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Deep learning in the context of nano-photonics is mostly discussed in terms of its potential for inverse design of
photonic devices or nano-structures. Many of the recent works on machine-learning inverse design are highly
specific, and the drawbacks of the respective approaches are often not immediately clear. In this review we want
therefore to provide a critical review on the capabilities of deep learning for inverse design and the progress which
has been made so far. We classify the different deep-learning-based inverse design approaches at a higher level as
well as by the context of their respective applications and critically discuss their strengths and weaknesses. While a
significant part of the community’s attention lies on nano-photonic inverse design, deep learning has evolved as a
tool for a large variety of applications. The second part of the review will focus therefore on machine learning
research in nano-photonics “beyond inverse design.” This spans from physics-informed neural networks for
tremendous acceleration of photonics simulations, over sparse data reconstruction, imaging and “knowledge
discovery” to experimental applications.
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1. INTRODUCTION

Light–matter interaction at sub-wavelength dimensions can
lead to astonishing effects such as localized surface plasmon res-
onances which concentrate light to deeply sub-wavelength vol-
umes [1], the appearance of optical magnetic resonances in
otherwise non-magnetic media [2], the possibility to shape op-
tical near-fields with sub-wavelength structure [3], the emer-
gence of non-linear optical phenomena [4], or strong
enhancement of quantum emitter luminescence [5], to name
just a few. Those nano-scale optical effects can be exploited for a
broad variety of applications, for instance in integrated quan-
tum optics [6], for metamaterials [7], and in this context spe-
cifically for metasurfaces like flat lenses [8]. It is, for example,
even possible to create all-optical devices which use light to
solve integral equations or perform other analog optical com-
puting tasks [9–11].

Still, ever since the advent of nano-optics with the invention
of near-field microscopy [12–14] the numerical description of
many problems continues to be challenging [15]. An example is
the rational design of nano-photonic structures for specific

tasks, which remains a general problem that often involves
brute force “forward” calculations or solving inverse scattering
problems. Other challenges in nano-optics are related to exper-
imental limitations such as the stochastic nature of single-
photon emitters, fluctuating nano-scale force fields such as
Brownian motion, and the diffraction limit blocking access
to sub-wavelength information. Such effects often complicate
the interpretation of nano-optics experiments and require the
use of more sophisticated techniques for data analysis, for ex-
ample, combining data with prior knowledge or sparsity con-
straints. All these obstacles are about to be pushed significantly
further by the emerging computational methods around ma-
chine learning. In particular, “deep learning,” a sub-field of ma-
chine learning which uses complex ANNs with millions of
ANs, recently emerged as a versatile and powerful numerical
tool [16,17]. Deep learning techniques have proven to be par-
ticularly good at the categorization of huge and complex data-
sets, a task that they perform radically differently compared to
classical algorithms. Following a rather “intuitive” approach,
ANNs mimic the working principle of biological neurons
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and the human brain. A brief overview of the basic concepts is
given in Box 1.

Research in medicine is often of statistical nature, for which
data-driven analysis methods such as deep learning are particu-
larly interesting. Consequently, one of the first scientific fields
to which deep learning methods have been extensively applied
was medical research. In medical diagnostics, especially medical
imaging such as radiology, the use of machine learning tech-
niques for analysis and interpretation has literally exploded
in the recent past, which has led to extraordinary successes with
diagnostic classification accuracies often far beyond human
performance [18,19].

In nano-optics and photonics, machine learning started to
emerge a little later, but recently celebrated some remarkable
breakthroughs, enabling the analysis, categorization, and inter-
pretation of data which seemed formerly impossible. While al-
ready back in the 1990s simple ANNs had been discussed and
used for applications in spectroscopy or for automated instru-
mental control, for instance, to counteract drifts in microscopy
[20], it took two decades before the available computational

power reached a level that deep ANNs with millions or even
up to hundreds of billions of free parameters [21] could be suc-
cessfully trained on formerly unsolved problems. Today, deep
learning models have evolved to an extent that they readily out-
perform humans on specialized tasks such as image recognition
[16,22]. This progress was possible especially thanks to the
rapid development of massive parallel computing architectures
in modern graphics processing units (GPUs), and lately of spe-
cific “tensor cores,” integrated logic circuits optimized for the
mathematical matrix operation tasks required for neural net-
work training. Even all-optical implementations of artificial
neural networks have been subject to recent research; however,
their performance is still limited by the lack of energy-efficient
all-optical non-linear units [23–25].

Several review articles have been published recently, which
categorize in great detail the latest developments of deep learn-
ing applications in photonics and nano-optics. For an exhaus-
tive overview we therefore invite the reader to consult these
articles [26–30]. Also a few thematically more distantly related
review articles have been published recently, which we want to

Box 1. Artificial neurons, neural networks, and their training

An artificial neuron (AN) is simply a mathematical func-
tion which mimics the behavior of a biological neuron.

The step-like behavior of neuronal activation, which starts
to fire once a threshold stimulation is exceeded, can be
implemented by various non-linear mathematical func-
tions. A popular example is the logistic function (also called
“sigmoid”), shown in the above sketch. If the scalar product
of an input vector x and the neuron-intrinsic weight
parameters wi are larger than the neuron’s bias parameter
b, the output y is “high” (the artificial neuron fires). Else it
is “low.”

An artificial neural network (ANN) is composed of
several of such ANs, usually arranged in “layers.” The out-
put value of a neuron is fed into a succeeding layer of neu-
rons. The final layer is the network output y. For instance,
in a so-called fully connected ANN, every neuron of one
layer is connected to every neuron of the following layer.

Hence, an ANN represents a vectorial function f �x� � y
characterized by a large number of parameters wi
and bj.

Training an ANN is done via a numerical minimiza-
tion of a loss function L, which describes the error of the

network in predicting samples of the training data. A popu-
lar loss function is the mean square error loss (MSE), in
particular used for regression tasks:

L�wi, bj� �
1

N

XN

l�1

�ytrain,l − yANN�xtrain,l ��2, (1)

where xtrain and ytrain are N random samples from the train-
ing data, and yANN are the network predictions correspond-
ing to xtrain. N is called the batch size.

The term “learning” refers to optimizing the parameters
wi and bj describing the ANN, with the goal to minimize
the loss L. A small loss means that the network output ap-
proximates well the training data, ideally by learning to
“understand” the underlying correlations. L is numerically
minimized by “slipping down” its gradient with respect to
the parameters wi and bj.

Training on small batches composed of random subsets ofN
training samples helps to “jump” out of local minima by add-
ing a stochastic component to the procedure. One of the
most common training algorithms is stochastic gradient
descent [17].
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indicate to the interested reader. They cover, for example, con-
ventional inverse design and optimization methods for meta-
surfaces [31] and nano-photonics [32], but also a few more
general reviews on artificial intelligence in nano-technology,
photonics, and for light–matter interaction have been pub-
lished [33–36]. Finally, for the sake of conciseness of this re-
view, we intentionally ignore the vast and very active research
field on hardware implementations of artificial neural networks,
which includes—but is not limited to—research efforts on
photonics platforms [23,37,38].

In this mini-review we focus on selected key results that have
recently led to breakthrough advancements in the research on
inverse design of photonic nano-structures and metasurfaces.
Rather than compiling an exhaustive catalog of every single
publication, we provide an overview of milestone concepts
for improving deep learning inverse design fidelity, which re-
cently allowed to bring ANNs closer to the performance of con-
ventional optimization methods. We believe that such a
summary of concepts is of particular interest for researchers
in the field. We dedicate the second part of the review to
an overview of original applications of deep learning in
nano-photonics beyond structural inverse design. Specifically,
we summarize recent developments around physics-informed
neural networks in optics, on deep learning for knowledge dis-
covery and explainable machine learning, as well as on appli-
cations of ANNs to nano-photonics experiments.

2. DEEP-LEARNING-BASED NANO-PHOTONICS
INVERSE DESIGN

The first part of this mini-review is dedicated to deep-learning-
based inverse design techniques as well as to concepts to im-
prove the inverse design model fidelity. As stated before, we
do not aim to provide an exhaustive list of applications. An
up-to-date and very complete overview of possible optimization
targets can be found, for instance, in the recent reviews by Ma
et al. [27] or by Jiang et al. [29].

A. “Conventional” Inverse Design Methods
Before the recent rise of deep learning methods, inverse design
of nano-photonic structures was often based on intuitive con-
siderations and systematic fine-tuning (see, e.g., Refs. [39,40]).
A more systematic alternative was the combination of numeri-
cal simulation methods with gradient-based or heuristic opti-
mization algorithms, such as stimulated annealing, topology
optimization, and genetic algorithms [32,41–44]. Such meth-
ods led to some remarkable success for instance in the optimi-
zation of plasmonic optical antennas [45,46], dielectric multi-
functional nano-structures [47], and metasurfaces [31,48]. A
great advantage of such methods is the possibility to include
fabrication constraints or robustness conditions in the optimi-
zation procedure [47,49].

However, heuristics coupled to numerical simulation tech-
niques is slow and computationally expensive. Furthermore, for
each new optimization target, the parameter space needs to be
searched from scratch, implying hundreds to thousands of
numerical simulations. The recent advent of data-driven tech-
niques such as deep learning holds promise to accelerate the
computation by many orders of magnitude and quite some re-

markable progress has been made in the past few years. One can
distinguish two types of approach that have gained traction.
The first one replaces the forward simulation in an iterative
optimization with an ANN, while the second aims to build
an inverse ANN that solves the problem directly. Below we
critically discuss the two approaches as well as efforts at improv-
ing the quality of results.

B. Surrogate-Model-Based Inverse Design
Deep learning models are particularly strong in predicting
approximate solutions to direct problems such as the optical
response of photonic structures. A possible approach to accel-
erate inverse design is therefore to use a “forward neural net-
work” as an ultra-fast predictor together with an optimization
technique. In such a case the ANN acts as a so-called surrogate
model, taking the place of the much slower conventional sim-
ulation method.

1. Deep Learning Forward Solver
ANNs have been successfully trained on the prediction of vari-
ous physical quantities in nano-photonics. Early works have
proposed ANNs to create phenomenological models of non-
linear optical effects or of optical ionization using experimental
training data [50,51]. Recently, the idea has been picked up and
it has been shown, for instance, that scattering and extinction
spectra can be predicted with high accuracy [52] and also that
the phase can be included in the predictions [53], which is im-
portant for nano-structures in metasurfaces. The prediction of
far-field observables can also be extended to include proximity
effects in a dense metasurface, beyond the local phase approxi-
mation. The latter has been demonstrated by including the
near-field interactions with the nearest neighbor structures
in the training data [54]. The prediction of physical effects
is not limited to extinction, transmission, or other far-field ef-
fects. It has been shown that also near-field effects can be ap-
proximated accurately, for instance, around nano-wires of
complex shape [55].

While networks that predict an observable such as the scat-
tering cross section perform usually very well within the range
of their training data, such models often generalize rather
poorly to cases outside the parameter range covered by the
training data. The ANN acts then as universal function approx-
imator, but it does not develop a deeper “understanding” of the
underlying physics. In order to alleviate this problem, it turned
out to be helpful to provide the network with pre-processed
data. For instance, instead of training an ANN with pure op-
tical extinction spectra, So et al. [56] trained their model using a
decomposition in multiple electric and magnetic dipole reso-
nances to predict the optical response of multi-material
multi-shell nano-spheres. The approach is illustrated in
Fig. 1(a) and has also been used to inverse design multi-shell
spheres for Kerker-type directional scattering. Using a metallic
grating as a model example, Blanchard–Dionne and Martin
demonstrated that a neural network that learns light–matter
interaction through a representation as multiple Lorentz oscil-
lators generalizes about an order of magnitude better outside
the training data range, compared to a predictor network based
on the raw optical spectrum [57] [see Fig. 1(b)]. Instead of pre-
dicting specific physical observables such as the extinction cross
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section, Wiecha et al. demonstrated that a network can learn a
discrete dipole approximation of the electric polarization den-
sity inside a 3D nano-structure of arbitrary shape [58]. The
concept is depicted in Fig. 1(c) and allows accurate derivation
of manifold secondary quantities in the near and far fields from
a single generalized predictor neural network.

2. Forward Predictor Networks + Evolutionary Optimization
In general, the greatest advantage of deep learning techniques as
surrogate models for physics simulations is their tremendous
evaluation speed. Once trained, an ANN delivers its prediction
within fractions of milliseconds, which is usually orders of mag-
nitude faster than a numerical simulation. Therefore, replacing
conventional physics simulations by surrogate ANNs is a natural
solution to speed-up the inverse design of photonic
nano-structures via global optimization heuristics [59,60].
This concept has recently been applied by several groups to
the design of individual photonic nano-structures or metasurfa-
ces [61–66].

However, while the approach can significantly accelerate
heuristics-based inverse design, it remains an iterative approach
requiring thousands of calls to the surrogate model as well as
intermediate computation steps. Furthermore, the surrogate
model represents only an approximation to the physical reality,
introducing a systematic error. And even worse than that, it
cannot be guaranteed that the surrogate model does not contain
singular points of totally false solutions [67], to which the op-
timization algorithm may converge in the worst-case scenario.

Robust implementations therefore require a simulation-based
fine-tuning procedure subsequent to the surrogate-based opti-
mization run, which often relativizes the gain in speed [68,69].
The same problem also holds, of course, for the here-after dis-
cussed ANN-only inverse design methods.

C. Direct Neural Network Inverse Design
As mentioned above, using forward ANNs as surrogate models
for evolutionary optimization is computationally not the most
efficient technique and bears the risk of converging to singular
points of the surrogate model. In the recent past tremendous
efforts have therefore been dedicated to the development of
exclusively ANN-based inverse design schemes. The main ob-
stacle which needs to be circumvented is the so-called
“one-to-many” problem, which describes the fact that most in-
verse design problems are ambiguous, and hence several non-
unique solutions exist for the same design target. In consequence
a naive inversion of the ANN layout usually fails [70], but several
solutions have been developed to tackle the one-to-many
problem. One possibility is the above-described technique to
use a forward network as surrogate model, coupled to a global
optimization algorithm. In this section we give a brief overview
of pure neural network models to solve non-unique inverse
problems. The different concepts are also schematized in
Box 2.

A popular type of a stable inverse design network is the
so-called tandem network architecture [52,56,70–72]. In a tan-
dem ANN a forward solver network is trained in a first step.

(a) (b)

(c)

Fig. 1. Deep-learning-based forward solvers for ultra-fast physics predictions. (a) Simultaneous electric and magnetic dipole resonance prediction
and inverse design in multi-layer nano-spheres. Adapted with permission from [56], copyright (2019) American Chemical Society. (b) Nano-optics
solver network, which predicts the optical response of a grating based on multiple Lorentz oscillators. As shown in the right panel, the physics-based
data representation allows the network to generalize well outside the range of the training data (blue points). Adapted with permission from [57],
copyright (2020) Optical Society of America. (c) Internal electric polarization density predictor network. The results can be used in a coupled dipole
approximation framework to calculate a large number of secondary near- and far-field effects. Adapted with permission from [58], copyright (2020)
American Chemical Society.
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The training of the actual inverse design network (the gener-
ator) subsequently uses the fixed pre-trained forward model as a
physics predictor to evaluate the inverse design output. In con-
sequence, the loss function does not compare ambiguous de-
sign layouts but operates in the physics domain (comparing,
e.g., the extinction efficiency rather than the design parame-
ters). In this way, different design parameters which lead to a
similar physical response no longer confuse the ANN, and all
correct solutions to a given design problem yield a positive
training feedback.

Another model that circumvents the one-to-many problem
is the cGAN [68,73–76]. A cGAN takes as input not only the
design target but also an additional “latent vector,” which is a
normally distributed sequence of random values. The network
then learns to use different values of the latent vector to address
the distinct non-unique solutions. In addition to the introduc-
tion of a latent vector, a further peculiarity of cGANs is their
loss function, which is a discriminator network that tries to dis-
tinguish generated solutions from real ones, and which is also
subject to training. During training, the cGAN loss function

hence evolves together with the ANN, which allows ideally
a better convergence. It is worth noting that it is a delicate task
to tune the network and training hyperparameters in GANs
such that the learning converges. The training of both the
generator network and discriminator network needs to evolve
in a balanced way for the adversarial loss function to work
efficiently.

A further type of one-to-many solving networks is condi-
tional adversarial or conditional variational autoencoders
[66,77–80]. Those are usually symmetric models that take
the physical response as input, which they try to identically re-
construct at their output layer. In a conditional autoencoder, a
bottleneck layer is placed in the ANN center. This bottleneck
contains the design parameters on the one hand (as it is the case
in a tandem network), but on the other hand an additional
latent vector is appended to the design parameters. Like in
the cGAN, the latent vector can be used by the ANN to address
potential multiple solutions. Unlike in the tandem network the
forward model is trained simultaneously with the generator.
Conditional autoencoders can be seen as a mixture of a tandem

Box 2. Inverse design: The one-to-many problem

Let us assume a simple toy problem. Under fixed wave-
length illumination, we want to tailor the extinction coef-
ficient of a gold nano-rod by varying its length.

Already this simple problem is ambiguous: several rod
lengths can lead to the same extinction, which makes a
naive ANN implementation fail in those cases.

The “tandem neural network” can stabilize the generator
(G) via a physics loss, based on a pre-trained forward
model (fwd). This approach, however, limits the inverse
design to one solution per design target, rendering
inaccessible possible multiple solutions to a given problem.

Mixture density networks predict several possible solutions
at a time including their respective importance as Gaussian
distributions. A disadvantage is that the maximum
number of possible simultaneous solutions needs to be
known.

Conditional generative adversarial networks (cGANs) or
conditional (adversarial) autoencoders add a normally dis-
tributed latent vector (usually “z”) to the design target
(“condition”), which encodes dynamically multiple possible
solutions. Adversarial models furthermore use a trained
loss, a so-called discriminator network (D), which tries
to distinguish generated (fake) from training samples
(true).
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network and a cGAN. For a short explanation of the basic idea
behind VAEs and the meaning of the latent space, see also
Box 3.

For completeness we want to mention also work on
reinforcement learning for iterative design optimization, where
the neural network learns to behave as an iterative optimization
algorithm. The expectation is that the ANN can adapt
its optimization strategy specifically to the given problem
and hence outperform conventional heuristic algorithms
[82,83].

The above discussed models have been quite successfully
used for manifold inverse design problems in nano-photonics.
Figure 2(a) shows an example of multi-mode interference de-
vices (MMIs) designed by a tandem ANN. MMIs are large
waveguides that support many modes and that can have several
inputs and outputs (here 3 × 3). The here shown MMIs are
patterned with small perturbations in order to obtain specific
light-routing properties. The tandem ANN has been trained to
design perturbation patterns which produce arbitrary transmis-
sion states. This allows, for instance, to define MMI patterns
which swap a pair of the 3 × 3 input and output paths, while
one of the transmission channels remains constant, as demon-
strated in panels (i) and (ii) in Fig. 2(a) [84]. Figure 2(b) shows
a metasurface which acts as a flat lens with two focal spots, de-
signed by a variant of a cGAN network [73]. Other examples
are the design of chiral plasmonic structures [71,85], dielectric
structures [86], multi-shell nano-spheres [56,87], invisibility
cloaks [88–90], or metasurface design [91–93].

D. Strategies to Improve Neural Network Inverse
Design
Data-driven inverse design has the important drawback that the
accuracy of the model is first of all limited by the quality of the
data and an interpolation error between the data samples is in-
troduced by the ANN. Early works on inverse design therefore
reported rather qualitative agreement, but relatively large quan-
titative inaccuracies. Therefore, in the recent past remarkable

Box 3. Variational autoencoders and the latent space

Variational autoencoders (VAEs) learn to compress in-
formation in a lower-dimensional latent space, by
being trained on a reconstruction task.

In a VAE, forward propagation uses a random number
generator (RNG) to draw samples z with mean value μ
and standard deviation σ. The random component en-
sures that the learned latent variables z follow a normal
distribution. However, gradient descent training requires
analytical gradients, which cannot be backpropagated
through the RNG. This is why a re-parametrization into
deterministic layers of μ and σ is necessary [81].

By forcing the latent variables on a normal distribution,
the trained VAE clusters similar inputs in the latent
space. Furthermore, transitions between solutions in
latent space are smooth, which allows, for example,
interpolation operations.

(a) (b)

Fig. 2. Examples of devices inverse designed by ML algorithms. (a) Encoder–decoder type tandem inverse network used to design perturbation
patterns for 3 × 3 MMIs as arbitrary transmission matrix elements. The light routing behavior of the second and the third input channels is in-
terchanged between cases (i) and (ii), while the first input channel keeps routing light to the second output. Adapted with permission from [84],
copyright (2021) American Chemical Society. (b) Double-focus flat lens designed by a conditional WGAN inverse network. (i) shows the dielectric
metasurface, (ii) the corresponding amplitude, and (iii) the phase mask. (iv) shows a numerical simulation of the field intensity to test the ANN
design. Adapted with permission from [73].
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efforts have been put in developing methods to improve neural
network inverse design. In this section we want to provide an
overview over the most successful concepts. In general, two
main constituents offer the largest potential for optimization:
the training data and the neural network model.

1. Improving the Data Quality
As mentioned before, many ANNmodels do actually generalize
relatively poorly to cases outside the parameter range of the
training data. They act mainly as generalized function approx-
imators, and hence they interpolate very efficiently to fill the
gaps in the training data, while their extrapolation capability
remains limited. But also, the interpolation risks may be unsat-
isfactory if the physical model underlying the training data has
sharp features such as high quality factor resonances. If the
training data does not contain a sufficient number of such res-
onant cases, there is a high risk that those features will be very
poorly approximated by an ANN.

To tackle this problem, training data can be generated using
an optimization algorithm to produce specific responses for the
dataset [84,88]. In the case of many free parameters this
procedure is time-consuming. Therefore, recently the idea of
iterative training data generation has emerged [64,66,84,88,
89,94]. The principal idea is depicted in Fig. 3(a). An initial
dataset is generated traditionally via a randomized procedure,
on which an inverse design ANN is trained. This network is
subsequently used to construct devices based on realistic design
targets, but these designs are likely to be rather mediocre as the
initial ANN performs relatively poor. Now, the true physical
response of these mediocre ANN designs is calculated in an-
other run of numerical simulations, and these samples are ap-
pended to the training data. The generator ANN is then trained
again on the now extended training data and the generative
cycle is repeated. In this way, the neural network can literally
learn from its previous mistakes and its performance on the
specific design task will significantly improve. Figure 3(a) shows
the example of an optical cloak design problem, for which the
inverse design accuracy could be improved by more than 1 or-
der of magnitude thanks to iterative training [89]. To visualize
the evolution of the training data quality, Fig. 3(b) shows the
statistical distributions of resonator quality factors in a fully ran-
dom dataset of photonic crystal cavities (left) compared to a
dataset after one iteration of iterative training (right) [94].
The lack of resonant geometries in the randomly generated da-
taset is evident. Despite those solutions not being present in the
initial dataset, the ANN managed to conjecture a certain
amount of resonant cases, improving the training data for the
second iteration. By repeating the procedure, the training data
increasingly contains resonant geometries, which consequently
allows the ANN to inverse design close-to-optimum solutions.
Another positive side effect specifically in tandem networks is
that iterative training simultaneously improves the accuracy of
the forward network [84]. A recent work showed that an even
better design performance can be achieved by iteratively in-
creasing the network complexity together with a successive aug-
mentation of the training data, as depicted in Fig. 3(c) [95].

An obvious drawback of iterative procedures is their com-
putational cost. Data generation is usually slow, and the expen-
sive network training needs to be repeated several times on

increasing amounts of training samples. Several suggestions
have been made to accelerate the convergence of iterative data
generation in order to reduce the number of cycles. For in-
stance, by training several networks, the statistics from multiple
predictions can be used to assess the quality and the uncertainty
of the ANN output (“wisdom of the many” [96]; see also
Box 4). This information can be exploited to choose only the
best new solutions for re-simulation and insertion into the ex-
panded training data, which reduces the number of expensive
physics simulations [64]. Similarly, an evolutionary optimiza-
tion algorithm might be coupled to a generative ANN in
the iterative cycle to further specialize the training data with
regards to the anticipated optimization target [66]. A drawback
of such training-data optimization strategies is a risk of over-
specializing the network to optimum cases and losing its capabil-
ity to generalize to arbitrary situations. Therefore, care needs to
be taken that the training data remains sufficiently diverse.

2. Physics-Model-Based Loss Function
A similar, yet somehow more radical concept is to not use a
fixed set of training data at all but instead to implement a loss
function based on a physical model within the framework of
the machine learning toolkit. Such an approach has been illus-
trated recently by the example of inverse designing multi-layer
thin-film stacks for specific reflection and transmission spectra
[97]. As highlighted by a red box on the right in Fig. 3(f ), a
transfer matrix method (TMM) has been implemented directly
in the deep learning toolkit as a loss function. In consequence,
error backpropagation is possible through the TMM solver, and
the network can be trained without an explicit dataset. The loss
function in this so-called “GLOnet” is used to optimize the
transmission and reflection spectra of a multi-layer stack with
respect to a design target. It is worth mentioning that the
GLOnet learns to optimize a single design target, and hence
in principle the training of the network takes the place of a
conventional global optimization algorithm run (hence its
name “GLOnet”). The authors of Ref. [97] claim that the train-
ing dynamics allow their GLOnet to ideally adapt its optimi-
zation scheme to each problem, resulting in better and faster
convergence compared to hard-coded optimizers. The same au-
thors have generalized their concept to a somehowmore flexible
inverse network called “conditional GLOnet,” using an iterative
training scheme instead of a fully differentiable physics loss
function. For the training, gradients of the design efficiency
are calculated via adjoint simulations and re-injected for back-
propagation through the network [98]. The conditional
GLOnet is conceptually similar to a Pareto optimization in
which a set of optimum solutions for a multi-objective problem
is calculated [99]. While the specific solving of a single problem
is intentional in Refs. [97,98], as already mentioned before
over-specialization is an inherent danger of all iterative data-
generation methods.

Another concept to replace the dataset by a direct evaluation
of a physics model has been demonstrated for the Helmholtz
equation, by developing a loss function which directly evaluates
this partial differential equation (PDE). Such an ANN model is
called a “physics-informed neural network” (PINN). In the case
of a Helmholtz-PINN, the network learns to directly solve the
wave equation in the frequency domain. The inverse design
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target is then implemented as a boundary condition matching
problem [90,102]. As in the GLOnet case, also such a PINN
inverse design requires a new training run for each optimization
target. PINNs will be discussed in more detail later in this
review.

3. Sophisticated ANN Models
The second main lever allowing for performance optimization
of inverse design ANNs is the neural network model itself.

It has been proven helpful to adopt recent findings in the re-
search on optimum network layout for deep learning. For in-
stance, if applicable the “U-Net” architecture [103] offers much
better training convergence and generalization capacity than
standard convolutional neural networks—even in cases where
its particularly efficient segmentation capabilities are not re-
quired [58,104]. Furthermore, so-called residual blocks, or
ResNets [22], should be adopted whenever possible. Residual
blocks are characterized by their skip connections which avoid

(a)

(b)

(d) (e)

(f)

(c)

Fig. 3. Concepts to improve common shortcomings of inverse design ANNs. (a) Iterative training data generation, in which a network learns
from its own errors, here applied to the inverse design of an invisibility cloak device. Adapted from [89], copyright (2021) Optical Society of
America. (b) Comparison of the Q-factors for photonic crystal cavities in a random dataset (left) and in an iteratively generated dataset after
the first iteration (right). Adapted from [94], copyright (2019) de Gruyter. (c) Together with the training data, the network complexity can
be progressively growing, allowing even better performance by successive learning of smaller features. Reprinted with permission from [95], copy-
right (2020) American Chemical Society. (d) Mixture density ANN which represents multiple solutions with Gaussian probability distributions to
find several non-unique solutions to ambiguous problems. The shown example deals with the spectral design of a multi-layer stack. Adapted with
permission from [100], copyright (2020) American Chemical Society. (e) De-noising inverse ANN as robust approach for training on noisy data
(noise parameter a increasing from top to bottom). Adapted from [101], copyright (2019) Optical Society of America. (f ) “GLOnet”: inverse design
ANN using a transfer-matrix model loss for reflectivity and transmission spectra optimization of multi-layer stacks. Adapted from [97], copyright
(2020) de Gruyter.
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the vanishing gradient problem, allowing the training of very
deep network layouts.

In addition to the application of general “best-practice”
ANN design rules, problem-specific tailoring of the network
layout can be very favorable for optimum inverse design per-
formance. For instance, to tackle the one-to-many problem,
“multi-branch” or “mixture density” ANNs can be applied
in addition to the above-named network architectures. The
concept is based on representing the design parameters in a
“modal” representation as multiple Gaussian distributions,

where each of the Gaussian distributions describes a possible
solution to an ambiguous problem (see also Box 2). This con-
cept was proposed some time ago for microwave device inverse
design [105,106] and was recently adapted to nano-photonics
[100,107] [see also Fig. 3(d)]. The advantage is that the net-
work can in principle deliver all possible solutions together with
a weight for their respective priorities. A drawback of the ap-
proach is that the approximate number of non-unique solutions
needs to be known in advance.

Another recent proposition to optimize inverse networks
specifically for noisy situations like in experiments is the imple-
mentation of concepts from machine-learning-based image
denoising [108]. As shown in Fig. 3(e), Hu et al. added artificial
noise on training data and could demonstrate that a denoising
network-based inverse ANN offers a very robust performance
even when trained on very noisy data [101]. This opens prom-
ising perspectives for experimental applications.

4. Reformatting the Input Data
Apart from optimizing the network model and generating
training data of high quality, the format of the inputs and out-
puts of a neural network can play a decisive role in whether the
ANN manages to “understand” the data or not. An example is
illustrated in Fig. 4(a), where a physical problem is to be solved
on a non-Cartesian coordinate domain. On 2D problems such
as the one here shown, typically convolutional neural networks
(CNNs) are most efficient. However, as can be seen in the left-
most panel, the imposed discretization on a square mesh is very
poor. This holds in particular for the domain borders. Gao et al.
[109] proposed therefore to apply a transformation of the co-
ordinate system from the physics domain to the CNN reference
domain prior training. As illustrated in Fig. 4(b) by the example
of solving the heat equation, this additional pre-processing al-
lows to successfully apply ANNs to very complex non-uniform
physical domains.

Box 4. “Wisdom of the many”

Wisdom of the many or also wisdom of the crowd denotes
the procedure of training multiple neural networks on
the same data, each ANN with random initialization.
We illustrate the idea by the example of an optical spec-
trum predictor network.

While this approach adds a significant computational
cost (training several networks), the mean μ of N in-
dependent predictions provides a

ffiffiffiffiffi
N

p
times smaller

statistical error compared to using a single ANN.
Furthermore, the standard deviation σ of multiple pre-
dictions can be used to assess the credence of the ANN
output.

(a) (b)

(c) (d)

Fig. 4. Examples of input data pre-processing for optimized physics domain representation. (a),(b) Deep learning on irregular grids via coordinate
transform (a) which is implemented within the deep learning toolkit to allow fast gradient calculations through the coordinate system transformation.
(b) The transformation allows to efficiently train networks on complex-shaped physical domains. Adapted with permission from [109], copyright
(2020) Elsevier. (c) Data encoding and compression using a topology description based on low-frequency Fourier components, which allows
data-efficient treatment of complex shapes, here for example a free-formmetagrating. Adapted from [110], copyright (2020) Optical Society of America.
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The problem of discretization can also be alleviated by ap-
plying a topology encoding procedure, for instance via Fourier
transformation [110]. The idea is illustrated in Figs. 4(c) and
4(d). Such encoding can allow not only to describe geometries
with odd shapes without restrictions due to discretization, but
it allows furthermore to condense the information to a low-
dimensional space, which is helpful to reduce ANN complexity
and furthermore advantageous in preventing overfitting.

5. Other Concepts
Further possibilities to improve the quality of ANN-based in-
verse design are to use the ANN only as a first step for a rough
estimate and apply a conventional iterative approach in a sub-
sequent refinement step. Heuristic optimization algorithms
usually benefit strongly from a good initial guess [68].
Another recent proposition is to use a forward neural network
purely as an ultra-fast physics predictor to construct a huge
lookup table [111]. Using a well-trained forward network, a
lookup table can be created which covers the entire parameter
space at a very fine resolution, impossible to achieve with con-
ventional numerical methods. Appropriate solutions to specific
problems can subsequently be searched in this database.
Transfer learning has also been recently applied to nano-optics
problems to improve ANN performance if only small amounts
of data exist [112]. For instance, experimental data is often ex-
pensive, but the situation can be improved by training an ANN
first on simulated data, and subsequently specializing the
pre-trained network via transfer learning on the experimental
dataset [113].

E. Heuristics versus Deep Learning—A Critical
Comparison
It is of utmost importance to emphasize that a data-driven in-
verse design technique can never outperform an iterative
method if it is based on the same simulation model used for
training data generation. At least not if no time constraint is
set for the iterative optimization. Well-trained and optimized
data-driven ANNs usually produce errors of the order of a few
percent [55,58]. Furthermore, it is virtually impossible to com-
pletely suppress outliers in the network predictions [67]. At the
singular points the error of the ANN can be orders of magni-
tude higher. It is thus a delicate task to assess whether a pre-
diction is valid or rather the result of a singularity in the ANN.

While recently some sophisticated training techniques were
presented that are capable to train ANNs for performances sim-
ilar to conventional inverse optimization, they are either still
considerably constrained or the high accuracy has a severe im-
pact on the computational cost. Examples are physics-loss
based inverse ANNs or networks based on progressive-
complexity training schemes [95,97]. The model described
in Ref. [97], for example, is constrained to a simple transfer-
matrix description of a multi-layer system as well as to the in-
verse design of a single optimization target.

The fact that ANNs always introduce an additional error is
inherent to the data-driven nature of machine learning (ML),
which implies that an ML model can never outperform the ac-
curacy of the simulations used to create the dataset or the model
defining the training loss. On the other hand, once trained ANN
techniques can offer extreme speed-up of the inverse design,

generally many orders of magnitude faster than iterative ap-
proaches based on numerical simulations, it is not unusual that
milliseconds stand against hours or even days. This is a marvelous
advantage and often well worth it to accept the reduced accuracy
of ANN-based techniques. In daily applications a few percent er-
ror might actually not even matter too much, in particular when
compared to the typical magnitude of inaccuracies in fabrication.

On the other hand, concerning the inverse design speed it is
important to remember that the ultra-fast predictions require a
fully trained neural network. This implies the computationally
highly demanding data generation as well as the very expensive
training of the ANN. In many situations, conventional global
optimization is in sum actually computationally cheaper. In
conclusion, deep-learning-based inverse design is mainly inter-
esting for applications which require a large number of repeti-
tions of similar design tasks, or that rely on ultimate speed for
the design generation.

3. BEYOND INVERSE DESIGN

The second part of this review is dedicated to applications of
deep learning in nano-photonics “beyond inverse design.” We
give an overview on physics-informed neural networks; we
present recent work on ANNs for physics interpretation and
knowledge discovery as well as experimental applications.

A. Physics-Informed Neural Networks: Solving PDEs
Most machine learning applications in physics aim to predict
derived observables such as transmittance or extinction cross
sections. In contrast, the idea of PINNs is to train an ANN
to directly predict the solution of a PDE. While this would
be also possible using a dataset of pre-calculated solutions,
the particularity of PINNs is that instead of using a loss
function for data comparison like MSE, the PINN-loss imple-
ments an explicit evaluation of the PDE. In consequence, no
pre-calculated training data is required for training. For the
PINN-loss, the PDE derivatives of the ANN-predicted
observables are directly implemented in the respective deep
learning toolkit. Thus, the PINN-loss can be seen as a consis-
tency check for the predicted solution. Because modern deep
learning toolkits offer powerful automatic differentiation func-
tionalities, error backpropagation through the PINN-loss
remains possible and the ANN can be efficiently trained with-
out data.

This concept was first proposed in 2019 by Raissi et al.
[114] and has since then attracted a great deal of attention
across countless research communities in physics, such as fluid
mechanics [114,115], thermodynamics [109], and geophysics
[116]. Compared to data-based ANNs, the accuracy of PINNs
is in general significantly higher. On the other hand, because
PINNs evaluate the underlying PDE “point by point,” they are
usually slower than conventional data-based models. Since the
latter work on physical observables, it is easier to predict higher-
dimensional data structures at a time, making better use of the
massive parallel computing architectures of modern GPUs.
Nevertheless, PINNs are usually orders of magnitude faster
than numerical PDE solvers.

Applications to nano-photonics are still scarce. Recently
Moseley et al. demonstrated that PINNs are capable of
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accurately solving the wave equation in the time domain [116].
An example is shown in Fig. 5(a), demonstrating seismic wave
propagation through an inhomogeneous medium at successive
snapshots in time. As can be seen, the PINN is capable of pre-
dicting the evolution of the wave propagation even in a com-
plex environment. While Ref. [116] treats shock waves in
geophysics, the problem is conceptually identical to the wave
equation in electrodynamics.

Depicted in Fig. 5(b), Fang and Zhan recently demon-
strated that a PINN can accurately solve the Helmholtz equa-
tion, describing wave propagation in the frequency domain
[102]. They found that sinusoidal activation functions are
the most adequate choice to solve a differential equation with
time-harmonic solutions. By formulating the inverse design as a
boundary condition matching problem, it was possible to use
the Helmholtz-PINN for the design of an optical cloak, as illus-
trated in the bottom of Fig. 5(b). A similar frequency-domain
PINN has been proposed for the homogenization of optical
metamaterials [90]. A disadvantage of PINNs is that the envi-
ronment needs to be defined at the training stage and hence a
new network needs to be trained if the boundary conditions
change. Each PINN-based inverse design therefore involves
a new training procedure, comparable with conventional iter-
ative techniques, which is evidently much slower than “direct”
inverse ANN models. Conceptually related to PINNs is also
the so-called “GLOnet,” which is discussed in more detail
above [97] [see also Fig. 3(f )].

B. Interpretation of Physical Properties
In this section we will review recent approaches to extract in-
formation and correlations from deep learning models in order
to reveal physical insights.

There is on the one hand the possibility to use deep learning
models for dimensionality reduction. Figure 6(a) shows a work
of Kiarashinejad et al. in which the number of discrete values in
reflectance spectra from a set of electrodynamical simulations is
reduced from 200 to 2 via an unsupervised autoencoder ANN.
In a second step, the non-convex hull of the compressed re-
sponses is calculated, which represents the region in the 2D
compressed space containing all encoded points. This region
allows us to assess the range of accessible physical responses
within the allowed design parameters, and the method is
hence helpful to identify the physical limitations of specific

nano-structure models. Note that the full physical response
of any point in the reduced dimensionality space can be recon-
structed using the decoder part of the autoencoder, also those
points that were not present in the training data. This means
that feasible and non-feasible responses can be analyzed in the
original response space (under the assumption that the neural
network generalizes well to out-of-training situations). Note
that autoencoders are unsupervised ANN models, which are
known to require relatively few data for training. This facilitates
the application of the technique to experimental data.

In a similar approach, the impact of variations of individual
design parameters on the latent space can be studied. Those
parameters whose variations have large (respectively little) im-
pact on the latent space contribute strongly (respectively
weakly) to the optical response [117–119]. The latent space
is indicated by yellow highlighted neurons in Fig. 6(b), top
right. The impact of physical parameters on these weights is
illustrated in the bottom right of Fig. 6(b). By varying the size
of the bottleneck (i.e., reducing the latent space dimension), it
is furthermore possible to extract something like the number of
principal components of the response, as shown in the left
column of Fig. 6(b). Iten et al. [120] extended the encoder–
decoder ANN for interpretable physics via an approach in-
spired by humans’ interpretation and modeling of physical
observations. The concept is depicted in Fig. 6(c), where
the motion of a mass is observed as a function of time x�t�.
To implement this concept in an ANN the authors append
a condition to the latent vector at the bottleneck of an
encoder–decoder ANN [see Fig. 6(d)]. This condition is here
called a question; the example in Fig. 6(c) uses the time t 0 for
which the ANN shall predict the position of the moving mass
(= the answer). In the context of nano-photonics the question
could be an optical spectrum of a nano-structure. The “answer”
returned by the ANN might then be the material or the size of
the nano-structure, or a wavelength or laser polarization state.
This kind of ANN is conceptually very similar to inverse design
ANNs (in particular to the cGAN or cAE models), but instead
of using it for the design of nano-structures, it is here used to
understand causal correlations imposed by the implicit physics
in the training data.

A more direct approach to extract physical knowledge from
ANNs consists in using the ultra-fast approximation capability

(a) (b)

Fig. 5. Physics-informed neural networks (PINNs) for nano-optics. (a) PINN for solving the wave equation in the time domain. Adapted with
permission from [116]. (b) Top: solving the Helmholtz equation (frequency domain); bottom: using the PINN for inverse design of the permittivity
distribution in domain Ω1 for an invisibility cloak application. Adapted with permission from [102], copyright (2020) IEEE.
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of deep learning surrogate models. Through a systematic scan
of the whole parameter space it is, for example, possible to
assess the accessible optical responses with a specific nano-
structure model. In this way, accessible phase and intensity val-
ues for metasurface elements have been classified systematically
by An et al. [122]. The logical conclusion of the study was that
allowing more complex shapes for the meta-atoms leads to a
larger accessible range for the phase and intensity, as depicted
in Fig. 6(e). From left to right are shown increasingly complex
geometric models (top row) and their accessible scattering
phase and intensity range (bottom row).

As already mentioned before, another way to gain insight in
physical processes through a machine learning analysis is to use
a physical parametrization of the training data, such that the
neural network explicitly returns a physical quantity. As shown

in Figs. 1(a) and 1(b), extinction spectra can, for example, be
pre-processed in a modal decomposition, such as a superposi-
tion of electric and magnetic dipole resonances [56] or as a de-
composition in Lorentzian resonance profiles [57]. Once
trained, the respective neural networks deliver an explicit inter-
pretation of the predicted spectra.

In another recent work, so-called explainable machine learn-
ing has been used to assess the importance of constituent parts
of a nano-structure with respect to its optical response, as well
as to identify those parts of the structure that contribute only
weakly to the light–matter interaction [123]. Such information
is important for the design of fabrication-robust nano-struc-
tures, but also for applications in which sub-constituents of
high impact on the nano-structure’s optical response need to
be identified, e.g., for switchable optical antennas. Another

Fig. 6. Examples of “knowledge discovery” through machine learning. (a) The feasibility of a physical response by a defined geometric model can
be assessed by a dimensionality reduction through an autoencoder neural network and subsequent non-convex hull determination. Adapted from
[121], copyright (2019) the authors. (b) Study of the impact of the number of bottleneck neurons N (left spectra) as well as of nano-structure design
variations on the activation of the bottleneck neurons (W1–W4 in case N � 4, yellow neurons in the top right panel). This analysis allows to assess
the physical importance of individual design parameters and reveals information about the complexity of the optical response. Adapted with per-
mission from [117], copyright (2019) John Wiley and Sons. (c), (d) By mimicking the human approach of interpreting and modeling physical
observations (c), a conditional encoder–decoder network (d) can be used to discover implicit physics concepts from data. Reprinted with permission
from [120], copyright (2020) APS. (e) Exploiting the high speed of a physics predictor network permits a systematic analysis of the achievable phase
and intensity variations in metasurface constituent design. Adapted from [122], copyright (2020) Optical Society of America.
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recent work proposes interpretable machine learning models
like decision trees and random forests to understand the physi-
cal mechanisms behind inverse design results [124].

C. Deep Learning for Interpretation of Photonics
Experiments
The last section of this review is dedicated to recent applications
of deep learning in nano-photonics experiments.

Deep learning has proven to enable unprecedented statistical
evaluation of large and complicated data, which was formerly
impossible with conventional methods. It has been demon-
strated, for instance, that ANN models can learn from huge
microscopy datasets to optically characterize 2D materials such
as graphene or transition-metal dichalcogenides [125] or to
automatically localize and classify nano-scale defects [126] or
to track particles in 3D space using holographic microscopy
[127]. Deep learning was also successfully applied for the
ultra-fast analysis of single-molecule emission patterns [128]
as well as for the experimental reconstruction of quantum states
for quantum optics tomography [129].

By training an ANN on large amounts of experimental op-
tical scattering spectra from complex photonic nano-structures,
recently an optical information storage concept has been pro-
posed, able to push the data density beyond the optical diffrac-
tion limit [130]. The principle is depicted in Fig. 7(a). Digital
information is encoded in silicon nano-structures, which are
designed such that each nano-structure encoding a specific
bit-sequence possesses a unique scattering spectrum. Visible
light scattering is subsequently interpreted by an artificial neu-
ral network [Fig. 7(b)]. Training on experimental data renders
this readout robust against fabrication imperfections and in-
strumental noise. Therein, the ANN is the key ingredient to
allow high readout accuracies from distorted data [Fig. 7(c)].
Deep learning can be used for various further experimental clas-
sification tasks in nano-optics. For instance, as depicted in
Fig. 7(d), it has been recently demonstrated that an ANN
can learn to classify different species of anthrax spores from
holographic microscopy images [131]. The confusion rates
in the individual classes [Fig. 7(e)] allow furthermore to assess
similarities and differences between the different anthrax spe-
cies. Similar recent deep-learning-based holographic image clas-
sification tasks include analysis of colloidal dispersions [132] or
the real-time determination of size and refractive index of sub-
wavelength small particles [133].

Deep learning is particularly strong at the interpretation of
sparse, undersampled data. In a recent example, Argun et al.
used a deep neural network for force field calibration in micros-
copy, by monitoring and interpreting Brownian particle motion
[134]. As depicted in Fig. 7(f ), complex trapping potentials
(top left) can be reconstructed efficiently from few experimental
samples (top right). In contrast to a conventional method (bot-
tom right), the ANN (bottom left) reconstructs the correct po-
tential with high accuracy also from little data [using only the
dark part in the top right panel of Fig. 7(f )]. Similarly, machine
learning has been used for real-time particle tracking
[135–137]. Recently ANNs have also been successfully trained
on simulated data to efficiently predict the optical forces in
complex particle trapping situations [138]. Moreover, deep
learning has been found to be very powerful in solving inverse

problems occurring in imaging experiments. In this context
often sparsity assumptions are required to enable deconstruc-
tion of undersampled data, which demands computationally
complex inverse solving techniques such as compressive sens-
ing. Corresponding imaging applications include phase recov-
ery [139,140], image reconstruction or enhancement
[141–144], super-resolution microscopy [145–149], and co-
herent diffractive imaging [150,151]. In the context of photon-
ics, it has been demonstrated that speckle patterns which occur
after light transmission through complex media can be decon-
structed very efficiently with deep learning methods
[104,152–156]. While such speckles appear as if they were
random patterns, they are actually the result of deterministic
multiple scattering events. Therefore, a fixed correlation be-
tween input and output before and after the complex medium
can be established, which is classically done by constructing a
transmission matrix [157], involving complex regularization
schemes, inversion procedures, or computationally expensive
compressive sensing techniques [158]. While speckle-based
methods allow, for instance, imaging through opaque media
or the reconstruction of spectral information, the aforemen-
tioned computational burden usually prohibits real-time appli-
cations. ANN models, on the other hand, can be trained to
solve the implicit inverse problem in speckle deconstruction
very efficiently, which recently enabled use of complex media
such as multi-mode fibers for real-time applications in imaging
[104,153–155,159], spectral reconstruction [156], or both
(hyper-spectral imaging) [152]. Figure 7(g) illustrates a setup
for such speckle-based hyper-spectral imaging. An image is
formed via an intensity spatial light modulator, spectrally
shaped using an acousto-optic tunable filter, and focused on
the aperture of a multi-core multi-mode fiber bundle. The fiber
cores act as pixels of the image, whose individual speckle pat-
terns encode the spectral information. Kürüm et al. [152] dem-
onstrated that even under noisy conditions and in the
undersampling regime, an ANN can reconstruct the spectral
information of several thousand fibers with a speed of a few
frames per second. In contrast, conventional compressive sens-
ing algorithms require tens of minutes for the same task with
similar reconstruction fidelity [158].

In the context of sparse data reconstruction, deep learning
has recently been used in quantum optics applications for the
reconstruction of statistical distributions from experiments
with weak photon counts, as schematized in Fig. 7(h). For in-
stance, Cortes et al. [160] demonstrated the successful
reconstruction of time-dependent data from few photon events
using statistical learning. In this procedure a machine learning
algorithm learns to predict the statistical distribution of the
data. A similar approach has been applied to assess whether
a nano-diamond contains a single or several nitrogen vacancy
photon emitters [161]. Another work demonstrated a machine
learning model capable of differentiating between coherent and
thermal light sources via a statistical analysis of the temporal
distribution of a very low number of photons [162]. These
learning-based statistical analysis methods are capable of out-
performing conventional data fitting techniques thanks to their
capacity to learn the most probable statistical distributions from
the actual data. Essentially, the machine learning model learns
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to “focus” on the important regions in the data (comparable to
adaptive fitting weights). Conventional data fitting algorithms
on the other hand tend to attaching too much importance to
“flat” areas, to the detriment of the accuracy in the relevant
regions. Just as with accidentally over-specialized inverse
networks, care must be taken when interpreting the ANN

reconstructions. Since data-driven approaches always bear
the risk of being biased toward the training data, a neural net-
work might, for instance, detect a learned statistical distribution
even in pure noise.

Deep learning can be applied not only to data analysis but
is also increasingly used to control real-time experimental

(a) (b) (c)

(d)
(e)

(f) (g) (h)

Fig. 7. Examples of ML applications in experimental data interpretation. (a)–(c) ANN used to decode information from optical information
storage via a spectral scattering analysis from sub-diffraction small nano-structures. (a) Each bit sequence is encoded by a specific geometry which is
designed such that it possesses a unique scattering spectrum. (b) A neural network is trained on a large amount of spectra such that it learns to decode
noisy spectra of formerly not seen structures. (c) Even if only few wavelengths are probed, the readout accuracy of the network is excellent. Adapted
with permission from [130], copyright (2019) Springer Nature. (d), (e) Holographic anthrax spore classification via holography microscopy. A
machine learning algorithm is trained on phase images of different spore species, as depicted in (d). The neural network is capable to classify
five different anthrax species with a very high accuracy. Adapted from [131], copyright (2017) the authors. (f ) Microscopy force field calibration
(top left, green line: trapping potential; dots: reconstructed potential). Evaluation of U �x� via ANN-based analysis of Brownian motion from
undersampled statistical data (top right). Comparison of reconstruction fidelity of ANN (bottom left) and conventional method (bottom right).
Ground truth is indicated by a black dashed line. Adapted from [134], copyright (2020) the authors. (g) ANN enabled real-time hyper-spectral
image reconstruction from speckle patterns produced by a multi-core multi-mode fiber bundle (MCMMF). The technique exploits the wavelength
dependence of the speckle patterns. Adapted from [152], copyright (2019) Optical Society of America. (h) Scheme depicting the use of machine
learning for statistics reconstruction of few-shot data acquisitions. Reprinted from [160], with the permission of AIP Publishing.
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feedback systems. Recent examples touching the field of nano-
photonics are mainly found in AI-stabilized microscopy. ANNs
can be applied, for instance, to real-time image enhancement
[163], microscopy stabilizing feedback systems [20,164], or to
conduct sparse data acquisition schemes for the acceleration of
scanning microscopy systems via compressive sensing [165].
ANNs have been also applied to controlling laser mode-locking
stabilization systems [166–168]. So far, the direct application of
ANNs to experimental hardware for nano-photonics is still
scarce, but the research is in an early stage. A recent work
proposed, for instance, to calibrate and control electrically re-
configurable photonic circuits by deep learning algorithms
[169]. Another example is a pioneering work of Selle
et al. [51] which proposed to use ANNs coupled to a femto-
second laser pulse shaper for real-time control of the light–
matter interaction in nano-structures or molecules. We expect
a very rapid development of applications in this direction in the
near future; in particular, real-time critical applications such as
sensing [170] will hugely benefit from the tremendous accel-
eration potential of ANNs.

4. CONCLUSIONS AND PERSPECTIVES

In conclusion, in this mini-review we discussed the most recent
developments in deep learning methods applied to nano-
photonics. In the first section we focused on ANN-driven
nano-photonic inverse design methods and discussed concepts
to improve the design quality of inverse ANNs in comparison
with conventional optimization techniques. In the second part
we discussed applications of deep learning in nano-photonics
“beyond inverse design,” spanning from physics-informed neu-
ral networks over ANNs for physical knowledge extraction to
data interpretation and experimental applications.

We would like to emphasize that despite their latest remark-
able success and their undeniable great potential, artificial neu-
ral networks are “black boxes.” It is extremely hard, mostly even
impossible, to understand how a neural network generates its
predictions. It has been demonstrated on many occasions that
even the most sophisticated ANNs, trained on the most care-
fully assembled datasets, contain singular points at which their
predictions diverge. Another noteworthy danger of data-driven
techniques is that they bear a considerable risk to be biased with
respect to their training data, such as an incident where
Google’s image-tagging algorithm learned implicit racism from
its training data [171]. We therefore appeal to the reader to
keep in mind that, simply speaking, “what you put in is what
you get out.” In consequence the ANN models are only the
second most important ingredient to deep learning. The essen-
tial element is first of all the training data. Unfortunately, it is
often understated and not discussed with sufficient emphasis
that high-quality training data is of the utmost importance.
By reviewing techniques that aim at improving the training data
quality, we tried to arouse some awareness in this respect.
Another important aspect in this context is the amount of train-
ing data required to train a well-performing and generalizing
ANN. Unfortunately, in many problems which would be nat-
urally suited for deep learning applications, training data is
scarce or very expensive to generate. Additionally, the more
general a problem for an ANN is, the more training data is

usually required for a good prediction fidelity. Last but not
least, adapting an ANN model to a new problem often requires
the entire training data to be generated from scratch, which
might even be the case for minor modifications. These aspects
can create considerable computational barriers for broad and
flexible applications of ANNs.

Deep learning techniques in the context of nano-photonics
have experienced a tremendous amount of attention in the past
few years and research has literally exploded. ANNs have en-
abled manifold applications which formerly seemed strictly
impossible. As discussed above, a prominent example is
data-driven ultra-fast solvers for various inverse problems,
for which conventional methods are computationally extremely
expensive and slow. We expect that further groundbreaking ap-
plications will be developed in the near future. For instance,
very promising progress has been made in the field of quantum
machine learning [172], which aims at using deep learning con-
cepts to push the capabilities and interpretability of quantum
computing systems. In this context, machine learning algo-
rithms recently have autonomously proposed designs for
non-trivial quantum optics experiments [173–175]. We expect
that deep learning will continue to produce exciting pioneering
results. We also anticipate that deep learning techniques will
become a common numerical tool, regularly employed for
the daily use.

Funding. CALMIP Toulouse (p20010); Engineering and
Physical Sciences Research Council (EP/M009122/1);
Deutsche Forschungsgemeinschaft (WI 5261/1-1).

Acknowledgment. We thank the NVIDIA Corporation
for the donation of a Quadro P6000 GPU used for this re-
search. This work was supported by the German Research
Foundation (DFG) through a research fellowship. The authors
acknowledge the CALMIP computing facility. OM acknowl-
edges support through EPSRC.

Disclosures. The authors declare no conflicts of interest.

REFERENCES
1. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W.

Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
2. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S.

Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nano-
structures,” Science 354, aag2472 (2016).

3. C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68,
1883–1933 (2005).

4. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat.
Photonics 6, 737–748 (2012).

5. G. C. des Francs, J. Barthes, A. Bouhelier, J. C. Weeber, A. Dereux,
A. Cuche, and C. Girard, “Plasmonic Purcell factor and coupling ef-
ficiency to surface plasmons. Implications for addressing and con-
trolling optical nanosources,” J. Opt. 18, 094005 (2016).

6. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated
photonic quantum technologies,”Nat. Photonics 14, 273–284 (2020).

7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev.
Lett. 85, 3966–3969 (2000).

8. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin,
“Recent advances in planar optics: from plasmonic to dielectric meta-
surfaces,” Optica 4, 139–152 (2017).

B196 Vol. 9, No. 5 / May 2021 / Photonics Research Review

https://doi.org/10.1126/science.1111886
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1088/0034-4885/68/8/R05
https://doi.org/10.1088/0034-4885/68/8/R05
https://doi.org/10.1038/nphoton.2012.244
https://doi.org/10.1038/nphoton.2012.244
https://doi.org/10.1088/2040-8978/18/9/094005
https://doi.org/10.1038/s41566-019-0532-1
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1364/OPTICA.4.000139


9. N. M. Estakhri, B. Edwards, and N. Engheta, “Inverse-designed
metastructures that solve equations,” Science 363, 1333–1338
(2019).

10. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer,
and I. A. Walmsley, “Optimal design for universal multiport interfer-
ometers,” Optica 3, 1460–1465 (2016).

11. F. Zangeneh-Nejad, D. L. Sounas, A. Alù, and R. Fleury, “Analogue
computing with metamaterials,” Nat. Rev. Mater. 6, 207–225 (2021).

12. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning mi-
croscope,” Nature 237, 510–512 (1972).

13. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image re-
cording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).

14. E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, “Near-field dif-
fraction by a slit: implications for superresolution microscopy,” Appl.
Opt. 25, 1890–1900 (1986).

15. B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for
nanophotonics: standard problems and future challenges,” Laser
Photonics Rev. 9, 577–603 (2015).

16. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521,
436–444 (2015).

17. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT, 2016).
18. S. Chan and E. L. Siegel, “Will machine learning end the viability of

radiology as a thriving medical specialty?” Br. J. Radiol. 92,
20180416 (2018).

19. A. S. Lundervold and A. Lundervold, “An overview of deep learning in
medical imaging focusing on MRI,” Z. Med. Phys. 29, 102–127
(2019).

20. D. A. Cirovic, “Feed-forward artificial neural networks: applications to
spectroscopy,” TRAC Trends Anal. Chem. 16, 148–155 (1997).

21. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A.
Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M.
Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A.
Radford, I. Sutskever, and D. Amodei, “Language models are
few-shot learners,” in Proceedings of Advances in Neural
Information Processing System (2020), pp. 1877–1901.

22. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, in-
ception-ResNet and the impact of residual connections on learning,”
in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence (2016), pp. 4278–4284.

23. X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A.
Ozcan, “All-optical machine learning using diffractive deep neural
networks,” Science 361, 1004–1008 (2018).

24. T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan, “Wave
physics as an analog recurrent neural network,” Sci. Adv. 5,
eaay6946 (2019).

25. D. Mengu, Y. Rivenson, and A. Ozcan, “Scale-, shift- and rotation-
invariant diffractive optical networks,” ACS Photon. 8, 324–334
(2021).

26. R. S. Hegde, “Deep learning: a new tool for photonic nanostructure
design,” Nanoscale Adv. 2, 1007–1023 (2020).

27. W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu,
“Deep learning for the design of photonic structures,” Nat.
Photonics 15, 77–90 (2020).

28. S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning
enabled inverse design in nanophotonics,” Nanophotonics 9, 1041–
1057 (2020).

29. J. Jiang, M. Chen, and J. A. Fan, “Deep neural networks for the
evaluation and design of photonic devices,” arXiv:2007.00084
(2020).

30. L. Huang, L. Xu, and A. E. Miroshnichenko, “Deep learning enabled
nanophotonics,” in Advances in Deep Learning (InTech, 2020).

31. M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P.
Genevet, “Numerical optimization methods for metasurfaces,”
Laser Photonics Rev. 14, 1900445 (2020).

32. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W.
Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12,
659–670 (2018).

33. G. M. Sacha and P. Varona, “Artificial intelligence in nanotechnol-
ogy,” Nanotechnology 24, 452002 (2013).

34. K. Yao, R. Unni, and Y. Zheng, “Intelligent nanophotonics: merging
photonics and artificial intelligence at the nanoscale,”Nanophotonics
8, 339–366 (2019).

35. J. Zhou, B. Huang, Z. Yan, and J.-C. G. Bünzli, “Emerging role of
machine learning in light-matter interaction,” Light Sci. Appl. 8,
1 (2019).

36. D. Piccinotti, K. F. MacDonald, S. Gregory, I. Youngs, and N. I.
Zheludev, “Artificial intelligence for photonics and photonic materi-
als,” Rep. Prog. Phys. 84, 012401 (2020).

37. J. Moughames, X. Porte, M. Thiel, G. Ulliac, L. Larger, M. Jacquot, M.
Kadic, and D. Brunner, “Three-dimensional waveguide interconnects
for scalable integration of photonic neural networks,” Optica 7, 640–
646 (2020).

38. X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott, and D.
Brunner, “A complete, parallel and autonomous photonic neural
network in a semiconductor multimode laser,” arXiv:2012.11153
(2020).

39. L.-J. Black, Y. Wang, C. H. de Groot, A. Arbouet, and O. L. Muskens,
“Optimal polarization conversion in coupled dimer plasmonic nano-
antennas for metasurfaces,” ACS Nano 8, 6390–6399 (2014).

40. M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A.
Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L.
Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant
plasmonic nanoantennas for enhanced second harmonic genera-
tion,” Nat. Nanotechnol. 10, 412–417 (2015).

41. J. S. Jensen and O. Sigmund, “Topology optimization for nano-
photonics,” Laser Photonics Rev. 5, 308–321 (2011).

42. S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and
D. H. Werner, “Review of numerical optimization techniques for
meta-device design [Invited],” Opt. Mater. Express 9, 1842–1863
(2019).

43. F. Meng, X. Huang, and B. Jia, “Bi-directional evolutionary optimiza-
tion for photonic band gap structures,” J. Comput. Phys. 302,
393–404 (2015).

44. S. Osher and J. A. Sethian, “Fronts propagating with curvature-de-
pendent speed: algorithms based on Hamilton-Jacobi formulations,”
J. Comput. Phys. 79, 12–49 (1988).

45. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary
optimization of optical antennas,” Phys. Rev. Lett. 109, 127701
(2012).

46. P. R. Wiecha, P. R. Wiecha, C. Majorel, C. Girard, A. Cuche, V.
Paillard, O. L. Muskens, and A. Arbouet, “Design of plasmonic direc-
tional antennas via evolutionary optimization,” Opt. Express 27,
29069–29081 (2019).

47. P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V.
Paillard, “Evolutionary multi-objective optimization of colour pixels
based on dielectric nanoantennas,” Nat. Nanotechnol. 12, 163–
169 (2017).

48. D. Z. Zhu, E. B. Whiting, S. D. Campbell, D. B. Burckel, and D. H.
Werner, “Optimal high efficiency 3D plasmonic metasurface ele-
ments revealed by lazy ants,” ACS Photonics 6, 2741–2748 (2019).

49. Y. Augenstein and C. Rockstuhl, “Inverse design of nanophotonic
devices with structural integrity,” ACS Photonics 7, 2190–2196
(2020).

50. R. Selle, G. Vogt, T. Brixner, G. Gerber, R. Metzler, and W. Kinzel,
“Modeling of light-matter interactions with neural networks,” Phys.
Rev. A 76, 023810 (2007).

51. R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert,
“Modelling of ultrafast coherent strong-field dynamics in potassium
with neural networks,” J. Phys. B 41, 074019 (2008).

52. I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski,
“Plasmonic nanostructure design and characterization via deep
learning,” Light Sci. Appl. 7, 60 (2018).

53. S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou,
J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J.
Hu, and H. Zhang, “A deep learning approach for objective-driven
all-dielectric metasurface design,” ACS Photonics 6, 3196–3207
(2019).

54. M. V. Zhelyeznyakov, S. L. Brunton, and A. Majumdar, “Deep learn-
ing to accelerate Maxwell’s equations for inverse design of dielectric
metasurfaces,” arXiv:2008.10632 (2020).

Review Vol. 9, No. 5 / May 2021 / Photonics Research B197

https://doi.org/10.1126/science.aaw2498
https://doi.org/10.1126/science.aaw2498
https://doi.org/10.1364/OPTICA.3.001460
https://doi.org/10.1038/s41578-020-00243-2
https://doi.org/10.1038/237510a0
https://doi.org/10.1063/1.94865
https://doi.org/10.1364/AO.25.001890
https://doi.org/10.1364/AO.25.001890
https://doi.org/10.1002/lpor.201500122
https://doi.org/10.1002/lpor.201500122
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1259/bjr.20180416
https://doi.org/10.1259/bjr.20180416
https://doi.org/10.1016/j.zemedi.2018.11.002
https://doi.org/10.1016/j.zemedi.2018.11.002
https://doi.org/10.1016/S0165-9936(97)00007-1
https://doi.org/10.1126/science.aat8084
https://doi.org/10.1126/sciadv.aay6946
https://doi.org/10.1126/sciadv.aay6946
https://doi.org/10.1021/acsphotonics.0c01583
https://doi.org/10.1021/acsphotonics.0c01583
https://doi.org/10.1039/C9NA00656G
https://doi.org/10.1038/s41566-020-0685-y
https://doi.org/10.1038/s41566-020-0685-y
https://doi.org/10.1515/nanoph-2019-0474
https://doi.org/10.1515/nanoph-2019-0474
https://doi.org/10.5772/intechopen.93289
https://doi.org/10.1002/lpor.201900445
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1088/0957-4484/24/45/452002
https://doi.org/10.1515/nanoph-2018-0183
https://doi.org/10.1515/nanoph-2018-0183
https://doi.org/10.1038/s41377-018-0109-7
https://doi.org/10.1038/s41377-018-0109-7
https://doi.org/10.1088/1361-6633/abb4c7
https://doi.org/10.1364/OPTICA.388205
https://doi.org/10.1364/OPTICA.388205
https://doi.org/10.1021/nn501889s
https://doi.org/10.1038/nnano.2015.69
https://doi.org/10.1002/lpor.201000014
https://doi.org/10.1364/OME.9.001842
https://doi.org/10.1364/OME.9.001842
https://doi.org/10.1016/j.jcp.2015.09.010
https://doi.org/10.1016/j.jcp.2015.09.010
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1103/PhysRevLett.109.127701
https://doi.org/10.1103/PhysRevLett.109.127701
https://doi.org/10.1364/OE.27.029069
https://doi.org/10.1364/OE.27.029069
https://doi.org/10.1038/nnano.2016.224
https://doi.org/10.1038/nnano.2016.224
https://doi.org/10.1021/acsphotonics.9b00717
https://doi.org/10.1021/acsphotonics.0c00699
https://doi.org/10.1021/acsphotonics.0c00699
https://doi.org/10.1103/PhysRevA.76.023810
https://doi.org/10.1103/PhysRevA.76.023810
https://doi.org/10.1088/0953-4075/41/7/074019
https://doi.org/10.1038/s41377-018-0060-7
https://doi.org/10.1021/acsphotonics.9b00966
https://doi.org/10.1021/acsphotonics.9b00966


55. Y. Li, Y. Wang, S. Qi, Q. Ren, L. Kang, S. D. Campbell, P. L. Werner,
and D. H. Werner, “Predicting scattering from complex nano-
structures via deep learning,” IEEE Access 8, 139983 (2020).

56. S. So, J. Mun, and J. Rho, “Simultaneous inverse design of materials
and structures via deep learning: demonstration of dipole resonance
engineering using core–shell nanoparticles,” ACS Appl. Mater.
Interfaces 11, 24264–24268 (2019).

57. A.-P. Blanchard-Dionne and O. J. F. Martin, “Teaching optics to a
machine learning network,” Opt. Lett. 45, 2922–2925 (2020).

58. P. R. Wiecha and O. L. Muskens, “Deep learning meets nanopho-
tonics: a generalized accurate predictor for near fields and far fields
of arbitrary 3D nanostructures,” Nano Lett. 20, 329–338 (2020).

59. Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris,
“Physics-constrained deep learning for high-dimensional surrogate
modeling and uncertainty quantification without labeled data,” J.
Comput. Phys. 394, 56–81 (2019).

60. T. Chugh, C. Sun, H. Wang, and Y. Jin, “Surrogate-assisted evolu-
tionary optimization of large problems,” in High-Performance
Simulation-Based Optimization, T. Bartz-Beielstein, B. Filipič, P.
Korošec, and E.-G. Talbi, eds. (Springer, 2020), pp. 165–187.

61. S. D. Campbell, D. Z. Zhu, E. B. Whiting, J. Nagar, D. H. Werner, and
P. L. Werner, “Advanced multi-objective and surrogate-assisted op-
timization of topologically diverse metasurface architectures,” Proc.
SPIE 10719, 107190U (2018).

62. V. Kalt, A. K. González-Alcalde, S. Es-Saidi, R. Salas-Montiel, S.
Blaize, and D. Macías, “Metamodeling of high-contrast-index gra-
tings for color reproduction,” J. Opt. Soc. Am. A 36, 79–88 (2019).

63. A. K. González-Alcalde, R. Salas-Montiel, V. Kalt, S. Blaize, and D.
Macías, “Engineering colors in all-dielectric metasurfaces: metamod-
eling approach,” Opt. Lett. 45, 89–92 (2020).

64. R. Pestourie, Y. Mroueh, T. V. Nguyen, P. Das, and S. G. Johnson,
“Active learning of deep surrogates for PDEs: application to metasur-
face design,” arXiv:2008.12649 (2020).

65. R. S. Hegde, “Photonics inverse design: pairing deep neural net-
works with evolutionary algorithms,” IEEE J. Sel. Top. Quantum
Electron. 26, 7700908 (2020).

66. Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva,
“Machine learning assisted global optimization of photonic devices,”
Nanophotonics 10, 371–383 (2020).

67. J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling
deep neural networks,” IEEE Trans. Evol. Comput. 23, 828–841
(2019).

68. J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. A. Fan, “Free-
form diffractive metagrating design based on generative adversarial
networks,” ACS Nano 13, 8872–8878 (2019).

69. R. Trivedi, L. Su, J. Lu, M. F. Schubert, and J. Vuckovic, “Data-driven
acceleration of photonic simulations,” Sci. Rep. 9, 19728 (2019).

70. D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks
for the inverse design of nanophotonic structures,” ACS Photonics 5,
1365–1369 (2018).

71. W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand
design of chiral metamaterials,” ACS Nano 12, 6326–6334
(2018).

72. L. Gao, X. Li, D. Liu, L. Wang, and Z. Yu, “A bidirectional deep neural
network for accurate silicon color design,” Adv. Mater. 31, 1905467
(2019).

73. S. An, B. Zheng, H. Tang, M. Y. Shalaginov, L. Zhou, H. Li, T. Gu, J.
Hu, C. Fowler, and H. Zhang, “Multifunctional metasurface design
with a generative adversarial network,” arXiv:1908.04851 (2020).

74. Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative
model for the inverse design of metasurfaces,” Nano Lett. 18, 6570–
6576 (2018).

75. S. So and J. Rho, “Designing nanophotonic structures using condi-
tional deep convolutional generative adversarial networks,”
Nanophotonics 8, 1255–1261 (2019).

76. A. Mall, A. Patil, D. Tamboli, A. Sethi, and A. Kumar, “Fast design of
plasmonic metasurfaces enabled by deep learning,” J. Phys. D 53,
49LT01 (2020).

77. Z. Liu, L. Raju, D. Zhu, and W. Cai, “A hybrid strategy for the discov-
ery and design of photonic structures,” IEEE J. Emerging Sel. Top.
Circuits Syst. 10, 126–135 (2020).

78. W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic represen-
tation and inverse design of metamaterials based on a deep gener-
ative model with semi-supervised learning strategy,” Adv. Mater. 31,
1901111 (2019).

79. X. Shi, T. Qiu, J. Wang, X. Zhao, and S. Qu, “Metasurface inverse
design using machine learning approaches,” J. Phys. D 53, 275105
(2020).

80. W. Ma and Y. Liu, “A data-efficient self-supervised deep learning
model for design and characterization of nanophotonic structures,”
Sci. China Phys. Mech. Astron. 63, 284212 (2020).

81. D. P. Kingma and M. Welling, “An introduction to variational autoen-
coders,” Found. Trends Mach. Learn. 12, 307–392 (2019).

82. T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect
absorbers optimised with reinforcement learning,” Phys. Chem.
Chem. Phys. 22, 2337–2342 (2020).

83. H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer op-
tical design via deep reinforcement learning,” Mach. Learn. Sci.
Technol. (2020).

84. H. Wang, Z. Zheng, C. Ji, and L. J. Guo, “Automated multi-layer op-
tical design via deep reinforcement learning,” Mach. Learn. Sci.
Technol. 2, 025013 (2021).

85. E. Ashalley, K. Acheampong, L. V. Besteiro, L. V. Besteiro, P. Yu, A.
Neogi, A. O. Govorov, A. O. Govorov, and Z. M. Wang, “Multitask
deep-learning-based design of chiral plasmonic metamaterials,”
Photon. Res. 8, 1213–1225 (2020).

86. J. Trisno, H. Wang, H. T. Wang, R. J. H. Ng, S. D. Rezaei, and J. K.
W. Yang, “Applying machine learning to the optics of dielectric nano-
blobs,” Adv. Photonics Res. 1, 2000068 (2020).

87. J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G.
DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić,
“Nanophotonic particle simulation and inverse design using artificial
neural networks,” Sci. Adv. 4, eaar4206 (2018).

88. A. Sheverdin, F. Monticone, and C. Valagiannopoulos, “Photonic in-
verse design with neural networks: the case of invisibility in the vis-
ible,” Phys. Rev. Appl. 14, 024054 (2020).

89. A.-P. Blanchard-Dionne and O. J. F. Martin, “Successive training of a
generative adversarial network for the design of an optical cloak,”
OSA Contin. 4, 87–95 (2021).

90. Y. Chen, L. Lu, G. E. Karniadakis, and L. D. Negro, “Physics-
informed neural networks for inverse problems in nano-optics and
metamaterials,” Opt Express 28, 11618–11633 (2020).

91. I. Sajedian, H. Lee, and J. Rho, “Double-deep Q-learning to increase
the efficiency of metasurface holograms,” Sci. Rep. 9, 10899 (2019).

92. A. D. Phan, C. V. Nguyen, P. T. Linh, T. V. Huynh, V. D. Lam, A.-T.
Le, and K. Wakabayashi, “Deep learning for the inverse design of
mid-infrared graphene plasmons,” Crystals 10, 125 (2020).

93. C. Yeung, J.-M. Tsai, B. King, B. Pham, J. Liang, D. Ho, M. W.
Knight, and A. P. Raman, “Designing multiplexed supercell metasur-
faces with tandem neural networks,” Nanophotonics 10, 1133–1143
(2021).

94. T. Asano and S. Noda, “Iterative optimization of photonic crystal
nanocavity designs by using deep neural networks,”
Nanophotonics 8, 2243–2256 (2019).

95. F. Wen, J. Jiang, and J. A. Fan, “Robust freeform metasurface de-
sign based on progressively growing generative networks,” ACS
Photonics 7, 2098–2104 (2020).

96. S. Wang, K. Fan, N. Luo, Y. Cao, F. Wu, C. Zhang, K. A. Heller, and
L. You, “Massive computational acceleration by using neural net-
works to emulate mechanism-based biological models,” Nat.
Commun. 10, 4354 (2019).

97. J. Jiang and J. A. Fan, “Multiobjective and categorical global optimi-
zation of photonic structures based on ResNet generative neural net-
works,” Nanophotonics 10, 361–369 (2020).

98. J. Jiang and J. A. Fan, “Global optimization of dielectric metasurfa-
ces using a physics-driven neural network,” Nano Lett. 19, 5366–
5372 (2019).

99. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms
(Wiley, 2001), Vol. 16.

100. R. Unni, K. Yao, and Y. Zheng, “Deep convolutional mixture density
network for inverse design of layered photonic structures,” ACS
Photonics 7, 2703–2712 (2020).

B198 Vol. 9, No. 5 / May 2021 / Photonics Research Review

https://doi.org/10.1109/ACCESS.2020.3012132
https://doi.org/10.1021/acsami.9b05857
https://doi.org/10.1021/acsami.9b05857
https://doi.org/10.1364/OL.390600
https://doi.org/10.1021/acs.nanolett.9b03971
https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/10.1117/12.2321159
https://doi.org/10.1117/12.2321159
https://doi.org/10.1364/JOSAA.36.000079
https://doi.org/10.1364/OL.45.000089
https://doi.org/10.1109/JSTQE.2019.2933796
https://doi.org/10.1109/JSTQE.2019.2933796
https://doi.org/10.1515/nanoph-2020-0376
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1021/acsnano.9b02371
https://doi.org/10.1038/s41598-019-56212-5
https://doi.org/10.1021/acsphotonics.7b01377
https://doi.org/10.1021/acsphotonics.7b01377
https://doi.org/10.1021/acsnano.8b03569
https://doi.org/10.1021/acsnano.8b03569
https://doi.org/10.1002/adma.201905467
https://doi.org/10.1002/adma.201905467
https://doi.org/10.1021/acs.nanolett.8b03171
https://doi.org/10.1021/acs.nanolett.8b03171
https://doi.org/10.1515/nanoph-2019-0117
https://doi.org/10.1088/1361-6463/abb33c
https://doi.org/10.1088/1361-6463/abb33c
https://doi.org/10.1109/JETCAS.2020.2970080
https://doi.org/10.1109/JETCAS.2020.2970080
https://doi.org/10.1002/adma.201901111
https://doi.org/10.1002/adma.201901111
https://doi.org/10.1088/1361-6463/ab8036
https://doi.org/10.1088/1361-6463/ab8036
https://doi.org/10.1007/s11433-020-1575-2
https://doi.org/10.1561/2200000056
https://doi.org/10.1039/C9CP05621A
https://doi.org/10.1039/C9CP05621A
https://doi.org/10.1088/2632-2153/abc327
https://doi.org/10.1088/2632-2153/abc327
https://doi.org/10.1364/PRJ.388253
https://doi.org/10.1002/adpr.202000068
https://doi.org/10.1126/sciadv.aar4206
https://doi.org/10.1103/PhysRevApplied.14.024054
https://doi.org/10.1364/OSAC.413394
https://doi.org/10.1364/OE.384875
https://doi.org/10.1038/s41598-019-47154-z
https://doi.org/10.3390/cryst10020125
https://doi.org/10.1515/nanoph-2020-0549
https://doi.org/10.1515/nanoph-2020-0549
https://doi.org/10.1515/nanoph-2019-0308
https://doi.org/10.1021/acsphotonics.0c00539
https://doi.org/10.1021/acsphotonics.0c00539
https://doi.org/10.1038/s41467-019-12342-y
https://doi.org/10.1038/s41467-019-12342-y
https://doi.org/10.1515/nanoph-2020-0407
https://doi.org/10.1021/acs.nanolett.9b01857
https://doi.org/10.1021/acs.nanolett.9b01857
https://doi.org/10.1021/acsphotonics.0c00630
https://doi.org/10.1021/acsphotonics.0c00630


101. B. Hu, B. Wu, D. Tan, J. Xu, J. Xu, Y. Chen, and Y. Chen, “Robust
inverse-design of scattering spectrum in core-shell structure using
modified denoising autoencoder neural network,” Opt. Express
27, 36276–36285 (2019).

102. Z. Fang and J. Zhan, “Deep physical informed neural networks for
metamaterial design,” IEEE Access 8, 24506–24513 (2020).

103. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional net-
works for biomedical image segmentation,” arXiv:1505.04597
(2015).

104. N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see
through multimode fibers,” Optica 5, 960–966 (2018).

105. H. Kabir, Y. Wang, M. Yu, and Q.-J. Zhang, “Neural network inverse
modeling and applications to microwave filter design,” IEEE Trans.
Microwave Theory Tech. 56, 867–879 (2008).

106. C. Zhang, J. Jin, W. Na, Q.-J. Zhang, and M. Yu, “Multivalued
neural network inverse modeling and applications to microwave
filters,” IEEE Trans. Microwave Theory Tech. 66, 3781–3797
(2018).

107. Y.-T. Luo, P.-Q. Li, D.-T. Li, Y.-G. Peng, Z.-G. Geng, S.-H. Xie, Y. Li,
A. Alù, J. Zhu, and X.-F. Zhu, “Probability-density-based deep learn-
ing paradigm for the fuzzy design of functional metastructures,”
Research 2020, 8757403 (2020).

108. J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with
deep neural networks,” in Advances in Neural Information
Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, eds. (Curran Associates, 2012), Vol. 25,
pp. 341–349.

109. H. Gao, L. Sun, and J.-X. Wang, “PhyGeoNet: physics-informed
geometry-adaptive convolutional neural networks for solving para-
meterized steady-state PDEs on irregular domain,” J. Comput.
Phys. 428, 110079 (2020).

110. Z. Liu, Z. Liu, Z. Zhu, and W. Cai, “Topological encoding method for
data-driven photonics inverse design,” Opt. Express 28, 4825–4835
(2020).

111. C. C. Nadell, B. Huang, J. M. Malof, andW. J. Padilla, “Deep learning
for accelerated all-dielectric metasurface design,” Opt. Express 27,
27523–27535 (2019).

112. Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljačić, “Migrating knowl-
edge between physical scenarios based on artificial neural net-
works,” ACS Photonics 6, 1168–1174 (2019).

113. M. Närhi, L. Salmela, J. Toivonen, C. Billet, J. M. Dudley, and G.
Genty, “Machine learning analysis of extreme events in optical fibre
modulation instability,” Nat. Commun. 9, 4923 (2018).

114. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions,” J. Comput. Phys. 378, 686–707 (2019).

115. M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechan-
ics: learning velocity and pressure fields from flow visualizations,”
Science 367, 1026–1030 (2020).

116. B. Moseley, A. Markham, and T. Nissen-Meyer, “Solving the wave
equation with physics-informed deep learning,” arXiv:2006.11894
(2020).

117. Y. Kiarashinejad, S. Abdollahramezani, M. Zandehshahvar, O.
Hemmatyar, and A. Adibi, “Deep learning reveals underlying physics
of light–matter interactions in nanophotonic devices,” Adv. Theor.
Simul. 2, 1900088 (2019).

118. Y. Kiarashinejad, S. Abdollahramezani, and A. Adibi, “Deep learning
approach based on dimensionality reduction for designing electro-
magnetic nanostructures,” arXiv:1902.03865 (2019).

119. C. Yeung, J.-M. Tsai, B. King, Y. Kawagoe, D. Ho, M. Knight, and
A. P. Raman, “Elucidating the behavior of nanophotonic structures
through explainable machine learning algorithms,” ACS Photonics 7,
2309–2318 (2020).

120. R. Iten, T. Metger, H. Wilming, L. del Rio, and R. Renner,
“Discovering physical concepts with neural networks,” Phys. Rev.
Lett. 124, 010508 (2020).

121. Y. Kiarashinejad, M. Zandehshahvar, S. Abdollahramezani, O.
Hemmatyar, R. Pourabolghasem, and A. Adibi, “Knowledge discov-
ery in nanophotonics using geometric deep learning,” Adv. Intell.
Syst. 2, 1900132 (2020).

122. S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding,
A. M. Agarwal, A. M. Agarwal, C. Rivero-Baleine, M. Kang, K. A.
Richardson, T. Gu, J. Hu, C. Fowler, C. Fowler, H. Zhang, and H.
Zhang, “Deep learning modeling approach for metasurfaces
with high degrees of freedom,” Opt. Express 28, 31932–31942
(2020).

123. C. Yeung, J.-M. Tsai, Y. Kawagoe, B. King, D. Ho, and A. P.
Raman, “Elucidating the design and behavior of nanophotonic
structures through explainable convolutional neural networks,”
arXiv:2003.06075 (2020).

124. M. Elzouka, C. Yang, A. Albert, S. Lubner, and R. S. Prasher,
“Interpretable inverse design of particle spectral emissivity using ma-
chine learning,” arXiv:2002.04223 (2020).

125. B. Han, Y. Lin, Y. Yang, N. Mao, W. Li, H. Wang, V. Fatemi, L. Zhou,
J. I.-J. Wang, Q. Ma, Y. Cao, D. Rodan-Legrain, Y.-Q. Bie, E.
Navarro-Moratalla, D. Klein, D. MacNeill, S. Wu, W. S. Leong, H.
Kitadai, X. Ling, P. Jarillo-Herrero, T. Palacios, J. Yin, and J.
Kong, “Deep learning enabled fast optical characterization of two-
dimensional materials,” arXiv:1906.11220 (2019).

126. M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R.
Unocic, R. Vasudevan, S. Jesse, and S. V. Kalinin, “Deep learning
of atomically resolved scanning transmission electron microscopy
images: chemical identification and tracking local transformations,”
ACS Nano 11, 12742–12752 (2017).

127. S. Shao, S. Shao, K. Mallery, K. Mallery, S. S. Kumar, S. S. Kumar, J.
Hong, and J. Hong, “Machine learning holography for 3D particle
field imaging,” Opt. Express 28, 2987–2999 (2020).

128. P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E.
Culurciello, and F. Huang, “Analyzing complex single-molecule
emission patterns with deep learning,” Nat. Methods 15, 913–916
(2018).

129. A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D.
Biamonte, and S. Kulik, “Experimental neural network enhanced
quantum tomography,” npj Quantum Inf. 6, 20 (2020).

130. P. R. Wiecha, A. Lecestre, N. Mallet, and G. Larrieu, “Pushing the
limits of optical information storage using deep learning,” Nat.
Nanotechnol. 14, 237–244 (2019).

131. Y. Jo, S. Park, J. Jung, J. Yoon, H. Joo, M.-H. Kim, S.-J. Kang, M. C.
Choi, S. Y. Lee, and Y. Park, “Holographic deep learning for rapid
optical screening of anthrax spores,” Sci. Adv. 3, e1700606 (2017).

132. A. Yevick, M. Hannel, and D. G. Grier, “Machine-learning approach
to holographic particle characterization,” Opt. Express 22, 26884–
26890 (2014).

133. B. Midtvedt, E. Olsén, F. Eklund, F. Höök, C. B. Adiels, G. Volpe, and
D. Midtvedt, “Holographic characterisation of subwavelength par-
ticles enhanced by deep learning,” arXiv:2006.11154 (2020).

134. A. Argun, T. Thalheim, S. Bo, F. Cichos, and G. Volpe, “Enhanced
force-field calibration via machine learning,” Appl. Phys. Rev. 7,
041404 (2020).

135. M. D. Hannel, A. Abdulali, M. O’Brien, and D. G. Grier, “Machine-
learning techniques for fast and accurate feature localization in holo-
grams of colloidal particles,” Opt. Express 26, 15221–15231 (2018).

136. J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, and S. K. Lai,
“Convolutional neural networks automate detection for tracking of
submicron-scale particles in 2D and 3D,” Proc. Natl. Acad. Sci.
USA 115, 9026–9031 (2018).

137. S. Helgadottir, A. Argun, and G. Volpe, “Digital video microscopy en-
hanced by deep learning,” Optica 6, 506–513 (2019).

138. I. C. D. Lenton, G. Volpe, A. B. Stilgoe, T. A. Nieminen, and H.
Rubinsztein-Dunlop, “Machine learning reveals complex behaviours
in optically trapped particles,” Mach. Learn. Sci. Technol. 1, 045009
(2020).

139. Y. Rivenson, Y. Zhang, H. Günaydn, D. Teng, and A. Ozcan, “Phase
recovery and holographic image reconstruction using deep learning
in neural networks,” Light Sci. Appl. 7, 17141 (2018).

140. Y. Nishizaki, R. Horisaki, K. Kitaguchi, M. Saito, and J. Tanida,
“Analysis of non-iterative phase retrieval based on machine learn-
ing,” Opt. Rev. 27, 136–141 (2020).

141. K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolu-
tional neural network for inverse problems in imaging,” IEEE Trans.
Image Process. 26, 4509–4522 (2017).

Review Vol. 9, No. 5 / May 2021 / Photonics Research B199

https://doi.org/10.1364/OE.27.036276
https://doi.org/10.1364/OE.27.036276
https://doi.org/10.1109/ACCESS.2019.2963375
https://doi.org/10.1364/OPTICA.5.000960
https://doi.org/10.1109/TMTT.2008.919078
https://doi.org/10.1109/TMTT.2008.919078
https://doi.org/10.1109/TMTT.2018.2841889
https://doi.org/10.1109/TMTT.2018.2841889
https://doi.org/10.34133/2020/8757403
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1364/OE.387504
https://doi.org/10.1364/OE.387504
https://doi.org/10.1364/OE.27.027523
https://doi.org/10.1364/OE.27.027523
https://doi.org/10.1021/acsphotonics.8b01526
https://doi.org/10.1038/s41467-018-07355-y
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1002/adts.201900088
https://doi.org/10.1002/adts.201900088
https://doi.org/10.1021/acsphotonics.0c01067
https://doi.org/10.1021/acsphotonics.0c01067
https://doi.org/10.1103/PhysRevLett.124.010508
https://doi.org/10.1103/PhysRevLett.124.010508
https://doi.org/10.1002/aisy.201900132
https://doi.org/10.1002/aisy.201900132
https://doi.org/10.1364/OE.401960
https://doi.org/10.1364/OE.401960
https://doi.org/10.1021/acsnano.7b07504
https://doi.org/10.1364/OE.379480
https://doi.org/10.1038/s41592-018-0153-5
https://doi.org/10.1038/s41592-018-0153-5
https://doi.org/10.1038/s41534-020-0248-6
https://doi.org/10.1038/s41565-018-0346-1
https://doi.org/10.1038/s41565-018-0346-1
https://doi.org/10.1126/sciadv.1700606
https://doi.org/10.1364/OE.22.026884
https://doi.org/10.1364/OE.22.026884
https://doi.org/10.1063/5.0019105
https://doi.org/10.1063/5.0019105
https://doi.org/10.1364/OE.26.015221
https://doi.org/10.1073/pnas.1804420115
https://doi.org/10.1073/pnas.1804420115
https://doi.org/10.1364/OPTICA.6.000506
https://doi.org/10.1088/2632-2153/abae76
https://doi.org/10.1088/2632-2153/abae76
https://doi.org/10.1038/lsa.2017.141
https://doi.org/10.1007/s10043-019-00574-8
https://doi.org/10.1109/TIP.2017.2713099
https://doi.org/10.1109/TIP.2017.2713099


142. G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and
R. Willett, “Deep learning techniques for inverse problems in imag-
ing,” IEEE J. Sel. Areas Inform. Theor. 1, 39–56 (2020).

143. G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning
for computational imaging,” Optica 6, 921–943 (2019).

144. Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A.
Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443
(2017).

145. E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-
STORM: super-resolution single-molecule microscopy by deep
learning,” Optica 5, 458–464 (2018).

146. W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, “Deep
learning massively accelerates super-resolution localization micros-
copy,” Nat. Biotechnol. 36, 460–468 (2018).

147. E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O.
Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman,
“DeepSTORM3D: dense 3D localization microscopy and PSF de-
sign by deep learning,” Nat. Methods 17, 734–740 (2020).

148. T. Pu, J.-Y. Ou, V. Savinov, G. Yuan, N. Papasimakis, and N.
Zheludev, “Unlabeled far-field deeply subwavelength topological
microscopy (DSTM),” Adv. Sci. 8, 2002886 (2020).

149. T. Pu, J. Y. Ou, N. Papasimakis, and N. I. Zheludev, “Label-free
deeply subwavelength optical microscopy,” Appl. Phys. Lett. 116,
131105 (2020).

150. D. Bouchet, J. Seifert, and A. P. Mosk, “Optimizing illumination for
precise multi-parameter estimations in coherent diffractive imaging,”
Opt. Lett. 46, 254–257 (2021).

151. A. Ghosh, D. J. Roth, L. H. Nicholls, W. P. Wardley, A. V. Zayats, and
V. A. Podolskiy, “Machine learning—based diffractive imaging with
subwavelength resolution,” arXiv:2005.03595 (2020).

152. U. Kürüm, P. R. Wiecha, R. French, and O. L. Muskens, “Deep learn-
ing enabled real time speckle recognition and hyperspectral imaging
using a multimode fiber array,” Opt. Express 27, 20965–20979
(2019).

153. R. Horisaki, R. Takagi, and J. Tanida, “Learning-based imaging
through scattering media,” Opt. Express 24, 13738–13743
(2016).

154. L. Yunzhe, X. Yujia, and T. Lei, “Deep speckle correlation: a deep
learning approach toward scalable imaging through scattering me-
dia,” Optica 5, 1181–11819 (2018).

155. B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, and C. Moser,
“Multimode optical fiber transmission with a deep learning network,”
Light Sci. Appl. 7, 69 (2018).

156. G. D. Bruce, L. O’Donnell, M. Chen, M. Facchin, and K. Dholakia,
“Femtometer-resolved simultaneous measurement of multiple laser
wavelengths in a speckle wavemeter,” Opt. Lett. 45, 1926–1929
(2020).

157. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image
transmission through an opaque material,” Nat. Commun. 1, 81
(2010).

158. R. French, S. Gigan, and O. L. Muskens, “Snapshot fiber spectral
imaging using speckle correlations and compressive sensing,”
Opt. Express 26, 32302–32316 (2018).

159. H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller,
“Deep learning for single-shot autofocus microscopy,”Optica 6, 794–
797 (2019).

160. C. L. Cortes, S. Adhikari, X. Ma, and S. K. Gray, “Accelerating quan-
tum optics experiments with statistical learning,” Appl. Phys. Lett.
116, 184003 (2020).

161. Z. A. Kudyshev, S. I. Bogdanov, T. Isacsson, A. V. Kildishev, A.
Boltasseva, and V. M. Shalaev, “Rapid classification of quantum
sources enabled by machine learning,” Adv. Quantum Technol. 3,
2000067 (2020).

162. C. You, M. A. Quiroz-Juárez, A. Lambert, N. Bhusal, C. Dong, A.
Perez-Leija, A. Javaid, R. de. J. León-Montiel, and O. S. Magaña-
Loaiza, “Identification of light sources using machine learning,”
Appl. Phys. Rev. 7, 021404 (2020).

163. Y. Rivenson, H. Ceylan Koydemir, H. Wang, Z. Wei, Z. Ren, H.
Günaydn, Y. Zhang, Z. Göröcs, K. Liang, D. Tseng, and A.
Ozcan, “Deep learning enhanced mobile-phone microscopy,” ACS
Photonics 5, 2354–2364 (2018).

164. X. Li, J. Dong, B. Li, Y. Zhang, Y. Zhang, A. Veeraraghavan, and X.
Ji, “Fast confocal microscopy imaging based on deep learning,” in
IEEE International Conference on Computational Photography
(ICCP) (2020), pp. 1–12.

165. J. M. Ede and R. Beanland, “Partial scanning transmission electron
microscopy with deep learning,” Sci. Rep. 10, 8332 (2020).

166. S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J.
Sel. Top. Quantum Electron. 20, 464–471 (2014).

167. J. N. Kutz and S. L. Brunton, “Intelligent systems for stabilizing
mode-locked lasers and frequency combs: machine learning and
equation-free control paradigms for self-tuning optics,”
Nanophotonics 4, 459–471 (2015).

168. T. Baumeister, S. L. Brunton, and J. N. Kutz, “Deep learning and
model predictive control for self-tuning mode-locked lasers,” J.
Opt. Soc. Am. B 35, 617–626 (2018).

169. A. Youssry, R. J. Chapman, A. Peruzzo, C. Ferrie, and M.
Tomamichel, “Modeling and control of a reconfigurable photonic cir-
cuit using deep learning,” Quantum Sci. Technol. 5, 025001 (2020).

170. B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick, “Artificial sens-
ing intelligence with silicon nanowires for ultraselective detection in
the gas phase,” Nano Lett. 14, 933–938 (2014).

171. “Google says sorry for racist auto-tag in photo app,” https://www
.theguardian.com/technology/2015/jul/01/google-sorry-racist-auto-
tag-photo-app (2015).

172. M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quan-
tum machine learning,” Contemp. Phys. 56, 172–185 (2015).

173. M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, and A. Zeilinger,
“Automated search for new quantum experiments,” Phys. Rev.
Lett. 116, 090405 (2016).

174. A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A.
Zeilinger, and H. J. Briegel, “Active learning machine learns to create
new quantum experiments,” Proc. Natl. Acad. Sci. USA 115, 1221–
1226 (2018).

175. M. Krenn, M. Erhard, and A. Zeilinger, “Computer-inspired quantum
experiments,” Nat. Rev. Phys. 2, 649–661 (2020).

B200 Vol. 9, No. 5 / May 2021 / Photonics Research Review

https://doi.org/10.1109/JSAIT.2020.2991563
https://doi.org/10.1364/OPTICA.6.000921
https://doi.org/10.1364/OPTICA.4.001437
https://doi.org/10.1364/OPTICA.4.001437
https://doi.org/10.1364/OPTICA.5.000458
https://doi.org/10.1038/nbt.4106
https://doi.org/10.1038/s41592-020-0853-5
https://doi.org/10.1002/advs.202002886
https://doi.org/10.1063/5.0003330
https://doi.org/10.1063/5.0003330
https://doi.org/10.1364/OL.411339
https://doi.org/10.1364/OE.27.020965
https://doi.org/10.1364/OE.27.020965
https://doi.org/10.1364/OE.24.013738
https://doi.org/10.1364/OE.24.013738
https://doi.org/10.1364/OPTICA.5.001181
https://doi.org/10.1038/s41377-018-0074-1
https://doi.org/10.1364/OL.388960
https://doi.org/10.1364/OL.388960
https://doi.org/10.1038/ncomms1078
https://doi.org/10.1038/ncomms1078
https://doi.org/10.1364/OE.26.032302
https://doi.org/10.1364/OPTICA.6.000794
https://doi.org/10.1364/OPTICA.6.000794
https://doi.org/10.1063/1.5143786
https://doi.org/10.1063/1.5143786
https://doi.org/10.1002/qute.202000067
https://doi.org/10.1002/qute.202000067
https://doi.org/10.1063/1.5133846
https://doi.org/10.1021/acsphotonics.8b00146
https://doi.org/10.1021/acsphotonics.8b00146
https://doi.org/10.1038/s41598-020-65261-0
https://doi.org/10.1109/JSTQE.2014.2336538
https://doi.org/10.1109/JSTQE.2014.2336538
https://doi.org/10.1515/nanoph-2015-0024
https://doi.org/10.1364/JOSAB.35.000617
https://doi.org/10.1364/JOSAB.35.000617
https://doi.org/10.1088/2058-9565/ab60de
https://doi.org/10.1021/nl404335p
https://www.theguardian.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo-app
https://www.theguardian.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo-app
https://www.theguardian.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo-app
https://www.theguardian.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo-app
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1103/PhysRevLett.116.090405
https://doi.org/10.1103/PhysRevLett.116.090405
https://doi.org/10.1073/pnas.1714936115
https://doi.org/10.1073/pnas.1714936115
https://doi.org/10.1038/s42254-020-0230-4

	XML ID funding

