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Abstract—With the rapid development of new communication
technology, notably ultra reliable low latency communication
(URLLC) in the 5th generation cellular network, and the
wide deployment of high-speed rail (HSR), it becomes criti-
cally important to enhance the energy efficiency of the HSR
communication system by optimally allocating the bandwidth
and transmit power for users, while ensuring the quality of
service (QoS) requirements of URLLC. In this paper, we tackle
this challenging resource allocation problem of the URLLC
system for HSR. Specifically, we establish the train-ground
URLLC model for the HSR communication system with mobile
relays (MRs), based on which we formulate the optimization
problem with the QoS requirements of URLLC as constraints
for maximizing the system’s energy efficiency. By decomposing
this challenging optimization problem into two subproblems, a
heuristic algorithm is adopted to optimally allocate the transmit
power and bandwidth of users with the block coordinate descent
(BCD) approach. The simulation results show that compared
with the existing algorithms, the proposed algorithm achieves
better performance in resource allocation optimization of user
bandwidth and transmit power.

Index Terms—Ultra-reliable low-latency communication, high-
speed railway, energy efficiency optimization, resource allocation.

I. INTRODUCTION

With the technological progress and rapid deployment, high-
speed rail (HSR) has been widely spread to connect cities
of all sizes across some countries, such as in China. With
its features of fast speed, comfortable experience, safety and
economy, HSR plays an important role in people’s life [1]. In
the post COVID-19 pandemic era, people’s demand for travel
has increased dramatically, and they expect to get the same
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excellent communication experience on HSR as on the ground.
In the Internet era, a variety of applications, including mobile
games, telecommuting and telemedicine, demand ultra reliable
and low delay services from the communication network.
People hope that they can experience these applications with-
out obstacles on HSR. However, communication interruption
and high power consumption of mobile devices currently
experienced in high-speed scenarios [2] mean that this urgent
requirement could not be met yet, and this fuels the current
research effort on HSR communications.

Ultra reliable low latency communication (URLLC) is one
of the three application scenarios or usage cases of the 5th
generation (5G) cellular network technology [3]. URLLC is
a key feature that makes 5G qualitatively different from the
previous generations of mobile communication technology.
High reliability and low latency requirements of URLLC
become a potential promoter of a large number of new
emerging applications [4]. For example, URLLC plays a key
role in enabling mission-critical applications, such as factory
intelligence, vehicle-to-vehicle communications, and remote
surgery [5, 6]. These applications require ultra low communi-
cation delay and high reliability [7]. Overall expectations of
3GPP [7] for URLLC requirements are: 1) Overall reliability
requirement of 99.9999% and radio delay of 1 ms for the user
plane are met; 2) The average transmission delay of the user
plane of the uplink and downlink are less than 0.5 ms.

In order to ensure strict end-to-end (E2E) delay, transmis-
sion delays, queuing delays, encoding and processing delays,
and delays in backhaul and routing need to be taken into
account in the uplink and downlink [8]. To meet URLLC re-
quirement of low delay, short packet communication becomes
necessary, as the main way to reduce delay is to adopt packets
with short frame structure [7]. In short packet communication,
the relationship among the achievable communication rate,
decoding error probability, and transmission delay becomes
different from that in long packet communication, and the
familiar Shannon formula is no longer applicable [9]. This
is because using Shannon formula to analyze the system
performance in short packet communication will underestimate
the error of reliability and delay, leading to the failure of
meeting the quality of service (QoS) requirements of URLLC
[10]. In a nutshell, in short packet communication, 1) the
classical information theory is no longer applicable because
the law of large number cannot be applied; and 2) the size of
the control information (metadata) in data packets is similar
to the size of the payload, and the inefficiency of metadata
encoding will significantly affect the overall efficiency of
transmission [9]. Therefore, it is a huge challenge to efficiently
allocate short packet communication resources for URLLC
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applications of users, particularly in high-speed scenarios.
Against this background, in this paper, we address the chal-

lenging task of the optimization of URLLC resource allocation
for the application to the HSR communication assisted by mo-
bile relays (MRs), where an MR is deployed in the middle of
the roof top of each train carriage to relay the communications
between the remote radio heads (RRHs) and the users in the
carriage, in order to mitigate penetration loss. Specifically, our
goal is to maximize the system’s achievable energy efficiency.
Since this optimization problem is NP-hard, we decompose the
optimization problem into two sub-problems, which can then
be solved by the block coordinate descent (BCD) approach
based on a heuristic algorithm that is widely used in solving
communication resource allocation problems [11]. The main
contributions of this paper are summarized as follows.

• We establish the train-ground URLLC model for the
HSR with MRs by introducing the directional antenna
model, millimeter wave (mmwave) communication model
in 3GPP protocol [12], and the traffic model of users
as well as the QoS requirements of URLLC. This is
different from previous work related to HSR train-ground
communication and URLLC resource allocation, and to
the best of the authors’ knowledge, this paper is the first
to consider them together.

• Based on the proposed train-ground URLLC model,
we establish the system’s energy efficiency model and
formulate the optimization problem for maximizing the
system’s energy efficiency. A heuristic algorithm with
BCD is proposed to solve the problem of optimal band-
width and transmit power allocation of MR to users.
First, the optimization problem is decomposed into two
subproblems to address the coupling between them,
which are solved by the heuristic algorithm with BCD,
respectively. Then, the bandwidth and transmit power
are updated alternately, to obtain the final solution. The
heuristic algorithm adopted in this paper can effectively
solve search problems with high complexity. In addition,
its better robustness can adapt to the changing driving
environment of HSR.

• By configuring the network with different parameters,
we compare the proposed algorithm with other existing
schemes from multiple perspectives. Simulation results
show that our algorithm has better resource allocation
ability, and it is capable of improving the energy ef-
ficiency of the system significantly by allocating the
communication bandwidth and transmit power to the
personalized service users.

The rest of this paper is organized as follows. Section II re-
views the related work. Section III introduces the train-ground
communication model with MRs for URLLC, and formulates
the optimization problem for maximizing the system’s energy
efficiency. Section IV presents the heuristic algorithm with
BCD to solve the problem of optimal bandwidth and transmit
power allocation to users. In Section V, the performance
comparison of the proposed algorithm and other existing
algorithms is conducted under different system parameters.
Finally, Section VI draws the conclusions of this paper.

II. RELATED WORK

Currently, there exist rich literature on energy efficiency
(EE) optimization of HSR communication [13–16]. For the
mmwave based HSR communication system with multiple
MRs on top of train, Wang et al. [13] proposed a dynamic
power control scheme for train-ground communication that
minimizes energy consumption under the constraints of trans-
mit data and transmit power budgets. By embedding power
adjustment into the existing communication switching process,
Lu et al. [14] studied the influence of power adjustment on the
switching performance in the HSR communication system and
showed that the performance can be improved without addi-
tional energy consumption by appropriate power adjustment.
Jiang et al. [15] studied the non-orthogonal multiple access
(NOMA) based HSR communication system and optimized
the uplink EE of the NOMA system by considering the QoS
and maximum transmission power constraints. Hu et al. [16]
investigated a joint transmission mode selection and power
optimization scheme to maximize the EE of the distributed
antenna based HSR communication system and showed that
on the one hand, the system’s EE can be maximized while
meeting the rate requirements of the users on train by power
optimization, and on the other hand, the transmission mode
selection strategy can be used to further improve the system’s
achievable EE. However, the aforementioned works do not
consider the application of URLLC to HSR, which is an
important usage case for the vertical business development
of 5G.

The resource allocation in URLLC is vital for the effective
use of communication resources and the improvement of EE
[17–20]. Deng et al. [17] proposed a hybrid resource allocation
method based on NOMA technology to meet the ultra reliabil-
ity and low delay requirements of emerging URLLC services.
Specifically, the system adopts NOMA technology to share
URLLC user resources to improve the utilization of frequency
resources. When the shared resources cannot support the
transmission requirements of URLLC users, private resources
are used for transmission. Ghanem et al. [18] considered the
resource allocation for the downlink multi-input single-output
orthogonal frequency division multiple access URLLC system.
A low complexity sub-optimal resource allocation algorithm
was designed based on successive convex approximation and
difference of convex programming to maximize the weighted
system throughput, constrained by the QoS requirements of
the number of transmitted bits, packet error probability, and
latency for URLLC users. Chen et al. [19] studied a unmanned
aerial vehicle (UAV)-assisted URLLC service system. The
average uplink transmit power is minimized by jointly op-
timizing the device scheduling and association, power control
and resource allocation as well as UAV deployment, using
an iterative algorithm based on BCD with Lagrange dual de-
composition. Simulation results presented in [19] show that a
performance gain of 15%-20% can be achieved in the average
transmit power of URLLC. Based on uplink transmission,
Chang et al. [20] investigated the resource allocation problem
of URLLC in real-time wireless control system. The problem
is solved by optimizing bandwidth and transmission power
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Fig. 1: Train-ground URLLC system in HSR scenario with MRs.

allocation in URLLC, and controlling the convergence rate
subject to communication and control constraints. Compared
with traditional URLLC methods that satisfy fixed QoS, the
method of [20] can adjust the optimal spectrum allocation
to maximize the efficiency of the communication spectrum,
leading to significant performance improvement in spectrum
efficiency and control cost. However, the aforementioned
works do not consider the resource allocation of URLLC in the
HSR scenario. By contrast, our work specifically considers the
EE optimization for URLLC in the application to HSR with
MR, and we design a resource allocation scheme of bandwidth
and power for HSR users under the URLLC QoS constraints
on delay and reliability.

Table I shows the difference between this paper and related
studies, in which the literature [13, 15, 16, 21, 22] studied the
resource allocation of HSR train-ground communication, but
none of them considered network conditions of URLLC, and
the vast majority of them did not consider the Doppler effect
caused by high speed. Literature [17-20] studied resource
allocation with URLLC, but all of them were at the static
condition. In this paper, we develop a model for HSR train-
ground communication with URLLC, taking into account the
impact of the Doppler effect due to high speed and considering
the user’s personalized network services, which is the first time
according to the authors.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION

In this section, we first introduce the train-ground URLLC
system for HSR with MRs. Next we describe the mmwave
communication model, URLLC rate, traffic model, and QoS
requirements. Then the EE model is derived, which forms
the optimization objective. Finally, we formulate the resource
allocation problem for maximizing the system’s EE.

A. System Description

URLLC is one of the three usage cases in 5G, where
the classical information theory is inadequate to describe the
relationship of communication rate, error probability and trans-
mission delay [9]. As mentioned previously, current URLLC
studies mostly focus on static scenarios. In this paper, we
study the train-ground URLLC system for HSR assisted by

MRs. Our goal is to maximize the system’s EE through the
bandwidth and transmit power resource allocation to users.

Fig. 1 illustrate the conceived train-ground URLLC system
operated at the mmwave band for HSR, where an MR is
deployed at the middle of the top of each train carriage
to relay/serve the users in the carriage. The left picture of
Fig. 1 depicts the HSR communication system in which RRH
communicates with MR. The right picture of Fig. 1 sketches
the scenario of URLLC communication between the MR and
the users inside the carriage. The system adopts the single
frequency network (SFN), in which multiple RRHs send and
receive the signals at the same frequency in a cell [23].
SFN has the advantages of small interference from adjacent
cells, large coverage area of cells and low signal switching
frequency, and it is suitable for HSR applications. Since RRH
communicates with MR at the mmwave band, omnidirectional
antenna is unsuitable, as it has high energy consumption and
is incapable of compensating for large path loss. Therefore,
directional antenna with unidirectional coverage as defined in
3GPP 38.913 [7] is deployed at RRH to communicate with
MR. This unidirectional antenna based HSR SFN communi-
cation system is shown in Fig. 2, which is the only model
considered for HSR 30 GHz deployment in 3GPP [7]. In
order to overcome the severe penetration loss of the carriage,
MR is deployed to act as the intermediate medium for the
communication between the RRH and the users [24].

In the model of [7] depicted in Fig. 2, v is the speed of
the train, DRRH rail is the horizontal distance between RRH
and the rail, and DRRH is the horizontal distance between
adjacent RRHs, while hT is the height of MR at the top of

RRH1

RRH2

RRH3

BBU

BBU

RRH1

RRH2

RRH3

DRRH

hR

hT

Φ,θ
v

DRRH_rail htrain_height

hRX_height RRH1

Fig. 2: HSR SFN communication system with unidirectional
antenna.
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TABLE I
DIFFERENCES BETWEEN THIS PAPER AND RELATED WORKS

Research

scene
Object Algorithm

Motion

state
QoS of URLLC Doppler

User-Defined

Services

this paper
A two-stage HSR train-to-ground

communication MR-assisted model

for user-defined services

Max(EE)
Heuristic Optimization Algorithm

Based on BCD

for Bandwidth and Transmit Power

High speed
Maximum latency: 1 ms

Maximum system error: 3e-7
Yes Yes

[13]
A control/user-plane splitting network

for HSR communications with MRs
Min(power)

The Multiplier Punitive Function-Based

Power Control Algorithm
High speed No Yes No

[15]
A high-speed railway transmission

model of two-hop NOMA uplink
Max(EE)

The optimal EE search iterative algorithm

based on Dinkelbach method
High speed No No No

[16]
HSR in a single-cell with

distributed antenna transmission

system model

Max(EE)
A energy-efficient power optimization

with transmission mode selection scheme
High speed No No No

[21]
An mm-wave train-ground

communication system using FD MRs
Max(capacity)

A sequential quadratic programming

algorithm based on Lagrangian function
High speed No No No

[22]
An mm-wave train-ground

communication system using FD MR
Max(flows)

Coalition Game Based Algorithm

for User Association

and Transmission Scheduling

High speed No No No

[17]
An uplink URLLC user transport

system with N users
Max(rate)

A hybrid resource allocation method

based on nonorthogonal multiple access
Static Reliability: 99.999 % No No

[18]
A system model with N -antenna BS

and K single-antenna users
Max(throughput)

A sub-optimal resource allocation algorithm

based on successive convex approximation.
Static

Error tolerance: 0.01

Packet error probability: 1e-6
No No

[19]
A UAV-assisted IoT network

in a URLLC service scenario
Min(power)

A block coordinate descent

optimization algorithm (BCDOA)
Static

E2E delay threshold: 1ms

Decoding error threshold: 1e-5
No No

[20]
A typical centralized real-time

wireless communication-control system
Max(SE)

An iterative algorithm

for optimal resource allocation
Static

Maximum time delay: 0.5 ms

Packet error probability: 1e-5
No No

the train, hR is the height of RRH, and htrain height is the
height of train. Hence the height of receive antenna at top
of the train is hRX height = hT + htrain height. Furthermore,
Φ and θ denote the beam direction of RRH. As illustrated
in Fig. 2, every three RRHs, two located at one side of the
rail and the other at the other side, are connected to the same
baseband unit (BBU) through optical fibers, and this pattern
is alternatively deployed along the entire length of the track.
The orientation of the RRH panel is towards the adjacent rail
track, and therefore the RRH’s beam can always be aligned
with the MR’s beam [23, 25].

B. Mmwave Communication Model

According to Fig. 2 and the link budget, the receive power
of MR, denoted by Pr, can be expressed as [23]

Pr(x, θE , ϕE) =Pt − PL(x) +At
B(θE , ϕE) +Ar

B(θE , ϕE)

+At
E(θE , ϕE) +Ar

E(θE , ϕE), (1)

where Pt is the transmit power of the RRH, and PL(x) is the
path loss (PL) with x being the distance between the RRH and
the MR. The beamforming gain in mmwave is composed of
antenna element gain AE and composite array radiation gain
AB . The antenna element gain in (1) includes the transmit
antenna (i.e., RRH antenna) gain At

E and the receive antenna
(i.e., MR antenna) gain Ar

E . The composite array radiation
gain in (1) includes the RRH’s composite array radiation gain
At

B and the MR’s composite array radiation gain Ar
B . The

values of the four antenna gains, At
E , Ar

E , At
B and Ar

B , depend
on the down-tilting angle θE and azimuth angle ϕE of the
vector linking the antenna elements of the MR and RRH.

Since the HSR track is mainly over flat terrain and there
is no blockage between RRH and train, the line of sight

transmission is dominated and the PL model can be considered
to be [12]:

PL(d2D) =

{
PL1(d2D), 10m ≤ d2D ≤ dBP ,
PL2(d2D), dBP ≤ d2D ≤ 10 km,

(2)

where

PL1(d2D) =20 log10

(
40π · d3D · fc

3

)
−min

{
0.044h1.72, 14.77

}
+min

{
0.03h1.72, 10

}
· log10(d3D)

+ 0.002 log10(h) · d3D, (3)

PL2(d2D) =PL1(dBP ) + 40 log10

(
d3D
dBP

)
. (4)

The definitions of d2D and d3D in (2) to (4) are given in Fig. 3,
while dBP in (2) and (4) is the breakpoint distance, given by

dBP =
2π · hR · hRX height · fc

c
, (5)

in which fc is the central frequency in Hz and c is the velocity
of light (3×108 m/s). Furthermore, h in (3) represents the av-
erage height of buildings in HSR communication environment
and hence h ∈ [5, 50]m.

In this paper, the calculation of antenna element gain AE
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d2D

hR

hRX_height

Fig. 3: Definition of d2D and d3D.

can be expressed as (6), (7) and (8) according to [12]:

AE

(
θ′E , ϕ

′
E = 0◦

)
=−min

{
12

(
θ′E − 90◦

θ3dB

)2

, SLAV

}
,

(6)

AE

(
θ′E = 90◦, ϕ′

E

)
=−min

{
12

(
ϕ′
E

ϕ3dB

)2

, Amax

}
, (7)

AE

(
θ′E , ϕ

′
E

)
=Gmax −min

{
−
(
AE

(
θ′E , ϕ

′
E = 0◦

)
+AE

(
θ′E = 90◦, ϕ′

E

))
, Amax

}
, (8)

where θ′E and ϕ′
E are the results in the global coordinate

system that are converted from θE and ϕE in the local
coordinate system [12], θ3dB is the vertical 3 dB beamwidth
and ϕ3dB is the horizontal 3 dB beamwidth, while SLAV

is the vertical side-lobe attenuation, Amax is the maximum
attenuation and Gmax is the maximum directional again of
an antenna element. Furthermore, AE

(
θ′E , ϕ

′
E = 0◦

)
in (6)

and AE

(
θ′E = 90◦, ϕ′

E

)
in (7) represent the values of the

vertical and horizontal cuts of the radiant power pattern,

respectively, while −min

{
−
(
AE

(
θ′E , ϕ

′
E = 0◦

)
+AE

(
θ′E =

90◦, ϕ′
E

))
, Amax

}
in (8) is the attenuation gain of an antenna

element.
The composite array radiation gain AB can be expressed as

AB(θE , ϕE) = 10 log10

∣∣∣∣∣
NH∑
m=1

NV∑
n=1

wn,m · vn,m

∣∣∣∣∣
2
 , (9)

where NH is the number of antenna elements on the panel
and NV is the number of antenna elements with the same
polarization in each column, while wn,m and vn,m are the
weight and super position vectors, expressed respectively as

wn,m =
1√

NHNV

exp

(
j · 2π

(
(n− 1) · dV · sin(θB)

λ

+
(m− 1) · dH · cos (θB) · sin (ϕB)

λ

))
, (10)

vn,m = exp

(
j · 2π

(
(n− 1) · dV · cos (θE)

λ

+
(m− 1) · dH · sin (θE) · sin (ϕE)

λ

))
, (11)

in which j =
√
−1 denotes the imaginary axis, λ is the wave-

length, dV and dH are the distances between the neighbouring
antenna elements in the vertical and horizontal directions,
respectively. In this paper, we set dV = dH = λ

2 . Furthermore,
θB and ϕB in (10) are the beam direction, which includes the
beam direction θtB and ϕt

B for the RRH, and beam direction
θrB and ϕr

B for the MR.
The main focus of this paper is to design an allocation

scheme of bandwidth and power that maximizes the energy
efficiency for users with different network requirements, while
meeting the constraints of URLLC on delay and reliability. We
assume that an MR is in the middle of the top of the train,
and set up an RRH to communicate with the MR, to analyze
the resource allocation scheme of bandwidth and power for
different users. There have been many studies on the beam
alignment of high speed rail, e.g., [23, 24]. Therefore, we
assume that the beams between the RRH and MR are always
aligned, i.e., θB and ϕB are known and they are not the design
variables, to simplify the model.

In order to quantify the ICI power PICI due to Doppler
expansion caused by the high speed of the train, we adopt the
widely used ICI approximation model [24], as shown in the
following equation

PICI =

∫ 1

−1

(1− |τ |) J0 (2πfd,maxTsτ) dτ, (12)

where Ts denotes the symbol duration, and J0 (·) is the first
type of zero-order Bessel function. fd,max = v·fc/c represents
the maximum Doppler expansion, where v is the speed of the
train. fc and c represent the carrier frequency and the speed
of light, respectively.

C. URLLC Communication Rate

The communication capacity described by Shannon formula
is widely used to express the traditional communication ser-
vice rate. However, the impact of decoding error in URLLC
is more prominent and cannot be ignored, because of the
short packet structure [7]. In short packet communication, the
mathematical relationship among the achievable communica-
tion rate, transmission delay and decoding error probability is
different from that in traditional long packet communication
[9]. In addition, MR is relatively stationary with respect to the
user in the carriage. Therefore, even when the train is running
at high speed, the communication channel between MR and
user is an interference-free single antenna system affected by
the quasi-static flat fading channel. With short packet length,
the maximum achievable rate of user k can be accurately
approximated as [26]

rk ≈ τWk

u ln 2

(
ln

(
1 +

αkgkPk

N0Wk + PICI

)
−
√

Vk

τWk
Q−1

G (εck)

)
,

(13)
where Wk and Pk are the bandwidth and transmit power
allocated by the MR for downlink transmission to user k. αk

is the large scale channel gain including the log distance path
loss with exponent n and the log-normal shadow fading with
mean 0 and standard deviation σ [27], that includes the gain of
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URLLC user Gue and the gain of URLLC antenna Gantenna.
The log distance path loss model is defined as L(d) =

L (d0)+10n lg
(

d
d0

)
and L (d0) is 32.45+20 lg(f)+20 lg (d0)

that f is the signal transmission frequency, d0 is the reference
distance, and d is the communication transmission distance
[28]. gk is the small scale channel gain with Nakagami-m
fading model [29], and the probability density function is given
by fgk(z) = mmzm−1

Γ(m) exp(−mz) [30]. u is the number of
bytes in a packet. N0 is the single side noise power spectral
density (PSD), τ ∈ (0, Tf ) is the time duration that can be
used for downlink transmission in a frame of the length Tf ,
εck is the transmission error probability of user k, Q−1

G (x) is
the inverse of the Gaussian Q function, and Vk is the channel
dispersion given by [26].

Vk = 1− 1(
1 + αkgkPk

N0Wk+PICI

)2 ≈ 1. (14)

When the signal-to-noise ratio (SNR) at the receiver is
higher than 5 dB, Vk in (14) is approximately equal to 1 [31],
which is satisfied in URLLC communication most of the time.
On the other hand, under the condition of SNR lower than
5 dB, V < 1. But if we substitute V = 1 into the URLLC
rate expression (13), we obtain the lower limit of the rate
that URLLC can achieve. If this lower limit is applied to the
subsequent analysis of resource allocation, the reliability and
latency requirements can be met [32].

D. Traffic Model

In the system traffic model, the time is divided into frames
[33]. The duration of each frame is denoted as Tf . It is
assumed that user k has Ak apps connected through the
network, that is, applications consuming network traffic, and
the user activates apps with probability κ in a frame, wherein
the activation of each app is independent and identically
distributed (i.i.d.). Therefore, the packet arrival process of each
user is modeled as a Poisson process with an average arrival
rate of λk = Akκ packets/frame [34]. Hence, there exists a
set that contains a series of samples, each of which is the
number of apps used by a user, and these samples conform to
the Gaussian distribution.

E. QoS Requirements

As illustrated in Fig. 4, the system delay Dmax consists
of the UL transmission delay DUL, the mmwave delay of
RRH-MR Dmmwave, the queue delay Dqueue and the DL
transmission delay DDL, which can be expressed as

Dmax =DUL +DDL +Dmmwave +Dqueue. (15)

Since the packet size is very small, e.g., 20 bytes [7], we
assume that a packet transmission of UL and DL can be com-
pleted in one frame with a given probability of error without

Frame

UL DL Dmmwave Dqueue

Fig. 4: System delay model.

retransmission [35]. Therefore, the queue delay Dqueue that
ensures the system delay, denoted as Dq

max, is given by

Dq
max = Dmax − Tf −Dmmwave. (16)

For simplicity, we assume that the mmwave delay satisfies
Dmmwave = 0.5ms [36].

If the queuing delay of a packet is greater than the delay
limit Dq

max, the packet is discarded, and the queuing delay
violation probability is denoted as εqk. In order to meet the
queuing delay requirement of limited transmission power, the
proactive packet dropping mechanism [37] can be applied, and
the proactive packet dropping probabilities is expressed as εhk .
These two probabilities together with the transmission error
probability εck of user k should satisfy the condition

εck + εqk + εhk ≤ εD, (17)

to ensure the overall reliability of URLLC, where εD is the
maximum tolerable error rate required to ensure the overall
reliability of URLLC [35].

To ensure that the queue delay and queue delay violation
probability, Dq

max and εqk, as well as the DL transmission error
probability, εck, meet the QoS of URLLC, we introduce the
concept of effective bandwidth [38]. The work [37] indicates
that the effective bandwidth can be used to analyze the queuing
delay of Poisson process at the transmitter if the queuing
delay violation probability is small. Since the queuing delay
in URLLC is usually shorter than the channel coherence time,
the service rate is constant [37]. For Poisson arrival process
λk, the effective bandwidth can be expressed as [37, 38]

EB
k =

Tf ln
(

1
εqk

)
Dq

max ln

1 +
Tf ln

(
1

ε
q
k

)
λkD

q
max

 . (18)

To meet the requirement of (Dq
max, ε

q
k), the constant packet

service rate should not be less than the effective bandwidth
[38], i.e., rk ≥ EB

k . Substituting (13) into (18) leads to

γk ≥ exp

(
EB

k u ln 2

τWk
+

Q−1
G (εck)√
τWk

)
− 1, (19)

where the SNR γk is defined as γk = αkgkPk

N0Wk
.

In order to ensure that the proactive packet dropping proba-
bilities εhk meets the requirement of URLLC, according to the
derivation in [35, 37], εhk can be approximated as

εhk ≈ BNt

(
gthk
)
, (20)

where gthk and BNt

(
gthk
)

are given respectively by [35]

gthk =
(N0Wk + PICI)γk

αkP th
k

, (21)

BNt

(
gthk
)
=

∫ gth
k

0

1−
ln
(
1 + gγk

gth
k

)
ln(1 + γk)

 fNt
(g)d g, (22)

with fNt
(g) = gNt−1

(Nt−1)! exp(−g).
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7

An upper limit of the approximate proactive packet dropping
probability BNt

(
gthk
)

is given by [35]

FNt

(
gthk
)
=(Nt − 1)

∫ gth
k

0

(
1

g
− 1

gthk

)
fNt(g)d g

=

(
1−Nt−1

gthk

)Nt−2∑
n=0

fn+1

(
gthk
)
+fNt−1

(
gthk
)
. (23)

Hence FNt

(
gthk
)

is taken as the QoS constraint on the proac-
tive packet dropping probability εhk . It is assumed that there
are enough antennas to meet the requirements of URLLC. It
is shown in [37] that εck = εqk = εhk = εD

3 is an approximate
optimal combination to ensure (17).

F. Energy Efficiency Model

The total power consumption Ptot of the aforementioned
HSR URLLC communication model is composed of the
transmit power of RRH PBS and the transmit power of MR
PMR as well as a fixed circuit power consumption PC

0 , which
can be expressed as

Ptot =
1

ρ

(
PBS + PMR

)
+ PC

0 , (24)

where ρ ∈ (0, 1] is the power amplifier efficiency [35].
PMR includes the transmit power allocated to all the
users, namely, PMR =

∑K
k=1 Pk, and PBS satisfies R =(

1− P out
lBS,MR

)
W log(1+ αgPBS

WN0
), in which W is the commu-

nication bandwidth between RRH and MR. α is the large scale
channel gain, as shown in (2). g is the small scale channel gain
with rayleigh channel model [39]. N0 is single-side noise PSD.
P out
lBS,MR

represents the interruption probability between the
transmitter and the receiver during the mmwave transmission,
and it can be denoted as P out

a,b = 1 − exp
(
− βlab

)
, where

lab is the distance between the transmitter a and the receiver
b, and β is a parameter that reflects the density and size of
obstacles.

Therefore, the energy efficiency model can be expressed as

η =
(1− εD)

(
u
∑K

k=1 λk

Tf

)
· t∫ t

0
Ptotdt

. (25)

The energy efficiency η of (25) is defined as the ratio of
the successful communication byte size of all the users to the
energy consumed between two adjacent location bins. Let the
distance between two adjacent location bins be σD. Then the
traveling time t between two adjacent location bins in (25)
is t = σD

v . In order to simplify the analysis, when we study
resource allocation, the bandwidth and transmit power of users
are optimized every σD for the entire travel distance.

G. Model Analysis

In this paper, we optimize resource allocation to maximize
the energy efficiency η while meeting the QoS constraints
of URLLC. Note that the communication rate of user k
is determined according to the Poisson arrival process of
packets obtained from the activation of apps, which is almost
unaffected by resource allocation. In addition, due to the

requirements of URLLC for high reliability and low latency,
1 − εD ≈ 1. Therefore, ‘maximum energy efficiency’ is
equivalent to ‘minimum power consumption’ [35], i.e.,

max{η} = min{Ptot}. (26)

Therefore, the conceived energy efficiency optimization
problem can be formulated as

min
{Pk,Wk}K

k=1

{
1

ρ

(
PBS + PMR

)
+ PC

0

}
, (27)

s.t. γk ≥ exp

(
EB

k u ln 2

τWk
+
Q−1

G (εck)√
τWk

)
−1,∀k, (27a)

FNt

(
gthk
)
≤ εhk =

εD
3
,∀k, (27b)

Pk ≤ P th
k ,∀k,

K∑
k=1

Pk ≤ Pmax, (27c)

Wk ≤ W th
k ,∀k,

K∑
k=1

Wk ≤ Wmax. (27d)

The constraints (27a) ensure the queuing delay violation prob-
ability εqk and DL decoding error probability εck, and (27b) are
the constraints on the proactive packet dropping probabilities
εhk . Essentially, (27a) and (27b) ensure high reliability and low
latency of URLLC. We express the maximum transmit power
of the MR as Pmax. Then, the transmit power assigned by the
MR to all the users should meet

∑K
k=1 Pk ≤ Pmax. Under this

total power constraint, the transmit power allocated to each
user depends on the channels of other users, and therefore
it is difficult to obtain the average transmit power per user
in closed form [35]. In order to facilitate optimization, the
maximum transmit power constraint, Pk ≤ P th

k , is introduced
for each user in (27c). The constraints (27d) make sure that the
sum of the bandwidth allocated to all the users should be less

than the total bandwidth of the MR, i.e.,
K∑

k=1

Wk ≤ Wmax, and

the bandwidth of each user should be less than the bandwidth
threshold W th

k .

IV. PROPOSED RESOURCE ALLOCATION ALGORITHM

Analyzing optimization problem (27), it can be observed
that within variables, both Pk and Wk for each user are
continuous. Therefore, for all K users, the complexity of
the problem is O

(
K ·R2

)
. This makes it challenging to

find an algorithm in polynomial time to jointly optimizing
the continuous variables of transmit power and bandwidth
allocation for K users in (27). Additionally, the constraints are
related to SINR, which is an non-convex optimization [40],
and there is strong coupling between variables Pk and Wk,
making problem difficult to solve directly and challenging.
Therefore, optimization problem (27) is an NP-hard problem
[41, 42].

Since the energy efficiency optimization problem (27) is
NP-hard, directly solving it is challenging. We decompose
the problem (27) into two subproblems, and use the BCD
approach to optimize {Wk} and {Pk}, respectively. For each
subproblem, a heuristic algorithm is used to optimize the
individual optimization variables one by one while fixing the
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other variables in an iterative procedure. The proposed re-
source allocation algorithm for optimizing the system’s energy
efficiency consists of the BCD procedure involving iteratively
the heuristic algorithm for optimizing user bandwidth and the
heuristic algorithm for optimizing user transmit power.

A. Problem Decomposition

In order to effectively solve the system energy efficiency
optimization problem proposed in Section III, we decompose
the optimization problem (27) into two sub-problems, namely,
the heuristic optimization of user bandwidth and the heuristic
optimization of user transmitted power.

1) Optimization of User Bandwidth: Given the transmit
power allocated to users by the MR, this subproblem deals
with how the MR should allocate the bandwidth to K users in
order to minimize the total power consumption of the system.
When all the users’ transmit power {Pk}Kk=1 are fixed which
satisfy the constraints (27c), the optimization problem (27) can
be written as

min
{Wk}K

k=1

{
1

ρ

(
PBS + PMR

)
+ PC

0

}
, (28)

s.t. γk ≥ exp

(
EB

k u ln 2

τWk
+
Q−1

G (εck)√
τWk

)
−1,∀k, (28a)

FNt

(
gthk
)
≤ εhk =

εD
3
,∀k, (28b)

Wk ≤ W th
k ,∀k,

K∑
k=1

Wk ≤ Wmax. (28c)

2) Optimization of User transmit Power: Given the band-
width allocated to users by the MR, this subproblem deals
with how the MR should allocate the transmit power to K
users in order to minimize the total power consumption of the
system. When all the users’ bandwidth {Wk}Kk=1 are fixed
which satisfy the constraints (27d), the optimization problem
(27) can be written as

min
{Pk}K

k=1

{
1

ρ

(
PBS + PMR

)
+ PC

0

}
, (29)

s.t. γk ≥ exp

(
EB

k u ln 2

τWk
+
Q−1

G (εck)√
τWk

)
−1,∀k, (29a)

FNt

(
gthk
)
≤ εhk =

εD
3
,∀k, (29b)

Pk ≤ P th
k ,∀k,

K∑
k=1

Pk ≤ Pmax. (29c)

B. Heuristic Algorithm

Heuristic algorithms are often used to solve problems that
are mathematically hard to solve or have high computational
complexity in a reasonable amount of time, such as combinato-
rial optimization problems [43]. It explores possible solutions
through limited computational resources rather than trying
to exhaust all possibilities, and is therefore useful and often
robust when dealing with high-dimensional or complex search
spaces. Also heuristic algorithms are less dependent on initial
conditions, this means they perform well on different problem
instances without the need for large-scale problem-specific

tuning. While heuristic algorithms are not necessarily guaran-
teed to find a globally optimal solution, they are usually able
to find locally optimal solutions that are close to the optimal
solution. In each iteration step, the BCD selects a block of
variables, and optimizes the selected block while keeping the
other blocks fixed. This single-direction update significantly
reduces the possibility of getting trapped in saddle points when
moving in multiple directions simultaneously [44]. This is
often sufficient in practical applications, especially when the
global optimal solution is difficult to obtain [45].

The variables of the optimization problem in this paper are
the transmit power Pk and the transmission bandwidth Wk

allocated by MR to the users in the carriage, because the num-
ber of user in the carriage is usually large. And the network
requirements between different user services are significant
differences, which makes it necessary for the algorithm to
be optimized for each user’s communication resource, with
the high reliability and low latency required of URLLC. In
addition, the total transmit power and the total bandwidth
allocated by MR to users are limited.

The above factors lead to a complex search space for
the optimization model in this paper. At the same time, the
traveling route of HSR is characterized by large distance
span and terrain changes. The total transmit power and total
bandwidth of MR change significantly with the different types
of accessed BSs. The heuristic algorithm can effectively solve
the search problem with high complexity such as communi-
cation resource allocation. In addition, the better robustness
of the heuristic algorithm can adapt to the changing driving
environment of the HSR. It has been applied in the related
literature of communication resource [11, 46, 47].

C. Heuristic Algorithm for User Bandwidth

We now present a heuristic algorithm for solving the opti-
mization problem (28). The strategy adopted is to optimize the
individual bandwidth variables Wk one by one while fixing the
other bandwidth variables in an iterative procedure. Observe
that (28b) does not directly restrict the optimization variables
Wk, while (28a) imposes constraint on Wk. The constraint
(28a) can be mathematically transformed to:

αkgkPk

N0
≥

(
exp

(
EB

k u ln 2

τWk
+

Q−1
G

(
εck
)

√
τWk

)
− 1

)
Wk, (30)

where EB
k is given in (18). Note that since the Doppler

effect PICI can be considered to be unchanged when the
train speed and the carrier frequency are fixed, here we omit
the expression PICI in (30) to simplify the analysis of the
inequality relation. Let the right hand part of inequality (30)
be equal to yk(Wk), namely,

yk(Wk) =

(
exp

(
EB

k u ln 2

τWk
+

Q−1
G

(
εck
)

√
τWk

)
− 1

)
Wk. (31)

We have the following two properties of yk(Wk) [32, 35].
Property 1: yk(Wk) first strictly decreases and then strictly

increases as Wk increases.
Property 2: yk(Wk) is strictly convex in Wk when Wk ∈(

0, W th
k

)
.
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9

Algorithm 1 Heuristic Algorithm for User Bandwidth

Initialization: Give transmit power {Pk}Kk=1 of K users;

Randomly generate initial bandwidth
{
W orign

k

}K

k=1
of K

users, calculate inflection points
{
W knee

k

}K
k=1

of yk(Wk)

for 1 ≤ k ≤ K and critical bandwidth
{
W thr

k

}K
k=1

that ensure constraints (27a), set accuracy ε = 0.05, and
iterative index γ = 0;

1: Calculate ηγ according to (25);
2: repeat
3: γ = γ + 1;
4: for (k = 1; k ≤ K; k = k + 1) do
5: Bandwidth of users {1, 2, ..., k − 1, k + 1, ...,K} are

fixed;
6: if W orign

k < W knee
k < min{W thr

k ,W th
k } then

7: for W γ
k = W orign

k : Wgap : min{W thr
k ,W th

k } do
8: Calculate Ptot with W γ

k according to (24) and
store them;

9: end for
10: else if W knee

k < W orign
k < min{W thr

k ,W th
k } then

11: for W γ
k = W knee

k : Wgap : min{W thr
k ,W th

k } do
12: Calculate Ptot with W γ

k according to (24) and
store them;

13: end for
14: end if
15: Find bandwidth W γ

k of user k that minimizes Ptot,
and set W orign

k = W γ
k ;

16: end for
17: Calculate ηγ according to (25);

18: until |ηγ−ηγ−1|
ηγ < ε;

19: Output ηγ and
{
W γ

k

}K
k=1

.

In the optimization of the user bandwidth (28), the user
transmit power {Pk}Kk=1 allocated by the MR to the K users
are fixed. The heuristic algorithm for user bandwidth allocation
is summarized in Algorithm 1.

In the initialization, the bandwidth of the K users are ran-

domly initialized as
{
W orign

k

}K

k=1
. According to Property 1,

there exists a unique inflection point W knee
k that minimizes

yk(Wk) of (31), where 1 ≤ k ≤ K. In addition, the critical
bandwidth W thr

k , 1 ≤ k ≤ K, for which the constraints (28a)
hold, are also calculated.

The main iterative procedure (lines 2 to 18) involves opti-
mizing individual bandwidth variables one by one while fixing
the other bandwidth variables (lines 4 to 16).
(a) Specifically, for user k, if its initial bandwidth W orign

k

satisfies W orign
k < W knee

k < min{W thr
k ,W th

k }, according
to Property 1, the function αkgkPk

N0
− yk(Wk) in the interval

wk ∈
[
W orign

k , min{W thr
k ,W th

k }
]

will first increase and
then decrease as the user bandwidth Wk increases. Not that
using min{W thr

k ,W th
k } is to ensure the constraints (28a) as

well as meet the user bandwidth threshold. At the inflection
point W knee

k , the function value is maximized. According
to (13) and the characteristics of MR-RRH communication,
by adjusting the k-th user bandwidth Wk according to the

increment Wgap =
|min{W thr

k ,W th
k }−W orign

k |
M , where M is the

value chosen to control the size of the increment, the mmwave
transmit power PBS of the RRH-MR communication and
user transmit power Pk will vary accordingly. Therefore, the
bandwidth Wk of user k that minimizes the system power Ptot

is found under the constraints (28a) and (28c), in the range of[
W orign

k , min{W thr
k ,W th

k }
]

(lines 6-9).
(b) If W knee

k < W orign
k < min{W thr

k ,W th
k }, according

to Properties 1 and 2, the function αkgkPk

N0
− yk(Wk) in

the interval wk ∈
[
W knee

k , min{W thr
k ,W th

k }
]

decreases
as the user bandwidth Wk increases. With the increment
Wgap =

|min{W thr
k ,W th

k }−Wknee
k |

M , the bandwidth Wk of user k
that minimizes the system power Ptot is found in the interval[
W knee

k , min{W thr
k ,W th

k }
]
, subject to the constraints (28a)

and (28c) (lines 10 to 13).

D. Heuristic Algorithm for Transmit Power

In the optimization of the user transmit power (29), the user
bandwidth {Wk}Kk=1 allocated by the MR to the K users are
fixed. Similar to Subsection IV-B, the strategy adopted to solve
the problem (29) is to optimize the individual transmit power
variables Pk one by one while fixing the other transmit power
variables in an iterative procedure. Examining the optimization
problem (29) reveals that the constraints (29b) restrict Pk,
given the fixed user bandwidth Wk. Specifically, the function
zk(Pk) = FNt

(
gthk
)
− εD

3 monotonically decreases as Pk

increases. Define the lower bound of Pk that satisfies the
constraint (29b) as P

th(min)
k . Then Pk cannot be smaller than

P
th(min)
k . The heuristic algorithm for the user transmit power

allocation is summarized in Algorithm 2.
The initialization involves randomly generating the initial

transmit power
{
P orign
k

}K
k=1

for the K users. The main iter-
ative procedure (lines 2 to 12) involves optimizing individual

Algorithm 2 Heuristic Algorithm for Transmit Power

Initialization: Give bandwidth {Wk}Kk=1 of K users; Ran-

domly generate initial transmit power
{
P orign
k

}K

k=1
for

K users, set accuracy ξ = 0.05 and iterative index γ = 0;
1: Calculate ηγ according to (25);
2: repeat
3: γ = γ + 1;
4: for (k = 1; k ≤ K; k = k + 1) do
5: Transmit power of users {1, 2, · · · , k − 1, k +

1, · · · ,K} are fixed;
6: for P γ

k = P orign
k : −Pgap : P

th(min)
k do

7: Calculate Ptot with P γ
k according to (24) and store

them;
8: end for
9: Find transmit power P γ

k of user k that minimizes
Ptot, and set P orign

k = P γ
k ;

10: end for
11: Calculate ηγ according to (25);

12: until |ηγ−ηγ−1|
ηγ < ξ;

13: Output ηγ and
{
P γ
k

}K
k=1

.
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Algorithm 3 Resource Allocation Optimization of User Band-
width and Transmit Power Based on BCD
Initialization: Randomly generate initial transmit power{

P orign
k

}K

k=1
and initial bandwidth

{
W orign

k

}K

k=1
for K

users, set iterative index γ = 0 and accuracy ζ = 0.05;
1: Calculate ηγ according to (25);
2: repeat
3: With fixed transmit power

{
P γ
k

}K
k=1

, update bandwidth{
W γ+1

k

}K
k=1

for K users using Algorithm 1;
4: With fixed user bandwidth

{
W γ

k

}K
k=1

, update transmit
power

{
P γ+1
k

}K
k=1

for K users using Algorithm 2;
5: Calculate ηγ according to (25);
6: γ = γ + 1;
7: until |ηγ−ηγ−1|

ηγ < ζ;
8: Output ηγ , {P γ

k }
K

k=1
and {W γ

1 }
K
k=1.

transmit power variables one by one while fixing the other
transmit power variables (lines 4 to 10). Specifically, for user
k, by adjusting Pk in the interval

[
P

th(min)
k , P orign

k

]
with the

increment Pgap =
|P orign

k −P
th(min)
k |

M , the transmit power Pk of
user k that minimizes Ptot is found under the constraints of
(29b) and (29c).

E. Proposed Algorithm

1) Algorithm Summary: The proposed resource allocation
algorithm decomposes the joint user bandwidth and transmit
power optimization (27) into the two subproblems of optimiz-
ing user bandwidth given user transmit power and optimizing
user transmit power given user bandwidth, separately, and
solves these two subproblems iteratively based on BCD. The
idea of the BCD approach is that during each iteration, only
one variable is optimized, while the remaining variables are
fixed [48]. Algorithm 3 summarizes the proposed resource
allocation optimization of user bandwidth and transmit power
using the BCD based on Algorithm 1 and Algorithm 2.

2) Block Coordinate Descent: BCD is a more generaliza-
tion of coordinate descent, which decomposes the original
problem into multiple sub-problems by simultaneously opti-
mizing a subset of variables. The order of updates during the
descent can be deterministic or random [48]. The solution idea
of BCD is to optimize the solution for only one variable in
each iteration, keeping the remaining variables constant, and
then solving alternately.

Consider an optimization task as follows

min F (x1, ..., xs) ≡ f(x1, ..., xs) +
∑s

i=1
ri(xi). (32)

A generic framework for BCD is shown in Algo-
rithm 4. In the general framework of BCD, the most
commonly used update scheme is block minimization, i.e.,
xk
i = argmin

xi

F
(
xk
<i, xi, x

k−1
>i

)
. For (32), we can use coor-

dinate descent to seek a minimum value, and we start with
an initial x(0) that loops over k, as described in the following
unfolding.

Algorithm 4 Block coordinate descent

Initialization: choose (x0
1, ..., x

0
s)

1: for k=1,2,... do
2: for i=1,2,...,s do
3: update xk

i with all other blocks fixed
4: end for
5: if stopping criterion is satisified then
6: return (xk

1 , ..., x
k
s).

7: end if
8: end for

x
(k)
1 = argmin

x1

F (x1, x
(k−1)
2 , x

(k−1)
3 , ..., x(k−1)

n ),

x
(k)
2 = argmin

x2

F (x
(k)
1 , x2, x

(k−1)
3 , ..., x(k−1)

n ),

...

x(k)
n = argmin

xn

F (x
(k)
1 , x

(k)
2 , x

(k)
3 , ..., xn).

(33)

Next, we will discuss the BCD applied in Algorithm 3.
We first perform the initialization at the moment γ = 0,
including the allocation scheme (Wk, Pk) for user commu-
nication resources. In the next step, the two sub-problems of
the section III-G decomposition are computed by BCD, by
Algorithm 1 and Algorithm 2. The results are compared with
the values calculated in the previous calculation, as shown
in step 7 of Algorithm 3. The first sub-problem is to fix
the transmit power Pk assigned by MR and optimize the
communication bandwidth Wk allocated to users, to obtain
the local optimal solution; The second is to fix the bandwidth
Wk and optimize transmit power Pk, to obtain the local
optimal solution. Finally, we determine whether the end-of-
iteration condition is satisfied. If the iteration does not end,
the next alternate iteration of optimization is performed by
BCD. Finally, when the algorithm converges, we will get the
optimal solution.

3) Complexity Analysis: The complexity of Algorithm 3
depends on the number of users NUE in the carriage as well
as the complexity of the heuristic optimization algorithms
for the user bandwidth allocation subproblem and the user
transmit power allocation subproblem, namely, Algorithm 1
and Algorithm 2.

For the heuristic optimization algorithm of the user band-
width allocation, let user k perform N band

k bandwidth opti-
mization calculations to find the locally optimal bandwidth.
Assume that Algorithm 1 needs to perform N1 iterations
to achieve the convergence condition

∣∣ηγ − ηγ−1
∣∣ /ηγ < ε.

Then the complexity of Algorithm 1 is on the order of
O
(
N1 ·

∑NUE

k=1 N band
k

)
.

For the heuristic optimization algorithm of the user transmit
power allocation, assume that user k performs Npower

k power
optimization calculations to find the locally optimal transmit-
ted power and Algorithm 2 needs N2 iterations to achieve
the convergence condition

∣∣ηγ − ηγ−1
∣∣ /ηγ < ε. Then the

complexity of Algorithm 2 is O
(
N2 ·

∑NUE

k=1 Npower
k

)
.
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Let the number of iterations for Algorithm 3 to achieve
the convergence condition

∣∣ηγ − ηγ−1
∣∣ /ηγ < ζ be N3. The

complexity of the proposed algorithm is on the order of
O
(
N3 ·

(
N1 ·

∑NUE

k=1 N band
k +N2 ·

∑NUE

k=1 Npower
k

))
.

4) Convergence Analysis: The Algorithm 3 presented in
this paper, that is Resource Allocation Optimization of User
Bandwidth and Transmit Power Based on BCD, involves the
iterative solution of two subproblems by BCD.

A note on the convergence of Algorithm 1. When the trans-
mit power Pk allocated by MR to the users is fixed, Algorithm
1 is used to solve the optimal solution of the user bandwidth
Wk. In Algorithm 1, for the objective function P γ

tot(W
γ , P ∗),

the communication bandwidths of the remaining K − 1 users
are fixed in the γth iteration using the heuristic algorithm
(i.e., line 2 - line 18) to find the optimal bandwidth for user
k, to minimize the total power consumption. Note that in
this paper, because of the non-monotonic constraints of (28a)
(i.e., property 1 and 2) and the continuity of the variable,
the complexity of the optimization algorithm is reduced by
discretizing the variable Wk by exploiting Wgap that depends
on the initial variable W orign

k and the inflection point W knee
k

in (28a). Finally, user k can obtain the bandwidth Wk that
minimizes the total system power consumption Ptot and
satisfies both constraints (28a) and (28c). Next, the optimal
bandwidth Wk+1 for the user k + 1 is solved. Thus in the
γth iteration of Algorithm 1,the heuristic algorithm is utilized
to obtain the optimal solution {W γ

k }Kk=1 for the bandwidth of
all the users. Because it is searching for the bandwidth W γ

k

for which the user k minimizes the total power consumption
Ptot, P

γ+1
tot (W γ+1, P ∗) ≤ P γ

tot(W
γ , P ∗), i.e., P γ

tot(W
γ , P ∗)

is nonincreasing. Moreover, since Wgap discretizes the con-
tinuous variable, this makes the system power consumption
P γ
tot(W

γ , P ∗) bounded. Therefore, Algorithm 1 is convergent.
A note on the convergence of Algorithm 2. When the user

bandwidth Wk allocated by the MR is fixed, Algorithm 2 is
used to solve for the transmit power Pk allocated by the MR to
the user. Due to the monotonicity of the constraint (29b) and
the continuity of the variable, the discretization of the variable
by Pgap depending on the initial variable P orign and the
threshold P th(min) of the constraint (29b) is utilized to reduce
the computational complexity. The proof of convergence is
similar to that of Algorithm 1. In the γth iteration, the optimal
solution P γ of the transmit power of all users is obtained by
the heuristic algorithm (i.e., line 2 - line 12). Each iteration
of Algorithm 2 is computed with the aim of minimizing the
system power consumption Ptot and eventually obtaining P γ

k

corresponding to the system power consumption P ∗
tot, and

hence P γ+1
tot (W ∗, P γ+1) ≤ P γ

tot(W
∗, P γ). Also the system

power consumption P γ
k is bounded due to the discretization

of the variables. Therefore, Algorithm 2 is convergent.
A note on the convergence of Algorithm 3. Algorithm 3

utilizes the BCD algorithm to iteratively optimize Algorithm
1 and Algorithm 2. The solution idea of BCD is to optimize
only one variable per iteration, keeping the rest of the vari-
ables constant, and then solving alternately, which has been
described in detail in the previous description of the BCD
algorithm. In line 3 of Algorithm 3, the transmit power Pk is

fixed and the user bandwidth allocation scheme is optimized to
obtain a locally optimal solution through Algorithm 1. In line
4, the user bandwidth Wk is fixed and the transmit power
allocation scheme is optimized to obtain a locally optimal
solution through Algorithm 2. The convergence of Algorithm
1 and Algorithm 2 has been proved earlier. Meanwhile, in
the γth iteration in Algorithm 3, the corresponding converged
local optimum values can be obtained for both line 3 and
line 4, and line 4 is relatively non-increasing with respect to
the value obtained for line 3. So in Algorithm 3, there exists
P γ+1
tot (W γ+1, P γ+1) ≤ P γ+1

tot (W γ , P γ) , which indicates
that the objective function of the original problem is non-
increasing. Also due to the discretization of variables Wk and
Pk, this makes the problem P γ

tot(W
γ , P γ) of minimizing the

power consumption of the system bounded. Thus Algorithm
3, Resource Allocation Optimization of User Bandwidth and
Transmit Power Based on BCD, proposed in this paper, is con-
vergent. And the convergence performance of the Algorithm 3
is showed in Fig. 11.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm in simulation using the HSR model with MR for
vehicle-ground URLLC communication.

A. Simulation Setup

The deployment model of RRH and MR in the HSR
scenario is 3GPP 38.913 [7], which is detailed in Subsec-
tion III-A. The mmwave communication model between RRH
and MR is 3GPP 38.901 [12], which is discussed in Sub-
section III-B. The expression of URLLC [26] is shown in
Subsection III-C. The traffic model based on Poisson arrival
process of packet [34] is given in Subsection III-D. The QoS
of URLLC system [35] is presented in Subsection III-E. The
energy efficiency of the system is derived in Subsection III-F.
In the simulation, the train runs at a speed of v = 250 km/h
from the position of 100 m horizontal distance to the RRH.
The train runs through eight location bins, and the length of
a location bin is 50 m. The number of bytes u in a packet
is 20. The carrier frequency of mmwave communication is
fc = 30GHz. The RRH communicates with the user in the
carriage via MR. There are NUE users in a carriage, and the
communication devices carried by users have NApp apps that
consume traffic on average, which conform to the Gaussian
distribution. These apps are activated with probability κ. The
total bandwidth of MR is Wmax, and the total transmit power
of MR is Pmax. εD is the maximum tolerable error rate
required to ensure the overall reliability of URLLC. Table II
summarizes the default parameters of the simulation system.
Unless otherwise specified, these default parameters are used.

Two existing resource allocation algorithms are chosen as
the benchmarks to compare with the proposed algorithm in the
system performance evaluation simulation under different train
locations and parameter configurations. For the convenience,
the proposed algorithm that optimizes the resource allocation
of both users’ bandwidth and transmit power based on BCD is
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TABLE II
PARAMETERS OF HSR SIMULATION CONFIGURATION

Parameter Value

Distance between RRH and rail DRRH rail 30 m
Height of RRH hR 15 m
Height of MR hT 1.5 m
Height of train htrain height 4.5 m
Length of train htrain length 30 m
Height of receiver antenna hRX height 6 m
Radius of location bin σD 50 m
Distance between adjacent RRH DRRH 600 m
Average height of building h 5 m
Vertical 3 dB beamwidth at RRH θRRH 3dB 65◦

Vertical 3 dB beamwidth at MR θMR 3dB 90◦

Horizontal 3 dB beamwidth at RRH ϕRRH 3dB 65◦

Horizontal 3 dB beamwidth at MR ϕMR 3dB 90◦

RRH vertical sidelobe attenuation SLAVRRH
30 dB

MR vertical sidelobe attenuation SLAVMR
25 dB

RRH maximum attenuation Amax RRH 30 dB
MR maximum attenuation Amax MR 25 dB
RRH maximum directional gain Gmax RRH 8 dBi
MR maximum directional gain Gmax MR 5 dBi
Mmwave carrier frequency fc 30 GHz
Density and size of obstacles β 0.001
Noise power spectrum density N0 -174 dBm/Hz
Mmwave fixed rate at RRH Rmmwave 4× 108 bit/s
URLLC communication carrier frequency furllc 2.5 GHz
Standard deviation of shadow fading σ 5
Path loss exponent n 3.8
Total MR bandwidth Wmax 20 MHz
URLLC user gain Gue 3 dBi
URLLC antenna gain Gantenna 25 dBi
High-speed train speed v 250 km/h
URLLC maximum latency tolerance Dmax 1 ms
Duration of frame Tf 0.1 ms
Duration of DL/UL transmission τ 0.05 ms
Duration of RRH-MR transmission Dmmwave 0.5 ms
Packet size u 160 bits
Queuing delay requirement Dq

max 0.85 ms
Power amplifier efficiency ρ 0.5
Fixed circuit power consumption PC

0 50 mw
Average number of Apps for users NApp 15
Activation probability of Apps κ 0.5
Maximum total system error rate εD 3× 10−7

Number of users in a carriage NUE 20

denoted PA. The other two resource allocation algorithms in-
clude the random algorithm (RA), and the resource allocation
algorithm based on two-stage dynamic K-means clustering
(KA) [49], which are further elaborated as follows.

• Random Algorithm (RA). This wireless resource
scheduling method configures the bandwidth and transmit
power allocated by MR to users in a random method.
Therefore, the difference between RA and PA is that our
PA optimizes the parameter configuration with BCD.

• Resource allocation algorithm based on two-stage
dynamic K-means clustering (KA) [49]. First, the unsu-
pervised K-means algorithm is used to divide the users
into K groups based on the number of activated apps
and their relative positions to MR, and the bandwidth
and power available from MR are divided according to
the relative relationships of the cluster centers of the K
groups. Then the bandwidth and power in each group are
optimized by the K-means clustering to minimize the
energy consumption of the system under the system and
URLLC constraints.
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Fig. 5: System energy efficiency comparison of three resource
allocation algorithms at different M-R distance for two differ-
ent numbers of Apps.
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Fig. 6: Total system power consumption comparison of three
resource allocation algorithms at different M-R distance for
two different numbers of Apps.

B. Performance Comparison

In the simulation, we change the configuration of the system
parameters and evaluate the achievable performance of the
proposed algorithm and the two benchmark algorithms. Note
that the relative horizontal distance between the MR and
RRH (M-R distance) is considered here, and the positive and
negative distances indicate that the train is on the left and right
sides of the RRH, respectively.

1) Impact of Average Number of Apps NApps: Fig. 5 and
Fig. 6 investigate the impact of the average number of Apps
NApps on the achievable energy efficiency and total system
power consumption for the three resource allocation algo-
rithms, PA, RA and KA, respectively. The simulation results of
Fig. 5 clearly show that the system energy efficiency increases
with NApps. On one hand, as the average number of Apps on
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each user device increases, the bandwidth threshold allocated
to each user remains the same since the same total MR
bandwidth is given. However, users with more Apps would
need to be allocated with more bandwidth otherwise fewer
available low-power solutions would meet the reliability and
latency constraints. Therefore, the total power consumption
has to increase, as shown in Fig. 6. On the other hand,
as NApps increases, packet arrival rates grow faster, which
more than compensates for the negative effect of higher total
power consumption, leading to an improvement in the energy
efficiency. The results again demonstrate that our PA is the
best, and KA is the second best, while RA is the worst,
in terms of system energy efficiency. When the distance
M−R = 200m and the average number of apps NApps = 20,
for example, the energy efficiency achieved by our PA is 21%
higher than that of KA, 39% higher than that of RA.

The simulation results clearly show that our PA attains the
best performance, and KA achieves the second best perfor-
mance, while RA performs the worst. For example, when the
horizontal distance of the train to the RRH is M−R = 100m
and the number of users is NApps = 20, the energy efficiency
of our PA is around 15% higher than that of KA, and more than
35% higher than that of RA. Note that the performance of RA
is achieved with the initial bandwidth and power allocation for
PA. The significant performance gain of PA over RA therefore
demonstrates the effectiveness of the proposed optimization
approach for alternatively optimizing the bandwidth and power
allocated to the users, separately. The KA scheme classifies the
users with an approximate number of apps and relative location
relationships into a group by clustering. Then it performs a
second clustering to optimize the bandwidth and power of each
group. The advantage of clustering is that it is low complexity.
But it suffers from the disadvantage of not optimizing for each
user, leading to an inferior performance than PA. When the
distance reaches M − R = 400m, the differences between
PA, KA and RA are not as large as when the absolute value
of the M-R distance is less than 400 m, because the large
path loss reduces the room that can be exploited by resource
allocation optimization.

2) Influence of Total MR Bandwidth Wmax: Fig. 7 and
Fig. 8 illustrate the influence of the total MR bandwidth
available on the achievable energy efficiency and total sys-
tem power consumption with different train speed, for three
comparison algorithms, PA, RA and KA. Note that in the simu-
lation about different train speeds, distance is M−R = 250 m.
It can be observed that the system energy efficiency increases
with the total MR bandwidth. By increasing Wmax, the band-
width available per user increases. Under the condition that
the reliability and delay constraints of URLLC are satisfied,
the available low-power solutions will increase, and the total
power consumed decreases accordingly, as shown in Fig. 8.
This leads to an increase in the energy efficiency. Furthermore,
we observe that the system energy efficiency of all three
resource allocation algorithms decreases as the train speed
increases, corresponding to an increase in the total system
power consumption. This is because in this paper, we consider
the Doppler effect PICI due to high speed, and as shown in
(12), PICI increases as the train speed increases, leading to
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Fig. 7: System energy efficiency comparison of three resource
allocation algorithms at different train speed for two different
MR bandwidth.
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Fig. 8: Total system power consumption of three resource
allocation algorithms at different train speed for two different
MR bandwidth.

a decrease in the achievable rate in (13), which can drive the
system to require more power to satisfy the QoS of URLLC.
According to the simulation results of Fig. 7, PA is superior to
the other two resource allocation algorithms. At the train speed
v = 250 km/h and with the MR bandwidth Wmax = 22MHz,
for instance, the energy efficiency of PA is 28% higher than
that of KA, 87% higher than that of RA.

3) Impact of Total MR transmit Power Pmax: Fig. 9 depicts
the effect of the maximum total MR transmit power Pmax on
the achievable energy efficiency for three algorithms, PA, KA,
and RA. According to Fig. 9, increasing Pmax decreases the
system energy efficiency. This is because as the maximum MR
transmit power increases, the power allocated to each user
can increase accordingly to reduce the total bandwidth and
the RRH transmit power consumed. This causes an increase
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Fig. 9: System energy efficiency comparison of three resource
allocation algorithms at different train speed for two different
maximum total MR power.
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Fig. 10: System energy efficiency comparison of three resource
allocation algorithms at different M-R distance for two differ-
ent maximum tolerable total error probability.

in the total power consumption, leading to a reduction in
system energy efficiency. Due to the Doppler effect PICI

caused by high speed, the energy efficiency of the system
correspondingly decreases as the speed increases. Again, PA
is superior to the other two resource allocation algorithms.
In particular, at the train speed v = 300 km/h and with
the maximum total MR transmit power Pmax = 40 dBm, the
energy efficiency achieved by PA is 25% higher than that of
KA, and 58% higher than that of RA.

4) Influence of Maximum Tolerable Error Rate εD: Fig. 10
investigates the influence of the maximum tolerable total error
probability εD on the system energy efficiency for PA, KA and
RA, which shows that increases εD leads to better achievable
system energy efficiency. This is because by increasing the
maximum tolerable error probability, the power consumption
of each user can be decreased while transmitting the same
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Fig. 11: Convergence performance analysis of Algorithm 3.

amount of data. At the same time, due to (1 − εD) ≈ 1 in
the energy efficiency formula (25), the package arrival rate
changes little. Consequently, the total energy efficiency is
increased. Again the simulation results confirm the superior
performance of PA over the other two resource allocation
algorithms. For example, at the distance M − R = 200m
and with εD = 3 × 10−7, the energy efficiency achieved by
PA is 21% higher than that of KA, 40% higher than that of
RA.

VI. CONCLUSIONS

In this paper, we have addressed optimal allocation of
bandwidth and transmit power to users in the high-speed
rail URLLC-based communication system assisted by mo-
bile relays. Our focus has been on maximizing the system
energy efficiency while meeting the QoS requirements of
URLLC. More specifically, we have developed a mmwave
train-to-ground URLLC model incorporating MR, which aims
to reduce the penetration loss of communication between
RRH and users in the carriage. Based on this model, we
have formulated the system energy efficiency maximization
problem subject to the URLLC QoS requirements by jointly
optimizing the users’ bandwidth and transmit power allocation.
In order to efficiently solve this NP-hard optimization, we have
alternatively optimized the user bandwidth allocation and the
user transmit power allocation using a heuristic BCD-based
approach. An extensive simulation study under various system
parameter configurations has demonstrated the effectiveness
of the proposed algorithm in improving system energy effi-
ciency. In particular, the simulation results have shown that
our proposed algorithm consistently outperforms a very latest
resource allocation optimization algorithm.
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