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Abstract 39 

Non-small cell lung cancer (NSCLC) has poor survival in both the short and long term even for 40 

those receiving modern checkpoint inhibitor therapies. 41 

One attractive strategy for NSCLC therapy is personalised vaccines based upon short peptide 42 

neoantigens containing tumour mutations, presented to cytotoxic T-cells by human leukocyte 43 

antigen (HLA) molecules. However, identification of therapeutically relevant neoantigens is 44 

challenging. Existing methodologies yield positive functional assay responses in around 6% of 45 

candidate neoantigens tested, and neoantigen based vaccines in melanoma, glioblastoma and 46 

pancreatic cancer yield an immune response in around 50% of patients. 47 

Here we report a proteogenomics approach to identify neoantigens in tumours from a cohort of 48 

24 NSCLC patients: 15 adenocarcinoma, 9 squamous cell carcinoma. We characterised the 49 

mutational and HLA immunopeptide landscapes of NSCLC using whole exome sequencing, 50 

transcriptomics and mass spectrometry immunopeptidomics. We directly identified one 51 

neoantigen, and additional predicted neoantigens were generated using an existing in silico 52 

neoantigen prediction workflow. Using the immunopeptidomes to filter for candidate predicted 53 

neoantigens we identified positive functional assay responses for 5 out of the 6 patients we 54 

tested, with an overall success rate of 13%, inclusive of the directly observed neoantigen. 55 

Finally, for one patient using scRNAseq we identified a CD8+ effector T-cell clonotype 56 

expanded only in response to the putative class I HLA neoantigen. 57 

These results represent an improvement in both the quantity of neoantigens identified and the 58 

specificity of immune responses to neoantigens, utilising knowledge of the HLA peptides 59 

presented on a tumour. Thus immunopeptidomics has the potential to improve the efficacy of 60 

neoantigen based personalised cancer vaccine workflows. 61 
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Introduction 62 

Lung cancer is the second most common cancer in the UK and is frequently diagnosed at an 63 

advanced stage, either locally advanced (stage III) or metastatic (stage IV). Non-small cell lung 64 

cancer (NSCLC) accounts for 85-90% of these cases and can be further classified into three 65 

histological subtypes: adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and large 66 

cell undifferentiated carcinoma. Of these types LUAD is the most common, often forming in the 67 

alveoli in the outer peripheral lung, whereas LUSC tends to form in squamous cells located 68 

more centrally and is the next most common type, whereas large cell undifferentiated carcinoma 69 

is least common, but can form anywhere in the lung [1]. In the UK, less than 20% of all lung 70 

cancer patients survive for 5 years, with the majority of patients surviving less than one year 71 

post-diagnosis [3]. Current treatments aim to prolong survival and improve quality of life, with 72 

options including surgery, chemotherapy, radiotherapy, and immunotherapy, subject to 73 

favourable biomarker profiles. 74 

Currently, four immunotherapies targeting PD-1 or PD-L1 are licensed for use in NSCLC. 75 

However, these treatments are less effective for patients with well-defined mutations in 76 

Epidermal growth factor receptor (EGFR) and Anaplastic lymphoma kinase (ALK) [4,5]. As a 77 

result, immunotherapy is typically offered as a second-line treatment after chemotherapy and/or 78 

targeted therapy against EGFR, ALK, or ROS oncogene mutations. While there are marginal 79 

differences in chemotherapeutic options between LUAD and LUSC, LUAD generally has more 80 

favourable survival odds. The longitudinal NSCLC TRACERx (TRAcking Cancer Evolution 81 

through therapy (Rx)) study has identified evolutionary processes that help explain treatment 82 

resistance. Whole genome doubling is common in NSCLC due to tobacco smoke and cytidine 83 

deaminase activity, serving to protect the tumour against the effects of high numbers of 84 

mutations and chromosomal instability [6]. Smoking mutations are truncal, whereas branch 85 
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mutations tend to be caused by cytidine deaminases. These two major categories of mutations 86 

lead to extensive intratumour heterogeneity in NSCLC. The degree of heterogeneity was found 87 

to be prognostic for disease recurrence or death, but confound the utility of biomarkers used to 88 

predict immunotheraputic responses. [7]. In heterogeneous tumours the expression or secretion 89 

levels of putative biomarkers may be unrepresentative of the whole, thus prognostic tests may 90 

not be sensitive enough to detect them. The mutational evolution of NSCLC tumours is mirrored 91 

by a parallel evolution of T-cell receptors and tumour infiltration by T-cells. Tumour mutations 92 

shape the T-cell repertoire via their effects on human leukocyte antigen (HLA) heterozygosity, 93 

antigen processing machinery and the neoantigen peptides generated from the cancer genome, 94 

the mutanome, which are presented at the cell surface by HLA molecules. Tumour mutations 95 

can have opposing effects on immune function, depending on when and how T-cells encounter 96 

the neoantigens. Recognition by early-differentiated T-cells may lead to effective tumour control. 97 

However, chronic exposure to these neoantigens can drive T-cells into dysfunctional states. 98 

Likewise, as mutations accumulate, late-differentiated T-cells may out-compete early-99 

differentiated T-cells and dominate the tumour microenvironment [10]. These findings have 100 

important implications for the development of more effective, personalized treatment strategies 101 

that can overcome these evolutionary consequences. 102 

An attractive strategy for NSCLC treatment is vaccination targeting on HLA presented 103 

neoantigens. This approach assumes neoantigens can be identified that expand tumour killing 104 

T-cell populations and/or modulate the tumour microenvironment to make T-cell infiltration or 105 

checkpoint inhibitors more effective. The personalised nature of neoantigens minimise the risk 106 

of off-target effects and autoimmunity. However, direct identification of neoantigens is rare [12] 107 

and most approaches to neoantigen discovery rely on predicting that a given mutation leads to 108 

protein synthesis, antigen processing and HLA presentation. Direct observation is rare in part 109 

due to limits in the sensitivity of the mass spectrometry proteomic detection of HLA ligands, 110 
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known as immunopeptidomics. Moreover, it is estimated that only a small fraction of mutations 111 

are actually presented, possibly as low as 0.5% of non-silent mutations [13]. For example, a 112 

NSCLC tumour with 600 missense variants might yield only 3 presented neoantigens amongst a 113 

lung tissue immunopeptidome of around 60,000 unique class I and II HLA peptides [14]. A 114 

typical experiment may identify 3,000 of these peptides. Assuming a hypergeometric 115 

distribution, the probability of observing one class I or II HLA neoantigen is about 14%. Or to put 116 

it another way, there is around an 86% chance of not seeing any neoantigens in any single 117 

mass spectrometry proteomics experiment. 118 

Given these odds, much effort has been put into the in silico prediction of mutations that will 119 

give rise to neoantigens that would make effective vaccines. There are well established 120 

algorithms that can predict the likelihood of a peptide of given amino acid sequence binding to 121 

an HLA molecule, and immunopeptidomic evidence of the peptide length preference of peptide 122 

for different HLA allotypes [15], and preferential regions of proteins favourable for presentation 123 

[18]. However, even with this knowledge prediction is stymied by the number of potential 124 

neoantigen candidates each mutation might yield, creating large lists of candidate peptides. 125 

Moreover, the key biochemical and structural parameters of immunogenic neoantigens remain 126 

unknown. The best neoantigen prediction models have a success rate such that around 6% of 127 

their putative neoantigens are T-cell reactive [20], although recent machine learning models 128 

claim to have increased this predictive power [22]. 129 

Here we adopted an alternative approach where, rather than trying to predict whether 130 

neoantigens would be presented on the basis of various characteristics alone, we would instead 131 

use immunopeptidomic data as evidence that the source protein of predicted neoantigens could 132 

be processed and presented on HLA-I and -II. Thus, immunopeptidomics was used as 133 

circumstantial evidence of the biological availability of a mutated protein for presentation by 134 

HLA. First we mapped the mutational and immunopeptidome landscapes of a cohort of LUAD 135 
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and LUSC patients. We then predicted HLA-restricted neoantigens using existing algorithms 136 

and used immunopeptidomic data from their individual tumours to filter those predictions on the 137 

basis of evidence that they could be presented. We identified neoantigens in five out of the six 138 

patients we tested our predictions by functional assay. Our overall success rate was 13% of 139 

predicted neoantigens yielded positive functional assay tests. For one LUAD donor we were 140 

able to use scRNAseq to further explore the specificity of our neoantigens and identify cognate 141 

CD8+ and CD4+ T-cell receptors. 142 

These proof-of-concept results demonstrate how the information contained within the 143 

immunopeptidome has the potential to enhance proteogenomics strategies for identifying 144 

neoantigens for every patient, and thus truly personalised vaccination strategies for NSCLC. 145 

  146 
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Results 147 

A proteogenomics workflow for neoantigen identification 148 

Our NSCLC cohort consisted of 24 patients, 15 LUAD (8 female, 7 male) and 9 LUSC (5 149 

female, 4 male). Median age at diagnosis was 69 (See Table 1 and Supplementary Table S1). 150 

Tumour tissue and PBMCs were used for HLA typing, whole exome sequencing, RNA 151 

sequencing and mass spectrometry proteomics of the HLA immunopeptidome (Figure 1). To 152 

identify candidate neoantigens for each patient we developed a workflow that surveyed both the 153 

genomic and immunopeptidomic landscapes. Somatic missense variants called from the whole 154 

exome sequencing (WES) were used to generate a mutanome for each individual against which 155 

the HLA immunopeptidome could be searched for direct observation of neoantigens. Variants, 156 

gene expression and the patient HLA allotypes were also used for the prediction of putative 157 

neoantigens using existing tools [23]. 158 

Table 1: Clinical summary of patients in this study with non-small cell lung cancer 

Donor1 Age at diagnosis Sex Smoking status Cancer subtype 

A113 67 Male Current smoker Squamous 

A114 77 Female Ex smoker Adenocarcinoma 

A115 59 Male Ex smoker Squamous 

A116 62 Female Never smoker Squamous 

A117 83 Male Current smoker Adenocarcinoma 

A118 59 Female Ex smoker Adenocarcinoma 

A119 71 Male Ex smoker Adenocarcinoma 

A120 73 Male Ex smoker Adenocarcinoma 

A133 82 Female Ex smoker Squamous 

A134 61 Female Current smoker Squamous 

A136 72 Male Never smoker Adenocarcinoma 

A137 72 Female Ex smoker Adenocarcinoma 
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A139 76 Female Ex smoker Adenocarcinoma 

A140 66 Female Ex smoker Squamous 

A141 77 Male Ex smoker Adenocarcinoma 

A142 78 Male Current smoker Adenocarcinoma 

A143 55 Female Ex smoker Adenocarcinoma 

A144 72 Male Ex smoker Squamous 

A145 69 Male Ex smoker Squamous 

A146 67 Female Current smoker Adenocarcinoma 

A147 55 Female Current smoker Adenocarcinoma 

A148 69 Male Ex smoker Adenocarcinoma 

A152 69 Female Ex smoker Squamous 

A153 66 Female Ex smoker Adenocarcinoma 

1Summary details to be decided 
 

 

Figure 1: Integrated proteogenomics workflow. HLA typing, whole exome sequencing, 

RNASeq and mass spectrometry-based proteomic of the HLA immunopeptidome were 

collected for 24 lung cancer patients providing mutational, gene expression and 

immunopeptidomic data from which to identify candidate neoantigens using binding 

algorithms and manual inspection of the combined proteogenomic data. 

  159 
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The mutational landscape of NSCLC in the studied cohort 160 

To assess the likelihood of identifying HLA presented neoantigens we first examined the 161 

mutational landscape of the NSCLC cohort and found it to be consistent with previous reports 162 

[24,25]. Somatic variants were identified by WES of tumour and matched normal adjacent 163 

tissues. Tumour mutational burden (TMB) quantifies the number of mutations per million bases 164 

(Mb). From WES it is calculated as the number of variants divided by the size of the exome 165 

targets; here the target size was 35.7 Mb and the number of variants were either the total 166 

number of all variants, or only the protein coding missense variants: 𝑁𝑣𝑎𝑟𝑠/(35.7) = 𝑁𝑣𝑎𝑟𝑠/𝑀𝑏. 167 

This revealed that both cancer types have relatively high mutational burdens calculated from all 168 

variants, ranging from 27 to 280 mutations per Mb (Mt/Mb) with similar median mutational 169 

burdens of 109 Mt/Mb for LUAD and 104 Mt/Mb LUSC, but a broader range for LUAD (Figure 2 170 

A, Supplementary Table S1). In terms of missense variants alone, this scales as ranging from 5 171 

to 43 Mt/Mb and medians of 20 Mt/Mb for LUAD and 16 Mt/Mb LUSC 172 

Approximately one third of all nucleotide transitions and transversions were C>A transversions 173 

in both LUSC and LUAD (Figure 2 B), a known mutational signature of smoking [24]. Of the 174 

51,810 LUAD and 32,344 LUSC single nucleotide variants, approximately 20% were missense 175 

variants (10,565 LUAD, 6,772). These missense SNVs along with approximately 15% 176 

insertion/deletion variants (9,697 LUAD, 6,780 LUSC) predict amino acid changes at the protein 177 

level and are therefore potential sources of HLA neoantigens (Figure 2 C). 178 

For each cancer subtype, patterns of single base substitutions created by the somatic mutations 179 

were extracted to identify mutational signatures that were fitted to those identified in COSMIC 180 

[26–28] (Figure 2 D-F). LUAD signature A fit SBS36 indicating base excision repair deficiency 181 

characterised by C>A transversions. LUAD signature C fit SBS2, which is common in lung 182 

cancer and thought to indicate APOBEC cytidine deaminase activity as characterised by C>T 183 
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transitions. LUSC signature C fit SBS29, another signature characterised by C>A transversions 184 

and linked to tobacco chewing. 185 

In addition to examining the potential for neoantigen generation at the exon level, we sought to 186 

examine the potential for neoantigen recognition within the tumours using bulk gene expression 187 

data from RNAseq to assess the fractions of immune cells present in the tumours[29] (Figure 2 188 

G). This estimation also provides an indication of the tumour sample purity. All expressed genes 189 

not used as markers for immune cells are labelled as ‘otherCells’ and we would expect this 190 

catergory to comprise the largest proportion of cells in a tumour sample. Therefore if a sample 191 

has a low proportions of ‘otherCells’ it is indicative of a less pure tumour sample. For LUAD and 192 

LUSC, the median proportions of ‘otherCells’ are one third. In cases with very low proportions of 193 

‘otherCells’ such as A134 and A145, the corresponding histology reports indicate these were 194 

fibrotic samples consistent with the very high proportions of cancer associated fibroblasts 195 

identified by RNAseq. However at the cohort level, proportions of T-cells estimated capable of 196 

responding to neoantigens presented by HLA were estimated with similar medians for CD4+ T-197 

cells of 18% and 15% for LUAD and LUSC respectively, and medians for CD8+ T-cells of 2% 198 

and less than 1% for LUAD and LUSC respectively. 199 

In summary, the mutational landscape of the NSLC cohort is characterised by a high tumour 200 

mutational burden in both cancer subtypes, the largest proportion of variants with the potential 201 

for generation of neoantigens arising from C>A transversions. Furthermore, gene expression 202 

data estimates the presence of limited populations of T-cells with the potential to recognise HLA 203 

presented neoantigens. 204 
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Figure 2: The mutational landscape of lung cancer in the studied cohort. (A) The 

mutational burden of each cancer type: squamous (n=9) and adenocarcinoma (n=15). (B) 

Mutation frequency of six transition and transversion categories for each cancer type. (C) 

Mutation frequencies each cancer type. (D-F) Mutational signatures identified in each 

cancer subtype. (G) The proportions of immune cells estimated from bulk tumor RNASeq 

in each tumour sample. 
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The peptidome landscape of NSCLC in the studied cohort 205 

Mass spectrometry proteomics of the HLA immunopeptidomes identified large distributions of 206 

peptides with their characteristic modes of 9 amino acids (AA) and 15 AA for class I and II HLA 207 

peptides respectively (Figure 3 A). Median class I immunopeptidome sizes were 5422 and 2998 208 

for Adenocarcinoma and Squamous NSCLC respectively. Median class II immunopeptidome 209 

sizes were 2849 and 1125 for Adenocarcinoma and Squamous NSCLC respectively. 210 

The lung cancer peptidome resembles the healthy lung tissue peptidome 211 

We compared the distinct source protein populations yielding the class I and II HLA peptidomes 212 

between our LUAD, LUSC samples and healthy lung tissues from the Human HLA Ligand Atlas 213 

[14] to examine their similarities and differences (Figure 3 B-C) , considering only proteins 214 

present in at least two-thirds of our samples peptidomes. Our analysis suggests that healthy 215 

lung and tumour tissues immunopeptidomes sample largely the same protein populations. 92% 216 

of HLA-I proteins and 52% of HLA-II proteins were common to all three tissue types. The 217 

remaining proteins most likely represent experimental variation. 218 

Across the cohort of 24 patients we identified a single missense variant product by direct mass 219 

spectrometric observation in the class I HLA immunopeptidome of one LUAD patient (A147) 220 

(Figure S1). This derived from a C>A variant in the ALYREF gene yielding an Asp10Tyr 221 

mutation in its protein product THO complex subunit 4 (Uniprot: Q86V81). This mutation yielded 222 

seven nested 15-18mer peptides with the mutation Y before the start of core sequence of 223 

MSLDDIIKL. No wild type peptides were observed for this protein in either the HLA I or II 224 

immunopeptidomes, suggesting this mutation altered either the binding affinity of these peptides 225 

or the source protein processing in the antigen processing pathway. The rarity of this 226 

observation is in keeping with estimates of frequencies in the order of 0.5% of missense 227 

variants encoding presented neoantigens [11,13]. The length of the ALYREF peptides 228 
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suggested these may be class II HLA peptides that we had captured by chance in this assay. 229 

The motif most closely matched the patients HLA-DRB1*03:01 allotype with peptide 230 

AYKMDMSLDDIIKLN predicted as a weakly binding peptide [30]. We identified 1135 missense 231 

mutations for patient A147 (Table S1) potentially yielding 6 neoantigens, representing 0.5% 232 

missense derived neoantigens, of which we observed one.  233 
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 234 

 

Figure 3: The peptidome landscape of lung cancer. (A) Length distributions of 

immunopeptides from tumour tissues. (B-C) Upset plots of proteins presented by HLA 

molecules (class I left, class II right) comparing proteins between cancer subtypes and 

healthy lung tissues from the HLA ligand atlas. 

  235 
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A proteogenomics view of NSCLC in the studied cohort 236 

Consistent with the view that non-silent mutations rarely encode HLA presented neoantigens 237 

[13], we observed that LUAD and LUSC driver genes [31] are not mutated and presented by 238 

HLA molecules with the same frequencies. Some drivers are frequently mutated, but rarely 239 

presented e.g. APC, whereas other are rarely mutated, but frequently present in the HLA 240 

immunopeptidomes e.g. KEAP1 (Figure 4 A). TP53 is both frequently mutated and presented in 241 

the class I HLA peptidomes of both NSCLC subtypes (Figure 4 A). 242 

We found that mutations are distributed across the cellular compartments at the same 243 

frequencies as the genes are expressed (Figure 4 B left), but the HLA pathways sample the 244 

compartments preferentially. Class I HLA immunopeptides are derived preferentially from 245 

nuclear and cytosolic proteins, whilst class II HLA immunopeptides are derived preferentially 246 

from membrane and extracellular proteins (Figure 4 B right). 247 

We also found that loss of class I HLA heterozygosity in the genome [32] is reflected in the 248 

peptidome. In heterozygous patients, immunopeptides identified as presented by HLA 249 

molecules from the retained allele were observed at higher proportions in the peptidome than 250 

from the lost allele for HLA-A and B allotypes (Figure 4 C). 251 

These observations imply firstly that the likelihood of a putative neoantigen being presented by 252 

either HLA class is influenced by the cellular compartment origin of the source protein and 253 

secondly, putative neoantigens with motifs [33] for the retained class I HLA allotypes are more 254 

likely to be presented than those from the lost allotype. 255 
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Figure 4: Integrating the mutational and immunopeptidome landscape reveals previously 

unclear relationships between mutations and peptide presentation. (A) The frequency of 

mutated initiating driver genes for each cancer type plotted against the frequency of 
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observed presentation from the corresponding protein in either the HLA-I (left) or HLA-II 

peptidome (right). The colour indicates which cancer type the gene was identified as an 

initiating driver in [6]. (B) Comparison of the frequency between the cellular 

compartments in which genes expression and somatic mutations occur, and those from 

which HLA peptides are observed in each cancer type. (C) The relative proportions of 

immunopeptides assigned to each of the two HLA-A, B and C allotypes for heterozygous 

patients. [11,33,34]. The colour represents whether an allele is predicted to have loss of 

heterozygosity in the genome [32]. 

Proteogenomics guided NSCLC neoantigen selection and 256 

testing 257 

In selecting neoantigens we initially used the pVACseq tool to create a list of putative 258 

neoantigens for each patient and HLA allotype and different peptide lengths [35]. Briefly, we 259 

used pVACseq with the whole exome and transcriptome outputs and patient HLA allotypes to 260 

predict 8-11mer peptides for class I HLA and 15-mer peptides for class II HLA-DRB allotypes 261 

across eight binding algorithms. This combined genomic and binding score creates an overall 262 

score for each peptide (Details in Section 1.8.0.9). For our 24 patients this comprises 524 HLA 263 

class I tables and 74 HLA class II tables of ranked predictions. Discarding any prediction for a 264 

peptide with >500 nM binding affinity, pVACseq yielded 27,466 class I HLA and 127,015 class II 265 

HLA predicted neoantigen peptides (Supplementary Tables S2 and S3) 266 

We were able to test predictions for six patients, but this still required selecting from thousands 267 

of possible candidate peptides. We consequently filtered the candidate peptides according to 268 

whether peptides arising from the gene product with a missense variant were already present in 269 

the patients’ respective class I or class II HLA peptidome (Supplementary Data) and according 270 
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to HLA peptide length preferences [36]. This reduced the number of candidates to a few 271 

hundred peptides for each patient. We finally manually curated the ranked peptide candidates 272 

for biological relevance using auxiliary information from the literature, the Human Protein Atlas 273 

and COSMIC. (Figure 1, Section 1.8.0.9). 274 

Our exploratory filtering process for candidate neoantigens can be summarised as: Does a 275 

missense mutation exist? Is there evidence that the mutated gene product enters the antigen 276 

processing pathway for presentation, and if so in which HLA pathway? Is the candidate 277 

neoantigen of the preferred HLA allotype length? Is the candidate neoantigen predicted to bind 278 

to the HLA allotype according to pVACseq? Is there any additional information available publicly 279 

to preferentially support one neoantigen candidate over another? 280 

As HLA peptidome observation took precedence over pVACseq rank, some candidates such as 281 

peptide 08-FAT1 were low ranking (70th percentile) but still with a predicted binding affinity 282 

lower than 500 nM (Table 2). 283 

For six patients, 3 LUAD and 3 LUSC, we selected 9 to 14 putative neoantigens per patient (70 284 

in total) and synthesised the specific putative HLA-I or HLA-II peptides in the mutant neoantigen 285 

and wildtype forms (Supplementary Table S4). We identified nine strong neoantigen specific 286 

responses to putative neoantigens in five out of six patients, including for the directly observed 287 

ALYREF peptide (Figure 5 A-F, Table 2). This represents a 13% response rate, twice the 288 

genomics-based peptide prediction rate of 6% reported in the literature [19]. We observed 289 

responses to both class I and class II HLA candidate neoantigens in LUAD (Figure 5 A-C), but 290 

only class II HLA candidate neoantigens in LUSC (Figure 5 E-F). LUSC patient A116 yielded no 291 

responses (Figure 5 D). 292 

  293 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2024. ; https://doi.org/10.1101/2024.05.30.596609doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596609
http://creativecommons.org/licenses/by-nc-nd/4.0/


 294 

Table 2: Peptides yielding IFN-𝞬 ELISPOT responses 

Tissue 
ID / HLA / Peptide 
Lengtha Peptideb Rank %c 

Peptidome 
supportd 

Auxiliary 
supporte 

ELISpot 
response 

LUAD A119 / DRB1*04:04 / 15 01-CANT1 11 II HPA Strong 

LUAD A119 / HLA-A*31:01 / 10 12-PTPRT 10 I COSMIC Strong 

LUAD A147 / Observed / 15 01-ALYREF - I - Strong 

LUAD A147 / DRB1*04:01 / 15 08-FAT1 70 I+II COSMIC Strong 

LUAD A147 / HLA-A*01:01 / 9 14-TP53 7 I COSMIC Weak 

LUAD A148 / HLA-A*26:01 / 9 01-KMT2C 20 I COSMIC Strong 

LUAD A148 / DRB1*01:01 / 15 05-NT5E 6 I+II HPA Strong 

LUSC A134 / DRB1*01:03 / 15 06-KRT8 10 I+II - Strong 

LUSC A144 / DRB1*04:01 / 15 04-FAT1 24 I+II COSMIC Strong 

LUSC A144 / DRB1*04:01 / 15 08-NF1 3 I+II COSMIC Strong 

aThe patient ID, predicted HLA allotype for the peptide and peptide length. ALYREF was an observed peptide. 

bThe peptide identifier and gene name corresponding with those in Figure 5. 

cRank % is the rank of the peptide in the table for that Donor and HLA allotype, a lower rank corresponds with better pVACseq 
score as detailed in the materials and methods. 

dPeptidome support indicates from which class HLA peptidome source protein peptides were observed. 

eAuxiliary support indicates support for biological relevance either from the lung cancer associated proteins in the Human Protein 
Atlas (HPA) or the Top 20 mutated genes in COSMIC. 
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Figure 5: Proteogenomics guided NSCLC neoantigen selection identifies nine strong 

candidates (A-F) IFN-𝛾 ELISPOT of putative neoantigens three LUAD and three LUSC 

patients. Wildtype peptides are represented by blue bars, putative HLA-I neoantigens by 

red bars, putative HLA-II neoantigens by orange bars, the observed ALYREF neoantigen 

in purple and the CEFT control peptide mix in grey. (G) Heatmap of expression of genes 

associated with CD8 and CD4 effector phenotypes for three clonotypes identified by 

scRNAseq from PBMCs from patient A119 exposed to putative HLA-I neoantigen 12-

PTPRT. Each column represents a single cell. 
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As an exploration of the specificity of our predictions, we performed scRNAseq to identify the 295 

corresponding cognate T-cell receptors for patient A119 candidate class I HLA neoantigen 296 

peptide 12-PTPRT (Figure 5 A, Table 2). Following stimulation of PBMCs with either the mutant 297 

or wildtype peptide we identified three clonotypes expanded only following exposure to the 298 

putative PTPRT neoantigen (Figure Figure 5 G). The most abundant clone, clonotype 2, had 299 

high expression for genes consistent with a CD8+ effector memory T-cell phenotype (CD8A, 300 

NKG7, GZMB, CCL5), whilst clonotypes 1 and 2 had gene expression patterns consistent with 301 

CD4+ effector memory T-cell phenotypes (CD4, SELL, CCR7)[37]. 302 

Discussion 303 

The strategy of using HLA presented peptides as a basis for immunotherapy is long standing 304 

[39]. Researchers have sought to identify either peptides common to a cancer type, so-called 305 

tumour associated antigens, or peptides unique to a patient’s tumour, so called neoantigens. 306 

Here we sought to identify HLA presented neoantigens in two NSCLC sub-types using a 307 

proteogenomics approach that combines exome sequencing, transcriptomics and mass 308 

spectrometry immunopeptidomics. In tumour samples from cohort of 24 NSCLC patients we 309 

found relatively high mutational burdens with exonic mutations characterised by a 310 

predominance of C>A transversions and containing small populations of T-cells. Consistent with 311 

previous reports [12] using mass spectrometry immunopeptidomics, we only directly identified 312 

one neoantigen amongst tens of thousands of peptide identifications. However, we utilised the 313 

remaining observations to inform our selection of neoantigens from ranked lists generated by in 314 

silico prediction algorithms [35] to the extent that we were able to identify positive functional 315 

assay neoantigens for 5 out of the 6 patients we were able to test. This included a positive 316 

response for the directly observed neoantigen. These findings represent a two-fold improvement 317 

over previous reports for neoantigen prediction and identification [20]. For one patient we were 318 
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able to test the specificity of the predictions, identifying a CD8+ T-cell clonotype that expanded 319 

only when exposed to the specific CD8+ neoantigen. 320 

Although identifying neoantigens was the main aim of our study, the data included some 321 

interesting related observations: With the exception of TP53 and FAT1 in the HLA-I and HLA-II 322 

immunopeptidomes respectively, there was no correlation between driver gene mutation 323 

frequency and their peptide presentation frequency. This provides some circumstantial support 324 

for these two genes as sources for neoantigens [41]. TP53 mutations can be either truncal or 325 

late-stage [42], but a third of TP53 mutations occur in so-called hotspot regions [43], making 326 

them of interest both for early detection and as targets for immunotherapy [44,45]. Overall we 327 

found that the tumour peptidomes contained peptides derived from the same source proteins as 328 

healthy tissue. Furthermore, although somatic mutations are not random, as seen in the 329 

mutational signatures and driver genes, their distribution amongst cell compartments 330 

corresponds with gene expression frequency. There is no enrichment for mutations in genes 331 

expressing proteins in specific cell compartments. This implies a connection between the cell 332 

compartment from where the source protein derives and the subsequent HLA antigen 333 

processing pathway it primarily feeds. TP53 is a predominately a nuclear protein, whilst FAT1 is 334 

predominately extracellular, hence their higher frequencies in HLA I and II immunopeptidomes 335 

respectively. Whilst this might seem tautological, it does indicate that it would be unwise to 336 

preferentially select class I neoantigen predictions for FAT1 and vice versa for TP53, and yet 337 

this is not explicitly considered in existing neoantigen prediction algorithms. Hence we chose 338 

source protein cell compartment as a relevant neoantigen parameter. 339 

Loss of class I HLA heterozygosity in the genome was reflected in the proportions of peptides 340 

observed for each HLA-I allotype, and although we did not use this information to select 341 

neoantigens, this might be another useful parameter when ranking candidates. 342 
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There are various limitations in our study which might be addressed by future studies. Perhaps 343 

most significantly from a methodological perspective, mass spectrometry as a methodology 344 

does not have the amplification step found in many genomic sequencing methodologies. 345 

Therefore the strength of the input signal arises almost entirely from sample quality and 346 

preparation and sensitivity is determined by the mass spectrometer itself. The complexity of the 347 

input mixture and the differential ability of peptides to ionise, along with their relative 348 

abundances all affect what fraction of the immunopeptidome is identified. Various single 349 

molecule technologies are being developed that may address this problem, of which pore-based 350 

technologies, possibly in combination with fluorescence fingerprinting, seem well suited to 351 

identification of short peptides [48]. Sequencing peptides using pore technologies offers the 352 

tantalising prospect of providing much greater coverage of the immunopeptidome, and therefore 353 

direct observation of neoantigens. There are many challenges to this approach, not least post-354 

translational modifications and the non-polar nature of protein peptides, but much progress has 355 

already been made [51]. 356 

In our study we only considered canonical neoantigens arising from missense variants. This 357 

was a limitation largely arising from choosing whole exome sequencing, but there is increasing 358 

evidence for non-canonical neoantigens arising from non-coding regions of the genome [54]. 359 

Here we have identified potential candidates for personalised vaccines that elicit strong positive 360 

responses in functional T-cell assays, but this doesn’t guarantee they would be effective as 361 

vaccines. The stage of the cancer at which the patient receives the vaccine may be crucial for 362 

efficacy. Chronic neoantigen exposure driving T-cells to dysfunctional states, late-differentiated 363 

T-cells dominating the tumour microenvironment, and loss of HLA heterozygosity are all 364 

reasons NSCLC may become harder to treat with neoantigen vaccines at later stages [10]. 365 

Heterogeneity in NSCLC tumours is likely to influence the efficacy of neoantigen based 366 

vaccines [31]. Differences between tumour cell immunopeptidomes raises the possibility of a 367 
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partial vaccine response. In the worst case this could create an evolutionary niche if slower 368 

growing tumour cells were destroyed, leaving more malignant tumour cells without competition . 369 

Personalised neoantigen vaccines are already being trialled for the treatment of melanoma, 370 

glioblastoma and pancreatic cancer [57]. These trials rely on the delivery of mRNA containing a 371 

number of long sequences predicted to be processed into the final HLA presented neoantigens. 372 

The vaccine response rate is in the order of 50% of patients, so whilst these results are 373 

extremely promising, there is clearly room for improvement, including in the neoantigen 374 

selection process. Immunogenic peptides are identified by algorithms that incorporate machine 375 

learnt parameters such as peptide binding affinity [58] or proteosomal cleavage [59], or more 376 

recently using machine learning to identify features such as protein hotspots from large mass 377 

spectrometry immunopeptidomics datasets [22]. 378 

The principal difference in our approach is one of tactics rather than strategy, our tactical 379 

difference being to look at which proteins yield peptides presented by HLA molecules and then 380 

manually identifying supporting evidence for each neoantigen candidate protein in the literature. 381 

This tactic has some similarity to the ‘Tübingen approach’ for identification of tumour associated 382 

neoantigens which uses mass spectrometry proteomics identifications of HLA peptides to rank 383 

candidates [60], as used in the glioblastoma vaccine [56]. Whilst still far from successful, 87% of 384 

our predictions failed, it was twice as good than the current machine learning models. Our 385 

intention was to understand the direction of travel for better predictions, and our data strongly 386 

suggests that knowledge about the HLA peptides presented on each tumour is an important 387 

parameter in a neoantigen selection workflow. 388 

  389 
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Materials and Methods 390 

Ethics statement 391 

Ethical approval was obtained from the local research ethics committee (LREC reference 14-392 

SC-0186 150975) and written informed consent was provided by the patients. 393 

Tissue preparation 394 

Tumours were excised from lung tissue post-operatively by pathologists and processed either 395 

for histological evaluation of tumour type and stage, or snap frozen at −80°C. Whole blood 396 

samples were obtained, and PBMCs were isolated by density gradient centrifugation over 397 

Lymphoprep prior to storage at −80°C. 398 

HLA typing 399 

HLA typing was performed by Next Generation Sequencing by the NHS Blood and Transplant 400 

Histocompatibility and Immunogenetics Laboratory, Colindale, UK. 401 

DNA and RNA extraction 402 

DNA and RNA were extracted from tumor tissue that had been obtained fresh and immediately 403 

snap frozen in liquid nitrogen. Ten to twenty 10 µm cryosections were used for nucleic acid 404 

extraction using the automated Maxwell® RSC instrument (Promega) with the appropriate 405 

sample kit and according to the manufacturer’s instructions: Maxwell RSC Tissue DNA tissue kit 406 

and Maxwell RSC simplyRNA tissue kit, respectively. Similarly, DNA was extracted from snap 407 

frozen normal adjacent tissue as described above. DNA and RNA were quantified using Qubit 408 

fluorometric quantitation assay (ThermoFisher Scientific) according to the manufacturer’s 409 

instructions. RNA quality was assessed using the Agilent 2100 Bioanalyzer generating an RNA 410 

integrity number (RIN; Agilent Technologies UK Ltd.). 411 
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Whole exome sequencing 412 

The tumor and normal adjacent samples were prepared using SureSelect Human All Exon V7 413 

library (Agilent, Santa Clara USA). 100 bp paired end reads sequencing was performed using 414 

the Illumina NovaSeq 6000 system by Edinburgh Genomics (Edinburgh, UK) providing ~100X 415 

depth. Reads were aligned to the 1000 genomes project version of the human genome 416 

reference sequence (GRCh38/hg38) using the Burrows-Wheeler Aligner (BWA; version 0.7.17) 417 

using the default parameters with the addition of using soft clipping for supplementary 418 

alignments. Following GATK Best Practices, aligned reads were merged [61], queryname 419 

sorted, de-duplicated and position sorted [62] prior to base quality score recalibration [63]. 420 

Somatic variant calling 421 

Somatic variant calling was performed using three variant callers: Mutect2 (version 4.1.2.0) [64], 422 

Varscan (version 2.4.3) [65], and Strelka (version 2.9.2) [66]. For Mutect2, a panel of normals 423 

was created using 40 samples (20 male and 20 female) from the GBR dataset. Variants were 424 

combined using gatk GenomeAnalysisTK (version 3.8-1) with a priority order of Mutect2, 425 

Varscan, Strelka. Variants were then left aligned and trimmed, and multi-allelic variants split 426 

[67]. Hard filtering of variants was performed such that only variants that had a variant allele 427 

fraction > 5%, a total coverage > 20 and variant allele coverage > 5 were kept. Filtered variants 428 

were annotated using VEP (version 97) [68] and with their read counts 429 

(https://github.com/genome/bam-readcount) to generate the final filtered and annotated variant 430 

call files (VCF). 431 

RNA sequencing 432 

Samples were prepared TruSeq unstranded mRNA library (Illumina, San Diego, USA) and 433 

paired sequencing was performed using the Illumina NovaSeq 6000 system by Edinburgh 434 

Genomics (Edinburgh, UK). Raw reads were pre-processed to using fastp (version 0.20.0) [69]. 435 
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Filtered reads were aligned to the 1000 genomes project version of the human genome 436 

reference sequence (GRCh38/hg38 using hisat2 (version 2.1.0) [70], merged and then 437 

transcripts assembled and gene expression estimated with stringtie2 (version 1.3.5) [71] using 438 

reference guided assembly. 439 

Mutanome generation 440 

The annotated and filtered VCFs were processed using Variant Effect Predictor (version 97) [68] 441 

plugin ProteinSeqs to derive the amino acid sequences arising from missense mutations for 442 

each sample for use in immunopeptide analyses. 443 

Neoantigen prediction 444 

Variant call files were prepared for the pvacseq neoantigen prediction pipeline (version 1.5.10) 445 

[23,35] by adding tumor and normal DNA coverage, and tumor transcript and gene expression 446 

estimates using vatools (version 4.1.0) (http://www.vatools.org/). Variant call files of phased 447 

proximal variants were also created for use with the pipeline [72]. Prediction of neoantigens 448 

arising from somatic variants was then performed using pvacseq with the patient HLA allotypes 449 

to predict 8-11mer peptides for class I HLA and 15-mer peptides for class II HLA-DRB allotypes. 450 

Four binding algorithms were used for class I predictions (MHCflurry, MHCnuggetsI, NetMHC, 451 

PickPocket) and four for class II predictions (MHCnuggetsII, NetMHCIIpan, NNalign, SMMalign). 452 

Unfiltered outputs were post-processed in R [73] and split into individual tables for each peptide 453 

length and HLA allotype for each patient, and each table was then ranked according to the 454 

pvacseq score, where: 455 

𝑠𝑐𝑜𝑟𝑒 = 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 +  𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 +  (𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ×  𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒)  456 

+  (𝑡𝑢𝑚𝑜𝑟 𝑉𝐴𝐹/ 2) 457 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2024. ; https://doi.org/10.1101/2024.05.30.596609doi: bioRxiv preprint 

http://www.vatools.org/
https://doi.org/10.1101/2024.05.30.596609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Here 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 is 1/median neoantigen binding affinity, 𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 is the difference in 458 

median binding affinity between neoantigen and wildtype peptide (agretopicity). 459 

Each table was then filtered according to whether wildtype peptide(s) from the same protein as 460 

predicted neoantigen was present in the individual’s peptidome, and further filtered manually 461 

according to biological relevance e.g. the ontology of the protein and its likely presence in the 462 

relevant HLA pathway, for example a cytoplasmic resident protein would be considered more 463 

likely to yield a HLA-I neoantigen than a HLA-II one. The Human Protein Atlas list of 354 genes 464 

identified for unfavourable prognosis in lung cancer, the COSMIC top 20 mutated genes and 465 

literature searches were also used as a screen for genes/proteins/peptides of biological 466 

relevance. 467 

Immunopeptidomics 468 

Snap frozen tissue samples were briefly thawed and weighed prior to 30s of mechanical 469 

homogenization (Fisher, using disposable probes) in 4 mL lysis buffer (0.02M Tris, 0.5% (w/v) 470 

IGEPAL, 0.25% (w/v) sodium deoxycholate, 0.15mM NaCl, 1mM EDTA, 0.2mM iodoacetamide 471 

supplemented with EDTA-free protease inhibitor mix). Homogenates were clarified for 10 min at 472 

2,000g, 4°C and then for a further 60 min at 13,500g, 4°C. 2 mg of anti-MHC-I mouse 473 

monoclonal antibodies (W6/32) covalently conjugated to Protein A sepharose (Repligen) using 474 

DMP as previously described [74,75] were added to the clarified supernatants and incubated 475 

with constant agitation for 2 h at 4°C. The captured MHC-I/𝛽2m/immunopeptide complex on the 476 

beads was washed sequentially with 10 column volumes of low (isotonic, 0.15M NaCl) and high 477 

(hypertonic, 0.4M NaCl) TBS washes prior to elution in 10% acetic acid and dried under 478 

vacuum. The MHC-I-depleted lysate was then incubated with anti-MHC-II mouse monoclonal 479 

antibodies (IVA12) and MHC-II bound peptides were captured and eluted in the same 480 

conditions. 481 
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Immunopeptides were separated from MHC-I/𝛽2m or MHC-II heavy chain using offline HPLC on 482 

a C18 reverse phase column, as previously described [74]. Briefly, dried immunoprecipitates 483 

were reconstituted in buffer (1% acetonitrile,0.1% TFA) and applied to a 10cm RP-18e 100-4.6 484 

chromolith column (Merck) using an Ultimate 3000 HPLC equipped with UV monitor. 485 

Immunopeptides were then eluted using a 15 min 0-40% linear acetonitrile gradient at a flow 486 

rate of 1 mL/min. Peptide fractions were eluted and pooled at between 0 and 30% acetonitrile, 487 

and the 𝛽2m and MHC heavy chains eluted at >40% acetonitrile. 488 

HLA peptides were separated by an Ultimate 3000 RSLC nano system (Thermo Scientific) 489 

using a PepMap C18 EASY-Spray LC column, 2 µm particle size, 75 µm x 75 cm column 490 

(Thermo Scientific) in buffer A (0.1% Formic acid) and coupled on-line to an Orbitrap Fusion 491 

Tribrid Mass Spectrometer (Thermo Fisher Scientific,UK) with a nano-electrospray ion source. 492 

Peptides were eluted with a linear gradient of 3%-30% buffer B (Acetonitrile and 0.1% Formic 493 

acid) at a flow rate of 300 nL/min over 110 minutes. Full scans were acquired in the Orbitrap 494 

analyser using the Top Speed data dependent mode, performing a MS scan every 3 second 495 

cycle, followed by higher energy collision-induced dissociation (HCD) MS/MS scans. MS 496 

spectra were acquired at resolution of 120,000 at 300 m/z, RF lens 60% and an automatic gain 497 

control (AGC) ion target value of 4.0e5 for a maximum of 100 ms. MS/MS resolution was 30,000 498 

at 100 m/z. Higher energy collisional dissociation (HCD) fragmentation was induced at an 499 

energy setting of 28 for peptides with a charge state of 2–4, while singly charged peptides were 500 

fragmented at an energy setting of 32 at lower priority. Fragments were analysed in the Orbitrap 501 

at 30,000 resolution. Fragmented m/z values were dynamically excluded for 30 seconds. 502 

Proteomic data analysis 503 

Raw spectrum files were analyzed using Peaks Studio 10.0 build 20190129 [76,77] and the data 504 

processed to generate reduced charge state and deisotoped precursor and associated product 505 
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ion peak lists which were searched against the UniProt database (20,350 entries, 2020-04-07) 506 

plus the corresponding mutanome for each sample (~1,000-5,000 sequences) and 507 

contaminants list in unspecific digest mode. Parent mass error tolerance was set a 5ppm and 508 

fragment mass error tolerance at 0.03 Da. Variable modifications were set for N-term acetylation 509 

(42.01 Da), methionine oxidation (15.99 Da), carboxyamidomethylation (57.02 Da) of cysteine. 510 

As previously described, carbamidomethylated cysteines were treated as variable modifications 511 

due to the low concentration of 0.2 mM of iodoacetamide used in the lysis buffer to inhibit 512 

cysteine proteases [78]. A maximum of three variable modifications per peptide was set. The 513 

false discovery rate (FDR) was estimated with decoy-fusion database searches [76] and were 514 

filtered to 1% FDR. Downstream analysis and data visualizations of the Peaks Studio 515 

identifications was performed in R using associated packages [73,79]. 516 

Immunopeptide HLA assignment 517 

Identified immunopeptides were assigned to their HLA allotype for each patient using motif 518 

deconvolution tools and manual inspection. For class I HLA peptides initial assignment used 519 

MixMHCp (version 2.1) [11,33] and for class II HLA peptides initial assignment used MoDec 520 

(version 1.1) [34]. Downstream analysis and data visualizations was performed in R using 521 

associated packages [73,79,80]. 522 

Synthetic peptides 523 

Peptides for functional T-cell assays and spectra validation were synthesised using standard 524 

solid phase Fmoc chemistry (Peptide Protein Research Ltd, Fareham, UK). 525 

Functional T-cell assay 526 

PBMC (2x106 per well) were stimulated in 24-well plates with peptide (individual/pool) plus 527 

recombinant IL-2 (R&D Systems Europe Ltd.) at a final concentration of 5µg/mL and 20IU/mL, 528 
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respectively, and incubated at 37°C with 5% CO2; final volume was 2mL. Media containing 529 

additional IL-2 (20IU/mL) was refreshed on days 4, 6, 8 and 11 and on day 13 cells were 530 

harvested. Expanded cells (1x105 cell/well) were incubated in triplicate with peptide (individual) 531 

at 5µg/mL final concentration for 22 hours at 37°C in 5% CO2; phytohemagglutinin (PHA; 532 

Sigma-Aldrich Company Ltd.) and CEFT peptide mix (JPT Peptide Technologies GmbH, Berlin, 533 

Germany), a pool of 27 peptides selected from defined HLA Class I- and II-restricted T-cell 534 

epitopes, were used as positive controls. Spot forming cells (SFC) were counted using the AID 535 

ELISpot plate reader system ELR04 and software (AID Autoimmun Diagnostika GmbH) and 536 

positivity calling for ELISpot data used the runDFR(x2) online tool 537 

(http://www.scharp.org/zoe/runDFR/). Downstream analysis and data visualizations was 538 

performed in R using associated packages [73,79]. 539 

scRNAseq 540 

Two peptide-expanded PBMC conditions were selected and prepared for combined single-cell 541 

RNAseq and TCRseq assays (10x Genomics, Table S5). Cells were thawed and counted; 542 

viability was >90%. Samples were incubated with TotalSeq C antibodies (Biolegend, Table 1), 543 

for 30 minutes to enable sample multiplexing. A maximum of 20,000 cells per condition were 544 

pooled into a 1.5mL low retention tube, with a maximum of 120,000 total PBMCs pooled. 545 

Following pooling, ice-cold PBS was added to make up to a volume of 1400uL. Cells were then 546 

centrifuged for 10 min (600g at 4C) and the supernatant was carefully removed. Sixty-six uL of 547 

resuspension buffer (0.22 um filtered ice-cold PBS supplemented with 10% foetal bovine serum, 548 

Sigma-Aldrich) was added to the tube and the pellet was gently but thoroughly resuspended. 549 

Following careful mixing, 66.6uL of the cell suspension was transferred to a PCR-tube for 550 

processing as per the manufacturer’s instructions (10X Genomics). Briefly, single-cell RNA 551 

sequencing library preparation was performed as per the manufacturer’s recommendations for 552 

the 10x Genomics 5’ High-throughput Feature Barcode v2.0 (Dual Index) chemistry. Both initial 553 
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amplification of cDNA and library preparation were carried out with 13 cycles of amplification; 554 

V(D)J and cell surface protein libraries were generated using 9 and 8 cycles of amplification, 555 

respectively. Libraries were quantified and pooled according to equivalent molar concentrations 556 

and sequenced on Illumina NovaSeq6000 sequencing platform with the following read lengths: 557 

reads 1-101 cycles; reads 2 – 101 cycles; and i7 index – 8 cycles. 558 

scRNAseq sequencing data was processed using cellranger-7.0.1 [81] using cellranger 559 

GRCh38 references for gene expression and VDJ sequences followed by post-processing using 560 

Seurat 5.0.1 [82] to filter for singlets only, percent mitochondrial genes < 12% and largest gene 561 

< 5%. 562 

Data availability 563 

EGA Study ID: EGAS00001005499 564 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 565 

Consortium via the PRIDE[83] partner repository with the dataset identifier PXD028990 and 566 

10.6019/PXD028990”. We would recommend you to also include this information in a much 567 

abridged form into the abstract itself, e.g. “Data are available via ProteomeXchange with 568 

identifier PXD028990. 569 

Project Name: Immunopeptidomics guided identification of neoantigens in non-small cell lung 570 

cancer Project accession: PXD028990 Project DOI: 10.6019/PXD028990 Reviewer account 571 

details: Username: reviewer_pxd028990@ebi.ac.uk Password: dNbR5m6c 572 
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