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Semigroups have layers: a generalisation of stratified semigroups

by William Warhurst

This thesis is a work of two parts. In the first part, we attempt to study the structure of
E−inversive (also known as E−dense) semigroups. As these semigroups can be
viewed as a generalisation of regular semigroups, our approach aims to adapt
methods used to understand regular semigroups to the E−dense setting. Our first
method is a geometric approach inspired by work due to K. S. S. Nambooripad, while
the second is based on T. S. Blyth’s work on inverse transversals. We also briefly
examine these results in the context of some simple wreath products, motivated by the
Krohn-Rhodes decomposition of finite semigroups.

Due to a number of factors, including the Covid-19 pandemic, our focus then shifts to
a generalisation of work by Pierre Grillet on stratified semigroups. The main body of
this second part of the thesis consists largely of joint work with James Renshaw,
namely the following papers, elements of which also appear in the introductory
chapter:

[1] James Renshaw & William Warhurst, Semilattices of Stratified Semigroups, preprint,
available at arXiv:2305.11535 [math.GR], 2023.

[2] James Renshaw & William Warhurst, The multiplicative semigroup of a Dedekind
domain, preprint, available at arXiv:2309.02831 [math.GR], 2023.

http://www.southampton.ac.uk
https://arxiv.org/abs/2305.11535
https://arxiv.org/abs/2309.02831


iv

In [1], we introduce stratified extensions as a generalisation of Grillet’s stratified
semigroups, which we describe these in terms of ideal extensions of semigroups.
While many commonly studied semigroups (such as monoids or regular semigroups)
are stratified extensions only in a fairly trivial sense, we provide a number of
interesting examples of semigroups which can be decomposed as semilattices of
stratified semigroups.

In [2], we continue this work by first showing that the multiplicative semigroup of any
commutative ring can be viewed as a semilattice of some semigroups. We then show
that if the ring is a Dedekind domain then the semilattice consists of the group of units
and a stratified extension of the trivial group and hence the multiplicative semigroup
can be viewed as a semilattice of stratified extensions. Further, if the ring is any
quotient of a Dedekind domain, the multiplicative semigroup is again a semilattice of
stratified extensions, with potentially a much more complex structure than in the
non-quotient case.
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Notation

A(s) the set of associates of s
Base(S) the base of a semigroup S
D Green’s relation
DS Green’s relation on S
Ds the D-class containing s
E(S) the set of idempotents of S
H Green’s relation
HS Green’s relation on S
Hs the H-class containing s
J Green’s relation
JS Green’s relation on S
Js the J -class containing s
ker ϕ the kernel of the map ϕ

L Green’s relation
LS Green’s relation on S
Ls the L-class containing s
R Green’s relation
RS Green’s relation on S
Rs the R-class containing s
Reg(S) the set of regular elements of S
Si the i−th layer of S
V(s) the set of inverses of s
W(s) the set of weak inverses of s
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Chapter 1

Background

In this chapter we introduce many of the background results in semigroup theory
underpinning the results throughout this thesis. We begin in Section 1.1 with basic
definitions of a semigroup as well as equivalence relations and congruences, and also
introduce the notion of a semilattice of semigroups. This content draws heavily from
John Howie’s Fundamentals of Semigroup Theory [18], as does the first part of Section 1.2
which introduces the concept of regularity. In Section 1.2.2 we look at E−inversive
semigroups as a generalisation of regularity. An overview of these semigroups can be
found in Mitsch [24]. Section 1.3 introduces the concept of ideal extensions as defined
by Clifford and Preston [4] and Section 1.4 covers Grillet’s work on stratified
semigroups [14].

1.1 Semigroups

1.1.1 Basic definitions

Let S be a set equipped with a binary operation, that is, a map S × S → S written as
(x, y) ↦→ x ∗ y. We say (S, ∗) is a semigroup if ∗ is associative, i.e.

(x ∗ y) ∗ z = x ∗ (y ∗ z).

Where the multiplication on the semigroup is obvious from context, we shall refer
simply to the semigroup S and denote multiplication by juxtaposition, so x ∗ y takes
the form xy. As with other algebraic structures, we call a subset A of S which is closed
under the multiplication on S a subsemigroup of S. If the subsemigroup A is also a
group under the inherited multiplication of S then A is called a subgroup of S.
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If a semigroup S has the property that, for all x, y ∈ S,

xy = yx

then we say S is a commutative semigroup. If S contains an element 1 such that, for all
x ∈ S,

1x = x1 = x

then 1 is an identity element and we say S is a monoid. If S contains an element 0 such
that, for all x ∈ S,

0x = x0 = 0

then 0 is a zero element. It is easy to see that if a semigroup contains either an identity
or a zero then it must be unique. We can also define one-sided analogues of these
elements. For example, an element e ∈ S is a left zero if, for all x ∈ S,

ex = e.

We donte by S1 the semigroup obtained by adjoining an identity element to S if it did
not already contain one, and likewise S0 for the same construction with a zero element.

Example 1.1.1. Any group is trivially also a semigroup, as the definition of a group includes
the same properties as that of a semigroup along with the existence of inverses and identity
elements. The remaining examples are not groups.

Example 1.1.2. The natural numbers N (with or without 0) form a semigroup under either of
addition or multiplication.

Example 1.1.3. A left zero semigroup is a semigroup in which every element is a left zero,
i.e. for any elements x, y of a left zero semigroup S we have xy = x.

Example 1.1.4. Let B = N0 × N0, where N0 is the set of natural numbers including 0.
Define multiplication on B by (a, b)(x, y) = (a − b + max(b, x), y − x + max(b, x)). Since
max(b, x) is at least as large as both b and x, both coordinates are non-negative so the
operation is closed. It can also be shown that the operation is associative and hence B is a
semigroup, called the bicyclic semigroup. An alternative way to view this semigroup is as the
monoid with two generators, p and q, under the relation qp = 1. Note that unlike a group
presentation, this does not imply that pq = 1.

If A and B are subsets of a semigroup S, we denote by AB the subset

{ab | a ∈ A, b ∈ B}.

Associativity of this set-wise multiplication follows immediately from associativity in
S, and so we may freely make reference to constructions such as ABC or A3. Note in
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this latter case the distinction between a set such as A3 and the set {a3 | a ∈ A} which
is a subset of A3. In particular, for i ≥ 2, Si denotes the set of elements of S which can
be written as a product of i elements. If I is a subset of S such that

SI ⊆ I

then I is called a left ideal of S. Similarly, if

IS ⊆ I

then I is called a right ideal of S. If I is both a left and a right ideal then it is called an
ideal. A left ideal I is called a principal left ideal if there exists a ∈ S such that

I = S1a = {a} ∪ Sa.

Similarly I is called a principal right ideal if

I = aS1 = {a} ∪ aS

and a principal ideal if
I = S1aS1 = {a} ∪ Sa ∪ aS ∪ SaS.

A map
f : S → R

between two semigroups is called a morphism if it preserves multiplication, i.e.

f (xy) = f (x) f (y)

for all x, y ∈ S. As usual, a bijective morphism is called an isomorphism.

1.1.2 Relations and congruences

A binary relation ρ on a semigroup S is a subset of the cartesian product S × S. Two
elements x, y ∈ S are related if (x, y) ∈ ρ, also written as xρy. If, for all x, y, z ∈ S, ρ

satisfies

1. (x, x) ∈ ρ (reflexivity)

2. (x, y) ∈ ρ ⇒ (y, x) ∈ ρ (symmetry)

3. (x, y), (y, z) ∈ ρ ⇒ (x, z) ∈ ρ (transitivity)
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then ρ is an equivalence relation. We say ρ is left compatible if, for all x, y, z ∈ S,

(x, y) ∈ ρ ⇒ (zx, zy) ∈ ρ.

A right compatible relation is defined in an analagous way. A relation is called
compatible if, for all x, y, x′, y′ ∈ S,

(x, y), (x′, y′) ∈ ρ ⇒ (xx′, yy′) ∈ ρ.

A left (resp. right) compatible equivalence relation is called a left (resp. right)
congruence and a compatible equivalence relation is called a congruence. It can be
shown [18, Proposition 1.5.1] that a relation is a congruence if and only if it is both a
left congruence and a right congruence.

Given a congruence ρ on a semigroup S, we can define a binary operation on the set of
equivalence classes S/ρ in a natural way by letting

(x)ρ(y)ρ = (xy)ρ

for all x, y ∈ S. This is well-defined precisely because ρ is a congruence, as if
(x)ρ = (x′)ρ and (y)ρ = (y′)ρ then xρx′ and yρy′. Hence xyρx′y′ and so

(xy)ρ = (x′y′)ρ

as required.

Congruences on a semigroup play a similar role to normal subgroups of a group or
two-sided ideals of a ring, in that they determine the homomorphic images of the
semigroup. If S and T are semigroups and ϕ is a homomorphism from S to T then we
can define the kernel of ϕ as the relation {(a, b) ∈ S × S | ϕ(a) = ϕ(b)}, denoted by
ker ϕ. We then have the first isomorphism theorem:

Theorem 1.1.5. Let S and T be semigroups and let ϕ : S → T be a homomorphism. Then the
kernel of ϕ is a congruence and the image of ϕ is isomorphic to S/ ker ϕ.

An important family of relations in semigroup theory are collectively known as
Green’s equivalences, after J. A. Green [13]. There are five such equivalences on a
semigroup S, denoted by LS, RS, JS, HS and DS, and we shall define them in that
order. In most instances the semigroup S will be apparent from context and so we
shall allow ourselves to omit the subscripts. The equivalence class of s ∈ S under each
of the relations is denoted by Ls, Rs, Js, Hs and Ds respectively.

The relation L is defined by the rule that xLy if and only if x and y generate the same
principal ideal, i.e. S1x = S1y. The relation R is defined symmetrically, so xRy if and
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only if xS1 = yS1. These definitions admit an alternative characterisation, which will
often prove to be more useful to work with in practice.

Proposition 1.1.6 ([18, Proposition 2.1.1]). Let x, y ∈ S. Then xLy if and only if there exist
u, v ∈ S1 such that ux = y and vy = x. Similarly, xRy if and only if there exist s, t ∈ S1

such that xs = y and yt = x.

We also have the two-sided analogue in the form of the J equivalence, with xJ y if
and only if S1xS1 = S1yS1. In a similar manner to L and R it can be shown that xJ y if
and only if there exist u, v, s, t ∈ S1 such that x = uyv and y = sxt.

The remaining relations are based on the relationship between L and R. The easier
one to define is H, the intersection of L and R. In other words, xHy if and only if xLy
and xRy. Finally, D is the join of L and R. In other words, xDy if and only if we can
reach y from x through some series of L and R relations, e.g.

xLx1Rx2L . . .LxnRy.

Fortunately this definition is greatly simplified by the fact that L and R commute [18,
Proposition 2.1.3], so there exists c ∈ S such that xLcRy if and only if there exists
d ∈ S such that xRdLy. Hence xDy if and only if there exists c ∈ S such that xLcRy.

Note that for any semigroup we have

H ⊆ L,R ⊆ D ⊆ J .

The exact relationship between the relations can vary dramatically. For example, in a
group G we have

H = L = R = D = J = G × G

while in a right zero semigroup S we have R = S × S but L is the identity relation.

The structure of a D-class can be visualised using so-called ‘eggbox’ diagrams in
which each row represents an R-class, each column represents an L-class, and
correspondingly each cell represents an H-class. Hence the diagram

d e

a, b c

tells us, among other things, that aHb, aRc, aLd and aDe.
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An important result regarding the H-classes of a semigroup is commonly known as
Green’s Theorem .

Theorem 1.1.7 ([18, Theorem 2.2.5]). If H is an H-class in a semigroup S then either
H2 ∩ H = ∅ or H2 = H and H is a subgroup of S.

A particular consequence of this theorem is that any H-class can have at most one
idempotent.

1.1.3 Semilattices

An element e of a semigroup S is called idempotent if e2 = e. The set of all idempotent
elements of S is denoted by E(S). If a semigroup T is such that E(T) = T then T is
called a band. If E(S) is a subsemigroup of S then it forms a band and so we say S has
a band of idempotents.

There is a natural partial order on the idempotents E(S) given by e ≤ f if and only if

e f = f e = e.

To see that this is a partial order, note that ee = e so e ≤ e. If a ≤ b and b ≤ a then

a = ab = ba = b.

Finally, if a ≤ b and b ≤ c then

ac = (ab)c = a(bc) = ab = a

and similarly ca = a so a ≤ c.

Let X be a partially ordered set and let a, b ∈ X. We say x is a lower bound of a and b if
x ≤ a and x ≤ b. If, in addition, y ≤ x for any lower bound y of a and b we say x is the
greatest lower bound of a and b. A partially ordered set in which every pair of elements
a and b has a greatest lower bound is called a semilattice.

If E is a commutative band then E is a semilattice with respect to the natural partial
order, with e f as the greatest lower bound of e and f . To see this, note first that
e(e f ) = e f and (e f ) f = e f so e f ≤ e, f . Suppose g ≤ e, f and consider ge f . Since g ≤ e
we have ge = g and since g ≤ f we have g f = g. Hence ge f = g f = g and g ≤ e f so
e f is the greatest lower bound of e and f . We therefore call a commutative band a
semilattice, and if E(S) is a semilattice we say S has a semilattice of idempotents.

Let S be a semigroup and Y a semilattice and suppose that for each α ∈ Y there exists a
subsemigroup Sα of S satisfying the following conditions:
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1. S =
⋃︁

α∈Y
Sα

2. Sα ∩ Sβ = ∅ for all α ̸= β ∈ Y

3. SαSβ ⊆ Sαβ for all α, β ∈ Y.

Then S is called a semilattice of semigroups and write S = S [Y; Sα] . This construction is
most useful when the subsemigroups Sα all share some particular property, in which
case we refer to the semilattice with that property. For example, we might have a
semilattice of groups, or a semilattice of finite semigroups, or a semilattice of left zero
semigroups, and so on.

If S = S [Y; Sα] then there is a natural homomorphism ϕ : S → Y given by ϕ(x) = α if
x ∈ Sα. The semigroups Sα are then clearly the congruence classes of ker ϕ.
Conversely, if ϕ is a homomorphism from S onto some semilattice Y then S = S [Y; Sα]

where Sα = {x ∈ S | ϕ(x) = α}.

The benefit of decomposing a semigroup into a semilattice of semigroups (versus, say,
merely a union of semigroups) is that we gain some degree of control over the global
multiplicative structure. If x ∈ Sα and y ∈ Sβ then we know xy ∈ Sαβ. The limitation
here is that we have no way of knowing where in Sαβ the element xy lies. One way to
address this lies in the concept of a strong semilattice.

Let Y be a semilattice and for each α ∈ Y let Sα be a semigroup with Sα ∩ Sβ = ∅ for
every α, β ∈ Y. For each α ≥ β ∈ Y let ϕα,β : Sα → Sβ be a homomorphism such that

1. ϕα,α is the identity map on Sα for all α ∈ Y

2. for all α ≥ β ≥ γ the composition of ϕα,β and ϕβ,γ is equal to ϕα,γ.

Then we can define a multiplication on S = ∪α∈YSα by

xy = ϕα,αβ(x)ϕβ,αβ(y)

where x ∈ Sα and y ∈ Sβ. A semigroup of this form is called a strong semilattice of
semigroups and we write S = S [Y; Sα; ϕα,β].

Example 1.1.8. A semigroup S is called a rectangular band if, for every a, b, c ∈ S,
abc = ac. Every band decomposes as a semilattice of rectangular bands [22, Theorem 1].

Example 1.1.9. A Clifford semigroup is a semigroup S in which E(S) is a semilattice and
every element of S lies in some subgroup of S. A semigroup S is a Clifford semigroup if and
only if S is a semilattice of groups S [Y; Gα]. Moreover, every semilattice of groups is a strong
semilattice, with the map ϕα,β given by

ϕα,β(x) = eβx
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where eβ is the identity of the group Gβ. Hence S is a Clifford semigroup if and only if
S = S [Y; Gα; ϕα,β] [18, Theorem 4.2.1].

1.2 Regularity

1.2.1 Regular semigroups

Let S be a semigroup. An element s ∈ S is called regular if there exists t ∈ S such that
sts = s. The set of regular elements of S is denoted by Reg(S). The semigroup S is
called regular if every element of S is regular. A related concept is that of an inverse. If
s is an element of a semigroup S then we say that s′ ∈ S is an inverse of s if

ss′s = s and s′ss′ = s′.

It is clear from this definition any element s ∈ S with an inverse is necessarily regular.
In fact s has an inverse if and only if s is regular: if sts = s let s′ = tst. Then

ss′s = ststs = sts = s and s′ss′ = tststst = tstst = tst = s′

and hence s′ is an inverse of s. The set of inverses of an element s is denoted by V(s).
From the symmetry of the definition it is clear that s ∈ V(t) if and only if t ∈ V(s).
Note that if s′ ∈ V(s) then ss′ss′ = ss′ and s′ss′s = s′s so ss′, s′s ∈ E(S).

The name inverse suggests a similarity to the inverses of group theory, and indeed it is
the case that a group inverse is an inverse under this definition. In fact, for any
element g of a group G we have V(g) = {g−1}. More generally, however, inverses
need not be unique. For an example of the opposite extreme, consider a right zero
semigroup S. For any s, t ∈ S we have sts = s and tst = t by definition, and hence
every element of S is an inverse of every other element.

If every element of a semigroup S has a unique inverse, then S is called an inverse
semigroup. It is easy to see that a sufficient condition for a regular semigroup S to be an
inverse semigroup is if E(S) is a semilattice: if s′, s∗ ∈ V(s) then

s′ = s′ss′ = s′ss∗ss′ = s′ss′ss∗ = s′ss∗

since ss′ and ss∗ commute. By a similar argument, s∗ = s′ss∗ and so s′ = s∗. In fact,
this is also a necessary condition.

Theorem 1.2.1 ([18, Theorem 5.1.1]). Let S be a regular semigroup. Then S is an inverse
semigroup if and only if E(S) is a semilattice.
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Proof. Note that if e, f ∈ E(S) commute then e f e f = ee f f = e f so e f ∈ E(S). Hence if
all idempotents of S commute then E(S) is necessarily a subsemigroup of S and in
particular is a semilattice. It remains to show that if S is an inverse semigroup then its
idempotents commute. Let e, f ∈ E(S) and let z ∈ V(e f ) be the unique inverse of e f .
Then

(e f )( f ze)(e f ) = e f ze f = e f

and
( f ze)(e f )( f ze) = f (ze f z)e = f ze

so f ze ∈ V(e f ) and furthermore f ze ∈ E(S). Since inverses are unique, f ze = z so z is
idempotent and hence zzz = z and z ∈ V(z). Then e f , z ∈ V(z) so e f = z and
e f ∈ E(S). A similar argument shows that f e ∈ E(S). Then

(e f )( f e)(e f ) = e f e f = e f

and
( f e)(e f )( f e) = f e f e = f e

so f e ∈ V(e f ). But e f is idempotent so e f ∈ V(e f ) and hence e f = f e and the
idempotents commute.

Let s ∈ S be a regular element of S and let t ∈ Ls. Then there exist u, v ∈ S such that
us = t, vt = s. Hence

t = us = uss′s = ts′s = t(s′v)t

where s′ is an inverse of s, and so t is regular. It follows that if s is regular then every
element of Ls is regular. The same argument can be applied to Rs, and hence we have
proved

Proposition 1.2.2 ([18, Proposition 2.3.1]). If s is a regular element of a semigroup S then
every element of Ds is regular.

Let s ∈ S and let s′ ∈ V(s). Then (ss′)s = s so sRss′. Similarly, s′(ss′) = s′ so s′Lss′.
Then sRss′Ls′ and hence every inverse of s lies in the D-class Ds. The eggbox diagram

s′s s′

s ss′

visualises the relationship between s, its inverse s′, and the related idempotents ss′

and s′s. An immediate consequence of this arrangement is that in a regular D-class,
every L- and R-class contains an idempotent.
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Suppose s′, s∗ ∈ V(s) and s′Hs∗. It can be easily seen from the above discussion that
ss′Hss∗ and s′sHs∗s and so, since idempotents are unique in H-classes, ss′ = ss∗ and
s′s = s∗s. Hence

s′ = s′ss′ = s∗ss∗ = s∗

and so each H-class contains at most one inverse of s.

Example 1.2.3. The full transformation semigroup T (X) on a set X is the set of all maps
f : X → X under composition. Let f , g ∈ T (X) such that if a ∈ Im( f ) then g(a) = b where
f (b) = a. Then f g f (x) = f (x) for all x ∈ X so f g f = f . Hence T (X) is regular.

Example 1.2.4. Let S be the bicyclic semigroup. It can be easily verified that
(i, j)(j, i)(i, j) = (i, j) for any i, j ∈ N0 and hence (j, i) ∈ V((i, j)). The idempotents of S are
the elements of the form (i, i) which can be readily seen to form a commutative subsemigroup,
and hence the bicyclic semigroup is an inverse semigroup with V((i, j)) = {(j, i)}.

1.2.2 E−inversive semigroups

A semigroup S is said to be E−inversive if for all s ∈ S there exists t ∈ S such that
st ∈ E(S). If S is E−inversive and E(S) is a semilattice then S is called E−dense. Note
that some authors omit this distinction and use the terms E−dense and E−inversive
interchangably.

Note that this definition need not be one-sided. Let S be an E−inversive semigroup
and let s ∈ S. There exists t ∈ S such that st ∈ E(S). Then

(tsts)2 = tststs = t(st)3s = tsts

and so (tst)s ∈ E(S). Since s(tst) = st ∈ E(S) we have that S is E−inversive if and
only if there exists x ∈ S such that sy, ys ∈ E(S).

We can generalise the idea of an inverse by relaxing the symmetry in the definition.
We have seen that if, for some s ∈ S, there exists x such that sxs = s then s necessarily
has an inverse in the form of xsx. As such, we adopt the other half of the definition. If
there exists x ∈ S such that

xsx = x.

we say that x is a weak inverse of s. The set of all weak inverses of s is denoted by W(s).
If t is a weak inverse of s, then s is called an associate of t. The set of associates of t is
denoted by A(t) and clearly t ∈ W(s) if and only if s ∈ A(t). Note that weak inverses
and associates cover both sides of the definition of an inverse, so V(s) = W(s) ∩ A(s).
The term ‘associate’ here has no relation to the use of the term in ring theory, which
makes an appearance later in this thesis.
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As above, if s′ ∈ W(s) then ss′s ∈ V(s′) and so every weak inverse is regular.
Conversely, V(s) ⊆ W(s). Hence if s is regular then for any s′ ∈ V(s),
s ∈ V(s′) ⊆ W(s′) and so s is a weak inverse. We have therefore shown that the set of
all weak inverses in a semigroup S, denoted by W(S), is exactly the set of regular
elements Reg(S).

It is easy to check that, in a similar fashion to inverses, if s′ is a weak inverse of s then
both ss′ and s′s are idempotents. Hence if every element of S has a weak inverse then
S is an E−inversive semigroup. Conversely, let S is E−inversive and s, t ∈ S such that
st ∈ E(S). Then

(tst)s(tst) = t(st)3 = tst

and so tst ∈ W(s). Hence a semigroup S is E−inversive if and only if every element of
S has a weak inverse.

Let s, t ∈ S and (st)′ ∈ W(st). Then (st)′ = (st)′st(st)′ and so t(st)′ = t(st)′st(st)′ and
hence t(st)′ ∈ W(s). Similarly (st)′s ∈ W(t). Hence

(st)′ = ((st)′s)(t(st)′) ∈ W(t)W(s)

and so W(st) ⊆ W(t)W(s). It is not true in general that W(st) = W(t)W(s), however
this equality does hold under certain conditions.

Proposition 1.2.5 ([27, Proposition IV.3.1]). Let S be a semigroup. The following are
equivalent.

1. E(S) is a band.

2. V(t)V(s) ⊆ V(st).

3. W(t)W(s) ⊆ W(st).

Proof. (1) implies (2). Let s′ ∈ V(s), t′ ∈ V(t). Then s′s, tt′ ∈ E(S) so tt′s′s ∈ E(S).
Hence

tt′s′stt′s′s = tt′s′s

and by multiplying by t′ on the left and s′ on the right and simplifying inverses we get

t′s′stt′s′ = t′s′

so t′s′ ∈ W(st). A similar construction shows that st ∈ W(t′s′) and so t′s′ ∈ V(st) as
required.

(2) implies (3). Let s′ ∈ W(s), t′ ∈ W(t). Then ss′s ∈ V(s′) and tt′t ∈ V(t′). Hence
ss′stt′t ∈ V(t′s′) and so

t′s′ = (t′s′)(ss′stt′t)(t′s′) = (t′s′)(st)(t′s′)
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as s′s, tt′ ∈ E(S). Hence t′s′ ∈ W(st) as required.

(3) implies (1). For any idempotent e we have eee = e so e ∈ W(e). Then if e, f ∈ E(S)
we have e f ∈ W(e)W( f ) ⊆ W( f e) so

e f = e f ( f e)e f = e f e f

and hence e f ∈ E(S) as required.

There is a relationship between the J -class containing s and the J -classes containing
its weak inverses. The relation ≤ on the J -classes here is given by Ja ≤ Jb if
S1aS1 ⊆ S1bS1.

Lemma 1.2.6. Let S be a semigroup. If s′ ∈ W(s) then Js′ ≤ Js.

Proof. Since s′ ∈ W(s), s′ = s′ss′ and so Js′ = Js′ss′ . By [18, Equation 2.1.4] we have
Js′ = Js′ss′ ≤ Js.

Example 1.2.7. Since V(s) ⊆ W(s) every regular semigroup is E−inversive.

Example 1.2.8. For a more detailed example using a regular semigroup, let S be the bicyclic
semigroup. Then W((i, j)) = {(j + n, i + n) | n ∈ N0}. Note that the inverse of (i, j) is
obtained when n = 0.

Example 1.2.9. Let S = ⟨a | am = an⟩ be a monogenic semigroup. Such a semigroup has
exactly one idempotent, say ai. Then every element of S can be written (possibly not uniquely)
as aj where 1 ≤ j < 2i. Let k = 2i − j. Then akajak = a4i−j = a2i−j = ak so ak ∈ W(aj) and
S is an E−inversive semigroup. It can be seen that S is not regular in general since a has no
inverse if m, n > 1.

1.3 Ideal extensions

Let S and T be semigroups, with T containing a zero. A semigroup Σ is called an ideal
extension of S by T if it contains S as an ideal and the Rees quotient Σ/S is isomorphic
to T. Grillet and Petrich define an extension as strict if every element of Σ \ S has the
same action on S as some element of S [15, Definition 2.1] and pure if no element of
Σ \ S does [15, Proposition 2.10]. They also showed that any extension of an arbitrary
semigroup S is a pure extension of a strict extension of S.

Proposition 1.3.1 ([15, Proposition 2.4]). Every extension of S is strict if and only if S has
an identity.
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Let S and T be disjoint semigroups, with T containing a unique zero 0. A partial
homomorphism from T to S is a map f : T \ {0} → S such that for all
x, y ∈ S, f (xy) = f (x) f (y) whenever xy ̸= 0.

We adopt the convention used by Clifford and Preston [4, Section 4.4] that elements of
T \ {0} are denoted by capital letters and elements of S by lowercase letters. A partial
homomorphism from T \ {0} to S given by A ↦→ A defines an extension
Σ = S

⋃︁
T \ {0} with multiplication given by

1. A ∗ B =

⎧⎨⎩AB AB ̸= 0

A B AB = 0

2. A ∗ s = As

3. s ∗ A = sA

4. s ∗ t = st

where A, B ∈ T \ {0} and s, t ∈ S [4, Theorem 4.19]. From parts (2) and (3) above, all
extensions defined in this way are strict. Under certain conditions on the semigroup S,
all strict extensions of S are defined by partial homomorphisms.

Let S be a semigroup and let a, b ∈ S. We say that a and b are interchangeable if a ̸= b
and

∀x ∈ S, ax = bx and xa = xb.

A semigroup is called weakly reductive if it contains no interchangeable elements.
Notice that every monoid is weakly reductive.

Theorem 1.3.2 ([15, Theorem 2.5]). Let S be weakly reductive. Then every strict extension
of S is determined by a partial homomorphism, and conversely.

1.4 Stratified semigroups

Recall that for any semigroup S, Si denotes the set {x1...xi | x1, ..., xi ∈ S} of words of
length i in S. A semigroup S with zero is called stratified if

⋂︂
i>0

Si = {0}.

If S is a semigroup without zero, S is called stratified if the semigroup S0 is stratified.
Note that since 0 ∈ (S0)i for any i ∈ N and 0s = s0 = 0 for all s ∈ S we have

(S0)i = Si ∪ {0}.
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Hence if S is a semigroup without zero we may equivalently say that S is stratified
when ⋂︂

i>0

Si = ∅.

In our later generalisation of Grillet’s definition, we refer to the intersection
⋂︁

i>0
Si as

the base of the semigroup, and denote it by Base(S). Under this definition, a
semigroup is stratified if its base is either empty or contains only 0.

The layers of S are the sets Si = Si \ Si+1 where i ∈ N. As Si+1 ⊆ Si for all i ∈ N, an
element x ∈ S can lie in at most one layer of S. If x does not lie in any layer of x then
x ∈ Si for all i ∈ N and hence x ∈ ∩i>0Si. It follows that in a stratified semigroup S,
every non-zero element lies in exactly one layer. Hence we can define a map
λ : S \ {0} → N by

λ(x) = i when x ∈ Si

which we call the depth function on S.

Layers of S may be empty. If Sk = ∅ then since Sk+1 ⊆ Sk we have Sk = Sk+1. But then

Sk+2 = SSk+1 = SSk = Sk+1

and hence, proceeding inductively,

Sk = Sk+1 = Sk+2 = Sk+3 = . . . .

It then follows that ⋂︂
i>0

Si = S ∩ S2 ∩ . . . ∩ Sk = Sk

since Sk ⊆ Si for all 1 ≤ i < k. If x ∈ S then xk ∈ Sk and hence Sk cannot be empty, so if
S is a stratified semigroup with an empty layer Sk it must be the case that Sk = {0}.
Hence S is a nilpotent semigroup, and further the nilpotency index is the least integer
j such that Sj is empty.

Every finite stratified semigroup is necessarily nilpotent. All finite semigroups are
periodic, so for every x ∈ S there exists some i ∈ N such that xi is an idempotent. Since
for any idempotent e ∈ E(S) we have e = ee, e ∈ Sk for all k ∈ N. Hence the only
idempotent in a stratified semigroup is zero, and so in a finite stratified semigroup for
every x there exists i ∈ N such that xi = 0.

If x ∈ Sk then x ∈ Sk so can be written as a product of k elements of S, x1...xk. Suppose
that xi ∈ S2 for some i ∈ {1, . . . , k}, so xi = y1y2 for some y1, y2 ∈ S. Then

x = x1 . . . xi−1y1y2xi+1 . . . xk
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is a product of k + 1 elements so x ∈ Sk+1, a contradiction. Hence xi ̸∈ S2 and so
xi ∈ S1 = S \ S2 for all i ∈ {1, . . . , k}. Since every non-zero element of S can be written
in this way, we have therefore proved

Proposition 1.4.1 ([14, Proposition 1.1]). The top layer S1 of a stratified semigroup S is the
smallest generating subset of S. Every element of Sk is the product of m elements of S1.

Note here that we mean generated as either a semigroup or a semigroup with zero as
appropriate. A stratified semigroup S with zero is not generated as a semigroup by S1

alone if it contains no zero divisors.

Example 1.4.2. A free semigroup is stratified without zero. Every word of the form x1 . . . xk

lies in the k-th layer.

Example 1.4.3. The nilpotent monogenic semigroup S = ⟨x | xi = xi+1⟩ is stratified with
zero. It has i − 1 non-empty layers each of which consists of a single element.

Example 1.4.4. Any non-trivial regular semigroup is not stratified, since for every x ∈ S and
x′ ∈ V(x) we have x = x(x′x)i and hence x ∈ Si+1 for all i ∈ N.
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Chapter 2

The structure of E−dense
semigroups

Our aim in this chapter is to develop a structure theory for E−dense semigroups. We
explore a number of avenues for developing this theory, inspired by approaches to
similar results in regular semigroups and finite semigroups, both of which are fully
contained under the umbrella of E−dense semigroups. After a few preliminary
results, Section 2.2 aims to generalise work by Nambooripad [26] on constructing a
groupoid from a given regular semigroup. Section 2.3 builds on results from this
section by examining E−dense semigroups through the relationship between weak
inverses and the natural partial order. Section 2.4 looks at a different method, instead
seeking to generalise Blyth’s work on inverse transversals of regular semigroups [1].
Finally, Section 2.5 explores the use of wreath products to construct E−dense
semigroups, motivated by the Krohn-Rhodes decomposition of finite semigroups.

2.1 Preliminaries

Let S be a semigroup. There is a partial order on the idempotents of S given by e ≤ f if
and only if

e f = f e = e.

If the semigroup contains a zero, it is clear that 0 ≤ e for any idempotent e. An
idempotent which is minimal in the set of non-zero idempotents with respect to this
partial order is called primitive.

This partial order can be extended to every element of the semigroup to give the
natural partial order [23, Theorem 3]. For a, b ∈ S we say a ≤ b if and only if there exist
x, y ∈ S such that

a = xb = by and a = xa = ay.
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If x, y ∈ E(S) then we need only check that a = xb = by, as then

xa = xxb = xb = a

and similarly for ay.

Suppose a is regular and a ≤ b. Then there exists x ∈ S such that xb = xa = a. For any
inverse a′ ∈ V(a) we have

(aa′x)2 = aa′(xa)a′x = aa′aa′x = aa′x

and so aa′x is idempotent. Further, aa′xb = aa′a = a. By similar argument, if
by = ay = a then ya′a is an idempotent such that bya′a = a. Hence if a is regular then
a ≤ b if and only if there exist e, f ∈ E such that a = eb = b f .

The closure of a subset A of S is the set

{s ∈ S | s ≥ a for some a ∈ A}

and is denoted by Aω. Similarly, the order ideal generated by A is the set

{s ∈ S | s ≤ a for some a ∈ A}.

A semigroup S is called simple if it has no proper (two-sided) ideals. A simple
semigroup which contains a primitive idempotent is called completely simple. A full
description of completely simple semigroups is given by the Rees Theorem.

Theorem 2.1.1 ([18, Theorem 3.3.1]). Let G be a group, let I, Λ be non-empty sets and let
P = (pλi) be a Λ × I matrix with entries in G. Let S = I × G × Λ and define a
multiplication on S by

(i, a, λ)(j, b, µ) = (i, apλjb, µ).

Then S is a completely simple semigroup. Conversely, every completely simple semigroup is
isomorphic to a semigroup constructed in this way.

The semigroup S is denoted by M(G; I, Λ; P). This structure theorem allows us to
immediately deduce many properties of a completely simple semigroup S. Suppose
that (i, g, λ) is idempotent. Then

(i, g, λ) = (i, g, λ)2 = (i, gpλig, λ)

and hence g = gpλig in G. Hence g = p−1
λi and so every idempotent of S has the form

(i, p−1
λi , λ).
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It is easy to see from the definition of the multiplication on S that the R-classes consist
of those elements with the same first coordinate, and likewise the L-classes consist of
those with the same third coordinate. It follows that the H classes consist of elements
which agree in both coordinate, whence each H-class is isomorphic to the group G.

A semigroup S is called completely regular if and only if every element of S lies in a
subgroup. Clearly all completely simple semigroups are completely regular. In fact,
completely regular semigroups are built up of completely simple semigroups.

Theorem 2.1.2 ([18, Theorem 4.1.3]). A semigroup S is completely regular if and only if it is
a semilattice of completely simple semigroups.

Note that a completely simple semigroup in which idempotents commute is a group,
and hence when E(S) is a semilattice this theorem gives us the semilattice structure of
a Clifford Semigroup as described in Example 1.1.9.

2.2 A geometric approach

In [26] Nambooripad showed an equivalence between the category of regular
semigroups and the category of inductive groupoids by providing a method to
construct a groupoid from any given regular semigroup. We aim to use a similar
construction in order to investigate E−dense semigroups via a geometric structure.

2.2.1 Construction of S

Let S be an E−dense semigroup with semilattice of idempotents E. We construct a
semicategory S from S in the following way:

• For each e ∈ E there is a vertex, also denoted by e.

• For each s ∈ S and weak inverse s′ ∈ W(s) there is a map from the vertex ss′ to
the vertex s′s, denoted by (s, s′).

The composition of two maps (x, x′) and (y, y′) exists if x′x = yy′ and is given by
(xy, y′x′). It is easy to verify that under the given condition this is a map from xx′ to
y′y. This is well-defined as if (y, y′) = (z, z′) we have y = z and y′ = z′ so xy = xz and
y′x′ = z′x′. Associativity of this composition of maps follows from associativity in the
underlying semigroup, as

[(x, x′)(y, y′)](z, z′) = ([xy]z, z′[y′x′]) = (x[yz], [z′y′]x′) = (x, x′)[(y, y′)(z, z′)].
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An immediate divergence from Nambooripad’s construction is that we do not
necessarily have an identity map at each vertex. In the regular case, the identity on a
vertex e is given by (e, e). In this construction, however,

(ss′, ss′)(s, s′) = (ss′s, s′ss′)

and so (ss′, ss′) is a left identity if and only if s is a weak inverse of s′, or equivalently if
s′ is an inverse of s.

This issue can be avoided by working with the monoid S1, in which case (1, e) is the
identity map on the vertex e. Appending an identity to a semigroup which was not
originally a monoid seems to have little effect on the semicategory structure as other
than the identity maps on each vertex it adds only a single vertex with no additional
maps.

With no identity we also do not have inverse maps in the usual groupoid sense, and
indeed even when identity maps are present we do not necessarily have such inverses.
However, as the weak inverses form an inverse semigroup the map

(x, x′) : xx′ → x′x

gives rise to a map
(x′, (x′)−1) : x′(x′)−1 → (x′)−1x′.

As idempotents commute,

x′(x′)−1 = x′xx′(x′)−1 = x′(x′)−1x′x = x′x

and similarly (x′)−1x′ = xx′. Hence this is a map from x′x to xx′. This map is a weak
inverse of (x, x′), in the sense that

(x′, (x′)−1)(x, x′)(x′, (x′)−1) = (x′, (x′)−1).

2.2.2 Structure of S

A natural question to ask at this point is whether we can determine exactly which
maps exist between a given pair of vertices. Our first observation is that the initial and
terminal vertices of a map (x, x′) depend only on the weak inverse x′.

Lemma 2.2.1. Let S be an E−dense semigroup with semilattice of idempotents E, x, y ∈ S,
and z ∈ W(x) ∩W(y). Then the maps (x, z) and y, z) of S share initial and terminal vertices.
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Proof. Let z ∈ W(x) ∩ W(y) and consider xz. As E is a semilattice, we have

xz = x(zyz) = (xz)(yz) = (yz)(xz) = y(zxz) = yz

and similarly zx = zy. Hence the initial vertices of the maps (x, z) and (y, z) are equal,
as are their terminal vertices.

This fact motivates the following lemma.

Lemma 2.2.2. Let S be an E−dense semigroup with semilattice of idempotents E and let S be
the semicategory constructed as in Section 2.2.1. Let x′ and y′ be weak inverses of x and y
respectively, giving rise to maps (x, x′) and (y, y′). Then

1. (x, x′) and (y, y′) share an initial vertex if and only if x′Ly′.

2. (x, x′) and (y, y′) share a terminal vertex if and only if x′Ry′.

3. (x, x′) and (y, y′) are maps between the same directed pair of vertices if and only if
x′Hy′.

4. (x, x′) and (y, y′) lie in the same connected component of S if and only if x′Dy′.

Proof. We first show that the conditions on the maps of S imply the conditions on the
relations of S.

1. If (x, x′) and (y, y′) share an initial vertex, we have xx′ = yy′. Then

x′ = x′xx′ = (x′y)y′

and similarly
y′ = y′yy′ = (y′x)x′

so x′Ly′.

2. By a dual argument, if the maps share a terminal vertex we have x′x = y′y and
so x′Ry′.

3. By the previous two results, if the maps share initial and terminal vertices then
x′Hy′.

4. If the maps (x, x′) and (y, y′) lie in the same connected component of S there is a
path of maps connecting xx′ and yy′. By observing that x′D(x′)−1, the weak
inverses along that path form a chain of D relations and so x′Dy′.

For the converses, note that by Lemma 2.2.1 it is sufficient to find any y such that the
map (y, y′) satisfies the required conditions.
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1. If we have x′Ly′, then there exists s ∈ S such that sy′ = x′. Then

y′xsy′ = y′xx′ = y′

as y′Lx′Lxx′ and so y′ is a weak inverse of xs. As xsy′ = xx′, the initial vertex of
the map (xs, y′) is xx′ as required. Hence, by Lemma 2.2.1, for any y ∈ S such
that y′ ∈ W(y) we have that the initial vertex of (y, y′) is yy′ = xsy′ = xx′.

As before, the second and third statements follow by a dual argument and the
combination of the previous two results respectively.

4. If x′Dy′, there exists s ∈ S such that x′LsRy′. Since s lies in a regular D-class it is
regular and hence is a weak inverse of some element of S. Then by the previous
results, maps arising from s share an initial vertex with maps arising from x′ and
a terminal vertex with maps arising from y′, and hence all of these maps lie
within the same connected component of S .

As a corollary, we can easily characterise how taking inverses respects Green’s
relations by observing that maps arising from (x′)−1 point in the opposite direction to
those arising from x′.

Corollary 2.2.3. Let x and y be regular elements of S. Then

1. xLy if and only if x−1Ry−1.

2. xRy if and only if x−1Ly−1.

3. xHy if and only if x−1Hy−1.

4. xDy if and only if x−1Dy−1.

Having established that the location of a map in S depends only on the weak inverse,
we turn our attention to investigating the structure of the maps between a given
directed pair of vertices. We first show that for a given x ∈ S there can be at most one
map (x, x′) between any given directed pair of vertices in S . We will later see that we
can prove a stronger version of this result by taking a different approach.

Lemma 2.2.4. Let S be an E−dense semigroup with semilattice of idempotents E and let S be
the semicategory constructed in Section 2.2.1. Let x′ and x∗ be weak inverses of x such that the
maps (x, x′) and (x, x∗) share initial and terminal vertices. Then x′ = x∗. In particular, if H
is a regular H-class of S with s, t ∈ H then A(s) ∩ A(t) = ∅ unless s = t.
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Proof. By construction we have xx′ = xx∗ and x′x = x∗x. Hence x′Lxx′ = xx∗ and
x∗Rx∗x = x′x. As any idempotent is a right identity on its L-class and a left identity
on its R-class [18, Proposition 2.3.3], we have x′ = x′xx∗ = x∗ as required.

Now let H be a regular H-class of S, s, t ∈ H, and suppose x ∈ A(s) ∩ A(t). Then since
sHt the maps (x, s) and (x, t) share initial and terminal vertices by Lemma 2.2.2.
Hence s = t.

Let S be an E−dense semigroup with semilattice of idempotents E and let Hs be the
H-class containing s. By definition, A(Hs) =

⋃︁
x∈Hs

A(x). Lemma 2.2.4 shows that the
sets forming this union are in fact a partition of A(Hs). The following lemma gives
another characterisation of this subset of S.

Lemma 2.2.5. Let S be an E−dense semigroup with semilattice of idempotents E. For each
weak inverse s ∈ S we have A(Hs) = Hs−1 ω.

Proof. Let x ∈ A(Hs). Then x has a weak inverse x′ such that x′ ∈ Hs. Then
x ≥ xx′x = (x′)−1 ∈ Hs−1 by Corollary 2.2.3 so x ∈ Hs−1 ω.

Conversely, suppose x ∈ Hs−1 ω. Then there exists some t ∈ Hs−1 such that x ≥ t. As t
is an element of a regular H-class it is regular, and so has an inverse t−1. By
Corollary 2.2.3, t−1 ∈ Hs. We claim that t−1xt−1 = t−1 and hence x ∈ A(Hs).

Since x ≥ t, there exists an idempotent e in S such that t = xe = te. Then

t−1 = t−1tt−1tt−1

= t−1xet−1tt−1

= t−1xt−1tet−1 (as e and t−1t commute)

= t−1xt−1tt−1

= t−1xt−1

as required.

For each idempotent e in S, we have that e−1 = e. Hence for H-classes containing an
idempotent Lemma 2.2.5 can be rewritten as the following.

Corollary 2.2.6. For each idempotent e ∈ S we have A(He) = Heω.

Let S be an E−dense semigroup with semilattice of idempotents E and let e ∈ E. For
every s ∈ Heω, there exists a unique s′ ∈ W(s) ∩ He by Lemma 2.2.4and Lemma 2.2.5.
Since s′He, by Lemma 2.2.2 it follows that (s, s′) and (e, e) share initial and terminal
vertices in S , namely the vertex corresponding to e. Conversely by Lemma 2.2.2 any
other loop on this vertex (x, y) must satisfy yHe and hence y ∈ W(x) ∩ He and so
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y ∈ A(He) = Heω. Hence there is a one-to-one correspondence between elements of
Heω and loops on the vertex e given by x ↦→ (x, x′) where x ∈ Heω and
x′ ∈ W(x) ∩ He.

If s, t ∈ Heω and the maps (s, s′) and (t, t′) are loops on the vertex e, then their
composition (st, t′s′) is also a loop on the vertex e. Hence st ∈ Heω with
t′s′ ∈ W(st) ∩ He and so Heω is a subsemigroup of S. By definition, every element of
Heω = A(He) has a weak inverse in He, and since idempotents commute in S they
commute in Heω. We have therefore proved the following.

Theorem 2.2.7. Let S be an E−dense semigroup with semilattice of idempotents E. For each
e ∈ E, Heω is an E−dense subsemigroup of S.

2.2.3 Examples

In this section we describe the semicategory construction on a number of examples.
We also give the subsemigroups Heω as described in Theorem 2.2.7

Example 2.2.8. Let S be a finite monogenic semigroup with generator s. S has only one
idempotent, namely the identity of its kernel, and each element of S has a unique weak inverse.
The semicategory generated by S consists therefore of a single vertex and a single loop on this
vertex for each element s ∈ S, labelled by (s, s′).

For a concrete example, consider the monogenic semigroup given by ⟨a | a6 = a3⟩. The single
idempotent of this semigroup is the element a3 and the loops on this vertex are the maps (a, a5),
(a2, a4), (a3, a3), (a4, a5), and (a5, a4). The only idempotent map here is (a3, a3), but this is
clearly not an identity map as, for example, (a3, a3)(a, a5) = (a4, a5). In this case Ha3 ω is the
whole of S as every element has a weak inverse lying in the kernel.

Example 2.2.9. Let B be the bicyclic semigroup, i.e. N0 × N0 with multiplication given by

(a, b)(c, d) = (a − b + max(b, c), d − c + max(b, c)).

The idempotents of B are the elements of the form (i, i) and for each (i, j) ∈ B we have

W((i, j)) = {(j + n, i + n) | n ∈ N0}

with (j, i) being the unique inverse of (i, j). As this is an inverse semigroup, every element is a
weak inverse of some other element.

The maps arising from the weak inverse (i, j) have initial vertex (j, j) and terminal vertex
(i, i). Since each element (i, j) is a weak inverse of precisely min(i, j) + 1 elements, there are
exactly that many maps from the vertex (i, i) to the vertex (j, j). For example, from (1, 1) to
(2, 2) there are two maps, namely ((1, 2), (2, 1)) and ((0, 1), (2, 1)). For an idempotent (i, i),
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the subsemigroup H(i,i)ω is precisely the set {(j, j) ∈ B | j ≤ i}. For example,
H(2,2)ω = {(0, 0), (1, 1), (2, 2)}.

Example 2.2.10. Let S be a finite monogenic semigroup with generator s and T be an
isomorphic copy of S with generator t. Let U be a semigroup isomorphic to W(S) and W(T).
We form the amalgamated free product S ∗U T. In other words, this semigroup consists of
words in s and t under the condition that for si ∈ W(S) we have si = ti, with ti being the
corresponding element of W(T). Successive applications of this relation can be used to write
any word containing an element of either kernel as a single element. Hence W(S ∗U T) is
isomorphic to W(S). Each word se1 te2 ...sen has a unique weak inverse given by sen′...te2′se1′. As
in Example 2.2.8, this semigroup has exactly one idempotent e and every element has a weak
inverse in He so Heω = S ∗U T.

This construction gives us a family of examples of infinite, non-commutative E−dense
semigroups which are not regular. The semicategory produced by this semigroup is
very similar to that of Example 2.2.8, with the exception that there are infinitely many
loops. In fact, the semicategory from Example 2.2.8 can be found as a subsemicategory
by picking out the loops whose first term is a power of s.

We can be further generalised by replacing S and T with two copies of any E−dense
semigroup for which the set of weak inverses is unitary, as it is this property which
allows us to conclude that any word containing a weak inverse of the original
semigroup can be rewritten as some such weak inverse.

2.3 The natural partial order

2.3.1 The relationship between A, W and ≤

In Lemma 2.2.5 we showed that A(Hs) = Hs−1 ω. We can in fact make some stronger
statements about how weak inverses relate to the natural partial order.

Lemma 2.3.1. Let S be an E−dense semigroup with semilattice of idempotents E. Let s ∈ S
be a regular element. Then t ∈ A(s) if and only if s−1 ≤ t. Further, u ∈ W(s) if and only if
u ≤ s−1.

Proof. Let t be an associate of s. Then s−1 = tst ≤ t. Conversely, suppose s−1 ≤ t so
s−1 = et = es−1 for some e ∈ E. Then

s = ss−1s = ses−1s = ss−1se = se
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as e and s−1s commute. So

sts = (se)ts = s(et)s = ss−1s = s

and hence s ∈ W(t). If u is a weak inverse of s then it is regular. Then by the previous
argument, u−1 ≤ s and so u ≤ s−1 as s is regular. Conversely, if u ≤ s−1 then u = es−1

for some idempotent e. It can be seen that se is an inverse for u and so u is regular.
Again by the previous argument, we have u ∈ W(s).

This approach allows for an alternative proof of [29, Lemma 1.4, part 6].

Lemma 2.3.2. Let S be an E−dense semigroup with semilattice of idempotents E and let
s ∈ S. Then

W(W(s)) = {t−1 | t ∈ W(s)}.

Further, W(W(W(s))) = W(s).

Proof. Let x ∈ {t−1 | t ∈ W(s)}. Then

x−1 ∈ W(x) ⊆ W(W(y))

as required. Conversely, let x ∈ W(W(s)). Then there exists s′ ∈ W(S) such that

x ≤ (s′)−1 ≤ s.

Then x ≤ s so by Lemma 2.3.1 we have x−1 ∈ W(s) and hence

x ∈ {t−1 | t ∈ W(s)},

Now, W(W(W(s))) is the union of W(W(s′)) over all s′ ∈ W(s). We have

⋃︂
s′∈W(s)

W(W(s′)) =
⋃︂

s′∈W(s)

{t−1 | t ∈ W(s′)} = {t−1 | t ∈ W(W(s))}.

Applying the previous argument to W(W(s)) once more gives the desired result.

This method is slightly stronger than the original, as it shows that the effect of
successive applications of W beyond the first is to repeatedly take the inverse of every
element.

We can also use this characterisation to examine repeated applications of A, but the
results are less dramatic. If s is not regular then A(s) is the empty set, and if s is regular
A(s) is the closure of the set {s−1}. In either case, it is clear that A(A(s)) = A(s).
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2.3.2 The structure of W(s)

Let S be an E−dense semigroup with semilattice of idempotents E and let s ∈ S. We
know from [29, Lemma 1.4, part 2] that W(s) forms a semilattice under the natural
partial order. Further, if s is regular, s′ ∈ W(s) and t ∈ S such that t ≤ s′ then the
results of the previous section show that t ∈ W(s) and so the semilattice W(s) forms an
order ideal of S. In fact, this property holds even when s is not a regular element of S.

Proposition 2.3.3. Let S be an E−dense semigroup with semilattice of idempotents E and let
s ∈ S. If s′ ∈ W(s) and t ≤ s′ then t ∈ W(s).

Proof. As t ≤ s′ there exists e ∈ E such that t = es′. Then

tst = es′ses′ = ees′ss′ = es′ = t

as e and s′s commute and so t ∈ W(s) as required.

To further explore the structure of W(s), we first need to establish a stronger version of
Lemma 2.2.4.

Lemma 2.3.4. Let S be an E−dense semigroup with semilattice of idempotents E. Let s ∈ S
and s′, s∗ ∈ W(s). If ss′ = ss∗ then s′ = s∗. Similarly, if s′s = s∗s then s′ = s∗.

Proof. As ss′ = ss∗ and idempotents commute, we have

s′ = s′ss′ = s′ss∗ = s′ss′(ss∗) = s′(ss∗)ss′.

Rebracketing gives

s′(ss∗)ss′ = s′s(s∗s)s′ = s∗ss′ss′ = s∗ss′ = s∗ss∗ = s∗

as required.

This argument shows that, given a particular s ∈ S and e ∈ E, the semicategory S has
at most one map of the form (s, s′) with initial vertex e. Likewise, there is at most one
map of the form (s, s∗) with terminal vertex e. Note that if both maps exist then s′ = s∗

if and only if (s, s′) = (s, s∗) is a loop on e.

We can now show that the semilattice W(s) is isomorphic to a sublattice of the
semilattice of idempotents of S.

Lemma 2.3.5. Let S be an E−dense semigroup with semilattice of idempotents E and let
s ∈ S. The map λs : W(s) → E given by λs(s′) = ss′ is a monomorphism, with respect to the
semilattice structure on W(s).
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Proof. By the previous result, if λs(s′) = λs(s∗) then s′ = s∗ and so the map is injective.
It remains to show that it respects the multiplication on the semilattice. Let
s′, s∗ ∈ W(s). By [29, Lemma 1.4, part 2], their meet in the semilattice is given by s′ss∗.
Hence

λs(s′)λs(s∗) = ss′ss∗ = λs(s′ss∗)

as required.

This result suggests that by understanding the behaviour of the set of idempotents we
can understand the weak inverses. For example, if we know that the set of
idempotents forms a chain (such as in the bicyclic semigroup) we can conclude that
W(s) will also form a chain for every s in S.

2.4 Weak inverse transversals

This approach is inspired by Blyth’s work on regular semigroups [1]. Under certain
conditions on a regular semigroup, we can pick out a subset containing exactly one
inverse for every element. This subset forms an inverse subsemigroup, and properties
of this subsemigroup can give us information about the larger semigroup. We aim to
emulate this with weak inverses, and so the first step is to determine when a weak
inverse transversal exists. We say a subset S◦ of S is a weak inverse transversal of S if for
every element s ∈ S we have |W(s) ∩ S◦| = 1. The single element of W(s) ∩ S◦ is
denoted by s◦.

2.4.1 The commutative case

We begin by restricting ourselves to E−dense semigroups. We will see later how to
generalise this result to some E−inversive semigroups without commuting
idempotents. We prove the following theorem.

Theorem 2.4.1. Let S be an E−dense semigroup with semilattice of idempotents E. A weak
inverse transversal S◦ exists if and only if W(s) contains a minimal element for every s in S.
Further, if S◦ exists, it forms a subgroup of S.

Note that if a minimal element of W(s) exists it is necessarily unique. To see this, let
s′, s∗ be minimal elements of W(s). Then by [29, Lemma 1.4, part 2] we have
s′ss∗ ∈ W(s) with s′ss∗ ≤ s′, s∗. Since these are both minimal, it must be the case that
s′ = s′ss∗ = s∗.

Of interest here is that some of the early work on inverse transversals (for example [2])
looked at semigroups where every element had a maximal inverse, showing an almost
dual relation with our minimal weak inverses.
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Recall that with commuting idempotents, each regular element has a unique inverse
and for any s, t ∈ S we have W(st) = W(t)W(s). Also recall the following useful
lemma, as well as Lemmas 2.3.1 and 2.3.5. We include a useful corollary to the latter
two.

Lemma 2.4.2 ([18, p. 152]). Let S be a semigroup with semilattice of idempotents E(S) and
let a and b be regular elements of S. Then a ≤ b if and only if a−1 ≤ b−1.

Corollary 2.4.3. Let S be an E−dense semigroup with semilattice of idempotents E. Then
W(s) contains a minimal element for all s in S if and only if S contains a minimal idempotent.

Proof. Let e be an idempotent and consider another idempotent f such that f ≤ e.
Then f is a weak inverse of e, and so if S has no minimal idempotent then W(e) has no
minimal element. Conversely if S has a minimal idempotent then W(s) has a minimal
element by Lemma 2.3.5 as the monomorphism preserves order by definition.

We can now build up the results required to prove Theorem 2.4.1.

Lemma 2.4.4. Let S be an E−dense semigroup with semilattice of idempotents E and weak
inverse transversal S◦. Then

s◦◦ = (s◦)−1.

Proof. Suppose S has a weak inverse transversal S◦ and consider an element s. By
definition, s◦ ∈ W(s), s◦◦ ∈ W(s◦) and s◦◦◦ ∈ W(s◦◦). By applying Lemmas 2.4.2
and 2.3.1 we can construct the following chains of inequalities.

s ≥ (s◦)−1 ≥ s◦◦ ≥ (s◦◦◦)−1

s◦ ≥ (s◦◦)−1 ≥ s◦◦◦

It then follows from Lemma 2.3.1 that s◦◦◦ ∈ W(s) and so by uniqueness we must
have that s◦ = s◦◦◦ and hence s◦◦ = (s◦)−1.

We can now prove the first part of Theorem 2.4.1.

Proof of Theorem 2.4.1. Let S be an E−dense semigroup with semilattice of idempotents
E and weak inverse transversal S◦. Suppose there exists s′ ∈ W(s) such that s′ ≤ s◦.
Consider s′◦. As s′◦ ∈ W(s′), by Lemmas 2.4.2 and 2.3.1 we have s′◦ ≤ (s′)−1 ≤ (s◦)−1

and hence s′◦ ∈ W(s◦). But by Lemma 2.4.4, s◦◦ = (s◦)−1, so by uniqueness
s′◦ = (s◦)−1. Then (s′)−1 = (s◦)−1 and so s′ = s◦, and hence s◦ is minimal in W(s).

Conversely, suppose every element has a minimal weak inverse. Let s′ be the minimal
weak inverse of s and suppose that s′ ∈ W(t). If there exists t′ ∈ W(t) such that t′ ≤ s′
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then by Lemma 2.3.1 t′ ∈ W(s), contradicting the minimality of s′ in W(s). Hence no
such t′ can exist, so s′ is minimal in W(t). Letting s◦ = s′ so S◦ is the set of minimal
weak inverses therefore gives us that |W(s) ∩ S◦| = 1 as required.

This now allows us to establish another lemma which will be useful for proving the
second part of Theorem 2.4.1.

Lemma 2.4.5. Let S be an E−dense semigroup with semilattice of idempotents E and weak
inverse transversal S◦ and let s ∈ S. Then ss◦ = s◦s = e◦, where e◦ is the minimal
idempotent. Conversely, if s′ ∈ W(s) and ss′ = e◦ or s′s = e◦ then s′ is minimal in W(s).

Proof. Suppose ss◦ = e ≥ f for some e, f ∈ E. We want to show that s◦ f ≤ s◦. One
direction is obvious, so it remains to show that s◦ f = us◦ for some u ∈ E. Let u = s◦ f s.
This is idempotent as

(s◦ f s)(s◦ f s) = s◦ss◦ f f s = s◦ f s

and we have (s◦ f s)s◦ = s◦ss◦ f = s◦ f as required. Hence s◦ f ≤ s◦, so by minimality
s◦ f = s◦. Then

e = ss◦ = ss◦ f = e f = f

and so e is the minimal idempotent. A similar argument holds for s◦s.

For the converse, suppose s′ ∈ W(s) and ss′ = e◦. As s◦ is minimal, s◦ ≤ s′. By
Lemma 2.3.5, ss◦ ≤ e◦, and by minimality ss◦ = e◦. Hence by Lemma 2.3.5 s′ = s◦ as
required.

The following corollary is also convenient to include here.

Corollary 2.4.6. Let S be an E−dense semigroup with semilattice of idempotents E and weak
inverse transversal S◦. Then for all s ∈ S, s◦e◦ = e◦s◦ = s◦ where e◦ is the minimal
idempotent.

Proof. By Lemma 2.4.5, s◦e◦ = s◦ss◦ = s◦, and similarly e◦s◦ = s◦.

We can now show that S◦ forms a subgroup of S.

Proof of Theorem 2.4.1 (continued). We first show S◦ is closed under the multiplication
inherited from S. Let s◦ and t◦ be the minimal weak inverses of s and t respectively.
s◦t◦ is then a weak inverse of ts. Then by Lemma 2.4.5 and Corollary 2.4.6

tss◦t◦ = te◦t◦ = tt◦ = e◦

and so s◦t◦ is minimal.
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Associativity follows from associativity in S, and Corollary 2.4.6 gives the existence of
an identity, so it remains to show that each element of S◦ has an inverse. By
Lemma 2.4.4, for each s◦ the semigroup inverse (s◦)−1 = s◦◦ is in S◦. Then by
Lemma 2.4.5, s◦s◦◦ = e◦ as required.

We can be more specific about the subgroup of S forming the weak inverse transversal
S◦.

Proposition 2.4.7. Let S be an E−dense semigroup with semilattice of idempotents E. If e◦ is
the minimal idempotent of S, then S◦ = e◦Se◦, the local subsemigroup of S with respect to e◦.

Proof. As e◦ acts as an identity on S◦ we clearly have s◦ = e◦s◦e◦ so S◦ ⊆ e◦Se◦. For the
reverse inclusion, by Lemma 2.4.5 we have

e◦se◦ = ss◦ss◦s = ss◦s = (s◦)−1 = s◦◦

so e◦Se◦ ⊆ S◦.

This structure gives us some information about the multiplication on S. By
Lemma 2.3.1, if t ∈ A((s◦)−1) then s◦ ≤ t. Since s◦ ∈ A((s◦)−1) it must be minimal in
this set. The sets of the form A((s◦)−1) are disjoint, as if not we would have some
element s for which |W(s) ∩ S◦| ≥ 1. Further, since W(st) = W(t)W(s) it follows that
the product of two elements must lie in a set of associates dependent on the sets
containing the original two elements. More precisely, if a ∈ A(s) and b ∈ A(t) then
ab ∈ A(ts). In the following examples, the diagrams illustrate the order structure of
these sets. Specifically, the connected components represent the disjoint sets
A((s◦)−1), while connected elements

t

s

indicate that s ≤ t. The lowest elements on each connected component therefore form
the weak inverse transversal S◦.

Example 2.4.8. Let S be given by the presentation ⟨a|a5 = a2⟩. The only idempotent is a3,
and the sets of weak inverses are as follows.

s W(s)
a {a2}
a2 {a4}
a3 {a3}
a4 {a2}
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Clearly S◦ must be {a2, a3, a4}, isomorphic to the cyclic group of order 3. The order structure
is then as follows:

a

a2 a3 a4

i.e. S◦ = {a2, a3, a4}, A((a2)−1) = {a2}, A((a3)−1) = {a3}, and A((a4)−1) = {a, a4} with
a4 ≤ a.

Going in the other direction, we can start from the same order structure and recover the
original semigroup S. Consider the following order structure, isomorphic to the one above.

β

α−1 1 α

We can begin to fill out a multiplication table, starting with the multiplication on S◦.

1 α α−1 β

1 1 α α−1

α α α−1 1
α−1 α−1 1 α

β

Most of the remaining products can be determined by the order structure alone. For example,
(αβ)◦ = β◦α◦ = α−1α−1 = α so αβ must lie in A(α), and hence is equal to α−1. The only
products that cannot be found in this way are 1β and β1, as they must lie in A(α) and so there
are two choices. However, since α ≤ β, we must have that eβ = α and β f = α for some
idempotents e and f , and 1 is the only idempotent available. Hence we can complete the
multiplication table as follows.

1 α α−1 β

1 1 α α−1 α

α α α−1 1 α−1

α−1 α−1 1 α 1
β α α−1 1 α−1

By noticing that β generates the whole semigroup and β2 = α−1 = β5, we can see that we do
indeed recover the original semigroup.
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Unfortunately we cannot in general determine the semigroup uniquely from the order
structure, as the next example shows.

Example 2.4.9. Again, let S◦ be the cyclic group of order 3 and consider the following order
structure.

β

α−1 1 α

We can follow the same process as above to obtain most of the multiplication table.

1 α α−1 β

1 1 α α−1

α α α−1 1 α

α−1 α−1 1 α α−1

β α α−1

Here we need to use a different method to find 1β and β1. Since 1 = αα−1, associativity gives
us that 1β = α(α−1β) = 1 and similarly β1 = 1. However, when it comes to β2 we run into
an issue. From the group structure, the product must be either 1 or β, but both choices give a
valid semigroup.

1 α α−1 β

1 1 α α−1 1
α α α−1 1 α

α−1 α−1 1 α α−1

β 1 α α−1 β

1 α α−1 β

1 1 α α−1 1
α α α−1 1 α

α−1 α−1 1 α α−1

β 1 α α−1 1

The difference between the two semigroups given in this example is a question of
which elements are regular. If we assume that β is regular, we are forced to complete
the multiplication table by setting β2 = β. On the other hand, assuming that β is not
regular forces us to choose β2 = 1. This was not an issue in the previous example as β

could not be regular, as if it were it would contradict Lemma 2.3.5.

Our final example shows that even knowing which elements are regular is not always
enough to uniquely determine a smeigroup from the order structure.

Example 2.4.10. Once more, let S◦ be the cyclic group of order 3 and consider the following
order structure.
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γ β

α−1 1 α

We can use our previous techniques to get the following multiplication table, missing only β2

and γ2.

1 α α−1 β γ

1 1 α α−1 α α−1

α α α−1 1 α−1 1
α−1 α−1 1 α 1 α

β α α−1 1 1
γ α−1 1 α 1

There are three possibilities here.

Case 1: β2 = γ. Then γ2 = α and we get a monogenic semigroup with β as the generator.

Case 2: γ2 = β. Then β2 = α−1 and we get a monogenic semigroup with γ as the generator,
isomorphic to Case 1.

Case 3: β2 = α−1 and γ2 = α. This is an amalgam of the (isomorphic) monogenic semigroups
generated by β and γ with core given by their respective kernels.

In all three cases β and γ are non-regular elements. Even Green’s relations are
identical in all three cases, suggesting that what differentiates the possibilities is
something deeper. This, along with the fact that the ordering structure breaks down in
the more general case, suggests that the natural partial order is ultimately not the right
tool to use when studying the structure of these semigroups.

As a final observation, the presence of a zero often causes issues when studying weak
inverses and E−dense semigroups. As a zero is trivially a weak inverse of every
element, an E−dense semigroup can be constructed from any semigroup by adding a
zero, regardless of whether the original semigroup had any weak inverses at all. Also
note that as we are working with commuting idempotents, any left (or right) zero is
unique and hence is also a right (or left) zero, so we may assume the zero is a unique
two-sided zero and denote it by 0. If S is a semigroup with 0, it is easy to check that for
any s in S, 0 ≤ s. We therefore have that S◦ = {0} and so the transversal appears to
tell us nothing about the larger semigroup. It is possible to adapt the definition of a
weak inverse transversal in a manner analogous to that of 0−inversive
semigroups [24]. Our focus, however, will remain with our original definition.
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2.4.2 Completely simple kernels

That the weak inverse transversal forms a group can be viewed as a special case of a
more general result of Gigoń, who approached the problem from the direction of
primitive (i.e. minimal) idempotents. Gigoń proved that an E−inversive semigroup
containing a primitive idempotent necessarily has a completely simple kernel
containing that idempotent, and further that the kernel is in fact the union of the local
subsemigroups of each primitive idempotent. The local subsemigroup of an element
a ∈ S is given by aSa, and if a is a primitive idempotent this forms a group with a as
the identity. We reproduce Gigoń’s result below.

Theorem 2.4.11 ([10, Theorem 2.5]). An E−inversive semigroup S has a completely simple
kernel if and only if it contains a primitive idempotent. Moreover, in that case,

KS =
⋃︂
{eSe | e ∈ PE(S)}

where PE(S) is the set of primitive idempotents of S and each eSe is a group.

To compare this to Theorem 2.4.1, let S be an E−dense semigroup with semilattice of
idempotents E such that E contains a minimal idempotent e. As E is a semilattice this
minimial idempotent is unique, so by Gigoń’s result the kernel is the local subgroup of
e. Alternatively, applying Theorem 2.4.1 and Corollary 2.4.3 to S tells us that it has a
weak inverse transversal S◦ containing e which by Proposition 2.4.7 is also the local
subgroup of e.

In this case, the kernel forms exactly the group obtained as a weak inverse transversal
of S. This correspondence motivates attempting to find a weak inverse transversal in
E−inversive semigroups with a completely simple kernel. Before we look at
transversals, we recall the definition of a completely simple semigroup and give a
couple of results showing another way in which they may be of interest with regards
to E−inversive semigroups.

Recall that S is a completely simple semigroup if and only if S = M(G; I, Λ; P). Recall
also that S consists of exactly one D-class in which every H-class is isomorphic to the
group G. We can now prove two results regarding the interaction between weak
inverses and inverses.

Proposition 2.4.12. Let S be an E−inversive semigroup. For all s ∈ S, every weak inverse of
s is an inverse of s if and only if S is a completely simple semigroup.

Proof. Let S be an E−inversive semigroup and suppose W(s) = V(s). If e, f ∈ E(S)
are idempotents such that e ≤ f then we have e f e = e and so e ∈ W( f ). Hence
e ∈ V( f ) and so f e f = f . As e ≤ f , we also have f e f = e and hence e = f . Therefore
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every idempotent in S must be primitive. As S must also clearly be regular, it follows
that S is a completely simple semigroup [18, Theorem 3.3.3].

For the converse, let S be a completely simple semigroup. Suppose
(j, h, µ) ∈ W((i, g, λ)). Then

(j, h, µ) = (j, hpµigpλjh, µ)

and so h = p−1
λj g−1 p−1

µi . Then

(i, g, λ)(j, h, µ)(i, g, λ) = (i, gpλj p−1
λj g−1 p−1

µi pµig, λ) = (i, g, λ)

and hence every weak inverse of (i, g, λ) is also an inverse.

We can extend this further to identify a necessary condition for an element of a
semigroup satisfy W(s) = V(s), as well as conditions under which this becomes an
exact characterisation. If s is non-regular, we must have W(s) = V(s) = ∅ and so the
problem is equivalent to identifying where the semigroup fails to be E−inversive. For
the regular elements, and by extension for all elements of an E−inversive semigroup,
the following result holds.

Proposition 2.4.13. If a regular element s of an E−inversive semigroup S satisfies
W(s) = V(s) then S has a completely simple kernel KS containing s.

If KS is completely simple and additionally for every idempotent e ∈ E(S) there is a primitive
idempotent f such that f ≤ e, then every element of KS satisfies W(s) = V(s).

Proof. Let s be an element of S such that W(s) = V(s) and s′ ∈ V(s). Consider
e ∈ E(S) such that e ≤ s′s. Then

es′ses′ = es′ss′ = es′

so es′ ∈ W(s). Hence es′ ∈ V(s) so s = ses′s = se and s′s = s′se = e, so s′s is a
primitive idempotent. It then follows that S has a completely simple kernel KS

containing s′s by Theorem 2.4.11. Since s′ ∈ V(s), sLs′s and so s ∈ KS.

Now let S be a semigroup with a completely simple kernel KS such that for every
f ∈ E(S) there exists a primitive idempotent e such that e ≤ f . Let s ∈ KS and consider
s′ ∈ W(s). Then there exists a primitive idempotent e ≤ s′s and by the previous
argument es′ ∈ W(s). We have es′Re so every ideal containing e also contains es′.
Since e is primitive we have e ∈ KS by Theorem 2.4.11, so es′ ∈ KS and by
Proposition 2.4.12 es′ ∈ V(s). Hence, as before, e = s′s so s′ = es′ ∈ V(s).

The requirement that every idempotent be bounded below by a primitive idempotent
is not a particularly restrictive condition to impose on the already broad class of
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E−inversive semigroups. Some obvious examples that satisfy the condition include
every finite semigroup, every group, and every (E−inversive) semigroup with finitely
many idempotents, among others. This property is key to finding a weak inverse
transversal, as we will see in the following section. Before we look at weak inverse
transversals, we have the following corollary to Proposition 2.4.13.

Corollary 2.4.14. Let S be an E−inversive semigroup in which every idempotent is bounded
below by a primitive idempotent. Let s ∈ KS and s′ ∈ W(s). Then s′ ∈ KS.

Proof. Since s′ ∈ W(s) we have s′ ∈ V(s). Then s′Ds and so s′ ∈ KS.

2.4.3 Weak inverse transversals

As stated above, our goal for this section is to show that an E−inversive semigroup in
which every idempotent is bounded below by a primitive idempotent has a weak
inverse transversal. More specifically, we will prove the following proposition.

Theorem 2.4.15. Let S be an E−inversive semigroup in which every idempotent is bounded
below by a primitive idempotent. Then every H-class of the kernel KS acts as a weak inverse
transversal S◦ of S.

Since by construction S contains a primitive idempotent, KS is completely simple by
Theorem 2.4.11 and so each H-class of KS is isomorphic to the same group, meaning as
in the commutative case (see Proposition 2.4.7) weak inverse transversals constructed
in this way are (isomorphic to) a uniquely determined group. We will see later that,
unlike in the commutative case, it is also possible in general to find a weak inverse
transversal S◦ which is not closed under multiplication. It should also be noted that in
a semigroup containing zeroes we run into similar issues as in the less general case.
As we no longer require idempotents to commute, S can now contain multiple left or
right zeroes rather than merely a unique two sided zero. If S does contain zeroes, then
KS consists of exactly those zeroes, each in a separate H-class. Then S◦ is once again
the trivial group.

Our first step on the path to Theorem 2.4.15 is to show that every element of S does in
fact have a weak inverse in KS, following a similar argument as in the previous section.

Lemma 2.4.16. Let S be an E−inversive semigroup in which every idempotent is bounded
below by a primitive idempotent. Then W(s) ∩ KS ̸= ∅ for every s in S.

Proof. Let s ∈ S and s′ ∈ W(S). Then ss′ is idempotent and so there exists a primitive
idempotent e such that e ≤ ss′. Then

s′ess′e = s′ss′e = s′e
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so s′e is a weak inverse of s. Further, ss′e = e so eLs′e. As e is primitive it lies in KS by
Theorem 2.4.11 and so s′e also lies in KS. Hence s′e ∈ W(s) ∩ KS as required.

Having shown that every element of S has a weak inverse in KS, we would like to be
able to conclude that this weak inverse is unique. Unfortuantely, as we will see
shortly, this is about as far from true as possible. We can however make the following
observation, which holds for any semigroup.

Lemma 2.4.17. Let S be a semigroup and s an element of S. If s′ and s∗ are both weak inverses
of s such that s′Hs∗ then s′ = s∗.

Proof. Let s ∈ S and consider s′, s∗ ∈ W(s) such that s′Hs∗. Then s′sRs′ so s′sRs∗.
Since s′s is idempotent, we have s′ss∗ = s∗. Similarly, ss∗Ls′ and so s′s∗ = s′ and hence
s′ = s∗.

Armed with this lemma, to obtain a weak inverse transversal we now need only to
show that some H-class of KS contains a weak inverse for every element of S.
Theorem 2.4.1 makes a stronger claim, that this is true of every H-class of KS.

Lemma 2.4.18. Let S be an E−inversive semigroup in which every idempotent is bounded
below by a primitive idempotent. Then for every element s of S, every H-class of KS contains a
weak inverse s′ ∈ W(s).

Proof. Let s be an element of S. By Lemma 2.4.16 there exists a weak inverse s′ of s
lying in KS. Let e = ss′, so eLs′ and let r be any idempotent such that rRe.

Then r = eu for some u ∈ S1 and so s′rss′r = s′rer = s′r. Hence s′r is a weak inverse of
s. Since rRe we have s′rRs′e = s′ss′ = s′. We also have ss′r = er = r so s′rLr. The
egg-box diagram for this arrangement is the following.

e r

s′ s′r

As KS is completely simple there will be one such r for every H-class in the R-class of
e. Hence we can find a weak inverse s′r of s in every H-class in the R-class of s′.

Note that if a ∈ KS, b ∈ S such that aHb then b ∈ KS. Further, aHKS b where HKS

denotes the calH-relation on KS when viewed as a semigroup in its own right.
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Following a similar argument, we have a weak inverse ls′ for every idempotent l lying
in the L-class of f = s′s. Again there is one such l for every H-class in the L-class of f ,
and so we get a weak inverse ls′ of s in every H-class in the L-class of s′. Putting these
results together fills in weak inverses of s in a “plus shape” of KS centred on s′, as
shown in the following egg-box diagram, where r, r∗ ∈ Re and l, l∗ ∈ Le.

ls′

s′r s′ s′r∗

l∗s′

Our original choice of s′ as a weak inverse of s was entirely arbitrary, and so we could
repeat the process using, for example, s′r as our starting point. This would allow us to
fill in a “plus shape” of weak inverses centred on s′r. If we keep iterating this process
along an R-class, clearly we will fill in the corresponding L-class at each iteration, and
so we will be able to place a weak inverse in every H-class of KS.

Combining these lemmas proves Theorem 2.4.15. Choose any H-class of KS. By
Lemma 2.4.18, this H-classcontains at least one weak inverse for every element of S
while Lemma 2.4.17 tells us that it contains at most one weak inverse for every
element of S. Hence the H-class contains exactly one weak inverse for each element of
S and so is a weak inverse transversal as required.

Weak inverse transversals in the form of H-classes of a completely simple kernel are
not the only possible sets that contain exactly one weak inverse of every element. We
can see this with a simple example. Let S = R × G where R = {a, b} is a right zero
semigroup and G = {1, g} is a group. Then the associates of (a, 1) are (a, 1) and (b, 1)
and the associates of (b, g) are (a, g) and (b, g) so the two elements form a weak
inverse transversal despite not being H-related. Note that unlike weak inverse
transversals arising from the kernel, in this instance the subset S◦ = {(a, 1), (b, g)} is
not a subsemigroup.

2.5 Wreath products

The goal for this section is a partial exploration of a method of constructing additional
examples of E−inversive semigroups. This particular method was motivated by the
Krohn-Rhodes decomposition of finite semigroups, which states that every finite
semigroup is a divisor of a wreath product of finite simple groups and copies of U2 [8].
For simplicity we restrict ourselves for the moment to examining the structure of a
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simpler class of wreath products, including how it relates to the results of the
preceding section.

Let A and S be semigroups and let AS be the set of maps from S to A. This set forms a
semigroup under pointwise multiplication, i.e. if f , g ∈ AS then for all x ∈ S,

(x)( f g) = (x) f (x)g

where the multiplication on the right is taking place in A. We define a left action
φ : S × AS → AS by

(s, f ) ↦→ s f

where (x) s f = (xs) f for all x ∈ S. The wreath product A ≀ S is then given by the
semidirect product AS ⋊φ S. Elements have the form ( f , s) with f ∈ AS and s ∈ S,
with multiplication given by ( f , s)(g, t) = ( f sg, st).

We are interested in wreath products where A = U2, where Un is the monoid formed
by adjoining an identity to the n element right zero semigroup (so U2 consists of an
identity and two right zeroes denoted by 1, a and b respectively), and S = G is any
group. For ease of notation, G will be written additively, so ( f , s)(g, t) = ( f sg, s + t).

2.5.1 Idempotents

We first consider the idempotents of U2 ≀ G. Given an idempotent ( f , s), we need
( f s f , s + s) = ( f , s). From the second coordinate, it is clear that we need s = 0. Then
f 0 f = f f and so we need f to be idempotent in U2

G. As the multiplication in U2
G is

pointwise and every element of U2 is idempotent, every element of U2
G is also

idempotent. The idempotents of U2 ≀ G are then exactly the elements of the form ( f , 0).
An immediate consequence is that the idempotents form a band, and in fact are
isomorphic to U2

G.

We can also look at the natural partial order on the idempotents. Recall that for any
semigroup, there is a natural partial order on the idempotents where e ≤ f if and only
if e f = f e = e. Due to the isomorphism above, we can work in U2

G and translate our
results back to the idempotents of U2 ≀ G.

Let e, f ∈ U2
G and consider (x)(e f ) = (x)e(x) f for x ∈ G. As the non-identity

elements of U2 are right zeroes, there are two cases. If (x) f = 1 then (x)(e f ) = (x)e,
and otherwise (x)(e f ) = (x) f . Then e f = e if and only if for all x ∈ G either
(x) f = (x)e or (x) f = 1. For f e = e there are again two cases. Either (x)e = 1, in
which case (x) f = (x)e = 1, or (x)e is a right zero so (x)( f e) = (x)e. From these
results it follows that if e ≤ f then for every x ∈ G either (x)e = (x) f or (x) f = 1. This
can be easily verified to be a sufficient condition for e ≤ f .
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These results are summarised in the following lemma.

Lemma 2.5.1. The idempotents of U2 ≀ G are the elements of the form ( f , 0) for any f ∈ U2
G

and form a band isomorphic to U2
G. Under the natural partial order, ( f , 0) ≤ (g, 0) if and

only if for all x ∈ G either (x)g = (x) f or (x)g = 1.

Let g ∈ U2
G be such that for every x ∈ G, (x)g ̸= 1 and suppose there exists f ∈ U2

G

such that ( f , 0) ≤ (g, 0). Then by Lemma 2.5.1 we have (x) f = (x)g for all x ∈ G so
( f , 0) = (g, 0) and hence (g, 0) is a primitive idempotent. Additionally, for any
(g, 0) ∈ U2 ≀ G we can define f ∈ U2

G such that

(x) f =

⎧⎨⎩(x)g (x)g ̸= 1

a (x)g = 1

to obtain a primitive idempotent ( f , 0) ≤ (g, 0). Hence every idempotent of U2 ≀ G is
bounded below by a primitive idempotent, and so by Theorem 2.4.15 U2 ≀ G has a
weak inverse transversal.

2.5.2 Green’s relations

We now describe the L- and R-class structure of U2 ≀ G. A useful observation is that
for every element of U2 ≀ G there is a natural way to pick out a particular idempotent
in its L-class, and similarly for its R-class.

Let 1 ∈ U2
G be the constant map to 1. This is clearly an identity in the semigroup U2

G.
Moreover, s1 = 1 for any s ∈ G, as is the case for any constant map. Then

( f , s)(1,−s) = ( f s1, s − s) = ( f 1, 0) = ( f , 0)

and
( f , 0)(1, s) = ( f 01, 0 + s) = ( f 1, s) = ( f , s)

and so ( f , s)R( f , 0).

Performing similar products on the left, we see that

(1,−s)( f , s) = (−s f , 0)

and
(1, s)(−s f , 0) = ( f , s)

so ( f , s)L(−s f , 0), or equivalently (s f , s)L( f , 0). This allows us to consider only the
idempotents as, for example, ( f , s)R(g, t) if and only if ( f , 0)R(g, 0).



42 Chapter 2. The structure of E−dense semigroups

Suppose ( f , 0)L(g, 0). Then ( f , 0) = (u, s)(g, 0) and (g, 0) = (v, t)( f , 0) for some
(u, s), (v, t) ∈ U2 ≀ G. Clearly from the second coordinate s = t = 0 and so f = ug and
g = v f in U2

G. From these equations we can see that if (x) f ̸= 1 then (x)g = (x) f and
if (x)g ̸= 1 then (x) f = (x)g. The only other possibility is that (x) f = (x)g = 1, so in
all cases we have (x) f = (x)g and so f = g.

It follows that each L-class contains exactly one idempotent. We have a separate
L-class of U2 ≀ G for each map f in U2

G, consisting of the elements (s f , s), s ∈ G.
Equivalently, ( f , s)L(g, t) if and only if −s f = −tg.

Now suppose ( f , 0)R(g, 0). Then ( f , 0) = (g, 0)(u, s) and (g, 0) = ( f , 0)(v, t) for some
(u, s), (v, t) ∈ U2 ≀ G. Again the second coordinate tells us s = t = 0 and so f = gu and
g = f v in U2

G. If (x) f = 1 then (x)(gu) = 1 so (x)g = (x)u = 1, and similarly if
(x)g = 1 then (x) f = (x)v = 1. In other words, (x) f = 1 if and only if (x)g = 1 so
(1) f−1 = (1)g−1. This condition is sufficient to show ( f , 0)R(g, 0) since if it holds we
have f = g f and g = f g.

The elements lying in the R-class of ( f , s) then have the form (g, t) where (x)g = 1 if
and only if (x) f = 1 and t is any element of G. In other words, ( f , s)R(g, t) if and only
if (1) f−1 = (1)g−1.

We can of course combine these results to characterise the H- and D-classes. The
H-class of ( f , s) consists of the permutations (t f , t + s) such that (1) f−1 = (1)(t f )−1,
or equivalently (1) f−1 = (1) f−1 + t. For the D-classes, we have ( f , s)D(g, t) if and
only if (1)g−1 = (1) f−1 + u for some u ∈ G.

Applying this to our knowledge of the primitive idempotents above, we can see that
the kernel of U2 ≀ G contains exactly the elements of the form ( f , s) where x f ̸= 1 for
all x ∈ G and s is any element of G. A weak inverse transversal of U2 ≀ G consists of
any H-class of the kernel, and therefore the elements of the form (s f , s) for a particular
such f ∈ U2

G. It can be easily seen that this group is isomorphic to the original group
G.

2.5.3 Weak inverses

Suppose ( f , s) is a weak inverse of (g, t). Then ( f , s)(g, t)( f , s) = ( f , s) so

( f sg s+t f , s + t + s) = ( f , s).

From the second coordinate we must have s = −t so this simplifies to

( f −tg f ,−t) = ( f ,−t).
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Now if (x) f ̸= 1 we have (x)( f −tg f ) = (x) f as required. If (x) f = 1 then
(x)( f −tg f ) = (x) −tg so we need (x) −tg = 1. Then ( f , s) is a weak inverse of (g, t) if
and only if s = −t and (1) f−1 ⊆ (1)(−tg)−1, or equivalently (1) f−1 + t ⊆ (1)g−1.

As every D-class contains an idempotent, U2 ≀ G is regular and so we should also ask
what the inverses look like. By reversing the equations above, (g, t) is a weak inverse
of ( f , s) if and only if t = −s and g t f g = g. Then (1)g−1 ⊆ (1)(t f )−1 or equivalently
(1)g−1 ⊆ (1) f−1 + t, and so ( f , s) and (g, t) are inverses if and only if s = −t and
(1) f−1 + t = (1)g−1.

2.5.4 Example

To illustrate the above results we show how they apply to a simple example, U2 ≀ C2

where C2 = {0, s} is the two element cyclic group. Specifically, we identify the
idempotent structure and the D-class structure, and identifying the possible weak
inverse transversals. For notation in this example we we will write the map
f : C2 → U2 as the pair ((0) f , (s) f ).

The idempotents of U2 ≀ C2 are of course the elements of the form ( f , 0), and the order
structure on these idempotents is given in the following diagram, where

f

e

indicates that e ≤ f .

((1, 1), 0)

((a, 1), 0) ((1, a), 0) ((1, b), 0) ((b, 1), 0)

((a, a), 0) ((a, b), 0) ((b, a), 0) ((b, b), 0)

For the D-class structure we have the following egg-box diagrams. The third D-class
is the kernel containing each primitive idempotent, and it can be easily verified that
each of its H classes contains a weak inverse of every element of U2 ≀ C2.

Here the D-classes correspond to the possible sizes of 1 f−1, but we can see how larger
groups lead to more D-classes by looking at U2 ≀ C4 where C4 = {0, s, 2s, 3s}. Let
f , g ∈ U2

C4 be such that 1 f−1 = {0, s} and 1g−1 = {0, 2s}. Then ( f , t)D(g, u) if and
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((1,1),0)
((1,1),s)

((1,a),0) ((1,a),s) ((1,b),0) ((1,b),s)
((a,1),s) ((a,1),0) ((b,1),s) ((b,1),0)

((a,a),0) ((a,b),0) ((b,a),0) ((b,b),0)
((a,a),s) ((b,a),s) ((a,b),s) ((b,b),s)

only if {0, s}+ v = {0, 2s} for some v ∈ C4. No such v exists, so they must lie in
separate D-classes despite the preimages having the same size.

For a weak inverse transversal, by Theorem 2.4.15 we may take the H-class of any
primitive idempotent. For example, if we take (U2 ≀ C2)◦ = {((a, a), 0), ((a, a), s)} then
we have

A(((a, a), 0)) = {( f , 0) | f ∈ U2
C2}

and similarly
A(((a, a), s)) = {( f , s) | f ∈ U2

C2}

clearly encompassing every element of U2
C2 .
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Chapter 3

Semilattices of stratified extensions

In this chapter we generalise Grillet’s introduction of stratified semigroups [14] by
examining the situation where ∩m>0Sm is neither {0} nor the empty set. For details of
Grillet’s definitions, see Section 1.4. After some basic definitions and preliminary
results in Section 3.1, in Section 3.2 we introduce the concept of a stratified extension as
a generalisation of Grillet’s stratified semigroups, and we provide a number of
interesting results on the overall structure of such semigroups. In Section 3.3 our focus
is on semigroups in which every regular H−class contains an idempotent. We show
that group-bound semigroups with this property are semilattices of stratified
extensions of completely simple semigroups and describe the semilattice structure.
Finally in Section 3.4 we look at strict extensions of Clifford semigroups and show
amongst other things that strict stratified extensions of Clifford semigroups are
semilattices of stratified extensions of groups.

3.1 Preliminaries

An element s in a semigroup S is called eventually regular if there exists n ≥ 1 such that
sn is regular. A semigroup is eventually regular if all of its elements are eventually
regular. It is clear that eventually regular semigroups are E−inversive. A semigroup S
is called group-bound if for every s ∈ S, there exists n ≥ 1 such that sn lies in a
subgroup of S. Clearly group-bound semigroups are eventually regular. If S is
eventually regular and each regular H−class is a group then S is group-bound.

A semigroup S is called Archimedean if for any a, b ∈ S there exists n ∈ N such that
an ∈ SbS.

Theorem 3.1.1 ([32, Theorem 3]). Let S be a group-bound semigroup. Then S is a
semilattice of Archimedean semigroups if and only if every regular H−class of S is a group.
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Let S be a semigroup with 0. We say that an element x ∈ S, is nilpotent if there is n ∈ N
such that xn = 0. The semigroup S is called nilpotent if every element of S is nilpotent.
The semigroup S is called nilpotent with degree n ∈ N if Sn = {0}. Note that Grillet [14]
and Shevrin [32] call nilpotent semigroups nilsemigroups, whereas they refer to
nilpotent semigroups with a finite degree as simply nilpotent.

3.2 Stratified extensions

Let S be a semigroup (not necessarily stratified) and define the base of S to be the
subset Base(S) =

⋂︁
m>0 Sm. We shall say that a semigroup S is a stratified extension of

Base(S) if Base(S) ̸= ∅. The reason for this name will become apparent later. Clearly
Base(S) is a subsemigroup of S. When Base(S) is a trivial subgroup then S is a
stratified semigroup. A stratified semigroup S is not in general a stratified extension
as we may have Base(S) = ∅, however if S is a stratified semigroup then S0 is also
stratified and is a stratified extension with trivial base. Further, S is called a finitely
stratified extension if there exists m ∈ N such that Sm = Sm+1 = Base(S). The smallest
such m is called the height of S and where necessary we shall refer to S as a finitely
stratified extension with height m. If for every s in S there is an m ∈ N such that
sm ∈ Base(S) then S is a nil-stratified extension. All finitely stratified extensions are
nil-stratified extensions, but it is easy to demonstrate that not all nil-stratified
extensions are finitely stratified extensions.

A finitely stratified extension is a stratified extension over the same base, since
Sm = Sm+1 implies Sn = Sm for all n ≥ m and so

⋂︁
k>0 Sk = Sm, where m is the height

of S. The converse is not true since, for example, if S is a free semigroup with a zero
adjoined, then S is a stratified extension with trivial base but not a finitely stratified
extension. It is clear that a (finitely) stratified extension has a unique base.

Clearly, for all m ≥ 1, Sm+1 ⊆ Sm and so we define the layers of S as the sets
Sm = Sm \ Sm+1, m ≥ 1. Every element of S \ Base(S) lies in exactly one layer, and if
s ∈ Sm then m is the depth of s. The layer S1 generates every element of S \ Base(S) and
is contained in any generating set of S. However Base(S) ̸⊆ ⟨S1⟩ in general. For
example, let S be a semigroup with 0, with no zero divisors. Then 0 ∈ Base(S) but
0 ̸∈ ⟨S1⟩.

Since Base(S) ⊆ Sm for any m ∈ N, we have an alternative characterisation for the
elements of Base(S). Any s ∈ S lies in Base(S) if and only if s can be factored into a
product of m elements for any m ∈ N, i.e. s = a1a2 . . . am for some ai ∈ S. This
characterisation gives us some immediate properties of Base(S) as a subsemigroup of
S.
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Lemma 3.2.1. Let S be a semigroup and let s ∈ S. If s ∈ Ss ∪ sS ∪ SsS then s ∈ Base(S).

Proof. It follows that for m ≥ 1, s = xms or s = sym or s = xmsym and so the result
follows from the previous observation.

Corollary 3.2.2. Suppose that S is a semigroup.

1. Every submonoid of S is a submonoid of Base(S).

2. Reg(S) ⊆ Base(S). Hence if S is regular, Base(S) = S.

3. E(S) = E(Base(S)).

4. If s ∈ S \ Base(S) then |Js| = 1, where Js is the J−class of s.

To see (4) notice that if aJ b and a ̸= b then we have a = ubv for some u, v ∈ S1 and
since a ̸= b we have u and v not both equal to 1. Similarly b = sat with s, t ∈ S1 not
both equal to 1 and hence a ∈ Sa ∪ aS ∪ SaS. The converse is not true, since for
example in a semigroup with zero we have J0 = {0} but 0 ∈ Base(S).

If follows immediately that the class of stratified extensions contains the class of
semigroups with regular elements and hence in particular the classes of monoids,
finite semigroups and regular semigroups. However, not every semigroup is a
stratified extension. Consider for example a semigroup with a length function (i.e. a
function l : S → N such that for all x, y ∈ S, l(xy) = l(x) + l(y)). If T is the
subsemigroup of elements with non-zero length, then the elements of Tm each have
length at least m. Hence the elements of length exactly m lie in Tm ̸⊆ Base(T) and so
the base is empty. In particular, a free semigroup is not a stratified extension, nor is the
semigroup of polynomials of degree ≥ 1 over any ring, under multiplication.

This property allows us to prove the following results, justifying the names of
stratified, nil-stratified, and finitely stratified extensions.

Lemma 3.2.3. Let S be a stratified extension. Then Base(S) is an ideal of S.

Proof. For any u, v ∈ S1, t ∈ Base(S) and m > 3, we have t ∈ Sm−2 so utv ∈ Sm and
hence utv ∈ Base(S).

Hence we can regard S as being an ideal extension of Base(S) by S/ Base(S) and note
that S/ Base(S) is a stratified semigroup with 0. If S is a nil-stratified extension then it
follows that for every s ∈ S there exists m ∈ N such that sm ∈ Base(S). Hence in the
Rees quotient S/ Base(S), sm = 0 and so S/ Base(S) is nilpotent and S is an ideal
extension by a nilpotent stratified semigroup. Recall that the nilpotency degree of a
semigroup is the smallest value m such that every product of m elements is zero. It is
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easy to see that if the nilpotency degree of S/ Base(S) is m then the height of S is m
and so S is a finitely stratified extension. Conversely, any nilpotent semigroup S of
finite nilpotency degree m is a stratified semigroup with Sm = {0}. We have hence
proved the following.

Proposition 3.2.4. Let S be a stratified extension. Then

1. S is an ideal extension of Base(S) by a stratified semigroup with 0.

2. If S is a nil-stratified extension then it is an ideal extension of Base(S) by a nilpotent
semigroup.

3. If S is a finitely stratified extension then it is an ideal extension of Base(S) by a
nilpotent semigroup of finite degree.

The converses of these results do not hold. To see this, let S be a free semigroup and T
be the two element nilpotent semigroup. Then T is a stratified semigroup with 0 but
an extension of S by T is not a stratified extension. Further, T is a nilpotent semigroup
of finite degree and an extension of S0 by T is a stratified extension, but is not a finitely
stratified nor nil-stratified extension.

Proposition 3.2.5. Let S be a stratified extension.

1. If S is a nil-stratified extension then Base(S) is periodic if and only if S is periodic;

2. If S is a nil-stratified extension then Base(S) is eventually regular if and only if S is
eventually regular;

3. Base(S) is E−inversive (resp. E-dense) if and only if S is E−inversive (resp. E−dense).

So a stratified extension with a periodic base is E−dense.

Proof. The first two statements are easy to deduce. For the third, let Base(S) be
E−inversive and let s ∈ S. Then for any t ∈ Base(S), ts ∈ Base(S) and so there exists
u ∈ Base(S) such that uts ∈ E(Base(S)) = E(S) and so S is E−inversive. Conversely
suppose that S is E−inversive. Since W(S) = Reg(S) ⊆ Base(S), then Base(S) is
E−inversive. For E−dense, note that as every idempotent of S lies in the base,
E(S) = E(Base(S)).

Notice that periodic ⇒ eventually regular ⇒ E−inversive ⇒ stratified.

There is in general little control over the base as a stratified extension can be
constructed with any given semigroup as its base. However, finitely stratified
extensions allow us to place restrictions on the semigroup forming the base.
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Proposition 3.2.6. Let T be any semigroup. There exists a stratified extension S with base T.

Proof. Let R be any semigroup and let S = R ∪̇ T. Define a binary operation ∗ on S by
r1 ∗ r2 = r1r2 for r1, r2 ∈ R, t1 ∗ t2 = t1t2 for t1, t2 ∈ T, and r ∗ t = t ∗ r = t for r ∈ R and
t ∈ T. It is easy to verify that this operation is associative and so (S, ∗) is a semigroup.
Then T ⊆ ⋂︁

m>0(R ∪̇ T)m and so S is a stratified extension. Moreover, if we choose R
such that

⋂︁
m>0 Rm = ∅, for example R = A+, a free semigroup, we see that⋂︁

m>0(R ∪̇ T)m = T and so we can obtain a stratified extension with base T.

In contrast, the possible bases for a finitely stratified extension are much more
restricted. Let S be a finitely stratified extension with T = Base(S) and consider T2.
There exists m ∈ N such that T = Sm, so T2 = S2m. But by definition
Sm = Sm+1 = Sm+2 = · · · = S2m and so T2 = T. A semigroup T satisfying T2 = T is
said to be globally idempotent and so the base of a finitely stratified extension is globally
idempotent. Note also that if S is globally idempotent, then S is a finitely stratified
extension in a trivial sense, with base S and height 1.

Proposition 3.2.7. A semigroup S is a finitely stratified extension if and only if it is an ideal
extension of a globally idempotent semigroup by a nilpotent semigroup of finite degree.

Proof. We need only justify the converse. Let Σ be an ideal extension of a globally
idempotent semigroup S by a nilpotent semigroup T of finite degree m. Then Σm = S
and S = S2 so Σm = Σ2m and as each Σi ⊆ Σi+1 it follows that Σm = Σm+1. Hence Σ is
a finitely stratified extension with base S and height m.

This is still a very broad class of semigroup, including among its members every
monoid and every regular semigroup. It should also be noted that a globally
idempotent semigroup need not contain idempotents, the Baer-Levi semigroup being
one such example.

Proposition 3.2.8. There exists a finitely stratified extension of height h, for any h ∈ N.

Proof. Let G be any finite cyclic group of order r and let S be the monogenic
semigroup of index h and period r. Then it is reasonably clear that S is a finitely
stratified extension with base G and height h.

Let S be a semigroup and let ρ be a congruence on S. It is easy to see that for any
m ∈ N we have (S/ρ)m = Sm/ρ. Hence if S is a stratified extension then S/ρ is also a
stratified extension, with Base(S/ρ) = Base(S)/ρ. Further, if S is a finitely stratified or
nil-stratified extension then so is S/ρ.
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Let Si be a family of semigroups. Then (∏i∈I Si)
m = ∏i∈I Si

m. Hence if each Si is a
stratified extension, the product ∏i∈I Si is also a stratified extension with
Base(∏i∈I Si) = ∏i∈I Base(Si). If I is a finite set and each Si is a nil-stratified extension
then so is ∏i∈I Si. Similarly if each Si is a finitely stratified extension then so is ∏i∈I Si.
To see that we cannot remove the condition |I| < ∞, let I = N and for each i ∈ I let Si

be a finitely stratified (and hence nil-stratified) extension of height i. Then ∏i∈I Si is a
stratified extension but is neither a finitely stratified extension nor a nil-stratified
extension.

Subsemigroups of (finitely, nil-) stratified extensions are not necessarily (finitely, nil-)
stratified extensions. For example the bicyclic semigroup is a finitely stratified
extension (in fact globally idempotent) but contains (N,+) as a subsemigroup which
is free and hence not even a stratified extension.

The class of (finitely, nil-) stratified semigroups therefore does not form a variety.
However, we have proved the following theorem.

Theorem 3.2.9. Let S be a (finitely, nil-) stratified extension and let Si for i ∈ I be a family of
stratified semigroups.

1. If ρ is a congruence on S then S/ρ is a (finitely, nil-) stratified extension with base
Base(S)/ρ;

2. the direct product ∏i∈I Si is a stratified extension with base ∏i∈I Base(Si);

3. if |I| < ∞ and each Si is a (finitely, nil-) stratified extension then the direct product

∏i∈I Si is a (finitely, nil-) stratified extension with base ∏i∈I Base(Si).

By part (1) of this theorem, any homomorphic image of a stratified extension is a
stratified extension. This holds true even when the morphism involved is not
surjective, though we lose some precision regarding the base of the second semigroup.

Proposition 3.2.10. Let S, T be semigroups and f : S → T a morphism. Then for all i ∈ N,
Si ⊆ f−1(Ti) and so in particular, Base(S) ⊆ f−1(Base(T)).

Proof. Let x ∈ Si so x = x1 . . . xi for some x1, . . . , xi ∈ S. Then

f (x) = f (x1 . . . xi) = f (x1) . . . f (xi) ∈ Ti

so x ∈ f−1(Ti) and hence Si ⊆ f−1(Ti). The second result follows immediately.

Let S =
⋃︁

α∈Y Sα be a semilattice of stratified extensions. Then

⋃︂
α∈Y

Base(Sα) ⊆
⋂︂

m>0

Sm
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and so S is a stratified extension.

In the case of finitely stratified extensions, we can construct a semilattice of finitely
stratified extensions which is not a finitely stratified extension. Let Y = N ∪ {0} be a
semilattice under the multiplication ij = 0 for all i, j ∈ Y with i ̸= j. For each i ∈ N let
Si be a finitely stratified extension with height i and let S0 be globally idempotent. Let
S be the union of each Si as a semilattice of semigroups over Y. Then
Sm = S0 ∪

⋃︁
i∈N Si

m. If i > m then there are elements in Si
m which are not in Si

m+1 and
so Sm ̸= Sm+1 for any m ∈ N.

3.3 Semilattices of group bound semigroups

Let S be a semigroup such that every regular H-class contains an idempotent.
Equivalently, every regular element of S lies in some subgroup of S. Such a semigroup
is called a strongly 2−chained semigroup, following the definition given in [21,
Corollary 1.2]. We define a relation ρ on S by sρt if and only if for every D-class D of S
we have

W(s) ∩ D ̸= ∅ ⇐⇒ W(t) ∩ D ̸= ∅.

Clearly ρ is an equivalence relation. We will show that ρ is in fact a congruence, and
moreover that S/ρ is a semilattice.

We begin by establishing some properties of such semigroups.

Lemma 3.3.1. Let S be a strongly 2−chained semigroup.

1. Every regular D-class of S is a completely simple subsemigroup of S.

2. Let s′ ∈ W(s). Every H-class of Ds′ contains a weak inverse of s.

Proof. These are fairly straightforward.

1. Let D be a regular D−class and let a, b ∈ D and let e be the idempotent lying in
La ∩ Rb. Then abLebRee = e. Hence ab ∈ D. To see that D is a completely simple
semigroup, first note that D is a union of groups and hence completely regular.
Let LD,RD,DD be the respective Green’s relations on D as a semigroup. By [18,
Theorem 2.4.2] we have that LD and RD are exactly the restrictions of calL and
R to D. As D is a D class, it follows that for any s, t ∈ D, sDDt and so there exist
u, v ∈ D such that s = utv. Hence s ∈ DtD and so D has no proper ideals. Then
D is a simple, completely regular semigroup so by [18, Theorem 3.3.2] it is
completely simple.
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2. Let D be the (regular) D−class containing s′ and let r be an idempotent such that
rRss′. Then ss′r = r and rss′ = ss′, and it follows that s′r ∈ W(s) and s′Rs′rLr.

s′

ss′r

s′r

Let I = S/R and Λ = S/L and as is normal denote the R−classes as Ri (i ∈ I),
the L−classes as Lλ (λ ∈ Λ) and the H−class Ri ∩ Lλ as Hiλ. Suppose s′ ∈ Rj

and ss′ ∈ Ri. For each λ ∈ Λ, let riλ be the idempotent in Hiλ so that we produce
a weak inverse of s, s′jλ, in Hjλ. Let s′jλs ∈ Lµ, and for each k ∈ I let lkµ be the
idempotent in Hkµ and note that, using a similar argument to above,
lkµs′jλ ∈ W(s) and lkµs′jλ ∈ Hkλ.

s′jλs

riλ

lkµ

s′jλ

lkµs′jλ

The second point allows us to give an equivalent definition of ρ: sρt if and only if for
every H-class H of S we have

W(s) ∩ H ̸= ∅ ⇐⇒ W(t) ∩ H ̸= ∅.

Note that part (2) of this lemma and its proof bear similarity to Lemma 2.4.18. We can
generalise these results in the following proposition, the proof of which follows the
same format.

Proposition 3.3.2. Let S be a semigroup and D a completely simple subsemigroup of S. If
s ∈ S has a weak inverse s′ ∈ D then every HS-class of D contains a weak inverse of s.

The next result is key in what follows.
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Lemma 3.3.3. Let S be a strongly 2−chained semigroup and let s, t ∈ S. For any D-class D
of S we have W(st) ∩ D ̸= ∅ if and only if W(s) ∩ D ̸= ∅ and W(t) ∩ D ̸= ∅.

Proof. Let s′ ∈ W(s) ∩ D and suppose W(t) ∩ D ̸= ∅. Then s′s is an idempotent lying
in D. By Lemma 3.3.1(2) t has a weak inverse in every H-class of D, so let t′ be the
weak inverse of t lying in the H-class of s′s. Then t′s′stt′s′ = t′tt′s′ = t′s′. By Lemma
3.3.1(1) t′s′ ∈ D and so W(st) ∩ D ̸= ∅.

Conversely let (st)′ ∈ W(st) ∩ D. Then t(st)′st(st)′ = t(st)′ and so t(st)′ is a weak
inverse of s. As t(st)′L(st)′ we have W(s) ∩ D ̸= ∅. Similarly we have
(st)′s ∈ W(t) ∩ D ̸= ∅.

Corollary 3.3.4. Let S be a strongly 2−chained semigroup and let s, t ∈ S. Then sρs2 and
stρts.

Corollary 3.3.5. Let S be a strongly 2−chained semigroup. Either S is E−inversive or the set
{s ∈ S|W(s) = ∅} is an ideal of S.

We can now prove the following theorem.

Theorem 3.3.6. Let S be a strongly 2−chained semigroup. Then the relation ρ is a
congruence and S/ρ is a semilattice.

Proof. Let a, b, c, d ∈ S such that aρb and cρd and let D be a D-class of S. By Lemma
3.3.3 W(ac) ∩ D ̸= ∅ if and only if W(a) ∩ D ̸= ∅ and W(c) ∩ D ̸= ∅. As aρb and cρd
this latter condition is equivalent to W(b) ∩ D ̸= ∅ and W(d) ∩ D ̸= ∅ which is in
turn equivalent to W(bd) ∩ D ̸= ∅ by Lemma 3.3.3. It follows that acρbd and so ρ is a
congruence. That S/ρ is a semilattice follows from Corollary 3.3.4.

We can now prove some results about the structure of S.

Lemma 3.3.7. Let S be a strongly 2−chained semigroup and let s, t ∈ Reg(S). Then sρt if
and only if sDt.

Proof. From Lemma 3.3.3 it follows that all of Green’s relations are contained in ρ. To
see this suppose that (s, t) ∈ J . Then there exists u, v ∈ S1 such that s = utv. So for
every D−class D, if W(s) ∩ D ̸= ∅ then W(utv) ∩ D ̸= ∅. Hence by Lemma 3.3.3
W(t) ∩ D ̸= ∅. By a dual argument we then deduce that W(s) ∩ D ̸= ∅ if and only if
W(t) ∩ D ̸= ∅ and so (s, t) ∈ ρ.

As s is regular it has an inverse which lies in the same D-class and so W(s) ∩ Ds ̸= ∅.
Hence W(t) ∩ Ds ̸= ∅ and by Lemma 3.3.1 there exists t′ ∈ W(t) such that t′Ls. By a
similar argument there exists s′ ∈ W(s) such that s′Rt. Then

sLt′Rt′tLstRss′Ls′Rt
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and so sDt as required.

It follows that for each ρ-class Sα either Sα has no regular elements or the regular
elements in Sα are contained within a single D-class and hence by Lemma 3.3.1 form a
completely simple subsemigroup of Sα. In the latter case Sα is an E−inversive
semigroup as by definition of ρ each element has a weak inverse lying in the regular
D-class. Since each J -class is contained within a ρ-class, it also follows that the
regular J -classes of S are exactly the regular D-classes.

Lemma 3.3.8. Let S be a strongly 2−chained semigroup and let x ∈ S. Then xρ is an
E−inversive subsemigroup of S if and only if xρ contains a regular element.

Proof. One way round is obvious. That xρ is a subsemigroup of S follows from the fact
that ρ is a semilattice. Let y ∈ xρ be regular. Then there exists y′ ∈ W(y) ∩ Dy and so
for any z ∈ xρ there exists z′ ∈ W(z) ∩ Dy. Since Dy ⊆ xρ then xρ is E−inversive.

Lemma 3.3.9. Let S be an E−inversive semigroup such that Reg(S) is a completely simple
semigroup. Then Reg(S) is an ideal of S.

Proof. Let s ∈ Reg(S) and t ∈ S. Let t′ ∈ W(t) and let H be Green’s H−relation on
Reg(S). As Reg(S) is completely simple every regular H-class contains an inverse of s
so we may choose s′ ∈ V(s) such that s′Rtt′. Then t′s′stt′s′ = t′s′ss′ = t′s′ and
stt′s′st = ss′st = st. Hence st is regular and so Reg(S) is a right ideal. A dual
argument shows Reg(S) is a left ideal and hence an ideal.

Lemma 3.3.10. Let S be a strongly 2−chained semigroup, let α ∈ S/ρ, let Sα = ρ♮
−1
(α) and

let s ∈ Sα. Then for all β ∈ S/ρ, Sβ contains a weak inverse of s if and only if Sβ contains a
regular element and β ≤ α.

Proof. Suppose β ≤ α and Sβ contains regular elements. Let t ∈ Sβ. Then
st ∈ Sαβ = Sβ. As Sβ contains a regular element it is E−inversive by Lemma 3.3.8, and
so there exists (st)′ ∈ W(st) ∩ Sβ. Then t(st)′st(st)′ = t(st)′ so t(st)′ ∈ W(s) ∩ Sβ as
required. Conversely, let s′ ∈ W(s) ∩ Sβ. Clearly s′ is regular, and
s′ = s′ss′ ∈ Sβαβ = Sαβ so αβ = β and hence β ≤ α as required.

From the perspective of stratified extensions, we cannot say anything about these
semigroups in general. For example, a free semigroup S and a group G are both
strongly 2−chained semigroups, but Base(S) = ∅ and Base(G) = G. One condition
that allows us to make more precise statements is to require that S is a group-bound
semigroup. Note that group-bound implies eventually regular, and if S is a strongly
2−chained semigroup the converse also holds.
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We will show that applying our results to a semigroup which is also group-bound
gives the same decomposition as that in Theorem 3.1.1.

If S is a group-bound semigroup and e ∈ E(S) then let He denote the largest subgroup
of S containing e. The set of elements s such that sn ∈ He for some n ∈ N is denoted by
Ke. This is well defined in the sense that if sn ∈ He we have sm ∈ He for all m > n [32,
Lemma 1]. It also follows that the sets Ke partition S. In general Ke is not a
subsemigroup of S [32, Proposition 7] and in addition in a group bound semigroup
D = J [32, Lemma 4]. As is usual, Js will denote the J−class of s.

The following result is important in what follows.

Lemma 3.3.11. Let S be an eventually regular strongly 2−chained semigroup and let
e, f ∈ E(S). If s ∈ Ke then Je is the greatest J -class containing a weak inverse of s. Moreover,
if eJ f and s ∈ Ke and t ∈ K f then (s, t) ∈ ρ.

Proof. Let S be a semigroup satisfying the conditions stated. As S is eventually regular
and strongly 2−chained then S is group-bound. Let s ∈ Ke for some idempotent e so
that there exists n ∈ N such that sn ∈ He. Then

(sn(sn+1)−1)s(sn(sn+1)−1) = sn(sn+1)−1e = sn(sn+1)−1

where (sn+1)−1 is the inverse of sn+1 in He. Therefore s has a weak inverse in He and
hence in Je.

Now let s′ ∈ W(s) and notice that s′ is regular and so lies in a group H f , say. By
Lemma 3.3.1 every H-class of J f contains a weak inverse of s. Let s′′ be a weak inverse
of s such that s′′Ls′s and note that s′′ ∈ D f = J f . Then as s′′s′s = s′′ we have

s′′s′s2s′′s′ = s′′ss′′s′ = s′′s′,

so s′′s′ ∈ W(s2) and by Lemma 3.3.1, s′′s′ ∈ J f . We can proceed inductively as follows.
Let s′′′ ∈ W(s) ∩ Ls′′s′s2 so that s′′′s′′s′s2 = s′′′ and

s′′′s′′s′s3s′′′s′′s′ = s′′′ss′′′s′′s′ = s′′′s′′s′.

Hence s′′′s′′s′ ∈ W(s3) ∩ J f .

We see then that there is a weak inverse of sn in J f for any n ∈ N. In particular, since
s ∈ Ke, we can choose n large enough such that sn ∈ He ⊆ Je. Let s∗ be the associated
weak inverse of sn in J f . Then by Lemma 1.2.6 we have J f = Js∗ ≤ Jsn = Je.
Consequently if s ∈ Ke then Je is the greatest J -class containing a weak inverse of s.

Now let s ∈ Ke and t ∈ K f as in the statement of the lemma. We can assume that s and
t are regular. To see this, let n ∈ N be the minimum value such that sn ∈ He and note
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that if (sn)′ is a weak inverse of sn then sn−1(sn)′ is a weak inverse of s with
sn−1(sn)′L(sn)′. This, along with the previous argument, shows that s has a weak
inverse in a J−class J if and only if the regular element sn has a weak inverse in J.

Let J be a J−class containing a weak inverse s′ of s. If tLs then ts′Lss′ and so ts′ ∈ J.
Then, since J is regular, there exists r ∈ J such that ts′r ∈ J is an idempotent, and so
s′rts′r ∈ J is a weak inverse of t. By a similar argument if tRs there is a weak inverse
of t in J and so if sJ t there is a weak inverse of t in J. A dual argument then gives the
opposite direction, and the result follows from the definition of ρ.

Note that each H-class of S contains at most one weak inverse of s: if s′, s∗ ∈ W(s)
with s′Hs∗ then s′sRs′Rs∗Rs∗s. As L is a right congruence we also have s′sLs∗s.
Since s′s and s∗s are idempotents it follows that s′s = s∗s and by a similar argument
ss′ = ss∗. Then s′ = s′ss′ = s∗ss′ = s∗ss∗ = s∗.

Proposition 3.3.12. Let S be a strongly 2−chained semigroup. If S is group-bound then S is
a semilattice of Archimedean semigroups of the form KJe =

⋃︁
f∈E(Je) K f for e ∈ E(S).

Proof. Let e ∈ E(S) and define KJe =
⋃︁

f∈E(Je) K f . Let s, t ∈ KJe and notice that
s ∈ K f , t ∈ Kg for some f , g ∈ Je, so that by Lemma 3.3.11, (s, t) ∈ ρ. Conversely, if
(s, t) ∈ ρ then there exists e, f ∈ E(S) such that s ∈ Ke ⊆ KJe , t ∈ K f ⊆ KJ f . By
Lemma 3.3.11, Je is the greatest J−class containing a weak inverse of s and J f is the
greatest J−class containing a weak inverse of t. Since (s, t) ∈ ρ it easily follows that
Je = J f and so s, t ∈ KJe = KJ f . Hence the sets KJe are the ρ−classes and so partition S
and since ρ is a semilattice then the result follows.

For each e, f ∈ E(S) it follows that there exists g ∈ E(S) such that KJe KJ f ⊆ KJg . Since
e ∈ KJe and f ∈ KJ f then e f ∈ KJg . In addition there exists a uniquely determined
h ∈ E(S) such that e f ∈ Kh ⊆ KJh and so KJg = KJh .

To see that KJe is an Archimedean semigroup, let a, b ∈ KJe . Then there exist m, n ∈ N
such that am, bn ∈ Je and so, as Je is a regular D-class and hence completely simple by
Lemma 3.3.1, we have

am ∈ Jebn Je ⊆ KJe b
nKJe ⊆ KJe bKJe

as required.

Note that a decomposition into a semilattice of Archimedean semigroups is
necessarily unique: Let S = S [Y; Sα] = S [Y′; Sa] be two Archimedian semilattice
decompositions of the semigroup S. If s, t ∈ S lie in the same subsemigroup Sα where
α ∈ Y and s ∈ Sa, t ∈ Sb where a, b ∈ Y′, then there exist n ∈ N and u, v ∈ S such that
sn = utv and a ≤ b. Similarly b ≤ a and so s, t ∈ Sa and the two semilattices, Y and Y′,
are isomorphic. We have hence recovered the same decomposition as Shevrin
(Theorem 3.1.1) in this case.
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It is clear from the above structure that these semigroups are group-bound and since it
is straightforward to check that Reg(KJe) = Je, then the regular elements form a
completely simple subsemigroup.

The converse of Proposition 3.3.12 does not hold in general as an Archimedean
semigroup need not contain regular elements and hence a semilattice of Archimedean
semigroups may not be group-bound. It is enough, however, to require that each
Archimedean semigroup contains a regular element.

Corollary 3.3.13. Let S be a strongly 2−chained semigroup. Then S is group-bound if and
only if S = S [Y; Sα] is a semilattice of Archimedean semigroups Sα with Reg(Sα) ̸= ∅.

Proof. Clearly if S is group-bound then every subsemigroup contains a regular
element. Conversely, let s ∈ S. Then s ∈ Sα for some α and let t ∈ Reg(Sα). Since Sα is
an Archimedean semigroup, there exists n ∈ N such that sn ∈ SαtSα. Since Sα contains
a regular element, by Lemma 3.3.8 it is E−inversive. Then by Lemma 3.3.9 Reg(Sα) is
an ideal of Sα and hence sn ∈ Reg(Sα) ⊆ Reg(S).

Proposition 3.3.14. Let S be a semigroup. Any two of the following implies the third.

1. S is group-bound

2. S is a strongly 2−chained semigroup

3. S is a semilattice of Archimedean semigroups Sα with Reg(Sα) ̸= ∅.

Proof. By Corolary 3.3.13 we have (1) and (2) imply (3) and (2) and (3) imply (1). The
remaining implication follows from Theorem 3.1.1.

We now turn our attention to describing the subsemigroups KJe at each vertex of the
semilattice. Since each semigroup contains regular elements, they are all stratified
extensions with a base consisting of at least the regular elements. From [32,
Proposition 3] each KJe is an ideal extension of the completely simple semigroup Je by
a nilpotent semigroup. If this nilpotent semigroup is stratified then KJe is a
nil-stratified extension with base Je. Not every nilpotent semigroup is stratified,
however, as illustrated by the following example.1

Example 3.3.15. Let S = P(N) with multiplication A ◦ B given by

A ◦ B =

⎧⎨⎩A ∪ B A ∩ B ̸= ∅

∅ otherwise

1This example was kindly provided by the anonymous referee of [31].
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so that S is a semigroup with zero given by ∅. Then A2 = ∅ for every A ∈ S so S is a
nilpotent semigroup. It is easy to check that for every i ∈ N, Si consists of ∅ and all subsets of
N with at least i elements. Hence Base(S) contains ∅ and every subset of N with infinite
cardinality, so S is not a stratified semigroup (though it is a stratified extension).

Proposition 3.3.16. Let S be an eventually regular semigroup such that Reg(S) is completely
simple and suppose S is a finitely stratified extension. Then Base(S) \ Reg(S) is either empty
or infinite.

Proof. Suppose s0 ∈ Base(S) \ Reg(S) ̸= ∅. Since S is a finitely stratified extension,
Base(S) is a globally idempotent subsemigroup so s0 = s1t1 for some s1, t1 ∈ Base(S).
If s1 is regular then as Reg(S) is an ideal, s0 is regular giving a contradiction. Further,
if s1 = s0 then s0 = s0t1 = s0t1

n for any n ∈ N. We can choose n such that t1
n is regular,

so s0 is again regular giving a contradiction. Hence s1 is an element of
Base(S) \ Reg(S) not equal to s0. By a similar argument, s1 = s2t2 where
s2 ∈ Base(S) \ Reg(S) and s2 is not equal to s0 nor s1. Proceeding inductively we
deduce that the set {s0, s1, s2, . . . } is an infinite subset of Base(S) \ Reg(S).

It follows that any finite strongly 2−chained semigroup is a semilattice of finitely
stratified extensions with completely simple bases.

Theorem 3.3.17. A semigroup S is a finite strongly 2−chained semigroup if and only if
S = [Y; Sα] is a finite semilattice of finite semigroups Sα where each Sα is a finitely stratified
extension of a completely simple semigroup.

Proof. To see that the converse is true, let s ∈ S be a regular element, so that there
exists α such that s ∈ Sα. Let s′ be an inverse of s (within S) with s′ ∈ Sβ for some β.
Then s = ss′s ∈ SαSβSα ⊆ Sαβ ∩ Sα, and so Sα = Sαβ. Similarly s′ = s′ss′ ∈ Sαβ ∩ Sβ and
so Sα = Sβ. It follows that s is regular within Sα and so s ∈ Base(Sα) and is therefore
H−related to an idempotent as required.

3.4 Strict extensions of Clifford semigroups

This section makes use of the notation of Clifford and Preston [4, Section 4.4], and in
particular that relating to ideal extensions determined by partial homomorphisms. A
Clifford semigroup is a completely regular inverse semigroup. It is well known that a
Clifford semigroup S decomposes as a semilattice of groups S = S [Y; Gα]. We begin
by showing that a strict extension Σ of a Clifford semigroup S has a semilattice
structure isomorphic to that of the Clifford semigroup itself.
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Lemma 3.4.1. Let S = S [Y; Gα] be a Clifford semigroup. An ideal extension of S is strict if
and only if it is determined by a partial homomorphism.

Proof. Let a, b ∈ S be such that ax = bx and xa = xb for all x ∈ S. As S is a Clifford
semigroup a ∈ Gα and b ∈ Gβ for some α, β ∈ Y. Let e, f be the identities of Gα, Gβ

respectively. Then a = ea = eb and so α ≤ β. Similarly, b = f b = f a so β ≤ α and so
α = β and e = f . Then a = ea = eb = b and hence S is weakly reductive. The result
then follows from Theorem 1.3.2.

Lemma 3.4.2. Let Σ be a strict extension of a Clifford semigroup S = S [Y; Gα] by a
semigroup T defined by a partial homomorphism A ↦→ A and let
Σα = Gα ∪ {A ∈ T \ {0}|A ∈ Gα} for each α ∈ Y. Define a relation ∼ on Σ by s ∼ t if and
only if s, t ∈ Σα for some α ∈ Y. Then ∼ is a congruence and Σ/∼ is a semilattice isomorphic
to Y.

Proof. Clearly ∼ is an equivalence relation. To prove ∼ is a congruence and that
Σ/∼ ∼= Y we show that ∼ is the kernel of the homomorphism θ : Σ → Y where if
s ∈ Σα then θ(s) = α. Note that if A ∈ T \ {0} then θ(A) = θ(A). We have four cases
to consider:

1. If s, t ∈ S then θ(s)θ(t) = θ(st) follows from the semilattice structure of S.

2. If s ∈ S and A ∈ T \ {0} then θ(s)θ(A) = θ(s)θ(A) = θ(sA) = θ(sA), where the
last two equalities follow from the first case and multiplication in a strict
extension respectively.

3. The case for θ(A)θ(s) follows similarly.

4. If A, B ∈ T \ {0} then θ(A)θ(B) = θ(A)θ(B) = θ(A B) by the first case. Then if
AB = 0 in T we have θ(AB) = θ(A B) and if AB ̸= 0 in T we have
θ(AB) = θ(AB) = θ(A B). In either case θ(A)θ(B) = θ(AB).

Hence θ is a homomorphism as required and ∼ is clearly its kernel.

Theorem 3.4.3. Every strict extension Σ of a Clifford semigroup S by a semigroup T is a
semilattice of extensions of groups. Conversely, if Σ = S [Y; Σα] is a semilattice of extensions
Σα of groups Gα and S =

⋃︁
α∈Y Gα is an ideal of Σ then Σ is a strict extension of the Clifford

semigroup S.

Proof. By Lemma 3.4.2, Σ is a semilattice of semigroups Σα defined via a partial
homomorphism A ↦→ A from T \ {0} → S. The restriction of this map to Σα \ Gα gives
a partial homomorphism defining the ideal extension Σα of the group Gα.
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Conversely, let Σ be a semilattice of semigroups Σα where each Σα is an ideal extension
of a group Gα by a semigroup Tα and S =

⋃︁
α∈Y Gα is an ideal of Σ. It follows that S is a

Clifford semigroup and Σ is an ideal extension of S by T = Σ/S, where T can
equivalently be viewed as {0} ∪⋃︁

α∈Y Tα \ {0}. As Gα has identity eα the extension Σα

is determined by the partial homomorphism A ↦→ Aeα (= eα A) (Proposition 1.3.1 and
Theorem 1.3.2). The union of these maps is then a map φ : T \ {0} → S such that
φ(A) = Aeα for each A ∈ Tα \ {0}. We will show that φ is a partial homomorphism
and that it defines the ideal extension Σ. For clarity, the multiplication determined by
φ will be denoted by ◦, multiplication within T by ∗, and the original multiplication of
the semilattice Σ by juxtaposition.

Let A, B ∈ T \ {0} such that A ∗ B ̸= 0 and assume A ∈ Tα, B ∈ Tβ so that A ∗ B ∈ Tαβ.
Then φ(A)φ(B) = Aeα(Beβ) = A(Beβ)eα = ABeαβ = φ(AB) as required.

This partial homomorphism determines an ideal extension of S consisting of the same
set Σ under the multiplication ◦ defined by

1. s ◦ t = st

2. A ◦ B =

⎧⎨⎩AB if A ∗ B ̸= 0

φ(A) φ(B) otherwise

3. A ◦ s = φ(A)s

4. s ◦ A = sφ(A)

where A, B ∈ T \ {0} and s, t ∈ S. We show that in all cases, this multiplication is
equivalent to the original multiplication on Σ. The first condition and the first part of
the second condition do not require proof. For the second part of the second
condition, let A ∈ Tα \ {0} and B ∈ Tβ \ {0} with A ∗ B = 0 so AB ∈ Gαβ. Then

A ◦ B = φ(A)φ(B) = Aeα(Beβ) = A(Beβ)eα = ABeαβ = AB

as required. For the third condition, let A ∈ Tα \ {0} and s ∈ Gβ with As ∈ Gαβ. Then

A ◦ s = φ(A)s = Aeα(seβ) = A(seβ)eα = Aseαβ = As

as required. The fourth condition follows a dual argument. Hence φ determines the
extension Σ and so it is a strict extension of S.

Corollary 3.4.4. Let Σ be a strict stratified extension of a Clifford semigroup S. Then Σ is a
semilattice of stratified extensions of groups.

Proof. Let Σ be a strict extension of a Clifford semigroup S by a stratified semigroup T.
By Theorem 3.4.3, Σ is a semilattice of semigroups Σα, each of which is an ideal
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extension of a group Gα by a subsemigroup of T containing zero. It can be easily
verified that such a subsemigroup is also stratified, and hence Σ is a semilattice of
stratified extensions of groups.

The converse of Corollary 3.4.4 does not hold in general as each Tα being a stratified
semigroup does not guarantee that T is itself a stratified semigroup. For example, let
Y = {a, b} with a ≤ b. For each α ∈ Y let Gα be a group, Tα a free semigroup with
adjoined zero, and Σα an ideal extension of Gα by Tα. For s ∈ Ta and t ∈ Tb let
st = ts = s. Along with the fact that S = Ga ∪ Gb is an ideal of Σ, this defines a
multiplication on the semilattice Σ = Σa ∪ Σb. Each Tα is a stratified semigroup so
each Σα is a stratified extension of a group, however T = Σ/S is not stratified, as⋂︁

i≥1 Ti ∼= Ta. A sufficient, but clearly not necessary, condition under which T will
always be stratified is if T is finite.

As an example of the above construction, consider the following. Let n ∈ N and let
N = {1, . . . , n}. Let S = G0

1 × . . . × G0
n be a direct product of 0−groups G0

i , i ∈ N. For
s = (a1, . . . , an) ∈ S define dom(s) = {i ∈ N|ai ̸= 0}.

Let m ∈ N and define a relation ρm on (N,+) by

ρm = 1N ∪ {(x, y) ∈ N× N|x, y ≥ m}.

Then it is easy to check that S is a Clifford semigroup over the semilattice of possible
domains dom(s) with meet given by intersection of sets, and hence a strong
semilattice of groups. Further, ρm is a congruence on N and N/ρm is a finite monogenic
semigroup with trivial kernel. For simplicity, we shall identify N/ρm with {1, . . . , m},
in the obvious way. Let T′ be the semigroup of all partial maps from N to N/ρm with
binary operation ∗ given by ( f ∗ g)(x) = f (x) + g(x) when both are defined and
undefined otherwise. Let I ⊆ T′ be the set of maps whose image is {m}. It can be
readily seen that I is an ideal of T′ and T = T′/I is a nilpotent semigroup.

For each i ∈ N pick an element gi ∈ Gi and let αi : T \ {0} → G0
i be the partial

homomorphism given by

αi( f ) =

⎧⎨⎩g f (i)
i f (i) is defined

0 otherwise.

Then α : T \ {0} → S given by α( f ) = (α1( f ), . . . , αn( f )) is a partial homomorphism
defining an ideal extension Σ of S by T.

Notice that sJ t if and only if dom(s) = dom(t). It follows that the semilattice
structure of S is defined in terms of the power set of N (i.e.
dom(st) = dom(s) ∩ dom(t)). Let SM be the J -class of S with dom(s) = M for
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s ∈ SM. Then TM = α−1(SM) is the set of maps in T \ {0} whose domain is exactly M.
The set T0

M = TM ∪ {0} is a subsemigroup of T and is nilpotent. The restriction of α to
TM then gives a partial homomorphism from T0

M to SM which defines an ideal
extension ΣM of the group SM by T0

M. It can then be shown that Σ is a semilattice of
these semigroups ΣM.
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Chapter 4

The multiplicative semigroup of a
Dedekind domain

This chapter covers a further example of a semigroup which decomposes as a
semilattice of stratified semigroups, namely the multiplicative semigroups of both
Dedekind domains and quotients thereof. After a few preliminaries, in Section 4.2 we
consider the multiplicative structure of commutative rings in a more general way and
describe the J−classes in terms of certain annihilators. We then show that the
multiplicative semigroup can be viewed as a semilattice of semigroups. In Section 4.3
we specialise to Dedekind domains and show that the subsemigroups of the
semilattice are stratified extensions of groups. In Section 4.4, we consider quotients of
Dedekind domains and demonstrate by using prime factorisations of ideals, that the
multiplicative structure is a finite Boolean algebra of stratified extensions of groups
and give a ‘recipe’ for constructing both the semilattice and the stratified
subsemigroups. Section 4.5 then presents some interesting examples.

4.1 Preliminaries

For details of basic definitions and results in ring theory, we refer the reader to [5]
and [6]. An ideal I of a ring R is prime if I is a proper ideal and for all a, b ∈ R, if ab ∈ I
then either a ∈ I or b ∈ I. A domain is a ring with no non-zero zero-divisors and a
Dedekind domain is a commutative domain in which every non-zero proper ideal can
be factored into a product of prime ideals. If I, J ⊴ R are ideals of a commutative ring
R then we say that I divides J and write I|J if and only if there exists H ⊴ R with
I = JH. Then R is a Dedekind domain if and only if

for all I, J ⊴ R, J ⊆ I if and only if I|J.
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A principal ideal domain is a commutative domain in which every ideal is principal. A
Dedekind domain is a principal ideal domain if and only if it is a unique factorisation
domain. If R is a Dedekind domain and {0} ̸= I ⊴ R is a non-zero ideal of R then R/I
is a principal ideal ring. A Dedekind domain is Noetherian and as such every
non-zero, non-unit element can be factorised into a product of irreducible elements.
The following elementary properties of ideals will be used implicitly in some of what
follows.

Lemma 4.1.1. Let I, J be ideals of R. Then

1. I J ⊆ I ∩ J.

2. I ∪ J ⊆ I + J

3. I ⊆ J ⇐⇒ I + J = J.

4. I J + J = J.

4.2 Rings as semilattices of semigroups

Throughout the remainder of this chapter we assume R is a commutative ring with
unity.

We will show that the multiplicative semigroup of R is a semilattice of semigroups,
and investigate this structure further in Section 4.3. Note that as R is commutative
then on the multiplicative semigroup of R, Green’s relations, H = R = L = D = J
coincide. Recall that for any ring R, the quotient R/(0) is naturally isomorphic to R
itself via the map x ↦→ x + (0). Some of the results below take place within R/(0) and
we could make use of this isomorphism to recast them in R instead. However we have
chosen not to do this explicitly.

Let D be the set of all ideals of R. It is easy to see that, under the usual addition and
multiplication of ideals, D forms a semiring (i.e. an algebraic structure satisfying all of
the usual ring properties with the exception that additive inverses need not exist) with
additive identity (0) and multiplicative identity (1) = R. Let δ : R → D be given by
δ(x) = (x). This is clearly a semiring homomorphism.

Proposition 4.2.1. The kernel of δ is Green’s J−relation and hence J is a congruence on R.

Proof. Let x, y ∈ R such that δ(x) = δ(y). Then the principal ideals RxR and RyR are
equal, so xJ y. Conversely if xJ y then δ(x) = RxR = RyR = δ(y).
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Let x ∈ R and let
x = Ann(x) = {y ∈ R | xy = 0}

be the annihilator of x, which is clearly an ideal of R. Let Rx = R/x and let Ux be the
group of units of this quotient. For y ∈ R, we denote by [y]x the coset y + x and
consider the set xUx. We will see that this set is essentially the J−class of R
containing x. Note that xx = {xy | y ∈ R, xy = 0} = {0} = (0).

Lemma 4.2.2. Let x ∈ R and let Vx = {u ∈ R | ∃v ∈ R, xuv = x}. Then

1. xUx ⊆ xRx ⊆ R/(0),

2. For [u]x, [v]x ∈ Rx, x[u]x = x[v]x if and only if [u]x = [v]x,

3. Vx is a submonoid of R and u ∈ Vx if and only if [u]x ∈ Ux.

Proof. 1. For any u ∈ R we have x[u]x = x(u + x) = xu + xx = xu + (0) ∈ R/(0)
and so xRx ⊆ R/(0).

2. Let x[u]x = x[v]x. Then xu − xv ∈ (0) and so x(u − v) = 0. Hence u − v ∈ x and
so [u]x = [v]x. The converse is obvious.

3. That Vx is a submonoid of R is fairly clear. Suppose that [u]x ∈ Ux so that there
exists [v]x ∈ Ux such that [u]x[v]x = [1]x. Then uv − 1 ∈ x and so xuv = x.
Conversely, if u, v ∈ R such that xuv = x then
x[u]x[v]x = xuv + (0) = x + (0) = x[1]x and so from part (2) it follows that
[u]x ∈ Ux.

Theorem 4.2.3. Let x, y ∈ R. Then xJ y if and only if y + (0) ∈ xUx. Consequently the sets
xUx are the J−classes of R/(0).

Proof. Suppose y + (0) ∈ xUx. Then y + (0) = x[u]x = xu + (0) for some u ∈ Vx, and
so y = xu. Since [u]x is a unit, there exists v ∈ Vx such that xuv = x and so
yv + (0) = xuv + (0) = x + (0) and hence x = yv and so xJ y.

Now let xJ y. Then there exists u ∈ R such that xu = y. Then
y + (0) = xu + (0) = x[u]x. Further, there exists v ∈ R such that x = yv. Then x = xuv
and so from Lemma 4.2.2(3), [u]x ∈ Ux and y + (0) ∈ xUx.

From this and the fact that J = ker(δ) we immediately deduce

Corollary 4.2.4. Let x, y ∈ R. Then

xJ y if and only if xUx = yUy if and only if (x) = (y).
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Notice that xJRy if and only if (x + (0))JR/(0) (y + (0)) and that the sets xUx are the
J−classes of R/(0). Consequently, if x1 + (0), x2 + (0) ∈ xUx then

x1 JR x2 JR x

and so since JR = ker δ

(x1) = (x2) = (x).

Note also that since u ∈ Vx if and only if [u]x ∈ Ux then y ∈ xVx if and only if
y + (0) ∈ xUx. It follows that xVx is the image of xUx under the natural isomorphism
from R/(0) to R and hence is the J -class of R containing x. Our reason for working
with xUx rather than xVx is due to Lemma 4.2.2(2): if u, v ∈ Vx and xu = xv then it is
not necessarily the case that u = v. For example, if e ∈ R is a non-unit idempotent
then 1, e ∈ Ve and e1 = ee = e but e ̸= 1. This cancellation property is required for the
following theorem.

Theorem 4.2.5. Let R be a ring and let x ∈ R. The set xUx is a subsemigroup of R/(0) if and
only if δ(x) is an idempotent. It is in fact a subgroup which is isomorphic to Ux.

Proof. Let x1 + (0), x2 + (0) ∈ xUx. Then from above, x1J x2J x and so since J is a
congruence, it follows that x1x2J x2 and hence from Corollary 4.2.4,
x1x2 + (0) ∈ x2Ux2 . But if xUx is a subsemigroup of R/(0) then x1x2 + (0) ∈ xUx and
so xUx ∩ x2Ux2 ̸= ∅. Consequently xUx = x2Ux2 and so δ(x) = (x) = (x2) = δ(x)2 by
Corollary 4.2.4.

Conversely, if (x) = (x2) then xJ x2 and so in particular x + (0) and x2 + (0) belong to
the same H-class of R/(0), xUx, and hence this H-class is a group.

If (x) = (x2) then x = x2k for some k ∈ R and so x ∈ Vx. Now define ϕ : xUx → Ux by
ϕ(x[u]x) = [xu]x. By Lemma 4.2.2(3) this map is well-defined and it is clearly onto. In
addition

ϕ(x[u]xx[v]x) = ϕ(x2[uv]x) = ϕ(x[xuv]x)

= [x2uv]x = ([xu]x) ([xv]x)

= ϕ(x[u]x)ϕ(x[v]x),

and so ϕ is a morphism. Finally, if ϕ(x[u]x) = ϕ(x[v]x) then [xu]x = [xv]x and so
[x]x[u]x = [x]x[v]x. Hence [u]x = [v]x since [x]x ∈ Ux. Therefore x[u]x = x[v]x as
required.
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For any I ∈ D, let EI = {J ∈ E(D) | J ⊆ I}. This set is non-empty since (0) ∈ E(D)

and (0) ⊆ I for any I ∈ D. We claim that

ε(I) = ∑
J∈EI

J

is the greatest element of EI with respect to subset inclusion. It is easy to see that
ε(I) ∈ D and for every J ∈ EI , J ⊆ ε(I). It remains to show that ε(I) ∈ E(D) and
ε(I) ⊆ I.

A general element of ε(I) has the form e1 + . . . + en where each ei lies in some ideal
Ji ∈ EI . Hence every element of ε(I) is an element of I and so ε(I) ⊆ I. As Ji ∈ E(D),
ei ∈ Ji Ji. Then

e1 + · · ·+ en ∈ J1 J1 + . . . + Jn Jn ⊆ (J1 + . . . + Jn)(J1 + . . . + Jn).

Since each Ji ∈ EI , J1 + . . . + Jn ⊆ ε(I) so ε(I) ⊆ ε(I)ε(I). The reverse inclusion holds
for any ideal and so ε(I) ∈ E(D) as required.

This construction clearly describes a well-defined map ε : D → E(D). For each
e ∈ E(D) let

De = ε−1(e).

Proposition 4.2.6. The multiplicative semigroup of D is a semilattice of semigroups
S [E(D); De].

Proof. As R is commutative, D is also commutative and hence E(D) is a semilattice. If
I ∈ E(D) then clearly I is the greatest element of EI so ε(I) = I and ε is a surjection
onto the semilattice E(D). It remains to show that ε is a homomorphism.

Let I, J ∈ D and K ∈ E(D). If K ∈ EI ∩ EJ then K ⊆ I and K ⊆ J. Then K = KK ⊆ I J so
K ∈ EI J . Conversely, if K ∈ EI J then K ⊆ I J. But I J ⊆ I so K ⊆ I and K ∈ EI . In a
similar way, K ∈ EJ and hence K ∈ EI ∩ EJ and EI J = EI ∩ EJ .

It is easily seen that for all L ∈ D, EL = Eε(L) and hence

Eε(I J) = EI J = EI ∩ EJ = Eε(I) ∩ Eε(J) = Eε(I)ε(J).

As E(D) is a semilattice ε(I)ε(J) ∈ E(D) and so it follows that ε(I J) = ε(I)ε(J) as
required.

For each e ∈ E(D) let Re = (εδ)−1(e).

Theorem 4.2.7. The multiplicative semigroup of R is a semilattice of semigroups
S [Im(εδ); Re].
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Proof. It is clear that εδ is a surjective homomorphism from R onto its image. Since
Im(εδ) is a subsemigroup of the semilattice E(D), it is also a semilattice.

We now want to consider the nature of the semigroups De and Re for a specific type of
ring.

4.3 Dedekind domains

Let R be a Dedekind domain. We wish in the next section to consider quotients of
Dedekind domains but we first make some observations about Dedekind domains in
general. While the semigroup structure of these rings is not too complex, it is
interesting in its own right. We will show that R is a semilattice of stratified extensions
of groups. More specifically, R is a semilattice of two semigroups; its group of units
and a stratified extension of the trivial group. Recall that D is the collection of all
ideals of R and that εδ(x) is the largest idempotent ideal contained in (x).

Proposition 4.3.1. The idempotents of D are R and (0).

Proof. As R is a Dedekind domain, every non-zero proper ideal I of R can be
factorised uniquely as a product of prime ideals, so I = X1 . . . Xn for some prime
ideals Xi ⊴ R. If I ∈ E(D) then I = I2 = X1 . . . XnX1 . . . Xn is another factorisation of I
into prime ideals. This contradicts the uniqueness of the factorisation, and so I cannot
be idempotent. Hence there are no idempotent non-zero proper ideals of R and so
E(D) = {R, (0)}.

Clearly for any ideal I of R we have (0) ⊆ I ⊆ R and so ε(I) = R if I = R and
ε(I) = (0) otherwise. Note also that R = εδ(1) and (0) = εδ(0) so εδ is surjective, and
in addition DR is the trivial semigroup and hence is vacuously a stratified extension of
a group.

Proposition 4.3.2. The subsemigroup D(0) is a stratified extension of the trivial group {(0)}.

Proof. Let I be a non-zero proper ideal of R so I ∈ D(0). Suppose I factors uniquely as
a product of n prime ideals, I = X1 . . . Xn. Each Xi is a non-zero proper ideal of R so
lies in D(0) and hence I ∈ D(0)

n. If I ∈ D(0)
n+1 then I = Y1 . . . Yn+1 for some Yi ∈ D(0).

Since I is non-zero, clearly each Yi is non-zero and so factors as a product of prime
ideals. But then I can be written as a product of at least n + 1 prime ideals,
contradicting the uniqueness of the previous factorisation. Hence I ̸∈ D(0)

n+1 and so
I ∈ D(0)

n \ D(0)
n+1. As this holds for every non-zero ideal of R, we have

Base(D(0)) = {(0)} and hence D is a stratified extension of the trivial group.
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Theorem 4.3.3. Let R be a Dedekind domain. Then R is a semilattice of stratified extensions
of groups. In particular, the semilattice is the two element semilattice R > (0), RR is the group
of units of R, and R(0) is a stratified extension of the trivial group.

Proof. Since εδ is a surjection, by Theorem 4.2.7, R is a semilattice of semigroups
S [E(D); Re]. Clearly δ(x) = R if and only if x is a unit of R, and so RR is exactly the
group of units of R. For R(0), by Proposition 3.2.10,

Base(R(0)) ⊆ δ−1(Base(D(0))) = δ−1((0)) = {0}.

Since 0 is idempotent we have 0 ∈ Base(R(0)) and so Base(R(0)) = {0} and hence R(0)

is a stratified extension of the trivial group.

Note that Base(R(0)) = δ−1(Base(D(0))). In general the layers within the stratified
structure of D0 and within R0 will not be the same. However,

Proposition 4.3.4. Let R be a Dedekind domain and let i > 1. Then R(0)
i = δ−1(D(0)

i) if
and only if R is a principal ideal domain.

Proof. Note that by Proposition 3.2.10, R(0)
i ⊆ δ−1(D(0)

i) is always true for any
commutative ring R.

Let R be a principal ideal domain and let x ∈ δ−1(D(0)
i). Then δ(x) = (x) can be

factorised as a product of i principal ideals (x) = (x1) . . . (xi) = (x1 . . . xi) with each
(xj) ∈ D(0). Hence for 1 ≤ j ≤ i, xj ∈ R(0) and so x1 . . . xi ∈ R(0). Since
δ(x) = δ(x1 . . . xi) we have xJ x1 . . . xi and so x = x1 . . . xiu for some u ∈ R. Since

εδ(xiu) = εδ(xi)εδ(u) = (0)εδ(u) = (0)

then xiu ∈ R(0) and it follows that x ∈ R(0)
i.

For the converse, note that since R is a Dedekind domain it is Noetherian and hence
every non-zero, non-unit element can be factorised into a product of irreducible
elements. It follows that every irreducible element of R is prime if and only if R is a
unique factorisation domain and hence a principal ideal domain. Hence if R is not a
principal ideal domain there exists some x ∈ R(0) such that x is irreducible but not
prime (recall that RR consists of units which are not irreducible). Since x is irreducible
it cannot be written as a product of two non-unit elements of R and hence x ̸∈ R(0)

2.
Since x is not prime, (x) is not a prime ideal and so has a unique factorisation as a
product of prime ideals X1 . . . Xn for some n > 1. In particular, (x) ∈ D(0)

2 and so
R(0)

2 ̸= δ−1(D(0)
2). It is then an easy matter to extend this for all i ≥ 2.

Notice then that when R is a principal ideal domain, the i-th layer of R(0) is the
preimage of the i-th layer of D(0).
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Corollary 4.3.5. Let R be a Dedekind domain. An element x ∈ R is prime if and only if (x)
lies in the first layer of D(0). Additionally, if x ∈ R is prime then x lies in the first layer of
R(0). The converse holds only when R is a PID.

4.4 Quotients of Dedekind domains

Let S be a Dedekind domain, A ⊴ S and let R = S/A. We will demonstrate that R is a
semilattice of stratified extensions of groups. Note that when A = (0), R ∼= S and this
case has effectively been considered in Section 4.3. When A = S then R = {0} and this
situation is trivial. Hence we shall assume in what follows that S ̸= A ̸= (0).

Let DA be the set of ideals of S containing A and define an operation ∗ on DA such
that X ∗ Y = XY + A. Then

(X ∗ Y) ∗ Z = (XY + A) ∗ Z = (XY + A)Z + A = XYZ + AZ + A = XYZ + A

and similarly X ∗ (Y ∗ Z) = XYZ + A and so ∗ is associative. Note that for every
I ∈ DA, I + A = I.

The following is well known (see for example [5, Third Isomorphism Theorem, Page
303]), but as the result is normally presented as an isomorphism DA → D, we feel the
proof is useful to present here.

Lemma 4.4.1. The map Φ : D → DA given by Φ(I) =
⋃︁

X∈I X is an isomorphism.

Proof. Note that x + A ∈ I if and only if x ∈ Φ(I).

We first show Φ is well defined. Let x, y ∈ Φ(I). Then x + A, y + A ∈ I so
x + y + A ∈ I and hence x + y ∈ Φ(I). Similarly for any z ∈ S, z + A ∈ R so
xz + A ∈ I and xz ∈ Φ(I) and hence Φ(I) is an ideal of S. Since 0 + A ∈ I, A ⊆ Φ(I)
and so Φ(I) ∈ DA.

To see that Φ is injective, if Φ(I) = Φ(J) then we have

x + A ∈ I ⇔ x ∈ Φ(I) ⇔ x ∈ Φ(J) ⇔ x + A ∈ J

so I = J. For surjectivity, let I be an ideal of S containing A. Then J = {x + A | x ∈ I}
is clearly an ideal of R and Φ(J) = I.

Finally we show that Φ is a homomorphism. If x ∈ Φ(I) ∗ Φ(J) = Φ(I)Φ(J) + A then
x = x1y1 + . . . + xnyn + a where a ∈ A, xi + A ∈ I and yi + A ∈ J for each
i ∈ {1, . . . , n}. Then x1y1 + . . . + xnyn + A ∈ I J so x1y1 + . . . + xnyn ∈ Φ(I J) and
x1y1 + . . . + xnyn + a ∈ Φ(I J) + A = Φ(I J). Hence Φ(I) ∗ Φ(J) ⊆ Φ(I J). For the
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reverse inclusion let x ∈ Φ(I J) so x + A ∈ I J and
x + A = (x1 + A)(y1 + A) + . . . + (xn + A)(yn + A) = x1y1 + . . . + xnyn + A. Then
x − (x1y1 + . . . + xnyn) ∈ A so x = x1y1 + . . . + xnyn + a for some a ∈ A. Hence
x ∈ Φ(I)Φ(J) + A = Φ(I) ∗ Φ(J). Therefore Φ(I) ∗ Φ(J) = Φ(I J) and Φ is a
homomorphism.

Notice that if K ∈ DA then Φ−1(K) = K/A.

Since S is a Dedekind domain, every nonzero proper ideal factors into a product of
prime ideals. Hence for all I ∈ D, I ̸= R, Φ(I) = P1P2 . . . Pn for some prime ideals Pi of
S. Then Φ(I) = Φ(I) + A = P1 . . . Pn + A since A ⊆ Φ(I). For each 1 ≤ i ≤ n,
A ⊆ Φ(I) ⊆ Pi so Pi ∈ DA. Hence
Φ(I) = P1 . . . Pn + A = P1 ∗ . . . ∗ Pn = Φ(X1) ∗ . . . ∗ Φ(Xn) where
Xi = Φ−1(Pi) = Pi/A and so I = X1 . . . Xn. Note that this is not necessarily a unique
factorisation, as for example (4) as an ideal of Z12 can be written as (2)(2) or as
(2)(2)(2). It is however a factorisation into prime ideals.

Lemma 4.4.2. The ideal I is a prime ideal of R if and only if Φ(I) is a prime ideal of S.

Proof. Suppose Φ(I) is a prime ideal of S and let (x + A)(y + A) = xy + A ∈ I. Then
xy ∈ Φ(I) and so without loss of generality x ∈ Φ(I). Hence x + A ∈ I and so I is a
prime ideal. Conversely, suppose I is a prime ideal of R and let xy ∈ Φ(I). Then
xy + A ∈ I so without loss of generality x + A ∈ I and hence x ∈ Φ(I) so Φ(I) is
prime.

The following lemma shows that the factorisation of I into Φ−1(P1) . . . Φ−1(Pn) is a
minimal prime factorisation, in the sense that any other prime factorisation of I must
include each of these factors.

Lemma 4.4.3. Let I ∈ D be such that Φ(I) has a unique prime factorisation P1 . . . Pn. If
X1 . . . Xm is a prime factorisation of I then m ≥ n and, up to reordering factors,
Xi = Φ−1(Pi) for i ∈ {1, . . . , n}.

Proof. By definition,

Φ(I) = Φ(X1) ∗ . . . ∗ Φ(Xm) = Φ(X1) . . . Φ(Xm) + A

so Φ(X1) . . . Φ(Xm) ⊆ Φ(I) and hence Φ(I) divides Φ(X1) . . . Φ(Xm) as S is a
Dedekind domain. Then P1 . . . PnQ = Φ(X1) . . . Φ(Xm) for some ideal Q of S so, by
uniqueness of prime factorisations in S, we have m ≥ n and, reordering if necessary,
Pi = Φ(Xi) for each i ∈ {1, . . . , n}. Applying Φ−1 to each equality then gives the
desired result.
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Suppose A has prime factorisation Pe1
1 . . . Pen

n (ei > 0). By definition, any ideal
Φ(I) ∈ DA has A ⊆ Φ(I) and so Φ(I) divides A and hence Φ(I) = P f1

1 . . . P fn
n where

0 ≤ fi ≤ ei. In particular, if P is a prime ideal of S then A ⊆ P if and only if P = Pi for
some i ∈ {1, . . . , n}. Let

Ai = Φ−1(Pi)

for each i ∈ {1, . . . , n}. Then A1, . . . , An are precisely the prime ideals of R and any
I ∈ D has minimal prime factorisation A f1

1 . . . A fn
n , for some fi ≥ 0. Notice that the

primes A1, . . . , An are unique with respect to this construction, by Lemma 4.4.3.

Note here that we adopt the convention P0
1 , . . . , P0

n = S and A0
1, . . . , A0

n = R, i.e. that
the empty powers of primes are the identity elements of DA and D respectively.

Lemma 4.4.4. Let I ∈ D. If I has prime factorisation Ag1
1 . . . Agn

n then the minimal prime
factorisation of I is given by A f1

1 . . . A fn
n where fi = min(ei, gi). Hence a prime factorisation is

minimal if and only if 0 ≤ gi ≤ ei for all i ∈ {1, . . . , n}.

Proof. Let I = Ag1
1 . . . Agn

n . Then

Φ(I) = Pg1
1 ∗ . . . ∗ Pgn

n

= Pg1
1 . . . Pgn

n + A

= Pg1
1 . . . Pgn

n + Pe1
1 . . . Pen

n .

Note that we can factorise

Pg1
1 . . . Pgn

n + Pe1
1 . . . Pen

n = Pmin(g1,e1)
1 . . . Pmin(gn,en)

n (J + K)

for some ideals J, K of S such that J and K have no common factors. Then, as
J, K ⊆ J + K by Lemma 4.1.1, J + K is a common factor of J and K and hence
J + K = S. Then

Pg1
1 . . . Pgn

n + Pe1
1 . . . Pen

n = Pmin(g1,e1)
1 . . . Pmin(gn,en)

n

is the unique prime factorisation of Φ(I) so Amin(g1,e1)
1 . . . Amin(gn,en)

n is the minimal
prime factorisation of I.

Corollary 4.4.5. Let I = Ai1
1 . . . Ain

n and J = Aj1
1 . . . Ajn

n be minimal prime factorisations of
I, J ∈ D. The minimal prime factorisation of I J is

Amin(i1+j1,e1)
1 . . . Amin(in+jn,en)

n .

We can now apply our methods from Section 4.2, and in particular Proposition 4.2.6,
to find the semilattice structure of D.
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Lemma 4.4.6. Let I ∈ D with minimal prime factorisation A f1
1 . . . A fn

n . Then I ∈ E(D) if
and only if fi ∈ {0, ei} for all i ∈ {1, . . . , n}.

Proof. Let I ∈ D have minimal prime factorisation A f1
1 . . . A fn

n so I2 has minimal prime
factorisation Amin(2 f1,e1)

1 . . . Amin(2 fn,en)
n . If fi = 0 then min(2 fi, ei) = 0 = fi and if fi = ei

then min(2 fi, ei) = ei = fi so I2 = A f1
1 . . . A fn

n = I.

Conversely, if I2 = I then min(2 fi, ei) = fi for all i ∈ {1, . . . , n}. Then if fi ≤ ei/2 we
have 2 fi = fi so fi = 0 and if fi > ei/2 we have fi = ei. Hence fi ∈ {0, ei} for all
i ∈ {1, . . . , n}.

Let N = {1, . . . , n}. The previous lemma shows that an idempotent e is entirely
determined by which Ai have a non-zero power fi, and hence we have a bijection
Λ : E(D) → P(N) given by Λ(e) = {i ∈ N| fi = ei}. If P(N) is equipped with the
operation of union of sets it then becomes a semilattice and Λ can easily seen to be an
order isomorphism.

Note that for every I ∈ D there exists e ∈ E(D) such that I has minimal prime
factorisation ∏i∈Λ(e) A fi

i where 0 < fi ≤ ei for all i ∈ Λ(e). In fact I ∈ De if and only if
its minimal prime factorisation can be written in this way. To see this, it is sufficient to
observe that for any prime ideal Ai we have ε(Ai) = Aei

i as ε is a homomorphism.

Proposition 4.4.7. Let De be a subsemigroup of D for some e = ∏j∈Λ(e) A
ej
j ∈ E(D). Let

I ∈ De with minimal prime factorisation ∏j∈Λ(e) A
f j
j for 0 < f j ≤ ej and suppose that I ̸= e.

Then for each i ≥ 1, I ∈ De
i if and only if min{ f j| f j ̸= ej} ≥ i.

Note that { f j| f j ̸= ej} is non-empty since I ̸= e. Since e is idempotent, e ∈ De
i for all

i ∈ N.

Proof. By definition, ∏j∈Λ(e) Aj divides every element of De so ∏j∈Λ(e) Ai
j divides

every element of De
i. Then for every I ∈ De

i there exists a prime factorisation

∏j∈Λ(e) A
gj
j with gj ≥ i. By Lemma 4.4.4 the minimal prime factorisation of I,

∏j∈Λ(e) A
f j
j , has f j = min(ej, gj) so we have f j = gj ≥ i for every f j ̸= ej and hence

min{ f j| f j ̸= ej} ≥ i.

For the converse, suppose I has minimal prime factorisation ∏j∈Λ(e) A
f j
j such that

min{ f j| f j ̸= ej} ≥ i. Then for each j ∈ Λ(e) either f j = ej or i ≤ f j < ej. Let

gj = max( f j, i) and J = ∏j∈Λ(e) A
gj
j . Then J =

(︂
∏j∈Λ(e) Aj

)︂i−1 (︂
∏j∈Λ(e) A

gj−(i−1)
j

)︂
so,

as gj − (i − 1) > 0, J ∈ De
i. If i < f j < ej then gj = f j < ej. Otherwise, gj > f j = ej. In

either case, min(gj, ej) = f j and hence I and J have the same minimal prime
factorisation, so I = J and I ∈ De

i.
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Corollary 4.4.8. The ideal I = ∏j∈Λ(e) A
f j
j with 0 < f j ≤ ej lies in the i-th layer of De,

De
i \ De

i+1, if and only if min{ f j| f j ̸= ej} = i.

Corollary 4.4.9. For e ∈ E(D), Base(De) = {e} and the subsemigroup De is a stratified
semigroup with zero.

We can now easily prove the main theorem.

Theorem 4.4.10. Let S be a Dedekind domain and A ⊴ S an ideal of S. If R = S/A and D is
the semiring of ideals of R, then the multiplicative semigroup of R is a semilattice S [E(D); Re]

of stratified extensions of groups.

Proof. If A = {0} then the result follows from Theorem 4.3.3, while if A = S the result
is trivial. Henceforth, assume that {0} ̸= A ̸= S.

That R is the given semilattice follows immediately from Theorem 4.2.7 and the
observation that as every ideal of a quotient of a Dedekind domain is principal, the
map εδ is a surjection.

Let e ∈ E(D) and consider Base(Re). By Proposition 3.2.10,

Base(Re) ⊆ δ−1(Base(De)) = δ−1({e}).

Since every ideal of R is principal, there exists some x ∈ R such that δ(x) = (x) = e
and hence Base(Re) ⊆ δ−1({e}) = xUx. By Theorem 4.2.5, xUx is a group and hence
by Corollary 3.2.2, xUx ⊆ Base(Re) and so Base(Re) = xUx and Re is a stratified
extension of a group.

It is clear from Proposition 3.2.10 that Re
i ⊆ δ−1(De

i). In fact, we have equality.

Proposition 4.4.11. Let e = ∏j∈Λ(e) A
ej
j ∈ E(D). Then Re

i = δ−1(De
i).

Proof. It remains to show that δ−1(De
i) ⊆ Re

i. Let x ∈ Re be such that δ(x) ∈ De
i. Then

δ(x) has minimal prime factorisation ∏j∈Λ(e) A
f j
j where min{ f j| f j ̸= ej} = i. Let

gj = max( f j, i). Then ∏j∈Λ(e) A
gj
j is a prime factorisation of δ(x) with gj ≥ i for every

j ∈ Λ(e).

Since S is a Dedekind domain, every ideal of R is principal so there exists some aj ∈ R
such that δ(aj) = (aj) = Aj for every j ∈ Λ(e). Let y = ∏j∈Λ(e) a

gj
j . Clearly δ(y) = δ(x)

and so xJ y and hence x = yu for some u ∈ R. Then

x =

⎛⎝ ∏
j∈Λ(e)

aj

⎞⎠i−1 ⎛⎝u ∏
j∈Λ(e)

a
gj−(i−1)
j

⎞⎠ .
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Clearly εδ(∏j∈Λ(e) aj) = e, so if εδ(u ∏j∈Λ(e) a
gj−(i−1)
j ) = e then x ∈ Re

i as required.

Suppose otherwise, so εδ(u ∏j∈Λ(e) a
gj−(i−1)
j ) = f for some f ∈ E(D) with f ̸= e. As

each gj − (i − 1) > 0, εδ(∏j∈Λ(e) a
gj−(i−1)
j ) = e and so e divides f and hence e f = f .

But then εδ(x) = ei−1 f = f , a contradiction. Hence εδ(u ∏j∈Λ(e) a
gj−(i−1)
j ) = e and so

x ∈ Re
i and δ−1(De

i) ⊆ Re
i.

Corollary 4.4.12. Let x ∈ Re. Then x lies in the i-th layer of Re if and only if δ(x) lies in the
i-th layer of De.

Corollary 4.4.13. Let A ⊴ S be a non-zero proper ideal with prime factorisation Pe1
1 . . . Pen

n

and Ai = Pi/A. Then

1. Re is a group if and only if e = ∏i∈Λ(e) Ai.

2. R is a semilattice of groups if and only if e1 = . . . = en = 1.

3. R is a semilattice of groups if and only if R(0) is a group.

4. E(D) is a chain if and only if n = 1, in which case it is the two element semilattice.

Here (1)-(3) follow from the observation that if e is square-free then De = {e} and
hence Base(Re) = Re. An interesting consequence of these results is that S/A is a field
if and only if A is prime.

Proposition 4.4.14. Let R be a quotient of a Dedekind domain. Then R is a strong semilattice
of semigroups if and only if it is a semilattice of groups.

Proof. It is well known (see, for example, [18, Theorem 4.2.1]) that a semilattice of
groups is a strong semilattice. For the converse, suppose R is a strong semilattice of
semigroups. For any e ∈ E(D) we have R ≥ e and so there exists a morphism
ϕR,e : RR → Re such that xy = ϕR,e(x)y for any x ∈ RR and y ∈ Re. Since 1 ∈ RR we
have x = 1x = ϕR,e(1)x for every x ∈ Re. Then x ∈ Re

2 so Re
2 = Re and hence Re is a

group. As this holds for every e ∈ E(D), R is a semilattice of groups.

We can summarise the construction of the semilattice of semigroups with this short
‘recipe’. First we note that we can reduce the amount of calculation required by
making use of the following result.

Proposition 4.4.15. Let S be a Dedekind domain, A an ideal of S, and R = S/A. For all
x ∈ R, xVx = xU where U is the group of units of R.

Proof. Note that when A = S the result is trivial and when A = (0) we have Vx = U
by cancellativity as R is a domain. We assume henceforth that A is a non-zero proper
ideal.
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It is readily apparent that U ⊆ Vx for all x ∈ R and hence xU ⊆ xVx. For the reverse
inclusion, we note that it is well known that R is then a principal ideal ring and so,
by [19, Lemma 2.1 and Theorem 12.3], if (a) = (b) then a = bu for some u ∈ U. It is
easy to see that if y ∈ xVx then (x) = (y) and so y ∈ xU as required.

Let S be a Dedekind domain and A ⊴ S. If A = S then R = S/A is the trivial ring. If
A = (0) then R ∼= S and so by Theorem 4.3.3 we have a semilattice of two semigroups.
One is RR, the group of units, while the other is R(0), a stratified extension of the trivial
group. In the latter case, the elements of layer i are precisely those which can be
factorised as a product of i irreducible elements.

Otherwise, let (0) ̸= A ̸= S be a proper non-zero ideal of S and let A = Pe1
1 . . . Pen

n be
the unique factorisation of A into a product of prime ideals of S. Then the semilattice
is order isomorphic to P(N) and each subset K ⊆ N is associated with an idempotent
e ∈ E(D). The subsemigroup Re is then a stratified extension of a group where the
group is Base(Re) = δ−1(e).

To calculate Re and Base(Re) in a practical setting, we proceed as follows. First, the
two easy cases are when K = ∅, in which case e = (1 + A) and BaseRe is the group of
units of R, while if K = N then e = (0 + A) and the group consists of only the zero of
R. Suppose now that ∅ ⊂ K ⊂ N and let Ai = Φ−1(Pi) = Pi/A. Then e = ∏i∈K Aei

i

and since R is a principal ideal ring, if e = (x + A) then Base(Re) = {xv + A} where
v + A ∈ Vx+A, and so by Proposition 4.4.15, Base(Re) = (x + A)RR. To determine the
stratified structure of Re, note that if ei = 1 for all i ∈ K then Re is a group and so there
are no layers. If at least one of the ei > 1 and if for a given subset K and a collection
fi, i ∈ K

∏
i∈K

A fi
i = (y + A)

and where 0 < fi ≤ ei is such that j = min{ fi | fi ̸= ei, i ∈ K}, then
{yv + A | v + A ∈ Vy+A} = (y + A)RR is a subset of the j-th layer, and moreover the
j-th layer consists of the union of all such subsets. Note that if Ai = (ai + A) then
y + A = ∏i∈K(a fi

i + A).

4.5 Examples

In this short section we illustrate the above theory by considering a number of
examples of Dedekind domains and examining the semilattice and stratified structure
of the multiplicative semigroup of both the domain and of a typical quotient of the
domain.
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At the more trivial end of the spectrum, suppose that S = F, a field. Then every
non-zero element is a unit, so we have S(0) = {0} and SS = F×. In other words, the
multiplicative semigroup of a field is simply a group with zero as expected.

4.5.1 The integers

As a more interesting example, let S = Z, the ring of integers. For any n ∈ Z, the sets
nUn are (isomorphic to) {n,−n} and the units in Z are of course ±1 and so SS is the
two element group. We know from Theorem 4.3.3 that S(0) is a stratified extension of
the trivial group and the layered structure of S(0) is then easy to establish. The first
layer of S(0) consists of every prime integer p. The second layer contains all products
pq of exactly 2 (not necessarily distinct) primes p and q, and in general, layer n consists
of all products of exactly n (not necessarily distinct) primes.

Given that Z is a principal ideal domain, then all ideals of Z are of the form (n) for
some n ∈ Z. If R = S/(n) then of course R = Zn the ring of integers modulo n. To
reduce pedantry we will assume that Zn = {1, . . . , n}. We know from Theorem 4.4.10
that R is a semilattice of stratified extensions of groups, S [E(D); Re] and that
E(D) ∼= P(K) where K = {1, . . . , k} and where n = pe1

1 . . . pek
k is the prime factorisation

of n in Z.

First, note that if (e) ∈ E(D) then we can assume, without loss of generality, that
e = ∏i∈I pei

i ∈ Zn where I = Λ((e)) ∈ P(K). The base of Re is Base(Re) = eUe and
using Theorem 4.2.5 and Lemma 4.2.2, we deduce that Zn/(e) ∼= Zn/e and that

eUe ∼= Un/e

where Un/e is the group of units in Zn/e. If (e) is square-free then Re = Un/e otherwise
Re is a stratified extension of Un/e with height m = max{ej|j ∈ Λ(e)} − 1. In this case,
the structure of the individual layers of Re is more complicated to describe is general,
but essentially if x is in the i-th layer of Re, 1 ≤ i ≤ m, then

x = ∏
j∈Λ(e)

p
gj
j u

where u ∈ Un and 0 < gj ≤ ej and min{gj|gj ̸= ej} = i. Note that {gj|gj ̸= ej} ̸= ∅ as
otherwise x ∈ Base(Re).

As an example, if n = 12 = 22 × 3, then

E(D) = {(12), (4), (3), (1)}

and we have four subsemigroups
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R(12) = {6, 12} where Base(R(12)) = {12}.

R(4) = {2, 4, 8, 10} where Base(R(4)) = {4, 8} and {2, 10} forms layer 1.

R(3) = {3, 9} which is a group.

R(1) = {1, 5, 7, 11} which is the group of units mod 12.

The semilattice structure can be pictured as

R(1)

R(3) R(4)

R(12)

{1, 5, 7, 11}

{3, 9}

{2, 10}

{4, 8}{6}

{12}

Notice that the semilattice will always be a finite Boolean algebra and the stratification
structure is wholly dependent on the prime power factorisation of n.

4.5.2 The p−adic integers

Let S be the p-adic integers. There are a number of ways to view p−adic numbers but
we consider S to consist of formal sums

S =

{︄
∑
i≥0

ai pi | 0 ≤ ai ≤ p − 1

}︄

with arithmetic performed in the usual formal manner. For more detail we refer the
reader to [12]. The expression ∑i≥0 ai pi is also known as the p−adic expansion of the
relevant number.

It is easy to demonstrate that the units in S are the elements where a0 ̸= 0 in the
p−adic expansion and that non-unit elements have the form pku where u is a unit of S
and k ∈ N. It is well-known that S forms a principal ideal domain and so from
Theorem 4.3.3 we deduce that S is a (2-element) semilattice of stratified extensions of
groups. S(1) is the group of units and Base(S(0)) = {0}. It follows from the definition
of S that the proper non-zero ideals are those of the form (pk) for k ∈ N, and so clearly
D(0) is isomorphic to the infinite monogenic semigroup with zero. Since S is a
principal ideal domain, it follows from Proposition 4.3.4 that S(0)

i = δ−1(D(0)
i) for all

i ∈ N and so the i-th layer of S(0) consists of exactly the elements of the form piu where
u is a unit.
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Every non-zero proper ideal A ⊴ S has the form (pk) = (p)k for some k ∈ N. This
means that S/A is isomorphic to the ring of integers modulo pk. Clearly (p) is a prime
ideal and so R = S/A is a 2-element semilattice of stratified extensions of groups,
consisting of the group of units R(1+A) and the semigroup R(0+A). The latter is a
stratified semigroup with zero and k − 1 non-zero layers. For each 1 ≤ i ≤ k − 1 the
i-th layer consists of elements of the form piu + A where u is a unit of S.

4.5.3 Rings of algebraic integers

We now consider rings consisting of algebraic integers and as a specific example we
shall consider the ring S = Z[

√
−5]. It is well know that rings of this nature are

Dedekind domains but are not always principal ideal domains. In fact, 2 +
√
−5 is an

example of an element which can easily be shown to be irreducible but not prime. If A
is an ideal of Z[

√
−5] define a ‘norm’ on S/A by

N(z + A) = (z + A)(z + A) = zz + A, where z is the conjugate of z. It is easy to check
that N is multiplicative and that z + A is a unit in S/A if N(z + A) = ±1 + A.

From section 4.3, S is a 2-element semilattice of the group of units, S(1) = {1,−1}, and
a stratified semigroup with 0, S(0). Since

2 +
√
−5 = 9 × (−2) + (−1 + 4

√
−5)× (−

√
−5),

(−1 + 4
√
−5) = (2 +

√
−5)2 and 9 = (2 −

√
−5)(2 +

√
−5),

it follows that (3, 2 +
√
−5)2 = (9,−1 + 4

√
−5) = (2 +

√
−5) and so although

2 +
√
−5 is in the first layer of S(0) (being irreducible), (2 +

√
−5) is not in the first

layer of D(0). The layer structure of S(0) is not so easy to determine, as clearly
a + b

√
−5 is in the i-th layer of S(0) if and only if it can be written as a product of i

irreducible elements.

However determining the structure of a quotient of S is slightly easier, as we need
only factorise a single ideal of S into a product of prime ideals. As an illustrative
example, let us consider

A = (10, 5 + 5
√
−5) = (2, 1 +

√
−5)(5,

√
−5)2 (*)

with P1 = (2, 1 +
√
−5) and P2 = (5,

√
−5) and let R = S/A. It is easy to show that

(2, 1 +
√
−5) and (5,

√
−5) are both prime ideals of Z[

√
−5]. In fact

(2, 1 +
√
−5) = {a + b

√
−5 | a ≡ b mod 2} and (5,

√
−5) = {5a + b

√
−5 | a, b ∈ Z},

while
A = (10, 5 + 5

√
−5) = {5a + 5b

√
−5 | a ≡ b mod 2}.
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It is easy to check that the ring R has cardinality 50. In what follows, we shall
frequently simplify the notation by working modulo A and write the element
a + b

√
−5 + A of R as simply a + b

√
−5. We shall also assume a particular set of

residues by taking 0 ≤ a ≤ 9 and 0 ≤ b ≤ 4.

Note from the comments preceding Proposition 4.4.7 that |E(D)| = |P({1, 2})| and it
can then be easily verified that

A1 = Φ−1(P1) = (2, 1 +
√
−5)/A = (6) and A2

2 = Φ−1(P2
2) = (5,

√
−5)2/A = (5)

and so by Lemma 4.4.6
E(D) = {(0), (1), (5), (6)}.

We now apply the results of Theorem 4.4.10 and Corollary 4.4.12. It follows that R(1)

and R(6) are groups and R(0) and R(5) are stratified extensions of groups, each with a
height of 1. By Proposition 4.4.15, the group Base(Re) for each e ∈ E(D) is equal to
xUx where (x) = e and hence isomorphic to Ux.

In practical terms, R(1) = RR is the group of units of R, and using norms we can
deduce that |RR| = 20 and in fact

RR = {a + b
√
−5 | a ̸≡ b mod 2, a ̸≡ 0 mod 5}.

For R(5), it follows that Base(R(5)) = {5v | v ∈ RR} = 5RR = {5}. To find the elements
in layer 1 of R(5) we note that (5,

√
−5)/A = (

√
−5) and so layer 1 is

δ−1((
√
−5)) = {(

√
−5)v | v ∈ RR} = {

√
−5, 3

√
−5, 7

√
−5, 9

√
−5}.

For R(6), it follows that

Base(R(6)) = 6RR = {a + b
√
−5 | a ≡ b mod 2, a ̸≡ 0 mod 5}.

Note that |Base(R(6))| = 20 also.

Finally, the layer 1 in R(0) can be calculated in the same way as for R(5) using the fact
that (2, 1 +

√
−5)/A (5,

√
−5)/A = (5 +

√
−5). It then follows easily that the first

layer of R(0) is

(5 +
√
−5)RR = {2

√
−5, 4

√
−5, 5 +

√
−5, 5 + 3

√
−5}.



4.5. Examples 81

4.5.4 Integers revisited

For a final example we return to a less complicated ring in order to demonstrate a
more complicated layer structure. Let S = Z, A = (6000) = (2)4(3)(5)3 and R = S/A.
Working modulo A, let e ∈ E(D) be the ideal (2000) = (2)4(5)3. Then Re is a stratified
extension of a group with height 3. Applying our previous results, we see that
Base(Re) = δ−1((2000)) = {2000u | u ∈ RR} = 2000RR.

For the layers, note that layer 1 of De consists of (2)(5), (2)2(5), (2)3(5), (2)4(5),
(2)(5)2 and (2)(5)3. Layer 1 of Re is hence the union of 10RR, 20RR, 40RR, 80RR, 50RR

and 250RR.

Proceeding in a similar fashion, layer 2 of Re is the union of 100RR, 200RR, 400RR and
500RR, while layer 3 is simply the set 1000RR.
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