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Abstract

Traditionally, knowledge and beliefs are attributed to agents. The article explores
an alternative approach where knowledge is informed by data and belief comes
from trust in, not necessarily reliable, data. At the core of the article, is the
modality “if one dataset is trusted, then another dataset informs a belief”. The
main technical result is a sound and complete logical system capturing the prop-
erties of this modality and its connection with functional dependency between
datasets.

1 Introduction

1.1 Trust, Trustworthiness, and Beliefs

The distinction between trust towards people and their trustworthiness has been dis-
cussed in econimics (Chaudhuri & Gangadharan, 2007), political science (Hardin,
2002; Levi & Stoker, 2000), and psychology (Ben-Ner & Halldorsson, 2010; Posten &
Mussweiler, 2019) literature. In the words of The Stanford Encyclopedia of Philosophy,

Trust is an attitude we have towards people whom we hope will be trustworthy, where
trustworthiness is a property not an attitude. Trust and trustworthiness are therefore
distinct although, ideally, those whom we trust will be trustworthy, and those who are
trustworthy will be trusted (McLeod, 2023).

In this article, we propose to extend this distinction from people to information.
We capture the information through a set of variables whose values can vary from one
possible world to another. We refer to such variables as data variables and to their sets
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Fig. 1 A fragment of a trustworthiness model.

as datasets. An agent might trust a dataset no matter if the dataset is trustworthy or
not. Based on this trust, the agent can form a belief about the world. If the dataset
based on which the belief is formed is trustworthy, then the belief is true. Otherwise,
it might be false.

1.2 Motivational Example

Consider a setting where the weather outside could be either hot (more than 25°C)
or cold (at most 25°C). There is a thermometer that is supposed to show the outside
temperature, but it might be broken. Figure 1 depicts some of the possible worlds
in a model capturing this setting. For example, in world w1, it is hot outside, the
thermometer is not broken, and it shows 30°C. Note that, in world w3, it is hot
outside and the broken thermometer happens to show 30°C (as the saying goes, even
a broken clock is right twice a day). We represent the reading of the thermometer
by data variable t. We say that variable t is trustworthy in worlds w1 and w4 where
the thermometer is not broken. We refer to the model whose fragment is depicted in
Figure 1 as trustworthiness model.

Let us now consider the statement “if t > 25, then it is hot outside”. Note that this
statement is true in worlds w1, w3, and w4 and is false in world w2. Any agent that
trusts the thermometer would assume that the thermometer is not broken and, thus,
exclude worlds such as w2 and w3 from the consideration. In the remaining worlds,
the statement “if t > 25, then it is hot outside” is true. We say that trust in data
variable t forms the belief that the statement is true and write this as

Bt(“if t > 25, then it is hot outside”). (1)

Observe that this belief is formed by trust in data variable t no matter what is the
current world. In worlds w1, w3, and w4 this belief is true and in world w2 it is false.
Intuitively, the reason why the belief is false in world w2 is that the belief is based on
trust in data variable which is not trustworthy in w2.

Next, let us consider any agent in world w1 that trusts data variable t and also
knows the value of this variable. Such an agent will exclude from consideration the
worlds in which the thermometer is broken, such as worlds w2 and w3. In addition,
such an agent would exclude worlds in which the value of data variable t is different
from its value in the current world w1. An example of a latter world is w4. In the
remaining worlds, such as world w1 in our figure, t = 30 and the thermometer is not
broken. In such worlds, it must be hot outside. Thus, in world w1, trust in data variable

2



t and the knowledge of its value form a belief that it is hot outside. We write this as

w1 ⊩ Btt(“it is hot outside”) (2)

and say that, in world w1, if data variable t is trusted, then t informs the belief that it
is hot outside. Later in this section, we will see examples when the superscript (what
is trusted) of modality B is different from its subscript (what is known). Note that
statement (2) is true not only for world w1, but also for worlds w2 and w3. Just like in
our previous example, the belief in world w2 is a false belief because in world w2 it is
actually cold outside. The statement (2) is not true for world w4 because the value of
variable t in world w4 is 20. The weather is cold in all worlds where t is trustworthy
and has a value of 20. Thus,

w4 ⊩ Btt(“it is cold outside”).
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Fig. 2 A fragment of a trustworthiness model with two thermometers.

Let us now consider a more interesting example where there are two thermometers
either of which (or both) can be broken. Some of the possible worlds in this setting are
shown in Figure 2. Note that any agent that trusts both thermometers would eliminate
from consideration all worlds where at least one of the thermometers is broken, such as
worlds u2 and u3. In the remaining worlds, such as u1 and u4, the two thermometers
must show the same temperature. Thus, just trust in data variables t1 and t2 forms
the belief that these two variables must have equal values:

Bt1t2(t1 = t2). (3)

Just like in the case of the belief from statement (1), the above belief forms no matter
what is the current world. Next, let’s assume that, in world u1, one knows the value
of t1, which is 30. If this data knowledge is combined with trust in data variables t1
and t2, then in addition to elimination of the world where either of the thermometers
is broken (such as u2 and u3) one would also eliminate the worlds where t1 ̸= 30 (such
as u4). In the remaining worlds, just like in u1 itself, t1 = t2 = 30. In all such worlds,
for example, the statement t2 > 25 holds. Thus, if data set {t1, t2} is trusted, then
the data variable t1 informs the belief t2 > 25:

u1 ⊩ Bt1t2t1 (t2 > 25). (4)
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The same belief is also informed in worlds u2 and u3, where the reading of the first
thermometer is also 30°C, but it is not informed in world u4.

Let us now show that both data variables, t1 and t2, are needed in the superscript
of the modality B in order for statement (4) to be true. Indeed, if data variable t1 is
not trusted, then the world u2 is not eliminated from the consideration. Since t2 = 20
in world u2,

u1 ⊮ Bt2t1(t2 > 25).

Similarly, if data variable t2 is not trusted, then world u3 is not eliminated. Since
t2 = 20 in world u3,

u1 ⊮ Bt1t1(t2 > 25).

Finally, similarly to (2), note that if an agent trusts data variable t2 and knows
that its value is 30, then the agent forms a belief that it is hot outside:

v ⊩ Bt2t2(“it is hot outside”) if t2 has value 30 in v. (5)

Let us now consider an agent in world u1 that trusts t1 and t2, but knows only the
value of t1. Because in u1 data variable t1 has value 30 and the agent knows this, the
agent will eliminate from consideration all worlds in which t1 ̸= 30, leaving only the
worlds where t1 = 30. Because the agent trusts t1 and t2, the agent will eliminate all
worlds where at least one of the thermometers is broken, leaving only worlds where
t2 = t1. Thus, the agent will only consider worlds where t2 = t1 = 30. As we observed
in (5), the formula Bt2t2(“it is hot outside”) holds in all such worlds. Therefore,

u1 ⊩ Bt1t2t1 Bt2t2(“it is hot outside”). (6)

It is interesting to point out that the same second-order belief is also informed in
worlds u2 and u3. However, unlike in world u1, in worlds u2 and u3 this is a false
second-order belief.

1.3 Contribution

The main contribution of this work is a formal semantics and a complete axiomatisa-
tion of modality BTXφ which stands for “if dataset T is trusted, then dataset X informs
the belief φ”.

The modality BTXφ is closely related to conditional belief modality Bψaφ which is
completely axiomatised by Board (2004). In turn, conditional belief modality is similar
to Lewis’ (1973) counterfactual modality ψ□→φ. Informally, Bψaφmeans that the agent
believes φ after receiving the information that ψ. Using this modality, statement (2)
from the introduction can be written as

w1 ⊩ B“the thermometer is not broken”
a (“it is hot outside”)

for some agent a who can see the thermometer. The major advantage of the modality
BTXφ, that we propose, is the ability to separate the two components that form a
belief: the subjective mindset of the agent captured by parameter T and the objective
information about the world specified by parameter X.
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The other advantage of our approach is that it can be combined with data-specific
modalities and operators. One such operator is Armstrong’s (1974) functional depen-
dency expression X ▷ Y . This expression denotes the fact that the values of the
variables in dataset X functionally determine the values of the variables in dataset Y .
In the current work, we included the expression X▷Y into the language of our logical
system. In Section 8 we discuss other possible extensions by data-specific modalities
and operators.

The rest of the article is structured as follows. First, we review related literature
on trust and beliefs. Then, We define trustworthiness models that are used later to
give a formal semantics of our logical system. In Section 4, we introduce the syntax
and the formal semantics of the system. In Section 5, we list and discuss its axioms
and the inference rules. Their soundness is proven in Section 6. Section 7 contains
the proof of the completeness theorem. Section 8 discusses possible extensions of our
system. Section 9 concludes. The initial version of this work, without the operator ▷
and the proof of completeness, appeared as (Jiang & Naumov, 2022b).

2 Literature Review

Multiple logical systems capturing properties of trust have been proposed. Castel-
franchi and Falcone suggested treating trust as a mental state and defining it
through beliefs. Very roughly, I trust you to do something if I believe that you will
do it (Castelfranchi & Falcone, 1998). This approach has been further developed
in (Herzig, Lorini, Hübner, & Vercouter, 2010). Tagliaferri and Aldini introduced
trust as a modality whose semantics is defined through numerical trustworthiness
threshold functions (Tagliaferri & Aldini, 2019). They did not consider a connection
between trust and beliefs. Primiero (2020) proposed a trust logic for reasoning about
communications.

The closest works to ours are (Liau, 2003) and (Perrotin, Galimullin, Canu, &
Alechina, 2019). Liau (2003) introduced a logical system describing the interplay bew-
teen modalities Baφ (agent a beliefs in φ), Ia,bφ (agent a acquires information φ from
b), and Ta,bφ (agent a trusts the judgement of b on the truth of φ). The semantics of
modalities B and I are Kripke-style, while the one for modality T is neighbourhood-
based. Certain connections between these semantics are assumed. Perrotin, Galimullin,
Canu, and Alechina (2019) proposed a logical system that describes the interplay
between beliefs, trust, and public group announcements. In their system, trust is
semantically modelled through set Twa of all agents whom agent a trusts in state w.
In their semantics, beliefs are defined using belief bases. As public announcements are
made, the set of agents Twa to whom agent a trusts is updated based on the agent’s
belief base. Thus, in their system, beliefs define trust, while in ours trust defines beliefs.
The syntax of their system includes an atomic trust proposition Ta,b (agent a trusts
agent b) and belief modality Baφ (agent a beliefs in statement φ). The only axiom of
their system that includes both the trust atomic proposition and the belief modality is
the axiom Ta,b → (BaBbφ→ Baφ). Intuitively, this axiom corresponds to the formula

BTXBTY φ→ BTXφ in our language. The last statement is provable in our system through
a combination of the Trust and the Distributivity axioms. Unlike our work, (Perrotin,
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Galimullin, Canu, & Alechina, 2019) and (Liau, 2003) do not consider data-informed
beliefs.

3 Trustworthiness Model

Lewis (1973) used sphere semantics for modality □→. This semantics has been
later generalised to neighbourhood semantics (Girlando, Lellmann, & Olivetti, 2019;
Girlando, Negri, Olivetti, & Risch, 2016; van Eijck & Li, 2017). Another type of
semantics for modality □→ is plausibility semantics (Baltag & Smets, 2006, 2008;
Board, 2004; Boutilier, 1994; Friedman & Halpern, 1997, 1999). These semantics do
not capture trust and, thus, can not be used to model trust-based beliefs.

To model trust-based beliefs, we propose trustworthiness models inspired by our
informal models in Figure 1 and Figure 2. Trust is a broad term with multiple meanings
that can be formalised in many different ways. The focus of the current work is on
trust-based beliefs, not trust. Our trustworthiness models are not meant to provide a
way to model trust in general. Instead, they aim to capture the aspect of the trust
needed to define the formal semantics of trust-based beliefs.

Throughout the rest of the article, we assume a fixed finite set of data variables V
and an arbitrary set of atomic propositions. By a dataset, we mean any subset of V .
Definition 1 A tuple (W, {∼x}x∈V , {Tw}w∈W , π) is called a trustworthiness model if

1. W is a (possibly empty) set of worlds,
2. relation ∼x is an “indistinguishability” equivalence relation on set W for each data

variable x ∈ V ,
3. Tw ⊆ V is a set of data variables that are “trustworthy” in world w ∈W ,
4. π(p) is a subset of W for each atomic proposition p.

4 Syntax and Semantics

The language Φ of our logical system is defined by the grammar:

φ ::= p | X ▷ Y | ¬φ | φ→ φ | BTXφ,

where p is an atomic proposition and X,Y, T ⊆ V are datasets. We read X ▷ Y as
“the values of the variables in dataset X inform the values of the variables in dataset
Y ”, and we read BTXφ as “if dataset T is trusted, then dataset X informs the belief in
φ”. We assume that ⊥ is formula ¬(p→ p), where p is one of the atomic propositions.
When the arguments in the expression X ▷ Y are given explicitly, we omit curly
brackets to improve readability. For example, we write x1, x2▷y instead {x1, x2}▷{y}.

In the definition below and the rest of the article, for any dataset X and any worlds
w, u ∈W , we write w ∼X u if w ∼x u for each data variable x ∈ X.
Definition 2 For any formula φ ∈ Φ and any world w ∈ W of any trustworthiness
model (W, {∼x}x∈V , {Tw}w∈W , π), the satisfaction relation w ⊩ φ is defined as follows:

1. w ⊩ p if w ∈ π(p), where p is an atomic proposition,
2. w ⊩ X ▷ Y if w ∼Y u for each world u ∈W such that w ∼X u,
3. w ⊩ ¬φ if w ⊮ φ,
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4. w ⊩ φ→ ψ if w ⊮ φ or w ⊩ ψ,
5. w ⊩ BTXφ if u ⊩ φ for each world u ∈W such that w ∼X u and T ⊆ Tu.

Observe that statement w ⊩ BTX⊥ is true if there is no X-indistinguishable from w
world in which all variables in dataset T are trustworthy.

Note also that the expression w ⊩ B∅
Xφ says that statement φ is true in all worlds

X-indistinguishable from world w. In other words, it says that statement φ is true as
long as the values of variables in dataset X are the same as in world w. In such a
situation, we may say that the knowledge of φ is informed by dataset X in world w.
Modality B∅

Xφ has been first introduced by Grossi, Lorini, and Schwarzentruber (2015)
in the special case whenX is a set of Boolean variables. Baltag and van Benthem (2021)
generalised their approach to arbitrary variables that are not necessarily Boolean.
Because of the technical choices made by Baltag and van Benthem in the semantics
of their system, their version of modality B∅

Xφ is not an S5-modality. We proposed
an alternative semantics under which the properties of B∅

X modality are exactly those
captured in modal logic S5 (Jiang & Naumov, 2022a). We also introduced the term
“data-informed knowledge”.

Finally, observe that item 2 of the above definition states that the X-equivalence
class of current world w is a subset of Y -equivalence class of w. Thus, knowing the
values of all variables in dataset X would restrict the set of all possible worlds to those
where the values of all variables in dataset Y are the same as in the current world. In
other words, knowing the values of all variables in dataset X informs the knowledge
of the values of all variables in dataset Y in the current world w. This is the definition
of the local functional dependency between two datasets in the current world. One
can also consider global functional dependency: “in each world of the model, knowing
the values of all variables in dataset X informs the knowledge of the values of all
variables in dataset Y ”. This dependency is expressible in our language by the formula
B∅
∅(X ▷ Y ).

5 Axioms

In addition to propositional tautologies in language Φ, our Logic of Trust-Based Beliefs
contains the axioms listed below.

1. Reflexivity: X ▷ Y , where Y ⊆ X,
2. Transitivity: X ▷ Y → (Y ▷ Z → X ▷ Z),
3. Augmentation: X ▷ Y → (X ∪ Z)▷ (Y ∪ Z),
4. Truth: B∅

Xφ→ φ,
5. Distributivity: BTX(φ→ ψ) → (BTXφ→ BTXψ),
6. Negative Introspection of Beliefs: ¬BTXφ→ B∅

X¬BTXφ,
7. Trust: BTX(BTY φ→ φ),
8. Monotonicity: X ▷ Y → (BTY φ→ BTXφ) and

BTXφ→ BT
′

X φ, where T ⊆ T ′,
9. Introspection of Dependency: X ▷ Y → B∅

X(X ▷ Y ).

The Reflexivity, the Transitivity, and the Augmentation axioms are the standard
Armstrong’s (1974) axioms of functional dependency.
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To understand the meaning of the Truth and the Negative Introspection of Beliefs
axioms, recall from Section 4 that B∅

Xφ is the knowledge modality “dataset X informs
the knowledge of statement φ”. Hence, the Truth axiom is the standard Truth axiom
from the epistemic logic. The Negative Introspection of Beliefs axiom states that if
dataset X does not inform the belief in φ when dataset T is trusted, then dataset X
informs the knowledge of this. Note that the standard Negative Introspection axiom
from the epistemic logic is a special case of our axiom when set T is empty. The positive
introspection of beliefs also holds. We prove it from the above axioms in Lemma 1.

Note that statement BTY φ→ φ, generally speaking, is not true. However, by item 5
of Definition 2, this statement is true in all worlds of the model in which dataset T
is trustworthy. We capture this observation by the Trust axiom of our system. Note
that there is no connection between datasets X and Y in this axiom. In particular,
dataset X could be the empty set ∅. Informally, the axiom states that anyone trusting
dataset T believes that any belief based on trust in T must be true.

The meaning of the two Monotonicity axioms is straightforward. Note that by
item 2 of Definition 2, if statement X ▷ Y is true in any world w, then it is also true
in any world u such that w ∼X u. We capture this in the Introspection of Dependency
axiom.

We write ⊢ φ and say that formula φ is a theorem if φ is provable from the above
axioms using the Modus Ponens and the Necessitation

φ,φ→ ψ

ψ

φ

BTXφ

inference rules. In addition to the unary relation ⊢ φ, we also consider a binary relation
F ⊢ φ. We write F ⊢ φ if formula φ is derivable from the theorems of our logical
system and the set of additional assumptions F using the Modus Ponens inference rule
only. Note that statement ∅ ⊢ φ is equivalent to ⊢ φ. We say that a set of formulae
F is inconsistent if F ⊢ φ and F ⊢ ¬φ for some formula φ ∈ Φ.
Lemma 1 ⊢ BTXφ→ B∅

XBTXφ.
Proof. Formula B∅

X¬BTXφ → ¬BTXφ is an instance of the Truth axiom. Thus, by
contraposition, ⊢ BTXφ→ ¬B∅

X¬BTXφ. Hence, taking into account the following instance
¬B∅

X¬BTXφ→ B∅
X¬B∅

X¬BTXφ of the Negative Introspection axiom, we have

⊢ BTXφ→ B∅
X¬B∅

X¬BTXφ. (7)

At the same time, the formula ¬BTXφ → B∅
X¬BTXφ is also an instance of the

Negative Introspection axiom. Thus, ⊢ ¬B∅
X¬BTXφ → BTXφ by the law of con-

trapositive in the propositional logic. Hence, by the Necessitation inference rule,
⊢ B∅

X(¬B∅
X¬BTXφ → BTXφ). Thus, by the Distributivity axiom and the Modus Ponens

inference rule, ⊢ B∅
X¬B∅

X¬BTXφ → B∅
XBTXφ. The latter, together with statement (7),

implies the statement of the lemma by propositional reasoning. ⊠

We show the soundness of our axioms in Section 6.
Lemma 2 If φ1, .., φn ⊢ ψ, then BTXφ1, .., BTXφn ⊢ BTXψ.
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Lemma 3 (Lindenbaum) Any consistent subset of Φ can be extended to a maximal
consistent subset of Φ.
Proof. The standard proof of Lindenbaum’s lemma (Mendelson, 2009, Proposition
2.14) applies here. ⊠

6 Soundness

Theorem 1 For any set of formulae F ⊆ Φ, any formula φ ∈ Φ, and any world w of
a trustworthiness model, if w ⊩ f for each formula f ∈ F and F ⊢ φ, then w ⊩ φ.

The soundness of the Truth, the Distributivity, and the Monotonicity axioms is
straightforward. Below we prove the soundness of the remaining axioms as separate
lemmas.
Lemma 4 If Y ⊆ X, then w ⊩ X ▷ Y .
Proof. Consider any world u ∈ W such that w ∼X u. By item 2 of Definition 2,
it suffices to prove that w ∼Y u, which is true by the assumption w ∼X u and the
assumption Y ⊆ X of the lemma. ⊠

Lemma 5 If w ⊩ X ▷ Y and w ⊩ Y ▷ Z, then w ⊩ X ▷ Z.
Proof. Consider any world u ∈ W such that w ∼X u. By item 2 of Definition 2, it
suffices to prove that w ∼Z u. The assumption w ∼X u implies that w ∼Y u by the
assumption w ⊩ X ▷ Y of the lemma and item 2 of Definition 2. Therefore, w ∼Z u
by the assumption w ⊩ Y ▷ Z of the lemma and item 2 of Definition 2. ⊠

Lemma 6 If w ⊩ X ▷ Y , then w ⊩ X ∪ Z ▷ Y ∪ Z.
Proof. Consider any world u ∈ W such that w ∼X∪Z u. By item 2 of Definition 2,
it suffices to prove that w ∼Y ∪Z u. Indeed, the assumption w ∼X∪Z u implies that

w ∼X u, (8)

w ∼Z u. (9)

The assumption w ⊩ X ▷ Y of the lemma implies w ∼Y u by item 2 of Definition 2
and statement (8). Then, w ∼Y ∪Z u due to statement (9). ⊠

Lemma 7 If w ⊮ BTXφ, then w ⊩ B∅
X¬BTXφ.

Proof. By item 5 of Definition 2, the assumption w ⊮ BTXφ implies that there is a
world u ∈W such that

w ∼X u, (10)

T ⊆ Tu, (11)

and
u ⊮ φ. (12)

Consider any world v ∈ W such that w ∼X v. By item 5 of Definition 2, it
suffices to show that v ⊮ BTXφ. Assume the opposite. Then, v ⊩ BTXφ. Note that
statement (10) and the assumption w ∼X v imply that v ∼X u because ∼X is an
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equivalence relation. Therefore, u ⊩ φ by item 5 of Definition 2 and statement (11),
which contradicts statement (12). ⊠

Lemma 8 w ⊩ BTX(BTY φ→ φ).
Proof. Consider any world u ∈ W such that w ∼X u and T ⊆ Tu. By item 5 of
Definition 2, it suffices to show that u ⊩ BTY φ→ φ. Suppose that u ⊩ BTY φ. By item 4
of Definition 2, it is enough to prove that u ⊩ φ.

Note that u ∼Y u because relation ∼Y is reflexive. Also, T ⊆ Tu by the choice
of world u. Then, the assumption u ⊩ BTY φ implies that u ⊩ φ by item 5 of Defini-
tion 2. ⊠

Lemma 9 If w ⊩ X ▷ Y , then w ⊩ B∅
X(X ▷ Y ).

Proof. Let u ∈ W be any world such that w ∼X u. By item 5 of Definition 2, it
suffices to show that u ⊩ X ▷ Y . Consider any world v ∈ W such that u ∼X v. By
item 2 of Definition 2, it suffices to prove that u ∼Y v.

Indeed, the assumptions w ∼X u and u ∼X v imply that w ∼X v because relation
∼X is transitive. Hence, by item 2 of Definition 2 and the assumption w ⊩ X ▷ Y of
the lemma,

w ∼Y v. (13)

At the same time, the assumption w ∼X u implies w ∼Y u again by item 2 of
Definition 2 and the assumption w ⊩ X ▷ Y of the lemma. Therefore, u ∼Y v by
statement (13) and symmetry and transitivity of the relation ∼Y . ⊠

7 Completeness

In this section, we prove the completeness of our system.

7.1 Dataset Closure

An important idea used in our proof of completeness is “dataset closure”. Informally,
for each set of formulae F and each dataset X, by closure X∗

F we denote the set
of all data variables about which set F can prove that they are informed by set
X. This notion goes back to “saturated” sets in Armstrong’s article on functional
dependency (Armstrong, 1974, Section 6). Closures are used in Definition 5 of the
next section to specify the labels of the edges of a tree.
Definition 3 X∗

F = {x ∈ V | X ▷ x ∈ F} for any datasets X,T ⊆ V and any
maximal consistent set of formulae F ⊆ Φ.

In other words, the closure X∗
F is the set of all data variables that, according to

set F , are functionally determined by dataset X. Intuitively, such set must include
variables from the dataset X itself. Next, we formally prove this.
Lemma 10 X ⊆ X∗

F .
Proof. Consider any data variable x ∈ X. Thus, ⊢ X ▷ x by the Reflexivity axiom.
Hence, ⊢ X ▷ x by the Necessitation inference rule. Then, (X ▷ x) ∈ F because F is
a maximal consistent set of formulae. Therefore, x ∈ X∗

F by Definition 3. ⊠
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Note that (X ▷ x) ∈ F for each data variable x ∈ X∗
F by Definition 3. The next

lemma shows that all such variables x could be brought together on the right-hand-side
of ▷ expression.
Lemma 11 F ⊢ X ▷X∗

F .
Proof. The set X∗

F is finite by Definition 3 and the assumption of the article that set
V is finite. LetX∗

F = {x1, . . . , xn}. Note that F ⊢ X▷xi for each i ≤ n by Definition 3.
We prove by induction that F ⊢ X▷x1, . . . , xk for each integer k such that 0 ≤ k ≤ n.

Base Case: F ⊢ X ▷∅ by the Reflexivity axiom.

Induction Step: Suppose that F ⊢ X ▷ x1, . . . , xk. Then, by the Augmentation axiom
and the Modus Ponens inference rule,

F ⊢ X ∪ {xk+1}▷ x1, . . . , xk, xk+1. (14)

Recall that F ⊢ X ▷ xk+1. Hence, F ⊢ X ∪ X ▷ X ∪ {xk+1} by the Augmentation
axiom and the Modus Ponens inference rule. Then, F ⊢ X ▷X ∪ {xk+1}. Therefore,

F ⊢ X ▷ x1, . . . , xk, xk+1

by the Transitivity axiom, statement (14), and the Modus Ponens rule applied
twice. ⊠

7.2 Canonical Model

As usual, at the core of the proof of completeness is the construction of a canon-
ical model. The goal of this section is to define canonical trustworthiness model
M(T0, F0) = (W, {∼x}x∈V , {Tw}w∈W , π) for any dataset T0 ⊆ V and any maximal
consistent set of formula F0 ⊆ Φ.

Usually, possible worlds in modal logics are modelled using maximal consistent
sets of formulae. In the case of epistemic logic S5, we say that two worlds are ∼a-
equivalent if they contain the same Ka-formulae. Unfortunately, this construction does
not work for the distributed knowledge version of S5. Indeed, if two worlds are ∼a-
equivalent and ∼b-equivalent, then they share Ka-formulae and Kb-formulae, but not
necessarily Kab-formulae. However, due to the semantics of distributed knowledge, any
two worlds that are simultaneously ∼a-equivalent and ∼b-equivalent must share Kab-
formulae. In the case of distributed knowledge, this problem was solved in (Fagin,
Halpern, & Vardi, 1992) by using a tree construction. The tree construction specifies
a tree whose nodes are labelled with maximal consistent sets and whose edges are
labelled with sets of agents. The construction guarantees that maximal consistent sets
at any two adjacent nodes share KC-formulae, where C is any subset of the label on the
edge connecting the two nodes. Nodes represent possible worlds. Two nodes are ∼a-
indistinguishable if each edge along the simple path between the two nodes is labelled
with a set containing agent a. The desired property about Kab-formulae follows from
the fact that the simple path between any two nodes in a tree is unique.

In this article, we adopt the tree construction to data-informed beliefs. The agents
in (Fagin, Halpern, & Vardi, 1992) are replaced in our construction by data variables.
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Also, in addition to maximal consistent sets of formulae, we label the nodes with
sets of data variables that are trustworthy in those nodes (possible worlds). Just like
in (Fagin, Halpern, & Vardi, 1992), we formally define nodes as sequences.
Definition 4 Set W of worlds is the set of all sequences T0, F0, X1, T1, F1, . . . ,
Xn, Tn, Fn such that n ≥ 0 and, for each i where 0 ≤ i ≤ n,

1. Xi, Ti ⊆ V are datasets,
2. Fi is a maximal consistent set of formulae such that
(a) ψ ∈ Fi for each formula B∅

Xi
ψ ∈ Fi−1, if i > 0,

(b) BTi

Y φ→ φ ∈ Fi for each dataset Y ⊆ V and each formula φ ∈ Φ.

For any worlds w = T0, F0, . . . , Xn−1, Tn−1, Fn−1 and u = T0, F0, . . . , Fn−1, Xn,
Tn, Fn, we say that worlds w and u are adjacent. The adjacency relation defines a tree
structure on set W . By T (u) and F (u) we mean sets Tn and Fn respectively.
Definition 5 For any worlds w, u ∈W such that

w = T0, F0, . . . , Xn−1, Tn−1, Fn−1

u = T0, F0, . . . , Xn−1, Tn−1, Fn−1, Xn, Tn, Fn,

the edge between nodes w and u of this tree is labelled with all variables in dataset
(Xn)

∗
Fn−1

and that the node u is labelled with the pair Tn, Fn.

T0,F0

T1,F1 T2,F2

T3,F3T4,F4

X1 X2

X4 X3

Fig. 3 Fragment of tree W .

It will be convenient to visualise tree W as shown in Figure 3. In this figure, the
world T0, F0, X2, T2, F2, X4, T4, F4 is adjacent to the world T0, F0, X2, T2, F2. The edge
between these two worlds is labelled by all variables in the set (X4)

∗
F2
.

Definition 6 For any worlds w, u ∈ W and any data variable x ∈ V , let w ∼x u
if every edge along the unique simple path between vertices w and u is labelled with
variable x.
Lemma 12 Relation ∼x is an equivalence relation on set W for each data variable
x ∈ V .
Proof. The relation ∼x is reflexive because the simple path connecting any node to
itself has no edges. Thus, each edge along this path is vaciously labelled with variable
x. The relation is symmetric because the simple path from a node w to a node u
contains the same edges as the simple path from node u to node w.

To prove that relation ∼x is transitive, suppose that all edges along the simple
path from a node w to a node u are labelled with variable x and the same is true for
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the simple path from the node u to a node v. Note that the combination of these
two paths forms a (not necessarily simple) path such that all edges along this path
are labelled with variable x. By removing the loops from this path, one can obtain a
simple path from the node w to node the v such that all edges along this simple path
are labelled with variable x. ⊠

Definition 7 Tw = T (w).
Definition 8 π(p) = {w ∈W | p ∈ F (w)}.

This concludes the definition of the canonical trustworthiness model M(F0) =
(W, {∼x}x∈V , {Tw}w∈W , π).

7.3 Properties of the Canonical Model

As common in modal logic, at the core of the proof of completeness is a truth lemma.
In our case, this is Lemma 18. Lemma 14 and Lemma 15 are used in the induction
step of the proof of the truth lemma. Lemma 13 below is an auxiliary result used in
the proof of Lemma 14.
Lemma 13 For any formula BTY φ ∈ Φ and any worlds

w = T0, F0, . . . , Xn−1, Tn−1, Fn−1

u = T0, F0, . . . , Xn−1, Tn−1, Fn−1, Xn, Tn, Fn

if Y ⊆ (Xn)
∗
Fn−1

, then BTY φ ∈ F (w) iff BTY φ ∈ F (u).

Proof. (⇒) : Suppose that BTY φ ∈ Fn−1. Thus, by Lemma 1 and the Modus Ponens
inference rule

Fn−1 ⊢ B∅
Y BTY φ. (15)

Note that Fn−1 ⊢ Xn ▷ (Xn)
∗
Fn−1

by Lemma 11. Also, ⊢ (Xn)
∗
Fn−1

▷ Y by the

assumption Y ⊆ (Xn)
∗
Fn−1

of the lemma and the Reflexivity axiom. Hence, by the
Transitivity axiom and the Modus Ponens rules applied twice, Fn−1 ⊢ Xn▷ Y . Then,
Fn−1 ⊢ B∅

Xn
BTY φ by the Monotonicity axiom and statement (15). Thus, because Fn−1

is a maximal consistent set, B∅
Xn

BTY φ ∈ Fn−1. Therefore, BTY φ ∈ Fn by item 2(a) of
Definition 4.

(⇐) : Suppose that BTY φ /∈ Fn−1. Thus, ¬BTY φ ∈ Fn−1 because Fn−1 is a maximal
consistent set of formulae. Hence, Fn−1 ⊢ B∅

Y ¬BTY φ by the Negative Introspection
axiom and the Modus Ponens inference rule. Then, again because set Fn−1 is max-
imal, B∅

Y ¬BTY φ ∈ Fn−1. Thus, ¬BTY φ ∈ Fn by item 2(a) of Definition 4. Therefore,
BTY φ /∈ Fn because set Fn is consistent. ⊠

Lemma 14 For any worlds w, u ∈ W and any formula BTXφ ∈ F (w), if w ∼X u and
T ⊆ Tu, then φ ∈ F (u).
Proof. By Definition 6, the assumption w ∼X u implies that each edge along the
unique path between nodes w and u is labelled with each variable in dataset X. Then,
the assumption BTXφ ∈ F (w) implies BTXφ ∈ F (u) by applying Lemma 13 to each edge
along this path. Note that the assumption T ⊆ Tu of the lemma implies that T ⊆ T (u)

by Definition 7. Thus, F (u) ⊢ BT (u)
X φ by the Monotonicity axiom and the Modus
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Ponens inference rule. Hence, F (u) ⊢ φ by item 2(b) of Definition 4 and the Modus
Ponens inference rule. Therefore, φ ∈ F (u) because the set F (u) is maximal. ⊠

Lemma 15 For any w ∈ W and any formula BTXφ /∈ F (w), there exists a world
u ∈W such that w ∼X u, T ⊆ Tu, and φ /∈ F (u).
Proof. Consider the set of formulae

G = {¬φ} ∪ {ψ | B∅
Xψ ∈ F (w)} ∪ {BTY χ→ χ | Y ⊆ V, χ ∈ Φ} (16)

Claim 1 Set G is consistent.
Proof of Claim. Assume the opposite. Thus, there are formulae χ1, . . . , χn ∈ Φ,
datasets Y1, . . . , Yn ⊆ V , and formulae

B∅
Xψ1, . . . , B∅

Xψm ∈ F (w) (17)

such that

BTY1
χ1 → χ1, . . . , BTYn

χn → χn, ψ1, . . . , ψm ⊢ φ.
Hence, by Lemma 2,

BTX(BTY1
χ1 → χ1), . . . , BTX(BTYn

χn → χn), BTXψ1, . . . , BTXψm ⊢ BTXφ.

Then, BTXψ1, . . . , BTXψm ⊢ BTXφ by the Trust axiom applied n times. Thus,
B∅
Xψ1, . . . , B∅

Xψm ⊢ BTXφ by the Monotonicity axiom and the Modus Ponens inference
rule applied m times. Hence, F (w) ⊢ BTXφ due to statement (17). Then, BTXφ ∈ F (w)
because the set F (w) is maximal, which contradicts the assumption BTXφ /∈ F (w) of
the lemma. ⊠

Let G′ be any maximal consistent extension of set G. Such an extension exists by
Lemma 3. Suppose that w = T0, F0, . . . , Xn, Tn, Fn. Consider sequence

u = T0, F0, . . . , Xn, Tn, Fn, X, T,G
′. (18)

Note that u ∈W by Definition 4, equation (16), and the choice of set G′ as an exten-
sion of set G. Also, observe that the edge between nodes w and u is labelled with each
variable in set X by Definition 5, equation (18), and Lemma 10. Thus, w ∼X u by
Definition 6. In addition, T = T (u) = Tu by equation (18) and Definition 7. Finally,
¬φ ∈ G ⊆ G′ = F (u) by equation (16), the choice of G′ as an extension of G, and
equation (18).Therefore, φ /∈ F (u) because the set F (u) is consistent. This concludes
the proof of the lemma. ⊠

Lemma 16 For any world w ∈ W and any formula ¬(X ▷ Y ) ∈ F (w), there is a
world w′ ∈W such that w ∼X w′, and w ≁Y w′.
Proof. Let world w be sequence T0, F0, X1, . . . , Xn, Tn, Fn. Consider sequence

w′ = T0, F0, X1, . . . , Xn, Tn, Fn, X, Tn, Fn.
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Fig. 4 Case I (left) and Case II (right).

To prove that w′ ∈W , consider any formula B∅
Xφ ∈ Fn. By Definition 4, it suffices

to show that φ ∈ Fn. Indeed, the assumption B∅
Xφ ∈ Fn implies Fn ⊢ φ by the Truth

axiom and the Modus Ponens inference rule. Therefore, φ ∈ Fn because set Fn is
maximal.

To prove w ∼X w′, note that X ⊆ X∗
Fn

by Lemma 10. Thus, the edge between
vertices w and w′ is labelled with each data variable in set X. Therefore, w ∼X w′ by
Definition 6.

Finally, we show that w ≁Y w′. By Definition 6, it suffices to prove that the
simple path between vertices w and w′ is not labelled by at least one variable from
set Y . Then, by the choice of sequence w′ and Definition 5, it suffices to show that
Y ⊈ X∗

Fn
. Suppose the opposite. Thus, ⊢ X∗

Fn
▷ Y by the Reflexivity axiom. Note

that Fn ⊢ X ▷ X∗
Fn

by Lemma 11. Hence, Fn ⊢ X ▷ Y by the Transitivity axiom
and the Modus Ponens inference rule applied twice. Thus, ¬(X ▷ Y ) /∈ Fn = F (w)
because set Fn is consistent, which contradicts the assumption ¬(X ▷ Y ) ∈ F (w) of
the lemma. ⊠

Lemma 17 For any worlds w,w′ ∈ W , if X ▷ Y ∈ F (w), and w ∼X w′, then
w ∼Y w′.
Proof. We prove the lemma by induction on the length of the simple path between
vertices w and w′. If w = w′, then, vacuously, each edge along the simple path between
vertices w and w′ is labelled with each data variable. Hence, w ∼Y w′ by Definition 6.

Suppose that w ̸= w′. Consider the unique simple path between vertices w and
w′. By the assumption w ∼X w′ of the lemma and Definition 6, each edge along this
path is labelled with each data variable in set X. Because w ̸= w′, there must exist a
vertex u ∈W on the unique simple path between w and w′ such that vertices u and w′

are adjacent. Note that the unique simple path between vertices w′ and u is a part of
the unique simple path between vertices w and w′. Thus, each edge along the simple
path between vertices w and u is labelled with each data variable in set X. Hence, by
Definition 6,

w ∼X u. (19)

Claim 2 The edge between vertices u and w′ is labelled with each data variable in set
Y .
Proof of Claim. We consider the following two cases separately, see Figure 4:

Case I: u = T0, F0, X1, T1, F1, . . . , Tn−1, Fn−1 and w′ = T0, F0, X1, T1, F1, . . . ,
Xn, Tn, Fn. Consider any data variable y ∈ Y . By Definition 5, it suffices to show
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that y ∈ (Xn)
∗
F (u). Note that X ▷ Y ∈ F (w) by the assumption of the lemma.

Thus, F (w) ⊢ B∅
X(X ▷ Y ) by the Introspection of Dependency axiom and the Modus

Ponens inference rule. Hence, B∅
X(X▷Y ) ∈ F (w) because set F (w) is maximal. Then,

X ▷ Y ∈ F (u) by Lemma 14 and statement (19). Note that ⊢ Y ▷ {y} by the Reflex-
ivity axiom. Hence, by the Transitivity axiom and the Modus Ponens inference rule
applied twice,

F (u) ⊢ X ▷ y. (20)

Recall that u is a vertex on the simple path connecting vertices w and w′ and all edges
along this path are labelled with all variables in dataset X. Hence, X ⊆ (Xn)

∗
F (u) by

Definition 5. Then, by the Reflexivity axiom and the Modus Ponens inference rule.
⊢ (Xn)

∗
hd(u) ▷X. Thus, ⊢ (Xn)

∗
F (u) ▷ y by the Transitivity axiom and statement (20).

Hence, ⊢ Xn ▷ y by the Transitivity axiom and Lemma 11. Therefore, y ∈ (Xn)
∗
F (u)

by Definition 3.

Case II: w′ = T0, F0, X1, . . . , Fn−1 and u = T0, F0, X1, . . . ,Xn, Tn, Fn. This case is
similar to the previous one, except that it uses the set F (w′) instead of the set F (u)
everywhere in the proof. ⊠

To finish the proof of the lemma, note that the simple path between vertices w
and u is shorter than the simple path between vertices w and w′. Hence, w ∼Y u,
by the induction hypothesis. Also, u ∼Y w′ by Claim 2 and Definition 6. Therefore,
w ∼Y w′ because relation ∼Y is transitive. ⊠

Lemma 18 w ⊩ φ iff φ ∈ F (w), for any world w ∈W and any formula φ ∈ Φ.
Proof. We prove the lemma by induction on structural complexity of formula φ. If
formula φ is an atomic proposition, then the statement of the lemma follows from
Definition 8 and item 1 of Definition 2.

Let formula φ have the form X ▷ Y .

(⇒) : Assume X ▷ Y /∈ F (w). Thus, ¬(X ▷ Y ) ∈ F (w) because set F (w) is maximal.
Hence, by Lemma 16, there is a world w′ ∈ W such that w ∼X w′, and w ≁Y w′.
Therefore, w ⊮ X ▷ Y by item 2 of Definition 2.

(⇐) : Assume that X ▷ Y ∈ F (w). Then, by Lemma 17, for any world w′ ∈ W , if
w ∼X w′, then w ∼Y w′. Therefore, w ⊩ X ▷ Y by item 2 of Definition 2.

If formula φ is a negation or an implication, then the statement of the lemma
follows from the induction hypothesis, items 3 and 4 of Definition 2 and the maximality
and consistency of the set F (w) in the standard way.

Finally, suppose that formula φ has the form BTXψ.
(⇒) : If BTXψ /∈ F (w) then, by Lemma 15, there exists a world u ∈ W such that
w ∼X u, T ⊆ Tu, and ψ /∈ F (u). Thus, u ⊮ ψ by the induction hypothesis. Therefore,
w ⊮ BTXψ by item 5 of Definition 2.
(⇐) : Consider any world u such that w ∼X u and T ⊆ Tu. By item 5 of Definition 2,
it suffices to show that u ⊩ ψ. By Lemma 14, the assumptions BTXψ ∈ F (w), w ∼X u,
and T ⊆ Tu imply ψ ∈ F (u). Therefore, u ⊩ ψ by the induction hypothesis. ⊠
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7.4 Completeness: Final Step

Theorem 2 (strong completeness) For any set of formulae F ⊆ Φ and any for-
mula φ ∈ Φ, if F ⊬ φ, then there is a world w of a trustworthiness model such that
w ⊩ f for each formula f ∈ F and w ⊮ φ.
Proof. The assumption F ⊬ φ implies that the set F ∪{¬φ} is consistent. Let F0 be
any maximal consistent extension of this set. Consider the canonical model M(∅, F0).

First, we show that the sequence ∅, F0 is a world of this canonical model. By
Definition 4, it suffices to show that B∅

Y ψ → ψ ∈ F0 for each dataset Y ⊆ V and each
formula ψ ∈ Φ. The last statement is true by the Truth axiom and because set F0 is
maximal.

Finally, note that φ /∈ F0 because set F0 is consistent and ¬φ ∈ F0. Then, by
Lemma 18 and because F ⊆ F0, it follows that ∅, F0 ⊩ f for each formula f ∈ F and
∅, F0 ⊮ φ. ⊠

8 Future Work

The syntax and the semantics of our formal modelling of trust and beliefs are relatively
simple. This creates an opportunity for extensions of the proposed logical system.
In (Jiang & Naumov, 2024) we propose one such extension with doxastic strategies.
Below we list several other possible directions.

8.1 Doxastic Functional Dependency

One such possible extension is a generalisation of functional dependency expression
X ▷ Y to doxastic functional dependency expression X ▷T Y . Recall that, informally,
X ▷ Y means that “knowing the values of all variables from dataset X is enough
to determine the values of all variables from dataset Y ”. The expression X ▷T Y ,
informally, means that “if dataset T is trusted, then knowing the values of all variables
from dataset X is enough to determine the values of all variables from dataset Y ”1.
Formally, we propose the following definition of this modality:

w ⊩ X ▷T Y when for any worlds u, u′ ∈ W if w ∼X u, w ∼X u′, T ⊆ Tu, and
T ⊆ Tu′ , then u ∼Y u′.

Observe that X ▷∅ Y is equivalent to the original functional dependency expres-
sion X ▷ Y . Most axioms of our logical system can be generalised from functional
dependency to doxastic functional dependency:

1. Reflexivity: X ▷T Y , where Y ⊆ X,
2. Transitivity: X ▷T Y → (Y ▷T Z → X ▷T Z),
3. Augmentation: X ▷T Y → (X ∪ Z)▷T (Y ∪ Z),
4. Introspection of Dependency: X ▷T Y → B∅

X(X ▷T Y ).

The only exception is the Monotonicity axiom. Its most natural generalisation,
X▷T Y → (BTY φ→ BTXφ), is not universally true. Indeed, consider the trustworthiness

1Even more informally, “the one who knows X and trusts T , beliefs that she knows Y ”.

17



w1 w2 w3 w4

y x x, y

w1 w2

xp

Fig. 5 Two trustworthiness models. The worlds in which data variable t is trustworthy are shaded grey.

model depicted in the left of Figure 5. Observe that w2 ⊩ x ▷t y and w2 ⊩ Btyp, but
w2 ⊮ Btxp. The same is also true about the right trustworthiness model from Figure 5,
but perhaps it provides less insight due to being too succinct.

A complete axiomatisation of the interplay between trust-based belief modality BTX
and doxastic functional dependency expression X ▷T Y remains an open problem.

8.2 Public Announcements

Another interesting possible extension of our logic is by a public announcement modal-
ity. Given the data focus of our logical system, it makes sense to consider a public
announcement of the values of datasets rather than of true formulae. Such modality
has been first introduced in (van Eijck, Gattinger, & Wang, 2017) under the name
“public inspection”. We use notation [X]φ for modality “formula φ holds after the val-
ues of all variables in dataset X are publicly announced”. As we observed in (Deuser,
Jiang, Naumov, & Zhang, 2024), to formally define the semantics of this modality,
it is easiest to modify the satisfaction relation from a binary relation w ⊩ φ to a
ternary relation w,U ⊩ φ. It reads “formula φ is satisfied in world w after a public
announcement of the values of all variables in dataset U”.

To change from the binary form of relation ⊩ to the ternary one, we first need to
slightly modify Definition 1. Namely, in item 4 we will assume that π(p) is a set of pairs
(w,U), where w ∈ W is a world and U ⊆ V is a dataset. Informally, (w,U) ∈ π(p) if
atomic proposition p holds in world w after a public announcement of the values of
all variables in dataset U . Then, Definition 2 could be modified as follows to define
the ternary form of the satisfaction relation.
Definition 9 For any trustworthiness model (W, {∼x}x∈V , {Tw}w∈W , π), any world
w ∈W , any dataset U ⊆ V , and any formula φ ∈ Φ, the satisfaction relation w,U ⊩ φ
is defined as follows:

1. w,U ⊩ p if (w,U) ∈ π(p),
2. w,U ⊩ X ▷ Y when for each v ∈W , if w ∼X∪U v, then w ∼Y v,
3. w,U ⊩ ¬φ if w,U ⊮ φ,
4. w,U ⊩ φ→ ψ if w,U ⊮ φ or w,U ⊩ ψ,
5. w,U ⊩ BTXφ if v, U ⊩ φ for each world v ∈W such that w ∼X∪U v and T ⊆ Tv,
6. w,U ⊩ [X]φ if w,U ∪X ⊩ φ,

In the classical logic of public announcements, it is assumed that only true formulae
can be announced (van Ditmarsch, van der Hoek, & Kooi, 2007, Chapter 4). Similarly,
in the logic of public inspections, the “true” values of the variables are announced (van
Eijck, Gattinger, & Wang, 2017). The same is technically true in our semantics given
above. However, in our setting the announced values do not have to be trustworthy. For
example, a newspaper prediction could be publicly announced even if the prediction
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is wrong. Such an announcement is “true” because the newspaper indeed made such
a prediction, but this data is not trustworthy because the prediction itself is wrong.
The ability to reason about such announcements is a unique feature of our approach
that distinguishes it from the previous works.

The following additional axioms capture the interplay between data-informed
beliefs, functional dependency, and public announcements:

10. Distributivity: [X](φ→ ψ) → ([X]φ→ [X]ψ),
11. Combination: [X][Y ]φ↔ [X ∪ Y ]φ,
12. Duality: ¬[X]φ↔ [X]¬φ,
13. Perfect Recall: BTX [Y ]φ→ [Y ]BTXφ,
14. Public Knowledge: [X](BTX∪Y φ→ BTY φ),
15. Prior Belief: [X]BTY φ→ BTX∪Y [X]φ,
16. Partial Announcement: (X ∪ Y )▷ Z ↔ [X](Y ▷ Z),
17. Empty Announcement: φ↔ [∅]φ.

The complete axiomatisation of these properties (or even the properties of modalities
BTX and [X] without the functional dependency) is another question that we leave for
the future.

8.3 De Re Trust

Imagine that you are looking at a broken thermometer that shows 30°C. You know
that the thermometer is broken, but you observe that your mobile phone, which you
trust, also shows a temperature of 30°C. As a result, you don’t trust the thermometer
reading as a data variable, but you trust the value of this variable. This trust in the
value as opposed to the data variable is very different from the trust we formalised in
the current article. Perhaps the trust in the value should be called de re trust while
the trust in the data variable (no matter what its value is) could be referred to as de
dicto trust. Note that de dicto trust, at least the way we presented it in the current
work, leads to the formation of beliefs. On the other hand, it appears that de re trust
is formed by the beliefs. It is not clear how the trustworthiness models proposed in the
current article can be used to model de re trust. Perhaps a different type of semantics
can be developed in the future to study de re trust and its interplay with de dicto trust.

9 Conclusion

In this article, we proposed to extend the distinction between trust and trustwor-
thiness from agents to information expressed through (data) variables. Building on
this distinction, we defined beliefs as a combination of subjective mindset (trusted
variables) and objective information (values of variables) available to an agent. For
this setting, we gave a sound and complete logical system describing the interplay
of beliefs and functional dependencies between datasets. We also discussed possible
extensions of this system with a doxastic function dependency expression and a public
announcement modality, as well as a related notion of de re trust.
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A Proof of Lemma 2

Before proving Lemma 2, we show the following auxiliary result.
Lemma 19 (deduction) If F,φ ⊢ ψ, then F ⊢ φ→ ψ.
Proof. Suppose that sequence ψ1, . . . , ψn is a proof from set F∪{φ} and the theorems
of our logical system that uses the Modus Ponens inference rule only. In other words,
for each k ≤ n, either

1. ⊢ ψk, or
2. ψk ∈ F , or
3. ψk is equal to φ, or
4. there are i, j < k such that formula ψj is equal to ψi → ψk.

It suffices to show that F ⊢ φ → ψk for each k ≤ n. We prove this by induction on k
through considering the four cases above separately.

Case 1: ⊢ ψk. Note that ψk → (φ→ ψk) is a propositional tautology, and thus, is an
axiom of our logical system. Hence, ⊢ φ → ψk by the Modus Ponens inference rule.
Therefore, F ⊢ φ→ ψk.

Case 2: ψk ∈ F . Note again that ψk → (φ → ψk) is a propositional tautology, and
thus, is an axiom of our logical system. Therefore, by the Modus Ponens inference
rule, F ⊢ φ→ ψk.

Case 3: formula ψk is equal to φ. Thus, φ→ ψk is a propositional tautology. Therefore,
F ⊢ φ→ ψk.

Case 4: formula ψj is equal to ψi → ψk for some i, j < k. Thus, by the induc-
tion hypothesis, F ⊢ φ → ψi and F ⊢ φ → (ψi → ψk). Note that formula
(φ → ψi) → ((φ → (ψi → ψk)) → (φ → ψk)) is a propositional tautology. Therefore,
F ⊢ φ→ ψk by applying the Modus Ponens inference rule twice. ⊠

Lemma 2. If φ1, .., φn ⊢ ψ, then BYXφ1, .., BYXφn ⊢ BYXψ. Proof. By Lemma 19
applied n times, the assumption φ1, . . . , φn ⊢ ψ implies that

⊢ φ1 → (φ2 → . . . (φn → ψ) . . . ).

Thus, by the Necessitation inference rule,

⊢ BTX(φ1 → (φ2 → . . . (φn → ψ) . . . )).

Hence, by the Distributivity axiom and the Modus Ponens rule,

⊢ BTXφ1 → BTX(φ2 → . . . (φn → ψ) . . . ).

Then, again by the Modus Ponens rule,

BTXφ1 ⊢ BTX(φ2 → . . . (φn → ψ) . . . ).
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Therefore, BTXφ1, . . . , BTXφn ⊢ BTXψ by applying the previous steps (n − 1) more
times. ⊠
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