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Abstract

Grillet (Semigroup Forum 50:25-36, 1995) introduced the concept of stratified semi-
groups as a kind of generalisation of finite nilsemigroups. We extend Grillet’s ideas by
introducing the notion of the base of a semigroup and show that a semigroup is stratified
if and only if its base is either empty or consists of only the zero element. The general
structure of semigroups with non-trivial bases is studied and we show that these can
be described in terms of ideal extensions of semigroups by stratified semigroups. We
consider certain types of group-bound semigroups and also ideal extensions of Clif-
ford semigroups, and show how to describe them as semilattices of ideal extensions
by stratified semigroups and provide a number of interesting examples.

Keywords Semigroup - Stratified - Extension - Semilattice - Group-bound - Clifford
semigroup

1 Introduction and preliminaries

Grillet [2] defines a semigroup S with zero to be stratified whenever (), S = {0}.
A semigroup without zero is called stratified if SO is stratified. He shows that this class
of semigroups includes the class of all free semigroups, free commutative semigroups,
homogeneous semigroups and nilpotent semigroups with finite index. Our aim is to
generalise this concept and consider some semigroups that can be decomposed as
semilattices of some of these more general kinds of stratified semigroups.

After some basic definitions and preliminary results, in Sect.2, we introduce the
concept of a stratified extension as a generalisation of Grillet’s stratified semigroups,
and provide a number of results on the overall structure of such semigroups. The final
two sections then examine two families of semigroups that exhibit this stratified struc-
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ture. In Sect. 3 our focus is on semigroups in which every regular H-class contains an
idempotent. We show that group-bound semigroups with this property are semilattices
of stratified extensions of completely simple semigroups and describe the semilattice
structure. Finally in Sect.4 we look at strict extensions of Clifford semigroups and
show amongst other things, that strict stratified extensions of Clifford semigroups are
semilattices of stratified extensions of groups. For all terminology in semigroups not
otherwise defined, see Howie [4].

Let S and T be semigroups, with T containing a zero. A semigroup X is called an
ideal extension of S by T if it contains S as an ideal and the Rees quotient X /S is
isomorphic to T. Grillet and Petrich [3] define an extension as strict if every element
of ¥ \ § has the same action on S as some element of S and pure if no element of
2\ § does. In other words, the extension is strict if for every s in X \ S there exists ¢
in S such that for every x in S, sx = tx and xs = xt and pure if for every s in X \ S
there is no such ¢ in S. They also showed that any extension of an arbitrary semigroup
S is a pure extension of a strict extension of S.

Proposition 1.1 [3, Proposition 2.4] Every extension of S is strict if and only if S has
an identity.

Let S and T be disjoint semigroups. A partial homomorphism [1] from T to S is
amap f : T \ {0} — S such that for all x,y € S, f(xy) = f(x)f(y) whenever
xy # 0.

We adopt the convention used by Clifford and Preston [1] that elements of T \
{0} are denoted by capital letters and elements of S by lowercase letters. A partial
homomorphism from 7 \ {0} to S given by A > A defines an extension ¥ =
S |J(T \ {0}) with multiplication given by

I Axp=|AB 1TABZO;
AB if AB =0,

2.A*s=z_s,

3. sx A =35A,

4. s %t = st,

where A, B € T \ {0} and s, ¢t € S. From parts 2 and 3 above, all extensions defined
in this way are strict.
Let S be a semigroup and let a, b € S. We say that a and b are interchangeable if

Vx € §S,ax =bx and xa = xb. (1)

A semigroup is called weakly reductive if it contains no interchangeable elements.
Notice that every monoid is weakly reductive.

Theorem 1.2 [3, Theorem 2.5] Let S be weakly reductive. Then every strict extension
of S is determined by a partial homomorphism, and conversely.

Recall that a semigroup is said to be E-dense (or E-inversive) if for all s € S there
exists ¢ € S such that st € E(S). The following is well-known.
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Lemma 1.3 The following are equivalent.

1. Sis E-dense.

2. Forall s € S there existst € S such thatts € E(S).

3. Forall s € S there exists t € S such that st,ts € E(S).
4. Forall s € S there exists s' € S such that s'ss’ = s'.

Such an element, s’, in 4 is called a weak inverse of s and the set of all weak inverses
of s is denoted by W (s). The set of all weak inverses of elements of S is denoted by
W(S), while the set of all regular elements of S is denoted by Reg(S). Note that
W(S) = Reg(S). It is easily shown that for all s € S, s’ € W(s), ss’, s's € E(S) and
ss'Ls'Rs's.

Lemma 1.4 Let S be a semigroup.

1. Ifs,t € Sthen W(st) C W(E)W(s).
2. If S is an E-dense semigroup and s’ € W (s) then Jy < J;.

Proof 1. Let (st)’ € W(st). Then (st)’ = (st)'st(st)’ and so t(st) = t(st) st(st)
and hence 1 (st)’ € W(s). Similarly (st)’s € W(t). Then (st)’ = ((st)'s)(t(st)) €
W)W (s).

2. Since s’ € W(s), s’ = s’ss’ and so Jy = Jyo. By [4, Equation 2.1.4] we have
Jo = Jyge < Js.

O

Note that it is well known that if £(S) forms a band then W (st) = W)W (s).

Anelement s in a semigroup S is called eventually regular if there exists n > 1 such
that s” is regular. A semigroup is eventually regular if all of its elements are eventually
regular. It is clear that eventually regular semigroups are E-dense. A semigroup S is
called group-bound if forevery s € S, there exists n > 1 such that s” lies in a subgroup
of S. Clearly group-bound semigroups are eventually regular. If S is eventually regular
and each regular H-class is a group then S is group-bound.

A semigroup S is called Archimedean if for any a, b € S there exists n € N such
that a" € SbS.

Theorem 1.5 [6, Theorem 3] Let S be a group-bound semigroup. Then S is a semilat-
tice of Archimedean semigroups if and only if every regular H-class of S is a group.

Let S be a semigroup with 0. We say that an element x € S is nilpotent if there is
n € N such that x* = 0. The semigroup S is called a nilsemigroup if every element
of S is nilpotent. The semigroup S is called nilpotent with index n € N if $" = {0}.

2 Stratified extensions

Let S be a semigroup (not necessarily stratified) and define the base of S to be the
subset Base(S) = (1),,-o ™. We shall say that a semigroup S is a stratified extension
of Base(S) if Base(S) # (. The reason for this name will become apparent later.
Clearly Base(S), if it is non-empty, is a subsemigroup of S. When Base(S) is a trivial
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subgroup then S is a stratified semigroup. A stratified semigroup S is not in general a
stratified extension as we may have Base(S) = (). However S is a stratified semigroup
if and only if S is a stratified extension with trivial base. Further, S is called a finitely
stratified extension if there exists m € N such that §” = §”*! = Base(S). The
smallest such m is called the height of S and where necessary we shall refer to S as a
finitely stratified extension with height m. If for every s in S there is an m in N such
that s € Base(S) then S is a nil-stratified extension. All finitely stratified extensions
are nil-stratified extensions, but it is easy to demonstrate that not all nil-stratified
extensions are finitely stratified extensions.

A finitely stratified extension is a stratified extension over the same base, since
gm — gm+l implies §" = S§™ for all n > m and so ﬂk>0 Sk = §™ where m is
the height of S. The converse is not true since, for example, if S is a free semigroup
with a zero adjoined, then S is a stratified extension with trivial base but not a finitely
stratified extension. It is clear that a (finitely) stratified extension has a unique base.

Clearly, for all m > 1, sm+l c §m and so we define the layers of S as the sets
Smo= 8™\ smtl g > 1. Every element of S \ Base(S) lies in exactly one layer, and
if s € Sy, then m is the depth of s. The layer S| generates every element of S\ Base(S)
and is contained in any generating set of S. However, Base(S) ¢ (S1) in general. For
example, let S be a semigroup with 0, with no zero divisors. Then 0 € Base(S) but
0 ¢ (S1).

Since Base(S) € S forany m € N, we have an alternative characterisation for the
elements of Base(S). Any s € S lies in Base(S) if and only if s can be factored into
a product of m elements for any m € N, i.e. s = ajas - - - a,, for some a; € S. This
characterisation gives us some immediate properties of Base(S) as a subsemigroup of
S.

Lemma 2.1 Let S be a semigroup andlets € S.Ifs € SsUsSUSsS thens € Base(S).

Proof 1t follows that form > 1, s = x™s or s = sy or s = x™sy” and so the result
follows from the previous observation. O

Corollary 2.2 Suppose that S is a semigroup.

1. Every monoid subsemigroup of S is a submonoid of Base(S).
2. Reg(S) C Base(S). Hence if S is regular, Base(S) = S.

3. E(S) = E(Base(S)).

4. Ifs € S\ Base(S) then |Js| = 1, where J is the [J-class of s.

To see part 4 notice thatif a /b and a # b then we have a = ubv for some u, v € st
and since a # b we have u and v not both equal to 1. Similarly b = sat with s, t € S!
not both equal to 1 and hence a € Sa U aS U SaS. The converse is not true, since for
example in a semigroup with zero we have Jo = {0} but 0 € Base(S).

If follows immediately that the class of stratified extensions contains the class
of semigroups with regular elements and hence in particular the classes of monoids,
finite semigroups and regular semigroups. However, not every semigroup is a stratified
extension. Consider for example a semigroup with a length function (i.e. a function
l:S — Nsuchthatforallx,y € S,l(xy) =I(x) + [(y)). If T is the subsemigroup
of elements with non-zero length, then the elements of 7" each have length at least
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m. Hence the elements of length exactly m lie in T,, ¢ Base(T) and so the base is
empty. In particular, a free semigroup is not a stratified extension, nor is the semigroup
of polynomials of degree > 1 over any ring, under multiplication.

Proposition 2.3 Let S be a stratified extension.

1. Base(S) is an ideal of S and S is an ideal extension of Base(S) by a stratified
semigroup with 0.

2. If S is a nil-stratified extension then it is an ideal extension of Base(S) by a
nilsemigroup.

3. If S is a finitely stratified extension then it is an ideal extension of Base(S) by a
nilpotent semigroup of finite index.

Proof 1. Foranyu,v € Slte Base(S) and m > 3, we havet € §"=2goutv € S
and hence utv € Base(S). Hence we can regard S as being an ideal extension of
Base(S) by S/ Base(S) and note that S/ Base(S) is a stratified semigroup with 0.

2. If S is a nil-stratified extension then it follows that for every s € § there exists
m € N such that s € Base(S). Hence in the Rees quotient S/ Base(S), s™ = 0
and so S/ Base(S) is a nilsemigroup and S is an ideal extension by a stratified
nilsemigroup.

3. Recall that the nilpotency index of a semigroup is the smallest value m such that
every product of m elements is zero. It is easy to see that if the nilpotency index of
S/ Base(S) is m then the height of S is m and so S is a finitely stratified extension.
Conversely, any nilpotent semigroup § of finite nilpotency index m: is a stratified
semigroup with §™ = {0}.

O

The converses of these results do not hold. To see this, let S be a free semigroup
and T be the two element nilsemigroup. Then T is a stratified semigroup with O but an
extension of S by T is not a stratified extension. Further, 7 is a nilpotent semigroup
of finite index and an extension of S by 7 is a stratified extension, but is not a finitely
stratified nor nil-stratified extension.

Proposition 2.4 Let S be a stratified extension.

1. If S is a nil-stratified extension then Base(S) is periodic if and only if S is periodic.

2. If S is a nil-stratified extension then Base(S) is eventually regular if and only if S
is eventually regular.

3. Base(S) is E-dense if and only if S is E-dense.

So a stratified extension with a periodic base is E-dense.

Proof If S is either periodic or eventually regular, then so is any subsemigroup and
in particular Base(S). Conversely, if Base(S) is periodic (resp. eventually regular)
and s € S, then since S is nil-stratified it follows that there exists m € N such that
s™ € Base(S) and so there exists n € N such that s”*" is idempotent (resp. regular)
and hence Base(S) is periodic (resp. eventually regular).

For the third part, let Base(S) be E-dense and let s € S. Then for any
t € Base(S),rs € Base(S) and so there exists © € Base(S) such that uts €
E(Base(S)) = E(S) and hence S is E-dense. Conversely, suppose that S is E-dense.
Since W (S) = Reg(S) C Base(S), then Base(S) is E-dense. O
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Notice that periodic = eventually regular = E-dense = stratified extension.
There is in general little control over the base, as a stratified extension can be
constructed with any given semigroup as its base.

Proposition 2.5 Let T and R be any semigroups.Then there exists a stratified extension
S such that T C Base(S) and S/T = R. Moreover, if R is stratified without a zero
then T = Base(S).

Proof Let S = RUT and define a binary operation * on S by r; x r; = riry for
ri,mm € R,tyxtp =tipforty,tp € T,andr xt =t+r =tforr ¢ Randtr € T.
It is easy to verify that this operation is associative and so (S, %) is a semigroup.
Then T C ﬂm>0(RCJT)m and so S is a stratified extension. Moreover, if we choose
R such that ﬂm>0 R™ = (¢, for example R = A™, a free semigroup, we see that
ﬂm>O(RUT)m = T and so we can obtain a stratified extension with base 7. O

In contrast, the possible bases for a finitely stratified extension are much more
restricted. Let S be a finitely stratified extension with 7 = Base(S) and consider T2
There exists m € Nsuchthat T = $™,s0 T2 = $2". But by definition, S = sm+l —
§m+2 = ... = §?" and so T? = T. A semigroup T satisfying T2 = T is said to
be globally idempotent and so the base of a finitely stratified extension is globally
idempotent. Note also that if S is globally idempotent, then S is a finitely stratified
extension in a trivial sense, with base S and height 1.

Proposition 2.6 A semigroup ¥ is a finitely stratified extension if and only if it is an
ideal extension of a globally idempotent semigroup by a nilpotent semigroup of finite
index.

Proof We need only justify the converse. Let X be an ideal extension of a globally
idempotent semigroup S by a nilpotent semigroup 7 of finite index m. Then ¥ = S
and S = S§% s0 ¥ = £ and as each ! € ! it follows that & = M+,
Hence X is a finitely stratified extension with base S and height m. O

This is still a very broad class of semigroups, including among its members every
monoid and every regular semigroup. It should also be noted that a globally idempotent
semigroup need not contain idempotents, the Baer—Levi semigroup being one such
example.

It is clear that every semigroup that is nilpotent with finite index has to be stratified.
That the same cannot be said for nilsemigroups follows from the following example.

Example 2.7 Let S = P(N) be the set of subsets of N and define a multiplication on
S by

AUB if A and B are non-empty and A N B = ¢,
? otherwise.

AoB =

Then it is clear that each element is nilpotent of index 2 and so S is a nilsemigroup,
but as all infinite elements are in the base, then it follows that S is not stratified.
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Indeed, if T is the (countable) subsemigroup of S consisting of all finite and cofinite
subsets of N, then T is also a nilsemigroup and again is not stratified as all infinite
elements are also in the base.

In fact, assuming the axiom of choice, we can replace N by any infinite set of
cardinality « to produce a nilsemigroup of cardinality o which is not stratified.

Proposition 2.8 There exists a finitely stratified extension of height h, for any h € N.

Proof Let S = (a) be the monogenic semigroup of index i and period r and let
G = {a",..., a1} be the kernel of S, a finite cyclic group of order r. For any
x =a"-..a" e §" it follows that x = @™+t and ny + --- + ny, > h, so that
sh C G. However, since a' e S! then §' Q G for any I < h. Since ghtr=1 - Sh,
Sh*l c §" and G € §"*"~! then " = §"*! = G and S is a finitely stratified
extension with base G and height 4. O

Theorem 2.9 Let S be a (finitely, nil-) stratified extension and let S; fori € I be a
family of stratified extensions.

1. If p is a congruence on S then S/ p is a (finitely, nil-) stratified extension with base
Base(S)/p.

2. The direct product [ [;; Si is a stratified extension with base [ |;; Base(S;).

3. If|I| < oo and each S; is a (finitely, nil-) stratified extension then the direct product
[Lic; Si is a (finitely, nil-) stratified extension with base [ |;; Base(S;).

Proof 1. Let S be a semigroup and let p be a congruence on S. It is easy to see that
for any m € N we have (S/p)" = S™/p. Hence if S is a stratified extension then
S/p is also a stratified extension, with Base(S/p) = Base(S)/p. Further, if S is a
finitely stratified or nil-stratified extension then so is S/p.

2. Let S; be a family of semigroups. Then ([[;; S))" = [];c; Si""- Hence if each
S; is a stratified extension, the product [];.; S; is also a stratified extension with
Base([[;c; Si) = [[;<; Base(S)).

3. If I is a finite set and each S; is a nil-stratified extension then so is ]_[i c1 Si-
Similarly if each S; is a finitely stratified extension then so is [ [;; Si. To see that
we cannot remove the condition |/| < oo,let I = N and foreachi € I let S; bea
finitely stratified (and hence nil-stratified) extension of height i. Then ]—L» ey Siis
a stratified extension but is neither a finitely stratified extension nor a nil-stratified
extension.

iel

O

Subsemigroups of (finitely, nil-) stratified extensions are not necessarily (finitely,
nil-) stratified extensions. For example the bicyclic semigroup is a finitely stratified
extension (in fact globally idempotent) but contains (N, +) as a subsemigroup which
is free and hence not even a stratified extension. The class of (finitely, nil-) stratified
semigroups therefore does not form a variety.

Having considered direct products of stratified extensions, and in anticipation of
the families of semigroups in the final two sections, we observe the following:

Proposition 2.10 Let S = J
is a stratified extension.

wey Sa be a semilattice of stratified extensions. Then S
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Proof This follows easily on observing that |, ., Base(Sy) € (),,-0 5" o

In the case of finitely stratified extensions, we can construct a semilattice of finitely
stratified extensions which is not a finitely stratified extension. Let ¥ = N U {0} be
a semilattice under the multiplication ij = O for all i, j € ¥ withi # j. For each
i € Nlet S; be a finitely stratified extension with height i and let Sy be globally
idempotent. Let S be the union of each S; as a semilattice of semigroups over Y. Then
S§™ = SoUU,en Si™. If i > m then there are elements in S;" which are not in g;m+l
and so §™ # §™*! for any m € N.

3 Semilattices of group bound semigroups

In this and the following sections we explore two families of examples of semigroups
that can be decomposed as semilattices of stratified extensions. In this section we
introduce the definition of a strongly 2-chained semigroup and, after some preliminary
results, show that if such a semigroup is also group-bound then it is a semilattice of
stratified extensions.

A semigroup in which every regular H-class contains an idempotent is called a
strongly 2-chained semigroup [5]. This is clearly equivalent to every regular H-class
being a group.

Let S be a strongly 2-chained semigroup. We define a relation p on S by sp¢ if and
only if for every D-class D of S we have

WE)ND £GP < W(e)ND # 0.

Clearly p is an equivalence relation. We will show that p is in fact a congruence, and
moreover that §/p is a semilattice.
We begin by establishing some properties of such semigroups.

Lemma 3.1 Let S be a strongly 2-chained semigroup.

1. Every regular D-class of S is a completely simple subsemigroup of S.
2. Lets € Sands’ € W(s). Every H-class of Dy contains a weak inverse of s.

Proof 1. Let D be a regular D-class, let a, b € D and let e be the idempotent lying
in Ly N Rp. Then abLebRee = e. Hence ab € D and D is a completely simple
subsemigroup of S.

2. Let D be the (regular) D-class containing s” and let r be an idempotent such that
rRss’. Thenss'r = randrss’ = ss’, andit follows thats'r € W(s) ands’Rs'r Lr.
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Let I = S/R and A = S/L and, as is normal, denote the R-classes as R; (i € I),
the L-classes as Ly (A € A) and the H-class R; N L; as H;;. Suppose s’ € R; and
ss’ € R;. For each A € A, let r;; be the idempotent in Hj;, so that we produce a
weak inverse of s, S}w in Hj,. Let s}ls € L,, and for each k € I let Iy, be the
idempotent in Hy,, and note that, using a similar argument to above, lkﬂs} , € W(s)
and lkﬂs;‘k € Hy,.

iy
leus’ l
IZENP kp
/ /
sjk Sj)LS

O
Notice that the converse of the first point is true as well. The second point allows

us to give an equivalent definition of p: spt if and only if for every H-class H of S
we have

WE)NH £ <= W) NH # 0.

The next result is key in what follows.

Lemma 3.2 Let S be a strongly 2-chained semigroup and let s, t € S. For any D-class
D of S we have

W(st) N D # @ ifand only if W(s) N D # Y and W (t) N D # (.

Proof Let s’ € W(s) N D and suppose W(¢) N D # (. Then s’s is an idempotent
lying in D. By Lemma 3.1(2), t has a weak inverse in every H-class of D, so let ¢’ be
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the weak inverse of ¢ lying in the H-class of s’s. Then ¢'s'stt’s’ = t'tt's’ = t's’. By
Lemma 3.1(1), s’ € D and so W(st) N D # 0.

Conversely, let (st) € W(st) N D. Then (st) st(st) = t(st)’ and so t(st) is
a weak inverse of 5. As 1(st) L(st) we have W(s) N D # (. Similarly we have
(st)'s e W) N D £ 0. O

Corollary 3.3 Let S be a strongly 2-chained semigroup and let s,t € S. Then sps>
and st pts.

Corollary 3.4 Let S be a strongly 2-chained semigroup. Either S is E-dense or the set
{s € S| W(s)=0}isanideal of S.

We can now prove the following theorem.

Theorem 3.5 Let S be a strongly 2-chained semigroup. Then the relation p is a con-
gruence and S/ p is a semilattice.

Proof Leta, b, c,d € S suchthatapb and cpd and let D be a D-class of S. By Lemma
3.2, W(ac) N D # @ if and only if W(a) N D # #and W(c) N D # #. As apb and
cpd this latter condition is equivalent to W (b) N D # (J and W(d) N D # (@ which is
in turn equivalent to W (bd) N D # ¢} by Lemma 3.2. It follows that acpbd and so p
is a congruence. That S/p is a semilattice follows from Corollary 3.3. O

We can now prove some results about the structure of S.

Lemma 3.6 Let S be a strongly 2-chained semigroup and let s, t € Reg(S). Then spt
if and only if sDt.

Proof From Lemma 3.2 it follows that all of Green’s relations are contained in p. To
see this suppose that (s, ) € 7. Then there exists u, v € S! such that s = urv. So for
every D—class D, if W(s) N D # (J then W (utv) N D # (J. Hence by Lemma 3.2
W(t) N D # (. By a dual argument we then deduce that W(s) N D # @ if and only
if W(i)N D # @andso (s, 1) € p.

As s is regular it has an inverse which lies in the same D-class as s and so W(s) N
Ds # ¥. Hence W(t) N Dy # ¥ and by Lemma 3.1 there exists ¢ € W () such that
t'Ls. By a similar argument there exists s’ € W (s) such that s'R¢. Then

sLERYtLstRss'Ls'Re,

and so sDt, as required. O

It follows that for each p-class Sy either S, has no regular elements or the regular
elements in S, are contained within a single D-class and hence by Lemma 3.1 form a
completely simple subsemigroup of S, . In the latter case S, is an E-dense semigroup
as by definition of p each element has a weak inverse lying in the regular D-class. Since
each J-class is contained within a p-class, it also follows that the regular 7-classes
of § are exactly the regular D-classes.

Lemma 3.7 Let S be a strongly 2-chained semigroup and let x € S. Then xp is an
E-dense subsemigroup of S if and only if x p contains a regular element.
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Proof One way round is obvious. That x p is a subsemigroup of S follows from the fact
that p is a semilattice. Let y € xp be regular. Then there exists y’ € W(y) N D, and
so for any z € xp there exists z € W(z) N D,. Since Dy C xp then xp is E-dense. O

Lemma 3.8 Let S be an E-dense semigroup such that Reg(S) is a completely simple
semigroup. Then Reg(S) is an ideal of S.

Proof Lets € Reg(S) andt € S. Let#’ € W(¢) and let H be Green’s H-relation on
Reg(S). As Reg(S) is completely simple every regular H-class contains an inverse
of s so we may choose s € V(s) such that s'"R¢t’. Then t's'stt's’ = t's'ss’ = t's’
and stt's’st = ss’st = st. Hence st is regular and so Reg(S) is a right ideal. A dual
argument shows Reg(S) is a left ideal and hence an ideal. O

Lemma 3.9 Let S be a strongly 2-chained semigroup, let @ € S/p, let Sy = ptfl(ot)
and let s € Sy. Then for all B € S/p, Sp contains a weak inverse of s if and only if
Sg contains a regular element and B < a.

Proof Suppose B < « and Sg contains regular elements. Let t € Sg. Then st € Sop =
Sg. As Sg contains a regular element it is E£-dense by Lemma 3.7, and so there exists
(st)) € W(st) N Sg. Then t(st)'st(st)’ = t(st)’ and hence 7(st)’ € W(s) N Sg, as
required. Conversely, lets” € W(s)NSg. Clearly s’ isregular, and s’ = s'ss’ € Sgap =
Sqp s0 aff = B and hence B < «, as required. O

From the perspective of stratified extensions, we cannot say anything about strongly
2-chained semigroups in general. For example, a free semigroup S and a group G both
satisfy the property that every regular H-class contains an idempotent, but Base(S) =
(hand Base(G) = G. One condition that allows us to make more precise statements is to
require that S is a group-bound semigroup. Note that group-bound implies eventually
regular, and when every regular H-class contains an idempotent the two concepts
are equivalent. We will show that applying our results to a semigroup which is also
group-bound gives the same decomposition as that in Theorem 1.5.

If S is a group-bound semigroup and e € E(S) then let H, denote the largest
subgroup of S containing e. The set of elements s such that s” € H, for some n € N
is denoted by K. This is well defined in the sense that if s” € H, we have s € H,
for all m > n ([6, Lemma 1]). It also follows that the sets K, partition S. In general
K, is not a subsemigroup of S ([6, Proposition 7]) and in addition in a group bound
semigroup D = J ([6, Lemma 4]). As is usual, J; will denote the [7-class of s.

The next result is important in what follows.

Lemma3.10 Ler S be an eventually regular strongly 2-chained semigroup and let
e, f € E(S). Ifs € K, then J, is the greatest [J -class containing a weak inverse of s.
Moreover, ife]J f ands € K, andt € Ky then (s, 1) € p.

Proof Let S be a semigroup satisfying the conditions stated. As S is eventually regular
and every regular element lies in a group then § is group-bound. Let s € K, for some
idempotent e, so that there exists n € N such that s € H,. Then

(Sn(sn+l)—l)s(sn(sn+1)—1) — sn(sn-‘rl)—le — Sn(sn+1)—l

@ Springer



J. Renshaw, W. Warhurst

where (s"T1)~1 is the inverse of s"T! in H,. Therefore s has a weak inverse in H, and
hence in J,.

Now let s1 € W(s) and notice that s; is regular and so lies in a group Hy, say. By
Lemma 3.1 every H-class of J¢ contains a weak inverse of s. Let s be a weak inverse
of s such that s Lsys and note that s € Dy = J¢. Then as 57515 = 57 we have

szslszszsl = §$28552851 = §251,

s0 5251 € W(s?) and by Lemma 3.1, s251 € Jy. Let us denote wy = 251, so that we
proceed inductively as follows. Suppose that forn > 2 wehave w,_; € W(s""H)NnJ 1
Lets, € W(s) N L,, -1 andlet w, = s,w,—1, so that wys" 1 =5, and

WS "Wy = Sp5Wy, = SpSSpWp_1 = SpWp_1 = Wy.

Hence w, € W(s") N Jy.

We see then that there is a weak inverse of s in J ¢ for any n € N. In particular, since
s € K., we can choose n large enough so that s” € H, C J,. Let s* be the associated
weak inverse of s in Jy. Then by Lemma 1.4 we have Jy = Jp < Jo = Jo.
Consequently if s € K, then J, is the greatest 7 -class containing a weak inverse of s.

Now lets € K, and ¢ € K¢ as in the statement of the lemma. We can assume that
s and ¢ are regular. To see this, let n € N be the minimum value such that s” € H,
and note that if (s")’ is a weak inverse of s” then s" ! (s") is a weak inverse of s with
s"~1(s") L(s"™)'. This, along with the previous argument, shows that s has a weak
inverse in a J-class J if and only if the regular element s” has a weak inverse in J.

Let J be a J-class containing a weak inverse s of s. If ¢ Ls then ts’'Lss’ and so
ts’ € J.Then,since J isregular, there exists r € J suchthatzs’r € J is anidempotent,
and so s'rts'r € J is a weak inverse of 7. By a similar argument, if 7 R.s there is a weak
inverse of ¢ in J, and so if s 7t there is a weak inverse of ¢ in J. A dual argument then
gives the opposite direction and the result follows from the definition of p. O

Note that each H-class of S contains at most one weak inverse of s:if s/, s* € W (s)
with s"Hs* then s'sRs'Rs*Rs*s. As L is a right congruence we also have s's Ls*s.
Since s’s and s*s are idempotents it follows that s’s = s*s, and by a similar argument
ss' = ss*. Then s’ = s'ss’ = s*ss’ = s*ss* = s*.

Theorem 3.11 Let S be a strongly 2-chained semigroup. If S is group-bound then
S is a semilattice of Archimedean semigroups of the form K j, = UfeE(JL,) Ky for
e € E(S).

Proof Let e € E(S) and define K, = UfeE(Je) K. Lets,t € Ky, and notice that
s € Ky, t € K for some f, g € Je, so that by Lemma 3.10, (s, t) € p. Conversely,
if (s,1) € p then there exists e, f € E(S) suchthats € K, C K,,t € Ky C Kj,.
By Lemma 3.10, J, is the greatest [7-class containing a weak inverse of s and J is
the greatest 7-class containing a weak inverse of ¢. Since (s, f) € p it easily follows
that J, = Jyandsos,t € Kj, = Kjf. Hence the sets K, are the p-classes and so
partition S and since S/p is a semilattice the result then follows.
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Foreache, f € E(S)itfollows thatthereexists g € E(S) suchthatK ;, K, < Ky, .
Since e € Ky, and f € Kjf then ef € Ky,. In addition there exists a uniquely
determined € E(S) suchthatef € Kj € K, andso Kj, = K.

To see that K, is an Archimedean semigroup, let a, b € K ,. Then there exist
m,n € Nsuch thata™,b" € J, andsoa™ € K;,b"K,, € K;,bK,, as required. O

Note that a decomposition into a semilattice of Archimedean semigroups is nec-
essarily unique: let S = [Y;S,] = [Y’;S,] be two Archimedean semilattice
decompositions of the semigroup S. If 5,7 € S lie in the same subsemigroup Sy
wherea € Yands € S,,t € S, wherea, b € Y/, then there existn € Nand u,v € S
such that s = utv and a < b. Similarly b < a and so s, € S, and the two semilat-
tices, Y and Y’, are isomorphic. We have hence recovered the same decomposition as
Shevrin (Theorem 1.5) in this case.

Itis clear from the above structure that these semigroups are group-bound and since
it is straightforward to check that Reg(K;,) = J., then the regular elements form a
completely simple subsemigroup.

The converse of Theorem 3.11 does not hold in general as an Archimedean semi-
group need not contain regular elements and hence a semilattice of Archimedean
semigroups may not be group-bound. It is enough, however, to require that each
Archimedean semigroup contains a regular element.

Corollary 3.12 Let S be a strongly 2-chained semigroup. Then S is group-bound if and
only if S = [Y; Su] is a semilattice of Archimedean semigroups Sy, with Reg(Sy) # 0.

Proof Clearly if S is group-bound then every subsemigroup contains a regular element.
Conversely, lets € S. Then s € S, for some « and let ¢ € Reg(Sy). Since Sy contains
a regular element, then by Lemma 3.7 it is E-dense. Hence by Lemma 3.8, Reg(Sy)
is an ideal of S, and so s" € Reg(Sy) € Reg(S9). O

Proposition 3.13 Let S be a semigroup. Any two of the following implies the third.

1. S is group-bound.
2. S is strongly 2-chained.
3. S is a semilattice of Archimedean semigroups S, with Reg(Sy) # 0.

Proof By Corollary 3.12 we have 1 and 2 imply 3 and 2 and 3 imply 1. The remaining
implication follows from Theorem 1.5. O

We now turn our attention to describing the subsemigroups K, at each vertex of
the semilattice. Since each semigroup contains regular elements, they are all stratified
extensions with a base consisting of at least the regular elements. From [6, Proposition
3] each K, is an ideal extension of the completely simple semigroup J, by a nilsemi-
group. If this nilsemigroup is stratified then K, is a nil-stratified extension with base
J.. However, not every nilsemigroup is stratified as demonstrated by Example 2.7.

Lemma 3.14 Let S be an eventually regular semigroup such that Reg(S) is completely
simple and suppose S is a finitely stratified extension. Then Base(S) \ Reg(S) is either
empty or infinite.
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Proof Suppose so € Base(S) \ Reg(S) # @. Since S is a finitely stratified exten-
sion, Base(S) is a globally idempotent subsemigroup, so so = s1#; for some
s1, 11 € Base(S). If 51 is regular then as Reg(S) is an ideal, s¢ is regular giving a
contradiction. Further, if s; = s¢ then so = sof; = sot1” for any n € N. We can
choose n such that #;" is regular, so sq is again regular giving a contradiction. Hence
s1 is an element of Base(S) \ Reg(S) not equal to sg. By a similar argument, 51 = s2f2
where s, € Base(S) \ Reg(S) and s; is not equal to s nor s1. Proceeding inductively
we deduce that the set {sg, 51, 52, ...} is an infinite subset of Base(S) \ Reg(S). O

It follows that any finite semigroup in which every regular H-class contains an
idempotent is a semilattice of finitely stratified extensions with completely simple
bases.

Theorem 3.15 A semigroup S is a finite strongly 2-chained semigroup if and only if
S = [Y; Sq] is a finite semilattice of finite semigroups S, where each Sy, is a finitely
stratified extension of a completely simple semigroup.

Proof To see that the converse is true, let s € S be aregular element, so that there exists
a such that s € S,. Let s’ be an inverse of s (within S) with s’ € Sg for some g. Then
s =s5's € S SpSa € Sap N Sa, and so Sy = Sup. Similarly s” = s'ss” € Sep N Sg,
and so S, = Sg. It follows that s is regular within S, and hence s € Base(Sy) and is
therefore H-related to an idempotent, as required. O

4 Strict extensions of Clifford semigroups

In this section we continue our exploration of examples by looking at Clifford semi-
groups. In particular, we show that every strict extension of a Clifford semigroup can
be decomposed as a semilattice of stratified extensions of groups.

We make use of the notation of Clifford and Preston [1, Section 4.4], and in particular
that relating to ideal extensions determined by partial homomorphisms. A Clifford
semigroup is a completely regular inverse semigroup. It is well known that a Clifford
semigroup S decomposes as a semilattice of groups § = S[Y; G,]. We begin by
showing that a strict extension X of a Clifford semigroup S has a semilattice structure
isomorphic to that of the Clifford semigroup itself.

Lemmad4.1 Let S = S[Y; Gy] be a Clifford semigroup. An ideal extension of S is
strict if and only if it is determined by a partial homomorphism.

Proof Leta, b € S be such that ax = bx and xa = xb forall x € S. As § is a Clifford
semigroup, a € G4 and b € Gg for some o, B € Y. Let e, f be the identities of
Gy, Gg respectively. Then a = ea = eb and so a < B. Similarly, b = fb = fa so
B <o and hence « = B and e = f. Then a = ea = eb = b and hence § is weakly
reductive. The result then follows from Theorem 1.2. O

Lemma4.2 Let X be a strict extension of a Clifford semigroup S = S[Y; Go] by a
semigroup T defined by a partial homomorphism A — A and let £, = Go U{A €
T\ {0} | A € Gy} for each o € Y. Define a relation ~ on X by s ~ t if and only
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if s,t € Xy for some o € Y. Then ~ is a congruence and ¥/~ is a semilattice
isomorphicto Y.

Proof Clearly ~ is an equivalence relation. To prove ~ is a congruence and that
¥/~ =Y we show that ~ is the kernel of the homomorphism 6 : ¥ — Y where
6(s) = a whenever s € X,. Note that if A € T \ {0} then O(A) = 6(A). We have
four cases to consider:

1. If s,t € S then 0(s)0(t) = 6(st) follows from the semilattice structure of S.

2. Ifs € Sand A € T\ {0} then 6(s)8(A) = O(s)0(A) = O(sA) = 6(sA), where the

last two equalities follow from the first case and multiplication in a strict extension

respectively.

The case for (A)0(s) follows in a similar manner to the previous case.

4. 1f A,B € T \ {0} then O(A)0(B) = H(A)H(B) = 6(A B) by the first case.
Then if AB = 0in T we have (AB) = 6(A B) and if AB # 0 in T we have
0(AB) = 6(AB) = 0(A B). In either case 0(A)0(B) = 6(AB).

(O8]

Hence 6 is a homomorphism, as required and ~ is clearly its kernel. O

Theorem 4.3 Every strict extension % of a Clifford semigroup S by a semigroup T is
a semilattice of extensions of groups. Conversely, if & = S[Y; 3] is a semilattice of
extensions Xy of groups Gy and S = |,y Go is an ideal of ¥ then X is a strict
extension of the Clifford semigroup S.

Proof By Lemma 4.2, X is a semilattice of semigroups X, defined via a partial homo-
morphism A — A from T \ {0} to S. The restriction of this map to =, \ G, gives a
partial homomorphism defining the ideal extension X, of the group G.

Conversely, let & be a semilattice of semigroups ¥, where each ¥, is an ideal
extension of a group G, by a semigroup 7, and S = |J,cy G is an ideal of . It
follows that S is a Clifford semigroup and X is an ideal extension of Sby T = X/,
where T can equivalently be viewed as {0} U [,y (T \ {0}). As G has identity
ey the extension X, is determined by the partial homomorphism A — Ae, (=
eqA) (Proposition 1.1 and Theorem 1.2). The union of these maps is then a map
¢ : T\ {0} — S such that p(A) = Ae, for each A € T, \ {0}. We will show that ¢
is a partial homomorphism and that it defines the ideal extension X. For clarity, the
multiplication determined by ¢ will be denoted by o, multiplication within 7' by x,
and the original multiplication of the semilattice ¥ by juxtaposition.

Let A, B € T \ {0} such that A * B # 0 and assume A € T,, B € Tg, so that
A x B € Tyg. Then (A)p(B) = Aey(Beg) = A(Beg)eqy = ABeyg = ¢(AB), as
required.

This partial homomorphism determines an ideal extension of S consisting of the
same set X under the multiplication o defined by

1. sot = st,

AB if Ax B #0;
®(A) p(B) otherwise,
3. Aos = (p(A)S’

4. s0 A =s5¢9(A),

2. AoB =
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where A, B € T \ {0} and s,t € S. We show that in all cases, this multiplication
coincides with the original multiplication on ¥ and so the original multiplication is
determined by a partial homomorphism. The first condition and the first part of the
second condition do not require proof. For the second part of the second condition, let
AeTy\{0}and B € Tg \ {0} with A * B = 0 so that AB € Gqg. Then

Ao B =¢(A)¢(B) = Aey(Beg) = A(Beg)ey = ABegs = AB,

as required. For the third condition, let A € Ty, \ {0} and s € Gg with As € Ggg.
Then

Aos =@(A)s = Aey(seg) = A(segley = Aseqg = As,

as required. The fourth condition follows by a dual argument. Hence ¢ determines the
extension ¥ and so it is a strict extension of S. O

Corollary 4.4 Let X be a strict stratified extension of a Clifford semigroup S. Then ¥
is a semilattice of stratified extensions of groups.

Proof Let X be a strict extension of a Clifford semigroup S by a stratified semigroup
T. By Theorem 4.3, ¥ is a semilattice of semigroups X, each of which is an ideal
extension of a group G, by a subsemigroup of T containing zero. It can be easily
verified that such a subsemigroup is also stratified, and hence ¥ is a semilattice of
stratified extensions of groups. O

The converse of Corollary 4.4 does not hold in general as each T;, being a stratified
semigroup does not guarantee that 7 is itself a stratified semigroup. For example, let
Y = {a, b} witha < b. For each « € Y let G, be a group, T, a free semigroup with
adjoined zero, and X, an ideal extension of G4 by Ty. For s € T, and ¢t € T}, let
st = ts = s. Along with the fact that S = G, U G}, is an ideal of X, this defines a
multiplication on the semilattice ¥ = ¥, U X;. Each Ty, is a stratified semigroup so
each X, is a stratified extension of a group, however, T = X /S is not stratified, as
Mi>1 T! = T,. A sufficient, but clearly not necessary, condition under which 7' will
always be stratified is if T is finite.

As an example of the above construction, consider the following. Let n € N and let
N={1,...,n}.Let S = G(l) X -0 X GS be a direct product of 0-groups G?, ieN.
Fors = (ai,...,an) € S define dom(s) = {i € N | a; # O}.

Let m € N and define a relation p,, on (N, +) by

pmleU{(x,}’)ENXN“C,)’Zm}

Then it is easy to check that S is a Clifford semigroup (and hence a strong semilattice
of groups), p;, is a congruence on N and N/p,, is a finite monogenic semigroup with
trivial kernel. For simplicity, we shall identify N/p,, with {1, ..., m}, in the obvious
way. Let T’ be the semigroup of all partial maps from N to N/ p,, with binary operation
x given by (f *g)(x) = f(x)+ g(x) when both are defined, and undefined otherwise.
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Let I C T’ be the set of maps whose image is {m}. It can be readily seen that / is an
ideal of T’ and T = T'/I is a nilsemigroup.

For each i € N pick anelement g; € G; andletw; : T \ {0} — G? be the partial
homomorphism given by

g/ f() is defined,
0 otherwise.

a;i(f) =

Then o« : T \ {0} — S given by a(f) = (@1(f), ..., a,(f)) is a partial homomor-
phism defining an ideal extension ¥ of S by T'.

Notice that s.7¢ if and only if dom(s) = dom(). It follows that the semilattice
structure of S is defined in terms of the power set of N (i.e. dom(st) = dom(s) N
dom(t)). Let Sys be the [J-class of S with dom(s) = M fors € Spy. Then Ty =
a~1(Sy) is the set of maps in T \ {0} whose domain is exactly M. The set TA(BI =
Ty U {0} is a subsemigroup of 7 and is a nilsemigroup. The restriction of « to Ty,
then gives a partial homomorphism from Tlel to Sy which defines an ideal extension
¥y of the group Sy by T181' It can then be shown that ¥ is a semilattice of these
semigroups Xy.
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