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Abstract

In 1995 Grillet introduced the concept of stratified semigroups as a kind of
generalisation of finite nilsemigroups. In this paper we extend Grillet’s ideas
by introducing the notion of the base of a semigroup and show that a semi-
group S is stratified if and only if its base is either empty or consists of only
the zero element. The general structure of semigroups with non-trivial bases is
studied and we show that these can be described in terms of ideal extensions of
semigroups by stratified semigroups. We consider certain types of group-bound
semigroups and also ideal extensions of Clifford semigroups, and show how to
describe them as semilattices of ideal extensions by stratified semigroups and
provide a number of interesting examples.

Keywords Semigroup, stratified, extension, semilattice, group-bound, Clifford
semigroup.
Mathematics Subject Classification 2020: 20M10.

1 Introduction and Preliminaries

Grillet [2] defines a semigroup S with zero to be stratified whenever
⋂

m>0 S
m = {0}.

A semigroup without zero is called stratified if S0 is stratified. He shows that this
class of semigroups includes the class of all free semigroups, free commutative semi-
groups, homogeneous semigroups and nilpotent semigroups with finite index. Our
aim is to generalise this concept and consider some semigroups that can be decom-
posed as semilattices of some of these more general kinds of stratified semigroups.
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After some basic definitions and preliminary results, in section 2, we introduce the
concept of a stratified extension as a generalisation of Grillet’s stratified semigroups,
and provide a number of interesting results on the overall structure of such semi-
groups. The final two sections then examine two families of semigroups that exhibit
this stratified structure. In section 3 our focus is on semigroups in which every
regular H−class contains an idempotent. We show that group-bound semigroups
with this property are semilattices of stratified extensions of completely simple semi-
groups and describe the semilattice structure. Finally in section 4 we look at strict
extensions of Clifford semigroups and show amongst other things, that strict strat-
ified extensions of Clifford semigroups are semilattices of stratified extensions of
groups. For all terminology in semigroups not otherwise defined, see Howie [4].

Let S and T be semigroups, with T containing a zero. A semigroup Σ is called an
ideal extension of S by T if it contains S as an ideal and the Rees quotient Σ/S is
isomorphic to T . Grillet and Petrich [3] define an extension as strict if every element
of Σ \ S has the same action on S as some element of S and pure if no element of
Σ \ S does. In other words, the extension is strict if for every s in Σ \ S there exists
t in S such that for every x in S, sx = tx and xs = xt and pure if for every s in
Σ \ S there is no such t in S. They also showed that any extension of an arbitrary
semigroup S is a pure extension of a strict extension of S.

Proposition 1.1 ([3, Proposition 2.4]) Every extension of S is strict if and only
if S has an identity.

Let S and T be disjoint semigroups. A partial homomorphism [1] from T to S is a
map f : T \ {0} → S such that for all x, y ∈ S, f(xy) = f(x)f(y) whenever xy ̸= 0.
We adopt the convention used by Clifford and Preston [1] that elements of T \ {0}
are denoted by capital letters and elements of S by lowercase letters. A partial
homomorphism from T \{0} to S given by A 7→ A defines an extension Σ = S

⋃
(T \

{0}) with multiplication given by

1. A ∗B =

{
AB if AB ̸= 0;

A B if AB = 0,

2. A ∗ s = As,

3. s ∗A = sA,

4. s ∗ t = st,

where A,B ∈ T \ {0} and s, t ∈ S. From parts 2 and 3 above, all extensions defined
in this way are strict.

Let S be a semigroup and let a, b ∈ S. We say that a and b are interchangeable if

∀x ∈ S, ax = bx and xa = xb.

A semigroup is called weakly reductive if it contains no interchangeable elements.
Notice that every monoid is weakly reductive.
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Theorem 1.2 ([3, Theorem 2.5]) Let S be weakly reductive. Then every strict
extension of S is determined by a partial homomorphism, and conversely.

Recall that a semigroup is said to be E−dense (or E−inversive) if for all s ∈ S there
exists t ∈ S such that st ∈ E(S). The following is well-known.

Lemma 1.3 The following are equivalent.

1. S is E−dense.

2. For all s ∈ S there exists t ∈ S such that ts ∈ E(S).

3. For all s ∈ S there exists t ∈ S such that st, ts ∈ E(S).

4. For all s ∈ S there exists s′ ∈ S such that s′ss′ = s′.

Such an element, s′, in 4 is called a weak inverse of s and the set of all weak inverses
of s is denoted by W (s). The set of all weak inverses of elements of S is denoted by
W (S), while the set of all regular elements of S is denoted by Reg(S). Note that
W (S) = Reg(S). It is easily shown that for all s ∈ S, s′ ∈ W (s), ss′, s′s ∈ E(S) and
ss′Ls′Rs′s.

Lemma 1.4 Let S be a semigroup.

1. If s, t ∈ S then W (st) ⊆ W (t)W (s).

2. If S is an E−dense semigroup and s′ ∈ W (s) then Js′ ≤ Js.

Proof.

1. Let (st)′ ∈ W (st). Then (st)′ = (st)′st(st)′ and so t(st)′ = t(st)′st(st)′ and
hence t(st)′ ∈ W (s). Similarly (st)′s ∈ W (t). Then (st)′ = ((st)′s)(t(st)′) ∈
W (t)W (s).

2. Since s′ ∈ W (s), s′ = s′ss′ and so Js′ = Js′ss′ . By [4, Equation 2.1.4] we have
Js′ = Js′ss′ ≤ Js.

Note that it is well known that if E(S) forms a band then W (st) = W (t)W (s).

An element s in a semigroup S is called eventually regular if there exists n ≥ 1
such that sn is regular. A semigroup is eventually regular if all of its elements are
eventually regular. It is clear that eventually regular semigroups are E−dense. A
semigroup S is called group-bound if for every s ∈ S, there exists n ≥ 1 such that sn

lies in a subgroup of S. Clearly group-bound semigroups are eventually regular. If
S is eventually regular and each regular H−class is a group then S is group-bound.

A semigroup S is called Archimedean if for any a, b ∈ S there exists n ∈ N such that
an ∈ SbS.

3



Theorem 1.5 ([5, Theorem 3]) Let S be a group-bound semigroup. Then S is a
semilattice of Archimedean semigroups if and only if every regular H−class of S is
a group.

Let S be a semigroup with 0. We say that an element x ∈ S, is nilpotent if there is
n ∈ N such that xn = 0. The semigroup S is called a nilsemigroup if every element
of S is nilpotent. The semigroup S is called nilpotent with index n ∈ N if Sn = {0}.

2 Stratified Extensions

Let S be a semigroup (not necessarily stratified) and define the base of S to be
the subset Base(S) =

⋂
m>0 S

m. We shall say that a semigroup S is a stratified
extension of Base(S) if Base(S) ̸= ∅. The reason for this name will become apparent
later. Clearly Base(S), if it is non-empty, is a subsemigroup of S. When Base(S)
is a trivial subgroup then S is a stratified semigroup. A stratified semigroup S is
not in general a stratified extension as we may have Base(S) = ∅. However S is
a stratified semigroup if and only if S0 is a stratified extension with trivial base.
Further, S is called a finitely stratified extension if there exists m ∈ N such that
Sm = Sm+1 = Base(S). The smallest such m is called the height of S and where
necessary we shall refer to S as a finitely stratified extension with height m. If for
every s in S there is an m in N such that sm ∈ Base(S) then S is a nil-stratified
extension. All finitely stratified extensions are nil-stratified extensions, but it is easy
to demonstrate that not all nil-stratified extensions are finitely stratified extensions.
A finitely stratified extension is a stratified extension over the same base, since
Sm = Sm+1 implies Sn = Sm for all n ≥ m and so

⋂
k>0 S

k = Sm, where m is the
height of S. The converse is not true since, for example, if S is a free semigroup
with a zero adjoined, then S is a stratified extension with trivial base but not a
finitely stratified extension. It is clear that a (finitely) stratified extension has a
unique base.

Clearly, for all m ≥ 1, Sm+1 ⊆ Sm and so we define the layers of S as the sets
Sm = Sm \ Sm+1, m ≥ 1. Every element of S \ Base(S) lies in exactly one layer,
and if s ∈ Sm then m is the depth of s. The layer S1 generates every element of
S \ Base(S) and is contained in any generating set of S. However, Base(S) ̸⊆ ⟨S1⟩
in general. For example, let S be a semigroup with 0, with no zero divisors. Then
0 ∈ Base(S) but 0 ̸∈ ⟨S1⟩.

Since Base(S) ⊆ Sm for any m ∈ N, we have an alternative characterisation for the
elements of Base(S). Any s ∈ S lies in Base(S) if and only if s can be factored into
a product of m elements for any m ∈ N, i.e. s = a1a2 . . . am for some ai ∈ S. This
characterisation gives us some immediate properties of Base(S) as a subsemigroup
of S.

Lemma 2.1 Let S be a semigroup and let s ∈ S. If s ∈ Ss ∪ sS ∪ SsS then
s ∈ Base(S).

4



Proof. It follows that for m ≥ 1, s = xms or s = sym or s = xmsym and so the
result follows from the previous observation.

Corollary 2.2 Suppose that S is a semigroup.

1. Every monoid subsemigroup of S is a submonoid of Base(S).

2. Reg(S) ⊆ Base(S). Hence if S is regular, Base(S) = S.

3. E(S) = E(Base(S)).

4. If s ∈ S \ Base(S) then |Js| = 1, where Js is the J−class of s.

To see part 4 notice that if aJ b and a ̸= b then we have a = ubv for some u, v ∈ S1

and since a ̸= b we have u and v not both equal to 1. Similarly b = sat with s, t ∈ S1

not both equal to 1 and hence a ∈ Sa ∪ aS ∪ SaS. The converse is not true, since
for example in a semigroup with zero we have J0 = {0} but 0 ∈ Base(S).

If follows immediately that the class of stratified extensions contains the class of
semigroups with regular elements and hence in particular the classes of monoids,
finite semigroups and regular semigroups. However, not every semigroup is a strat-
ified extension. Consider for example a semigroup with a length function (i.e. a
function l : S → N such that for all x, y ∈ S, l(xy) = l(x)+ l(y)). If T is the subsemi-
group of elements with non-zero length, then the elements of Tm each have length
at least m. Hence the elements of length exactly m lie in Tm ̸⊆ Base(T ) and so the
base is empty. In particular, a free semigroup is not a stratified extension, nor is the
semigroup of polynomials of degree ≥ 1 over any ring, under multiplication.

Proposition 2.3 Let S be a stratified extension.

1. Base(S) is an ideal of S and S is an ideal extension of Base(S) by a stratified
semigroup with 0.

2. If S is a nil-stratified extension then it is an ideal extension of Base(S) by a
nilsemigroup.

3. If S is a finitely stratified extension then it is an ideal extension of Base(S) by
a nilpotent semigroup of finite index.

Proof.

1. For any u, v ∈ S1, t ∈ Base(S) and m > 3, we have t ∈ Sm−2 so utv ∈ Sm

and hence utv ∈ Base(S). Hence we can regard S as being an ideal extension
of Base(S) by S/Base(S) and note that S/Base(S) is a stratified semigroup
with 0.

2. If S is a nil-stratified extension then it follows that for every s ∈ S there
exists m ∈ N such that sm ∈ Base(S). Hence in the Rees quotient S/Base(S),
sm = 0 and so S/Base(S) is a nilsemigroup and S is an ideal extension by a
stratified nilsemigroup.
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3. Recall that the nilpotency index of a semigroup is the smallest value m such
that every product of m elements is zero. It is easy to see that if the nilpotency
index of S/Base(S) ism then the height of S ism and so S is a finitely stratified
extension. Conversely, any nilpotent semigroup S of finite nilpotency index m
is a stratified semigroup with Sm = {0}.

The converses of these results do not hold. To see this, let S be a free semigroup
and T be the two element nilsemigroup. Then T is a stratified semigroup with 0
but an extension of S by T is not a stratified extension. Further, T is a nilpotent
semigroup of finite index and an extension of S0 by T is a stratified extension, but
is not a finitely stratified nor nil-stratified extension.

Proposition 2.4 Let S be a stratified extension.

1. If S is a nil-stratified extension then Base(S) is periodic if and only if S is
periodic.

2. If S is a nil-stratified extension then Base(S) is eventually regular if and only
if S is eventually regular.

3. Base(S) is E−dense if and only if S is E−dense.

So a stratified extension with a periodic base is E−dense.

Proof. If S is either periodic or eventually regular, then so is any subsemigroup
and in particular Base(S). Conversely, if Base(S) is periodic (resp. eventually
regular) and s ∈ S, then since S is nil-stratified it follows that there exists m ∈ N
such that sm ∈ Base(S) and so there exists n ∈ N such that smn is idempotent (resp.
regular) and hence Base(S) is periodic (resp. eventually regular).
For the third part, let Base(S) be E−dense and let s ∈ S. Then for any t ∈
Base(S), ts ∈ Base(S) and so there exists u ∈ Base(S) such that uts ∈ E(Base(S)) =
E(S) and hence S is E−dense. Conversely, suppose that S is E−dense. Since
W (S) = Reg(S) ⊆ Base(S), then Base(S) is E−dense.

Notice that periodic ⇒ eventually regular ⇒ E−dense ⇒ stratified extension.

There is in general little control over the base, as a stratified extension can be
constructed with any given semigroup as its base.

Proposition 2.5 Let T and R be any semigroups.Then there exists a stratified ex-
tension S such that T ⊆ Base(S) and S/T ∼= R. Moreover, if R is stratified without
a zero then T = Base(S).

Proof. Let S = R∪̇T and define a binary operation ∗ on S by r1 ∗ r2 = r1r2 for
r1, r2 ∈ R, t1 ∗ t2 = t1t2 for t1, t2 ∈ T , and r ∗ t = t ∗ r = t for r ∈ R and t ∈ T .
It is easy to verify that this operation is associative and so (S, ∗) is a semigroup.
Then T ⊆

⋂
m>0(R∪̇T )m and so S is a stratified extension. Moreover, if we choose

R such that
⋂

m>0R
m = ∅, for example R = A+, a free semigroup, we see that⋂

m>0(R∪̇T )m = T and so we can obtain a stratified extension with base T .
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In contrast, the possible bases for a finitely stratified extension are much more
restricted. Let S be a finitely stratified extension with T = Base(S) and consider
T 2. There exists m ∈ N such that T = Sm, so T 2 = S2m. But by definition,
Sm = Sm+1 = Sm+2 = · · · = S2m and so T 2 = T . A semigroup T satisfying T 2 = T
is said to be globally idempotent and so the base of a finitely stratified extension is
globally idempotent. Note also that if S is globally idempotent, then S is a finitely
stratified extension in a trivial sense, with base S and height 1.

Proposition 2.6 A semigroup Σ is a finitely stratified extension if and only if it
is an ideal extension of a globally idempotent semigroup by a nilpotent semigroup of
finite index.

Proof. We need only justify the converse. Let Σ be an ideal extension of a
globally idempotent semigroup S by a nilpotent semigroup T of finite index m.
Then Σm = S and S = S2 so Σm = Σ2m and as each Σi ⊆ Σi+1 it follows that
Σm = Σm+1. Hence Σ is a finitely stratified extension with base S and height m.

This is still a very broad class of semigroups, including among its members every
monoid and every regular semigroup. It should also be noted that a globally idem-
potent semigroup need not contain idempotents, the Baer-Levi semigroup being one
such example.

It is clear that every semigroup that is nilpotent with finite index has to be stratified.
That the same cannot be said for nilsemigroups follows from the following example.

Example 2.7 Let S = P(N) be the set of subsets of N and define a multiplication
on S by

A ◦B =

{
A ∪B if A and B are non-empty and A ∩B = ∅,
∅ otherwise.

Then it is clear that each element is nilpotent of index 2 and so S is a nilsemigroup,
but as all infinite elements are in the base, then it follows that S is not stratified.

Indeed, if T is the (countable) subsemigroup of S consisting of all finite and cofinite
subsets of N, then T is also a nilsemigroup and again is not stratified as all infinite
elements are also in the base.

In fact, assuming the axiom of choice, we can replace N by any infinite set of cardi-
nality α to produce a nilsemigroup of cardinality α which is not stratified.

Proposition 2.8 There exists a finitely stratified extension of height h, for any
h ∈ N.

Proof. Let S = ⟨a⟩ be the monogenic semigroup of index h and period r and let
G = {ah, . . . , ah+r−1} be the kernel of S, a finite cyclic group of order r. For any
x = an1 . . . anh ∈ Sh it follows that x = an1+...+nh and n1 + . . . + nh ≥ h, so that
Sh ⊆ G. However, since al ∈ Sl then Sl ̸⊆ G for any l < h. Since Sh+r−1 ⊆ Sh,
Sh+1 ⊆ Sh and G ⊆ Sh+r−1 then Sh = Sh+1 = G and S is a finitely stratified
extension with base G and height h.
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Theorem 2.9 Let S be a (finitely, nil-) stratified extension and let Si for i ∈ I be
a family of stratified extensions.

1. If ρ is a congruence on S then S/ρ is a (finitely, nil-) stratified extension with
base Base(S)/ρ.

2. The direct product
∏

i∈I Si is a stratified extension with base
∏

i∈I Base(Si).

3. If |I| < ∞ and each Si is a (finitely, nil-) stratified extension then the direct
product

∏
i∈I Si is a (finitely, nil-) stratified extension with base

∏
i∈I Base(Si).

Proof.

1. Let S be a semigroup and let ρ be a congruence on S. It is easy to see that
for any m ∈ N we have (S/ρ)m = Sm/ρ. Hence if S is a stratified extension
then S/ρ is also a stratified extension, with Base(S/ρ) = Base(S)/ρ. Further,
if S is a finitely stratified or nil-stratified extension then so is S/ρ.

2. Let Si be a family of semigroups. Then (
∏

i∈I Si)
m =

∏
i∈I Si

m. Hence if each
Si is a stratified extension, the product

∏
i∈I Si is also a stratified extension

with Base(
∏

i∈I Si) =
∏

i∈I Base(Si).

3. If I is a finite set and each Si is a nil-stratified extension then so is
∏

i∈I Si.
Similarly if each Si is a finitely stratified extension then so is

∏
i∈I Si. To see

that we cannot remove the condition |I| < ∞, let I = N and for each i ∈ I let
Si be a finitely stratified (and hence nil-stratified) extension of height i. Then∏

i∈I Si is a stratified extension but is neither a finitely stratified extension nor
a nil-stratified extension.

Subsemigroups of (finitely, nil-) stratified extensions are not necessarily (finitely,
nil-) stratified extensions. For example the bicyclic semigroup is a finitely stratified
extension (in fact globally idempotent) but contains (N,+) as a subsemigroup which
is free and hence not even a stratified extension. The class of (finitely, nil-) stratified
semigroups therefore does not form a variety.

Having considered direct products of stratified extensions, and in anticipation of the
families of semigroups in the final two sections, we observe the following:

Proposition 2.10 Let S =
⋃

α∈Y Sα be a semilattice of stratified extensions. Then
S is a stratified extension.

Proof. This follows easily on observing that
⋃

α∈Y Base(Sα) ⊆
⋂

m>0 S
m.

In the case of finitely stratified extensions, we can construct a semilattice of finitely
stratified extensions which is not a finitely stratified extension. Let Y = N∪ {0} be
a semilattice under the multiplication ij = 0 for all i, j ∈ Y with i ̸= j. For each
i ∈ N let Si be a finitely stratified extension with height i and let S0 be globally
idempotent. Let S be the union of each Si as a semilattice of semigroups over Y .
Then Sm = S0 ∪

⋃
i∈N Si

m. If i > m then there are elements in Si
m which are not

in Si
m+1 and so Sm ̸= Sm+1 for any m ∈ N.
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3 Semilattices of group bound semigroups

In this and the following sections we explore two families of examples of semigroups
that can be decomposed as semilattices of stratified extensions. In this section we
introduce the definition of a strongly 2−chained semigroup and, after some pre-
liminary results, show that if such a semigroup is also group-bound then it is a
semilattice of stratified extensions.

A semigroup in which every regular H-class contains an idempotent is called a
strongly 2−chained semigroup [6]. This is clearly equivalent to every regularH−class
being a group.

Let S be a strongly 2−chained semigroup. We define a relation ρ on S by sρt if and
only if for every D-class D of S we have

W (s) ∩D ̸= ∅ ⇐⇒ W (t) ∩D ̸= ∅.

Clearly ρ is an equivalence relation. We will show that ρ is in fact a congruence,
and moreover that S/ρ is a semilattice.

We begin by establishing some properties of such semigroups.

Lemma 3.1 Let S be a strongly 2−chained semigroup.

1. Every regular D-class of S is a completely simple subsemigroup of S.

2. Let s ∈ S and s′ ∈ W (s). Every H-class of Ds′ contains a weak inverse of s.

Proof.

1. Let D be a regular D−class, let a, b ∈ D and let e be the idempotent lying in
La ∩ Rb. Then abLebRee = e. Hence ab ∈ D and D is a completely simple
subsemigroup of S.

2. Let D be the (regular) D−class containing s′ and let r be an idempotent such
that rRss′. Then ss′r = r and rss′ = ss′, and it follows that s′r ∈ W (s) and
s′Rs′rLr.

s′

ss′r

s′r
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Let I = S/R and Λ = S/L and, as is normal, denote the R−classes as Ri

(i ∈ I), the L−classes as Lλ (λ ∈ Λ) and the H−class Ri∩Lλ as Hiλ. Suppose
s′ ∈ Rj and ss′ ∈ Ri. For each λ ∈ Λ, let riλ be the idempotent in Hiλ, so that
we produce a weak inverse of s, s′jλ, in Hjλ. Let s

′
jλs ∈ Lµ, and for each k ∈ I

let lkµ be the idempotent in Hkµ and note that, using a similar argument to
above, lkµs

′
jλ ∈ W (s) and lkµs

′
jλ ∈ Hkλ.

s′jλs

riλ

lkµ

s′jλ

lkµs
′
jλ

Notice that the converse of the first point is true as well. The second point allows
us to give an equivalent definition of ρ: sρt if and only if for every H-class H of S
we have

W (s) ∩H ̸= ∅ ⇐⇒ W (t) ∩H ̸= ∅.

The next result is key in what follows.

Lemma 3.2 Let S be a strongly 2−chained semigroup and let s, t ∈ S. For any
D-class D of S we have

W (st) ∩D ̸= ∅ if and only if W (s) ∩D ̸= ∅ and W (t) ∩D ̸= ∅.

Proof. Let s′ ∈ W (s)∩D and suppose W (t)∩D ̸= ∅. Then s′s is an idempotent
lying in D. By Lemma 3.1(2), t has a weak inverse in every H-class of D, so let t′

be the weak inverse of t lying in the H-class of s′s. Then t′s′stt′s′ = t′tt′s′ = t′s′.
By Lemma 3.1(1), t′s′ ∈ D and so W (st) ∩D ̸= ∅.
Conversely, let (st)′ ∈ W (st) ∩D. Then t(st)′st(st)′ = t(st)′ and so t(st)′ is a weak
inverse of s. As t(st)′L(st)′ we have W (s) ∩ D ̸= ∅. Similarly we have (st)′s ∈
W (t) ∩D ̸= ∅.

Corollary 3.3 Let S be a strongly 2−chained semigroup and let s, t ∈ S. Then
sρs2 and stρts.

Corollary 3.4 Let S be a strongly 2−chained semigroup. Either S is E−dense or
the set {s ∈ S|W (s) = ∅} is an ideal of S.

We can now prove the following theorem.
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Theorem 3.5 Let S be a strongly 2−chained semigroup. Then the relation ρ is a
congruence and S/ρ is a semilattice.

Proof. Let a, b, c, d ∈ S such that aρb and cρd and let D be a D-class of S. By
Lemma 3.2, W (ac) ∩ D ̸= ∅ if and only if W (a) ∩ D ̸= ∅ and W (c) ∩ D ̸= ∅. As
aρb and cρd this latter condition is equivalent to W (b) ∩D ̸= ∅ and W (d) ∩D ̸= ∅
which is in turn equivalent to W (bd) ∩D ̸= ∅ by Lemma 3.2. It follows that acρbd
and so ρ is a congruence. That S/ρ is a semilattice follows from Corollary 3.3.

We can now prove some results about the structure of S.

Lemma 3.6 Let S be a strongly 2−chained semigroup and let s, t ∈ Reg(S). Then
sρt if and only if sDt.

Proof. From Lemma 3.2 it follows that all of Green’s relations are contained in
ρ. To see this suppose that (s, t) ∈ J . Then there exists u, v ∈ S1 such that s = utv.
So for every D−class D, if W (s)∩D ̸= ∅ then W (utv)∩D ̸= ∅. Hence by Lemma 3.2
W (t) ∩D ̸= ∅. By a dual argument we then deduce that W (s) ∩D ̸= ∅ if and only
if W (t) ∩D ̸= ∅ and so (s, t) ∈ ρ.
As s is regular it has an inverse which lies in the same D-class as s and soW (s)∩Ds ̸=
∅. Hence W (t) ∩Ds ̸= ∅ and by Lemma 3.1 there exists t′ ∈ W (t) such that t′Ls.
By a similar argument there exists s′ ∈ W (s) such that s′Rt. Then

sLt′Rt′tLstRss′Ls′Rt,

and so sDt, as required.

It follows that for each ρ-class Sα either Sα has no regular elements or the regular
elements in Sα are contained within a single D-class and hence by Lemma 3.1 form
a completely simple subsemigroup of Sα. In the latter case Sα is an E−dense
semigroup as by definition of ρ each element has a weak inverse lying in the regular
D-class. Since each J -class is contained within a ρ-class, it also follows that the
regular J -classes of S are exactly the regular D-classes.

Lemma 3.7 Let S be a strongly 2−chained semigroup and let x ∈ S. Then xρ is
an E−dense subsemigroup of S if and only if xρ contains a regular element.

Proof. One way round is obvious. That xρ is a subsemigroup of S follows from
the fact that ρ is a semilattice. Let y ∈ xρ be regular. Then there exists y′ ∈
W (y) ∩Dy and so for any z ∈ xρ there exists z′ ∈ W (z) ∩Dy. Since Dy ⊆ xρ then
xρ is E−dense.

Lemma 3.8 Let S be an E−dense semigroup such that Reg(S) is a completely
simple semigroup. Then Reg(S) is an ideal of S.

Proof. Let s ∈ Reg(S) and t ∈ S. Let t′ ∈ W (t) and letH be Green’sH−relation
on Reg(S). As Reg(S) is completely simple every regular H-class contains an inverse
of s so we may choose s′ ∈ V (s) such that s′Rtt′. Then t′s′stt′s′ = t′s′ss′ = t′s′

and stt′s′st = ss′st = st. Hence st is regular and so Reg(S) is a right ideal. A dual
argument shows Reg(S) is a left ideal and hence an ideal.
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Lemma 3.9 Let S be a strongly 2−chained semigroup, let α ∈ S/ρ, let Sα =

ρ♮
−1

(α) and let s ∈ Sα. Then for all β ∈ S/ρ, Sβ contains a weak inverse of s
if and only if Sβ contains a regular element and β ≤ α.

Proof. Suppose β ≤ α and Sβ contains regular elements. Let t ∈ Sβ. Then
st ∈ Sαβ = Sβ. As Sβ contains a regular element it is E−dense by Lemma 3.7, and
so there exists (st)′ ∈ W (st) ∩ Sβ. Then t(st)′st(st)′ = t(st)′ and hence t(st)′ ∈
W (s) ∩ Sβ, as required. Conversely, let s′ ∈ W (s) ∩ Sβ. Clearly s′ is regular, and
s′ = s′ss′ ∈ Sβαβ = Sαβ so αβ = β and hence β ≤ α, as required.

From the perspective of stratified extensions, we cannot say anything about strongly
2-chained semigroups in general. For example, a free semigroup S and a group
G both satisfy the property that every regular H-class contains an idempotent,
but Base(S) = ∅ and Base(G) = G. One condition that allows us to make more
precise statements is to require that S is a group-bound semigroup. Note that
group-bound implies eventually regular, and when every regular H-class contains an
idempotent the two concepts are equivalent. We will show that applying our results
to a semigroup which is also group-bound gives the same decomposition as that in
Theorem 1.5.

If S is a group-bound semigroup and e ∈ E(S) then let He denote the largest
subgroup of S containing e. The set of elements s such that sn ∈ He for some n ∈ N
is denoted by Ke. This is well defined in the sense that if sn ∈ He we have sm ∈ He

for all m > n ([5, Lemma 1]). It also follows that the sets Ke partition S. In general
Ke is not a subsemigroup of S ([5, Proposition 7]) and in addition in a group bound
semigroup D = J ([5, Lemma 4]). As is usual, Js will denote the J−class of s.
The next result is important in what follows.

Lemma 3.10 Let S be an eventually regular strongly 2−chained semigroup and let
e, f ∈ E(S). If s ∈ Ke then Je is the greatest J -class containing a weak inverse of
s. Moreover, if eJ f and s ∈ Ke and t ∈ Kf then (s, t) ∈ ρ.

Proof. Let S be a semigroup satisfying the conditions stated. As S is eventually
regular and every regular element lies in a group then S is group-bound. Let s ∈ Ke

for some idempotent e, so that there exists n ∈ N such that sn ∈ He. Then

(sn(sn+1)−1)s(sn(sn+1)−1) = sn(sn+1)−1e = sn(sn+1)−1

where (sn+1)−1 is the inverse of sn+1 in He. Therefore s has a weak inverse in He

and hence in Je.
Now let s1 ∈ W (s) and notice that s1 is regular and so lies in a group Hf , say.
By Lemma 3.1 every H-class of Jf contains a weak inverse of s. Let s2 be a weak
inverse of s such that s2Ls1s and note that s2 ∈ Df = Jf . Then as s2s1s = s2 we
have

s2s1s
2s2s1 = s2ss2s1 = s2s1,
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so s2s1 ∈ W (s2) and by Lemma 3.1, s2s1 ∈ Jf . Let us denote w2 = s2s1, so that we
proceed inductively as follows. Suppose that for n ≥ 2 we have wn−1 ∈ W (sn−1)∩Jf .
Let sn ∈ W (s) ∩ Lwn−1sn−1 and let wn = snwn−1, so that wns

n−1 = sn and

wns
nwn = snswn = snssnwn−1 = snwn−1 = wn.

Hence wn ∈ W (sn) ∩ Jf .

We see then that there is a weak inverse of sn in Jf for any n ∈ N. In particular, since
s ∈ Ke, we can choose n large enough so that sn ∈ He ⊆ Je. Let s

∗ be the associated
weak inverse of sn in Jf . Then by Lemma 1.4 we have Jf = Js∗ ≤ Jsn = Je.
Consequently if s ∈ Ke then Je is the greatest J -class containing a weak inverse of
s.

Now let s ∈ Ke and t ∈ Kf as in the statement of the lemma. We can assume that
s and t are regular. To see this, let n ∈ N be the minimum value such that sn ∈ He

and note that if (sn)′ is a weak inverse of sn then sn−1(sn)′ is a weak inverse of s
with sn−1(sn)′L(sn)′. This, along with the previous argument, shows that s has a
weak inverse in a J−class J if and only if the regular element sn has a weak inverse
in J .
Let J be a J−class containing a weak inverse s′ of s. If tLs then ts′Lss′ and so
ts′ ∈ J . Then, since J is regular, there exists r ∈ J such that ts′r ∈ J is an
idempotent, and so s′rts′r ∈ J is a weak inverse of t. By a similar argument, if tRs
there is a weak inverse of t in J , and so if sJ t there is a weak inverse of t in J .
A dual argument then gives the opposite direction and the result follows from the
definition of ρ.

Note that each H-class of S contains at most one weak inverse of s: if s′, s∗ ∈ W (s)
with s′Hs∗ then s′sRs′Rs∗Rs∗s. As L is a right congruence we also have s′sLs∗s.
Since s′s and s∗s are idempotents it follows that s′s = s∗s, and by a similar argument
ss′ = ss∗. Then s′ = s′ss′ = s∗ss′ = s∗ss∗ = s∗.

Theorem 3.11 Let S be a strongly 2−chained semigroup. If S is group-bound then
S is a semilattice of Archimedean semigroups of the form KJe =

⋃
f∈E(Je)

Kf for
e ∈ E(S).

Proof. Let e ∈ E(S) and define KJe =
⋃

f∈E(Je)
Kf . Let s, t ∈ KJe and notice

that s ∈ Kf , t ∈ Kg for some f, g ∈ Je, so that by Lemma 3.10, (s, t) ∈ ρ. Conversely,
if (s, t) ∈ ρ then there exists e, f ∈ E(S) such that s ∈ Ke ⊆ KJe , t ∈ Kf ⊆ KJf .
By Lemma 3.10, Je is the greatest J−class containing a weak inverse of s and Jf is
the greatest J−class containing a weak inverse of t. Since (s, t) ∈ ρ it easily follows
that Je = Jf and so s, t ∈ KJe = KJf . Hence the sets KJe are the ρ−classes and so
partition S and since S/ρ is a semilattice the result then follows.

For each e, f ∈ E(S) it follows that there exists g ∈ E(S) such that KJeKJf ⊆ KJg .
Since e ∈ KJe and f ∈ KJf then ef ∈ KJg . In addition there exists a uniquely
determined h ∈ E(S) such that ef ∈ Kh ⊆ KJh and so KJg = KJh .
To see that KJe is an Archimedean semigroup, let a, b ∈ KJe . Then there exist
m,n ∈ N such that am, bn ∈ Je and so am ∈ KJeb

nKJe ⊆ KJebKJe , as required.
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Note that a decomposition into a semilattice of Archimedean semigroups is neces-
sarily unique: let S = [Y ;Sα] = [Y ′;Sa] be two Archimedean semilattice decompo-
sitions of the semigroup S. If s, t ∈ S lie in the same subsemigroup Sα where α ∈ Y
and s ∈ Sa, t ∈ Sb where a, b ∈ Y ′, then there exist n ∈ N and u, v ∈ S such that
sn = utv and a ≤ b. Similarly b ≤ a and so s, t ∈ Sa and the two semilattices, Y and
Y ′, are isomorphic. We have hence recovered the same decomposition as Shevrin
(Theorem 1.5) in this case.

It is clear from the above structure that these semigroups are group-bound and since
it is straightforward to check that Reg(KJe) = Je, then the regular elements form a
completely simple subsemigroup.

The converse of Theorem 3.11 does not hold in general as an Archimedean semi-
group need not contain regular elements and hence a semilattice of Archimedean
semigroups may not be group-bound. It is enough, however, to require that each
Archimedean semigroup contains a regular element.

Corollary 3.12 Let S be a strongly 2−chained semigroup. Then S is group-bound
if and only if S = [Y ;Sα] is a semilattice of Archimedean semigroups Sα with
Reg(Sα) ̸= ∅.

Proof. Clearly if S is group-bound then every subsemigroup contains a regular
element. Conversely, let s ∈ S. Then s ∈ Sα for some α and let t ∈ Reg(Sα).
Since Sα contains a regular element, then by Lemma 3.7 it is E−dense. Hence by
Lemma 3.8, Reg(Sα) is an ideal of Sα and so sn ∈ Reg(Sα) ⊆ Reg(S).

Proposition 3.13 Let S be a semigroup. Any two of the following implies the third.

1. S is group-bound.

2. S is strongly 2−chained.

3. S is a semilattice of Archimedean semigroups Sα with Reg(Sα) ̸= ∅.

Proof. By Corollary 3.12 we have 1 and 2 imply 3 and 2 and 3 imply 1. The
remaining implication follows from Theorem 1.5.

We now turn our attention to describing the subsemigroups KJe at each vertex of
the semilattice. Since each semigroup contains regular elements, they are all strat-
ified extensions with a base consisting of at least the regular elements. From [5,
Proposition 3] each KJe is an ideal extension of the completely simple semigroup Je
by a nilsemigroup. If this nilsemigroup is stratified then KJe is a nil-stratified ex-
tension with base Je. However, not every nilsemigroup is stratified as demonstrated
by Example 2.7.

Lemma 3.14 Let S be an eventually regular semigroup such that Reg(S) is com-
pletely simple and suppose S is a finitely stratified extension. Then Base(S)\Reg(S)
is either empty or infinite.
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Proof. Suppose s0 ∈ Base(S) \ Reg(S) ̸= ∅. Since S is a finitely stratified
extension, Base(S) is a globally idempotent subsemigroup, so s0 = s1t1 for some
s1, t1 ∈ Base(S). If s1 is regular then as Reg(S) is an ideal, s0 is regular giving a
contradiction. Further, if s1 = s0 then s0 = s0t1 = s0t1

n for any n ∈ N. We can
choose n such that t1

n is regular, so s0 is again regular giving a contradiction. Hence
s1 is an element of Base(S)\Reg(S) not equal to s0. By a similar argument, s1 = s2t2
where s2 ∈ Base(S)\Reg(S) and s2 is not equal to s0 nor s1. Proceeding inductively
we deduce that the set {s0, s1, s2, . . . } is an infinite subset of Base(S) \ Reg(S).

It follows that any finite semigroup in which every regular H-class contains an idem-
potent is a semilattice of finitely stratified extensions with completely simple bases.

Theorem 3.15 A semigroup S is a finite strongly 2−chained semigroup if and only
if S = [Y ;Sα] is a finite semilattice of finite semigroups Sα where each Sα is a
finitely stratified extension of a completely simple semigroup.

Proof. To see that the converse is true, let s ∈ S be a regular element, so that
there exists α such that s ∈ Sα. Let s′ be an inverse of s (within S) with s′ ∈ Sβ

for some β. Then s = ss′s ∈ SαSβSα ⊆ Sαβ ∩ Sα, and so Sα = Sαβ. Similarly
s′ = s′ss′ ∈ Sαβ ∩ Sβ, and so Sα = Sβ. It follows that s is regular within Sα and
hence s ∈ Base(Sα) and is therefore H−related to an idempotent, as required.

4 Strict extensions of Clifford Semigroups

In this section we continue our exploration of examples by looking at Clifford semi-
groups. In particular, we show that every strict extension of a Clifford semigroup
can be decomposed as a semilattice of stratified extensions of groups.

We make use of the notation of Clifford and Preston [1, Section 4.4], and in particular
that relating to ideal extensions determined by partial homomorphisms. A Clifford
semigroup is a completely regular inverse semigroup. It is well known that a Clifford
semigroup S decomposes as a semilattice of groups S = S[Y ;Gα]. We begin by
showing that a strict extension Σ of a Clifford semigroup S has a semilattice structure
isomorphic to that of the Clifford semigroup itself.

Lemma 4.1 Let S = S[Y ;Gα] be a Clifford semigroup. An ideal extension of S is
strict if and only if it is determined by a partial homomorphism.

Proof. Let a, b ∈ S be such that ax = bx and xa = xb for all x ∈ S. As S is a
Clifford semigroup, a ∈ Gα and b ∈ Gβ for some α, β ∈ Y . Let e, f be the identities
of Gα, Gβ respectively. Then a = ea = eb and so α ≤ β. Similarly, b = fb = fa so
β ≤ α and hence α = β and e = f . Then a = ea = eb = b and hence S is weakly
reductive. The result then follows from Theorem 1.2.

Lemma 4.2 Let Σ be a strict extension of a Clifford semigroup S = S[Y ;Gα] by a
semigroup T defined by a partial homomorphism A 7→ A and let Σα = Gα ∪ {A ∈
T \ {0}|A ∈ Gα} for each α ∈ Y . Define a relation ∼ on Σ by s ∼ t if and only
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if s, t ∈ Σα for some α ∈ Y . Then ∼ is a congruence and Σ/∼ is a semilattice
isomorphic to Y .

Proof. Clearly ∼ is an equivalence relation. To prove ∼ is a congruence and that
Σ/∼ ∼= Y we show that ∼ is the kernel of the homomorphism θ : Σ → Y where
θ(s) = α whenever s ∈ Σα. Note that if A ∈ T \ {0} then θ(A) = θ(A). We have
four cases to consider:

1. If s, t ∈ S then θ(s)θ(t) = θ(st) follows from the semilattice structure of S.

2. If s ∈ S and A ∈ T \ {0} then θ(s)θ(A) = θ(s)θ(A) = θ(sA) = θ(sA), where
the last two equalities follow from the first case and multiplication in a strict
extension respectively.

3. The case for θ(A)θ(s) follows in a similar manner to the previous case.

4. If A,B ∈ T \ {0} then θ(A)θ(B) = θ(A)θ(B) = θ(A B) by the first case.
Then if AB = 0 in T we have θ(AB) = θ(A B) and if AB ̸= 0 in T we have
θ(AB) = θ(AB) = θ(A B). In either case θ(A)θ(B) = θ(AB).

Hence θ is a homomorphism, as required and ∼ is clearly its kernel.

Theorem 4.3 Every strict extension Σ of a Clifford semigroup S by a semigroup T
is a semilattice of extensions of groups. Conversely, if Σ = S[Y ; Σα] is a semilattice
of extensions Σα of groups Gα and S =

⋃
α∈Y Gα is an ideal of Σ then Σ is a strict

extension of the Clifford semigroup S.

Proof. By Lemma 4.2, Σ is a semilattice of semigroups Σα defined via a partial
homomorphism A 7→ A from T \ {0} to S. The restriction of this map to Σα \ Gα

gives a partial homomorphism defining the ideal extension Σα of the group Gα.

Conversely, let Σ be a semilattice of semigroups Σα where each Σα is an ideal
extension of a group Gα by a semigroup Tα and S =

⋃
α∈Y Gα is an ideal of Σ. It

follows that S is a Clifford semigroup and Σ is an ideal extension of S by T = Σ/S,
where T can equivalently be viewed as {0} ∪

⋃
α∈Y (Tα \ {0}). As Gα has identity

eα the extension Σα is determined by the partial homomorphism A 7→ Aeα (= eαA)
(Proposition 1.1 and Theorem 1.2). The union of these maps is then a map φ :
T \ {0} → S such that φ(A) = Aeα for each A ∈ Tα \ {0}. We will show that φ is
a partial homomorphism and that it defines the ideal extension Σ. For clarity, the
multiplication determined by φ will be denoted by ◦, multiplication within T by ∗,
and the original multiplication of the semilattice Σ by juxtaposition.
Let A,B ∈ T \ {0} such that A ∗ B ̸= 0 and assume A ∈ Tα, B ∈ Tβ, so that
A ∗ B ∈ Tαβ. Then φ(A)φ(B) = Aeα(Beβ) = A(Beβ)eα = ABeαβ = φ(AB), as
required.
This partial homomorphism determines an ideal extension of S consisting of the
same set Σ under the multiplication ◦ defined by

1. s ◦ t = st,
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2. A ◦B =

{
AB if A ∗B ̸= 0;

φ(A) φ(B) otherwise,

3. A ◦ s = φ(A)s,

4. s ◦A = sφ(A),

where A,B ∈ T \ {0} and s, t ∈ S. We show that in all cases, this multiplication
coincides with the original multiplication on Σ and so the original multiplication is
determined by a partial homomorphism. The first condition and the first part of the
second condition do not require proof. For the second part of the second condition,
let A ∈ Tα \ {0} and B ∈ Tβ \ {0} with A ∗B = 0 so that AB ∈ Gαβ. Then

A ◦B = φ(A)φ(B) = Aeα(Beβ) = A(Beβ)eα = ABeαβ = AB,

as required. For the third condition, let A ∈ Tα \ {0} and s ∈ Gβ with As ∈ Gαβ.
Then

A ◦ s = φ(A)s = Aeα(seβ) = A(seβ)eα = Aseαβ = As,

as required. The fourth condition follows by a dual argument. Hence φ determines
the extension Σ and so it is a strict extension of S.

Corollary 4.4 Let Σ be a strict stratified extension of a Clifford semigroup S. Then
Σ is a semilattice of stratified extensions of groups.

Proof. Let Σ be a strict extension of a Clifford semigroup S by a stratified
semigroup T . By Theorem 4.3, Σ is a semilattice of semigroups Σα, each of which
is an ideal extension of a group Gα by a subsemigroup of T containing zero. It
can be easily verified that such a subsemigroup is also stratified, and hence Σ is a
semilattice of stratified extensions of groups.

The converse of Corollary 4.4 does not hold in general as each Tα being a stratified
semigroup does not guarantee that T is itself a stratified semigroup. For example,
let Y = {a, b} with a ≤ b. For each α ∈ Y let Gα be a group, Tα a free semigroup
with adjoined zero, and Σα an ideal extension of Gα by Tα. For s ∈ Ta and t ∈ Tb

let st = ts = s. Along with the fact that S = Ga ∪Gb is an ideal of Σ, this defines a
multiplication on the semilattice Σ = Σa ∪ Σb. Each Tα is a stratified semigroup so
each Σα is a stratified extension of a group, however, T = Σ/S is not stratified, as⋂

i≥1 T
i ∼= Ta. A sufficient, but clearly not necessary, condition under which T will

always be stratified is if T is finite.

As an example of the above construction, consider the following. Let n ∈ N and let
N = {1, . . . , n}. Let S = G0

1 × . . .×G0
n be a direct product of 0−groups G0

i , i ∈ N .
For s = (a1, . . . , an) ∈ S define dom(s) = {i ∈ N |ai ̸= 0}.
Let m ∈ N and define a relation ρm on (N,+) by

ρm = 1N ∪ {(x, y) ∈ N× N|x, y ≥ m}.
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Then it is easy to check that S is a Clifford semigroup (and hence a strong semilattice
of groups), ρm is a congruence on N and N/ρm is a finite monogenic semigroup with
trivial kernel. For simplicity, we shall identify N/ρm with {1, . . . ,m}, in the obvious
way. Let T ′ be the semigroup of all partial maps from N to N/ρm with binary
operation ∗ given by (f ∗ g)(x) = f(x) + g(x) when both are defined, and undefined
otherwise. Let I ⊆ T ′ be the set of maps whose image is {m}. It can be readily
seen that I is an ideal of T ′ and T = T ′/I is a nilsemigroup.

For each i ∈ N pick an element gi ∈ Gi and let αi : T \ {0} → G0
i be the partial

homomorphism given by

αi(f) =

{
g
f(i)
i f(i) is defined,

0 otherwise.

Then α : T \{0} → S given by α(f) = (α1(f), . . . , αn(f)) is a partial homomorphism
defining an ideal extension Σ of S by T .

Notice that sJ t if and only if dom(s) = dom(t). It follows that the semilattice
structure of S is defined in terms of the power set of N (i.e. dom(st) = dom(s) ∩
dom(t)). Let SM be the J -class of S with dom(s) = M for s ∈ SM . Then TM =
α−1(SM ) is the set of maps in T \ {0} whose domain is exactly M . The set T 0

M =
TM ∪ {0} is a subsemigroup of T and is a nilsemigroup. The restriction of α to TM

then gives a partial homomorphism from T 0
M to SM which defines an ideal extension

ΣM of the group SM by T 0
M . It can then be shown that Σ is a semilattice of these

semigroups ΣM .

The authors thank the anonymous referee for pointing out Example 2.7 and for a
number of useful comments which have enhanced the overall exposition of the paper.
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