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Abstract: 53 

Precision medicine offers a promising avenue for better therapeutic responses to 54 

pandemics such as COVID-19. This study leverages independent patient cohorts in 55 

Florence and Liège gathered under the umbrella of the DRAGON consortium for the 56 

stratification of molecular phenotypes associated with COVID-19 using topological 57 

analysis of global blood gene expression. Whole blood from 173 patients was collected 58 

and RNA was sequenced on the Novaseq platform. Molecular phenotypes were 59 

defined through topological analysis of gene expression relative to the biological 60 

network using the TopMD algorithm. The two cohorts from Florence and Liège allowed 61 

for independent validation of the findings in this study. Clustering of the topological 62 

maps of differential pathway activation revealed three distinct molecular phenotypes 63 

of COVID-19 in the Florence patient cohort, which were also observed in the Liège 64 

cohort. 65 

  66 

Cluster 1 was characterised by high activation of pathways associated with ESC 67 

pluripotency, NRF2, and TGF-β receptor signalling. Cluster 2 displayed high activation 68 

of pathways including focal adhesion-PI3K-Akt-mTOR signalling and type I interferon 69 

induction and signalling, while Cluster 3 exhibited low IRF7-related pathway activation. 70 

TopMD was also used with the Drug-Gene Interaction Database (DGIdb), revealing 71 

pharmaceutical interventions targeting mechanisms across multiple phenotypes and 72 

individuals.  73 

  74 

The data illustrates the utility of molecular phenotyping from topological analysis of 75 

blood gene expression, and holds promise for informing personalised therapeutic 76 

strategies not only for COVID-19 but also for Disease X. Its potential transferability 77 

across multiple diseases highlights the value in pandemic response efforts, offering 78 

insights before large-scale clinical studies are initiated. 79 

 80 

  81 
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Introduction: 82 

 83 

The ongoing challenges of COVID-19, triggered by the emergence of SARS-CoV-2, 84 

necessitate a detailed understanding of disease heterogeneity. Despite extensive 85 

research characterising the host response to SARS-CoV-2 through pre-clinical (1, 2), 86 

and clinical (3-6) functional genomic data, there have been limited approaches that 87 

have used data from and encompassed the range of symptom severity, disease 88 

heterogeneity and delivered personalised medicine.  89 

 90 

Examination of gene expression patterns in blood has been used in previous studies 91 

to identify molecular phenotypes associated with different disease profiles in several 92 

emerging viral infections including Ebola virus (EBOV) (7) and SARS-CoV-2 (1, 2, 4, 93 

5), as well as more endemic infections such as influenza virus  (8). Medical 94 

countermeasures focus on either reducing viral load through anti-virals. These target 95 

viral biology or modulate the host response to infection to reduce sequalae such as 96 

inflammation. For many viruses there is a clear correlation between viral load, disease 97 

severity and outcome (survival/death). This is best typified by the Ebola virus where 98 

low viral loads correlate with survival and high viral loads correlate with death (9). For 99 

SARS-CoV-2 this correlation is less obvious. In animal models of disease, such as the 100 

ferret, viral load was correlated with symptomology (10); in humans, there is less data 101 

to support an association between viral load and disease. However, studies have 102 

shown that severe COVID-19 is associated with dysregulated immune pathology in 103 

organs such as the lungs and the respiratory tract (3, 11). 104 

 105 

With any emerging viral pathogen, direct acting antivirals take time to develop and 106 

trial. Identifying therapeutics that can modulate the host response to reduce 107 

symptomology remain a priority. Being able to rapidly characterise aberrations in host 108 

pathways that lead to disease and marrying this with therapeutics on the FDA 109 

approved list will enhance pandemic preparedness and rapid response. Therefore, a 110 

deeper understanding of the host response can be used to guide the selection of host 111 

directed medication countermeasures. 112 

 113 

 114 

 115 
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The field of digital health and precision medicine is rapidly evolving, with emerging 116 

technologies and initiatives aimed at integrating diverse datasets to inform clinical 117 

decision-making. In this study we offer a novel way to analyse complex data collected 118 

by the DRAGON international consortium which enables rapid identification of targets 119 

for treatment by novel and/or re-purposed drugs. Within DRAGON , efforts have been 120 

made to harmonise data in digital healthcare, proposing guidelines for the integration 121 

of clinical data from various modalities. (12). Additionally, an online platform has been 122 

developed to host validated COVID-19 predictive models, facilitating their utilisation 123 

by clinicians in real-time decision-making (13). However, challenges persist, as 124 

evidenced by the limited success of outcome prediction models for COVID-19 patients 125 

based on demographic and comorbidity data, which highlights the need for more 126 

sophisticated approaches (14).  127 

 128 

While omics data has been instrumental in advancing our understanding of SARS-129 

CoV-2 and COVID-19, its integration into digital health platforms for clinical decision-130 

making remains limited (15-17). Traditional molecular phenotyping approaches often 131 

provide only shallow insights. In previous work, using topological analysis, we 132 

demonstrated how gene expression data derived from whole blood at the time of 133 

admission could predict ICU admission (5). However, the current study analysed the 134 

blood transcriptomes of patients with COVID-19 as part of the DRAGON-EU 135 

consortium and used TopMD, an algorithm that considers all available data across a 136 

landscape of pathways, to characterize molecular phenotypes of COVID-19 patients 137 

admitted to hospital. Pathways were identified that correlated with clinical disease in 138 

the patient cohort. TopMD mapped pathways onto a database containing information 139 

on FDA approved drugs and their known gene and pathway interactions to generate 140 

a list of potential therapeutics for modulating severe COVID-19. The ability to rapidly 141 

identify and therapeutically modulate host pathways responsible for disease with pre-142 

existing medical countermeasures will be important in the emergence of novel 143 

diseases and future pandemics. 144 

 145 

This study describes an analysis of the blood transcriptomes of patients with COVID-146 

19 admitted to hospital in Liège and Florence between February and July 2021, as 147 

part of the DRAGON-EU consortium. Alongside collecting blood samples, 148 

demographic and clinical observations were recorded; additionally, CT scan data were 149 
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obtained for a subset of these patients. We applied an unsupervised approach, in 150 

which we characterised the molecular phenotypes of patients within this cohort. We 151 

have previously reported the development of a gene signature in patients with COVID-152 

19, predictive of admission to ICU (5). This predictive signature revealed the activation 153 

of pathways regulating epidermal growth factor receptor (EGFR) signalling, 154 

peroxisome proliferator-activated receptor alpha (PPAR-α) signalling and transforming 155 

growth factor beta (TGF-β) signalling. The observed molecular phenotype aligns with 156 

the mechanisms implicated in pulmonary fibrosis, which is also associated with 157 

increased severity of disease (18-20).  158 

 159 

 160 

161 
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Methods: 162 

 163 

Study population and sample collection and ethics 164 

Blood samples were obtained from 132 patients severe enough to require admission 165 

because of COVID-19 at Careggi University Hospital, Florence, Italy, and 41 from a 166 

pre-defined, separate patient cohort in Liège, between February and July 2021. All 167 

patients tested positive nasopharyngeal swab PCR for SARS-CoV-2 infection. Blood 168 

samples were collected on Day 0 of hospital admission.  The protocol was approved 169 

by the ethics committee of the University Hospital of Liège (reference number 2021/89) 170 

and the ethics committee of the UNIFI (#18085/OSS). Informed consent was obtained 171 

for every participant.  172 

 173 

Ethical Approval statement 174 

The work described has been carried out in accordance with The Code of Ethics of 175 

the World Medical Association (Declaration of Helsinki) for experiments involving 176 

humans. All procedures were performed in compliance with relevant laws and 177 

institutional guidelines and have been approved by the appropriate institutional 178 

committees. Informed consent was obtained for every participant. 179 

Clinical data were collected from the patients’ electronic medical records by the 180 

investigators, and included age, sex, BMI, comorbid conditions etc. The data were 181 

then assembled using the Study Data Tabulation Model (SDTM) data format 182 

developed by the Clinical Data Interchange Standards Consortium (CDISC). 183 

Chest CT analysis 184 

Out of the 173 patients with RNA sequencing data, chest CT data was obtained from 185 

109 patients using a 128-detector multislice Spiral Computed Tomography (MSCT) 186 

(Somatom Definition AS, Siemens Healthcare, Erlangen, Germany) applying the 187 

following parameters: current × exposure time 150 mAs, tube voltage 100 kV, rotation 188 

time 0.3 s, pitch 1.2 mm, pixel size 0.465 mm, beam collimation 128 × 0.6 mm, both 189 

slice thickness and reconstruction 1 mm, and reconstruction kernel Bf70 very sharp. 190 

Axial images were carried out from lung apexes to bases with patient at full inspiration 191 

mand breath hold. Post-processing, 1-mm-thick sections were reconstructed on 192 

coronal and sagittal planes oriented on the tracheal plane. Intravenous contrast 193 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.24305820doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305820
http://creativecommons.org/licenses/by-nc/4.0/


medium was not administered. Chest CT images were displayed on a 24-inch medical 194 

monitor with a 3-megapixel Barco display (Barco, Kortrijk, Belgium) and 2048 x 1536 195 

resolution. The software programs originally implemented to MSCT were used for 196 

image assessment. Images of each patient were evaluated for scan quality 197 

considering inspiratory level and motion artifacts. Data pulled out from CT 198 

examinations included CO-RADS, chest CT score, dominant pattern, and 199 

typical/atypical findings. Specifically:  200 

CO-RADS 201 

CO-RADS score based on COVID-19 lung involvement and variable from 1 to 202 

5, with higher values reflecting a greater level of suspicion of COVID-19 203 

infection with lung involvement. CO-RADS is a score used to diagnose COVID-204 

19 and does not inevitably reproduce the severity of lung alterations. Low 205 

scores corresponded to CT examinations with alterations less likely related to 206 

COVID-19 infection. The 5-score CO-RADS scale is as follows: 1: very low level 207 

of suspicion; 2: low level of suspicion; 3: equivocal findings; 4: high level of 208 

suspicion; 5: very high level of suspicion.  209 

Chest CT score for lobe involvement   210 

Ranging from 0 to 5, namely 0: 0%; 1: <5%; 2: 5-25%; 3: 26-50%; 4: 51-75%; 211 

5: >75%. 212 

Dominant chest CT pattern   213 

Evaluated in relation to the prevalent alterations among ground-glass opacities, 214 

consolidations, ground-glass opacities together with consolidations, crazy-215 

paving, and reverse halo, as defined by the Fleischner Society. 216 

Dominant chest CT distribution   217 

Lower lobes, upper lobes, peripheral, bronchocentric, dorsal, or diffuse. 218 

Additional COVID-19 related findings   219 

Represented by pleural thickening, vascular enlargement, subpleural sign, halo 220 

sign air, bubble sign, perilobular pattern, and subpleural sparing.  221 

Additional findings not typical for COVID-19   222 

Represented by pleural effusion, pericardial effusion, lymphadenopathy, 223 
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cavitation, tree-in-bud, discrete small nodules, isolated lobar/segmental 224 

consolidation, atelectasis, and smooth interlobular septal thickening. 225 

 RNA extraction 226 

Total RNA was extracted from PAXgene BRT using the PAXgene Blood RNA Kit 227 

(PreAnalytix), according to the manufacturer’s protocol. Extracted RNA was stored at 228 

-80°C until further use. Following the manufacturer’s protocols, total RNA was used 229 

as input material into the QIAseq FastSelect–rRNA/Globin Kit (Qiagen) protocol to 230 

remove cytoplasmic and mitochondrial rRNA and globin mRNA with a fragmentation 231 

time of 7 or 15 minutes. Subsequently the NEBNext® Ultra™ II Directional RNA Library 232 

Prep Kit for Illumina® (New England Biolabs) was used to generate the RNA libraries, 233 

followed by 11 or 13 cycles of amplification and purification using AMPure XP beads. 234 

Each library was quantified using Qubit and the size distribution assessed using the 235 

Agilent 2100 Bioanalyser and the final libraries were pooled in equimolar ratios. 236 

Libraries were sequenced using 150 bp paired-end reads on an Illumina® NovaSeq 237 

6000 (Illumina®, San Diego, USA).  238 

 239 

Bioinformatics 240 

Raw fastq files were trimmed using fastp (21). Trimmed paired end sequencing reads 241 

were inputted into salmon (v1.5.2) using the -l A –validateMappings –SeqBias –gcBias 242 

parameters (22). Quant files generated with salmon were imported into RStudio (4.1.1) 243 

using tximport to infer gene expression (23). The edgeR package (3.34.1) was used 244 

to normalise and scale sequencing libraries (24). Sequencing reads are available 245 

under BioProject ID: PRJNA1085259 on Short Read Archive (SRA). 246 

 247 

Molecular phenotypes mapped by topological analysis 248 

Molecular phenotypes were mapped by topological analysis, using TopMD to measure 249 

the shape of global gene expression relative to the biological network (TopMD Patent 250 

number GB202306368D0). TopMD works in the following way: The biological network 251 

used was an interaction network retrieved from the STRING database (25).The gene 252 

nodes of the biological network were assigned vertices according to the measured 253 

gene expression. The topological shape, or landscape, of this network is then 254 

measured by TopMD’s algorithm, clustering differential gene expression hotspots, 255 

corresponding to modulated gene pathways. These pathways have ‘volume’ 256 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.24305820doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305820
http://creativecommons.org/licenses/by-nc/4.0/


comprising the sum of squared differential gene expression of clustered genes, where 257 

the most differentially activated pathways have the highest pathway topological 258 

volumes. The molecular phenotype is defined as the global profile of volumes of 259 

differential pathway activation. 260 

 261 

 262 
 263 

Drug interactions mapped by topological analysis  264 

 265 

Due to the power of TopMD analysis we can group genes depending on their 266 

expression values, this means that for each average expression of any cluster of 267 

samples, and even on individual samples, we can extrapolate a tailored gene set of 268 

activated gene-groups for such expression. These gene-groups can be then compared 269 

to other gene sets, as in GSEA, as well against genes activated by specific drugs. To 270 

do so, we utilised the Drug-Gene Interaction Database (26) obtained using genes or 271 

gene products that are known or predicted to interact with drugs, and compared via a 272 

binomial distribution test, the probability that an overlap between such genes and a 273 

TopMD gene-group was random. This was measured using a p-value associated with 274 

binomial statistic, together with other measures, such as the (Bonferroni) adjusted p-275 

value, a TopMD volume (combining volume of the shape with the statistical 276 

significance of the drug-group combination) as well as an activation value, sum of the 277 

Log2 fold-change of those genes belonging to both the drug associated gene set and 278 

the TopMD group. 279 

 280 

Regression 281 
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Regression analysis was carried out using a Logistic regression model with the 282 

following optimisation problem: 283 

 284 

 285 
Where X is the pathway matrix and y is the vector of the classification, 0 when the i-286 

th sample is in the class considered and 1 otherwise. We considered a regularisation 287 

parameter C value of 1. For the penalisation term r(w) for the regression weights w, 288 

we considered an ElasticNet penalisation with the l1 ratio parameter value of 0.5 289 

 290 

 291 
The probability the i-th sample with pathways values equal to Xi is then: 292 

 293 
With w0 the intercept. The python module used was scikit-learn (version 1.4.1) and 294 

the algorithm used LogisticRegression function in the linear_model submodule. 295 

 296 

We performed a 70/30 balanced split in the data from both cohorts separately (?), with 297 

10 different splits. For each class we performed the regression based on a different 298 

number of pathways, from 1 to 20, ranked in each split separately by their pathway 299 

volume. For each regression model so obtained an average score of both training and 300 

test splits was carried and the best model was selected using a max-min approach, 301 

that is the best model was the one with highest value min(AUC on Train, AUC on Test), 302 

to avoid selecting models which were ill-performing on train splits, but instead for 303 

random effects very well on test splits. 304 

 305 

 306 

Patient Clustering 307 

Pathway volumes were plotted on a PCA using PCAtools (v2.14.0), revealing 3 distinct 308 

clusters, confirmed by K-means clustering, based on pathway activation against 309 

healthy controls. The top ten (10%) of the PCA loadings were then extracted to identify 310 
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which pathways were driving cluster separation. To analyse differentially activated 311 

pathways between patient clusters, we calculated the average volume, across each 312 

cluster, of each pathway relative to the average of all the COVID-19 patients.   313 

 314 

Logistic Regression Receiver Operating Characteristic (LRROC) analysis using 315 

patient clusters derived from the patient pathway volume matrix. 316 

 317 

The area under the ROC curve (AUC) is a measure of the model's ability to distinguish 318 

between classes. A higher AUC indicates better discrimination and, consequently, 319 

stronger patient clusters. LRROC for Florence Patients: LRROC analysis was 320 

performed exclusively for Florence patients. The patient pathway volume matrix for 321 

Florence patients was utilized to train the LRROC model. The output consisted of a 322 

Receiver Operating Characteristic (ROC) curve, which depicted the classification 323 

performance of patient clusters based on pathway volume. To evaluate the model's 324 

generalization capability, the dataset was split into training and testing sets, and 325 

separate ROC curves were generated for each. 326 

 327 

Validation of clusters for Liège Patients: The LRROC model trained on Florence 328 

patients was validated on Liège patients' data. Using the trained model, an additional 329 

ROC curve was generated solely for Liège patients to assess the model's performance 330 

in classifying Liège patient clusters based on pathway volume. 331 

 332 

 333 

Integration into digital health platform 334 

As a proof of concept, transcriptomics data and TopMD analysis were integrated with 335 

a healthcare platform ran by Comunicare (27). This was to highlight the possibilities of 336 

integrating omics data into healthcare and digital health platforms. Similar regression 337 

analysis of COVID-19 blood transcriptomes, predicting ICU admission, performed 338 

within the DRAGON scope (5) generated a linear model which is currently used to 339 

generate prediction scores between 0 and 1, using TopMD analysis of each sample 340 

submitted. In this way we can present TopMD analysis of individual samples compared 341 

to a healthy baseline, which includes pathway activation information, together with a 342 

similarity score to the ICU admitted average patient we extracted from previous data.  343 
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Results: 344 

 345 

To investigate whether blood transcriptomic analysis coupled with a machine learning 346 

approach underpinned by TopMD could be integrated with clinical data, RNA 347 

sequencing was performed on peripheral blood obtained from 173 patients from Liège 348 

(n=41) and Florence (n=132) gathered under the auspices of the DRAGON 349 

consortium. A summary of the patient characteristics is described in Supplementary 350 

Table 1. Within this cohort ten patients had fatal disease. As no outcome variables 351 

within this cohort had power, an unsupervised approach was undertaken. Out of the 352 

173 patients, 109 patients had matched CT data scored by clinicians. The data is 353 

summarised in Supplementary Table 2. The majority of patients had a CORADS score 354 

of high and very high, where 26% was equivocal, 4.6% low and 2.8% very low. The 355 

CORADS score stands for "COVID-19 Reporting and Data System," which is a 356 

classification system used in radiology to assess the likelihood of COVID-19 infection 357 

based on chest imaging findings, typically on computed tomography (CT) scans. The 358 

score categorizes imaging findings into different levels of suspicion for COVID-19, 359 

ranging from very low to very high. 360 

 361 

Table 1: Characteristics of 132 patients from Florence included in the study, 362 

including lab results at admission. 363 

Characteristic N N = 1321 

Died  132 
 

    N 
 

127 (96%) 

    Y 
 

5 (3.8%) 

Age  132 60 (50, 68) 

Sex  132 
 

    F 
 

40 (30%) 

    M 
 

92 (70%) 

Non-invasive ventilation 132 
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    N 
 

123 (93%) 

    Y 
 

9 (6.8%) 

Continuous positive airway pressure 132 
 

    N 
 

129 (98%) 

    Y 
 

3 (2.3%) 

Tracheostomy  132 
 

    N 
 

131 (99%) 

    Y 
 

1 (0.8%) 

High flow nasal cannula oxygen therapy 132 
 

    N 
 

105 (80%) 

    Y 
 

27 (20%) 

Hypertension  132 
 

    N 
 

77 (58%) 

    Y 
 

55 (42%) 

Malnutrition  132 
 

    N 
 

131 (99%) 

    Y 
 

1 (0.8%) 

Cardiovascular disease 132 
 

    N 
 

119 (90%) 

    Y 
 

13 (9.8%) 

Respiratory disease 132 
 

    N 
 

118 (89%) 

    Y 
 

14 (11%) 
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Cancer  132 
 

    N 
 

118 (89%) 

    Y 
 

14 (11%) 

Chronic kidney disease 132 
 

    N 
 

130 (98%) 

    Y 
 

2 (1.5%) 

Chronic hepatitis 132 
 

    N 
 

130 (98%) 

    Y 
 

2 (1.5%) 

Cerebrovascular disease 132 
 

    N 
 

125 (95%) 

    Y 
 

7 (5.3%) 

Chronic hematologic disease 132 
 

    N 
 

129 (98%) 

    Y 
 

3 (2.3%) 

Diastolic blood pressure (mmHg) 132 79 (70, 85) 

Heart rate (BPM) 130 80 (75, 89) 

Systolic blood pressure (mmHg) 132 125 (115, 140) 

Temperature (°C) 131 36.50 (36.00, 37.20) 

Weight (kg) 128 78 (70, 89) 

Height (cm) 126 170 (165, 175) 

Alanine aminotransferase (U/L) 128 27 (17, 39) 

Aspartate aminotransferase (U/L) 64 31 (24, 46) 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.24305820doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305820
http://creativecommons.org/licenses/by-nc/4.0/


Bilirubin (mg/dL) 128 0.50 (0.30, 0.60) 

Calcium (mg/dL) 96 4.50 (4.34, 4.63) 

Creatinine (mg/dL) 130 0.83 (0.73, 0.95) 

D-dimer (ng/mL) 91 728 (429, 1,091) 

Direct bilirubin (mg/dL) 44 0.25 (0.17, 0.29) 

Fibrinogen (mg/dL) 117 572 (446, 654) 

Fraction of inspired oxygen (%) 127 28 (21, 36) 

Hematocrit (%) 132 42.7 (39.7, 45.8) 

Lactate dehydrogenase (U/L) 118 297 (247, 359) 

Lactic acid (mg/dL) 102 9.0 (7.0, 11.9) 

Leukocytes (109/L) 132 6.2 (4.6, 7.7) 

Lymphocytes (109/L) 129 0.90 (0.68, 1.25) 

Neutrophils (109/L) 129 4.67 (3.08, 6.16) 

Oxygen saturation (%) 109 96.10 (94.20, 97.70) 

Partial pressure oxygen (mmHg) 131 74 (65, 87) 

Partial pressure carbon dioxide (mmHg) 127 36.2 (34.0, 39.0) 

Platelets (109/L) 132 196 (156, 255) 

Potassium (mmol/L) 128 3.85 (3.50, 4.10) 

Procalcitonin (ug/L) 126 0.09 (0.06, 0.15) 

Prothrombin time (seconds) 127 13.00 (12.30, 13.70) 

Sodium (mmol/L) 129 137 (135, 140) 

Urea nitrogen (g/L) 64 30 (30, 50) 
1 n (%); Median (IQR) 

 364 
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Patients form 3 clusters based on their pathway activation 365 
 366 

The RNA sequencing data was used to derive gene expression data (mRNA 367 

identification and abundance) which was calculated using Salmon inferred with 368 

Tximport in R, where values were converted into log2 counts per million (cpm). TopMD 369 

was then employed to calculate the activation of pathways. To identify differences in 370 

pathway activation across the cohort, activation data was plotted on a PCA which 371 

revealed three distinct clusters of patients (Figure 1). The relationship between clinical 372 

observations, demographics and CT scan data in each cluster was explored, and the 373 

significant differences are reported in Table 3. Lactic acid was slightly higher in cluster 374 

1 and 2 and lower in cluster 3. A higher proportion of respiratory disease was observed 375 

in cluster 2 and the fraction of inspired oxygen was also higher in this cluster. Direct 376 

bilirubin was also higher in cluster 2. The majority of those that died from COVID-19 377 

were in cluster 2. CORADS scoring was unable to distinguish between the clusters at 378 

a molecular level.   379 
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 380 
Figure 1:TopMD pathway volumes of each patient in the Florence cohort, calculated 381 

from a healthy plotted as a PCA plot. The data reveals three distinct clusters based on 382 

pathway activation determined by kmeans.  383 
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Table 2: Patient characteristics that differ between the three clusters in the Florence 384 

cohort (p = <0.05).  385 

Characteristic N 1, N = 461 2, N = 371 3, N = 491 p-value2 

Lactic acid (mg/dL) 102 10.0 (7.7, 
13.0) 

10.0 (7.2, 
12.0) 

8.0 (5.3, 
9.7) 0.008 

Fraction of inspired 
oxygen 

(%) 
127 28 (21, 

36) 
32 (27, 

40) 
28 (21, 

29) 0.019 

Died 132    0.032 

    N  46 
(100%) 33 (89%) 48 (98%)  

    Y  0 (0%) 4 (11%) 1 (2.0%)  

Respiratory disease 132    0.042 

    N  44 (96%) 29 (78%) 45 (92%)  

    Y  2 (4.3%) 8 (22%) 4 (8.2%)  

Direct bilirubin 

(mg/dL) 
44 

0.20 
(0.17, 
0.27) 

0.28 
(0.24, 
0.32) 

0.20 
(0.17, 
0.28) 

0.047 

1 n (%); Median (IQR) 
2 Fisher’s exact test; Kruskal-Wallis rank sum test; Pearson’s Chi-squared test 

 386 

Molecular phenotype, Cluster 1, was characterised by high activation of pathways 387 

associated with ESC pluripotency, NRF2, and TGF-β receptor signalling (Figure 2). 388 

Molecular phenotype, Cluster 2 displayed high activation of pathways including focal 389 

adhesion-PI3K-Akt-mTOR signalling and type I interferon induction and signalling, 390 

while Cluster 3 exhibited low IRF7-related pathway activation. 391 

 392 
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LRROC analysis was conducted on models trained using 70% of patients from the 393 

Florence cohort, with test results evaluated on the remaining 30% of the Florence 394 

cohort. The area under the ROC curve (AUCROC) values were found to be 0.84, 0.85, 395 

and 0.72 for clusters Cluster 1, Cluster 2, and Cluster 3, respectively. Subsequently, 396 

these clusters were validated in the Liège cohort (Supplementary Figure 1), yielding 397 

AUCROC values of 0.76, 0.93, and 0.69 for Cluster 1, Cluster 2, and Cluster 3, 398 

respectively (Supplementary Figure 2).  399 

 400 

 401 

Potential drug candidates are identified for each cluster 402 

To identify potential drug candidates that modulate pathways identified in these 403 

patient clusters, TopMD pathway activation was mapped onto the Drug-Gene 404 

Interaction Database (Figure 3). This mapping revealed distinct drug targets for each 405 

cluster, detailed in the supplementary table 4. This approach has a two-fold benefit: 406 

informing potential clinical trials and informing underlying biological mechanisms 407 

specific to each cluster. Interestingly, the pattern of pathway activation might also 408 

provide insight into the potential benefits or drawbacks of specific therapies, 409 

considering a drug's mechanism of action. 410 

While all clusters shared targetable pathways led by genes such as ITGB2, GNAS, 411 

and CXCR2, unique targets also emerged. Cluster 1 specifically identified IFNAR1, 412 

TGFBR2, and CSF2RB, while cluster 2 added SERPING1 and TLN1. Notably, cluster 413 

3 shared SERPING1 with cluster 2. These findings highlight both commonalities and 414 

variations in potential therapeutic targets across the identified patient clusters. 415 
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 416 
Figure 2: The average pathway volume for each cluster was considered in a TopMD enrichment analysis against the average pathway 417 

activation for the whole cohort to identify differentially activated pathways. The enrichment analysis was filtered by adjusted P value, 418 

then the top pathways were plotted. The pathways are annotated with the gene that leads the identified pathway. The dots are 419 

coloured by adjusted p-value and the size represents the proportion of genes identified within that pathway from TopMD analysis.  420 
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 421 
Figure 3: TopMD enrichment analysis was mapped against the Drug-Gene Interaction Database, using a healthy baseline, revealing 422 

approved drugs that are known to target genes and their corresponding pathways. The top drug candidates are plotted based on 423 

adjusted p-value and pathway volume.424 
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Identification of pathways in fatal cases where intervention might 425 

promote survival 426 

Due to limited sample size, we focused on the unsupervised analysis; however, to 427 

show utility of investigating pathway activity in individuals, pathway analysis in the 10 428 

deceased patients from the Florence and Liège cohort were observed. Unsurprisingly, 429 

these patients exhibited advanced age and high comorbidity rates (cardiovascular: 430 

70%, respiratory: 50%, malnutrition: 40%, hypertension: 90%, cerebrovascular: 30%, 431 

chronic hepatitis: 40%). Interestingly, all 10 patients displayed a strong signal for 432 

"nonalcoholic fatty liver disease" driven by the NDUFA9 and UQCRC2 genes (Figure 433 

4). 434 

Despite this shared pathway, individual analysis revealed heterogeneity among 435 

deceased patients, highlighting the complex interplay between COVID-19, 436 

comorbidities, and individual demographics on pathway activation. 437 

Enrichment analysis identified potential therapeutic targets based on individual 438 

pathway activation. All patients displayed potential targets including CXCR2 (Figure 439 

5). Additionally, specific druggable pathways were identified for some patients, 440 

including GNAS (multiple patients), ITGB2 (patients 2 & 6), CSF2RB (multiple 441 

patients), SERPING1 (5 patients), PIK3CD (patient 5), TGFBR2 (patient 9), and 442 

CUL4B (patient 10). 443 

 444 

 445 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.15.24305820doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305820
http://creativecommons.org/licenses/by-nc/4.0/


 446 
 447 

Figure 4: The top 6 pathways enriched in fatal cases within the Florence and Liège 448 

cohort using a healthy baseline.  449 

 450 
 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 
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 460 
Figure 5: The top significant drug candidates and peak genes that could potentially 461 

modulate the phenotype of the 10 fatal cases patients in the Florence and Liège 462 

cohort. 463 
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 464 
  465 
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Discussion: 466 

Traditionally, molecular phenotyping requires data reduction and feature selection, 467 

removing biological and technical ‘noise’, prior to pathway enrichment analysis, but 468 

this leads to results which do not accurately represent the molecular phenotypes. 469 

Topological analysis of global gene expression finds value in the low abundance 470 

transcripts usually discarded as noise, as they represent the ‘foothills’ of largely 471 

activated pathways in a comprehensive molecular landscape. By understanding the 472 

molecular phenotype, it is possible to achieve more successful selection of 473 

therapeutics, as medicines work at the molecular level as opposed to a clinical level 474 

(28).  475 

 476 

To redefine predictive models for patient outcomes and health trajectories, there is a 477 

growing recognition of the importance of integrating complex datasets. This ranges 478 

from biomarkers, clinical parameters to CT scans. For instance, a fully automated AI 479 

framework was developed to extract features from chest CT scans for diagnosing 480 

COVID-19. The model achieved 85.18% accuracy, enabling rapid and accurate 481 

differentiation of COVID-19 from routine clinical conditions, facilitating timely 482 

interventions and isolation procedures (29). Similarly, an AI-based analysis named 483 

CACOVID-CT was implemented to automatically assess disease severity on chest CT 484 

scans. Retrospective analysis of 476 patients revealed that quantitative 485 

measurements, such as the percentage of affected lung area (% AA) and CT severity 486 

score (CT-SS), correlated strongly with hospital length of stay, ICU admission, 487 

mechanical ventilation, and in-hospital mortality. This tool proved effective in 488 

identifying patients at higher risk of severe outcomes, facilitating patient management 489 

and relieving the workload of radiologists (30). 490 

 491 

Our study identified three distinct molecular phenotypes of COVID-19 molecular 492 

through topological analysis of global blood gene expression. LRROC analysis 493 

demonstrated strong discriminative power of the defined patient clusters tested in the 494 

Florence and validated in the Liège cohort.  This revealed insights into underlying 495 

disease mechanisms, potentially guiding personalised therapeutic approaches.  496 

 497 

The analysis using the TopMD algorithm assigned patients to three clusters. Some of 498 

the clinical observations aligned with the defined clusters, including lactic acid 499 
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elevation in cluster 1 and 2 compared to cluster 3. Elevated lactic acid is known to be 500 

associated with disease severity and mortality (31). Similarly, cluster 2 showed a 501 

higher proportion of respiratory disease and required a higher fraction of inspired 502 

oxygen. Additionally, this cluster exhibited elevated direct bilirubin, another potential 503 

indicator of disease severity (32). Notably, the majority of those that died from COVID-504 

19 were in cluster 2 (n=4), although the overall number of fatalities in this cohort was 505 

small (n=5).  506 

 507 

Interestingly, the CORADS scoring system used for chest X-ray/CT severity 508 

assessment, couldn't differentiate between the molecular clusters. This suggests 509 

different molecular mechanisms might underlie similar clinical presentations, which 510 

cannot be identified by CT scan. However, utilising higher resolution CT scan data, 511 

such as continuous scoring systems offered by tools like Thirona, might provide more 512 

granular insights compared to the categorical data used in this study (30). 513 

 514 

Molecular differences were examined between each cluster by considering statistically 515 

significant GSEA pathways with highest TopMD pathway volumes (Fig. 2). Cluster 1 516 

displayed a reduction in pathways related to the renin-angiotensin system (RAS) and 517 

bradykinin, implicated in COVID-19 pathogenesis (33). Additionally, an increase in 518 

focal adhesion pathways, possibly indicating cellular changes related to tissue repair 519 

and remodelling. Activation of the complement cascade, led by SERPING1, indicates 520 

involvement in the immune response to the virus. Furthermore, an increase in the 521 

TGF-β pathway, which regulates inflammation and tissue repair was also identified. 522 

Additionally, a high activation of pathways associated with ESC pluripotency, NRF2, 523 

and TGF-β receptor signalling. The ESC pluripotency pathway is implicated in tissue 524 

repair and regeneration, suggesting a potential compensatory response to tissue 525 

damage caused by the virus. NRF2 pathway activation may indicate an antioxidant 526 

response to counteract oxidative stress induced by viral infection (34). TGF-β receptor 527 

signalling, known for its role in regulating inflammation and fibrosis, may contribute to 528 

tissue remodelling and fibrosis observed in severe COVID-19 cases (35). Also, cluster 529 

1 exhibits low activation of pathways related to extracellular vesicle-mediated 530 

signalling and complement and coagulation cascades. The decrease in extracellular 531 

vesicle-mediated signalling may reflect impaired intercellular communication, while the 532 
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low activation of complement and coagulation cascades suggests a possible 533 

dysregulated immune response and coagulopathy (36). 534 

 535 

In cluster 2, high activation of pathways such as focal adhesion-PI3K-Akt-mTOR 536 

signalling and type I interferon induction and signalling was observed, and has been 537 

proposed as a potential therapeutic target in SARS-CoV-2 (37, 38) and MERS-CoV 538 

(39). Focal adhesion pathway activation may indicate cellular responses to tissue 539 

injury or viral invasion, while type I interferon induction and signalling reflect a strong 540 

antiviral immune response (40). In contrast, cluster 3 shows opposite activity in IRF7-541 

related pathways compared to 2. Additionally, vitamin D receptor activity was 542 

observed, which has been implicated in modulating the immune response and may 543 

play a role in COVID-19 severity (41-43). Notably, this cluster exhibited low activation 544 

of pathways related to TGF-b receptor signalling, IL1R signalling, and LTF danger 545 

signal response. The reduced TGF-b receptor signalling suggests decreased fibrotic 546 

response and tissue remodelling, while low IL1R signalling may indicate attenuated 547 

inflammation (44). The activation of the LTF danger signal response pathway appears 548 

to be diminished. Lactoferrin demonstrates antiviral capabilities against various 549 

viruses, including coronaviruses (45). It can impede viral replication, disrupt viral 550 

attachment and entry, and adjust host immune responses. Lactoferrin's 551 

immunomodulatory attributes might aid in tempering excessive inflammation and 552 

alleviating cytokine storms observed in severe cases of COVID-19 (46). The 553 

decreased activation of the LTF danger signal response pathway could potentially 554 

contribute to a weakened interferon response (47). 555 

 556 

The stratified molecular phenotypes were found to have different expected responses 557 

to both medicines used, and medicines not yet used for COVID-19 (Fig. 3). In cluster 558 

1, CSA or cyclosporine has been shown to be safe to use during COVID-19 for the 559 

intended use, however, a reduction in hyperinflammation was observed (48). This 560 

warrants further investigation as highlighted by others (49). Interferon related therapies 561 

that could modulate the pathway activation of cluster 1 were also identified, which have 562 

been shown to have positive effects (50-52). Lifitegrast inhibits SARS-CoV-2 in vitro 563 

(53, 54) By inhibiting TGF-β signalling, Luspatercept may help mitigate the excessive 564 

inflammatory response and tissue damage seen in severe COVID-19 cases. Similarly, 565 
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Sargramostim has shown promise in a small study, but larger trials are needed to 566 

confirm these findings (55). 567 

 568 

Like, cluster 1, CSA was also identified as a potentially effective treatment for clusters 569 

2 & 3. The mechanisms of actions of other medicines only matched the molecular 570 

phenotype of cluster 2. Asenapine, an anti-pyschotic drug identified by others as a 571 

potential drug candidate for COVID-19 (56, 57) Cinryze a human c1 esterase inhibitor 572 

was also identified, these inhibitors have been shown to improve lung computed 573 

tomography scores and increase blood eosinophils, which are indicators of disease 574 

recovery, however, time to clinical improvement was not observed (58). Also, for 575 

cluster 2, we identified Fluoxetine and other SSRIs such as fluvoxamine which has 576 

previously been identified as having potential use for the treatment of COVID-19 and 577 

long-COVID (59) Amisulpride was also identified in cluster 3.  578 

 579 

To further evaluate the utility of the TopMD algorithm for precision medicine, 580 

enrichment analysis was performed on individual data from the 10 fatal cases within 581 

the Florence and Liège cohorts. This approach highlights pathway activation specific 582 

to each patient, bypassing the need for a whole cohort for deconvolution. All 10 583 

patients showed potential therapeutic targets based on pathway enrichment. CXCR2 584 

and GNAS were commonly activated across patients (Figure 5), suggesting drugs 585 

such as Ibuprofen may be able to modulate some pathways associated with their 586 

phenotype. For patients 2 and 6, ITGB2 emerged as one of the top druggable 587 

pathways. Notably, Lifitegrast has shown to inhibit SARS-CoV-2 in vitro (53, 54). 588 

Additionally, CSA or cyclosporine, was also identified, which was another compound 589 

identified in the cluster analysis.  590 

 591 

Multiple patients exhibited CSF2RB enrichment, indicating potential for Sargramostim, 592 

a drug shown to reduce mortality and incubation in small COVID-19 study  (55). 593 

SERPING1 enrichment in 5 patients suggests various approved drugs for pathway 594 

modulation, including antithrombin, human c1 esterase inhibitor and cinryze. Patient 595 

specific findings were also observed. PIK3CD enrichment in patient 5 suggests 596 

Sophoretin as a potentially modulator, with a meta-analysis showing quercetins 597 

(including sophoretin), reduce LDH, hospitalisation risk and mortality (60). Patient 9 598 

displayed TGFBR2 enrichment indicating luspatercept as a potential drug (identified 599 
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in the cluster analysis) as a potential candidate. Lastly, CUL4B enrichment in patient 600 

10, suggests Thalidomide, Pomalidomide, Lenalidomide for pathway modulation. 601 

While Lenalidomide, used to manage multiple myelomas, has been proposed as 602 

protective against sever COVID-19 in a case report (61) a clinical trial showed no 603 

benefit (62). Thalidomide, although showing no benefit itself (62), remains a subject of 604 

discussion for its potential use in COVID-19 (63). 605 

 606 

As a proof of concept, TopMD models were integrated into the Comunicare platform 607 

(27), a tool developed and configured within the framework of the DRAGON project, 608 

aimed at patient empowerment and providing disease management tooling for 609 

clinicians and patients. This proof of concept also enables the analysis of clinical data 610 

for clinicians in a dedicated dashboard to demonstrate the possibilities of 611 

transcriptomics in digital health. As an example, we generated a model that predicts 612 

ICU admission based on our previous work (5) as other outcome variables were too 613 

low in number. If a clinician has access to transcriptomic data, a csv file can be 614 

uploaded to the dashboard and in return activated pathways are returned after running 615 

analysis on the TopMD API. While the use of transcriptomics at the bedside is not 616 

ready for deployment, we propose that it is a major advance to be able to demonstrate 617 

integration of this data into digital health platforms as the growth of precision medicine 618 

continues. 619 

 620 

This study identified three distinct molecular phenotypes in hospitalised COVID-19 621 

patients, which were not associated with differences in CT scans and clinical 622 

observations. However, these molecular phenotypes match the mechanism of action 623 

of different medicines, providing the opportunity for biomarker-led stratified medicine. 624 

Topological analysis of global gene expression to define a patient’s pathway activation 625 

map could be useful in future pandemics to aid in treatment decisions before clinical 626 

trials can be completed. 627 

   628 
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