic security
property (Definition 2.4) of the MKHE schemes implemented in PANTHER. We
consider that a PPT adversary A attacking PANTHER knows the HE and CA public
keys of all system clients, i.e., each HEpkj, HEekj, Cpkj for j∈N. Assume the adversary
A corrupts a client BCx. The aim of A is to collect ciphertexts of honest clients and try
to deduce from them secret information, such as the corresponding private keys.
Then, A can eavesdrop transactions in transit or read ciphertexts from the ledger.
Assume that A, knowing the context, can guess the plaintexts an honest client plans to
encrypt. For instance, if the system implements an auction, A knows that the
transactions most likely contain encrypted bids, which can be estimated to a certain
range. Let m̄ be a guessed plaintext and c̃y be a fresh ciphertext that BCx collects from
BCy, then BCx can produce c̄ = ENC(HEpky, m̄), and compare c̄ with c̃y. However, even
if BCx guessed the plaintext correctly, since the MKHE scheme is semantically secure,
c̄ will differ from c̃y, and so BCx cannot gain any useful insight from the comparison.
This is because ENC algorithm of BCy includes a randomness component in c̃y, which
makes it one of many valid ciphertexts for m̃y.

Similarly to fresh ciphertexts, A can collect evaluated ciphertexts, either in transit or
from the ledger, and their related inputs. Let c̃ be an evaluated ciphertext that BCx

collects, and its input ciphertexts be c⃗ = {c1,. . . , ct}. Then, guessing the function F
involved in producing c̃, BCx can compute c̄ = EVAL(F , HEpk⃗ , HEek⃗ , c⃗), where HEpk⃗
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and HEek⃗ are the t public keys related to c⃗, and can compare c̄ with c̃. However, the
EVAL is a public algorithm with no secrets, thus semantic security holds in the
presence of evaluation keys HEek⃗ . Also, the EVAL algorithm comprises a randomness
component, thus c̄ will be different from c̃. Hence, the comparison does not bring any
useful insight to the adversary A.

Furthermore, knowing the context, A can guess the decrypted result of an evaluated
ciphertexts. Continuing with the auction example, A can guess the winning bid. Let m̂
be a guessed decrypted plaintext of an evaluated ciphertext c̃ that BCx collects, and let
F be the guessed function computed in c̃, such that ideally m̂ = F (m1, . . . , mt). Then,
BCx can produce ĉ = ENC(HEpk⃗ , m̂), and compare it with c̃. However, according to
Definition 2.7, if the HE scheme is circuit private then the distribution of EVAL

algorithm is (statistically) indistinguishable from the distribution of ENC algorithm.
This means that a ciphertext produced by EVAL does not reveal its inner function, and
thus BCx cannot determine whether c̃ is actually computed by the guessed function F .
Hence, the comparison between ĉ with c̃ does not bring any useful insight to A.

Theorem 5.6 (Data integrity for clients in PANTHER). The replies that a blockchain client
receives from the peers in PANTHER are tamper-proof, so meeting Property (B) of
Definition 5.2.

Proof. The integrity property (B) of Definition 5.2 follows from the permissioned
nature of the blockchain infrastructure implemented in PANTHER, and from the
authentication checks carried out in Protocol 5.1. Assume the adversary A intercepts a
reply message mxy sent from a peer CPx to a client BCy and tampers with its contents.
Upon the message delivery, BCy firstly verifies that mxy is correctly signed by the
sender (line 16), i.e., it applies the CA key Cpkx of CPx to the signature in mxy and
checks that the result matches with mxy contents. This check will fail if A tampers
with some parameters of mxy or if it replaces the original signature. Consequently, BCy

discards the tampered mxy.

Theorem 5.7 (Data availability for clients in PANTHER). If an honest peer CPy sends a
message myx to an honest client BCx in PANTHER, then eventually BCx delivers myx, so
meeting the availability property (C) of Definition 5.2.

Proof. The availability property (C) of Definition 5.2 follows from the assumptions that
system parties are fully interconnected and the communication channels are reliable.
Assume the adversary A discards a reply message myx sent from an honest CPy to an
honest BCx. Relying on reliable links, CPy will keep relay myx until BCx delivers
it Cachin et al. (2011). Note the case where CPy is byzantine: CPy can then send an
incorrect reply to BCx, say m′′yx instead of m′yx. From Protocol 5.1 (in line 19) it follows

that, before processing a reply message, BCx waits to see a quorum M+ fp
2 of replies
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with the same content. Since honest peers store the correct m′yx in their ledger, m′′yx will
not reach the quorum and BCx eventually process m′yx.

5.8.2 MPC-Decryption security

Before proving the security of the MPC decryption protocol, we give the definition of
the ideal/real paradigm (Canetti (2000); Goldreich (2004)), which we will use to prove
the privacy property.

Definition 5.8 (Ideal/Real paradigm). Let IDEALD,S (x⃗) be the joint output of an
ideal-world adversary S and parties T={P1, . . . , Pt} in an ideal execution with
functionality D and inputs x⃗ = {x1,. . . , xt}. Similarly, let REALΠ,A(x⃗) be the joint
output of a real-world adversary A and parties T in an execution of protocol Π with
inputs x⃗. We say that protocol Π securely realises D if for every real-world adversary
A, there exists a ideal-world adversary S with black-box access to A such that for all
input vectors x⃗,

IDEALD,S (x⃗) ≈ REALΠ,A(x⃗).

This definition asserts that the output distribution of the adversaries A and S 5 are
indistinguishable in the real and ideal executions.

Theorem 5.9 (Security of MPC decryptions in PANTHER). Any instance of the MPC
decryption Protocol 5.2, indexed by a unique id, occurring in PANTHER among a subset of
clients T = {BC1, . . . , BCt}, where T ⊆ N and t = |T|, to decrypt an evaluated ciphertext c̃,
meets the properties of Definition 5.3, as long as the byzantine clients are ft < t/3.

Proof. Recall that a byzantine quorum tolerating ft is a set of more than t+ ft
2 , and that

the MPC-threshold set to reconstruct is thd ≥
⌈︂

t+ ft+1
2

⌉︂
.

We prove the privacy property (A) of Definition 5.3 by relying to the ideal/real
paradigm, such that Protocol 5.2 emulates an ideal world where the decryption is
carried out by an external trusted party: each client sends its partial decryption to the
trusted party, which decrypts and sends back the result to clients. Protocol 5.2 is
deemed secure if whatever adversaries can obtain from its execution can also be
feasibly obtained in an execution that takes place in the ideal world. That is, no
adversary is able to obtain more secret information in the real world than in the ideal
one. The REALΠ,A(pc⃗ ) for Protocol 5.2 comprises the outputs and the views of clients
T during an execution of Π. A client’s output is equal to m̃, i.e., the decryption of c̃
after combining (locally) the partial decryptions received. The jth client’s view is
equal to (1λ, skj, pc⃗ ), i.e., the security parameter, its private key and the partial

5We denote S the ideal-world adversary because it behaves as a simulator, simulating a real protocol
execution for A while it really interacts in the ideal world.
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decryptions it collects from T. Note that as A controls ft corrupted parties, it knows ft

private keys. Conversely, in the ideal world, a client interacts only with the trusted
party, thus its output is the m̃ it receives from the trusted party, and its view only
consists of (1λ, skj, pcj), i.e., its secret information and its own partial decryption. In
order to make the two worlds similar and comparable, the view of a client in the ideal
can be extended with simulations of other clients partial decryptions, created via a
PPT algorithm given access to the client’s input and output, i.e., its pcj and m̃. This
results in producing for each client in T a set of simulated partial decryptions pc⃗ ′, such
that pc⃗ ′ ≈ pc⃗ . In LWE-based MKHE schemes, as in the work of Mukherjee and Wichs
(2016), the adversary S creates this simulations by ‘xoring’ the partial decryptions of
the ft corrupted clients with m̃.6 After this process, a client’s output and view in
IDEALD,S (pc⃗ ) will be m̃ and (1λ, skj, pc⃗ ′) respectively. As shown by Mukherjee and
Wichs (2016), if m̃ is the correct decryption of c̃ then the pc⃗ ′ are valid simulations, i.e.,
each pc′j is a valid output of DEC(skj, c̃). A simulated pc′j only differs from a real pcj in
the random noise they contain, which makes them (statistical) indistinguishable.
Hence pc⃗ ′ ≈ pc⃗ , then the clients’ views in the ideal will be indistinguishable from those
of the real, and therefore IDEALD,S (pc⃗ ) ≈ REALΠ,A(pc⃗ ).

The correctness property (B) of Definition 5.3 follows from the observations that the
required threshold thd corresponds to the minimum size of a byzantine quorum, and
that there exists at least a byzantine quorum of honest clients. When a SD1(id, ...) or a
SD2(id, ...) message arrives, honest clients in T discard duplicates with same id, and
also different versions of a partial decryption sent by the same client. These checks are
carried out in lines 7, 17 and 20 of Protocol 5.2. In addition, honest clients check
whether the sender of SD1 and SD2 messages belongs to T. All these checks ensure
that the set partial of any honest client collects at most t partial decryptions for c̃, and
that at most ft of them can be not valid. Whereas the correctness of the set parties
follows from the integrity of parameter T contained in both SD1 and SD2 messages,
which is validated against the ledger. Therefore, each honest client fulfils the condition
|partial|> |parties|+ ft

2 correctly. Now considering all the ( t
thd) possible combinations of

received partial decryptions in partial satisfying thd, there exists at least one of them,
say Q̃, whose partial decryptions are sent by honest clients. This because, as defined
in Section 5.3, for ft < t/3 there is at least a quorum of honest clients. Since in
Protocol 5.2 each honest client in T iterates the reconstruction, i.e., the combination of
partial decryptions, until Q̃ is met, then eventually each of them correctly decrypt c̃,
which by the correctness of MKHE (Definition 2.5) will be m̃ = F (m1, . . . , mt).

The fairness property (C) of Definition 5.3 follows from the observations that in order
to successfully decrypt, byzantine clients need the partial decryptions from honest
ones, i.e., byzantine clients cannot satisfy thd by themselves. Suppose a byzantine

6Particularly, Mukherjee and Wichs (2016) give a stronger notion of security by taking an adversary
that controls all-but-one parties, so ft = t− 1.
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client BCx wants to decrypt c̃ and to prevent honest ones from doing so. Then, BCx

sends an SD1 message to all other byzantine and to a subset H̃ of honest clients large
enough to satisfy thd. BCx can attach an invalid partial decryption in the message and
attempt to prevent some communications among honest clients. In addition, suppose
the other byzantine clients send invalid partial decryptions with an SD2 message to
H̃. When BCx receives enough SD2 messages it decrypts them and sends the resulting
m̃ to other byzantine clients. Clients in H̃ are not able to decrypt it since they collect
invalid partial decryptions from byzantine clients. However, each client in H̃ sends an
SD2 message to all T clients, reaching the other honest clients that have been excluded
by BCx. Observe from the protocol that if a client delivers a SD2(id,...) message but
never receives a SD1(id,...) one, it executes the same steps in Protocol 5.2, and thus
broadcasts its partial decryption to T. This means that eventually clients in H̃ will
deliver SD2 messages from all other honest clients in T, and will find a quorum Q̃ that
decrypts c̃. Therefore, byzantine clients cannot prevent the honest to obtain m̃.

The validity property (D) Definition 5.3 follows from the integrity checks carried out
via ONLEDGER function. When BCx starts the MPC protocol with id, it broadcasts
through a SD1 message its partial decryption for c̃ to the involved T clients. If BCx is
byzantine it can send the partial decryption to a set of clients different from T, or it can
attach to an SD1 message wrong c̃ and T parameters. However, when a SD1 message
arrives to an honest client, this verifies via ONLEDGER that the attached parameters
correspond to the tamper-proof c̃, that T is stored on the ledger, and that the sender
actually belongs to T. If this check fails, the SD1 message is discarded, and thus the
byzantine BCx is forced to attach the correct c̃ and T in SD1. Conversely, if it succeeds,
honest clients populate their local set parties for id properly, and broadcast their partial
decryptions to the appropriate T with an SD2 message, eventually reaching all those
who are honest. At the delivery of an SD2 message, an honest client verifies again via
ONLEDGER the integrity of c̃ and T, ruling out byzantine clients sending incorrect
SD2. Since any honest client instantiates properly the local set parties in the first phase
of the protocol, then the constraint in line 23 is validated against the correct T clients.
Hence, it follows that the reconstruction operations of the last phase are carried out
against valid subsets of partial, i.e., a valid byzantine quorum. Therefore, in any phase
of the protocol, any honest client deals with the appropriate c̃ and T.

We prove the agreement property (E) of Definition 5.3 by contradiction. Assume that
for a MPC decryption protocol an honest client BCx decrypts, whereas another honest
BCy does not. To successfully decrypt, BCx finds a quorum Qx˜ composed by correct
partial decryptions, of which at least one was sent by another honest client. This
because being |Qx˜ | =

⌈︂
t+ ft+1

2

⌉︂
and t > 3 ft, then

t + ft + 1
2

>
3 ft + ft + 1

2
=

4 ft + 1
2

= 2 ft +
1
2
> ft
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namely Qx˜ contains more than one partial decryption belonging to honest clients. For
instance, consider a MPC protocol among T={BC1, BC2, BC3, BC4}, where BC3 is
byzantine, BC1 can decrypt and BC4 cannot. Consider that BC1 decrypts with a
quorum Q1˜ ={pc1, pc2, pc3}. This means that BC1 previously broadcasted pc1 to all T,
including itself. Since BC1 obtained pc2, and BC2 is honest, then pc2 was previously
broadcasted by BC2 to all T. These deductions follow from the validity property. As a
result, BC4 will eventually deliver both pc1 and pc2, and hence it creates and broadcasts
pc4, which enables it to find Q4˜ and thus to decrypt. This shows the contradiction.
Note that no deduction can be made on pc3, because it is created by BC3, which being
byzantine can send different versions of pc3 or can even avoid to send it to some
clients. When BC2 delivers pc4 it is able to find a quorum Q2˜ and it finally decrypts.
Therefore, this proves that if an honest client decrypts then all other honest decrypt.

The termination property (F) of Definition 5.3 follows from the observation that, when
a client BCx, regardless of whether honest or byzantine, starts a MPC decryption with
id, it sends an SD1 message to at least an honest client BCy. Regardless of whether the
partial decryption delivered by BCx is valid or not, BCy sends an SD2 message
containing its own partial decryption to T, which by the validity property will be the
correct set of clients and will eventually reach those who are honest. At the delivery of
this SD2 from BCy, all honest clients in turn broadcast their partial decryptions to T.
Eventually, by the agreement property, all honest clients find a quorum Q̃ that by the
correctness property correctly decrypts c̃, and therefore all of them terminate the
protocol for id.

5.8.3 Peer security

Theorem 5.10 (Data privacy for peers in PANTHER). A peer cannot learn data about
client in PANTHER nor deduce secret information from the executions of Eval, so meeting the
privacy property (A) of Definition 5.4.

Proof. The privacy property (A) of Definition 5.4 follows from the semantic security
property (Definition 2.4) of the MKHE schemes implemented in PANTHER. We
consider that a PPT adversary A attacking PANTHER knows the CA public keys of all
system peers, i.e., each Cpki for i ∈ M. The same reasoning as in the proof of
Theorem 5.5 applies. The difference here is that the adversary A, corrupting a peer
CPx, can directly access the data of the transactions it receives or those stored in its
ledger copy. Hence, CPx can collect fresh ciphertexts and compare them with
encryptions of guessed plaintexts, however, if the MKHE schemes are semantically
secure, CPx cannot gain any insight from comparing them.

Unlike clients, peers in PANTHER perform the EVAL algorithm. A peer CPx corrupted
by A can inspect the ciphertexts “extended” during EVAL processing. Let F be a
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function to be computed on input ciphertexts c⃗ = {c1,. . . , ct} encrypted with t
different public keys HEpk⃗ . Then, CPx extends each ciphertext of c⃗ with a public key
pk̃, which will be a combination of all keys HEpk⃗ . To execute this extension, CPx

applies the key-switching technique Brakerski et al. (2012), that uses the (public)
evaluation keys HEek⃗ associated to c⃗. Typically, an evaluation key is generated as the
encryption of the private key, or certain parts thereof. By semantic security it holds
that HEek⃗ are indistinguishable from encryptions of random values, keeping private
their contained private keys HEsk⃗ . Hence, the key-switching does not reveal any
information about the private keys of clients and CPx cannot gain any insight from its
generated extended ciphertexts. Note that LWE-based MKFHE schemes, such as Clear
and McGoldrick (2015); Mukherjee and Wichs (2016); Peikert and Shiehian (2016), do
not employ an evaluation key per user, and to perform key-switching they rather
attach helper information to a fresh ciphertext that needs to be extended. Such
information is the encryption of the randomness related to the ciphertext, which is
semantic secure per definition.

Theorem 5.11 (Data integrity for peers in PANTHER). The transactions received from
clients by a peer in PANTHER are tamper-proof, and a corrupted peer cannot store tampered
data into the PANTHER ledger, so meeting property (B) of Definition 5.4.

Proof. The integrity property (B) of Definition 5.4 follows from the permissioned
nature of the blockchain infrastructure implemented in PANTHER, and from the
authentication checks carried out in Protocol 5.3. Assume the adversary A intercepts a
transaction myx sent from a client BCy to a peer CPx and tampers with its contents.
Upon the delivery of the message, CPx firstly verifies that myx is correctly signed by
the sender (line 7), i.e., it applies the CA key Cpky of BCy to the signature in myx and
checks that the result matches with myx contents. This check will fail if A tampers
with some parameters of myx or if it replaces the original signature. Consequently, CPx

will discard the transaction.

Besides attacking the communication channels, A can corrupt a peer CPx and thus
tamper with the data it handles or alter the executions of its smart contracts. Suppose
that CPx tampers with the content of a transaction myx it receives from BCy. Since BCy

broadcasts to all M peers and since the broadcast primitive is reliable, eventually all
honest peers in M deliver myx. By assumption the number of honest peers is M > 3 fp.
This implies that a majority of them, i.e., an honest quorum of M+ fp

2 peers, will
propose the un-tampered myx to be appended to the chain during consensus protocol.
According to PBFT Castro and Liskov (1999), after receiving a majority of proposals
for myx, the leader accepts it and includes myx in a block that will finally be committed
by all (honest) peers. Hence a corrupted peers, or even a colluding corrupted group
up to f , cannot force the blockchain network to store a tampered transaction. The
same applies if CPx alters the execution of a smart contract for some inputs {d1,. . . ,
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dt}, producing an incorrect result. Eventually, all honest peers in M correctly run the
smart contract for {d1,. . . , dt}, and they propose its correct result during consensus
protocol.

Theorem 5.12 (Data availability for peers in PANTHER). If an honest client BCx sends a
message mxy to an honest pseer CPy in PANTHER, then eventually CPy delivers mxy, so
meeting the availability property (C) of Definition 5.4.

Proof. The availability property (C) of Definition 5.4 follows from the assumptions that
system parties are fully interconnected and the communication channels are reliable.
Assume the adversary A discards a transaction mxy sent by an honest BCx to an
honest CPy. Relying on reliable links, BCx will keep relay mxy until CPy delivers
it Cachin et al. (2011). In addition, BCx actually broadcasts mxy to all M peers. Since
the broadcast primitive is reliable, every (honest) peer that gets mxy relays it once
again to M, ensuring that eventually all honest peers deliver it Cachin et al. (2011).
Hence, CPy eventually delivers mxy. Note the case where BCx is byzantine. It can then
broadcast to M different versions of the same transaction, e.g. m′xy to some peers and
m′′xy to others. However, during the consensus protocol, each (honest) peer proposes
its received version, and the leader accepts one to be appended on ledger only if gets
m′xy or m′′xy from a quorum of M+ fp

2 peers, ensuring transaction consistency.

5.9 Implementation

In this section, we assess the overheads that MKHE, and its MPC protocol, bring to the
blockchain. In particular, we measure the computational time of MKHE algorithms
and the total time taken for a party to complete a MPC decryption protocol. In order
to estimate the upper-bound for a MPC protocol, we consider a threshold decryption
of T-out-of-T, where partial decryptions of all the T parties are required to decrypt.
Clearly, any implementation of MPC decryption with a threshold t < |T| (as in
Protocol 5.2) will have a lower overhead, since the parties need fewer partial
decryptions and thus begin reconstruction sooner. We provide a proof-of-concept
level implementation of PANTHER integrating a fully MKHE scheme (i.e., MKFHE)
with a permissioned blockchain platform. As a MKFHE scheme, we select the CKKS
scheme described in Section 2.3.2 and we adjust it to be multi-key. As a blockchain
platform, we select the Hyperledger Fabric described in Section 3.2.4 and we adjust it
to integrate the multi-key CKKS scheme. We use Go (Google (2009)) as programming
language and we develop the multi-key CKKS as a Go module, which is then
imported as a library into client applications and Hyperledger Fabric smart contracts.
Section 5.9.1 presents our construction of the multi-key CKKS. In Section 5.9.2, we
then report our experimental results, showing the computational and message
overheads introduced by the multi-key CKKS in PANTHER.
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5.9.1 Multi-Key CKKS

In PANTHER, we construct a multi-key CKKS scheme that performs homomorphic
computations, both additions and multiplications, with ciphertexts encrypted under
different keys. The key characteristic of CKKS is that it works with real and complex
numbers and the computations return an approximate result. For example, let
ciphertexts c′ be the encryption of the real value v′ = 5.20, c′′ be the encryption of
v′′ = 2.00 and c be the output of their addition c′ + c′′. Then, the decryption of c can be
a value like 7.198, which is a good approximation of the sum between v′ and v′′.

Building upon of the CKKS, we propose a Multi-Key CKKS scheme (MK-CKKS) where
a multi-key ciphertext c is of the form (c0, c1, . . . , ct), where t is the number of
associated parties and ci’s are elements of the polynomial ringRq = Zq[X]/(Xn + 1).
We use the same notation as defined in Section 2.3.2.1, thus n is a power of two, q is an
integer called the coefficient modulus, and Xn + 1 is an irreducible polynomial called
the polynomial modulus. Also, we use the same RLWE-based distributions as defined
in Section 2.3.2.4, thusR3 is the private key distribution with integer coefficients in
{−1, 0, 1}, Xσ is the error distribution of variance σ2 and U (Rq) is a uniform random
distribution overRq.

In MK-CKKS, each jth party holds its own set of HE keys, defined as in CKKS. The
private key sk j is a polynomial sampled fromR3 and the public key consists of a pair
of polynomials pk j = (pk j,1, pk j,2) ∈ R2

q where:

pk j,1 = [−a · sk j + e′]q

pk j,2 = a← U (Rq)

The polynomial a is sampled uniformly fromRq, and polynomial e′ is a random error
sampled from Xσ. The evaluation key consists of a pair of polynomials
ek j = (ek j,1, ek j,2) ∈ R2

P·q where P is a big integer and:

ek j,1 = [−b · sk j + e′′ + P · sk2
j ]P·q

ek j,2 = b← U (RP·q)

The polynomial b is sampled uniformly fromRP·q, and polynomial e′′ is a random
error sampled from Xσ.

A fresh ciphertext in MK-CKKS, generated by a jth party to encrypt plaintext m, is of
the form c = (c0, cj) ∈ R2

q, where c0 = [pk j,1 · u + m + e1]q, cj = [pk j,2 · u + e2]q,
u← R3 and e1, e2 ← Xσ. The fresh ciphertext can only be decrypted by sk j. In
contrast, the multi-key ciphertext c ∈ Rt+1

q , resulting from an evaluation, can be
decrypted by the private keys sk1, . . . , skt of the t participants so that
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c0 + c1 · sk1 + · · ·+ ct · skt is a randomised encoding of the plaintext. Hence:

DEC(c, sk1, . . . , skt) =

[︄
c0 +

t

∑
i=1

ci · ski

]︄
q

=

[︄
m +

t

∑
i=1

(pki,1 · ui + ei,1) +
t

∑
i=1

(pki,2 · ui + ei,2) · ski

]︄
q

=

[︄
m +

t

∑
i=1

((−ai · ski + e′i) · ui + ei,1) +
t

∑
i=1

(ai · ui + ei,2) · ski

]︄
q

=

[︄
m +

t

∑
i=1

(e′i · ui + ei,1) +
t

∑
i=1

ei,2 · ski

]︄
q

≈ m

Although a multi-key ciphertext can be decrypted as in the above formula, in practice
it is not reasonable to assume that there is a party holding multiple private keys.
Therefore, in MK-CKKS the t parties involved in a multi-key ciphertext c ∈ Rt+1

q run a
MPC protocol to decrypt c. Particularly, once obtained c, each ith party partially
decrypts c with ski generating the partial ciphertext pci = [ci · ski + e]q ∈ Rq, where ci

is the polynomial in c associated to the ith party and the error e← Xσ. Then, each
party broadcasts its pci to other t− 1 parties. Upon the delivery of other parties partial
ciphertexts, each party merges them locally by computing

[︁
c0 + ∑t

i=1 pci
]︁

q and
retrieves the plaintext m.

Similarly to CKKS, the MK-CKKS scheme provides the encoding, decoding,
relinearization and rescaling procedures. The encoding is used to convert a complex
value z ∈ C

n
2 into a polynomial m ∈ R, while the decoding is used in reverse to

convert m back into z. During encoding z is multiplied by a scale factor ∆ to preserve
approximation accuracy, and during decoding m is multiplied by 1

∆ . Both the
relinearization and the rescaling are applied during a multiplication between
ciphertexts c′ and c′′ producing a ciphertext c̃. The relinearization is used to reduce the
magnitude of c̃, i.e. the number of polynomials it contains, to the standard form with
linear decryption structure. The rescaling instead is used to reduce the scale factor of c̃
from ∆2 to ∆. In addition to this, the rescaling also reduces the coefficient modulus q of
c̃ from a level l to a level l − 1, i.e. from ql to ql−1.

Note that, as in CKKS, the most expensive operation of MK-CKKS is homomorphic
multiplication which consists of three steps: product, relinearization and rescaling.
Consider the ciphertexts (c′i)0≤i≤t and (c′′j )0≤j≤t both inRt+1

ql
, representing the

encryptions of m′ and m′′ respectively. It first computes their product
(ci,j = c′i · c′′j )0≤i,j≤t representing an encryption of m′ ·m′′. Then, it applies the
relinearization by converting (ci,j) back toRt+1

ql
. The total complexity of

relinearization grows quadratically with t since the process should be repeated on ci,j

for all 1 ≤ i, j ≤ t. Finally, it scales down such relinearized ciphertext multiplying by
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∆−1 and produces an output ciphertext inRt+1
ql−1

, which still represents an encryption
of m′ ·m′′.

Formally, a MK-CKKS scheme is defined as follow:

Definition 5.13 (MK-CKKS scheme). Let d > 0 be a fixed base for scaling in
approximate computations and q0 be a modulus, and let ql = dl · q0 for 0 < l ≤ L. Let
Xσ be the discrete Gaussian distribution of variance σ2. Let N = {P1, . . . , P|N|} be a
group of parties where each Pj holds a MK-CKKS scheme Ej. The MK-CKKS scheme
of Pj is a tuple of algorithms Ej = (KEYGEN, ENC, DEC, PARTIAL-DEC, MERGE-DEC,
ADD, MUL, RSC) with the following syntax:

• KEYGEN(1λ)→ (pk j, sk j, ek j) : For a security parameter λ, outputs a public key
pk j, a private key sk j, and a (public) evaluation key ek j.

• ENC(pk j, m)→ (c) : For a given polynomial m ∈ R, outputs a ciphertext c ∈ R2
qL

.

• DEC(sk j, c)→ (m) : For a ciphertext c ∈ R2
ql

encrypted by the public key pk j at
level l and a private key sk j, outputs a polynomial m ∈ R.

• PARTIAL-DEC(sk j, c)→ (pcj) : For a multi-key ciphertext c ∈ Rt+1
ql

at level l of t
parties {Pi} ∈ N and a private key sk j where 1 ≤ j ≤ t ≤ |N|, samples an error
e← Xσ and outputs a partial ciphertext pcj = [cj · sk j + e]ql where pcj ∈ Rql .

• MERGE-DEC(c, pc1, . . . , pct)→ (m) : For a multi-key ciphertext c ∈ Rt+1
ql

at level l
of t parties {Pi} ∈ N and t partial ciphertexts pc1, . . . , pct where pci belongs to Pi,
outputs a polynomial m =

[︁
c0 + ∑t

i=1 pci
]︁

ql
where m ∈ R.

• ADD(c′, c′′)→ (c) : For two ciphertexts c′ and c′′ inRt+1
ql

at level l, outputs a
ciphertext c = [c′ + c′′]ql inRt+1

ql
.

• MUL(ek1, . . . , ekt, c′, c′′)→ (c) : For t evaluation keys ek1, . . . , ekt of t parties
{Pi} ∈ N associated to two ciphertexts c′ and c′′ inRt+1

ql
, computes c̃ = [c′ · c′′]ql ,

relinearizes c̃ with ek1, . . . , ekt and outputs a ciphertext c ∈ Rt+1
ql

.

• RSC(c)→ (c′) : For a ciphertext c ∈ R2
ql

at level l resulting from a multiplication,
outputs a ciphertext c′ ← ⌊ ql′

ql
c⌉ inR2

ql′
where l′ < l, i.e. c′ is obtained by scaling

ql′
ql

to the entries of c and rounding the coefficients to the closest integers.

We implement MK-CKKS in Go by leveraging the Lattigo library v2.3.0 Lat (2021)
implementing a CKKS scheme, and the work of Kim et al. (2022) proposing a
multi-key variant of CKKS named KKLSS. In particular, we use the CKKS scheme of
Lattigo as a basis, 7 and on top of it we construct the MK-CKKS scheme similar to
KKLSS. Indeed, we use the same optimisations proposed by Kim et al. (2022), which,

7We import the packages ckks, rlwe and ring from Lattigo.
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through the homomorphic gadget decomposition technique, improve the
relinearization of HE multiplications and thus their performance. However, in KKLSS
the decryption of a multi-key ciphertext c is not carried out via an MPC protocol, but
rather via a function that locally takes as input the private keys of the parties involved
in c. That is, to decrypt c ∈ Rt+1

ql
they implement the algorithm DEC(sk1, . . . , skt, c).

This algorithm requires the party executing it to hold the t private keys, which is not
reasonable in an untrusted multiparty setting such as a permissioned blockchain.

Hence, differently from KKLSS, our MK-CKKS implementation introduces the
functions PARTIAL-DEC and MERGE-DEC as per Definition 5.13 to carry out a MPC
decryption protocol. They allow a party to generate a partial decryption to be
broadcast and to merge received partial decryptions, respectively. This contribution
enables parties to carry out a MPC decryption whenever they need to decrypt a
multi-key ciphertext, which is fundamental for PANTHER. Also, we view this
contribution as of independent interest since our MK-CKKS can be applied in any
multiparty scenarios where users do not want to share their private key.

5.9.2 Experimental results

All experiments are performed on a machine with 1 CPU Intel(R) Core(TM)
i9-9980HK @ 2.40GHz and 12GB RAM running Ubuntu 22.04 LTS. We set up a
channel in Hyperledger Fabric composed by four computing peer 8 participating in
the blockchain network. We implement in Go four client applications for four
different users, and a Hyperledger Fabric smart contract for computing HE additions
and multiplications on ciphertexts. The clients use the Hyperledger Fabric Go
Gateway 9 to connect and interface with peers, and the smart contract is installed in
every peer of the network.

The MK-CKKS Go module is included in the clients and the smart contract.
Specifically, we import the MK-CKKS algorithms for keys generation, encryption,
decryption, partial-decryption and merge-decryption in clients. Whereas, the
MK-CKSS algorithms for addition and multiplication are imported in the smart
contract. According to the homomorphic encryption standard Albrecht et al. (2018),
for the MK-CKKS scheme in the clients and the smart contract, we use the following
parameters to achieve the security level 128 bits:

• log2 n = 15 ;

8In Hyperledger Fabric, a blockchain node can play two roles: either a peer or an orderer. The peer
is responsible for transaction execution (via smart contract) and endorsement. The orderer is responsi-
ble for transaction validation and ordering (via consensus protocol). We refer to computing peer as a
Hyperledger Fabric node that plays both roles.

9https://pkg.go.dev/github.com/hyperledger/fabric-gateway/pkg/client

https://pkg.go.dev/github.com/hyperledger/fabric-gateway/pkg/client
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P1 P2 P3 P4 Smart contract
Keys generation 629.16 ms 607.16 ms 698.97 ms 563.04 ms

Encryption 75.39 ms 86.86 ms 88.36 ms 69.02 ms
P1 invokes addition 29.67 ms

P1 starts a
MPC protocol

partial decryption 37.96 ms 39.79 ms 39.09 ms 30.50 ms
broadcast 153.88 µs 138.15 µs 168.08 µs 77.92 µs
merge 95.87 ms 105.39 ms 95.89 ms 97.88 ms
total 2.88 s 1.57 s 1.53 s 1.49 s

P3 invokes multiplication 2.73 s

P3 starts a
MPC protocol

partial decryption 33.97 ms 32.28 ms 35.89 ms 37.23 ms
broadcast 112.65 µs 96.96 µs 82.32 µs 157.13 µs
merge 89.18 ms 89.74 ms 101.63 ms 96.64 ms
total 1.75 s 1.77 s 3.07 s 1.68 s

P4 invokes subtraction 30.67 ms

P4 starts a
MPC protocol

partial decryption 30.83 ms 27.06 ms 28.27 ms 35.89 ms
broadcast 84.96 µs 96.66 µs 87.04 µs 97.95 µs
merge 99.72 ms 92.20 ms 100.38 ms 97.39 ms
total 1.63 s 1.58 s 1.61 s 3.14 s

TABLE 5.2: PANTHER performance under four users, invoking smart contracts to
add, multiply and subtract ciphertexts. ms = 10−3s and µs = 10−6s

pk ek c cmul cadd and csub pdmul pdadd and pdsub
Size 17.66 MB 370.96 MB 15.31 MB 30.14 MB 38.28 MB 6.03 MB 7.66 MB

TABLE 5.3: Size of the MK-CKKS data types in megabyte MB

• log2 q = 880 ;

• ∆ = 254 ;

• σ = 3.2 .

The key distributionR3 samples each coefficients from {0,±1} with probability 0.25
for each of −1 and 1 and with probability 0.5 for 0. The error distribution Xσ is a
discrete Gaussian distribution of variance σ2.

In our experiments, each peer is executed in a separate thread inside a docker
container (Merkel (2014)). We simulate a scenario where at the outset, four users
{P1, P2, P3, P4}, through their respective clients, send to the blockchain real number
values encrypted with their personal keys. Later on, P1 invokes the smart contract to
sum the collected ciphertexts. The blockchain peers perform the HE computation and
send the evaluated ciphertext back to P1, which starts a MPC decryption protocol with
P2, P3, P4 to obtain the result. Later on, P3 and P4 invoke the smart contract to multiply
and subtract 10 the collected ciphertexts, respectively. Upon the delivery of the
corresponding evaluated ciphertexts, P3 and P4 start two other distinct MPC
decryption protocols. The execution time of this evaluation is given in Table 5.2,
which is derived from dataset Zanfino (2024). Table 5.2 reports:

10Note that, in CKKS, and thus in MK-CKKS, the subtraction is performed via addition, e.g. 2.3 +
(−1.1) = 1.2.
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• for each user the computational time of MK-CKKS keys generation, encryption
and MPC decryption protocol;

• for the smart contract the computational time of MK-CKKS addition,
multiplication and subtraction.

Table 5.3 reports the size of MK-CKKS data being exchanged between a client and the
blockchain, i.e. keys pk and ek, fresh ciphertext c, evaluated ciphertexts cmul , cadd, csub

and partial decryptions pdmul , pdadd, pdsub. All data sizes are in the order of
megabytes, among which ek is the largest, with a size of 370MB. The experimental
results show that the MK-CKKS algorithms have a computational cost in the order of
milliseconds. The keys generation, encryption, partial decryption and merge have an
average for the four users of 624.58ms, 79.90ms, 34.06ms and 96.83ms respectively. For
the MPC decryption protocol, the participants take on average 1.975s total time to
complete it. Particularly, the users initiating the MPC decryption take an average of
3.03s to complete the protocol, while the other involved users take an average of 1.62s.
The difference between these two average times of about 1.41s is due to the fact that
the initiator does the partial decryption and broadcast alone, while the other users do
them in parallel (as shown in Figure 5.2).

To sum up, considering a single computation request, and hence a single execution of
MPC decryption, the overhead introduced by MK-CKKS in a PANTHER client is on
average 1.975s. On the other hand, the overhead introduced by MK-CKKS in a
PANTHER smart contract is on average 30.17ms for addition and subtraction, and
around 2.73s for multiplication.

5.10 Discussion

In this chapter we presented PANTHER, which integrates the MKHE model within a
permissioned blockchain to provide stronger privacy properties on stored data, while
still allowing smart contracts to execute functions on ciphertexts. Specifically, we
adopted the MKHE model to enable homomorphic computations on data encrypted
under different keys, thus overcoming the limitation exhibited by traditional
single-key HE schemes. We designed an architecture where the MKHE algorithms
(i.e., key generation, encryption, decryption and evaluation) are deployed on clients
and blockchain peers. The decryption is realised in PANTHER as a MPC distributed
protocol that runs among clients, and the evaluation is performed by peers’ smart
contracts. In particular, we proposed a novel MPC decryption protocol that leverages
the blockchain integrity property to deliver decryption correctness against a byzantine
adversary. Furthermore, we proved that PANTHER achieves security in the face of a
byzantine adversary, preserving data privacy, integrity and availability.
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We implemented PANTHER, and we assessed the overheads that MKHE, and its
MPC decryption protocol, introduced to the blockchain. Specifically, we implemented
MK-CKKS, a multi-key variant of the CKKS scheme, and we included it in the clients
and smart contracts of the blockchain. The results of our experimental evaluation
show that the overhead introduced by MK-CKKS in the smart contracts of blockchain
peers is small for addition, about 29.67ms, and higher but feasible for multiplication,
about 2.73s. This demonstrates that the impact of MKHE on the blockchain is almost
zero for performing addition and reasonably low for multiplication. On the other side,
the overhead introduced by MK-CKKS in clients is small for keys generation and
encryption, averaging 624.58ms and 79.90ms respectively, and higher but feasible for
performing a MPC decryption. Indeed, the total time to complete a MPC decryption is
on average 1.975s. In particular, the client initiator completes the protocol in an
average of 3.03s, while the other clients involved in average of 1.62s. This is mainly
due to the time taken to exchange messages, rather than the MKHE algorithms
executed during the protocol, i.e. partial decryption and merge, which on average
take 34.06ms and 96.83ms respectively.

Unfortunately, the MPC protocol cannot be avoided in a system where a user encrypts
her data with her personal keys, but having such a system yields the following
advantages:

• the user’s data cannot be decrypted by others, thereby reaching the highest level
of privacy;

• the user is autonomous and does not need to trust an external party, who shares
a common public key for the system and keeps the matching private key for
itself.

Furthermore, if PANTHER implemented THE instead of MKHE, the performance of
the clients would be worse, since the THE model comprises two MPC protocols, one
for key generation and one for decryption. As we have observed, the MPC protocol,
and in particular the exchange of messages, is the factor that brings the most
overhead, and running it twice significantly affects client performance.

As a future work, we plan to investigate the feasibility of enhancing the security of
PANTHER by tolerating stronger adversaries that can control more than ft < |T|/3
clients. For example, we will explore mechanisms to dynamically involve more clients
besides those in T.
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Chapter 6

SHERLOCK: Sharding
permissioned Blockchain

As emerged from our study in Chapter 3, the consensus protocol is the factor that
most impacts blockchain performance. This direct proportion between the two is due
to the fact that the consensus protocol is responsible for processing all incoming
transactions, and ensuring that all nodes in the network agree on their ordering. The
more transactions are processed over time, the better the blockchain system performs.
Permissionless blockchains typically accommodate a large number of network nodes,
without entry restrictions. Hence, they employ lottery-based consensus algorithms, in
which a leader is randomly elected among the network to propose the order of
transactions. The downside of this approach is that both the leader election process
and the transactions validation across the entire network are time-consuming. This
leads to performance degradation, which is more pronounced in blockchains
employing PoW, due to the computational-intensive mining process. Conversely, this
aspect is mitigated in permissioned blockchains. They are operated by authenticated
parties and usually the network size is much smaller than permissionless where
anyone can participate. Besides, only a restricted number of nodes are involved in the
consensus protocol. These specifications allow permissioned blockchains to employ
voting-based consensus algorithms, in which the leader is elected by the consensus
nodes through voting. As a result, permissioned blockchains take lesser time to reach
consensus: as soon as the leader receives a majority of acknowledgements from
consensus nodes the proposed block is appended to the ledger.

Notwithstanding permissioned blockchains exhibit better performance, they present
scalability issues. These occur when the volume of transactions to be processed grows
significantly and the consensus nodes become saturated. In traditional distributed
systems, this problem is solved by scaling out, i.e. adding nodes to the network in
order to distribute and balance the workload. However, in voting-based protocols, the
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consensus nodes work on the same transactions. As in PBFT (Castro and Liskov
(1999)), when a new round of consensus begins, the leader sends the replicas a set of
transactions to be ordered. Each replica orders this set and sends it back to the leader,
which then waits to receive a majority of them to create and commit the final block.
Consequently, scaling out in a permissioned blockchain means more messages
exchanged during consensus and more time to agree on the ordering of transactions,
worsening performance instead of improving it.

To solve this scalability problem, in this chapter we propose to apply the sharding
technique in permissioned blockchains. Originally, sharding has been used by
modern data storage systems, e.g. Amazon Dynamo (DeCandia et al. (2007)), to
separate large databases in smaller parts, known as shards, in such a way to boost
system scalability and performance. We leverage this concept to divide the consensus
nodes of a permissioned blockchain network into committees. The incoming
transactions to order are then spread among these committees, which concurrently
run instances of the consensus protocol. Hence, we present SHERLOCK (SHarding
pERmissioned bLOCKchain), a scalable permissioned blockchain based on sharding.
SHERLOCK provides a novel two-layer ring-based architecture for nodes engaged in
the consensus, and uses the sharding technique to form parallel committees over it.
When the workload grows, SHERLOCK is able to scale-out by adding nodes and
creating new committees, while maintaining adequate performance.

Contributions

The novel contribution of this work consists in enhancing the scalability of a
permissioned blockchain by using the sharding technique. The other contribution
provided are:

• a novel two-layer ring-based network topology for consensus nodes of a
permissioned blockchain;

• a qualitative analysis of SHERLOCK, where we compare the two offered
versions and its communication complexity with the traditional PBFT protocol;

• the implementation of SHERLOCK in Go;

• a comparison of SHERLOCK and PBFT performance, in terms of throughput
and latency, under the same network configuration and workload, where we
demonstrate that SHERLOCK outperforms PBFT;

• a security analysis of SHERLOCK, where we prove that it preserves the system’s
security guarantees after the division into committees, and it is able to withstand
against the single shard takeover attack.
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Chapter structure

Section 6.1 defines the system model we consider. In Section 6.2, the scalability
problem of the permissioned blockchain is highlighted, describing how scaling-out
worsens performance instead of improving it. Section 6.3 describes the sharding
technique. In Section 6.4 we present the two-layer ring-based SHERLOCK
architecture, which comes in two versions: without and with overlapping committees.
A qualitative analysis of SHERLOCK is discussed in Section 6.5, where we compare
the efficiency of the two versions and the communication complexity of SHERLOCK
with that of PBFT. In Section 6.6 we implement SHERLOCK and PBFT, and we
evaluate them in terms of throughput and latency, proving that SHERLOCK
outperforms PBFT. A security analysis of SHERLOCK is provided in Section 6.7,
discussing how it resists to the single shard takeover attack. Section 6.8 presents a
literature review on the application of sharding into blockchain. Finally, Section 6.9
concludes and discusses the work.

6.1 System model

We consider a system in which a consortium, composed by multiple organizations, sets
up a private permissioned blockchain network. We consider that the organisations do
not trust each other, but we assume that a majority of them, and precisely 2/3, are
honest. Organizations divide the network fairly and democratically, so that each of
them supplies the same number of blockchain nodes. We consider the roles separation
operated in Hyperledger Fabric for blockchain nodes (see Section 3.2.4). Hence, we
refer to the nodes that hold the blockchain ledger and run smart contracts as peers.
Whereas, we refer to the nodes that participate in the consesus protocol as orderers.
Moreover, we refer to members of organizations as users. Depending on the position a
user covers within her organization, she can have different rights and permissions for
requesting operations to the blockchain. Each user can interact with the blockchain
network through an application software (e.g., web or mobile app). We refer to such
application software as client. In particular, clients enable users to submit transactions
towards the blockchain system and handle its response. Transaction types comprise:

• read: retrieving data from the ledger;

• write: storing data into the ledger;

• sc-call: invoking smart contract computations.

Peers are responsible for handling client requests. If the request is a read, the peer
returns the desired data to the client. If the request is either write or sc-call, the peer
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executes the transaction locally without updating the ledger state, and sends its
output to other peers for endorsement. Once the peer receives transaction
endorsements from the majority of peers1, it sends the transaction to orderers to be
included in a block. Orderers are responsible for ordering the incoming transactions.
We consider that the PBFT consensus algorithm is in place, and accordingly that
among the orderers there is a leader node administering the consensus instance. We
refer to the remaining orderers as replicas, in charge of ordering the set of transactions
they receive from the leader. We consider, as in PBFT, that the number of orderers is
n = 3 f + 1 (Castro and Liskov (1999)), where f is the number of byzantine orderers,
and that each organization equally participates in n, i.e. each organization supplies the
same number of orderers in the consensus protocol. This means that n is a multiple of
the number of organizations. Orderers proceed in rounds: in each round the leader
starts a consensus instance with replicas and creates a block containing ordered
transactions. The block is then broadcasted to the peers to be appended to the ledger.

Being the setting permissioned, both clients, peers and orderers are authenticated:
each of them has assigned a digital certificate issued by a trusted CA, that contains a
set of cryptographic credentials, i.e. a pair of public-private keys. The certificate
public key, along with other attributes relating to its holder (e.g., its hostname and the
organization it belongs to), are publicly verifiable. A client uses its private key to
cryptographically sign the transactions it submits to the blockchain. Peers identify the
client by checking its signature, and authorise its requests by checking its permissions.
A peer uses its private key to sign the transactions it handles during the endorsement
phase. An orderer instead uses its private key to sign the messages it sends during the
consensus phase.

We assume that every pair of system parties is connected by a bidirectional link, and
that these point-to-point links are reliable in the face of crashing parties, i.e. a correct
party eventually delivers a message sent to it by another correct party (Cachin et al.
(2011)). In addition, we assume parties use reliable broadcast primitives for
one-to-many communications, i.e. if a correct party delivers a message then
eventually all correct parties deliver it (Cachin et al. (2011)). We consider
computationally bounded adversaries, i.e. PPT adversaries, that can delay
communication by dropping some message retransmissions, but eventually the
intended recipient delivers the message. We consider that the adversary behaviour is
byzantine, i.e. the corrupted parties can deviate from their prescribed protocol. The
adversary can corrupt either peers or orderers. A corrupted peer can tamper with
handled transactions or its ledger state. However, these information are checked by
the other peers in the endorsement phase. A corrupted orderer can try to subvert the
consensus protocol. We refer to the PBFT security (Castro and Liskov (1999)),

1Note that in Hyperledger Fabric it is possible to specify the number of peers e engaged in endorse-
ment, and among them the number of approvals a required to endorse a transaction. Considering p the
number of system peers, the relationship is p ≥ e ≥ a ≥ p

2 + 1.
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tolerating up to f < N/3 corrupted orderers, under the assumption that the number
of orderers N is greater or equal to 3 f + 1.

6.2 Problem statement

Considering the system model of Section 6.1, the described permissioned blockchain,
implementing the PBFT consensus algorithm, presents a scalability problem. When
clients significantly increase the number of submitted transactions, the orderers
become overloaded and the system saturates, degrading performance. Typically, in
the blockchain, performance are measured under two metrics:

• latency: the time that an interactive system takes to respond to a user request. In
the blockchain it is measured from the moment when a user sends a transaction
to when she is notified that the transaction has been stored on the ledger.

• throughput: the average number of transactions processed per unit of measured
time. In the blockchain it is calculated by increasing the number of transactions
until the system saturates, i.e. it is unable to process an incoming transaction.

Latency includes the time required by peers to execute a transaction and by orderers
to run the consensus protocol. With reference to these two metrics, what actually
happens as client demands increase is that latency grows, and throughput gradually
decreases until it reaches zero at system saturation. When this performance
degradation occurs, there are two methods a system can apply to cope with the
growing workload: scale up or scale out. The former consists of expanding the
resources of a node, whereas the latter consists of adding nodes to the network.
Scaling up can help peers to run smart contracts faster, improving latency up to a
certain extent, constrained by existing hardware capabilities. On the other side, it is
useless to scale up orderers since PBFT is communication-bound, i.e. latency and
consequently throughput are bound to the number of messages exchanged during a
consensus round. By contrast, scaling out orderers is counterproductive: increasing
the number of replicas leads to a higher message overhead and a longer time to reach
agreement on transactions. As a result, the scale out method lengthens latency and
worsens throughput. Therefore, neither scale up nor scale out are successful in
improving the scalability of the permissioned blockchain to raise its performance.

6.3 Sharding technique

Sharding is a technique used by distributed systems to improve scalability and raise
performance levels. It has been largely applied in data storage systems to handle huge
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databases, including Amazon Dynamo (DeCandia et al. (2007)), Apache Cassandra
Lakshman and Malik (2010) and Google BigTable Chang et al. (2008), and also in file
sharing system to handle data connection, as in BitTorrent Qiu and Srikant (2004).
Sharding consists of dividing a very large system into much smaller and easily
manageable parts, called shards. Indeed, the term shard represents a small part of the
whole set. When applied to data storage system, sharding enables to split a database
into multiple smaller tables, assigned to different network nodes. All tables share the
same schema, i.e. they have the same columns, but each table contains unique rows. In
face of growing data to store, this technique helps the system to scale-out, adding new
nodes to host new tables, thus increasing the parallelisation and avoiding memory
saturation. As side-effect, since each node has only a shard of the data, this also helps
to speed up the query processing and support more traffic, improving performance.
There are different types of sharding that vary according to how new data are
assigned to the network nodes (i.e., to which table a new row is assigned). They are:

• hash-based sharding: hash functions are used to represent each table with unique
identifier (a.k.a, hash digest). An incoming data item is then plugged into the
hash function, and its output is mapped with the matching table’s hash digest.

• range-based sharding: a column is chosen, and tables are split according to ranges
of the column’s values, either in numeric or alphabetic order. An incoming data
item is assigned to a table based on its value of the chosen column.

• directory-based sharding: tables are split according to the distinct values of a
chosen column, so that each table stores rows with the same column value. An
incoming data item is assigned to a table based on its value of the chosen
column.

Generally, hash-based is preferable for dividing data evenly over nodes, range-based
is preferable when a specific column is queried the most, and directory-based is
preferable when the values in a column have many duplicates.

6.4 SHERLOCK architecture

In this section we present the SHERLOCK architecture. Particularly, we first present
its two-layer ring-based topology for nodes engaged in the consensus protocol
(Section 6.4.1), and then we describe a dual approach with overlapping committees
(Section 6.4.2). In Section 6.4.3, we outline how the two versions behave when a node
crashes.
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6.4.1 Two-layer ring-based architecture

In SHERLOCK, we apply the sharding technique to split the orderers into committees,
whereby each committee runs the PBFT algorithm with its own leader and its set of
replicas. Inspired by the ring architecture of the Chord protocol Stoica et al. (2001,
2003), we arrange these committees over a two-layer ring-based topology. Specifically,
all committees but one are positioned in an outer ring. The remaining committee
instead stands alone on a inner ring. The outer and inner rings constitute the two-layer
architecture for orderers. Committees in the outer ring are responsible for
concurrently handling the workload (i.e., the incoming transactions): each of them
performs consensus on a shard of the workload, and sends the resulting generated
block to the inner ring. The committee of the inner ring is instead responsible for
providing a total order to the provisional blocks it receives from the outer ring.
Adding new orderers to this topology means creating new committees on the outer
ring, and thus raising the parallelisation of consensus instances. As per PBFT
configuration, we set the size of each committee to c = 3 f + 1, to tolerate f byzantine
orderers. We denote by n the total number of orderers in the system, and we set n to
be a multiple of c. The outer ring contains n− c orderers, whereas the inner ring
contains c. We consider that the number of organizations in SHERLOCK is equal to c,
and that each organization supplies a node in any committee. When the need to
scale-out arises due to high workload, n increases while keeping the proportions just
defined. Hence, c orderers will be added in turn to form a new committee, the
orderers on the outer ring continuing to be n− c, and the inner ring continues to be a
single committee of size c. We denote by s the scaling factor, i.e. the number of
committees in the system2, which can be augmented to scale out. The number n in the
system can be then calculated by n = c · s.

We therefore use the hash-based sharding both to form the committees and to evenly
distribute the workload over them. Each orderer oi is represented with a k-bit digest
identifier, resulting from computing the hash function h(oi). Orderers are then
positioned in circle over the rings according to the formula: h(oi) mod2k. The first
n− c are positioned over the outer ring, and the last c in the inner one. Each orderer is
assigned to exactly one committee, and the committees are formed by grouping c
orderers sequentially. That is, starting from the first orderer in the ring, which we refer
for simplicity to as o1, the first committee is formed as C1 = {o1, . . . , oc}, and so on
until reaching n. Thereafter, incoming transactions are mapped to orderers of the
outer ring. Any transaction tj is as well represented with a k-bit digest identifier h(tj).
By leveraging on hashing properties, tj is mapped to the first orderer whose identifier
is equal to or follows h(tj) in the hash function space. Being represented as a ring, h(oi)
will be the first orderer clockwise from h(tj). Once tj is mapped to an orderer, it enters

2Note that the minimum number of system committees is 3, two for enabling the parallelisation on the
outer ring, and one for the inner ring. Hence, s ≥ 3.
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FIGURE 6.1: SHERLOCK architecture

into the pool of transactions to be ordered by the committee of which the orderer is a
member. Each committee of the outer ring orders its allocated transactions in
isolation, concurrently with the others. When a consensus round ends in an outer
committee, a provisional block is created and sent to the committee of the inner ring.
To avoid saturating the bandwidth of inner ring, the provisional block contains only
the digest of processed transactions, while their content is sent in background to the
endorsement peers. Upon the delivery of a provisional block, the inner ring verifies
that it is signed by more than 2 f + 1 orderers of the sender committee. The inner ring
committee then gives a total order to provisional blocks, and broadcasts a final block
to the peers for validation and commit.

Figure 6.1 shows the architecture of SHERLOCK, in which the orderers are divided
into committees and arranged over a two-layer ring-based topology. In the example
there is a consortium of four organizations, each of which supplying three orderers,
e.g. Org1 supplies {o1, o8, o11}. There are three committees (i.e., s = 3), two on the
outer ring and one on the inner ring. Each committee is composed by c = 3 f + 1 = 4
orderers tolerating one byzantine orderer. The number of organizations is equal to c,
and they fairly participate in the consensus phase: each organization has an orderer in
every committee. Indeed, in Figure 6.1 we find committee C1 composed by
{o1, o2, o3, o4} belonging to Org1, Org2, Org3 and Org4 respectively. The same
distribution of membership applies to committees C2 and C3. The leader of a
committee, as per PBFT default configuration, is elected at each new consensus round,
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FIGURE 6.2: SHERLOCK sequence diagram

and the election mechanism is based on the sequential rotation of nodes. That is, the
leader oi of committee Cz for round r will be i = (r mod c) + 1 + c(z− 1), where i and
z start from 1 and r starts from 0. For example, o1 is leader of committee C1 for rounds
0, 4, 8 and so on, while o2 for rounds 1, 5, and so on. The same for applies to other
committees with their respective orderers.

Figure 6.2 shows the SHERLOCK sequence diagram, where the steps are marked by a
numbered pink circle. The flow starts when a client submits a transaction txn to peers.
For simplicity of illustration, we depict txn arriving at a single peer, e.g. peer 1, but
actually it is distributed to a set of peers, which in turn distribute to endorsement
peers. The peer executes the requested txn and broadcasts its result to other p peers
for the endorsement (step 2). The peer then waits for approvals (step 3), and once it
receives a majority moves on to the next step according to the type of transaction
handled. If it is a read, the peer jumps to step 8 and delivers the response to the client.
Otherwise, the peer moves on to step 4: it calculates the transaction digest h(txn) and
sends the txn to the first orderer clockwise from h(txn), e.g. orderer 1 in the example.
When a new consensus round starts, each committee leader of the outer ring proposes
to its replicas to order the incoming transactions. In Figure 6.2 the transaction txn is
ordered by committee 1. When the round ends, the committee sends a provisional
block, containing txn, to the inner ring committee (step 5). Note that, during step 5,
the other committees in the outer ring concurrently perform consensus on different
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transactions. The inner ring committee provides a total order to received provisional
blocks, and broadcasts to all peers p (step 6) a final block. Upon the delivery of final
blocks, each peer validates them locally and, if valid, commits them on its ledger copy.
Then each peer notifies the others (step 7) and finally sends the response to client (step
8), which can be either a confirmation that txn has been committed, or a notification
that has been rejected as invalid.

6.4.2 Overlapping committees

As described in previous section, the orderers in SHERLOCK are split into
committees, so that each orderer is assigned to exactly one committee. In this section,
we relax such constraint and we propose a dual approach. We keep the same
two-layer ring-based topology, with the outer ring composed by multiple committees
concurrently ordering transactions, and a inner ring committee that provides total
order to blocks of the outer ring. We also keep the size of a committee equal to
c = 3 f + 1 to tolerate f byzantine orderers, and the number of orderers in the outer
and inner rings to be n− c and c respectively. We consider as previously that the
number of organizations is equal to c, and each organization supplies a node in any
committee. As opposed to previous solution, we change the committees formation.
Particularly, we allow an orderer of the outer ring to participate in more than one
committees, and precisely in c committees. Firstly, we use the hash-based sharding to
position the orderers over the two rings according to their hash digest. Differently
from previous solution, we force the orderers to be sequentially positioned according
to their organization membership. For example, with four organizations Org1, Org2,
Org3 and Org4 and c = 4, the orderers {o1, o5, o9, . . . } belong to Org1, {o2, o6, o10, . . . }
belong to Org2 and so on. Thereafter, we form overlapping committees across the n− c
orderers of the outer ring. The first committee is created by grouping c nodes starting
from the first orderer, the second committee by grouping c nodes starting from the
second orderer, and so forth until the last orderer of the outer ring is reached. This is
expressed by the following formula:

Ci = {oi, o(i mod n−c)+1, . . . , o(i+c−2 mod n−c)+1}

where Ci is the ith committee on the outer ring. Figure 6.3 shows an example of the
proposed approach tuned with parameters c = 4 and n = 12. On the outer ring, the
first committee is C1 = {o1, o2, o3, o4}, while the second is C2 = {o2, o3, o4, o5}, and so
forth until the last C8 = {o8, o1, o2, o3}. Note that all organisations are involved in each
committee, e.g. in C8 the orderer o8 belongs to Org4. Committees overlap each other in
such a way that c consecutive committees have one orderer in common. Indeed, each
orderer participates in c committees, e.g. o1 participates to C1, C6, C7, C8. We configure
the first orderer of each committee as the leader, e.g. o1 for C1. Consequently, a single
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FIGURE 6.3: SHERLOCK overlapping committees

orderer acts as a leader for one committee and as a replica for the others c− 1 it is
involved in. The advantage of this overlapping approach is that we can scale out
simply by adding one orderer, which causes the creation of another overlapping
committee. Note that with this approach the minimum number of system orderers to
enable parallel committees on the outer ring is n ≥ 2c + 1, where c nodes are
dedicated to the inner ring. For example, with c = 4 we just need 9 system orderers,
which results in 5 overlapping committees on the outer ring. Conversely, in the
previous solution to have 5 committees on the outer ring we need 24 system orderers.
This is because with the overlapping approach n and s are unrelated.

As regards workload distribution, it works exactly the same as the previous solution:
using the sharding technique, we generate the hash digest of an incoming transaction
as h(txn), and we then map the transaction txn to the first orderer of the outer ring
clockwise from h(txn). In the previous solution the transaction would be processed by
the committee to which the orderer belongs. However, in this overlapping approach,
an orderer belongs to c different committees, and it is the leader in one of these.
Therefore, differently from previous solution, the orderer process txn in the committee
in which is leader. Then, the consensus proceeds as in the previous solution, with the
outer ring committees sending provisional blocks to the inner ring committee.

Comparing the two approaches there are some aspects to note. Under the same
conditions, with the same values of n and c, the overlapping approach offers more
committees, and thus more parallelisation. The orders arranged on the outer ring are
n− c in both cases, but the committees without overlapping are n−c

c , and n− c with
overlapping instead. However, on the other hand, with the overlapping approach



132 Chapter 6. SHERLOCK: Sharding permissioned Blockchain

each orderer is involved in c committees, and thus exchanges more messages, c times
as many. In the next section, we evaluate how these differences between the two
impact on the communication complexity of the consensus.

6.4.3 Dealing with crashing nodes

To ensure that the consortium organizations participate equally in the consensus
protocol, when a nodes crashes, is to be replaced by another from the same
organisation. During the replacement time, the two versions of SHERLOCK act
differently. In the version without overlapping, the committee of the crashing node
continues to run and order transactions. However, to guarantee that the committee is
still able to tolerate f byzantine node, the replacement is required (within a time limit),
as per PBFT configuration. If the crashing node is leader, then a new leader is elected
from among the committee’s replicas. Otherwise, if it is a replica, the committee
operates as usual. In the version with overlapping, instead, each node is involved in c
committees, one of which is leader and c− 1 is a replica. When a node crashes, the
number of committees in the outer ring scale in, becoming n− c− 1. Moreover, the
committees are re-formed according to the new layout of the nodes on the ring. An
incoming transaction that should be mapped to the crashing node, is then mapped to
its successor on the ring. Hence, it can be seen as if the committees where the crashing
node is a replica continue to function, while the one where it is a leader is temporarily
suspended until it is replaced. However, to provide the same level of workload
distribution and consensus parallelisation, the node needs to be replaced promptly.

6.5 Qualitative analysis of SHERLOCK

In this section, we analyse the efficiency of SHERLOCK in terms of communication
complexity, and we compare it qualitatively with the traditional solution of
Hyperledger Fabric, implementing a single PBFT protocol for consensus.
Furthermore, we compare the two versions we proposed for dividing consensus
nodes into committees, i.e. without and with overlapping.

Hyperledger Fabric employs PBFT as consensus algorithm. As Figure 6.4 shows,
PBFT is composed by a leader and a set of replicas, with a total number of nodes n
greater or equal to 3 f + 1, where f are the byzantine nodes. PBFT proceeds in rounds,
and each round comprises three phase, i.e. pre-prepare, prepare and commit. When
the round starts, the leader broadcasts to replicas the set of incoming transactions to
be ordered (pre-prepare). Then, each replica orders the transactions and broadcasts
the results to other replicas and the leader (prepare). When both the leader and the
replicas receive the ordered transactions from a quorum, they broadcasts to each other
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FIGURE 6.4: PBFT consensus protocol

a commit message (commit). The leader and the replicas finally send the generated
block to peers. The communication complexity of PBFT is the number of messages
exchanged among the leader and the replicas within a round. The number of
exchanged messages during pre-prepare is n− 1, during prepare (n− 1)2 and during
commit n(n− 1), for a total of 2n2 − 2n. Hence, we have:

2n2 − 2n ≤ 2n2 = O(n2).

The PBFT consensus algorithm has an asymptotic cost of O(n2). On the other side,
SHERLOCK splits nodes n into multiple committees, each of which runs a PBFT
instance. Then, to calculate SHERLOCK communication complexity, we need to
multiply the PBFT complexity by the number of committees. In SHERLOCK we
denote by c the number of nodes per committee, which is generally much smaller than
n, to facilitate workload distribution and create parallelisation. Hence, each committee
in SHERLOCK has an asymptotic cost of O(c2). Depending on the version used,
SHERLOCK provides ( n−c

c ) + 1 committees without overlapping, and n− c + 1
committees with overlapping. Under the same system conditions, i.e. at equal nodes
n, for SHERLOCK we have:(︃(︃

n− c
c

)︃
+ 1

)︃
c2 = nc− c2 + c2 = nc = O(n); (6.1)

(n− c + 1)c2 = nc2 − c3 + c2 ≤ nc2 + c2 = O(n). (6.2)

Both versions without and with overlapping (Eq. 6.1 and Eq. 6.2, respectively) have an
asymptotic cost of O(n). Therefore, in a system composed by n consensus nodes,
SHERLOCK exhibits a lower and then better communication complexity compared to
single PBFT implementation, as in Hyperledger Fabric. This because c is much smaller
than n, and in single-PBFT the communication cost grows quadratically with n,
whereas in SHERLOCK c is a constant and the communication cost grows linearly
with n.
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As regards the two versions offered by SHERLOCK, from the Eq. 6.1 and Eq. 6.2 we
can note their diversity. Considering c be the same in both settings, the overlapping
version affects the communication complexity with a cost c2, whereas the one without
affects with a cost c. This because in the overlapping version each node on the outer
ring is involved in c committees, and hence its communication complexity is
multiplied by c. Without overlap, by contrast, a node only participates in a single
committee. However, on the other hand, the overlapping version has the advantage
that only one node is required to create a new committee, differently from the other
which requires c nodes. To make a more thorough analysis of the two, we therefore
need to introduce an additional element of comparison: the effort exerted by a node to
handle transactions. Let WL be the workload, i.e. the number of incoming transactions
to order. Let r be the resources, i.e. the amount of CPU, memory and bandwidth, used
by a node to manage a transaction. Let ORC be the number of committees of the outer
ring, and PC the number of committees in which a node participates. Under the same
system conditions, i.e. at equal values of n and c, in SHERLOCK a consensus node of
the outer ring has the following effort:

WL
ORC

· PC · O(c2)

c
· r =

⎧⎨⎩
WL
n−c

c
· 1 · c · r = WL

n−c · c2 · r no-overlapping

WL
n−c · c · c · r =

WL
n−c · c2 · r overlapping

(6.3)

The Eq. 6.3 shows that both versions have the same impact on a consensus node. The
number of committees ORC formed in the no-overlapping version is smaller than
with overlapping. Consequently, in the no-overlapping version there is less workload
distribution and parallelisation, and thus a consensus node has more transactions to
order. This is however balanced by the number PC of participating committees, which
is c with overlapping and 1 without. As a result, in the overlapping version the
communication complexity of a node is c times higher.

If we relax the constraint that n is the same in both versions (i.e., we allow them to
deploy a different number of consensus nodes), and we fix instead ORC to be the
same, we have from Eq. 6.3 that a node has less effort without overlapping, precisely c
times less. However, the no-overlapping version needs more nodes to achieve the
same amount of ORC as the overlapping version. This is evident from the following
comparison:

n1 − c
c

= ORC⇒ n1 = (ORC)c + c; no-overlapping

n2 − c = ORC⇒ n2 = ORC + c; overlapping

(ORC)c + c > ORC + c⇒ (ORC)c > ORC⇒ n1 > n2 (6.4)

The Eq. 6.4 shows that the no-overlapping version requires a number of nodes c times
bigger. This again balances the comparison between the two versions. Summarising,
the two versions are equally efficient, where one offers better communication
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complexity, the other offers greater workload distribution and consensus
parallelisation.

6.6 Implementation and experimental results

The qualitative analysis presented in Section 6.5 shows that SHERLOCK has a better
communication complexity than the PBFT consensus protocol. With the same number
of nodes engaged in consensus, the communication cost for SHERLOCK is linear
while for PBFT it is quadratic. The implications of such finding are that a
permissioned blockchain employing SHERLOCK can sustain a higher workload and
process more transactions. In this section we report experimental results that
demonstrate and corroborate the complexity study conducted in Section 6.5.
Particularly, we implement SHERLOCK and PBFT and we compare their
performance, in terms of throughput and latency, under the same workload. For both
implementations we use Go (Google (2009)) as programming language. Since the
consensus algorithm of SHERLOCK is based on PBFT, we first develop the PBFT as a
Go module and then import it as library into SHERLOCK. The Go module of
SHERLOCK additionally includes a package responsible for sharding, where we
implement the Chord protocol described in Stoica et al. (2001, 2003). As emerged from
the study in Section 6.5, the two SHERLOCK versions, without and with overlapping
committees in the outer ring, are equally performant. Thus, in this SHERLOCK
implementation, we select the no-overlapping version as the approach to form
committees.

All experiments are performed on a machine with 8 CPUs Intel(R) Xeon(R) CPU
E5-2695 v3 @ 2.30GHz and 128GB RAM running Ubuntu 22.04 LTS. For the
evaluation, we set up a network of n = 12 nodes to both SHERLOCK and PBFT. This
number is chosen considering that the no-overlapping approach is in place, the
minimum number of committees for SHERLOCK is 3, and the minimum size of a
SHERLOCK committee c is 4 tolerating f = 1 byzantine node. Hence, SHERLOCK
consists of 8 nodes in the outer ring split in 2 committees and 4 nodes in the inner ring
committee. Whereas, PBFT consists of a single committee with all n nodes. We
implement a blockchain client in Go that generates and submits a workload of 1000
transactions per second to both SHERLOCK and PBFT.

Figure 6.5 and Figure 6.6 graphically display the performance of SHERLOCK (blue
trend line) and PBFT (orange trend line) under this workload for 5 minutes. Both
figures are derived from dataset Zanfino (2024). As Figure 6.5 shows, SHERLOCK
processes all transactions submitted with an average throughput of 990.1 txn/s, while
PBFT becomes saturated and stops processing transactions at around 75 seconds. At
the moment of saturation, PBFT only manages to process 54183 transactions with an
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FIGURE 6.6: Latency comparison between SHERLOCK and PBFT

average throughput of 180.61 txn/s over the 5 minutes of the evaluation. As Figure 6.6
shows, SHERLOCK has a constant latency with an average per transaction of 1.937
seconds, while PBFT presents several peaks until saturation point with an average per
transaction of 4.840 seconds.
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6.7 Security analysis of SHERLOCK

By leveraging on particular network partition mechanisms, hash-based sharding
helps a system to distribute users’ requests and parallelise their processing. We apply
this technique in SHERLOCK to improve blockchain scalability: in the face of growing
demand and potential system saturation, we use sharding to add network nodes and
create parallel consensus committees. Notwithstanding, this can come at a cost, the
reduction of system security. Indeed, adding nodes and creating multiple consensus
committees broadens the attack surface. As there are more nodes, an attacker has
more access points at disposal. On the other hand, being the network partitioned, the
honest majority is dispersed into individual committees. This significantly reduces the
amount of honest consensus nodes in each committee, making it easier for an attacker
to subvert one of them. Depending on how the committees are interconnected, this
can lead, with a cascade effect, to break the security of the entire blockchain system.
This is know as single shard takeover attack, where an attacker aims at controlling the
majority of consensus nodes within a single committee to control the whole
blockchain. Usually, this type of attack gains more ground in permissionless
blockchains, where nodes have no restrictions to participate in the network. An
adversary can then target one specific committee and enlist compromised nodes in its
consensus protocol. Permissionless blockchain tackle this attack by introducing
randomness into the committee formation and by reshuffling the nodes in the
committees at the end of each consensus round. A pseudo-random function is used to
randomly assign nodes to committees, whereby nodes with higher mining power or
stakes are more likely to be selected.

In SHERLOCK we tackle the single shard takeover attack by combining three factors:

1. the authentication of consensus nodes;

2. the trust assumptions of systems based on permissioned blockchains;

3. the introduction of fairness into the two-layer ring-based architecture.

As first factor, SHERLOCK is a permissioned blockchain where all network nodes are
authenticated. Before a node is assigned to a committee, its certificate is checked
against a public repository, and once it participates in a committee, it is checked that
the signature of its messages matches the public key of its certificate. These
authentication checks enables SHERLOCK to form committees with identifiable nodes
and to verify their actions within each single committee. As second factor,
SHERLOCK relies on trust assumptions commonly used in permissioned settings,
which regard both the participating organizations and the nodes engaged in the
consensus protocol. As described in Section 6.1, these assumptions are:
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• the 2/3 of participating organizations are honest;

• the consensus nodes are fairly distributed among organizations.

The former is indeed a necessary condition for the establishment of the system: a
majority of organizations is required as a guarantee that the system achieves its
intended goals, shared by its participants. The latter is related to the security of the
consensus protocol: it prevents a single malicious organisation from having a number
of consensus nodes above the security threshold, which typically is 1/3.

These two factors are sufficient to maintain the security of a traditional permissioned
blockchain, as long as the number of malicious nodes remains less than 1/3. However,
once the network is partitioned via sharding, the malicious nodes can end up in a
single committee. Taking PBFT as example, in order to tolerate f = 5 byzantine nodes
the system network needs to be composed by at least n = 3 f + 1 = 16 nodes.
Supposing that the n consensus nodes is then divided via sharding in 4 committees of
the same size, each of them can then tolerate up to 1 byzantine node. However, it may
happens that 2 out of 5 byzantine nodes are placed in a single committee, possibly
causing its failure and a security breach. The transactions ordered by such committee
are not guaranteed to be valid, and if appended into the ledger can bring
inconsistency of the information. This situation may get worse if further 2 out of 5
byzantine nodes are placed in another committee, so that half of the committees
possibly being compromised. In this scenario, the 50% transactions can be incorrect
even though the system originally tolerates f < n/3.

Therefore, as third factor, SHERLOCK introduces fairness for the organizations
participation in committees. Particularly, we first set the committee size to be equal to
the number of organizations. Then, during the committees formation, we configure
SHERLOCK so that each organization possesses one consensus node in every
committee. This configuration applies to both proposed topologies, i.e without and
with overlapping committees. The difference between the two lies only in the nodes
positioning over the ring, which in the case of overlapping is also dictated by the
organisations sorting. The addition of this third factor ensures that the initial security
guarantees of the system are retained even after the division into committees. This
because it prevents that a minority of malicious nodes (below the security threshold)
in the entire system from becoming a majority in a single committee. With reference to
the PBFT example mentioned before, SHERLOCK forms a committee with one node
per organization. Hence, in a system composed by 4 organizations and n = 16
consensus nodes, we would have 4 committees of size c = 4. If one organization is
dishonest, it can supply 4 byzantine nodes. Differently from previous example, in
SHERLOCK at most one of them (i.e., 1-out-of-4) is placed in a single committee. This
ensures that in each committee the majority of nodes belong to honest organisations,
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and the number of byzantine nodes (i.e., 1 in this case) is below to the PBFT security
threshold c/3, as long as the byzantine nodes in the system are f < n/3.

In conclusion, by combining authentication, trust assumptions and fairness,
SHERLOCK preserves the security guarantees offered by a permissioned blockchain
after partitioning the system into committees. Under the traditional trust assumptions
of permissioned blockchains, SHERLOCK withstands against the single shard
takeover attack as long as the 2/3 of organizations are honest and the byzantine nodes
in the system are f < n/3.

6.8 Related work

Sharding technology is currently identified, by both blockchain operators and
researchers, has one of the most efficient methodologies to overcome the scalability
issues of blockchain. Indeed, the co-founder of Ethereum, Vitalik Buterin, states that
sharding is the future of the Ethereum platform, being the best approach to
simultaneously fulfil the blockchain requirements of decentralisation, security and
scalability (Buterin (2021)). As described by recent surveys (Yu et al. (2020); Wang
et al. (2019); Hafid et al. (2020)), however, at the state-of-the-art sharding has been
mainly applied in the context of permissionless blockchains.

In order to make a proper comparison with SHERLOCK, the following are some
papers in which sharding is applied to permissioned blockchains. Dang et al. (2019)
propose a approach based on trusted hardware to apply sharding to permissioned
blockchain. Particularly, they exploit the Intel SGX to both (i) randomly form
committees with random seeds created into the trusted environment, and (ii) to run
inside it more secure PBFT-based committees. Marson et al. (2021) present Mitosis, a
permissioned blockchain in which shard-chains are dynamically created when new
nodes join the network. Differently from traditional sharding solutions where one
chain is divided into multiple parallel committees, they recursively split an existing
chain in two child. For security, they rely on trust assumptions, inherited from parent
chain to child chains. Amiri et al. (2021) present SharPer, a permissioned blockchain
that uses sharding to split network nodes into geographically clusters. They also
apply sharding to split the ledger, such that each cluster only maintains its
intra-committee transactions and the cross-committee transactions in which it is
involved. To handle cross-committee transactions they represent the blockchain
ledger as a directed acyclic graph. These mentioned papers (Dang et al. (2019);
Marson et al. (2021); Amiri et al. (2021)), differently from SHERLOCK, employ a
single-layer architecture for committees, which operate independently on the same
level. Additionally, in paper Amiri et al. (2021) are used different version of the ledger,
one per each committee. As a result, they have to handle transactions involving
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Papers
committees

cross-committee security
formation

Dang et al. (2019) probabilistic yes trust hardware
Marson et al. (2021) deterministic yes trust assumptions
Amiri et al. (2021) deterministic yes trust assumptions

Zhou et al. (2020) probabilistic no
committees change
randomly in epochs

Du et al. (2020b) probabilistic no
committees change
randomly in epochs

SHERLOCK deterministic no
trust assumptions

and fairness

TABLE 6.1: Work applying sharding to permissioned blockchain

distinct committees, i.e. cross-committee transactions. Conversely, similar to
SHERLOCK, papers (Zhou et al. (2020); Du et al. (2020b)) employ a two-layer
architecture, in which there is a leading committee responsible for providing a total
order to blocks generated by committees in the first layer. Indeed, Zhou et al. (2020)
propose a sharding permissioned blockchain where consensus nodes are divided into
committees, which order transactions in parallel, and there is a ”boss committee”
responsible for ordering their provisional blocks. However, as opposed to
SHERLOCK, they assign nodes to committees via random numbers. Du et al. (2020b)
propose a two-layer sharding permissioned blockchain, with committees on the
second layer sending mini-blocks to a ”high-level” committee that creates the final
block. To form committees, similarly to Zhou et al. (2020), they rely on random
numbers that they create by combining VRF and threshold secret sharing. For
security, committees members are changed at the beginning of a new epoch.

Table 6.1 shows a comparison of the aforementioned papers with SHERLOCK. The
first difference is that the papers of Dang et al. (2019), Zhou et al. (2020) and Du et al.
(2020b) use randomness for committees formation. This because they do not rely on
trust assumptions about the number of honest organizations, and how the network
nodes are distributed among them. Hence, Dang et al. (2019) uses random number
generated by a trusted hardware, Zhou et al. (2020) uses hashing functions with
random inputs to map a node to a committee in the next epoch, Du et al. (2020b) uses
VRF and threshold secret sharing to randomly assign nodes to next epoch committees.
The randomness introduced by these papers is also reflected in the security of their
systems, as shown in the last column of Table 6.1. The second difference is that papers
of Dang et al. (2019), Marson et al. (2021), Amiri et al. (2021) employ cross-committee
mechanisms to deal with transactions involved in different committees. This is due to
the lack of a second layer, with a leading committee to assemble this type of
transactions. The last difference regards the methods used by papers of Marson et al.
(2021) and Amiri et al. (2021) for system security. They both rely only on trust
assumptions that each committee has a majority of honest nodes, and this is
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propagated when they create new ones. However, they are vulnerable to the single
shard takeover attack.

To complete our literature review we reference some sharding solutions proposed for
permissionless setting. They differ from those permissioned in the way they add
nodes to various committees. Since permissioned blockchains operate in a relative
trust environment, the nodes can be assigned to committees according to their
organization membership and to the overall consortium policies. In permissionless
blockchains, conversely, a node can participate to any committee without restrictions.
This opens the doors to Sybil attack (Douceur (2002)), where an adversary creates
multiple fake identities to take control of committees. Luu et al. (2016) propose
Elastico, the first sharding protocol for dividing the network of a permissionless
blockchain into multiple committees. Elastico uses PoW for committee formation and
PBFT for intra-committee consensus. Specifically, at the beginning of a new epoch,
Elastico uniformly re-allocates nodes into committees according to the PoW results of
previous epoch. In Elastico the number of committees grows almost linearly with the
size of the network, and it reaches a throughput of about 40 tx/s with 1600 nodes.
Similarly to Elastico, Kokoris-Kogias et al. (2018) propose OmniLedger, a sharding
blockchain that uses PoW for committee formation and ByzCoinX, a BFT-based
protocol, for intra-committee consensus. OmniLedger relies on VRF to produce an
unpredictable and unbiasable randomness for re-allocation and leader-election of each
committee. In addition, OmniLedger uses Atomix, a byzantine shard atomic commit,
to deal with cross-committee transactions. Compared to Elastico, OmniLedger shows
a higher throughput, up to 500 tx/s with 1800 nodes. Following the release of Elastico
and OmniLedger, Zamani et al. (2018) present RapidChain, a sharding blockchain
likewise characterised by PoW and BFT. Specifically, Rapidchain comprises a
”reference committee” that collects the PoW results of all nodes during an epoch, and
according to them, assembles the committees for the next epoch. Rapidchain
outperforms both Elastico and OmniLedger with a throughput up to 4220 tx/s when
the network grows up to 1800 nodes. Inspired by OmniLedger and Rapidchain, in the
whitepaper Team Harmony (2018) the authors propose a sharding blockchain
platform named Harmony. Differently from OmniLedger and Rapidchain it uses PoS
for committee formation, and similar to them a Fast-BFT for intra-committee
consensus. Harmony contains a ”beacon committee” that generates the randomness
by combining VRF and Verifiable Delay Function (VDF). In order to become a
committee member, a node in Harmony stakes a certain amount of tokens into the
beacon committee: the more tokens are staked, the more voting shares one obtains in
the BFT consensus.
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6.9 Discussion

In this chapter we presented SHERLOCK, a permissioned blockchain that uses the
sharding technique to enhance system scalability. Specifically, we first designed a
two-layer ring-based architecture for nodes engaged in the consensus protocol,
composed by two concentric rings. Then, we used the hash-based sharding to split the
consensus nodes into committees and arrange them over the architecture rings. We
formed multiple committees on the outer ring, and a single leading committee on the
inner ring. The committee arrangement on the outer ring is offered in SHERLOCK in
two versions: without and with overlapping committees. Regardless the version, the
incoming set of transactions to order, i.e. the workload, are distributed via sharding
across the outer ring committees, which concurrently and in isolation process them.
The inner ring committee lastly order the blocks of the outer ring and provides a final
block to be appended to the ledger. In the face of growing workload, SHERLOCK
scales out by adding nodes and thus committees to its network, improving scalability.

We analysed and compared the two versions qualitatively, by calculating their
communication complexity and the effort a node exerts to handle a transaction in both
approaches. Given the same number n of consensus nodes in the system, the result
was that the two versions have the same communication cost, linear to n, and that a
node exerts the same effort in both versions. That is, they are equally efficient. The
overlapping version forms more committees in the outer ring than the
no-overlapping, leading to a greater workload distribution, but conversely in the
no-overlapping a node participates in lesser outer ring committees than in the
overlapping, exerting less effort. A key difference between the two lies in the number
of nodes required to create a new committee in the outer ring. The no-overlapping
version needs a number of nodes equal to the system committee size c, while the
overlapping version just needs one node. Therefore, a system administrator should
choose the version of SHERLOCK according to the number of available nodes and the
resources available to a node. If there are few nodes available, the version with
overlapping is preferable. If the nodes assigned to the outer ring have few resources
available, the version without overlapping is preferable.

In order to assess the advantages of our proposed solution, we compared SHERLOCK
with PBFT in two steps. Firstly, we compared their communication complexity.
Secondly, we implemented them and evaluated their performance under the same
network configuration and workload. Given the same number n of consensus nodes,
the result of the first comparison was that SHERLOCK has a communication cost
linear to n, while PBFT has a communication cost quadratic to n. This first finding
demonstrates that SHERLOCK has a better communication complexity than PBFT,
requiring fewer message exchanges, which means less time to agree on transactions
order and reach consensus. More importantly, SHERLOCK splits n in multiple
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committees of size c, where c is generally much smaller than n, and then distributes
the workload over the outer ring committees. Hence, scaling out to deal with a
growing workload means in SHERLOCK adding a new committee, with a cost of
O(c2), while in PBFT it means adding nodes to the same committee, with a cost of
O(n2). Furthermore, by adding a new committee, SHERLOCK reduces the workload
on the other committees, enabling them to process more transactions and move away
from the saturation point. Conversely, the new nodes added in PBFT handle the same
workload as the others, and the cost of communication will deteriorate the overall
performance, bringing the saturation point closer.

This becomes evident in our second comparison where we measured the throughput
and latency of SHERLOCK and PBFT with a workload of 1000 txn/s for 5 minutes.
Both SHERLOCK and PBFT were configured with n = 12, and the committee size of
SHERLOCK was set to c = 4. The evaluation shows that PBFT reaches the saturation
point at around 75 seconds and stops processing transactions. Scaling out the PBFT in
this context worsens its performance, causing the saturation point to occur before 75
seconds. Paradoxically, scaling in the PBFT would help improve performance, but
only up to a certain extent since the saturation point occurs shortly after the
evaluation begins. On the other side, the evaluation shows that SHERLOCK processes
all transactions submitted with very good performance, i.e. an average throughput of
990.1 txn/s and an average latency per transaction of 1.937 seconds. Therefore, these
comparisons demonstrate that SHERLOCK outperforms PBFT, and a
SHERLOCK-based permissioned blockchain can scale out by spreading the workload
with a small computational cost of O(c2).

Finally, as regards security, we proved that SHERLOCK withstands the main attack
carried-out on sharding-based blockchain networks, i.e. the single shard takeover
attack. In SHERLOCK, we tackled this attack by combining nodes authentication and
trust assumptions of permissioned blockchains with organisations’ fairness in
committee participation. Each organisation possesses one consensus node in every
committee, and SHERLOCK is secure as long as the 2/3 of organizations are honest
and the byzantine nodes in the system are f < n/3.

As a future work, we will investigate the possibility of adding a third ring to the
SHERLOCK architecture in the event of saturation of the inner ring.
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Chapter 7

Conclusions

In this thesis, we studied the properties of blockchain technology and we proposed
methodologies to enhance the privacy and scalability of permissioned blockchains. In
the first part of the thesis we analysed the blockchain security, by defining a taxonomy
of the security properties relevant for a blockchain-based system and for the
consensus protocol in place. We then examined five prominent blockchain platforms,
i.e. Bitcoin, Ethereum 2.0, Algorand, Ethereum-private and Hyperledger Fabric, and
their respective consensus protocols, PoW, Casper PoS, Pure PoS, PoA and PBFT. We
evaluated their security against the defined taxonomy. Furthermore, we listed smart
contract issues and we evaluated whether blockchains are vulnerable and their native
resistance/mitigations. This study was pivotal in understanding what the differences
are between the two types of blockchain, permissionless and permissioned, and
identifying why they respectively lack data privacy and have performance issues. As
a result, we decided to focus on the permissioned blockchains, because unlike
permissionless they offer node authentication and exhibit better performance. These
two factors are crucial for any privacy-preserving solution. Moreover, this study
showed that permissioned blockchains have scalability problems as the number of
nodes in the network increases, causing performance to deteriorate. Hence, we also
decided to investigate solutions that solve scalability in permissioned blockchains.

The second part of the thesis focuses on permissioned blockchains, examining the two
aforementioned open challenges: the lack of data privacy and the lower scalability of
network nodes. As regards privacy, the only feature offered by permissioned
blockchains is the enforcement of data access control rules. However, high privilege
system users are authorised to read confidential data, and since data are stored in the
ledger as plaintexts, all blockchain nodes can read its content. Although encrypting
data solves the privacy problem, on the other hand it opens up another challenge:
once data are in ciphertexts, the smart contracts can no longer execute functions on
them. As regards scalability, permissioned blockchains rely on voting-based
consensus protocols, which require a high number of messages exchanged between
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nodes to agree on transactions ordering. Adding nodes in this protocol, in an attempt
to cope with an increasing workload, results in more message exchanges, a longer
time to reach consensus, and thus a degradation of performance.

We addressed the privacy issue in two related stages. In the first stage, we proposed a
permissioned blockchain combined with the HE model, capable of simultaneously
encrypting data and executing functions on their ciphertexts through smart contracts.
Particularly, we designed an architecture in which clients are endowed with HE keys
to autonomously encrypt and decrypt their data, while blockchain nodes can perform
HE-based computations with smart contracts. We applied this architecture into a
Smart Grid system, to provide both integrity and privacy to users’ energy data, and to
carry out decentralised privacy-preserving energy billing and trading. We
implemented this HE-equipped blockchain by integrating the fully homomorphic
CKKS scheme with Hyperledger Fabric. The results of the experimental evaluation
show that the overhead introduced by this FHE scheme in the blockchain is
particularly small, demonstrating the effectiveness and feasibility of this solution.
Besides Smart Grid systems, this HE-equipped blockchain can be applied in any
distributed setting composed of multiple parties who wish to keep their data private
and benefit from decentralised application. Indeed, we provided a generalisation of
this architecture for IoT-based systems.

In the second stage, we extended the previous combination between blockchain and
HE by presenting PANTHER, a permissioned blockchain integrated with MKHE.
Besides offering the same functionalities as the previous solution, PANTHER also
enables smart contracts to perform computations on data of different users, encrypted
with distinct keys. The results of these MKHE-based computations are then decrypted
in PANTHER through MPC decryption protocols among involved clients. We detailed
the PANTHER’s architecture and the protocols run by clients and blockchain nodes,
and we implemented it by integrating MK-CKKS, a multi-key variant of CKKS, with
Hyperledger Fabric. Since CKKS works with real and complex numbers, this
prototype implementation of PANTHER is particularly well-suited for machine
learning and data analytics use cases, where numerical precision is crucial. The
experimental results showed that the overhead introduced by MK-CKKS in the
blockchain is small for HE-based addition (29.67ms), and higher but feasible for
HE-based multiplication (2.73s), demonstrating that MKHE does not significantly
affect the blockchain performance. On the other hand, due to the execution of MPC
protocols for decryption, MK-CKKS introduces an average overhead of 1.975 in
clients. Indeed, we estimated that the client initiator of a MPC decryption takes on
average 3.03s to complete the protocol, while the other clients involved take on
average 1.62s. Unfortunately, the MPC protocol cannot be avoided in a system where
users have personal encryption keys, regardless of whether they are generated via
MKHE or even THE. Notwithstanding, its associated overhead is fair price to pay to
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obtain the benefits offered by PANTHER, namely the high level of data privacy and
user independence in performing computations on data encrypted by others.
Furthermore, we proved that PANTHER provides the security properties of data
integrity and availability, which along privacy, are preserved against a byzantine
adversary.

To overcome the scalability issue, we presented SHERLOCK, a permissioned
blockchain based on sharding technology. We designed in SHERLOCK a two-layer
ring-based architecture for consensus nodes. We used hash-based sharding to split
nodes into committees and arrange them over the two concentric rings of the
architecture. As the volume of transactions to process grows, SHERLOCK scales out
by adding committees, thereby increasing the consensus parallelisation, reducing the
workload per node and boosting overall performance. We provided two versions of
SHERLOCK: without and with overlapping committees in the outer ring. We
analysed qualitatively the two versions, without and with overlapping, and we
demonstrated that are equally efficient. Furthermore, we compared SHERLOCK with
PBFT to assess its advantages. In particular, we first compared their communication
complexity, then we implemented them and measured their performance under the
same network configuration and workload. The first comparison demonstrated that
SHERLOCK has a communication cost linear to the number of consensus nodes, while
PBFT has a quadratic communication cost. In the second comparison, we evaluated
SHERLOCK and PBFT with a workload of 1000 txn/s for 5 minutes. The experimental
results demonstrated that SHERLOCK outperforms PBFT, because PBFT becomes
saturated and stops processing transactions after 75 seconds, while SHERLOCK
processes all submitted transactions with a very good average throughput and
latency. The flipside of the coin is that SHERLOCK needs a minimum number of
nodes greater than PBFT to be realised. Indeed, the minimum configuration for
SHERLOCK is two outer and one inner committees, and each committe must have a
minimum size of 4 to tolerate a byzantine node. Hence, systems intending to
implement it must have sufficient resources. Regarding SHERLOCK security instead,
we proved that it withstands against the single shard takeover attack.

PANTHER and SHERLOCK achieve the ultimate goal of this thesis, namely providing
two effective and viable solutions to be potentially applied on the same permissioned
blockchain, simultaneously solving privacy and scalability issues.

As future work, we will explore two ways to optimise PANTHER and SHERLOCK
solutions. To enhance PANTHER security, we will investigate mechanisms to
dynamically involve more honest clients in a MPC decryption protocol, so as to raise
byzantine tolerance above 1/3. To enhance SHERLOCK resilience, we will investigate
the addition of a third middle ring in the architecture, where other committees can be
arranged, so as to lighten the load on the inner ring.
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Appendix A

Internet of Things

The Internet-of-Things (IoT) is one of the most prominent paradigm of computer
science field, and as claimed by Whitmore et al. (2015) it plays a remarkable role in all
aspects of our daily lives. The IoT concept encompasses Internet-connected objects
able to collect informations from surrounding environment and exchange data with
each other without human intervention. The ”things” in this context refer to physical
devices (e.g. smart meters, smart bulbs, smart locks, IP cameras and more), equipped
with sensors and processing power that enable them to monitor and create
informations about machines or human behaviours, analyse such informations and
undertake automatic action. Additionally, these IoT devices, communicating over
Internet, allow to control objects remotely like turn on and off heating or air
conditioning. This eases some daily activities and helps save resources in terms of
money and time, increasing the way people interact with surrounding environment.

The IoT paradigm leads to a new era of Internet where the physical world and the
digital world are fully integrated. Indeed, in 2020 IoT is expected to connect more
than 30 billions of devices (Lund et al. (2014)). It finds application in many fields,
starting from private sector (e.g. domotics, e-health, assisted driving) to business
sector (e.g. industries in manufacturing, transportation and logistics, production
processes), with the aim of improving efficiency, accuracy, and as a consequence,
gaining economic benefits. Ideally, the IoT architecture, as shown in Figure A.1, can be
classified into four layers, namely application, middleware, network, and perception,
in which the data flow is bidirectional:

• Application Layer: It is on top of the architecture and exports the functionalities
offered by middleware layer to final users. It can be structured in several ways
based on the applications it has to provide. Applications including, but not
limited to, smart grid, smart home, smart city, healthcare system, and intelligent
transportation protocols, constitute this layer. An application protocol (e.g. web
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or mobile service protocol) is distributed over multiple end systems, with which
application instances belonging to different end systems can exchange
information packets.

• Middleware Layer: It is an intermediate layer between the physical layer and the
final end-user application layer, capable of abstracting devices functionalities
and communications protocols. It hides the details of different technologies
adopted by the lower layers, simplifying their integration for the development
of IoT applications. The middleware layer provides a common set of services,
characterised by the Service Oriented Architecture (SOA) approach. Generally the
SOA-based middleware encompasses three others layers, namely service
composition, service management and object abstraction. The Service
Composition is on top of the middleware layer and provides composition
functionalities to services offered by the service management layer, allowing to
build various applications depending on the context. The Service Management
provides the catalogue of services associated to each IoT device including
dynamic discovery, monitoring, computation, information storage,
configuration, and management of Quality of Service (QoS) and policies. This
layer might enable the remote deployment of new services during run-time, in
order to satisfy application needs. The Object Abstraction exposes interfaces that
wrap and standardise the different functions offered by the heterogeneous set of
IoT devices, thus hiding their inherent specifications and business logic.

• Network Layer: It provides the required communication features to the system.
Specifically, it guarantees a reliable information transition protocol for the
operations (i) between devices, (ii) within the network, (iii) between the network
and the upper layers. In the IoT, devices are connected prevalently using
wireless technology, populating the so-called Wireless Sensor Network (WSN).
Most of the WSNs communicate using the communication standard proof
802.15.4 (Gutierrez et al. (2004)) which defines the operation of low-rate wireless
personal area networks (LR-WPANs) and is lighter than other standards, e.g.
Bluetooth (802.15.1 (2006) - proof 802.15.1) and Wireless (802.11 (2016) - proof
802.11). Starting from this, other solutions appeared for WSN. ZigBee (ZigBee
Alliance (2012)) is the most famous one because it provides low power
consumption, low data rate, low cost, and high throughput. However, bridging
between ZigBee and non-ZigBee networks is challenging and it requires a
complex application layer gateway. For this reason and because modern IoT
devices should be connected with the Internet, objects in the IoT will need to use
a more flexible solution. 6LoWPAN (Mulligan (2007)) is a new communication
protocol who delivers the IPv6 version of the Internet Protocol (IP) over WPANs.
It offers interoperability between wireless 802.15.4 devices as well as with
devices on any other IP network link (e.g. Wi-Fi) with a simple bridge device.
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FIGURE A.1: IoT architecture layers.

• Perception Layer: It is composed by end point devices, sensors, controllers and
actuators which characterise the IoT system, i.e. things. IoT devices are
interconnected among a large-scale distributed network, they collect
information from the environment and communicate to the upper layers for
analytics operations. Perception layer include various technologies, such as the
Radio Frequency Identification (RFID) to identification and location tags, and
the WSNs, which are considered the IoT major building blocks. Originally
networks of devices were able to communicate with other services through
gateways. Nowadays devices can also be connected to the Internet with IP
address, using the connectivity protocols offered by the network layer.
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Appendix B

Smart Grid

Because of its inherent skills and features, IoT principle has been deployed in several
key technological areas, as reported in Atzori et al. (2010), including energy sector.
Indeed, as described in Collier (2016), current electric grid is no longer viable due to
the customers need to reduce energy consumption and to avail of renewable energy
sources (RES), e.g. wind and solar power. This causes the shift towards the
introduction of IoT devices within electric grid, establishing the so-called Smart Grid.
It leverages on smart meter devices, which are able to record the consumptions and
report the power-related informations (e.g. voltage) to electricity supplier for
monitoring and billing. Smart meters are the key driver of this digital revolution, in
which energy supply is aligned with actual customers demand, accurately balancing
energy load. In addition, smart meters empowers consumers to adjust their energy
usage and reduce their costs. Hence, on one hand they make the grid more efficient,
reliable and sustainable. From the other, they open up new opportunities in energy
market, introducing decentralised and distributed systems, known as micro-grids,
where energy can be produced and exchanged autonomously (Farhangi (2010)). An
example of a micro-grid environment is depicted in Figure B.1, where communities
(e.g. homes, buildings or campuses) within a predefined perimeter can operate
isolated as an electric island or connected with the traditional main grid 1.

As defined in Ton and Smith (2012) by U.S. Department of Energy Microgrid
Exchange Group, the micro-grid is a distributed system composed by distributed
energy resources (DER) and RES, able to be self-governed and energy self-supplied.
The distinguishing properties of a micro-grid network, as described in Rahimi and
Ipakchi (2012), are:

• It dispatches energy derived by DER and RES inside the micro-grid, potentially
bringing its demand from the grid to zero;

1The image was taken from Microgrid Institute.

http://www.microgridinstitute.org/about-microgrids.html
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FIGURE B.1: Micro-grid environment.

• It exports exceeding generated energy outside to others micro-grids or the main
grid, creating a bidirectional flow of power (and related informations) between
power providers and end-use consumers.

Therefore, the micro-grids advent leads to a new free market economy where
consumers become themselves producers, i.e. prosumers, diversifying wholesale
domain with retail sales. Prosumers can trade energy bilaterally both inside and
outside the boundaries of a micro-grid, adapting to the price of power providers or
through an auction-based approach (Rahimi et al. (2016)). This emerging market
needs regulations and new distributed control methods, which fall under the concept
of transactive energy (TE) (Kok and Widergren (2016); Liu et al. (2017); Sahin and
Shereck (2014)). As defined in Melton (2013), TE is a set of market-based techniques
exploited to dynamically balance the energy load and control energy exchange across
a distributed set of prosumers in the electrical infrastructure, clearly stating:

• Who are the transacting parties, i.e. prosumers involved in the transaction;

• What informations are exchanged between prosumers to create and execute
transaction(s);

• What are the rules governing transactions;

• What is the mechanism for reaching an agreement on the transaction price.

The TE techniques use these operational informations, along with economic signals, to
(i) enable an optimal integration of DER and RES with the main grid and (ii) ensure
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stability of the entire electrical system, avoiding erroneous or malicious transactions
which can create a gap between demand and supply.
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