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Online combinatorial resource allocation is the process of dynamically assigning lim-
ited resources to tasks that arrive arbitrarily. The allocation of resources is done with-
out complete knowledge of future resource demands. Conventional resource allocation
algorithms, such as mathematical optimization, are inefficient for online resource allo-
cation problems because relevant information about the problem is not available in
advance; they cannot predict and adapt to the dynamic changes of the problem; they
have high online computational costs, making them impractical for real-time decisions;
and they are inefficient for non-convex optimization problems.

Real-time optimization using artificial intelligence (AI) and machine learning (ML) al-
gorithms is state-of-the-art in online resource allocation. The use of AI/ML is one of
the key components in the evolution of 5G to 6G. Deep reinforcement learning (DRL)
is a subfield of ML that integrates reinforcement learning (RL) and deep learning (DL),
both of which are components of AI. Due to its ability to make sequential online deci-
sions in dynamic and uncertain contexts, as well as its ability to learn from experience
and lower online computational costs, DRL is a commonly used solution for online
resource allocation problems.

Compared to other application areas, DRL encounters unique challenges in online com-
binatorial resource allocation problems. The resource allocation problem often involves
elements that are of varying sizes and have no specific order, henceforth referred to as
arbitrarily sized and orderless (ASO) elements. In mobile and cloud computing, for
example, the problem can include tasks with varying numbers and sizes, as well as
varying numbers of user devices (UDs). However, existing DRL algorithms use stan-
dard deep neural network (DNN) algorithms as function approximators. The neurons
in DNNs are set to accept specific information at the specific index of a given input,
whereas the order of the tasks in the input of combinatorial resource allocation prob-
lems does not matter. The DNN cannot generalize using the knowledge it learned with
a different permutation of the same input. Furthermore, the number of UDs can vary,

http://www.southampton.ac.uk


iv

but the number of neurons in the input of standard DNNs is fixed in size. Additionally,
existing DRL algorithms make decisions by selecting a single action sequentially or a
fixed number of actions at a time for the ASO input. However, online combinatorial
resource allocation needs to select an arbitrary number of actions based on the resource
constraint. This sequential action selection leads to increased dimensionality, subopti-
mal convergence in training, and greater computational complexity. Arbitrary action
space, in particular, is understudied in DRL. Furthermore, existing DRL algorithms in
resource allocation problems consider homogeneous constraints on either the UDs or
the server side, while resource allocation problems usually include various resource
constraints. There are continuous-valued resource constraints on UDs, discrete-valued
number of channels on the communication network, and combinatorial competition of
UDs on the server due to storage constraints. These challenges can generally be sum-
marized as handling an arbitrary state space for an ASO input, an arbitrary action space
for an ASO output, and various constraints on the UDs and the server.

The objective of this research is to advance DRL algorithms for online combinatorial re-
source allocation problems so that they can effectively handle arbitrary state and action
spaces for the ASO inputs and outputs, as well as to consider heterogeneous resource
constraints on the UDs and the server. Consequently, we propose three solutions as
follows. 1) A novel DRL algorithm with coalition action selection for online combina-
torial resource allocation. The coalition action selection enables DRL to simultaneously
select an arbitrary number of actions without updating the state multiple times. By
reducing state space and depth of decision, coalition action selection provides better
performance, faster convergence, and lower execution complexity compared to con-
ventional sequential action selection approaches, where the state is updated for every
action taken. 2) We proposed a novel DRL algorithm with computationally efficient
stationary ASO input transformation for online combinatorial resource allocation prob-
lems. By using a set of equations to transform the ASO input to a fixed-size vector, the
stationary ASO input transformation provides better convergence and lower compu-
tational cost than a transformer neural network-based transformation, which is used
as the state-of-the-art technique to handle ASO inputs in existing combinatorial opti-
mization problems. The reason for the efficiency is that the transformer is designed
to learn contextual relationships between the sequence of words in natural language
processing (NLP), but the ASO inputs in the resource allocation are numerical and do
not have as significant a relationship as the sequence of words. 3) By applying coali-
tion action selection to the multiagent deep deterministic policy gradient (MADDPG),
we propose a combinatorial client-master multiagent DRL (CCM MADRL) algorithm
for task offloading in mobile edge computing (CCM MADRL MEC) to handle various
resource constraints.

The efficiencies of the proposed solutions, compared to state-of-the-art approaches, are
assessed using online resource allocation problems with arbitrary arrival of tasks and
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various resource constraints. The DRL algorithm with coalition action selection is eval-
uated using an online resource allocation problem with an arbitrary number of tasks.
It has outperformed existing sequential action selection approaches in terms of prox-
imity to offline optimal solutions, speed of convergence, and computational costs. The
coalition action selection retains close to offline optimal performance in settings with
different task arrival rates, whereas the sequential action selection approach drops in
performance when the task arrival rate is high. The DRL with coalition action selection
is implemented using the encoder of the transformer neural network. We evaluated the
stationary ASO input transformation on the same problem. It has outperformed the
transformer-based transformation in various sizes of task arrival rates. Furthermore,
the stationary ASO input transformation yields a lower computational complexity than
the transformer for various task arrival rates. The difference in computational cost be-
tween the transformer and the stationary ASO input transformation is greater in the se-
quential action selection than in the coalition action selection. Lastly, the CCM MADRL
algorithm is evaluated using a task-offloading problem in mobile edge computing with
different constraints, such as battery level, task deadline, transmission power, compu-
tational resource, server storage capacity, and number of communication channels. By
exploiting the different advantages of the policy iteration and value function and the
coalition action selection approach, it has demonstrated better convergence than the
existing MADDPG and heuristic algorithms.
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Chapter 1

Introduction

1.1 Overview

Online combinatorial resource allocation refers to the process of dynamically allocating
limited resources to tasks arriving sequentially and arbitrarily (Tan et al., 2020), where
allocation decisions must be made without complete knowledge of future resource re-
quests. Unlike offline resource allocation, where all relevant information is known in
advance and decisions are made based on a fixed dataset, online resource allocation
makes decisions for incoming requests. Online combinatorial resource allocation is a
challenging problem that arises in various application domains, including cloud com-
puting (Xu et al., 2022), online job scheduling (Etesami, 2021), and auctions (Tan et al.,
2020). Solving online combinatorial resource allocation problems is often computation-
ally infeasible due to their combinatorial nature and the uncertainty of future requests.

Resource allocation algorithms have evolved with increasing resource allocation chal-
lenges. In the beginning, resource allocation was controlled by rule-based or heuristic
methods that depended on human judgment and predetermined algorithms (Cichoń,
1997). However, these methods struggle to adapt to changing conditions and opti-
mize complex resource distributions. Next, resource allocation has been transformed
by mathematical optimization approaches such as linear programming and integer pro-
gramming, which use mathematical models to discover the best solutions considering
constraints and objectives (Sundermann et al., 2021). Heuristic algorithms, such as ge-
netic algorithms, particle swarm optimization, and simulated annealing, offered more
flexible and adaptable solutions than mathematical models to complex resource alloca-
tion problems (Cichoń, 1997). In contrast to mathematical models, which are based on
a set of equations that explain the problem, heuristic algorithms are problem-solving
strategies that use trial and error to find a solution (Varde et al., 2008).

Traditional resource allocation algorithms, such as mathematical optimization, have
four drawbacks that make them ineffective for online resource allocation problems.
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First, relevant information about the problem is not available in advance. Second, they
cannot predict and adapt to the dynamic changes of the problem. Third, they incur high
online computational costs (Nian et al., 2020b), making them impractical for real-time
decisions. Fourth, they are inefficient for non-convex problems (Wang et al., 2018a;
Tefera et al., 2023). Despite the applicability to non-convex problems, heuristic algo-
rithms also suffer the same limitations. Moreover, heuristic algorithms are approximate
solutions.

Real-time solutions using AI and ML algorithms are state-of-the-art in online resource
allocation (Wang et al., 2018a). The use of AI/ML is one of the key components in the
evolution of 5G to 6G (Kaur et al., 2021). DRL is a subfield of ML that integrates the
advantages of RL and DL as presented in Section 2.2.5.1. It has attracted a lot of at-
tention in many fields due to its ability to make consecutive decisions in dynamic and
uncertain contexts (Wu et al., 2021a; Boute et al., 2022). It is a commonly used solution
in resource allocation problems. A survey on the applicability of DRL to resource allo-
cation by Luong et al. (2019) has concluded that the use of DRL has many advantages
in solving complex problems where there is incomplete network information. It allows
all entities in the network to learn and make autonomous decisions, improves learning
speed, and provides the ease of modeling some problems, such as security, as games.
Another survey of DRL in control systems (Nian et al., 2020b) has stated that, compared
to mathematical programming-based control systems, DRL has the advantage of cop-
ing with uncertainties, non-stationarity, and reducing the online computational cost by
having offline training, which makes it advantageous for systems where reducing the
online computational cost is of importance.

However, because online combinatorial resource allocation problems involve ASO tasks
and the presence of various discrete and continuous constraints, the application of DRL
to resource allocation problems faces many challenges as presented in Section 1.2. Fur-
thermore, the current DRL algorithms are centralized and not scalable. A survey by
Luong et al. (2019) shows that most of the current applications of DRL algorithms in
resource allocation problems are single-agent algorithms deployed to solve a single ob-
jective function. Despite the introduction of multi-agent DRL (MADRL) algorithms to
resource allocation problems, most of them are made up of homogeneous agents aimed
at solving the same objective with the same resource constraints.

In this research, we focus on addressing the challenges that the DRL algorithms face
in resource allocation problems. The challenges of applying DRL to online resource
allocation problems and research requirements are presented in the following section.
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1.2 Research Challenges and Requirements

While DRL can overcome the limitations of traditional mathematical optimization al-
gorithms in the context of online resource allocation, the application of DRL to resource
allocation faces unique challenges compared to other application areas. We categorize
the challenges into three categories: arbitrary state spaces, arbitrary action spaces, and
various constraints.

The first challenge is handling the ASO input. Inputs in resource allocation problems
are usually ASO, which means that the elements of the input are variable in number,
and their order does not matter. In other words, the input can be a set. Standard
DNNs, which are used as function approximators in DRL, have two challenges with
variable-size and permutation-invariant elements in their inputs and outputs. The first
challenge is that a permutation-invariant input is considered as different information
when fed to the neural network in different orders because it is fed to different input
neurons of DNN. As a result, different permutations of a problem instance end up be-
ing learned as distinct problem instances, which decreases generalizability and costs
training time and resources. The second challenge of DNN is its inability to accept
variable-size information because standard DNNs are usually configured with a fixed
number of inputs and outputs. Existing DL approaches that handle permutation in-
variance and arbitrary size and their challenges are discussed in Chapter 2.

The second challenge is in the action space. Existing DRL algorithms make sequen-
tial decisions by updating their state after each decision, whereas the combinatorial
problem is orderless. Sequential action selection increases the dimensionality of the
problem (Janner et al., 2021) because it increases the number of states to be explored.
This leads to increased uncertainty, lower convergence, and higher computational costs
that affect execution speed. The DRL algorithms are also configured to make choices
from a fixed number of action spaces, whereas resource allocation problems have dy-
namic action spaces. Computational complexity and performance can be improved by
making coordinated simultaneous decisions for ASO inputs and outputs.

Third, current MADRL algorithms in online combinatorial resource allocation prob-
lems are homogeneous agents with the same resource constraints and objectives, while
the online resource allocation problem can have a mix of continuous and discrete con-
straints, and combinatorial decisions. For example, UDs, communication channels, and
servers in task-offloading problems (Islam et al., 2021) have different constraints. There
are continuous-valued resource constraints on UDs, discrete-valued number channels
on the communication network, and combinatorial selection of UDs on the server due
to storage constraints. However, in existing DRL algorithms, only homogeneous con-
straints of the UDs are considered as a penalty in the reward function. This must be
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addressed using heterogeneous agents that consider the different constraints. Further-
more, most MADRL-based resource allocation algorithms deploy multiagent deep de-
terministic policy gradient (MADDPG) algorithms that comprise actor and critic net-
works. Because only actors make decisions and the critic is only used to give feedback
to the actors in training, they are not efficient in terms of convergence for combinatorial
decisions due to the lack of cooperation as presented in Section 2.2.8.5.

The main requirements of the DRL and MADRL algorithms for the resource allocation
problem can be grouped as follows.

RI : The curse of dimensionality in DRL-based resource allocation algorithms must
be minimized to increase convergence and decrease computational complexity,
by making coordinated combinatorial decisions rather than sequential decisions
that update the state for each decision. Action selection must work for an arbi-
trary action space.

RI I : DRL-based resource allocation algorithms must be able to accept an arbitrary
number of inputs. They must be permutation-invariant to a change in the order
of the input.

RI I I : MADRL-based resource allocation algorithms must minimize the computational
cost of online execution to give a real-time solution to the sensitive time system.

RIV : MADRL-based resource allocation algorithms must allow the coexistence of dif-
ferent decision entities, with heterogeneous MADRL agents, in the resource allo-
cation problem to consider the different types of constraints and objective func-
tions.

RV : Resource allocation algorithms must be resilient and generalizable to network
dynamics, including changes in the number of users, communication channels,
and permutations in the input.

RVI : MADRL-based resource allocation algorithms must be scalable and resilient to
allow new agents to enter and leave the agent team.

1.3 Research Contributions

This section describes the main contributions of this work. The detailed presentation
of the contributions is presented as chapters as outlined in Section 1.5.

CI : A novel DRL algorithm with coalition action selection for online combinato-
rial resource allocation with arbitrary action space. The algorithm enables the
simultaneous selection of a coalition of an arbitrary number of actions, leading to



1.4. Published Works 5

state-space reduction, faster learning and execution, and close to optimal conver-
gence by avoiding sequential action selection and state update. This is proposed
based on the Requirement RI , the Requirement RI I I , and the Requirement RV .

CI I : A novel computationally efficient stationary ASO input transformation func-
tion that transforms an unorderly and arbitrarily sized input space into a fixed
size vector before being fed to the DRL. The transformation is also permutaiton
invariant. This is proposed to meet Requirement RI I , Requirement RI I I , and Re-
quirement RV .

CI I I : A novel combinatorial client-master MADRL algorithm for task offloading in
mobile edge computing, with battery threshold, computational resource, trans-
mission power constraints on the UDs; a storage constraint on the edge server;
number of channels as a constraint on the wireless network. Heterogeneous
MADRL agents are deployed on the UDs and on the server to consider the var-
ious constraints and make different decisions. The constraints of UDs are con-
sidered in the reward functions as a penalty, and the constraints of the server
and channels are considered in the combinatorial action selection. This contribu-
tion applies the coalition action selection of Contribution CI and the per-action
DQN to form a master agent to extend existing DRL algorithms with homoge-
neous agents to heterogeneous agents of the value function and policy gradient
methods in a client-master relationship. The CCM MADRL MEC is proposed to
address many requirements, including Requirement RIV , Requirement RI , and
Requirement RV . By including Contribution CI I in its model, it also serves as a
foundation for Requirement RVI and Requirement RI I .

We have evaluated the proposed methods and algorithms. Contribution CI is evalu-
ated using an online resource allocation problem, as used by Zhang et al. (2009). It
has significantly outperformed existing sequential approaches in terms of proximity to
the offline optimal, speed of convergence, and computational costs. Contribution CI I

is applied to the problem in Contribution CI , which used the transformer neural net-
work to handle the ASO input. A detailed experimental evaluation is conducted show-
ing better convergence and relative to the transformer-based counterparts on both the
coalition and sequential action selection approaches. Contribution CI I I is evaluated in
task-offloading problems in mobile edge computing with various constraints on the
UDs, the wireless channel, and the server. It has shown better convergence than the
heuristic and benchmark algorithms.

1.4 Published Works

Some of the contributions are published at a conference as follows at the time of sub-
mission.
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• Contribution CI is published as Deep Reinforcement Learning with Coalition Ac-
tion Selection for Online Combinatorial Resource Allocation with Arbitrary Ac-
tion Space, in Proceedings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems (Gebrekidan et al., 2024a).

• Contribution CI I I is published as Combinatorial Client-Master Multiagent Deep
Reinforcement Learning for Task Offloading in Mobile Edge Computing, in Pro-
ceedings of the 23rd International Conference on Autonomous Agents and Mul-
tiagent Systems (Gebrekidan et al., 2024b).

1.5 Structure of the Thesis

The thesis is structured as follows. Chapter 2 explores the literature review of DRL-
based resource allocation algorithms and their limitations, followed by existing types
of DRL algorithms in general, and summarizes how they are used and modified for the
proposed algorithms. Chapter 3, Chapter 4, and Chapter 5 present Contribution CI ,
Contribution CI I , and Contribution CI I I respectively. Finally, Chapter 6 concludes the
thesis.
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Chapter 2

Literature Review

Since this research aims to address the challenges that DRL algorithms face regarding
online resource allocation problems with arbitrary state and action spaces, the litera-
ture review is divided into two sections. The challenges and requirements mentioned
in Section 1.2 are revisited in the first section, which examines current DRL-based re-
source allocation strategies. The second section reviews various DRL algorithms and
explains how to customize and apply them for the contributions stated in Section 1.3.
The limitations of existing DRL algorithms, in general, and their customization for our
proposed algorithms are summarized in Section 2.2.9.

2.1 Reinforcement Learning-based Resource Allocation Algo-
rithms and Their Challenges

As discussed in Chapter 1, because DRL is state-of-the-art and more suitable than tradi-
tional resource allocation algorithms for online resource allocation, this section focuses
only on the review of DRL-based online resource allocation algorithms.

The fact that MARL algorithms can contain autonomous agents that can be readily
added and removed allows them to meet Requirement RVI ’s scalability and the het-
erogenous decision entities to meet different constraints and objective functions in Re-
quirement RIV . For example, Sun et al. (2019) proposed a dynamic resource reservation
and DRL-based autonomous virtual network resource slicing framework, where the
resource provider dynamically collects its free and unused resources from virtual net-
works and reserves them in proportion to their minimum requirements, and then the
virtual networks use autonomous DRL agents to adjust their resource allocation to sat-
isfy their objective functions independently. Virtual networks and the DRL algorithms
that decide their autonomous resource allocation can be freely added and removed.

The related work on the other requirements is presented in the following sections.



8 Chapter 2. Literature Review

2.1.1 Deep Reinforcement Learning for Resource Allocation with Arbitrary
Action Space

In regard to Requirement RI , we review DRL algorithms with combinatorial action se-
lection approaches concerning the DRL algorithm with coalition action selection for the
online combinatorial resource allocation problem in Chapter 3. Note that the coalition
action selection is also applied by the master agent of CCM MADRL MEC in Chapter 5.

A combinatorial action selection approach, inspired by the per-action-DQN (He et al.,
2015), called deep reinforcement relevance network (DRRN), is proposed by He et al.
(2016b) for recommendation systems. However, the action space is intended to repre-
sent a fixed number of combinations of the items to be recommended. The combina-
tions of actions are then used as single actions in the per-action-DQN. This grouping
of actions into combinations makes it not applicable to resource allocation, where arbi-
trary actions can be selected with the consideration of the resource constraint. More-
over, computational complexity is still high, as the action space is exponential with
the number of tasks. They have also pointed out that computational complexity is a
challenge they have not focused on in their work.

Similarly, although there are DRL algorithms with combinatorial action selection ap-
proaches in resource allocation (Huang et al., 2018, 2019b) and capacitated vehicle rout-
ing (Delarue et al., 2020) problems, they have a fixed number of outputs. A detailed
review of their other limitations is discussed in Chapter 3.

In summary, combinatorial action space is not studied in DRL. Most existing approaches
overlook it by simplifying their problem with the assumption that only one task arrives
at a time (Almasan et al., 2022; Stein et al., 2020; Chen et al., 2018) or by applying MARL
algorithms that are short of requirements RIV as discussed in the next section.

2.1.2 Deep Reinforcement Learning for Resource Allocation with Various
Constraints

Despite the capability to be customized so that they address the research requirements,
existing DRL-based resource allocation algorithms do not address the Requirement RIV ’s
coexistence of different decision entities, with heterogeneous MADRL agents, in the re-
source allocation problem to consider the different types of constraints and objective
functions. A survey by Luong et al. (2019) shows that most of the existing DRL-based
resource allocation algorithms optimize a single objective function either on the user
or on the edge server side. The survey shows that single-agent DRL is widely ap-
plied to resource allocation problems, such as channel access, resource scheduling, and
task offloading. Another recent survey by Islam et al. (2021), which has presented a
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comprehensive survey on task-offloading algorithms by categorizing them from mul-
tiple perspectives, including types of algorithms, decision entities, and the computa-
tional model, has also found that there is little work in decentralized decision on task-
offloading.

Although there exist many MADRL-based resource allocation algorithms, they are ho-
mogeneous agents with the same functionalities running on the user devices (UD). For
example, Tang and Wong (2020) proposed MADRL-based task offloading in the mo-
bile edge computing system without knowing the decisions of other users. Users use
a Long-Short-Term Memory (LSTM) network to learn the load-level dynamics of edge
devices. User devices that offload to the same edge device equally share the processor.
However, edge devices must make combinatorial decisions on the UDs for better per-
formance. They need another DRL agent to decide which of the users to serve to max-
imize their utility. Furthermore, this work and many other task offloading algorithms
(Nguyen et al., 2023; Zhang et al., 2020; Jiang et al., 2023), which make optimization
from the user perspective, overlook the storage constraint of the server.

There are also DRL-based resource allocation algorithms that approach the problem
from the edge server side. Huang et al. (2019a) proposed a DRL-based joint task of-
floading and bandwidth allocation algorithm for multi-user mobile edge computing to
minimize the overall offloading cost in terms of energy, computation, and latency. This
designates the problem into a single agent centralized DRL algorithm running on the
edge device with a single objective function. The action space is a single index vec-
tor of a concatenation of task-offloading decisions, an increase, and a decrease of the
uplink and downlink bandwidth allocation. Because it slows training and execution
due to the increased dimension of the action space: deciding on task offloading, the
increase in uplink bandwidth, the decrease in uplink bandwidth, the increase in down-
link bandwidth, or the decrease of downlink bandwidth at a time step, it not only does
not address Requirement RIV but also does not address Requirement RI and Require-
ment RI I I . MADRL algorithms with multiple objectives can solve task overload and
bandwidth allocation differently. Cui et al. (2019) proposed MADRL-based joint user,
power level, and channel selection for unmanned aerial vehicle (UAV) networks con-
sidering each UAV as an independent and non-coordinating agent without knowing
the decisions of the others. The objective of each UAV is to maximize performance.
Although it minimizes the state and action dimension of centralized decision-making
by allowing each agent to make decisions based on their local observations, this setting
is only from the resource provider’s perspective. It does not work if users are also self-
interested in their objective function and therefore do not satisfy the Requirement RIV .
The question of how UAVs know whether a user is selected by other UAVs or not is
also not explained.

A detailed review of related work on task offloading is provided in the related work
section of Chapter 5.
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2.1.3 Handling ASO Inputs in Deep Reinforcement Learning

Regarding Requirement RV , the fact that DRL algorithms learn to maximize long-term
returns, and the use of DNN, demonstrates their ability to be generalizable and able
to adapt their decisions to the dynamics of the problem. However, they have two lim-
itations in learning with ASO inputs and outputs. The first limitation is that existing
DRL-based resource allocation algorithms are centralized. Second, the fact that stan-
dard neural networks accept a fixed-sized input vector in a specific order and output a
specific number of outputs in a specific order makes it difficult for them to work with
ASO inputs and outputs. This affects the generalizability of the permutation of the
same problem. For example, the task offloading algorithm of Tang and Wong (2020) as-
sumes a fixed number of edge devices in its state representation. Additionally, it does
not meet the requirement in Requirement RI I , because it does not work for a variable
number of edge devices because neural networks, which are used as function approxi-
mators in DRL, usually work with a fixed number of inputs and outputs.

We classify existing techniques for handling ASO input as neural network-based in-
put transformations and stationary input transformations. One-hot encoding, bag-of-
words (Zhang et al., 2010), zero-padding (Lopez-del Rio et al., 2020), and set-pooling
are examples of stationary input transformations. Mukhutdinov et al. (2019) proposed
a MADRL-based routing system using one-hot encoding. For example, if we have a
network with seven nodes, number 3 is encoded as 0010000 and the set {4,6} is en-
coded as 0001010. Although one-hot encoding is used to avoid depending on the order
in which nodes are enumerated, and when nodes are variable in number, it still has
two limitations to fully address Requirement RI I . First, it is a static representation. It
cannot represent nodes when they enter and leave the network dynamically. Second,
it has a maximum limit on the number of nodes that can be represented. Furthermore,
the algorithm uses one-hot encoding to represent only the nodes, assuming that only
one task is processed at a time. Using one-hot encoding, it is challenging to represent
multiple tasks in the nodes. The numerical values that characterize the tasks are also
not represented in the one-ot encoding. Bag-of-words is a technique commonly used
in NLP to represent a text by the number of occurrences of words. However, it is not
suitable for numeric state representation because it only represents the occurrences of
words. Zero-padding techniques assume a fixed length of the input. If an input comes
with a smaller size than the assumed value, it is zero-padded to make it the set value.
Huegle et al. (2019) has summarized existing approaches to dealing with variable input
in autonomous driving. Edwards and Storkey (2017) and Zaheer et al. (2017) proposed
element-wise transformation followed by set-pooling to solve the ASO set in ML. First,
each element of the set is fed to a DNN of fixed size. Then they are concatenated using
a pooling operation mean, sum, product, andmaximum. Note that although DNN is de-
ployed, the primary technique of handling the ASO input is aggregation of the output
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of DNN with set-pooling. Lee et al. (2019) extended set pooling, to consider the rela-
tionship between the elements of the set. These methods have limitations when used
for DRL. First, they are used to output the same output irrespective of the permutation
of the input but cannot help in the action representation to select an element of them.
In other words, they cannot be used for coalition action selection because their final
output is aggregated to a single output vector with set-pooling. Second, although the
methods are permutation invariant and work for any size, they can often transform
different sets to the same output. This makes it ineffective for DRL algorithms because
they need to interpret different states differently, otherwise, it will cause ambiguity.

Various neural network-based transformations are available, such as set neural net-
works (Lee et al., 2019; Zaheer et al., 2017; Qi et al., 2017), permutation-invariant neural
networks (PINN) (Tang and Ha, 2021), recurrent neural networks (RNN) (Hochreiter
and Schmidhuber, 1997; Sutskever et al., 2014), graph neural networks (GNN) (Scarselli
et al., 2009), pointer networks (Vinyals et al., 2015), and the attention-based transformer
neural network known by its title ”Attention is all you need” (Vaswani et al., 2017). Set
neural networks use a neural network to transform input sets into output sets and then
apply maximum pooling or sum pooling to form the context vector. PINN is designed
to recognize elements of an ordered input vector, even when noise is present or when
some elements are missing. RNN processes inputs sequentially, making it prone to van-
ishing gradients and is not suitable for orderless input. GNN is designed to work with
graph-structured inputs. GNN is not important for the ASO input because the inputs
have no graph-structured relationship, but it can be applied by considering the ASO in-
put as a fully connected graph. Attention-based neural networks process input simul-
taneously. The transformer neural network (Vaswani et al., 2017) is the state-of-the-art
technique for ASO input transformation based on attention neural networks. It uses
self-attention mechanisms to weigh the importance of different input tokens, allowing
it to capture the dependencies between the input elements effectively. Moreover, using
the multihead attention layer, computes attention across multiple heads, enabling the
model to focus on different parts of the input simultaneously and enhancing its abil-
ity to learn complex relationships. A detailed analysis of the suitability of GNN and
the transformer is presented in Table 2.1. We use the encoder part of the transformer
neural network to handle the ASO input in Chapter 3. However, although the trans-
former is efficient in processing an input of arbitrary length in parallel, it is not efficient
for combinatorial problems with ASO input, because it is designed to learn complex
relationships between elements of an input sequence, but the tasks in combinatorial
problems are independent. This unnecessary computation can affect performance and
execution speed. Therefore, we design another method in Chapter 4.
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Type of
DNN

How it works Advantage Suitability for ASO

GNN Uses an iterative mes-
sage passing and em-
bedding to represent
the input

If the input
is graph-
structured.
For example,
routing

ASO can be handled using
GNN by considering the
elements of the ASO input
as a fully connected graph
but is not important be-
cause they have no graph-
structured relationship. It
only incurs computational
cost. GNN on the fully
connected graph is simi-
lar to the transformer (Wu
et al., 2021b; Veličković,
2023).

Transformer Use an attention
mechanism in every
layer of the encoder
and decoder net-
work to learn the
dependency between
elements of a se-
quence of input. The
encoder simultane-
ously transforms
the input and the
decoder produces the
output sequentially

When there is
a relationship
between ele-
ments of the
input. For ex-
ample, sequence
mapping, NLP,
sorting, and
prioritizing.

Transformer can represent
ASO better than GNN
because of the attention
mechanism, but there is
no as complex contextual
relationship as in NLP in
the numerical ASO input.
The elements of the ASO
are independent. This un-
necessary computational
complexity can affect its
efficiency in ASO inputs.

TABLE 2.1: Suitability analysis of GNN and transformer for ASO inputs

2.1.4 Summary of Deep Reinforcement Learning-based Resource Alloca-
tion Algorithms

Although the literature shows that DRL can meet research requirements, existing DRL-
based resource allocation algorithms do not meet these requirements. While DRL has
the potential to achieve Requirement RI I I since it can be trained offline or in a simu-
lated environment before it is applied in the real world (Nian et al., 2020b), it needs
further modification when applied to a combinatorial problem with ASO inputs and
outputs, because existing algorithms make a costly sequential decision. Existing DRL-
based resource allocation algorithms have considered a mechanism to handle an arbi-
trary action space to fulfill the Requirement RI . Furthermore, most existing DRL al-
gorithms do not handle ASO inputs regarding Requirement RI I , because they assume
a fixed input and output size or have a limit on the maximum number that can be
represented. Requirement RV is not satisfied for the same reason. Concerning Require-
ment RI I I , although the transformer is state-of-the-art in representing and performing
parallel processing of the ASO input, it is computationally inefficient for combinatorial
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problems where the tasks are ASO. Furthermore, most existing DRL-based resource al-
location algorithms do not address Requirement RIV because they are single-agent ap-
proaches with one objective function or homogeneous MADRL agents with the same
constraints. Similarly, existing resource allocation algorithms are not scalable to solve
multiple problems using MADRL to meet Requirement RVI .

Therefore, the aim is to solve dynamicity and scalability in terms of ASO inputs and
outputs as in requirements RI and RI I , which also underpin RI . We proposed an in-
put transformation for the ASO input to address RI I . To further solve the permutation
invariance and flexible size in the action space, we propose a novel coalition action se-
lection for the ASO action space. We also proposed a combinatorial MADRL algorithm
for the MARL scenario to satisfy all the research requirements.

2.2 Reinforcement Learning

Reinforcement learning (RL) and DRL are sometimes used interchangeably, but DRL is
used when the RL uses DNN as a function approximator. Unless otherwise stated, the
terms RL and DRL, as well as MARL and MADRL, are also used interchangeably in this
thesis. Because this research aims to advance DRL and MADRL by addressing the chal-
lenges they face in online resource allocation problems, we perform a comprehensive
review of existing types of RL algorithms and discuss their suitability for the specified
research challenges. First, we present the introduction and types of RL algorithms and
discuss their suitability for the proposed contributions in Section 1.3. Then, to deal with
the Requirement RI and the Requirement RI I , we review the representation of state and
action spaces. Both are important to minimize the online computational cost of for Re-
quirement RI I I . Lastly, we conducted a detailed review of MADRL and the types of
coordination in relation to the proposed CCM MADRL MEC.

2.2.1 Introduction

DRL is a branch of ML, which is a branch of AI, characterized by its learning ability
through trial-and-error interaction of an agent with an environment that gives either
a punishment or a reward for an action applied to an observed state. Training of the
algorithm is carried out in such a way that it chooses actions to maximize its long-term
reward. It is attracting attention due to its ability and success in solving many complex
problems (Nguyen et al., 2020). David et al. (2021) have posited that the optimization
of rewards is sufficient to simulate all artificial and natural intelligence.

The interaction between a DRL algorithm and the problem to be solved is described as a
Markov Decision Process (MDP) (van Otterlo and Wiering, 2012). An MDP is a Markov



14 Chapter 2. Literature Review

reward process plus an action. A Markov reward process is a Markov chain with a
reward added. A Markov chain is a process with state and state transition probabilities.
The description of an MDP consists of five main elements:

• A set of states S. At each time step, the state of the environment is an element
s ∈ S that is self-contained information to make decisions about the environment.

• A set of actions A. At each time step, the agent chooses an action a ∈ A to perform
in the environment.

• A state transition model P(st+1|st, at) that describes the probability that the state
of the environment changes to the state st+1 when the agent acts at in the state st.

• A reward function R(r|s, a) that describes the real-valued reward r that the agent
receives from the environment after acting a in state s.

• A discount factor γ ∈ [0, 1] that controls the importance of future rewards.

Almost all DRL algorithms are described using MDPs because they have at least the
action, state, and reward. However, not all DRL algorithms require full knowledge of
the MDP description. For example, model-free DRL algorithms do not use the state
transition probability. The next state is also not used in some DRL algorithms if only
the immediate reward is of importance. The discount factor is also not needed if only
the immediate reward is considered. The contextual bandit problem is an example of
where the next state is not needed.

In addition to the MDP, the DRL algorithm is also described by additional terminology,
including agent, environment, and policy.

• The agent is the system that observes the state of the environment and executes a
policy to select an action and apply it to the environment.

• The environment is the problem that the agent is solving.

• The policy maps the observations to actions.

The evolution of RL takes its root from K-armed bandit problems, where the agent only
obtains values for its actions, taking the state as fixed (Nian et al., 2020b). The value is
affected only by the action chosen because the state is fixed. A K-armed bandit problem
is a simplified setting of RL (Intayoad et al., 2020). An extension of the K-armed bandit
is the contextual bandit, where there can be many states that affect the choice of action
selection. The contextual bandit is intermediate between the K-armed bandit and the
full DRL (Intayoad et al., 2020). It focuses on immediate rewards, as does the K-armed
bandit. At the same time, it involves complete DRL problems, since it uses a policy to
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select actions based on contextual information. It is also called an associative DRL in
the literature (Li et al., 2010). Lastly, full RL has the characteristics that the actions at
a given state can have both a direct effect on the reward and an indirect effect on the
state transition of the environment, which is then termed the next state. In addition to
immediate reward, actions may have long-term consequences. As a result, immediate
rewards can sometimes be sacrificed to obtain more in the long term (Intayoad et al.,
2020).

RL originates from two main fields of research (Nian et al., 2020b): optimal control
using value functions and dynamic programming, and trial-and-error search inspired
by animal psychology. The optimal control optimizes the input trajectory using the
functional equation known as the Bellman equation as shown in (2.1).

V∗(s) = max
a

(R(s, a) + γ∑
s′

P(s′ | s, a).V(s′)), (2.1)

where V∗(s) is the optimal goodness or value of being in state s, V(s′) is the goodness
or value of being in the next state s′, R(s, a) is the reward of taking action a in a state
s, γ is the discount factor, which is the current value of a future reward, and P is the
transition probability that state s goes to state s′ when action a is taken. If the value of
taking an action in a given state matters more than the value of being in that state, the
Bellman equation is updated as in (2.2).

Q∗(s, a) = R(s, a) + γmax
a′

Q(s′, a′), (2.2)

where Q∗(s, a) is the optimal goodness or value of taking action a in state s and R(s, a)
is the reward of taking action a in a state s.

When the problem to be solved by RL has a fixed number of states and actions, the pol-
icy is updated to tabular data using Equation (2.1). For large or continuous state spaces,
DNN is used as a function approximator, instead of a table, to generalize for unseen in-
puts. This is discussed in detail in the discussion of the types of RL in the following. In
DRL, the state, action, and reward experiences are stored in the replay memory at each
time step. The DRL algorithm is trained using the data in replay memory.

During learning by trial and error, the DRL agent uses exploration or exploitation to se-
lect an action for a given state. Exploitation is the selection of the best action based on
the learned knowledge, whereas exploration is the testing of any random action out of
the existing choices. The agent is likely to use more exploration in its early stages, but
gradually prefers more exploitation to take advantage of its knowledge. After being
fully trained and deployed for a real application, the agent uses exploitation. Although
exploration can help an agent test how good or bad unknown actions are, it often comes
with a cost in the form of penalties or missed opportunities (Chalkiadakis and Boutilier,
2003) if it is executing and learning at the same time in the real world. As an extreme
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example, a self-driving car cannot explore the real world because it will crash. Thus,
the self-driving agent is trained with both exploration and exploitation in a simula-
tion environment and deployed with the exploitation model in the real world. The
exploration-exploitation trade-off is one of the challenges of MADRL. This is because,
unlike single-agent DRL where only one agent is interacting with the environment,
multiple agents need to coordinate their policies on equilibria to make an optimal joint
action. The problem is that agents must distinguish whether other agents are exploring
or exploiting to better track behavioral patterns and coordinate joint action. Chalki-
adakis and Boutilier (2003) have proposed an optimal exploration mechanism for coor-
dinated MADRL using a Bayesian approach to predict the exploration cost. The type of
exploration varies with the type of DRL algorithm. For example, epsilon-greedy explo-
ration is commonly used in Q-learning and its extensions; deterministic policy gradient
algorithms usually add exploration noise to their actions to explore new actions.

In the next sections, we discuss different categories of DRL concerning their importance
to our contributions.

2.2.2 Types of Reinforcement Learning Algorithms

RL algorithms differ in many contexts. In this section, we present the categorization of
RL algorithms from various perspectives.

2.2.2.1 Single-Agent vs Multi-agent Reinforcement Learning

RL algorithms can be classified as single-agent and multi-agent by the number of agents
interacting with the environment. Single-agent RL is an agent that interacts with the
environment, while in MARL, multiple agents interact with the environment in a co-
operative, competitive, or mixed setting. The review of the literature on MARL is pre-
sented separately in Section 2.2.8.

2.2.2.2 Model-based vs Model-free

This classification is mainly based on the state transition model of the environment. If
a perfect environment model has already been given, dynamic programming or DRL
can be used to solve the problem (Sutton and Barto, 2018). If the environment model is
not given, but can be constructed by learning from experience, the model-based DRL is
used to learn both the state transition model of the environment and the policy (Dayan
and Niv, 2008). It uses a planning algorithm along with the learned model to solve
the problem. The next state and the reward in the model-based DRL can be estimated
before applying the action. Model-free DRL does not need the state transition model.
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Q-learning (Watkins and Dayan, 1992) and DQN (Mnih et al., 2013) are examples of
model-free DRL because they directly estimate the optimal Q values of each action in
each state. Whether to choose model-based or model-free DRL depends on whether it
is possible to formulate the state in a way that allows viewing the next state and reward
before applying the action.

Most resource allocation algorithms use model-free DRL algorithms because the state
transition model of network dynamics is difficult to model. This is because the state
dynamics of the network is affected not only by the actions taken but also by other
factors, including unstable signal strength, dynamic joining and dropping of users, and
online arrival rate of the tasks. Therefore, we chose a model-free DRL for all of our
proposed methods.

2.2.2.3 Policy Optimization vs Value-function Optimization

RL algorithms are also classified into two based on how they optimize their policy. Q-
learning and its extensions learn by optimizing their state values or state-action values,
called value functions. The state value is the goodness of being in a given state, whereas
the action value is the goodness of selecting a given action in a given state. Q-learning
(Watkins and Dayan, 1992), state-action-reward-state-action (SARSA) (Rummery and
Niranjan, 1994), DQN (Mnih et al., 2013), and their extensions are examples of value
function optimization in RL. In these RL algorithms, the policy is executed by selecting
actions with the highest state value or action value (Q value). The extensions of the
Q-learning algorithm are presented in Section 2.2.3.

RL algorithms based on policy optimization, on the other hand, directly optimize their
policy. The RL agent directly optimizes the policy to generate actions instead of opti-
mizing the value of the actions or states. They are also called actors. The deterministic
policy gradient (Silver et al., 2014) and the stochastic policy gradient (REINFORCE)
(Williams, 1992) with some other variants are RL algorithms based on policy optimiza-
tion. The extensions of the policy gradient algorithm are presented in section 2.2.4.

In comparison, algorithms based on optimization of the value function are more likely
to converge to the optimum action values because Q learning (Watkins and Dayan,
1992) is theoretically proven to converge to the optimum value with a probability of 1,
while policy optimization algorithms are more likely to converge to a locally optimal
policy (Sutton et al., 1999). On the other hand, policy gradients work with both discrete
and continuous action spaces, whereas value function optimization-based algorithms,
such as Q-learning and its extensions, work with discrete action spaces.

In our research, both policy gradient- and value function-based DRL algorithms are
used. We use the value function-based DRL algorithm for Chapter 3 and Chapter 4.
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Actor-critic methods use value function optimization in their critics and policy gradi-
ent optimization in their actors. To take advantage of the convergence of the value
function and the suitability to both discrete and continuous action spaces of the policy
optimization, we combined both as a client-master MADRL algorithm in Chapter 5.

2.2.2.4 Monte Carlo vs Temporal Difference

If the state transition model of the problem is not known, we have two approaches to
update the value of taking actions in the states: an episodic update, known as Monte
Carlo, and a step-by-step update, which is also known as temporal difference (TD).
Note that if the model is already given, we can solve the problem using dynamic
programming. The term Monte Carlo is often used more broadly for any estimation
method whose operation involves a significant random component, but in DRL, Monte
Carlo methods are ways to solve a problem based on the average returns of the samples
(Sutton and Barto, 2018). The Monte Carlo method is simple. It undergoes a trajectory
of states and actions and updates its values after the entire episode. The intuition be-
hind Monte Carlo is that, after many episodes, the values for all state and action pairs
will be approximated to the real values because they are being averaged over many
samples. Thus, Monte Carlo methods have high variance because the values for the
actions depend on the averages of the samples. In contrast, TD approaches update the
values of actions after every step. Therefore, Monte Carlo is more appropriate when
the rewards of taking actions at individual states are not very certain but depend on
the overall performance of the episode, whereas time differences are more appropriate,
with rewards certainly known at every step. Q-learning and its variants are examples
of TD RL algorithms, whereas algorithms based on policy gradients are Monte Carlo
RL algorithms. Actor-critic methods, a combination of policy gradient and Q learn-
ing algorithms, are also TD methods. All algorithms we propose in this work are TD
methods.

2.2.2.5 On-policy vs Off-policy

In on-policy RL, the algorithm uses the same policy when selecting an action and train-
ing. SARSA (Rummery and Niranjan, 1994) is an example of on-policy because it al-
ways uses the same policy for training and selecting the action. On the other hand,
off-policy can use different policies when selecting the action and when making a pol-
icy update. Q-learning is an example of an off-policy RL algorithm because it uses the
best action to determine the next state in the policy update, but it can sometimes use
a random action to interact with the environment. Policy gradient algorithms have
both on-policy and off-policy variants. The on-policy-based policy gradient is when
we use the samples of an episode generated from the same policy to train the policy,



2.2. Reinforcement Learning 19

too. The off-policy-based policy gradient (Imani et al., 2018) can mix different samples
of different policies with its training sample.

In this research, we use off-policy RL algorithms because all of them learn from a sam-
ple of replay memory, which is collected by different policies.

2.2.3 DQN and Its Extensions

In this subsection, a brief review of some of the extensions of DQN is presented based
on the survey in Luong et al. (2019).

The first deep Q-learning network (DQN) was proposed by Mnih et al. (2013) to play
Atari. DQN is a breakthrough in RL because, unlike Q-learning, it works with con-
tinuous state spaces using the advantage of generalization in deep learning. Because
DQN shows poor performance due to the overestimation of actions caused by the pos-
itive bias introduced because they use the same policy to select the best action and
assess the expected value of the action in the Bellman equation, it is further extended
to double deep Q-learning (DDQN) (Van Hasselt et al., 2016). DDQN is proposed to
solve the positive bias of DQN using two Q values, Q1 and Q2. The main idea is that
the first DQN, the weights of which are slowly copied from the second, is used to se-
lect the action as usual, but the evaluation of the action value comes from the second
Q-value. DRL collects its data set by storing its interactions with environment experi-
ences in its replay memory. The replay memory stores the experiences in the form of
< state, action, next state, reward > The aforementioned DRL algorithms learn from
the replay memory sampled almost at the same frequency as what the agent has expe-
rienced. Prioritized replay memory is introduced by Schaul et al. (2016) to help take
the sample in such a way that experiences are selected if there is much to learn from
them. A downside of the DQN extensions explained so far is that sometimes, especially
if the action space is too large, it could be unnecessary to learn all the action values at
every state to reach convergence. To address this, dueling DQN (Wang et al., 2016) is
proposed to decouple the state value and the action value into two separate streams
that are then aggregated together. This helps the algorithm to learn faster without the
need to learn every action value in every state because the state value has already been
known by a separate stream. Asynchronous multistep DQN (Wang et al., 2018b) is
proposed to reduce the computational cost of training from replay memory. In this,
multiple agents cooperate asynchronously in their gradient descent updates after they
are trained in parallel in their version of the environment. In some problems, using the
estimated value may not be an accurate solution if the environment is stochastic and its
reward follows a distributional value. A distributed DQN approach (Bellemare et al.,
2017) is proposed to update the Q-values for a distributional rather than a scalar value.
Lastly, the rainbow DQN (Hessel et al., 2018) integrates all the concepts of the DQN
extensions.
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In this work, as with all DDPG algorithms, we use DDQN to train the master agent of
the proposed CCM MADRL MEC algorithm.

2.2.4 Extensions of Policy Gradient Algorithms

Policy-gradient DRL is called actor-only because it does not use any form of a stored
value function (Grondman et al., 2012). For example, REINFORCE (Williams, 1992) is
a stochastic policy gradient algorithm that directly optimizes the probability of select-
ing its actions based on a sample generated from a trajectory of states and actions over
many episodes. Critic-only methods such as Q-learning, SARSA, and DQN use a value
function and no explicit function for the policy (Grondman et al., 2012). A major ad-
vantage of policy gradient (actor-only) over value-function (critic-only) methods is that
they allow the policy to generate actions in a continuous action space (Grondman et al.,
2012). However, policy-gradient DRL algorithms suffer from the following problems:

• High variance: The reward of the actions is inconsistent because it is averaged or
propagated to the subsequent actions of the episode.

• Delayed reward problem: The reward is usually known at the end of the episode.

• Sample inefficiency: The policy is usually updated using the sample generated in
the last trajectory.

Below are the extensions of the policy gradient DRL algorithm to solve these problems.

2.2.4.1 Actor-critic Method

The actor-critic method (Witten, 1977; Barto et al., 1983; Mnih et al., 2016), can be clas-
sified as a combination of policy optimization and value-function optimization. The
actor is policy optimization. It is used to select actions. The critic is value-function
optimization. It is used to give feedback to the actor. Actor-critic is proposed to ad-
dress the variance in the policy-gradient algorithms because, unlike the averaged or
propagated reward over the actions of an episode in Monte Carlo, it directly gets critics
for every action. Since REINFORCE updates its policy using the Monte Carlo method,
it may consider all intermediate actions as good if the final reward of the episode is
good because the final reward is propagated to all intermediate actions. Therefore,
more samples are needed to eliminate the variance from the propagated reward. This
causes slow learning. The actor-critic solves this by changing the policy update from
Monte Carlo to TD. The total reward in the gradient is replaced by a Q-value of the
current action for the current state, which is trained by a separate critic DRL algorithm.
Inspired by the dueling DQN, an advantage can be introduced to the actor-critic to
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stabilize learning by removing variability. The advantage is calculated by subtracting
the average Q-value of actions taken in that state from the Q-value of the action. This
indicates the extra reward gained by taking the action relative to the average taken in
that state. The advantage, A(s, a), is calculated by subtracting the action value, Q(s, a),
from the state value, V(s), as A(s, a) = Q(s, a)− V(s) where s is the state and a is the
action selected in that state. If A(s, a) is greater than zero, the gradient moves in that
direction; otherwise, it is in the opposite direction.

There are many other extensions of the actor-critic methods. The DDPG (Lillicrap et al.,
2016) handles both continuous states and actions using a combination of value-based
and policy-based approaches with deep learning. Lowe et al. (2017) proposed a multi-
agent version of DDPG called MADDPG.

2.2.4.2 Off-policy Policy Gradient

REINFORCE (Williams, 1992) is on-policy DRL because training samples are collected
according to the target policy. Once the policy is updated, the old training samples
are removed. Off-policy policy gradient algorithms (Imani et al., 2018) provide several
additional advantages compared to on-policy DRL algorithms.

First, the off-policy approach does not require full trajectories and can reuse any past
episodes for much better sample efficiency. Second, the sample collection follows a
behavior policy different from the target policy, bringing better exploration.

In our research, the client agents of the CCM MADRL MEC are off-policy-based policy
optimization algorithms like the DDPG. The master agent and the other algorithms in
Chapter 3 and Chapter 4 are off-policy value functions.

2.2.5 State Space and Representation

This section discusses existing types of state spaces and their representation.

2.2.5.1 State Space

Q-learning is a tabular DRL approach for definite discrete state spaces. A Q-function
performs the value update and action selection policies. Q-learning has two limitations.
First, it is difficult to handle very large state spaces in tabular form. Second, it cannot
support continuous state spaces. DQN, which substitutes the Q-function of Q-learning
with DL, addresses both limitations of Q-learning. For the first limitation, it does not
use a table, but a DNN, and regarding the second limitation, it works for continuous
state spaces using the advantage of generalization from deep learning.
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Due to the nature of resource requirements, all of our algorithms in this research as-
sume a continuous state space and use DL. The action space is continuous in the client
agents of CCM MADRL MEC but discrete and arbitrary in size in the others.

2.2.5.2 State Representation

In typical DRL algorithms, states are typically represented by a fixed-size feature vec-
tor. The elements that compose the feature vector are in a specific order in all states.
However, there are sometimes states with a variable number of permutation-invariant
elements, which can be represented as sets. For example, the knapsack problem must
find the best combination of the items, regardless of the order of the items in the input.
A resource allocation algorithm has to give the same solution no matter what the order
of the users in the input vector is. Standard DRL does not recognize that an input vector
is permutation-invariant, because standard neural networks accept inputs in the order
given to them. This slows the learning of the algorithm if the elements that make up
the state are permutation-invariant. For example, in DRL, if the state is {12, 34, 56, 67}
and if its order does not matter, the algorithm will consider {56, 34, 12, 67} as a differ-
ent state because the elements will be fed to the neural network of the DRL algorithm
differently and it does not take advantage of its knowledge of one or more of its pre-
vious permutations. States with permutation-invariant elements in their feature vector
need to take advantage of prior knowledge of the instance of their permutation. Fur-
thermore, since neural networks are usually configured with a fixed number of inputs
and outputs, they cannot accept a feature vector if its number of elements increases or
decreases.

In natural languages, states with a permutation invariant number of elements and vari-
able number are represented by bag-of-words (Zhang et al., 2010). Bag-of-words is in-
formation about the number of occurrences of words. This is not convenient for use for
numeric state representation for two reasons. First, if the environment is a continuous
state space, the dictionary is indefinite. Therefore, it is difficult to have a fixed dictio-
nary. Second, it only represents the occurrence of numbers as words, not their values.
A detailed discussion of ASO is given in Section 2.1.3

2.2.6 Action Space and Representation

In this section, we present a review of the existing types of action space and the repre-
sentation of actions in DRL algorithms. We also clarify how our action representation
is different.
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2.2.6.1 Action space

DRL can have discrete and continuous action spaces. The action space is finite in dis-
crete action DRL. In the continuous action space, the action is a real value between a
given range. When a combination of discrete and continuous action spaces is neces-
sary, a parameterized action (Masson et al., 2016) uses a combination of discrete and
continuous actions. It includes continuous parameters in discrete actions.

2.2.6.2 Action Representation

Continuous action spaces are represented by a vector of continuous values. If the re-
quired action is a single scalar value, it is outputted as a single value from the DRL
algorithm. If the required actions are multiple actions with continuous values, they are
outputted as a vector of continuous values.

In the discrete action space, the action representation depends on the number of actions
as follows.

2.2.6.3 Action Representation with Fixed vs Variable Number of Actions

If the number of actions is fixed, the actions are represented by labels equal to the num-
ber of actions. For example, if the actions are two: left and right, they are labeled 0
and 1, respectively, in the output of the DRL algorithm. The actions are selected by
their Q-value or by their probability. There are two methods to handle problems with
a varying number of actions in natural language processing using DRL: the per-action
DQN and the deep reinforcement relevance network (DRRN) (He et al., 2015, 2016b).
Their main intuition is that the algorithm learns the relevance of each action to the state
by embedding each action within the state and taking it as input to the deep neural
network with an aggregate output for every state-action combination. Because the ac-
tions are learned separately from the state, the action selection is made by inputting
the state with all possible actions one by one into the trained policy, recording their
Q-values, and choosing the best one. The state and action are inputted into the same
neural network in the per-action DQN, whereas two separate neural networks that are
finally integrated into one output are used in the DRRN.

In the resource allocation problem, there are likely to be varying numbers of users and
resource providers. Therefore, as complementary to the per-action DQN, we also de-
sign a method to handle variable state sizes by transforming the input into a fixed state
representation in Chapter 4.
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2.2.6.4 Action Representation in Large Discrete Action Spaces

Discrete action spaces are intractable for large action spaces. Dulac-Arnold et al. (2015)
(Wolpertinger Architecture) proposed a policy gradient algorithm that outputs a con-
tinuous proto-action that is used to select the nearest-neighbor discrete action. The
efficiency of this continuous action representation can be impacted by how the discrete
actions are sorted. Instead of selecting items with the closest index to the continuous
action outputted by the actor, several approaches used a scoring function parameter
outputted as a continuous action from the actor and then multiplied it with a prede-
fined ranking of the actions computed using word embedding (Zhao et al., 2017; Hu
et al., 2018; Liu et al., 2018). Chandak et al. (2019) proposed an action representation
method by learning the structure of the action set from the observed transitions. The
limitations with all of these action representations are that they assume that there is a
predefined ranking parameter, the action set is fixed, or the actions have a stationary
behavior.

In this work, we proposed a coalition action selection that minimizes the dimension-
ality by selecting a coalition of multiple actions at a time. We used the transformer to
output the Q-value for all of the actions at the same time.

2.2.6.5 Single Action vs Multiple Action Selection

Most existing DRL algorithms select a single best action at a time. However, some
problems require combinatorial selection of multiple actions simultaneously. For ex-
ample, a service placement algorithm may need to decide on a combination of services
to fetch from the cloud at one time. Two mechanisms enable such combinatorial action
selection at the same time: action branching (Tavakoli et al., 2018) and DRRN. DRRN-
based combinatorial action selection is inspired by the per-action DQN (He et al., 2015).
The number of actions is a combination of items. Every possible combination, which is
considered an action, is fed to the neural network one by one along with the state, and
finally, the combination with the best Q-value is selected.

Although the DRRN-based method for combinatorial action selection handles the flex-
ible number of combinations of a combinatorial problem, there is still a large computa-
tional cost for taking all possible combinations of items as the number of actions. Our
research proposes a new combinatorial action selection DRL algorithm that has a lin-
ear action space. The number of actions is the same as the number of items, unlike
the DRRN-based algorithm, which has several actions equal to the possible number of
combinations of items.

The action branching assumes that the system is made up of components that run sub-
actions with some independence. This works well if the components have different
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tasks with independent decisions, but they affect the state of the system. However, if
the components do the same thing or if there is no need for independent decisions in
the components, the action space can grow to twice the number of items. For example,
Zhang et al. (2019) used ten actions to decide whether to broadcast or not to broadcast
five items. Furthermore, this algorithm does not work for flexible-size states and vari-
able numbers of actions. We proposed a deep combinatorial DRL for a flexible number
of inputs, which has minimized the action space and works for a varying number of
inputs.

In the literature, there are multiplayer K-armed bandit approaches to perform multiple
actions at the same time (Besson and Kaufmann, 2018). However, players are multiple
agents who play with multiple arms. This is more of a multi-agent DRL algorithm than
the multiple action selector agent, requiring a coordination mechanism for multiple
players to avoid collisions on the same arms, whereas the multiple action selection
algorithm we are seeking is one agent deciding the best combination of the actions.

2.2.7 Types of Environments

DRL environments can be classified into many categories. An environment can be clas-
sified by the number of agents as single-agent and multi-agent. It can also be classified
as discrete or continuous in the action space. The environment can be classified as
deterministic and stochastic, depending on whether the next state can be determined
based on the current state of the environment and the action of the agent. The environ-
ment can be classified as episodic and sequential by the effect of the previous action.
If the current action is affected by the previous action, the environment is sequential;
otherwise, it is episodic.

In the resource allocation algorithms of this work, the next states are not always deter-
ministic due to the random arrival of online tasks. We used an episodic environment
because the tasks are instances and are independent of each other. In task offloading,
the environment is sequential because the previous offloading decision affects the cur-
rent decisions.

In terms of observability, the environment can be either fully observable if an agent has
a full view of it, or partially observable if an agent has a partial view of the environ-
ment. Full observability uses Markov decision process modeling. An agent with partial
observability only observes the environment rather than the state because the state is
not fully observable. The partially observable environment in DRL is modeled by a par-
tially observable Markov decision process (POMDP) (Jaakkola et al., 1995). The user is
unable to directly observe the state of the environment, but models the probability of
transitioning between the states and observations.
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In resource allocation, the environment is usually fully observable if the DRL algorithm
is deployed on a centralized server or resource provider. This is because the server
usually has a full view of its network by collecting information from all users. The
environment can also be partially observable if a decentralized MADRL is used, which
is also the setting we are proposing, where every node in the network participates in
the decision of resource allocation. Therefore, our work considers both full and partial
observability.

Environments can be classified by the statistics of their model as stationarity and non-
stationary. A stationary environment is an environment whose state or reward transi-
tion dynamics are stationary. In contrast, a non-stationary environment is an environ-
ment whose state or reward transition dynamics change with time (Padakandla et al.,
2020). In a multi-agent DRL setting, non-stationarity occurs due to concurrent learn-
ing of multiple agents, which causes an action taken by an agent to affect the received
reward and evolution of the state of opponent agents (Zhang et al., 2021). This is dis-
cussed in the challenges of multi-agent DRL in section 2.2.8.

2.2.8 Multi-agent Reinforcement Learning

Multi-agent DRL is a DRL algorithm with multiple agents involved. The transition of
state and the reward received from an agent are influenced by the actions of the other
agents (Zhang et al., 2021). This section presents the types of MARL algorithms by
their type of setting and training, their advantages and challenges, and their types of
coordination.

2.2.8.1 Types of Settings in Multi-agent Reinforcement learning

Agents in DRL can be classified by their setting as cooperative, competitive, and mixed
agents. Cooperative agents work to maximize a shared objective or reward. In a com-
petitive setting, some agents increase their reward, while other agents decrease.

The MARL algorithm in our research is a mixed setting because the resource provider
and the users cooperate to maximize their utility. However, resource-requesting users
are competitive because they compete to share the limited resources.

2.2.8.2 Types of Training in Multi-agent Reinforcement learning

MARL algorithms can be classified as independent, centralized, and decentralized based
on how they are trained and executed. Independent Q-learning (IQL) (Tan, 1993) is the
simplest MARL algorithm, where agents are trained and executed independently con-
sidering the other agents as part of the environment. They can optionally share their
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experience data to maximize sample efficiency. Agents do not communicate or coor-
dinate their actions or observations. As a result, the shortcoming of this IQL is the
inability to efficiently handle partial observability and non-stationarity. This makes
IQL not optimal. A similar but slightly different setting is isolated MARL where agents
dynamically divide the environment at every time step and act independently on their
partitions as in Sun et al. (2019). In centralized training, agents are trained centrally
but executed in a decentralized environment. For example, counterfactual multiagent
policy gradient (COMA) (Foerster et al., 2018b), MADDPG (Lowe et al., 2017), value
decomposition networks (VDN) (Sunehag et al., 2018), and QMIX (Rashid et al., 2018).
In decentralized training, agents are trained and executed differently, but they use co-
ordination and communication among them. For example, the work by Zhang et al.
(2018) is a decentralized training but shares its parameters with its neighbors. This
distinguishes them from independent training.

In our work, CCM MADRL MEC is centralized training, but it can be deployed as
decentralized or centralized in the execution. Client agents can run either on the UDs
or on the server, whereas the master agent is always on the server.

2.2.8.3 Advantages and Challenges of Multi-agent Reinforcement learning

MARL has many advantages compared to a single agent; it converges faster due to ex-
perience sharing, skilled agents teach new agents or new agents imitate skilled agents;
learning is faster due to parallel processing; if an agent fails, the other agents take the
task (Buşoniu et al., 2010). Moreover, the dimensionality is reduced because agents
make decisions based on local observation.

MARL also has many challenges. Zhang et al. (2021) has reviewed the challenges of
MARL. Non-stationarity is one of the challenges. The state of the environment may
become non-stationary for one agent because other agents, which change their choice
of action as they learn, are applying actions to it. As a result, agents need to account
for and adapt to the behavior of the other agents. There are many types of research for
agents modeling other agents (He et al., 2016a; Foerster et al., 2018a; He et al., 2016a). In
the CCM MADRL MEC algorithm, we ignored the nonstationarity, since ignoring may
achieve satisfiable performance, as discussed in the review of the literature by Zhang
et al. (2021). Third,

Coordination is also a challenge in MARL. Users must coordinate their actions. For the
resource allocation problem, Tang and Wong (2020) used the LSTM network to predict
the load on the edge device instead of directly coordinating the actions of the users. In
our work, we designed our algorithm to be an actor-critic method to take advantage of
their coordination method.
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Another challenge in MARL is communication constraints. However, in networking,
nodes can communicate in their usual update of routing information at the beginning
of every time step.

2.2.8.4 Parallel Processing with Single Agent Reinforcement learning

In addition to the advantages of the MARL, many cases require MARL-like parallel
processing for the simultaneous decision of many tasks in a single agent.

DRL can make simultaneous decisions using a single agent. In most of the existing
work on problems that are made up of multiple items, such as recommendation sys-
tems, decisions are made sequentially. This is because the decision on one item gives
information about the interests of the user. However, there are times when a decision
on one item has no information to tell about the other item. For example, in the task
offloading problem by Zhang et al. (2009), the tasks are decided sequentially one after
the other, by updating the agent’s state after each decision on the tasks. This incurs a
computational cost. Since all tasks need to undergo a decision by the DRL agent at the
same time step in time, there should be a method to make simultaneous decisions on
the tasks with their state computed only once.

The difference in the MARL algorithm for simultaneous decisions in a single agent from
the usual MARL algorithms used to improve performance is that it converts sequen-
tial decisions to simultaneous decisions. In the proposed MARL-based task offloading
with simultaneous decisions, a node decides the task offloading decisions of its tasks
simultaneously.

Moreover, dimensionality reduction, hybrid discrete-continuous actions, multiple ob-
jective functions, and multiple types of constraints are other factors that require MARL.

2.2.8.5 Types of Coordination in Multi-agent Reinforcement learning

There are many types of coordination in MARL. In this section, we have categorized
them as coordination by the actor-critic method, coordination by factorization of the
value function, and coordination by the graph network.

By taking advantage of the feedback from the critic, actor-critic methods are extended
to coordinate multi-agent DRL algorithms for policy gradient-based algorithms. The
types of coordination in actor-critic methods can be grouped into three as follows (Lyu
et al., 2021). The first type of coordination using the actor-critic method is the joint
actor-critic algorithm (JAC) (Wang et al., 2019; Bono et al., 2018). JAC learns in the joint
state and action space of the agents, with a centralized actor and a centralized critic as a
single agent. The second type of coordination by actor-critic is independent actor-critic
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(IAC) (Foerster et al., 2018b; Lyu et al., 2021; Tan, 1993). In IAC, each agent learns its
own independent actor and independent critic. The third is the independent actor and
central critic (IACC) (Lowe et al., 2017; Foerster et al., 2018b). This learns independent
actors but a centralized critic that uses the state and action of all of the actors as its input
coordinates the actors by giving feedback about their joint actions. The IACC can also
be classified into two: a fixed number of agents and a variable number of agents. In the
fixed number of agents, the critic accepts information from a fixed number of actors.
On the other hand, an IACC with a variable number of agents coordinates any number
of agents in any permutation. GAMA (Chen et al., 2020) is an example of IACC with a
variable number of agents.

The intuition behind using a centralized critic to coordinate MARL agents is that the
critic can provide feedback to the agents on the best-combined decision. However,
Lyu et al. (2021) have researched the contrast and comparison between centralized and
decentralized critics and have found that a centralized critic is not better than a decen-
tralized critic and that they have their advantages and disadvantages. While it is true,
as they experimentally demonstrated, that it is not what actions other agents make but
what is the best possible reward that it can get that matters as feedback from the critic
for an agent, because the agents will make decisions based on local observation, the
centralized critic has other advantages. If the critic has to not only give feedback but
also participate in action selection, as in the work by Zhang et al. (2020) and Jiang et al.
(2023) it needs information about states and actions of all actors, which the decentral-
ized critic is not suitable for making a coordinated decision.

MARL can also be coordinated by factorizing the joint value function of individual
agents. Unlike the actor-critic approach of coordination, which has a policy-based actor
and a value-function-based critic, the value function factorization methods only have
value functions. They use the joint value function instead of the critic. VDN learns the
individual agent value functions by factorizing a joint value function, which is a sum of
individual value functions. QMIX is an extension of VDN, which, instead of factorizing
the joint value function into the agents, ensures that the argmax performed on the joint
action-value function is the same as the argmax performed on the value function of the
individual agents. It learns a joint action value function which is a nonlinear combina-
tion of the per-agent action value functions which only condition on local observation.
Qtran (Son et al., 2019) is another method of coordination with a general factorization
of the value function, avoiding the additive and monotonic constraints of VDN and
Qmix.

The limitation of coordination by value function is that, like all value-based algorithms,
it is complex to apply for large action spaces and variable numbers of actions.

Graph networks are also used to coordinate any number of agents, regardless of their
permutation. Graph network-based coordination mechanisms can be used in training
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and execution. A value function-based deep coordination to coordinate multi-agent
DRL algorithms in a permutation-invariant and flexible-size action space. GAMA used
a graph network and an attention mechanism to coordinate the training of a critic for
any number and permutation of agents.

In the CCM MADRL MEC, we customized the centralized critic to a master agent to
make a combinatorial decision based on the combined state and action of all actors
and the per-action DQN. The master agent also serves to provide feedback to the client
agents. By doing this, we used the critic not only for coordinated training, as in classical
actor-critic, but also for coordinated action selection. Because the actors in actor-critic
are policy gradient and the critic is a value function, using the master agent for provid-
ing feedback and for making combinatorial decisions leads to better convergence and
cooperation than using a critic for providing feedback only.

2.2.9 Summary of Deep Reinforcement Learning

The existing resource allocation algorithms are summarized in Section 2.1.4. In this
section, we summarize the existing DRL algorithms relevant to our problems.

Based on the literature review:

• Arbitrary action space and arbitrary action selection are understudied in DRL.
There are DRl algorithms combinatorial action selection approaches, but they
have fixed numbers of outputs.

• Existing MARL algorithms are homogeneous agents that are either a policy gra-
dient or a value function and are not convenient for the various constraints of the
resource allocation.

The existing DRL and MADRL algorithms are customized and used for the proposed
algorithms as follows.

• The encoder part of the transformer is customized to make parallel processing of
ASO input for the DRL with coalition action selection

• Per-action DQN is applied for making arbitrary action selection with stationary
ASO transformation in Chapter 4 that replaces the transformer. Because a com-
mon state is computed for the ASO input before applying to the DQN, the coali-
tion action selection with stationary ASO transformation also allows independent
and parallel execution of the input with DRL as a single agent to get the Q-values
as described in Section 2.2.8.4.
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• The per-action DQN is applied to the CCM MADRL MEC in Chapter 5 as well to
customize the critic to a master agent for combinatorial decision

• The use of a centralized critic for coordination is customized by modifying the
critic to make combinatorial decisions for better coordination

• By adapting the coalition action selection and the per-action DQN, MADDPG is
customized to CCM MADRL MEC

• DDQN and prioritized experience replay are applied to all proposed algorithms
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Chapter 3

Deep Reinforcement Learning with
Coalition Action Selection for
Online Combinatorial Resource
Allocation with Arbitrary Action
Space

3.1 Introduction

Combinatorial optimization (CO) problems involve finding the best possible combina-
tion of discrete elements from a given set of feasible options. CO problems can be found
in many fields, including resource allocation and routing. A resource allocation prob-
lem is considered a CO problem when it involves deciding on a combination of tasks
to maximize an objective function. The tasks can include computational tasks in task
offloading, which need to be transferred from low-capacity devices to other devices for
faster computation (Zhang et al., 2009), or traffic demands or flows that require band-
width resources over a communication network (Liu et al., 2021). deciding

As introduced in Section 1.1, mathematical optimization algorithms have been used to
solve CO problems (Sundermann et al., 2021). However, if tasks in a CO problem ar-
rive online and in arbitrary numbers, standard optimization algorithms are not efficient
because tasks are not known in advance, that is, online CO problems require online de-
cisions without knowing future arrivals (Tan et al., 2020), but mathematical optimiza-
tion algorithms require complete information a priori. DRL is the state of the art for
sequential online decisions in dynamic and uncertain contexts (Boute et al., 2022; Wu
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et al., 2021a) with incomplete information because it plans future decisions by learning
from experience and minimizes online computational cost (Nian et al., 2020a).

Current DRL algorithms make sequential decisions not only for each time step but also
for each available task in a single time step. This comes with many drawbacks, such
as the curse of dimensionality (Gu, 2003), large depth of decision, and increased uncer-
tainty, which led to suboptimal results. One of the biggest advantages of applying DRL
for resource allocation problems is minimizing online computational costs because it
can be trained offline and executed online (Nian et al., 2020a). However, the sequential
decision of DRL algorithms on CO problems is still inefficient in terms of computational
cost. Furthermore, the curse of dimensionality (Gu, 2003) makes training DRL algo-
rithms with sequential action selection slower and more challenging(Ota et al., 2020)
for large problems. Executing the DRL algorithm sequentially for the tasks also incurs
a delay in output. Moreover, DRL for arbitrary action space problems, such as CO
problems, is understudied. Because the CO problem includes an arbitrary number of
tasks in the online setting, the DRL algorithm must work with an arbitrary action space.
While these are not negligible challenges, many existing DRL-based online resource al-
location algorithms (Almasan et al., 2022; Stein et al., 2020; Chen et al., 2018) overlook
this challenge by assuming that only one task arrives at each time step. A DRL-based
online resource allocation algorithm by Liu et al. (2021) assumes that no new request
arrives until the current flow is completed. However, real online resource allocation
problems encounter arbitrary numbers of tasks. For example, Zhang et al. (2009) con-
sidered a scenario in which a cluster of computational units has to make task-offloading
decisions on multiple tasks. They proposed a sequential action selection algorithm in
which, at each step, the available tasks are selected sequentially until the resource con-
straint is exhausted. In other words, there are multiple sequential action selections in a
single time step to select more tasks. Huang et al. (2018) and Huang et al. (2019b) con-
sidered multiple tasks and proposed a deep learning algorithm with a fixed number of
outputs to produce binary outputs of fixed size. Other DRL-based combinatorial opti-
mization and resource allocation algorithms (Bello et al., 2016; Sheng et al., 2020) apply
the concept of sequence-to-sequence modeling using pointer neural networks (Vinyals
et al., 2015) and transformer networks (Vaswani et al., 2017) of NLP to select combi-
natorial actions. Nevertheless, all existing multiple-action selection approaches suffer
from either the curse of dimensionality or have fixed outputs. Although sequence-to-
sequence modeling can be the right option when the order of the output matters, as in
the traveling salesman problem (TSP)(Bello et al., 2016), they are not important when
the output order does not matter. Therefore, learning to produce an ordered sequential
output for non-orderly sets leads to computational costs in training and execution.

The dimensionality, execution complexity, and training complexity of DRL algorithms
in online combinatorial problems can be minimized by changing the way current DRL
algorithms select actions. Instead of selecting a sequence of actions one after the other,
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using sequential execution, until the constraint is met, a coalition of actions can be se-
lected simultaneously with a parallel execution. Coalition formation is a negotiation
procedure that aims to resolve conflicts between entities by forming groups that can
achieve mutually beneficial outcomes. Recent work by Sarkar et al. (2022) has studied
coalition formation and its application to various multiagent systems. In this work, we
applied it to combinatorial action selection, where CO tasks have to find the best coali-
tion by learning different possible coalitions. We model the selection of coalitions as a
single task and single coalition formation problem (Guo et al., 2020), where a group of
tasks must form a single coalition to use the limited resources to maximize the com-
bined long-term utility.

In addition to the sequential action selection approach in the output, the representa-
tion of arbitrary-sized and orderless (ASO) data in the input is another challenge in
applying DRL to online resource allocation problems. That is, the information in the
input to the DRL algorithm can be arbitrary in size, and its order does not matter.
However, DRL algorithms, which use a standard neural network as a function approx-
imator, have a predetermined number of inputs that accept a fixed number of inputs
in a specific order (Tang and Ha, 2021). Because each input neuron of the neural net-
work is set to accept and sense specific information from the input at a corresponding
index, the DRL algorithm will consider different permutations of the same input as
different information. This increases the size of the state space and slows down the
training of the DRL algorithm. To benefit from DRL approaches in circumstances with
such arbitrary inputs whose order does not matter, special architectural components
are required (Huegle et al., 2019).

We can classify the existing techniques for handling the ASO input into two categories:
neural network-based input transformations and stationary input transformations as
presented in Section 2.1.3. Stationary transformations map an input of arbitrary length
to a fixed-size vector before it is fed into the policy of the DRL approach. Because
they can cause a collision of transformations by mapping two or more sets to the same
vector, current stationary ASO transformation strategies are less expressive and can
cause ambiguity in the DRL algorithm. On the other hand, neural network-based input
transformations are more expressive, as the original input is fed directly to the policy.
The neural network of the policy is used to learn both the input transformation and
the policy. Therefore, there is no ambiguity in the DRL. For this reason, we adopt the
neural network-based input transformation to deal with ASO input.

The main contributions of this work are three-fold:

• We propose the first DRL algorithm that selects an arbitrary number of actions
for combinatorial decisions. This improves the convergence and execution speed
of the DRL algorithms by minimizing the state space and depth of decision.
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• we adopt the transformer neural network to handle ASO inputs and arbitrary
action selection.

• We perform a numerical comparison using an online resource allocation problem
to evaluate the convergence and complexity of sequential action selection versus
coalition action selection.

This work is organized as follows. Section 3.2 reviews related work. The problem de-
scription is presented in 3.3. The proposed approaches are described in Section 3.4 and
then evaluated in Section 3.5. Conclusions and extensions of the work are presented in
Section 3.6.

3.2 Related Works

The review of existing techniques for dealing with ASO is presented in Section 2.1.3
and Table 2.1. In this chapter, the transformer neural network is selected as a state-of-
the-art method for handling ASO inputs for the DRL algorithm with coalition action
selection.

In this section, we review related work only in terms of coalition action selection and
arbitrary action selection. The term sequential action selection refers to selecting one ac-
tion at a time, while the term coalition action selection refers to selecting a combination
of actions in each time step.

Most existing DRL algorithms employ a sequential action selection approach, in which
actions are selected one at a time (Atashbar and Shi, 2022). The curse of dimensionality
makes large Markov decision processes (MDPs) intractable without a guarantee of con-
vergence (Gu, 2003) for such sequential action selection approaches. Gu (2003) did an
in-depth analysis of existing state aggregation and macro-action approaches to reduce
state space in large MDPs. Delarue et al. (2020) explicitly formulated the action selec-
tion problem as a mixed-integer optimization problem and used an optimization solver
to find the optimal or near-optimal action for the capacitated vehicle routing problem
(CVRP). This combinatorial action selection is not suitable for the online combinatorial
resource allocation problem for three reasons. First, it accepts only a predefined num-
ber of nearest M, inputs at a time in the CVRP. If the number of cities is greater than
nearest M, it considers nearest M by distance. There is no reasonable way to choose a
fixed number of traffic demands in our online resource allocation problem because they
have a complex feature vector as presented in Section 3.3. Second, it generates a fixed
number of actions, whereas the number of actions to be selected in the online combi-
natorial resource allocation problem is arbitrary in number, depending on the resource
constraint. Third, it is not convenient to maximize long-term rewards with bootstrap-
ping. There exist other approaches with binary decisions in resource allocation (Huang
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et al., 2018, 2019b), but they work with a fixed size of inputs and outputs. Similarly
to the limitation discussed for Delarue et al. (2020), they are also not convenient for
long-term reward maximization. Another work by Yao et al. (2021) has proposed an
approach that utilizes reversible actions to modify a current solution for combinato-
rial optimization problems. These actions involve flipping or swapping vertex labels
and are encoded using a graph neural network to represent state-action pairs. They
have mentioned that permutation invariance is a drawback of their approach. He et al.
(2016b) proposed a combinatorial action selection approach for recommendation sys-
tems. The action space is designed to be a fixed set of combinations of the tasks to be
recommended.

In NLP, sequence-to-sequence modeling neural networks, such as the pointer neural
network (Vinyals et al., 2015) and the transformer neural network (Vaswani et al., 2017),
have shown significant advances. They are also applied to combinatorial optimization
problems such as CVRP (Peng et al., 2020). However, even though the encoder part of
these sequence-modeling neural networks is processed in parallel, the decoder part is
still sequential and gives the output sequentially.

3.3 Problem Description

The description of the problem is customized from the multiagent learning (MAL) ap-
proach for online distributed resource allocation in a network of computing clusters by
Zhang et al. (2009). In MAL, there are 16 clusters as seen in Figure 3.1 with different
numbers of processing units in each. Tasks with different resource requirements ar-
rive to be processed in a computing cluster from an external environment or are routed
internally from neighboring clusters. The offloading of tasks to neighboring clusters
aims to maximize global utility by efficiently using resources to process tasks before
their deadline. MAL focused on whether to allocate each task locally or forward it to
one of the neighboring clusters, assuming a limit on the number of tasks that can be
transferred due to the limited capacity of the communication links. That is, the number
of tasks that can be offloaded are bound by the preset limit. Our work is complemen-
tary to MAL, where MAL decides whether tasks are processed locally or offloaded to
their neighboring clusters, and our work uses a DRL algorithm to make a combinatorial
decision on which of the tasks use the link given the resource constraint and which of
them are deferred to the next time step. We customized the problem description of the
work by Zhang et al. (2009) to consider the bandwidth constraint of a link connecting
two clusters as a constraint rather than setting a limit on the number of tasks that can
be offloaded. Therefore, the resource allocation in MAL is a computational resource
and the resource allocation in our work is a communication resource known as traffic
demand 1 (Almasan et al., 2022). Traffic demands are requests for bandwidth resources

1Traffic demand is a communication resource required to transfer a task.
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FIGURE 3.1: The network of clusters from Zhang et al. (2009)

to transfer tasks from a source cluster to a neighbor cluster.

Traffic demands are indicated by the identifier k, which ranges from 1 to the total num-
ber of traffic demands. To make the identifiers continuous from 1 to the number of traf-
fic demands, the identifier is updated at every time step because new traffic demands
can be generated and others can expire. Traffic demand is described by a feature vec-
tor that comprises the utility of allocating traffic demand Vk, the bandwidth demand
of traffic demand Dk in Optical Data Units (ODUK) as used by Almasan et al. (2022),
the time length the bandwidth is needed for traffic demand Lk in time steps, and the
maximum allowable waiting time Wk in time steps before it is allocated. Furthermore,
the time step at which a traffic demand is generated, indicated by Gk, is recorded for
every traffic demand. A set of traffic demands are denoted by {k}, and hence the set
of their Vk, Dk, Lk, and Wk are denoted by {Vk}, {Dk}, {Lk}, and {Wk} respectively. At
each time step, the total number of traffic demands generated is between 0 and kmax.
The communication links have a resource constraint of B (in ODUK).

3.3.1 Formulation of the Problem

The problem is to make an online combinatorial resource allocation decision to max-
imize utility in the long term, as shown in the objective function in Equation (3.1a).

max
X

T

∑
t=1

|{k}|

∑
k=1

Vkt · Xkt · Gkt (3.1a)

s.t.
|{k}|

∑
k=1

Dk · Xkt · Gkt ≤ Bt ∀t ∈ T (3.1b)

T

∑
t=1

Xkt · Gkt ∈ {0, Lk} ∀k ∈ {k} (3.1c)

where |{k}| is the number of traffic demands, Bt
2 is the link bandwidth constraint at

time step t, Gkt binary indicator where Gkt = 1 if Gk ≤ t ≤ Gk+Wk+Lk or Gkt = 0 oth-
erwise, Vkt = Vk

Lk
is an indicator that utility is for the entire length of Lk, and Xkt is the

binary decision variable for traffic demands where Xkt = 1 if the traffic demand k is
allocated at time step t and 0 otherwise. Equation (3.1c) ensures that a traffic demand

2The value of Bt can be less than or equal to the value of B because previous traffic demands can
continue using the link for Lk steps.
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is accepted for the entire length of Lk or rejected. Note that our work is designed to be
complementary to MAL. It assumes that clusters have decided which tasks to allocate
locally, which tasks must be forwarded to the neighboring clusters, and to which neigh-
boring cluster. Because the task routing in the MAL decides for a one-hop distance at
a time, the combinatorial resource allocation of the tasks that need to pass through a
given link is decided independently of the decision on other links. Therefore, the ob-
jective function is from the perspective of a single link.

3.3.2 Deployment of the Models

In MAL, the models are deployed as distributed agents in the clusters. In our case,
because every link is shared by two clusters, the agent for each link is deployed in
either of the clusters at both ends of the link that has a higher number of processing
units.

Notation Description
k Identifier for a traffic demand

Vk Utility of traffic demand k
Dk Bandwidth demand of traffic demand k
Wk Maximum waiting time before allocation of traffic demand k
Gk The time step traffic demand k is generated on
Lk The length in time steps traffic demand k requires to use the resource
Uk Unique distinguisher of traffic demand in the state s
B Bandwidth contract of a communication link between two clusters
Xt Decision variable of allocation of the traffic demands at time t
r reward or accepting traffic demand k
r̄ Total reward of the allocated traffic demands
T Total time steps
t Current time step
β Soft weight update for the target network
e Current episode
π The policy of the DRL
θ DNN parameters of the primary network
θ′ DNN parameters of the target network

TABLE 3.1: List of notations for Chapter 3

3.4 Formulating the Deep Reinforcement Learning with Coali-
tion Action Selection

A CO problem can be formally defined as a triplet consisting of a set of CO problem
instance {I}, a CO instance to a solution space mapping function S, and an objective
function f that maps the solutions in S(I) to real values. This definition is described
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by Oren et al. (2021) and can be used to model the DRL algorithms with sequential and
coalition action selection.

3.4.1 Modeling Sequential Action Selection in Combinatorial Optimization

Oren et al. (2021) modeled a sequential action selection process for an instance I using
an MDP (Puterman, 1994) of T steps. At each time t, the state st corresponds to a par-
tial solution and the action at ∈ As corresponds to a feasible extension of st. A reward
rt+1 = r(st, at) = f (st+1)− f (st), transition probability p(st+1|st, at), and an action dis-
tribution set by a policy π(at|st) are also defined. This leads to a distribution of trajecto-
ries ρ = (st, at, rt+1) for t = 0, . . . , T − 1, where p(ρ) = p(s0)∏T−1

t=0 π(at|st)p(st+1|st, at).
The Q function is defined as Q(st, at) = Eρ

[︂
∑T−1

i=0 r(si, ai)
⃓⃓⃓
s0 = st, a0 = at

]︂
. The agent’s

objective is to find an optimal policy π∗(a|s) = argmaxa Q(s, a).

3.4.2 Modeling the Coalition Action Selection for Combinatorial and On-
line Resource Allocation Problems

The description of the coalition action selection problem makes minor changes to the
sequential one. Partial solutions are only a subset of those in the sequential formula-
tion. An illustrative example is provided in Table 3.2. At each time t, the state st corre-
sponds to a partial solution. A feasible coalition of actions {at} ⊆ As extends the partial
solution to another partial solution. The reward of the coalition is r̄t+1 = r(st, {at}) =
f (st+1)− f (st), which can be the sum of the rewards of individual actions depending on
the objective function. The transition probability p(st+1|st, {at}) and an action distribu-
tion set by a policy π({at}|st) are also defined. This leads to a distribution of trajectories
ρ = (st, {at}, rt+1) for t = 0, . . . , T − 1, where p(ρ) = p(s0)∏T−1

t=0 π({at}|st)p(st+1|st, {at}).
The Q function is defined as Q(st, {at}) = Eρ

[︂
∑T−1

i=0 r̄(si, {ai})
⃓⃓⃓
s0 = st, {a0} = {at}

]︂
.

The agent’s objective is to find an optimal policy π∗(a|s) = argmaxa Q(s, a). Note that
the Q-function is computed by the cumulative reward but the execution and training
are run in parallel for the elements of the partial solution to output the Q-value for their
best coalition.

3.4.3 The Depth of Decision and the Size of the State Space of Coalition and
Sequential Action Selection

DRL-based CO can be illustrated by a decision tree where the root node represents the
instance and the child nodes represent the sub-problems after taking an action. An ex-
ample of the structure of the decision tree is shown in Table 3.2 with an example of a
0-1 knapsack problem, I ={i1, i2, i3} with corresponding weights {10, 15, 30}, utilities



3.4. Formulating the Deep Reinforcement Learning with Coalition Action Selection41

Sequential action selection Coalition action selection
{i1, i2, i3}

{i2, i3}

{i3}
{i2}

{i1}
{i1, i3}

{i3}
{i1}

{i2}
{i1, i2}
{i3}

{i1, i2, i3}

{i3}
{i1, i2}

{i1, i2}
{i3}

TABLE 3.2: Simple illustration of the depth of decision and state space of sequential
and coalition action selection using 0-1 knapsack problem

{80, 60, 100}, and a knapsack capacity of 30. In the trees, the selected elements are rep-
resented by red labels at the edges. The leaf nodes represent the terminal states when
the knapsack cannot add any more elements. The sequential action selection technique
selects only one element at a time. On the contrary, the coalition action selection ap-
proach can select any feasible coalition of elements whose sum of weights does not
exceed the capacity. In the DRL algorithm, the coalition is formed from the elements
with the highest Q-values. The sequential action selection has a depth of 2 and a state
space size of 5, while the coalition action selection has a depth of 1 and a state space
size of 3.

3.4.4 Deep Reinforcement Learning with Coalition Action Selection

The DRL algorithm, deployed as link agents for each communication link, must make
online decisions for the online combinatorial resource allocation problem shown with
the objective function in Equation (3.1a). Figure 3.2 illustrates the interaction between
the resource allocation environment and the DRL agent with coalition action selection.
At each time step, the DRL algorithm uses a policy π, which is a transformer neural
network, that takes a state s containing information about unallocated traffic demands
and the resource constraint feature vector BL

3 for the next L time step as input and
outputs corresponding Q-values for the traffic demands in parallel. Then, a coalition
of traffic demands is selected based on the order of the Q-values of the traffic demands,
considering the resource constraint for the sum of their demands. A reward is com-
puted from the sum of Vk of the selected traffic demands. BL is updated after every
step because once a traffic demand is allocated, it uses the link until Lk expires. Traffic
demands that are not accepted at the current step remain available for decision in sub-
sequent steps as long as their Wk has not expired. The dotted lines indicate that a copy
is stored in the replay memory for training. The state, action, and reward of the DRL
algorithm are as follows.

3BL is the future state of Bt for L time steps, where L is the maximum possible value of Lk, because
previous traffic demands occupy the link for Lk time steps.
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FIGURE 3.2: The interaction diagram between the transformer-based DRL agent with
coalition action selection and the online combinatorial resource allocation environ-

ment

State: A state s includes the set of feature vectors [Uk, Vk, Dk, Wk, Lk] of the set of traf-
fic demands {k} that are waiting to be allocated and the bandwidth constraint vector
of the link BL. Since Uk is used only in the selection of coalition actions, its explana-
tion is available in the description of the action. The state is variable in size because
the number of traffic demands can be arbitrarily large. To handle this arbitrary length
input in the DRL algorithm, we used the encoder part of the transformer neural net-
work (Vaswani et al., 2017) to process the ASO input simultaneously as follows.

State Using Transformer

The transformer neural network, which is also known as the transformer, is the state-
of-the-art neural network-based ASO transformation as explained in Section 2.1.3. The
transformer is used in a variety of NLP tasks, but it is also applied to CO problems (Peng
et al., 2020). It is made up of an encoder layer and a decoder layer. The encoder pro-
cesses the input sequence in parallel. The decoder generates the output sequence one
by one by processing the encoder output and the previous output of the decoder. The
encoder and decoder have blocks of feedforward and attention layers. The attention
layer aggregates information about other elements using attention weights. If the or-
der of the input is important, the positional encoder (Vaswani et al., 2017), but we do
not need it in our ASO input because the ASO input assumes independent tasks. The
transformer allows the input elements (traffic demands, in our case) to compute the
complex relationship among themselves in parallel using an attention neural network.
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They can handle arbitrary lengths of input. Therefore, we used the encoder part of the
transformer network to simultaneously output the Q value of the input elements from
their hidden state. In NLP, the input sequence is embedded in a dictionary. However,
since the input is numerical data in CO, the embedding part is replaced by a feedfor-
ward neural network (Peng et al., 2020).

Therefore, the state transformation is applied by directly entering the set of feature
vectors [Uk, Vk, Dk, Wk, Lk] of traffic demands {k} and the resource constraint BL into
the encoder as s= {BL, {k}}. BL is padded with B to make its feature vector equal to the
length of the feature vector of a traffic demand.

Action: The action space {a} is the set of traffic demands {k}. The Q-values of the traf-
fic demands are outputted from the last layer of the encoder-only transformer. Then,
the traffic demands with higher demand than the capacity of the link are masked, and
the action selection starts for the rest in decreasing order of their Q-value until the re-
source constraint is exhausted. If a traffic demand has a higher DL than the resource
constraint, the algorithm skips it and checks the next one.

Distinguisher in Coalition Action Selection

DRL outputs the same Q-value for the same input. Therefore, it will be challenging for
coalition selection to learn to put the same traffic demands on different coalitions. The
Uk, which is 1 by default for all {k}, is included to distinguish the same traffic demands
in the coalition action selection. If two or more traffic demands have the same feature
vector, they are distinguished by indexing them with increasing Uk. The Uk is updated
at each time step.

Reward: The set of selected actions receives a joint reward r̄, which is the sum of Vk of
the selected traffic demands.

Next State: Taking a set of actions {a} in state s of the problem transforms the state into
a new state s′ with reward r̄. The selected traffic demands are removed from the set of
unallocated demands. The unallocated traffic demands and newly generated traffic
demands form the traffic demands of the next state. The resource constraint vector BL

is also updated by subtracting the traffic demands {Dk} of the selected actions and also
by releasing the occupied resource of traffic demands whose Lk has expired.

Our DRL algorithm with coalition action selection is in Algorithm 1. First, it initializes
hyperparameters. Then it runs for E episodes and T steps for every episode. Training
is performed at the end of the episode (lines 36 to 42). For the iterations of the steps, it
starts by generating initial traffic demands kmax, as seen in line 4. After the first step, it
generates any number of traffic demands between 0 and kmax per step, as seen in line 31.
Lines 9 to 14 show exploration and exploitation. Traffic demands are randomly shuffled
for exploration. When exploiting, the traffic demands and the resource constraint are
fed to the transformer to simultaneously output Q-values for all traffic demands. Then
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they are sorted so that they are selected accordingly, as seen in lines 18 to 27. Action
selection is carried out by iterating on the sorted {k} using the index a. In line 19, it
checks if the demand Da of the traffic demand at index a of {k} is not greater than the
resource constraint. If not, it appends the identifier of the traffic demand to the selected
list and adds its utility to the reward, as seen in lines 20 and 21. Then update the
resource constraint because traffic demand will use the resource for La time steps. This
process continues until no more traffic demand can be accepted. The reward is used
to update the Q-value of the selected traffic demands in the training. During training,
only the selected actions update their Q-values with the target Q-value computed from
the shared reward and the best Q-value of the next state, as seen in line 41. Because
each action can be explored with different coalitions of actions at different time steps,
the DRL algorithm gradually finds the optimal coalition using their Q-values during
constrained action selection.

For better training efficiency, we use double Q-learning (Van Hasselt et al., 2016) and
prioritized experience replay (Schaul et al., 2016). We use the decaying exploration-
exploitation probability ϵ which starts at 1 and decays by subtracting ϵ

5000 in every
episode.

3.5 Experimental Evaluation

In this section, we experimentally evaluate whether coalition action selection, which
benefits from reducing the depth of the decision, the state space, and the action space,
yields superior performance and lower complexity than sequential selection. We imple-
mented our algorithm for the online resource allocation problem to assess the validity
of the hypothesis. First, we introduce the offline optimal.

3.5.1 Offline Optimal using Integer Programming

To evaluate the performance of the proposed algorithms, we used integer program-
ming (IP) as an offline optimal. We compared the utility of the coalition and sequential
action selection methods over an episode as percentages with the offline optimal. IP is
unrealistic for online resource allocation, as it assumes that all information about de-
mand is available in advance. Therefore, we store the traffic demands generated during
the time steps of the episode and run the IP at the end for the objective function shown
in Equation (3.1a).
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Algorithm 1 Transformer Neural Network-based DRL Algorithm with Coali-
tion Action Selection

Initialize parameters: primary transformer parameters θ) , target transformer parame-
ters θ′ = θ), discount factor γ = 0.99, ϵ-greedy ϵ = 1, replay memory M = [], minibatch
b = [], start and maximum episode (e = 1, E = 50, 000), number of time steps T = 10

1: while e ≤ E do
2: ϵ = ϵ− ϵ

5000
3: Time step t = 1
4: Initialize the set of traffic demands {k}with kmax number of random initial traffic

demands
5: Initialize B for Lmax time steps BL:Bl = B for 0 ≤ l ≤ Lmax
6: Pad BL with B to make it same length with the feature vector of k
7: while t ≤ T do
8: Compute state s = {{k}, BL}
9: if rand ≤ ϵ then

10: Shuffle {k} randomly and form new lists V, D , L, W
11: else
12: Get Q-value Q = Q (s | θ) in parallel for s
13: Sort {k} in descending Q and form new lists V, D , L, W
14: end if
15: Reward r = 0
16: Selected = []
17: a = 0
18: while a ≤ |{k}| do
19: if Da ≤ Bt then
20: Selected = append(selected,a)
21: r = r + Va
22: for i = 0 to La do
23: Bi = Bi − Da
24: end for
25: end if
26: a = a+ 1
27: end while
28: Exclude the selected traffic demands from {k}
29: Decrement {Lk} and {Wk} of the traffic demands
30: Free occupied resources from BL for all Lk ≤ 0
31: Generate new traffic demands of size between 0 and kmax, and append to {k}
32: Compute next state s′
33: Store the experience (s, selected, r, s′) to M
34: Increment t
35: end while
36: Sample a minibatch of (s,selected,r,s′) from M to b
37: Get Q-value Q′ = Q (s′ | θ′) for the traffic demands at s′
38: Mask the Q-values of the infeasible (Wk > B) traffic demands from Q’ and find

maximum Q-value maxQi = max(Q′i) ∀i ∈ b
39: Compute target Q-values yi = ri+γmaxQi ∀i ∈ b
40: Get current Q-values currQ = Q (s | θ) for the traffic demands

41: Update the DQN by minimizing Loss =
1
|b| ∑i∈b (yi − currQi (si (selectedi)))

2

42: Update the targets: θ′ ← θ
43: Increment e
44: end while
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3.5.2 Benchmark Selection

Arbitrary action selection is understudied in DRL. As described in related work, ex-
isting work overlooks the challenge of arbitrary action selection in DRL by assuming
that only one task arrives at a time. Although some techniques select a fixed number
of outputs at a time, as discussed in related work for CVRP (Delarue et al., 2020) and
resource allocation (Huang et al., 2018, 2019b), they are not suitable for comparison for
the mentioned reasons. Therefore, we chose a sequential action selection approach as
in Zhang et al. (2009) and the offline optimal with IP as the lower bound and the upper
bound benchmarks, respectively.

3.5.3 Experimental Setup

Because our work is complementary to MAL as explained in Section 3.3, we gener-
ate a random number of traffic demands in the range of 0 and kmax from a uniform
distribution at every time step to resemble the traffic demands that arrive at a cluster
externally or offloaded from neighboring clusters. First, we run the experiment with a
kmax value of 10 to analyze convergence and complexity, and then run the experiment
for kmax ∈ {2, 5, 10, 15, 20}, without changing other settings, to evaluate performance
with various traffic demand arrival rates. The feature vectors of the traffic demands are
generated from a uniform distribution between 1 and Vmax = 5, Lmax = 1, and Wmax =
3, inclusive. Similarly to the work by Almasan et al. (2022), we consider three ODUK
types for the values of {Dk} with {ODU2, ODU3, and ODU4}, whose bandwidth re-
quirements are expressed in terms of multiples of ODU0 signals. Therefore, the values
of {Dk} are selected as a random choice of {8,32,64} ODU0 units, and the resource
constraint B is 100 (ODU0). The time step T is 10.

The hyperparameters of our DRL algorithm are configured as follows. The coalition
action selection has five inputs including the distinguisher, and the sequential action
selection has four inputs. The numerical inputs are embedded in a single-layer neural
network with 8 outputs. This is followed by 6 blocks of feedforward neural network
and multihead attention layers. The feedforward neural networks have 32 neurons
each. We used a multihead attention value of 8. The final feedforward neural network
layer has one output, which will be the Q-value of the corresponding traffic demand
at the input. Note that the transformer processes the traffic demands in parallel to
compute the Q-values. We used a discount factor of 0.99, a learning rate of 0.001, a
replay memory of size 10,000 which stores the transitions in a first-in-first-out order,
and a minibatch size of 64. The mentioned number of encoder blocks and their number
of neurons are selected because they led to superior convergence after exhaustive trial-
and-error experiments with various choices. We ran the experiments for 40 runs. The
experiments are implemented with Pytorch. To ensure reproducibility, the experiment
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environment is initialized with a seed value of 0. The episodes are independent. All
experiments are initialized with 50,000 episodes and run for 24 hours.

3.5.4 Experimental Comparison

We conducted experiments to evaluate convergence and performance as follows.

3.5.4.1 Visualization

We choose a line graph to present the performance, where the x-axis represents the
episodes and the y-axis represents the total reward of an episode. The total reward
for an episode is the sum of the rewards gained in each of the steps of the episode.
Because the number of episodes is very large, the visualization appears dense, as seen
in Figure 3.3 (A) when the y-axis is plotted for each episode individually. To smooth the
lines, we plot the results for an average of a moving window of 50 and 1000 episodes,
as seen in Figure3.3 (B) and Figure 3.3 (C) respectively. The plot of an average moving
window of 50 in a given episode is the average reward of the recent 50 episodes. If the
current episode number is less than 50, it averages for all of them. The subplot with a
moving window of 1000 visualizes the difference between the performance of the two
algorithms.

Note that the results are plotted with a 95% confidence interval of 40 runs. That is, the
rewards on the y-axis are averaged over 40 experiments, and the shaded area represents
the 95% confidence interval.



48
Chapter 3. Deep Reinforcement Learning with Coalition Action Selection for Online

Combinatorial Resource Allocation with Arbitrary Action Space

FIGURE 3.3: The visualization of the performance: A) without a moving window; B)
with a moving window of 50; C) with a moving window of 1000
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3.5.4.2 Convergence

FIGURE 3.4: Performance of the coalition action selection and the sequential action
selections with episodic training (the DRL algorithm is trained at the end of each

episode).

First, we evaluated the convergence of the performance of the two algorithms and their
complexity. To evaluate performance, we compared the performance of coalition action
selection and sequential action selection as a percentage of the offline optimal in each
episode. To smooth the curves, the results in Figure 3.4 are plotted for an averaged
moving window of 1000 episodes. Figure 3.4 shows that the coalition action selection
approach converges faster and is superior with an average gap of 2% over sequential
action selection. Because the 40 runs end with varying numbers of episodes during the
24-hour training period, we normalize them to the minimum number of episodes to
ensure that the 95% confidence interval is computed over an equal number of episodes
for Figures 3.4.

Training of the DRL algorithm for the result in Figure 3.4 is performed at the end of
each episode. We also explore the performance of the algorithms when trained at every
step of the episodes, as seen in Figure 3.5, which performed lower due to overfitting.
Training in a stepwise manner leads to overfitting to the data collected from the early
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FIGURE 3.5: Performance of the coalition action selection and the sequential action
selection with step-wise training (the DRL algorithm is trained at every step).

episodes of the experiment, while training at the end of each episode provided better
generalization.

3.5.4.3 Comparison of Complexity of Coalition Action Selection and Sequential Ac-
tion Selection

To compare the computational cost of executing the sequential action selection and
coalition action selection approaches, we present the number of executions (or itera-
tions of traffic demands) and the CPU time as shown in Figure 3.6. The number of ex-
ecutions and the CPU time of the box plots are generated from the number of episodes
in Figures 3.4. The number of executions is a count of the number of computing Q-
values for the traffic demands. The CPU time is the sum of the fraction of seconds each
algorithm spent running the DRL algorithm to select actions. The time the algorithm
spends training is not considered. As seen in Figure 3.6 (A), the median number of ex-
ecutions for episodes of the coalition action selection approach is 114 and the number
of executions for 50% of the episodes ranges between 110 and 117, while episodes of
sequential action selection have a median of 479 executions, and the number of exe-
cutions for 50% of them ranges between 455 and 499. The sequential action selection
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performs more executions because it selects one action at a time, resulting in some traf-
fic demands to be executed again in the next decision. On the other hand, coalition
action selection has a smaller number of executions because it selects multiple actions
after a single parallel execution. Figure 3.6 (B) shows that the CPU time spent executing
the DRL in sequential action selection and coalition action selection is proportional to
the number of executions in Figure 3.6 (A). The number of executions and CPU time is
averaged over the 40 runs episodic before being used for the box plots.

FIGURE 3.6: A. The complexity using the number of executions for (1) coalition action
selection and (2) sequential action selection. B. The execution in CPU time for (1)

coalition action selection and (2) sequential action selection

3.5.4.4 Comparison of Performance and Execution Complexity with Various Prob-
lem Sizes

Finally, we repeat the experiment for traffic demand arrival rates of kmax = 2, kmax =
5, kmax = 15, and kmax = 20 to compare the algorithms with various sizes of the online
combinatorial resource allocation problem. Note that the experiment discussed above
is for kmax = 10. The results are plotted for the maximum convergence of the best run
of 40 runs for a moving window of 5000 episodes, as seen in Figure 3.7. For example,
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the maximum convergence for the experiment with kmax = 10 shown in Figure 3.4 with
a moving window of 1000 episodes is 93.777% in episode number 28,036. However,
Figure 3.4 is plotted for the average of 40 runs, while Figure 3.7 is plotted for the best
run of the 40 runs. The reason is that we were unable to compute an average run of
40 runs for kmax values of 15 and 20 because some runs failed due to limitations of the
academic license of the Gurobi optimizer4. Almost all runs failed for kmax greater than
20. Note that, with a maximum arrival rate kmax of 20, a maximum waiting time of Wmax

of 3 for each traffic demand, and for the time steps per episode T of 10, there are 220∗3∗10

combinations of solutions per episode in the worst case for the Gurobi optimizer. The
license does not affect the DRL algorithm, but the offline optimal.

For episodic training, the coalition action selection approach has shown superior per-
formance, with a convergence of around 95% to offline optimal in the best runs of dif-
ferent problem sizes, but the performance of sequential action selection algorithms de-
creases, up to 92%, as the size of the problem increases. Note that the two algorithms
perform almost the same for very small arrival rates because all traffic demands can be
accepted without exhausting the resource constraint. For kmax = 10, Figure 3.4 shows
that the coalition action selection converges faster, but Figure 3.7 shows that they are
almost the same because it is plotted only for the maximum convergence. The figure
also shows that the performance gap between coalition action selection and sequential
action selection increases in stepwise training due to overfitting, as discussed above.

To compare computational complexity, we present the number of executions for each
corresponding run that led to the peak convergence in performance for episodic train-
ing in Figure 3.7. Unlike Figure 3.6, which plotted the number of executions as box
plots in the run episodes, Figure 3.7 plots the mean number of executions in the run
episodes because we have to plot a scalar value for every kmax on the x-axis. The result
shows that the coalition action selection has a lower complexity than the sequential
action selection, in terms of the number of executions and CPU time.

4https://www.gurobi.com/

https://www.gurobi.com/
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FIGURE 3.7: The comparison of the coalition action selection and sequential action
selection in terms of performance, number of executions, and running time in CPU
time for different numbers of traffic demand arrival rates. The complexity plotted in
terms of the number of executions and CPU time are averaged over the episodes of
the best-run experiment that led to maximum values in the performance shown for

the episodic training.

3.6 Conclusion

We propose DRL with coalition action selection for online combinatorial resource allo-
cation with arbitrary action space and experimentally demonstrate that it gives better
convergence and lower complexity than sequential action selection. DRL with coalition
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action provides better performance than sequential action selection because it mini-
mizes the number of iterations, the state space, and the uncertainty of the problem by
producing the Q-values for all elements in the input in parallel, unlike sequential action
selection which makes longer iterations by selecting one action at a time and updating
the state. The actions of the coalition action selection are coordinated by sharing their
reward in the training.

The coalition action selection technique is extended to the combinatorial action selec-
tion of the master agent in the CCM MADRL algorithm presented in Chapter 5.
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Deep Reinforcement Learning with
Computationally Efficient
Stationary ASO Input
Transformation for Online
Combinatorial Resource Allocation

4.1 Introduction

Although, as described in Chapter 3, neural network-based input transformation tech-
niques are more expressive because the original input is directly fed to the policy, learn-
ing the fixed-size vector from the input with an arbitrary length increases computa-
tional complexity and slows the convergence. This is because the policy’s neural net-
work learns both the input transformation and the policy. A review of neural network-
based and stationary ASO input transformation techniques is provided in Section 2.1.3.
GNN and attention-based transformers are popular neural network-based for dealing
with ASO input. Their suitability for handling ASO input is analyzed in Table 2.1. GNN
is efficient when there is a topological relationship between the inputs. The transformer
is efficient if there is a contextual relationship between the inputs. The transformer can
be considered a special case of GNN with a fully connected graph (Wu et al., 2021b;
Veličković, 2023). Therefore, the transformer is more suitable than GNN for handling
ASO in resource allocation for set inputs, such as in combinatorial optimization prob-
lems that do not have a graph-structured relationship. However, although transform-
ers are efficient in NLP, they are not as such for numeric ASO inputs for the following
reasons.
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• Slows the convergence because the DRL has to learn both the policy and the trans-
formation.

• The execution speed is slow because there is a huge dependence on parallel exe-
cution, where every element of the input has to compute a value using the atten-
tion mechanism for every other element at every layer of the transformer.

• When the ASO inputs are independent, there is no complex relationship to learn.
The transformer incurs computational complexity, making dependent parallel
computations over a series of layers for independent ASO inputs.

On the other hand, because they can transform various input sets into the same context
vector, the current stationary ASO input transformation strategies are less expressive
and can cause ambiguity in the DRL algorithm. This motivated us to develop com-
putationally efficient stationary ASO input transformations to reduce computational
cost and improve efficiency. The transformation of the ASO input and the learning
of the policy are separated. First, the ASO input is transformed into a fixed-size and
permutation-invariant vector using stationary mathematical equations. Then, the per-
action DQN processes the items independently but shares the transformed vector as a
common state among them.

The main contributions of this work are two-fold:

• We propose a novel computationally efficient stationary ASO input transforma-
tion that transforms a set of inputs into a fixed-size vector, which reduces the
learning complexity of DRL algorithms. We call it stationary because an ASO
input is always transformed into the same vector, unlike neural network-based
transformations, which transform the input into different outputs as their weight
changes.

• We conducted a numerical comparison with the transformer-based approach in
Chapter 3 to evaluate the convergence speed of the proposed stationary ASO in-
put transformation.

This chapter is organized as follows. The proposed approaches are described in Sec-
tion 4.2 and then evaluated in Section 4.4. Conclusions and future work are presented
in Section 4.5.
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FIGURE 4.1: The architecture of the per-action DQN with stationary ASO input trans-
formation (ASO Per-action DQN)

4.2 The Proposed Stationary ASO Input Transformation for the
Deep Reinforcement Learning with Coalition Action Selec-
tion for Online Resource Allocation

Because the benchmark for the proposed stationary ASO input transformation is the
transformer-based approach in Chapter 3, the same description of the problem formu-
lation is also used for the online resource allocation. The architecture of the DRL with
coalition action selection using per-action DQN and stationary ASO input transforma-
tion is shown in Figure 4.1. First, a common state is computed for traffic demands.
Traffic demands are then processed by the same per-action DQN model independently
but have a common state computed by the stationary ASO input transformation. Fi-
nally, a coalition action selection technique selects traffic demands in descending order
of their Q values until the resource constraint is reached.

The interaction diagram of the DRL algorithm with the coalition action selection that
uses per-action DQN and stationary ASO input transformation with the resource allo-
cation environment is presented in Figure 4.2. It is similar to the interaction diagram
of the transformer-based benchmark in Figure 3.2, except that the transformer network
of the DRL agent is replaced by the architecture of the per-action DQN with station-
ary ASO input transformation in Figure 4.1. Because the way they transform the ASO
input is different, they also store their experiences differently. The transformer stores
the original tasks as states in the replay memory, but the per-action DQN with ASO
transformation computes a common state from the tasks and stores it in the replay
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FIGURE 4.2: The interaction diagram between the per-action DQN and stationary ASO
input transformation-based DRL agent with coalition action selection and the online

combinatorial resource allocation environment

memory. The tasks in the replay memory of the transformer will be processed by the
transformer at every training to be converted to a fixed vector, whereas the per-action
DQN with stationary ASO input transformation computes the common state once and
reuses it. Compared to neural network-based ASO input transformation techniques,
which store all original input in replay memory, the DRL algorithm with stationary
ASO input transformation stores only the selected tasks, the common state vector, and
the resource constraint in replay memory.

The state, action, and reward transitions of the DRL algorithm are described in the
following.

State: The state s includes the set of feature vectors [Uk, Vk, Dk, Wk, Lk] of the traffic
demands {k} that are waiting to be allocated and the bandwidth constraint vector of
the link BL. Since Uk is used only in the selection of coalition actions, its explanation is
available in the description of the action.

The state information is variable in size because the number of traffic demands can be
arbitrarily large. However, the standard neural network of a DRL algorithm has a fixed
number of inputs. The arbitrary-length state representation must, therefore, be mapped
to a fixed-size state representation using a transformation mechanism. In this section,
we describe the mapping of the state to a fixed vector using the proposed stationary
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ASO input transformation function, which will be used as input to the per-action-DQN
with stationary ASO input transformation to learn the policy.

4.2.1 State Representation Using the Proposed Stationary ASO Input Trans-
formation

The proposed stationary ASO input transformation function is a vector of size 5 as
shown in Equation (4.1).

ST(A) = [ η(A), µ(A), σ(A), σ(A + A ◦ A), ∏
i|Ai ̸=0

Ai] (4.1)

where A is an ASO input. A ◦ A, η, µ, σ are the Hadamard-product, size, mean, and
variance of the ASO input respectively. ∏i ̸=0 Ai computes the product of the ASO input
(ignoring zeros). The theoretical derivation of the stationary ASO input transformation
function is provided in the supplementary material.

Equation (4.1) gives the same result for any permutation of the input A. Therefore, it
maps a set of scalar values to a fixed-size vector. However, the feature vectors of the
traffic demands are vectors. Therefore, the equation must be applied element-wise,
i.e. ST(Vk, Dk, Lk, Wk) = [ST({Vk}), ST({Dk}), ST({Lk}), ST({Wk})] to the feature vec-
tors of traffic demands. Note that Uk is not included in the state, but will be included
in actions.

Using the element-wise transformation can cause collisions of different inputs to the
same output because it does not keep the correspondence between elements of the
same feature vector. The element-wise transformation cannot distinguish a set of two
traffic demands whose feature vectors, [Uk, Vk, Dk, Wk, Lk], are {[1, 1, 3, 4, 2], [1, 2, 5, 2, 4]}
from other traffic demands with feature vectors {[1, 1, 3, 2, 2], [1, 2, 5, 4, 4]}. To address
this, before applying the element-wise transformation, the traffic demands are sorted
in lexicographical order of their feature vectors. That is, {k} = {[Uk, Vk, Dk, Wk, Lk]}
will transform into {k′} = {[U ′

k, V
′
k , D

′
k, W

′
k, L

′
k]} = LexicographicOrder({k}) = Lexicograph-

icOrder({[Uk, Vk, Dk, Wk, Lk]}). After the lexicographic order, every traffic demand in
{k′} is updated by Equation( 4.2) after which it will undergo element-wise transforma-
tion using Equation (4.1).

E
′
k = E

′
k +

k
K

E
′
k ∀E

′
k ∈ [V

′
k , D

′
k, W

′
k, L

′
k] (4.2)

where k is the identifier of the traffic demand (or index) after the lexical order and
K = |{k}|. The lexicographical order helps to avoid different permutations of the same
set of traffic demands, whereas the multiplication by the index distinguishes elements
of the feature vector from elements of other feature vectors.
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The state of the DRL algorithm also includes the bandwidth limit of the link B for the
next Lmax time steps, where Lmax is the maximum possible Lk that a traffic demand can
have. This traffic demand constraint in the time steps Lmax is denoted by a bandwidth
constraint vector BL. Initially, all elements of the vector BL are assigned with the value
of B. Therefore, by combining ST and BL, we obtain the state in a time step using
Equation (4.3).

s = ST(Vk, Dk, Lk, Wk) = [BL, ST(E′)] (4.3)

where E′ is Equation (4.2).

Action: The action space {a} is the set of traffic demands {k}. For the per-action
DQN (He et al., 2015), each of the feature vectors of the traffic demands will be em-
bedded in the state s and fed into the DQN, giving an output Q-value for each of the
traffic demands, that is, the state and the action are inputs into the per-action DQN,
Q[a] = Q(s, a | θ). After computing the Q-values of the traffic demands, the action
selector sorts the actions by their Q-values and starts to select the traffic demands start-
ing from the highest Q-value until there is no more traffic demand that can be accepted
with the remaining capacity of the link in the current time step. If a traffic demand has
a higher DL than the resource constraint of the link, the algorithm skips it and checks
the next one.

Distinguisher in Coalition Action Selection

DRL outputs the same Q value for the same input. Therefore, it will be challenging for
coalition selection to learn to put the same traffic demands on different coalitions. The
Uk, which is 1 by default for all {k}, is included to distinguish the same traffic demands
in the coalition action selection. If two or more traffic demands have the same feature
vector, they are distinguished by indexing them with increasing Uk. The Uk is updated
at each time step.

Reward: The set of selected actions receives a joint reward r̄, which is the sum of Vk of
the selected traffic demands.

Next state: Taking a set of actions {a} in state s of the problem transforms the state into
a new state s′ with reward r̄. The selected traffic demands are removed from the set
of unallocated traffic demands. The unallocated traffic demands and newly generated
traffic demands form the traffic demands of the next state. The resource constraint
vector BL is also updated by subtracting the traffic demands {Dk} of the selected actions
and also by releasing the occupied resource of traffic demands whose Lk has expired.
Finally, it is applied to the stationary ASO input transformation.



4.2. The Proposed Stationary ASO Input Transformation for the Deep Reinforcement
Learning with Coalition Action Selection for Online Resource Allocation 61

Action selection Best case Worst case
coalition O(n) O(n)
Sequential O(n) O(nx)

TABLE 4.1: Complexity of calling stationary ASO input transformation

The DRL algorithm with the coalition action selection using the stationary ASO input
transformation is in Algorithm 2. The difference with Algorithm 1 is in the compu-
tation of the Q-values. Algorithm 2 computes the Q-values using per-action DQN as
Q (s, k | θ) whereas Algorithm 1 computes it using the transformer as Q (s | θ). Note
that the state s is different in the two algorithms.

For better training efficiency, we used double Q-learning (Van Hasselt et al., 2016) and
prioritized experience replay (Schaul et al., 2016). We use the decaying exploration-
exploitation probability ϵ that starts at 1 and decays by ϵ - ϵ/5000 in every episode to 0
after which the DRL takes advantage of its trained model.

4.2.2 Complexity Analysis of the Stationary ASO Input Transformation and
the Execution of the Per-action DQN with Stationary ASO Input Trans-
formation

In this section, we analyze the best-case and worst-case complexity of the coalition and
sequential action selection in terms of both computing the state and executing the per-
action DQN. The analysis of complexity between the coalition action selection and the
sequential on the transformer is not included, as it had similar differences but higher
complexity than per-action DQN as the attention weights are computed at every layer
of the neural network. We compared the complexity in terms of the number of execu-
tions of the model, not the complexity of the model itself, since it is similar between
sequential and simultaneous.

Using n to denote the T time steps of an episode and x to denote the number of unallo-
cated traffic demands |{k}| at a time step, we analyzed the complexity of computing the
state and the complexity of executing (iterating) the DQN over the actions. Note that
the complexity of computing a state using Equation (4.1) also depends on the number
of traffic demands, but we focus only on how many times the equation that computes
the state is called. The structure of the per-action DQN algorithm is also the same in
both algorithms, but only the number of times it is called varies.

4.2.2.1 Complexity of Calling the Stationary Input Transformation

The complexity of calling the stationary ASO input transformation function for the
selection of coalition actions and sequential action selection is shown in Table 4.1. The
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Algorithm 2 Per-action DQN for DRL with coalition action selection using sta-
tionary ASO input transformation

Initialize parameters: primary DQN network θ , target DQN network θ′ = θ, discount
factor γ = 0.99, ϵ-greedy ϵ = 1, replay memory M = [], minibatch b = [], start and
maximum episode (e = 1, E = 50000)

1: while e ≤ E do
2: ϵ = ϵ− ϵ

5000
3: Time step t = 1
4: Initialize the set of traffic demands {k}with kmax number of random initial traffic

demands
5: Initialize B for Lmax time steps BL:Bl = B for 0 ≤ l ≤ Lmax
6: while t ≤ T do
7: Compute state s = [ST(.), BL]
8: Q = []
9: if rand ≤ ϵ then

10: Shuffle {k} randomly and form new lists V, D , L, W
11: else
12: for each traffic demand k whose Dk ≤ Bt do
13: Get Q-value Qk = Q(s, k | θ)
14: Append(Q, Qk)
15: end for
16: Sort {k} in descending Q and form new lists V, D , L, W
17: end if
18: Reward r = 0
19: Selected = []
20: a = 0
21: while a ≤ |{k}| do
22: if Da ≤ Bt then
23: Selected = append(selected,a)
24: r = r + Va
25: for i = 0 to La do
26: Bi = Bi − Da
27: end for
28: end if
29: a = a+ 1
30: end while
31: Exclude the selected traffic demands from {k}
32: Decrement {Lk} and {Wk} of the traffic demands
33: Free occupied resources from BL for all Lk ≤ 0
34: Generate new traffic demands of size between 0 and kmax, and append to {k}
35: Compute next state s′
36: Store the experience (s, selected, r, s′) to M
37: Increment t
38: end while
39: Sample a minibatch of (s,selected,r,s′) from M to b
40: Get Q-value Q′ = Q (s′, k | θ′) for the feasible traffic demands (k : B ≥Wk) at s′
41: Find maximum Q-value maxQi = max(Q′i) ∀i ∈ b
42: Compute target Q-values yi = ri+γmaxQi ∀i ∈ b
43: Get current Q-values currQ = Q (s, selected | θ) for the traffic demands

44: Update the DQN by minimizing Loss =
1
|b| ∑i∈b (yi − currQi)

2

45: Update the targets: θ′ ← θ
46: Increment e
47: end while
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Action selection Best-case Worst-case
coalition O(nx) O(nx)
Sequential O(nx) O(nx2)

TABLE 4.2: Complexity of executing the DQN

coalition action selection algorithm calls the stationary ASO input transformation func-
tion only once in each time step, and the best-case and worst-case complexity are the
same. However, for the sequential action selection algorithm, the best case is the same
as the coalition action selection if the algorithm terminates after selecting one action.
The worst-case complexity of the algorithm occurs when it has enough resources to
select all actions. In such a case, the algorithm calls the stationary ASO input transfor-
mation function x times in each step, that is, it computes the state once for the x traffic
demands and selects one action, then computes the state for the remaining x− 1 traffic
demands and selects one action, and it continues until no traffic demand is left. Since
it repeats the sequence for newly generated traffic demands at each time step, the total
number of calls to the stationary ASO input transformation function will be nx.

4.2.2.2 Complexity Analysis of Executing the DQN

Table 4.2 shows the best-case and worst-case complexities of the DQN algorithms of
the coalition action selection and sequential action selection. For the selection of coali-
tion actions, both the best and the worst cases are O(nx) because, at each time step,
the algorithm must calculate the Q value for each traffic demand. Sequential action
selection also has the same complexity in its best case, where only one traffic demand
is elected at each time step. The worst-case complexity of iterating the DQN algorithm
in the selection of sequential actions is x ∗ (x + 1)/2 +n at each time step.

4.3 Theoretical Derivation and Level of Unique Transforma-
tion of the Stationary ASO Input Transformation

This section presents the derivation and theoretical proof of the level of uniqueness of
the stationary ASO input transformation function, as shown in Equation (4.1). We call
the equation a stationary ASO input transformation because the equation always trans-
forms an input to the same output, unlike machine learning algorithms, which trans-
form an input to different outputs at different times depending on the values of their
weights. If the input can have nonpositive numbers, it can be transformed into an ASO
input of positive numbers by adding the absolute value of the minimum possible neg-
ative number in the ASO input and 1 as A = A+| min(A) |+1. However, the minimum
amount of resources in our resource allocation algorithm is 0.
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4.3.1 Permutation-invariance of the Stationary ASO Input Transformation

The stationary ASO input transformation function has two objectives: to transform a
set of ASO inputs to a fixed vector and to transform all permutations of ASO inputs
to the same vector. As seen in Equation (4.1), the stationary ASO input transformation
outputs a vector of size 5 regardless of the size of the ASO input A. The output of
the stationary ASO input transformation is also the same, regardless of the order of
the elements in the ASO input. The reason is that the five terms in the stationary ASO
input transformation are permutation-invariant. That is, if we look at the terms one by
one: the size of an ASO input is the same irrespective of the order of its elements; The
mean and the product for an ASO input do not change by changing the order of the
elements of the ASO input, because addition and multiplication are commutative; for
the other terms, the fact that the subtractions and the squares are element-wise and that
their summations are commutative makes them permutation invariant.

The following section presents the derivation and analysis of the stationary ASO input
transformation.

4.3.2 Analysis of the Stationary ASO Input Transformation on Its Unique
Input to Output Transformation

A higher-dimensional vector cannot be uniquely transformed into a lower-dimensional
vector of the same domain of numbers. However, stationary ASO input transformation
is proposed for resources quantified by discrete values. Therefore, it is possible to trans-
form a higher-dimensional vector with discrete values to a lower-dimensional vector
with continuous values.

The proof focuses on ASO inputs of natural number elements because discrete-valued
fractional numbers can be mapped to natural numbers as follows. If an ASO input
can have discrete-valued fractional numbers with intervals e and a maximum possible
fractional value of fmax, it can be mapped to a domain of natural numbers from 0 up
to ( fmax.b)/eGCM, where eGCM is the least integer multiple of e, and b is the number of
discrete values less than eGCM. For example, if the range of fractional numbers is [0, 0.4,
0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2], then e = 0.4, fmax = 3.2, eGCM = 2, and b = 5. Therefore,
the range of discrete fractional numbers is transformed into a range of integers from 0
up to 8.

First, we introduce the Grobner basis, which we have used to prove the uniqueness.
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4.3.2.1 Grobner Basis

Grobner basis (Buchberger and Kauers, 2010) is a set of multivariate nonlinear poly-
nomial systems, called Grobner bases, that have some properties to simplify the so-
lution for many fundamental problems. By starting to find the roots of polynomials
with fewer variables, the roots of multivariate polynomials can also be derived. Any
complex multivariate nonlinear polynomial can be converted to Grobner bases using
Buchberger’s algorithm. The Grobner basis is time-consuming to compute manually.
As a result, it should be computed using software.

Grobner basis is applied to many problems of non-linear computational geometry such
as theorem proving (Kutzler and Stifter, 1986). In this work, we used it to see if the
proposed stationary ASO input transformation in Equation (4.1) transforms an ASO
input uniquely or if there are collisions. Here, we start with a very simple example in
Example 4.1.

Example 4.1. Question to prove: For a set of two variables {X, Y}, do the equations X + Y
and XY, give a unique output? I.e., for any two constants s and p, how many combinations of
real values of X and Y are there such that s = X + Y and p = XY?

The two equations are transformed to a Grobner basis, so that it becomes easy to find
the roots. We generate the bases in MATLAB using the following code.

Proof. Using gbasis() of MATLAB: syms X Y s p

vars=[X Y]; e=[X+Y-s, X*Y-p]; bases = gbasis(e,vars)

This outputs bases = [−Y2 + s ∗Y− p, X + Y− s]

Now, we can see that one of the Grobner bases, −Y2 + s ∗Y− p, is a univariate polyno-
mial. Since the univariate polynomial has a degree of 2, it has two roots. Due to the fact
that X +Y and XY are operations invariant with permutation, substituting the roots of
Y of the first base into the second basis to find the roots of X gives the permutations
of the roots of Y. Therefore, the two roots are the solutions of the two simultaneous
equations that we are trying to solve. This shows that there is only one combination of
real values of inputs X and Y for any output constants s and p using the summation
and multiplication operations.

4.3.2.2 Derivation of the Proposed Equation

The proof starts by defining some definitions and lemmas as follows.

Definition 4.1. The set of full prime factors (Ff ull) of a natural number is the set of
prime factors of the number including their repetitions and 1.
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Definition 4.2. An N partition of the set of prime factors of a number (GN) is an instance
of placing the set of the full prime factors (Ff ull) of the number into an N non-empty
subsets, where every member of Ff ull is assigned to only one of the subsets, and N =

η(A) is the size of the ASO input A that we want to create from the prime factors. An
example for 36 is given in Example 4.2.

Definition 4.3. The set of N partitions of the set of full prime factors of a number (SGN )
is the set of all GN of the number.

Definition 4.4. A product identity vector is a vector that contains at most one arbitrary
natural number in its elements, and all the other elements have 1.

Definition 4.5. The set of product collisionsof an ASO input A or its product ∏(A), are
the set of other vectors that give the same product of vectors as ∏(A).

Now, let us see how we come up with the stationary ASO input transformation func-
tion.

To transform an ASO input A of elements of natural numbers of size η(A) = 2 using
only the sum of its elements, there are always collisions ceil(s − 1)/2, where s is the
sum of the numbers. This is because every natural number x from 1 to s− 1 has another
number y = s− x where x + y = s, and half of them are their permutations. Therefore,
using the sum as a stationary ASO input transformation results in a very large number
of collisions. Similarly, transform the ASO input using only the product of its elements;
the number of collisions depends on the number of prime factors of its product. We
define the following lemmas and set a theorem for the number of collisions.

Lemma 4.6. If an ASO input A of size η(A) ≥ 2 with natural number elements is not a prod-
uct identity vector, it has a non-empty set of product collisionsthat includes product identity
vector, which is computed using the product of the ASO input ∏(A) as the natural number
element of product identity vector.

Lemma 4.7. The SGN of an ASO input A is the same as the SGN of the product of the ASO
input ∏(A), because the set of full prime factors of the number of their product (Ff ull) can be
generated from (Ff ull) of the elements in the ASO input, excluding repeated ones.

Lemma 4.8. A set of product collisionsof an ASO input A having a product of ∏(A), can be
computed by replacing each partition in SGN of the ASO input with its product.

Theorem 4.9. For an ASO input A of size η(A) ≥ 2 with natural number elements, or its
product using Lemma 4.7, the number of other ASO inputs of natural number elements that
give the same product is at most equal to the size of the set | SGn | + 1. The 1 is added for the
product identity vector in Lemma 4.6.

Theorem 4.9 is easy to prove because the set of natural numbers that can have a given
number as their product is found only from the members of the factors of the number.
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In other words, any element of a set of natural numbers is a member of the factors of
the product of the set. Theorem 4.9 is used to count the collisions of sets of the same
size.

By Theorem 4.9, if we want to use only the product of the elements of the ASO input as
a stationary ASO input transformation function, the number of product collisions of an
ASO input A of elements of natural numbers with other ASO inputs of equal size is at
most | SGn |+1. Therefore, if the elements of an ASO input A of any size η(A) contains
1 and the first N − 1 complete prime numbers without repetition, where N = η(A), its
only product collision is the product identity vector, because these elements of the ASO
input are the only set of SGN . A product identity vector of size η(A) = 2 can be uniquely
represented by its product ∏(A) if and only if the integer in the product identity vector
is a prime number because its SGN is the product identity vector itself.

Theorem 4.9 shows that the product collisionsof an ASO input A of elements of natural
numbers can only be generated from the SGN and the product identity vector. To prove
the uniqueness of the stationary ASO input transformation, we only need to focus on
how to uniquely represent the product collisions of the ASO input A, because other ASO
inputs of the same size will not have the same product.

The product of the ASO input ∏(A) is not enough to uniquely represent an ASO input
of size η(A) = 2 if it is not a product identity vector with a prime number because there
can be other | SGn | + 1 vectors of the same size and product.

Theorem 4.10. An ASO input A of size η(A) = 2 with elements of natural numbers can be
uniquely represented using the product ∏(A) and the sum of ∑(A) of its elements because the
product collisions of a number have a unique sum for η(A) = 2 except for its permutation.

Proof. To prove Theorem 4.10, if s = X + Y is the sum and p = XY is the product, p =
X(s−X) = -X2+sX-p is a polynomial of degree 2. A polynomial of degree 2 has at most
2 roots. If we compute Y using the roots of X, we find the permutations of X, because
the variables are permutation invariant to the equations and the same second-degree
polynomial can be generated using Y. Therefore, the ASO input containing the roots is
the only ASO input that gives s and p. It can also be proved using the Grobner basis as
seen in Example 4.1.

The mean of the ASO input can be used in place of the sum because it plays the same
role except for ASO inputs of different sizes of all 1 element. ASO inputs of different
sizes are distinguished by their size in the stationary ASO input transformation.

If the size of the ASO input is η(A) = 3, the product ∏(A) and the sum of ∑(A)

of the ASO input are not enough to uniquely represent it because some of its product
collisionscan have the same sum as seen in Example 4.2.



68
Chapter 4. Deep Reinforcement Learning with Computationally Efficient Stationary

ASO Input Transformation for Online Combinatorial Resource Allocation

Example 4.2. ASO input A = [1, 6, 6] has a product of 36. The full prime factors of 36 are
{1,2,2,3,3}. The SGN of 36 includes { [{1},{2},{2,3,3}],[{1},{3},{2,2,3}], [{1},{2,2},{3,3}],
[{1},{2,3},{2,3}], [{2},{2},{3,3,1}], [{2},{3},{2,3,1}], and [{3},{3},{2,2}]}. By changing
each partition to their product, this gives the set of product collisions of
{[1,2,18],[1,3,12],[1,4,9],[1,6,6],[2,2,9],[2,3,6],[3,3,4], and [1,1,36]}. It can be seen that vector
A = [1, 6, 6] and vector B = [2, 2, 9] have the same sum ∑(A) = ∑(B) = 13.

We have to find a method to discriminate the product collisionsthat have the same sum.

Lemma 4.11. The difference of the elements of an ASO input from their mean D=d1, ..., di, ...,
dN is unique for any vector because every element is subtracted by a constant value. However,
the sum of ∑(D) is always zero.

For η(A) = 3, we can avoid the product collisionsof the ASO input that have the same
sum by computing ∑(D2), where D2 is D2=d2

1, ..., d2
i , ..., d2

N . ∑(D2) is the variance of
the ASO input.

Theorem 4.12. The product collisionsof an ASO input A of size η(A) = 3 with natural
number elements can be uniquely represented by their variances if they have the same mean.

Including variance as the third term next to the product and sum can uniquely rep-
resent an ASO input A of size η(A) = 3 with natural number elements. We have
provided two methods below to find an ASO input that has the same mean and vari-
ance as another ASO input. It is possible to find ASO inputs of elements of a natural
number of size η(A) = 3 with the same mean and variance, but we did not find ASO
inputs with the same product, mean, and variance.

Proof. We proved Theorem 4.12 using the Grobner basis by generating the bases as
follows. syms X Y Z s p m

e1 = X ∗ Y ∗ Z; e2 = (1/5) ∗ (X + Y + Z); e3 = (1/5) ∗ ((X − e2)2 + (Y − e2)2 + (Z−
e2)2); vars = [XYZ]; e = [e1− p, e2− s, e3−m]; bases = gbasis(e, vars). This outputs the
bases as: bases = [(2 ∗Z3)/5− 2 ∗ s ∗Z2 +((18 ∗ s2)/5−m) ∗Z− (2 ∗ p)/5, (2 ∗Y2)/5+
(2 ∗Y ∗Z)/5− 2 ∗Y ∗ s+(2 ∗Z2)/5− 2 ∗Z ∗ s+(18 ∗ s2)/5−m, X/5+Y/5+Z/5− s].
The first term of the three bases has a univariate polynomial of degree 3 meaning that
it has at most 3 real-valued roots. By substituting the three roots on the other bases, we
find the permutations of the three roots because the product, mean, and variance are
permutation-invariant operations. Therefore, this proves that the three terms uniquely
transform an ASO input of three variables even for real numbers.

We also test it using a brute force algorithm that generates all unique vectors of size
η(A) = 3 as discussed at the end of this section.
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For any ASO input A, we can use the following two methods to find if there is another
ASO input with the same mean and variance.

Method 1: Sort D in increasing order and compute D2. Then if rearranging D2 in reverse
order gives a different permutation, compute the roots of D2 and negate them starting
from the left until their sum is zero. Then add the mean of the ASO input A to them
to find another ASO input B with the same mean and variance. Check if B has natural
number elements.

Method 2: Describe D by another set of numbers O2=O2
1, ..., O2

i , ..., O2
N where ∑(O) = 0

and ∑(O2)=∑(D2). Compute the roots of O2 and find the other ASO input B as used
in Method 1.

Example 4.3. To see an example of one of the methods, let A be A= [6, 3, 6]. The mean is 5.
D = [1, -2, 1]. After sorting and squaring, D2 = [1, 1, 4]. To find the other number that gives
such D, we find the roots of D2 as D = [1, 1, 2]. Since the sum of the elements of D below must
be zero, start negating them starting from the left until they give 0 sum. D = [-1, -1, 2]. After
adding the mean, we find the other ASO input with the same variance A= [4, 4, 7]. However,
A and B are not product collisions.

We can find product collisionsof an ASO input of size η(A) = 4 ≥ 4 that has the same
mean and variance using the two methods. To discriminate the ASO inputs that can be
generated by the two methods, we use the variance of the sum of the ASO inputs and
its Hadamard-product.

Theorem 4.13. Any product collision of an ASO input A of size η(A) = 4 with natural
number elements can be uniquely represented by the variance of the element-wise sum of the
ASO input with its Hadamard-product if it has the same mean and variance.

Proof. Theorem 4.13 is proved by the Grobner basis. We extended the Grobner basis
used to prove Theorem 3 by adding a fourth variable W, a fourth constant d, and the
expanded form of σ(A + A ◦ A) as seen at the end of this section. The Grobner basis
gives as bases, with one of them having a single variable polynomial of degree 4, which
leads to the conclusion that the polynomial has 4 roots, which correspond to the size
of the ASO input η(A) = 4. The other solutions by substitution in the other bases are
permutations of the roots because the terms in the stationary ASO input transforma-
tion are permutations invariant to the variables. Therefore, the stationary ASO input
transformation can be unique even for ASO inputs of real numbers for η(A) = 4.

We also experimentally tested the uniqueness of Theorem 4.13 and Theorem 4.12 ex-
perimentally as follows. We generated all possible unique vectors of size η(A) = N
and maximum integer K using the brute force algorithm in Algorithm 3 and found no
collision for K = 100 and η(A) = 4. To test it experimentally, we transformed all the
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ASO inputs generated by Algorithm 3 into another ASO input using Equation (4.1) and
check if there is the same output for different input vectors. We repeated the experi-
ment for K = 50 and η(A) = 5, K = 10, and η(A) = 10 and did not find any collision.
We did not try it for large K, because the brute-force algorithm continues to run for
more than a day. We also check Theorem 4.12 for K = 100 and η(A) = 3 using only the
product, mean, and variance as a stationary ASO input transformation function, and
no collision is found.

Although it is not our requirement, because we assume positive discrete fractional
numbers in our resource allocation algorithms, we check the stationary ASO input
transformation for a mixture of positive and negative integers by experimenting with
brute force for between K = −10 and k = 10 of size η(A) = 4 without transforming
them into positive numbers. But we do not try it for real numbers because we do not
have a brute-force algorithm to generate unique vectors of real numbers.

This proof shows the level of unique transformation. It does not prove that the station-
ary ASO input transformation is unique for any size of A and for any real number. For
example, for η(A) ≥ 5, the Grobner basis has no base with leading monomials having
single variables, which leads to the conclusion that the stationary ASO input transfor-
mation is not unique for ASO inputs of real numbers when η(A) ≥ 5. Nevertheless,
this cannot be a contradiction to our algorithm, as the stationary ASO input transfor-
mation is only for natural numbers. We could not find the possible number of integer
roots using the Grobner basis because the constants in the simultaneous equations are
generic.

The 5 terms of Equation (4.1) are shown in more detail below. As can be seen, all terms
play their own discriminatory role in the stationary ASO input transformation because
none of them can be generated from the other terms. That is, none of the four terms is
redundant in the stationary ASO input transformation.

Algorithm 3 Brute-force unique vectors generator
1: Assign K and N
2: U=[]
3: for n1=1:k do
4: for ni=ni−1:k do
5: for nN=nN−1:k do
6: Append(u, [n1,..., ni ,..., nN])
7: end for
8: end for
9: end for

∏(A) =
N

∏
i=1

Ai

η(A) = N
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µ(A) =
1
N

N

∑
i=1

Ai

σ(A) =
1
N

N

∑
i=1

(Ai − µ(A))2 =
1
N

N

∑
i=1

A2
i − µ(A)2

σ(A + A ◦ A) =
1
N

N

∑
i=1

[(Ai + A2
i )− µ(A + A ◦ A)]2

=
1
N

N

∑
i=1

[(Ai + A2
i )−

1
N

N

∑
k=1

(Ak + A2
k)]

2

=
2
N

N

∑
i=1

A3
i +

1
N

N

∑
i=1

A4
i − µ(A)4 − 2µ(A)3

− 2σ(A)µ(A)2 − 2σ(A)µ(A)− σ(A)2 + σ(A)

Note that the expansion of σ(A + A ◦ A) is simplified by continuing the expansion of
σ(A) by replacing A with A + A ◦ A. Expanding it on its own also gives the same final
terms.

4.4 Experimental Evaluation

The objective of this experiment is to evaluate whether the stationary ASO numeri-
cal input transformation function leads to superior convergence than the transformer-
based transformation, as it allows the DRL algorithm to focus only on learning the pol-
icy. We compared the stationary ASO input transformation function with the transformer-
based coalition and sequential action selections presented in Chapter 3. We also used
the same problem of online resource allocation and offline optimal.

4.4.1 Experimental Setup

Both DQNs for coalition and sequential action selection of the per-action DQN have
the same neural network structure except that the coalition action selection has an in-
put layer of 27 neurons while the sequential has 26. This is because the coalition has
a distinguisher index to distinguish similar elements in action selection. They have 2
hidden layers with 64 and 32 neurons, respectively, with ReLU activation functions,
and an output neuron with a linear activation function. The number of inputs is deter-
mined by a combination of the lengths of the resource constraint vector, the stationary
ASO input transformation vector, and the feature vector of the embedded action. The
η(I) of equation ( 4.1) is considered only once, not element-wise, but another term,
1/Max, is included to avoid collision in normalization. We normalize the transformed
vector to be in the range of [0,1] by dividing it by the maximum number in the vector.
The hidden layers and their neurons in neural networks are decided by trial and error.
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FIGURE 4.3: Convergence of the stationary ASO input transformation-based DRL al-
gorithm on the coalition action selection and the sequential action selection using end-

of-episode training

We set the bandwidth vector length BL to 1 so that the IP is faster. We used a replay
memory of size 10000 and a minibatch size of 64. The experiment was run for 40 runs.
The experiments are implemented with Pytorch.

4.4.2 Experimental Comparison

First, we show the convergence of the DRL with a computationally efficient stationary
ASO input transformation. Next, we did an exhaustive experiment for the transformer-
based benchmark algorithm to find its best hyperparameter setting. Finally, we com-
pare both coalition action selection and sequential action selection with their transformer-
based counterparts to show the advantage of the stationary ASO input transformation.

4.4.2.1 Convergence

Using the same experimental setup as the experiment in Chapter 3, we evaluated the
performance and complexity of the proposed algorithm. We use IP as an offline opti-
mal and compare coalition action selection and sequential action selection by plotting
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FIGURE 4.4: Convergence of the stationary ASO input transformation-based DRL al-
gorithm on the coalition action selection and the sequential action selection using step-

by-step training

the result of the two approaches as a percentage of the offline optimal. All experiments
were averaged over 40 runs. To smooth the curves, the results in Figure 4.3 are plotted
for the averaged moving window of 1000 episodes. As seen in Figure 4.3 for episodic
training, the coalition action selection approach converges to 95.234% at episode num-
ber 26621. It has outperformed sequential action selection with an average gap of 2.8%.
We also experimented to show the impact of step-by-step training, as shown in Fig-
ure 4.4 where performance is reduced due to overfitting. However, overfitting due to
stepwise training is worse in the transformer-based DRL in Chapter 3 than in the sta-
tionary ASO input transformation because the transformer is more complex than the
per-action DQN and is more susceptible to overfitting.

4.4.2.2 Exhaustive Exploration of the Performance of the Transformer

The objective of the experiment in Chapter 3 was to compare the coalition action selec-
tion and sequential action selection approaches. For this reason, it does not require an
exhaustive experiment because both the coalition action selection and the sequential ac-
tion selection have the same transformer and hyperparameters, and hence the coalition
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action selection always provides superior performance than the sequential action se-
lection. However, transformer-based and stationary ASO input transformation-based
DRL algorithms have different types of neural network. Therefore, before using the
transformer-based DRL algorithm as a benchmark for the stationary ASO input trans-
formation, an exhaustive experiment of the transformer-based algorithm is required so
that it is compared at its best performance.

Number of layers Neurons in each layer Peak value Index of peak value
2 32 93.167% 38789
2 64 93.203% 38788
2 128 93.364% 38008
2 256 93.347% 38792
4 32 93.669% 27517
4 64 93.545% 27655
4 128 93.402% 27518
4 256 93.478% 27439
6 32 93.777% 28036
6 64 93.452% 27621
6 128 93.739% 27209
6 256 93.444% 27207
6 512 93.425% 27494
8 32 92.975% 21823
6 16 93.537% 27666
6 8 93.107% 17410

TABLE 4.3: Performance of the transformer-based DRL for various numbers of hidden
layers and neurons

Table 4.3 presents the maximum performance of coalition action selection at different
values of the number of hidden layers and neurons of the transformer-based DRL. It
shows that the transformer with six hidden layers and 32 neurons each in each layer
performed better than other values with a maximum value of 93.777% of the IP-based
offline optimal. The maximum value is the value computed after the averaged moving
window and the average of the 40 runs. The index value indicates the episode num-
ber where the peak value is recorded. Choosing the number of layers and neurons to
be 6 and 32 respectively based on the result in Table 4.3, we ran the experiment for
various multihead attention values as seen in Table 4.4, which also shows that multi-
headed attention of 8 yielded better performance. These are the hyperparameters used
in Chapter 3. Note that multihead attention values are factors of the size of the input
embedding layer. This is because the attention head has to divide the input into equal
parts and process them differently using different self-attention layers, and finally com-
bine them into a fixed-size vector.

The experiments in Table 4.3 and Table 4.4 are based on an average of 40 runs of the
experiment. Due to time and resource constraints, we run the following experiments
with an average of 10 runs to do more experiments to explore different learning rates,
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Number of attention heads 1 2 4 8
Peak value 93.664% 93.764% 93.631% 93.777%

Index of peak value 28030 27932 28043 28036

TABLE 4.4: Performance of the transformer-based DRL for various attention heads

Learning rate 0.1 0.001 0.0001
Peak value 93.389% 93.777% 92.590%

Index of peak value 17279 28036 27620

TABLE 4.5: Performance of the transformer-based DRL for various learning rates

batch sizes, and embedding layer sizes. As such, we examine the algorithm for different
learning rate values, as seen in Table 4.5 which shows that the learning rate of 0.001 is
better. The result for the learning rate of 0.001 is taken from Table 4.3. We also run for
various batch sizes, as seen in Table 4.6.

Size of minibatch 32 64 128
Peak value 93.714% 93.777% 93.333%

Index of peak value 24540 28036 21862

TABLE 4.6: Performance of the transformer-based DRL for various minibatch sizes

The results in Chapter 3 are plotted after an exhaustive experiment of the table above
for a learning rate of 0.001, a batch size of 64, a hidden layer block of 6 with 32 neurons
each, and an attention head of 8. The embedding layer was selected to be 8 neurons, a
close guess to the number of inputs 5. Now, we vary the embedding layer as presented
in Table 4.7, which gives another maximum value for an embedding layer of 16, with 6
hidden layers of 16 neurons in each.

Embedding size No. of neurons in hidden layers Peak value Index of peak value
8 8 93.559% 27666

16 16 94.421% 27658
16 32 93.962% 27215
16 64 94.035% 27134
16 128 93.940% 27369
32 32 93.481% 27147
32 64 93.525% 9595
32 128 93.809% 27265
64 64 93.063% 9778
64 128 93.261 % 16819

TABLE 4.7: Performance of the transformer-based DRL for various embedding sizes

4.4.2.3 Comparison of Performance with the Transformer-based Benchmark

From the exhaustive experiments in Section 4.4.2.2, we found that the maximum con-
vergence of the DRL with the transformer-based state transformation is 94.421%. The
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FIGURE 4.5: Comparison of the performance of the stationary ASO input
transformation-based and transformer neural network-based transformation on both

the coalition action selection and the sequential action selection approaches

hyperparameter values that achieved maximum performance are an embedding layer
of 16, 6 hidden layers of 16 neurons each, a multihead number of 8, a learning rate of
0.001, and a minibatch size of 64. The maximum value is still less than the maximum
value achieved with the stationary ASO input transformation shown in Figure 4.3,
which is 95.234%.

Note that all experiments so far were recorded from an experiment that ran for 24
hours. To explore the performance of the transformer-based transformation and the
stationary ASO input transformation with a longer experiment, we carried out the ex-
periments together for 60 hours, as seen in Figure 4.5 using their best hyperparameters.
This is plotted with an average of 40 runs.

The maximum values for the experiments in the result of Figure 4.5 are in Table 4.8.
Note that the maximum score for the transformer-based DRL is 93.685% but it was
94.421% in the exhaustive experiment for the same hyperparameter setting. Although
the result in Table 4.7 was recorded using an average of 10 runs and Figure 4.5 is for
40, the results cannot be the same even with the same number of runs. For example,
the stationary ASO input transformation recorded a maximum value of 95.234% in Fig-
ure 4.3 but 95.034% in Figure 4.5 for the same hyperparameter setting.
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Action selection Coalition Sequential
Transformer (93.685%, 36685) (93.504%, 40077)

ASO per-action DQN (95.034%, 31577) (92.350%, 30063)

TABLE 4.8: Maximum values and their corresponding episode number for the
transformer-based and stationary ASO input transformation-based DRL algorithms

on the coalition action selection and sequential action selection

FIGURE 4.6: The performance of using stationary ASO transformation and neural
network-based transformation on both coalition action selection and sequential action

selection: averaged on 10 runs

We plotted the average of the first 10 runs of the experiment Figure 4.5 with the results
that scored 94.421% in Table 4.7 to compare the best score with the same number of
runs as seen in Figure 4.6.

4.4.2.4 Comparison of Complexity of Stationary ASO Input Transformation and
Transformer-based Transformation on the Coalition Action Selection

To compare the computational cost of running the DRL algorithms using the proposed
stationary ASO input transformation and the transformer-based benchmark, we an-
alyzed the CPU time consumed by both transformation techniques for the coalition
action selection as shown in Figure 4.7. The CPU times of the box plot are generated
from the 66001 episodes in Figures 4.5. As described in Section 3.5.4.3, the CPU time
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is the sum of the fraction of seconds that each algorithm spends running the DRL al-
gorithm to select actions. The number of executions and CPU time is averaged over
the 40 runs episodic before being used for the box plot. Because the objective is to
compare the transformer-based transformation and the stationary ASO input transfor-
mation, we compared them only on the coalition action selection. The difference in
their complexity increases proportionally with the sequential action selection as seen
in Section 3.5.4.3 for the transformer-based state transformation.

Figure 4.7, presents the complexity using CPU time. The CPU time considered the
action selection that includes the execution of the neural networks and state computa-
tions. As seen in box 1, the DRL algorithm with coalition action selection took a median
CPU time of 0.031030813704273897 seconds to run an episode; 25% of the episodes exe-
cuted the DRL algorithm in less than 0.03007814525408321 seconds; 75% of the episodes
took less than 0.03197447307420589 seconds to select the actions. On the other hand,
the DRL with coalition action selection took a median of 0.05276393976528197 seconds,
with 25% of the episodes taking less than 0.05213756428352098 seconds and 75% of
them taking less than 0.05720445671867083 seconds when the transformer is used as the
state transformation technique. Using stationary ASO input transformation provided
faster execution times for two reasons. First, the neural network is simple compared
to the complex transformer. Second, it computes a common state once and executes
only the feasible traffic demands, unlike the transformer-based transformation, which
executes all the traffic demands to produce intermediate values for the attention layers
at every block of the transformer.
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FIGURE 4.7: The execution in CPU time for (1) Per-action DQN with stationary ASO
input transformation-based coalition action selection and (2) Transformer-based sta-

tion transformation-based coalition action selection.

4.4.2.5 Comparison of Performance and Complexity of Stationary ASO Input Trans-
formation and Transformer-based Transformation with Various Traffic De-
mand Arrival Rates

In the same scenario as in Section 3.5.4.4, we also run the experiment for various arrival
rates as seen in Figure 4.8. We used the same hyperparameters as for the experiment
used in Figure 4.5. That is, the experiment is run for another 4 scenarios with traffic
demand arrival rates of kmax = 2, kmax = 5, kmax = 15, and kmax = 20, with 10 runs in
each experiment scenario due to time and resource constraints. Note that the result in
Section 3.5.4.4 was taken from 40 runs in each arrival rate. For kmax = 10, we take the
first 10 runs of the result in Figure 4.5. Then we take the maximum value of the 10 runs
of each arrival rate, as discussed in Section 3.5.4.4 using an averaged moving window
of 5000 episodes. The CPU time is the average CPU time for the episodes of the run
of the experiment that outputted the maximum performance in each experiment. The
experiment was carried out for 60 hours.
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The result in Figure 4.8 shows that the DRL with the proposed computationally efficient
stationary ASO input transformation has a lower complexity than the transformer-
based benchmark in both the coalition action selection and sequential action selection
counterparts. Performance is also superior. However, the proposed state transforma-
tion is proposed to be unique up to 4 variables. As a consequence, the transformer-
based DRL can perform better at higher arrival rates because it is not affected by size.
The proposed state transformation can be customized to accommodate large arrival
rates.

FIGURE 4.8: The performance and complexity for per-action DQN with stationary
ASO input transformation and transformer-based state transformation with varying
task arrival rates. The CPU time is averaged over the episodes of the best run that led

to peak convergence in the plotted performance.



4.4. Experimental Evaluation 81

4.4.2.6 Evaluation with Statistical Tests

It is obvious from the numerical evaluation presented with tables and figures with 95%
confidence interval that there is a significant difference between the performance of
the DRL algorithms. Moreover, there is no overlap between the 95% confidence inter-
vals of the stationary ASO state transformation-based coalition action selection algo-
rithm and the transformer neural network-based coalition action selection algorithm.
Nevertheless, we performed statistical tests to enhance the assessment. In this section,
the performances of stationary ASO state transformation and transformer-based state
transformation techniques are evaluated with a statistical difference test. In Chapter 5
the proposed CCM MADRL MEC is evaluated in the same way against the benchmark
and heuristic algorithms.

A statistical difference test provides a principled way to compare the central perfor-
mance of two algorithms with two hypotheses: the null hypothesis, which suggests that
there is no significant difference between the algorithms, and the alternative hypothesis,
which suggests that there is a significant difference in performance (Colas et al., 2019).
The hypotheses are determined on the basis of the P-value calculated from the sam-
ple data. If the P-value is small (usually less than 0.05), the null hypothesis is rejected.
Colas et al. (2019) has summarized the types of statistical tests for DRL algorithms, in-
cluding their assumptions. Parametric tests, such as the t-test and ANOVA (Analysis
of Variance), compare the means of performance of the algorithms by making certain
assumptions about their distributions. ANOVA compares three or more algorithms.
Nonparametric tests, such as the Wilcoxon signed rank test, the Kruskal-Wallis test, the
Mann-Whitney U test, and the ranked t-test, do not have assumptions about the type
of distribution of the data. Instead of assuming a certain distribution of the data, they
rely on ranks and ordering of the data. Therefore, they compare medians rather than
means.

In our case, the assumptions of the parametric test are not met. As seen in Figure 4.5,
performance starts low in the early episodes and stabilizes after a few episodes. This is
not normally distributed as depicted using histograms in Figure 4.9.

The histogram in Figure 4.9 is plotted from the experiments episodes excluding the
moving average window described in Section 3.5.4.1, which was only used to smooth
the lines. As seen in the histogram, the performance in the episodes of the DRL al-
gorithms is not normally distributed because the DRL algorithms are training and
improving performance across episodes. The results of each episode are averaged
(episode-wise) over 40 runs of the experiment. We also plot another histogram using
the experimental runs as a data sample as seen in Figure 4.10, where the histograms are
plotted from a sample size of 40, which are the maximum performances of each experi-
mental run using an averaged moving window of 1000 episodes. We used the averaged
moving window because episodes generate different traffic demands. Therefore, if we
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FIGURE 4.9: Histogram for the performance of the algorithms shown in Figure 4.5
using the episodes as sample

FIGURE 4.10: Histogram for the performance of the algorithms shown in Figure 4.5
using the runs of the experiment as sample

compute the maximum value episode-wise, the performance of all algorithms can be
100% to the offline optimal if the demands generated in an episode are smaller than the
resource constraint. It can be seen that the distribution is better using the runs of the
experiment as a sample than using the episodes as a sample. However, it is still not
normally distributed.

Due to their assumptions, it is challenging to decide which of the statistical tests is suit-
able for evaluating the performance of the DRL algorithms. Therefore, we performed
multiple statistical tests. Our algorithm requires a comparison between two groups.
The stationary ASO state transformation-based coalition action selection is compared
with the transformer neural network-based counterpart. The sequential action selec-
tion is also compared to the corresponding sequential action selection. However, we
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applied ANOVA to test whether there is a difference in four of them. Then, the t-test is
used to compare the algorithms in pairs. The t-test assumes equal variance and equal
sample size. The results of the experiment are equal in size, but we also performed the
Welch t-test, which does not assume equal variance, and found the same values. Fur-
thermore, because the t-test is parametric and assumes a normal distribution, which is
not satisfied in our case, the statistical test is repeated with nonparametric tests.

ANOVA rejected the null hypothesis with an F-statistic of 16108.681982760563 and a
P-value of 0.0. F-statistic showed that there is substantial variation between the means.
Note that ANOVA does not make pairwise comparisons, but only shows that there is
a difference in the performance of the four algorithms. A statistical test that compares
the coalition action selection of the transformer-based DRL with the stationary ASO
transformation-based counterpart is necessary. The t-test for the experimental result
plotted in Figure 4.5 is presented in Table 4.9.

Action selection T-statistic P-value
Coalition 67.45770406333097 0.0

Sequential 67.04944126775521 0.0

TABLE 4.9: T-test between the transformer-based and stationary ASO input
transformation-based DRL algorithms on the coalition action selection and sequential
action selection using the episodic rewards as data sample. The values are a compari-

son of coalition with coalition and sequential with sequential.

Table 4.9 shows that both coalition action selection and sequential action selection have
shown significant differences in transformer-based and stationary ASO transformation-
based algorithms with P-values of 0 and t-values of 67, showing significant differences.

The statistical evaluation of the DRL algorithms with the runs of the experiment is
as follows. ANOVA provided an F-statistic of 175.12542120891644 and a P-value of
1.0103450012748946e-49. The t-test is presented in Table 4.10. Both tests show a P-
value of very close to zero, which means that there is a significant difference in the
performance of the algorithms.

Action selection T-statistic P-value
Coalition 13.966806712556847 6.343021425947807e-23

Sequential 10.10873811117661 7.800580831393717e-16

TABLE 4.10: T-test between the transformer-based and stationary ASO input
transformation-based DRL algorithms on the coalition action selection and sequen-

tial action selection using the experimental runs as data sample

We repeat the statistical test with the nonparametric test as follows. Wilcoxon Mann-
Whitney rank sum test is an example of a nonparametric test for comparing the me-
dians of two groups of data samples. Although nonparametric tests do not have as-
sumptions about the type of distribution, the Wilcoxon Mann-Whitney rank sum test
assumes the same shape of the spread between the two groups of data samples. This
assumption is met in Figure 4.9 but not in Figure 4.10 but we apply it to both.
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Action selection U-statistic P-value
Coalition 3568512337.0 0.0

Sequential 2601506569.5 0.0

TABLE 4.11: Wilcoxon Mann-Whitney rank sum test between the transformer-based
and stationary ASO input transformation-based DRL algorithms on the coalition ac-
tion selection and sequential action selection using the episodic rewards as data sam-

ples.

Action selection U-statistic P-value
Coalition 1563.0 2.1817427332690098e-13

Sequential 1543.0 9.018635937375004e-13

TABLE 4.12: Wilcoxon Mann-Whitney rank sum test between the transformer-based
and stationary ASO input transformation-based DRL algorithms on the coalition ac-
tion selection and sequential action selection using the experimental runs as data sam-

ples.

Tables 4.11 and 4.12 show that both coalition action selection and sequential action
selection have shown significant differences in transformer-based and stationary ASO
transformation-based algorithms.

In summary, multiple statistical tests demonstrate that DRL algorithms have significant
differences.

4.5 Conclusion

We have demonstrated that the stationary ASO input transformation offers faster con-
vergence than the transformer-based transformation on ASO input with numerical
data. This is because it minimizes the learning complexity of the DRL by allowing it to
focus only on learning the policy. Although using an attention neural network for ASO
numerical input transformation is more representative of the transformation, it slows
the training because it has to learn both the transformation of ASO numerical input
and the policy. The attention neural network is efficient for NLP, but stationary ASO
input transformation converges faster for numerical data. The proposed stationary
ASO numerical input transformation has a limited scope in terms of size and is aimed
at demonstrating that the stationary input transformation is better than a transformer
for the ASO input with numerical data. We provide proof of its unique transformation
for up to 4 inputs, but a more unique stationary ASO input transformation is essential
to avoid the collision of transformations for large input sets. However, the convergence
is better than that of the transformer up to an arrival rate of 20 as seen in the results.
As explained in Section 3.5.4.4, the academic license in Gurobi optimizer, which is used
to compute the offline optimal, did not allow us to run the experiment for arrival rates
greater than 20.
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We plan to integrate our work with the complementary algorithms by Zhang et al.
(2009) and Liu et al. (2021), coordinating them as a multi-agent heterogeneous DRL
where node agents and link agents coordinate to make efficient decisions.
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Chapter 5

Combinatorial Client-Master
Multiagent Deep Reinforcement
Learning for Task Offloading in
Mobile Edge Computing

5.1 Introduction

Recently, there has been an explosion of mobile applications that perform computation-
intensive tasks, such as video streaming, data mining, virtual reality, augmented reality,
image processing, video processing, face recognition, and online gaming (Zhang et al.,
2013; Chen et al., 2023; Birhanu Engidayehu et al., 2022; Kan et al., 2018). However,
user devices (UDs), such as tablets and smartphones, have a limited ability to perform
the computation tasks of these applications. Mobile Cloud Computing (MCC) has been
considered the key technology to improve the quality of experience (QoE) of UDs by
offloading their computation tasks to the cloud (Mahenge et al., 2022). One of the chal-
lenges of MCC is latency caused by the distance of MCC servers from UDs (Sajnani
et al., 2018). Mobile edge computing (MEC) has emerged as a promising technology for
addressing the challenges of MCC and the increasing computing demands of UDs. By
providing the MCC service, such as computing and storage, on the edge of the network,
MEC serves the computation-intensive tasks of the UDs in their vicinity. MEC is an es-
sential component of the Internet of Things (IoT) and 5G architecture that improves
the computing experience of UDs by reducing latency and energy consumption (Vhora
and Gandhi, 2020), especially in scenarios where real-time processing is critical.

Task offloading in MEC has become an attractive solution to meet the diverse com-
puting needs of UDs (Islam et al., 2021). By distributing computational tasks between
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the UDs and the MEC servers, MEC optimizes resource utilization, reduces data trans-
mission overhead, and improves energy efficiency for the UDs. This results in a more
seamless and responsive QoE, which is crucial to the success of IoT applications that
rely on timely data processing and interaction.

The various types of continuous and discrete resource constraints on UDs and MEC
servers pose significant challenges in the design of an efficient task-offloading strat-
egy. UDs have many limitations, such as finite battery life and limited computational
capabilities (Kan et al., 2018; Yan et al., 2018), as well as quality of service (QoS) re-
quirements, such as response time or throughput, and QoE constraints, such as energy
consumption and long-term QoS satisfaction. Similarly, MEC servers and the wireless
network also come with storage capacity and number of channels, respectively, as con-
straints. Taking into account the resource constraints of both UDs and MEC servers is
crucial to the effective operation of task-offloading methods, especially during periods
of high demand.

Although a great number of task-offloading algorithms have been proposed, they focus
only on the core objective of MEC technology, namely minimizing latency and energy
consumption from the perspective of UDs, assuming the availability of enough storage
resources on the server. The decision entities of the algorithms are either the UDs or
the MEC servers. A comprehensive survey on task offloading by Islam et al. (2021)
has presented task offloading strategies in MEC from different perspectives, includ-
ing the computational model, the decision-making entity, and the algorithm paradigm.
Many algorithms have considered the wireless communication resource and the com-
puting resource of the server. For example, the insufficient computing resource of
the MEC server can be alleviated by using MEC-MCC collaboration or collaboration
among multiple MEC servers (Chen et al., 2023). Many DRL-based task offloading al-
gorithms (Nguyen et al., 2023; Jiang et al., 2023) also considered communication chan-
nels in their state and action spaces. However, the storage constraint on the server is
overlooked in existing task-offloading techniques in general and DRL-based algorithms
in particular. There is no DRL-based task-offloading algorithm that considers the stor-
age constraint on the server. Server storage can be overwhelmed when multiple UDs
offload their tasks.

Furthermore, many existing task-offloading algorithms use traditional convex opti-
mization methods for single-agent task-offloading scenarios (Sadatdiynov et al., 2023).
Despite their advantages over convex optimization methods, most existing DRL algo-
rithms are also single-agent algorithms that solve a single objective function and have
many limitations with different action spaces and constraints. DRL techniques, such
as DQN, have yielded encouraging results by modeling the task-offloading problem
as MDP with DNN for the function approximation (Liu et al., 2022). However, due
to the curse of dimensionality, DQN is insufficient for learning with large discrete ac-
tion spaces (Dulac-Arnold et al., 2015) and a combination of continuous and discrete
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action spaces (Zhang et al., 2020). Although DDPG-based task-offloading algorithms
can handle continuous action spaces, the representation of discrete and continuous ac-
tion spaces still poses a challenge (Zhang et al., 2020; Jiang et al., 2023). Moreover, a
single agent DRL is not suitable for formulating the various constraints in the UDs,
wireless communication, and server. MADRL has the potential to address these limita-
tions by facilitating intelligent task offloading in MEC networks. Despite the advances
of MADRL in task offloading, such as cooperative offloading decisions (Nguyen et al.,
2023) and mixed continuous and discrete action spaces (Zhang et al., 2020; Jiang et al.,
2023), most existing MADRL-based algorithms still formulate their reward functions,
action selection, and constraints from the point of view of UDs.

If the server’s storage capacity is exceeded, failure to take into account the storage
constraint causes some tasks to be abandoned before processing begins. This leads to
inefficient performance for three reasons: first, some tasks are dropped; second, the
dropping of tasks happens according to their arrival time while a combinatorial de-
cision could improve the performance; and third, the decisions are made using only
actor agents that run at the UDs with only local information using an actor agent to co-
ordinate the training only, while coordinated agents at the UDs and the servers could
have made better performance using combinatorial decision. There is no existing al-
gorithm that addresses this. Existing MARL algorithms apply a penalty as feedback
to learn the QoS constraints of the UDs, but do not consider the resource constraint at
the server that affects the volume of UDs that their request can be served on. To ad-
dress this limitation, MADRL must deploy heterogeneous agents in the UDs and on
the servers to make combinatorial decisions in a client-master configuration so that an
optimal combination of tasks should be offloaded considering the QoS requirements
of the tasks, the resources at the UDs and servers, the communication resource, and
the storage constraint of the server. In addition to selecting an optimal combination of
tasks, there should be communication between the agents at the UDs and the servers in
a client-master setting about their decisions to avoid dropping of tasks, unlike existing
approaches where either the UDs or the servers are the decision-making entities.

The main contributions of this work are fivefold as follows.

• By combining the advantages of policy gradient and value function, we proposed
a novel combinatorial client-master MADRL (CCM MADRL) algorithm for task
offloading in MEC (CCM MADRL MEC) with continuous-valued constraints on
the UDs and discrete constraints such as the server storage constraints and num-
ber of communication channels on the wireless network. Client agents are de-
ployed at the UDs to decide their resource allocation, and a master agent is de-
ployed at the server to make combinatorial decisions based on the actions of the
clients. The constraints of the UDs are considered as a penalty in the reward of
the client agents, whereas the channel and storage constraints are considered in
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the combinatorial decision of the master agent. The master agent is adapted from
the coalition action selection algorithm in Chapter 3 and the per-action DQN.

• By avoiding the number of channels from the state and action space, and con-
sidering it as a constraint in the combinatorial action selection, we reduced the
dimensionality of the DRL algorithm of the client agents.

• This is the first DRL-based task offloading algorithm to consider combinations
of continuous and discrete resource constraints on the UDs, the communication
channel, and the server.

• We develop different heuristic benchmarking methodologies for the proposed al-
gorithm and perform an exhaustive numerical analysis to determine the efficacy
of the proposed algorithm.

• We conducted extensive experiments on the learning rates for the client and the
master agents and evaluated them in different experimental settings.

This chapter is organized as follows. Section 5.2 reviews the related work, and Sec-
tion 5.3 follows the description of the system model. The formulation of the problem,
the CCM MADRL algorithm, and the numerical evaluation are presented in Section 5.4,
Section 5.5, and Section 5.6 respectively. Section 5.7 concludes the CCM MADRL MEC.

5.2 Related Works

This section reviews the related work from two perspectives: task offloading and com-
bining the policy gradient and value function in DRL.

5.2.1 Task Offloading Algorithms

Existing MADRL-based task offloading algorithms (Nguyen et al., 2023; Zhang et al.,
2020; Jiang et al., 2023) use homogeneous agents where only UDs or edge servers make
decisions. Nguyen et al. (2023) assumed there is enough resources on the MEC server.
Zhang et al. (2020) considered the available computational resource on an MEC server
should be shared with users and that a common completion time is computed on the
server, but did not consider the different arrival times of tasks on the server. Xiong et al.
(2023) considered the computational resource constraint and the number of computing
units on the server. They also compute different start and end times for the tasks.
However, their action spaces are limited to prioritizing tasks and making offloading
decisions accordingly. They did not consider the allocation of resources and power.
The communication resource constraint is also not considered.
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There exist DRL algorithms that have considered the storage constraint on the MEC
server for service placement problems (Lu et al., 2022). Some works also consider a
three-stage task offloading decision that includes processing tasks locally in UDs, of-
floading to the MEC server, and offloading to MCC (Chen et al., 2023). However, exist-
ing DRL algorithms do not consider discrete resource constraints, such as the storage
capacity on the MEC server and the number of communication channels. The number
of channels is included in the action space by Nguyen et al. (2023) and Jiang et al. (2023)
but it is not necessary to include it, as it worsens the dimensionality. The dimension
of the action space in the task offloading can be reduced by restricting each channel to
be used by only one UD at a time. A channel can be reused by multiple UDs one after
the other. Because the channels are equal, it does not matter which channel a UD uses.
Our proposed technique for this approach is described in detail in Section 5.5.2. How-
ever, none of the DRL-based task-offloading algorithms considered the server storage
constraint.

5.2.2 Combining Policy Gradient and Value Function in Deep Reinforce-
ment Learning Algorithms

Many MADRL algorithms are homogeneous agents that can be classified as a policy
gradient or a value function. As discussed in Section 2.2.2.3, policy gradient approaches
are good at directly optimizing policies to maximize cumulative rewards, but they may
converge to local optima. On the other hand, value function techniques have the po-
tential to converge to optimum action values, but they can encounter difficulties in
high-dimensional or continuous action spaces. DDPG finds a compromise by combin-
ing both the policy gradient and a value function. However, the latter serves only to
provide feedback for policy training and is useless after the training is completed.

DRL algorithms with a mix of policy gradient and value function have been used in
existing works for purposes different from the objective of our proposed algorithm.
Dulac-Arnold et al. (2015) proposed a combination of the policy gradient and the value
function to cope with the dimensionality of large discrete action spaces. The actor pro-
duces a continuous-value action, and the critic selects discrete actions from the K action
spaces closest to the continuous action. Xiong et al. (2023) proposed a two-step deci-
sion in which the actor prioritizes the tasks and selects the best, and then the critic
makes a decision on whether local processing or MEC processing is performed on the
task selected by the actor agent, but both the actor and the critic are policy optimiza-
tion techniques. A hybrid actor-critic MADRL is proposed by Zhang et al. (2020) and
Jiang et al. (2023) to make coordinated decisions about discrete and continuous actions
of UDs only. That is, the actors decide the continuous actions such as computational
resource and power allocation, whereas the critic decides the discrete actions such as
channel selection and server selection. However, none of the DRL algorithms with
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mixed policy gradient and value function techniques is used to select a combinatorial
or arbitrary number of actions.

In summary, existing DRL algorithms consider homogeneous agents with homoge-
neous constraints. No DRL algorithm considers the various discrete and continuous
constraints in the UDs and on the server, including storage constraints. In addition,
there is no MADRL algorithm for arbitrary combinatorial action selection. In this work,
the benefits of both the value function and the policy gradient are leveraged to design
robust MADRL that mitigates converging to local optimal while at the same time re-
ducing the dimensionality caused by the combination of continuous and discrete action
spaces. The server makes a combinatorial decision as to which of the clients should of-
fload their tasks.

5.3 System Model

This section considers MEC for task offloading, which mainly includes a base station
(BS), UDs, tasks, energy harvesting, and wireless networks. We consider a multi-
user MEC scenario shown in Figure 5.1. In this scenario, there is a single wireless
BS equipped with an MEC server that provides a computing and storage service and
an SDN controller that controls communication between UDs and BS. BS serves a set
of N = {1, 2, 3, . . . , N} UDs. A single UD in the set N is denoted by n. For lo-
cal processing, we consider that each UD n has a minimum and maximum compu-
tational resource allocation budgets denoted by f min

n and f max
n , respectively, in giga-

hertz (GHz) cycles per second, where f min
n = f min for all UDs, but they have differ-

ent f max
n uniformly generated with f max

n | f min ≤ f max
n ≤ f max. Similarly, to offload its

task to the server, we consider that each UD has a minimum and maximum transmis-
sion power allocation threshold denoted by pmin

n and pmax
n , respectively, in dBm, where

pmin
n = pmin for all UDs and their maximum transmission powers are generated uni-

formly from pmax
n |pmin ≤ pmax

n ≤ pmax. Furthermore, we consider the UDs to have a
minimum battery threshold bmin

n = bmin and maximum battery capacities in the range
of bmax

n |bmin ≤ bmax
n ≤ bmax respectively in Megajoules (MJ). The BS has multiple con-

straints and characteristics, such as the server storage constraint ze in bits and the num-
ber of processing units on the server Ue, each having an equal processing capacity of fe

in gigahertz cycles per second. The communication network has a bandwidth of W in
megahertz that is equally divided between K channels. The terms commonly used for
the mathematical equations in this chapter are presented in Table 5.1.

We consider a task-offloading problem for T time steps of τmax length each. It is as-
sumed that each UD n generates one task at each time step. If the processing of a task
is not completed in τmax, it is discarded before the next time step starts. The detailed
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FIGURE 5.1: Network model

operational model, the task model, the processing model and the energy harvesting are
described in the following sections.

5.3.1 Operational and Deployment Model

The CCM MADRL MEC involves heterogeneous DRL agents, called client agents, and
a master agent. Client agents are used to decide the allocation of resources for the UDs.
The master agent is used to make combinatorial decisions for the UDs that propose
their tasks to be considered in the combinatorial decision. The operational model of
the CCM MADRL MEC is presented in Section 5.5.2 for the two-step execution of the
client agents and the master agent to produce the actions. Client agents are trained
centrally on the server but can be executed in a decentralized setting in the UDs or
centrally on the server. Therefore, the setting of the proposed MADRL is centralized
training. However, it can be deployed as a decentralized execution as in Nguyen et al.
(2023) or as a centralized execution as in Xiong et al. (2023).

The task-offloading model is designed by combining the merits of different existing
works. Since Nguyen et al. (2023) has used a data set from Huawei Technologies, we
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adapted it ignoring the blockchain part. However, Nguyen et al. (2023) does not con-
sider the energy harvesting technique of the MEC system. Therefore, we consider the
energy harvesting process in Zhang et al. (2020). Nguyen et al. (2023) considers con-
current processing on the server with independent completion time. Since the server
cannot have as many processors as the number of tasks, we specify a limited number
of processing units similar to the work of Xiong et al. (2023). The work of Zhang et al.
(2020) is also not efficient in computing the completion time of individual tasks, since
it uses the sum of the maximum completion time of the tasks and the common pro-
cessing latency for the completion of all tasks. For this reason, we take advantage of
the efficient computation of the completion times of tasks by Xiong et al. (2023), which
computes the completion time of tasks on the server based on the completion time of
other tasks scheduled before them. Similarly, we assume that the server processes the
tasks in the order of their arrival on the server. The arrival times of the tasks are deter-
mined by their offloading times. In the following, we present the task and computing
model for the task offloading problem.

5.3.2 Task Model

The task model is based on the setting in the work of Nguyen et al. (2023) on a data
set from Huawei Telecom. At each time step, each UD n generates a task denoted by
its notation as n1 that is represented by characteristics such as the size of the task zn

in bytes, the number of CPU cycles per bit required to process the task cn, and the
maximum deadline τn to which task processing is expected to finish.

Before processing the task, there are three decision variables: a binary decision of
whether to process it locally or offload it to the MEC server xn, a local resource allo-
cation fn, and a transmission power allocation pn, which are described in detail in Sec-
tion 5.5.2. So, we make a binary decision X = {xn|n ∈ N} to describe the processing
mode, as seen in Equation (5.1).

xn =

⎧⎨⎩1, MEC processing

0, Local processing
(5.1)

Next, we present the local and MEC models.

5.3.3 Local Processing

A task is processed locally if one of the following happens as presented in Section 5.5.2:
if the UD decides to process the task locally; if a UD proposes the task to the master

1Because a UD has one task at a time step, we use n to denote both the UD and its task to reduce the
number of notations
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Notation Description
N Set of UDs
T Number of time steps

τmax Maximum length of a time step
n A UD or a task of the UD
Tn Total latency of processing task n
xn A binary indicator of local processing or offloading for the task n
En Energy consumption of task n

Elocn Energy consumption of task n in local processing
Eoffn Energy consumption of offloading task n
Tlocn Computation time for the local processing of the task n
Toffn Offloading time of task n

λ1 and λ2 weight coefficients of Tn and En
bn Battery level of US n
pn Transmission power allocation of the UD n
zn Size of task n
ze Storage capacity of the server
Ue Number of processing units in the server
Ln Cost of processing task n
Rn Reward of processing task n
fn Resource allocation for local processing of the task n
Cn Number of CPU cycles to process one bit of task n
αϕ Learning rage of the master agent
αθ Learning rage of client agent
β Soft target update
J Joules

TABLE 5.1: List of notations for Chapter 5

agent and the master agent decides that the task should be processed locally. Then, the
UD processes the task using its local computational resource assigned to its task, which
is restricted within its own resource allocation budget as fn| f min

n ≤ fn ≤ f max
n . The local

computing latency to process the task is computed as follows:

Tlocn =
zncn

fn
(5.2)

The energy consumption in the local processing mode is calculated based on the size
of the task and the allocation of resources for processing the task, as shown in Equa-
tion (5.3).

Elocn = κzncn( fn)
2 (5.3)

where κ is energy consumption coefficient (Zhang et al., 2020).
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5.3.4 MEC Processing

In this mode, the task is transferred to the MEC server to be processed by one of the
processing units Ue of the server. The decision happens when the UD proposes the task
to be processed and the master agent approves it. To be processed on the server, the task
needs transmission resources, which is a function of transmission power pn and other
network parameters such as bandwidth and channel gain. The transmission power
pn is decided by the UD from its transmission power budget pn|pmin

n ≤ pn ≤ pmax
n as

discussed in Section 5.5.2. Then, the data transmission rate dn in a single channel of the
wireless network is calculated using Shannon’s capacity as

dn =
W
K

log2 (1 + pngn) (5.4)

where W is a constant coefficient which is the bandwidth of the wireless network, K is
the number of channels, pn is the transmit power of UD n, and gn = hn/σ2 is the normal-
ized channel gain of the uplink channel between UD n and the BS, with channel gain
hn and the background noise variance σ2. We did not consider interference between
multiple UDs because we assume that a channel is used by one task at a time.

Once the data transmission rate is determined, the transmission time Toffn and energy
consumption Eoffn of offloading task n to the server can be computed as:

Toffn =
zn

dn
(5.5)

Eoffn = pnToffn (5.6)

Like many works on task offloading (Wang et al., 2022; Nguyen et al., 2023; Zhang et al.,
2020), we assume that the communication resource required to return the information
about the processed task to the UD is negligible because only analytical information is
returned, not the entire task.

Note that the energy consumption in task offloading is computed only for the UDs
as they are battery-powered. The energy consumption on the server is not a concern
of the task offloading problem. However, the latency of processing the tasks on the
server matters because the tasks have deadline constraints. Therefore, the total latency
of processing a task on the server is determined by the transmission time, the earliest
availability of the processing unit on the server, and the time required to process the
task on the server. The processing time of task n in one of the processing units in the
server is computed as:

Tsern =
zncn

fe
(5.7)
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However, the processing of the task on the server does not start as soon as the task
has arrived at the server. The processing units on the server process one task at a
time. The tasks that are offloaded to the server are processed in the order of their
arrival at the server, which is determined by Toffn . Tasks are assigned to the earliest free
processing unit. Therefore, the start of processing the task n depends on the earliest
availability of a processing unit, which is determined by the number of processing units
on the server Ue, and Tsern and Toffn of other tasks that are shorter Toffn than that of task
n. Accordingly, the total latency of the offloading task n to the MEC server TMECn is
computed as:

TMECn = Tsern + Max(Toffn , Tearn) (5.8)

where Tearn is the estimated availability time of the first available processing unit Ue

of the server after the arrival of task n and Max(.) ensures that task processing starts
when a free processing unit is found after task offloading is completed.

The Tearn is calculated based on the completion time of other accepted tasks on the
server with the earliest offloading time than that of task n. Tearn is reset to 0 at the begin-
ning of each time step. Therefore, for the first Ue tasks that are offloaded to the server,
their Tearn is 0 because all processing units are available. For the rest of the offloaded
tasks, the computation of their Tearn depends on the completion time in the processing
units. This estimate is adapted from the work of Xiong et al. (2023). However, unlike
Xiong et al. (2023) which has used it in the state space of the DRL algorithm, in this
work, Tearn is only used by the processing units in the server to schedule the processing
of the tasks and compute the latency of the task that is used to calculate the reward.
The client agents in CCM MADRL MEC make decisions using only the local state. The
master agent agent also uses only the combined states and actions of the clients.

5.3.5 Energy Harvesting

The energy harvesting process is adapted from the work of Zhang et al. (2020). For
simplicity, we assume that the UDs harvest en energy at the beginning of each time in-
terval. Initially, each UD is full with a maximum battery capacity of bmax

n . In this work,
we assume that only the energy consumption of local computation and transmission
power affects the energy consumption and ignore others for simplicity. Therefore, the
level of the battery in the next time interval depends on both the energy consumption
and the harvesting, which evolves according to the following equation in the T time
steps.

bn(t + 1) = Min(Max(bn(t)− En(t) + en(t), 0), bmax
n ) (5.9)
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where En is the energy consumption calculated based on Elocn and Eoffn as described
in Section 5.4.1 and Min(.) and Max(.) ensure that the level of the battery cannot be
negative and does not exceed the maximum capacity.

5.4 Problem Formulation

5.4.1 Processing Cost

For the task processing, the total processing latency and energy costs are equal to

Tn = (1− xn)Tlocn + xnTMECn (5.10)

En = (1− xn)Elocn + xnEoffn (5.11)

Considering that the cost of processing a task is collectively determined by its energy
consumption and latency, the cost function for processing a task is specified as follows:

Ln = λ1Tn + λ2En (5.12)

where λ1 and λ2 are weight coefficients for the latency and energy consumption.

5.4.2 System Cost Formulation

The CCM MADRL MEC is aimed to solve the optimization problem that can be formu-
lated as the cost minimization for all UDs and T time steps while meeting the different
constraints in the UDs and the server as follows:



5.4. Problem Formulation 99

minimize
{xn,pn, fn}

T

∑
t

∑
n∈N

Lt
n (5.13a)

subject to xn ∈ {0, 1}, ∀n ∈ N (5.13b)

pmin
n ≤ pn ≤ pmax

n , ∀n ∈ N (5.13c)

Tn ≤ τn, ∀n ∈ N (5.13d)

bn ≥ bmin
n , ∀n ∈ N (5.13e)

f min
n ≤ fn ≤ f max

n , ∀n ∈ N (5.13f)

∑
n∈N

xn ≤ K (5.13g)

∑
n∈N

xnzn ≤ ze (5.13h)

where each constraint is explained as follows:

• Equation (5.13b) implies that a task is processed locally or uploaded to the MEC
server.

• Equation (5.13c) indicates that the transmission power should be between pmin
n

and the maximum value pmax
n .

• Equation (5.13d) implies that the processing time of each task cannot exceed its
processing deadline.

• Equation (5.13e) guarantees that the battery level should not exceed the low bat-
tery level.

• Equation (5.13f) ensures that the local computational resource allocated to each
task should be in the preset minimum and maximum values.

• Equation (5.13g) and ensure that the number of offloaded tasks does not exceed
the number of transmission channels by ensuring that only one task uses a chan-
nel. It is used if and only if it is necessary to use only one channel for one user as
used by Kan et al. (2018).

• Equation (5.13h) guarantees that the sum of the sizes of the off-loaded tasks does
not exceed the storage capacity of the server.
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5.5 Combinatorial Client-Master MADRL Algorithm for Task
Offloading in MEC

To solve the optimization problem of the cost minimization in Equation (5.13a), we con-
vert the optimization problem into a reward maximization problem and apply our pro-
posed combinatorial client-master MADRL (CCM MADRL) algorithm for MEC with
server resource constraints (CCM MADRL MEC). The states, client and master actions,
and the formulation of the reward function are presented as follows.

5.5.1 State

The state S(t) of the MEC environment includes the set of states of the UDs as shown
in Equation (5.14):

S(t) = {Sn(t)}, ∀n ∈ N (5.14)

Constant values such as the number of channels K, the number of processors on the
server Ue, the processing capacity fe, the energy harvesting rate, and the storage ca-
pacity ze of the server are excluded from the state space. The state of a UD Sn(t) is
characterized by five components: task state Stask

n (t), channel gain state Schannel gain
n (t),

power transmission state Spow
n (t), battery state Sbattery

n (t), Sdeadline
n (t) and local resource

allocation state Sres
n (t) as defined in Equation (5.15). The energy harvesting rate of a UD

can be included in the state space if it is dynamic.

Sn(t) = {Stask
n (t), Sgain

n (t), Spow
n (t), Sres

n (t), Sbattery
n (t)} (5.15)

where each component is explained as follows.

• Task state of a UD: Stask
n (t) = [zn(t), cn(t), τn(t)]. zn(t) represents the task size and

cn(t) represents the CPU cycle required to compute the task, and τn(t) is the time
required to process the task.

• Normalized channel gain state: Sgain
n (t) which is gn = hn/σ2 for every UD n. The

channel gain hn is impacted by many factors, including distance. For simplicity,
we assume that the UDs are stationary and have a stationary normalized channel
gain depending on their distance from the BS. The variance of background noise
σ2 is also constant.

• Power transmission state: Spow
n (t) is specified as pn(t), which represents the trans-

mission power allocated to the UD and its value is in the range of [pmin, pmax].
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• Local resource allocation state: Sres
n (t) = fn(t), where fn(t) is the local computa-

tional resource allocated to UD n.

• Battery level: Sbattery
n (t) as described in Equation (5.9).

5.5.2 Action

At the beginning of each time step, the UDs make decisions about their resource alloca-
tions using client agents. Then, the SDN controller collects information about the state
and action of the UDs and makes the following decision using a master agent: 1) for the
UDs that decide to make a local allocation, the server does not interfere. 2) if the num-
ber of UDs that propose to offload their tasks is greater than the number of channels or
if the sum of the size of their tasks is greater than the storage capacity of the server, the
server makes a combinatorial decision on which of the requests of the UDs to approve
and which of them to reject. 3) If the proposed requests are less than the constraints,
the server accepts all of them. Finally, channels are assigned to the accepted UDs, and
eventually the transmission of the tasks to the server and processing starts.

Existing DRL-based task offloading algorithms, such as the work of Nguyen et al.
(2023) and Jiang et al. (2023), included the number of channels in their state and action
spaces. However, the channels have equal transmission capacity from the perspective
of a UD as seen in Equation (5.4). If we restrict that a channel is used by only one UD
at a time, it does not matter which channel a UD uses. Therefore, the inclusion of chan-
nels in the state and action space incurs a dimensionality problem without playing any
significant role. We excluded channel information from the state and action spaces of
the DRL agents of the UDs and considered them as a constraint in the combinatorial
action selection of the server. If the number of UDs is greater than the number of chan-
nels, the master agent makes the combinatorial decision, and then the SDN controller
assigns one UD to one channel. There is a similar work by Kan et al. (2018) even if it
is not a DRL algorithm. Note that a channel is used by one UD at a time. However,
a channel can be reused by multiple UDs one after the other. In such a case, only the
storage capacity of the server becomes the constraint in combinatorial action selection.

The action for continuous-valued power and computational resource allocation and the
action for combinatorial decision for the storage and number of communication chan-
nels are processed in a two-step execution, as described below. First, the client agents
decide the computational resource and power allocation and whether their task should
be processed locally or proposed to the master agent for consideration of offloading to
the server. For client agents which decide to process their tasks locally, the decision
will be final. And for those which proposed their tasks for the master agent to decide,
the master considers them in its combinatorial decision. The actions of the client agents
and the master agent are as follows.
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5.5.2.1 Client Actions

After observing the state of the system, each UD produces three actions using the pol-
icy gradient: the decision about the mode of task processing xc,n(t), the allocation of
transmission power pc,n(t), and the local allocation of computational resources fc,n(t),
which are all continuous value actions between [0, 1] inclusive. The action space can
be expressed as:

Ac(t) = xc,n(t), pc,n(t), fc,n(t)← θn(Sn(t)), ∀n ∈ N (5.16)

where Sn(t) is the state of UD n as described in Equation (5.15) and θn is the parametrized
policy of the UD. The corresponding usage of each component is as follows:

• Task offloading decision xc,n(t): If xc,n(t) < 0.5, the binary decision in Equa-
tion (5.1) becomes 0, and the task is processed locally. Otherwise, the task is pro-
posed to the master agent to be considered for the combinatorial decision with
other tasks from other UDs.

• Transmission power allocation pc,n(t): Decide on the transmission power pn us-
ing Equation (5.17).

• Local allocation of computational resources fc,n(t): Decide on the computational
resource fn using Equation (5.18).

Based on the outputs of the client agent, pn and fn are determined as:

pn = Max(pmin
n , pc,n(t)pmax

n ) (5.17)

fn = Max( f min
n , fc,n(t) f max

n ) (5.18)

5.5.2.2 Master Action

For the client actions with xc,n(t) ≥ 0.5, the master agent takes the combinations of
states and actions of the client agents and provides a binary output for the combinato-
rial decision on which of them should be allocated locally and which of them should
be accepted for processing by the MEC server.

Am(t) = xm,n(t)← ϕ(S, A, Sc, Ac), for all n ∈ N such that Ac,n ≥ 0.5 (5.19)

where S and A are the set of states and actions of all client agents, and Sc and Ac are the
set of states and actions of the client agents whose Ac,n ≥ 0.5 and ϕ is the parametrized
policy of the master agent.
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The master agent is a modification of the critic in classical MADDPG algorithms by
leveraging the coalition action selection of Chapter 3. Unlike the coalition action se-
lection presented in Chapter 3, which uses the transformer neural network, the master
agent uses the per-action DQN as introduced in Chapter 4 excluding the stationary
transformation function. The stationary transformation function is excluded for the
simplicity of benchmarking-with and customization of MADDPG as in the following
sections.

5.5.3 System Reward Function

The system reward function must represent the objective function and the constraints.
To compute the reward, we use the negative of the objective function, and we compute
a penalty function for the time and energy constraints of the users. The constraints
of the server storage capacity and communication channels are already considered in
the action selection and do not need to be included as a penalty. Zhang et al. (2020)
included a drop-off penalty in their reward for running out of batteries. In ours, we
start the penalty from a preset minimum battery threshold.

L′n = λ1Min((τn − Tn), 0) + λ2Min((bn − bmin
n ), 0) (5.20)

Since the design of our system formulation is based on the cost minimization problem
in Equation (5.13a), our system reward function is equal to the negative of the system
cost function and the penalty function. Thus, we can formulate the reward function of
the system as follows.

r̄(S(t), A(t)) = − 1
|N| ∑

n∈N
(r(Sn(t), An(t))− r′(Sn(t), An(t)))

= − 1
|N| ∑

n∈N
(Ln(t)− L′n(t))

(5.21)

5.5.4 Long Term Maximization

The power and resource allocation decisions made in the current step by the UDs affect
their operational life in the next time steps by affecting energy consumption. There-
fore, the DRL must consider immediate reward and long-term return using the Bellman
equation as shown in Equation (5.22)

Q(S, A|ϕ) = (1− αϕ)Q(S, A) + αϕ(R(S, A) + γ ∑
n

P(S′|S, A)max
S′n,A′n

Q(S′, A′, S′n, A′n|ϕ′))

(5.22)
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where αϕ is the learning rate, γ is the discount factor, ϕ is the policy of the critic, ϕ′ is
the policy of the target critic to benefit from DDQN as discussed in Section 2.2.3, S =
{S1, ..., SN} and S′ = {S′1, ..., S′N} are combined current and next states, A = {A1, ..., AN}
and A′ = {A1, ..., A′N} are combined current and next actions of the client agents, and
S′n and A′n are the corresponding states and actions of the agents. The role of the four
parameters in Q′ is presented in the following section.

5.5.5 A Master Agent with Per-client DQN

DQN has the potential to converge to the optimal value because Q-learning is theoreti-
cally proven to converge with a probability of 1 (Watkins and Dayan, 1992). Therefore,
the critic in MADDPG knows the best combination of actions that leads to the best
reward. However, existing critics in MADDPG are only used to give feedback to ac-
tors when training. The convergence of the actors is not guaranteed. In our work, the
CCM MADRL algorithm can produce better convergence because the master is used
not only to give feedback to the clients but also to choose the best combination of ac-
tions from the proposed actions. In MADDPG, there is only a single Q-value for the
combined state and action pair of all actors, which is calculated as:

Q(S, A) = (1− αϕ)Q(S, A|ϕ) + αϕ(R(S, A) + γQ(S′, A′|ϕ′)) (5.23)

If we want to customize the critic to select actions, it should be able to provide a Q-value
per client agent. One possible solution is the decentralized actor-critic, where each
actor has its critic which uses the state and action of the actor to output the Q-value.
However, using the Q values of a decentralized actor-critic for making action selections
will lead to unstable learning because they use different weights for the DNNs. In other
words, the Q values are provided by different DNNs.

The master agent with per-client DQN in the CCM MADRL algorithm adapts the con-
cept of per-action DQN (He et al., 2015). It is also applied to a single agent DRL with
coalition action selection for online combinatorial resource allocation problems with an
arbitrary action space in Chapter 4. In this work, the state Sn and the action An of each
agent are appended to the combined state and the action of the actors to calculate the
relative Q value in the combination of the state and the action as:

Q(S, A, Sn, An|ϕ), ∀n ∈ N (5.24)

Applying the per-client DQN to MADDPG without changing the training function will
not change the performance of MADDPG, because the per-client critic will have the
same Q value for all Sn and action An. However, in the CCM MADRL algorithm, the
combined rewards are given only to selected clients in the task-offloading problem, as
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seen in Algorithm 6 so that they will have different Q values to distinguish them in
action selection. Therefore, the usual Bellman equation for MADDPG is customized
to consider the relative Q values of the clients, as seen in Equations (5.22) and (5.24).
Therefore, CCM MADRL is a customized version of MADDPG with a per-client DQN.
The third and fourth parameters are included to determine the relative Q-value of an
agent.

5.5.6 Combinatorial Action Selection

If the server resource constraint is not met, the proposed CCM MADRL algorithm is
not different from the MADDPG because all clients will be selected and all will receive
the combined reward. Therefore, their relative Q-values will be the same. When the
demands of the clients exceed the resource constraints, the CCM MADRL algorithm
has to select the best combination for the tasks of the client agents. The reward will
also be shared with the set of selected clients. This leads to different Q-values in Equa-
tion (5.22).

In addition to combinatorial action selection, the master agent with per-client DQN has
three advantages: 1) reduction of dimensionality, 2) handling arbitrary action space,
and 3) avoiding non-stationarity. Clients decide their resource requirements and whether
to make a local allocation or propose their tasks to the master agent for a combinatorial
decision. Then, only the clients that choose to offload their tasks to the server are con-
sidered in the action space of the master agent. The consideration of only the proposed
clients reduces the dimension of the action space and enables the selection of an arbi-
trary number of clients in an approach similar to the coalition action selection in Chap-
ter 4. In training, the master agent learns with the combined reward of all agents and
applies it to the actions it accepted for processing on the server. Note that the reward is
computed from all clients, including those processed locally, but the master applies it
only to those selected for server processing. This helps the server distinguish which of
the clients were accepted, but it does not affect the clients that chose to process locally
because they receive the feedback at training as classical MADDPG. In other words,
even though the master applies the reward to the selected clients, the same feedback
is given to all clients. The feedback is found from the Q value of one of the selected
actions because they are trained with the same target as shown in Equation (5.22). If no
client agent has offloaded its task, the master agent is trained with a zero-valued space
holder as a fake client agent to learn the combined reward of the local allocation so that
it can use it to provide feedback. In other words, for the UDs that choose to make a
local allocation, the master agent only provides feedback. For the UDs that proposed
to offload their task to the server, the master agent provides feedback and also makes
decisions on the proposed actions.
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Regarding avoiding non-stationarity, MADDPG with a centralized critic is not subject
to non-stationarity because the reward is given to the centralized critic. Note that, un-
like the classical critic network, the master agent in CCM MADRL MEC participates in
the action selection and employs exploration and exploitation, which is one of the chal-
lenges causing non-stationarity in MADRL. Exploration actions become challenging,
as the reward received depends on the decision of others. This results in agents col-
lecting non-stationary rewards to their replay memory at different times for the same
states and actions. Two-step MARL algorithms where both agents use a reward for
training all agents, such as the work in Xiong et al. (2023) are more susceptible to non-
stationarity if they use a replay memory. Xiong et al. (2023) excluded the use of replay
memory and trained their algorithm as a series of epochs on the data. However, this
is not a convenient way to train DRL algorithms when the data set is not available and
must be collected using interaction with the environment. Furthermore, it cannot take
advantage of the prioritized experience replay (Schaul et al., 2016) and long-term re-
turns of the Q values of the next states, since it only learns from immediate rewards.
The CCM MADRL MEC is not prone to non-stationarity caused by exploration and
exploitation because the reward is used only by the master, and the clients receive the
best feedback from the master agent no matter whether exploration or exploration is
used in the clients and the master. Client agents do not use rewards. They are trained
only on the basis of the feedback from the master agent. This centralized use of reward
makes non-stationarity not a concern in our CCM MADRL MEC.

Figure 5.2 shows the interaction diagram of the CCM MADRL algorithm and the MEC
system. Client agents represent the policies of the UDs. The master agent represents
the policy on the MEC server. The environment represents the allocation of resources
in the UDs and on the server. After a client produces its output, it does the following
as mentioned in Section 5.5.2: if xc,n < 0 assigns xn = 0 and starts the local allocation.
Otherwise, it forwards xc,n, pn, fn to the master for the combinatorial decision. Then,
the master agent produces the binary decision and applies it to the UDs and the server.
Finally, a shared reward is computed and provided to the master agent to train its value
function. Client agents are also trained using a TD error computed by the master agent
as feedback.

Like the actors in classical DDPG algorithms, the client agents in CCM MADRL MEC
output continuous actions, but xn should be a binary decision. Similarly to the work of
Dulac-Arnold et al. (2015), we can use the continuous output of the client agents. Then,
those below 0 will be assigned 0 in the binary decision of xn. For values greater than 0,
the binary decision is decided by the master agent.

Since the master agent in the CCM MADRL MEC algorithm has two functions: pro-
viding feedback for training the clients, similar to the MADDPG, and participating in
the combinatorial action selection of the clients, it follows different procedures for both.
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FIGURE 5.2: The interaction diagram of the agents and the MEC environment. Client
agents output their actions {xn, pn, fn}. Clients with {xc,n < 0.5} start local processing;
and the others propose their tasks to the master agent, which makes the combinato-
rial decision on which of the proposed tasks should be offloaded and which of them

should be designated for local processing

Therefore, the algorithm is presented below in three parts: a main algorithm, an action
selection algorithm, and a training algorithm in the following sections.

5.5.7 Algorithms

Since the master agent in the CCM MADRL MEC algorithm has two functions: pro-
viding feedback for training the clients, similar to the MADDPG, and participating in
the combinatorial action selection of the clients, it follows different procedures for both.
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For clarity of presentation, the algorithm is provided in three parts: a main algorithm,
an action selection algorithm, and a training algorithm in the following sections.

5.5.7.1 Main Algorithm

The main algorithm runs the action selection algorithm, the training algorithm, the
training environment, and the evaluation environment. The main algorithm starts
by configuring all initial parameters and iterates for Max Episodes iterations. In each
episode, it runs for T time steps, as seen in lines 7 to 12 of Algorithm 4. For each step,
the action selection algorithm is called, the rewards are computed, and then the expe-
rience is recorded to replay memory. When the iteration over the steps is complete, the
training is called and the trained policies of the client agents and the master agent are
evaluated as seen in lines 14 to 21. Evaluation is carried out for each episode using
the same evaluation environment to determine the improvement after each call to the
training algorithm. The evaluation episodes are seeded into their index so that they are
reproduced for each training episode.

Algorithm 4 CCM MADRL main algorithm

1: Initialize Max Episodes = 2000, Min Epsilon = 0.01, Max Epsilon = 1, γ = 0.99
2: Initialize client agents θn ∀n ∈ N and the master agent ϕ with random weights
3: Initialize target client agents θ′n ← θn and the target master agent ϕ′ ← ϕ, ∀n ∈ N

4: Initialize replay memory RM
5: for episode = 1 to Max Episodes do
6: Reset environment and get initial state Sn (t = 1), ∀n ∈ N
7: for t = 1 to T do
8: Go to Algorithm 5 using evaluation = False flag to select client and master

actions
9: Execute actions and observe total reward r̄ (t) and next state Sn (t + 1), ∀n ∈

N
10: Store transition (Sn (t) , An (t) , r̄ (t) , Sn (t + 1)), ∀n ∈ N in to RM
11: Update the state Sn (t)← Sn (t + 1), ∀n ∈ N
12: end for
13: Go to Algorithm 6 for training
14: for EvalEpisode in EvalEpisodes do
15: Reset and seed episode to EvalEpisode and find state S (t = 1)
16: for t = 1 to T do
17: Go to Algorithm 5 using evaluation = True flag to select client and master

actions
18: Execute actions and observe total reward r̄ (t) and next state Sn (t + 1),

∀n ∈ N
19: Update the state Sn (t)← Sn (t + 1) , ∀n ∈ N
20: end for
21: end for
22: end for
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5.5.7.2 Action Selection Algorithm

Because the action selection algorithm has to use exploration in the training environ-
ment, we present the computation of ϵ, which is used for ϵ-greedy to determine whether
to explore a new action or to exploit the learned knowledge in the master agent and to
scale the noise in the client agents as seen in Algorithm 5. In each episode, ϵ is updated
using Equation (5.25).

ϵ = Min Epsilon + (Max Epsilon−Min Epsilon) · e−
episode

Max Episodes (5.25)

where Min Epsilon and Max Epsilon are the minimum and maximum values of the
decaying epsilon, episode, is the current episode, and Max Episodes is the maximum
number of episodes.

The action selection algorithm applies the exploration of actions for the client agents
and the master agent as follows. Note that the evaluation flag is used to indicate
whether the actions are running for the training environment or for the evaluation envi-
ronment. In the evaluation, no exploration is needed. For client agents, the exploration
is performed by adding noise to the actual output of the client agents, as seen in lines 5
to 8 of the Algorithm 5. After adding noise to the actual action, the values are clipped
to [-1,1] so that they are within the activation function of the client agents, Tanh in this
case. All actions, explored or exploited, are scaled to be between [0,1] before applying
to compute the resource allocation in Section 5.5.2.

The master agent follows ϵ-greedy for exploration and exploitation, as seen in lines 41
to 47. First, a random number is generated as seen in line 11 to decide whether to ex-
plore or exploit. If the number is less than ϵ, the master agent shuffles the proposed
actions as seen in line 45 and follows the combinatorial action selection procedure de-
scribed below. Otherwise, the master agent computes the Q value based on the states
and actions of the proposed actions and appends the Q value along with the identifiers
of the tasks n to Qs and Index and follows the combinatorial action selection procedure.

After the actions of the client agents are provided, the master agent follows one of the
following three procedures in the exploitation mode, as described in Section 5.5.2. If all
client agents decide to process their tasks locally, as in line 18, the master agent does not
intervene. Line 20 computes the Q values of the proposed tasks using per-client DQN,
and appends them to Qs and Index along with their identifiers n, to be considered in the
combinatorial decision. If the number of proposed tasks or the sum of their sizes is less
than the number of sub-channels and the storage constraint on the server, the server
accepts all of them as seen in lines 24 to 26. If the number of proposed tasks is greater
than the number of sub-channels or if the sum of their size is greater than the storage
capacity of the server, the master agent uses the Q-values computed using the states
and actions of the client agents that proposed to offload their tasks to make decisions.
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It starts to approve the proposed actions of the clients with the highest Q-values until
the number of sub-channels or the storage constraint is met. The remaining agents are
designated to process their tasks locally. The algorithm is provided in Algorithm 5.
The procedure of exploitation is provided similarly to the procedure of exploitation
except that the proposed actions are shuffled randomly rather than getting sorted by
their Q-values.

5.5.7.3 Training Algorithm

The algorithm for training the client agents and the master agent is provided in Algo-
rithm 6. Because the structure of the master agent is different from the MADDPG critic
as seen in Section 5.5.5, Algorithm 6 is significantly different from existing MADDPG
training algorithms in that: It generates multiple Q-values rather than one combined
Q-value, because the master agent has to make a combinatorial decision using the rela-
tive Q-values of the clients as seen in lines 7,17, and 33; The client agents are trained by
computing the highest Q value from the tasks offloaded to the server as seen in lines
13 and 38; If all tasks are allocated locally by the client agents, the master agent uses
all zeros as a placeholder to hold the combined Q-value as seen in lines 11, 22, and 35.
Note that after the master agent decides which of the tasks should be processed in the
server as described in Section 5.5.2, the reward is applied only to the selected tasks dur-
ing training. That is, the reward is computed at the system level using Equation (5.21)
but it is used only by the tasks that are offloaded to the server when training the al-
gorithm so that the tasks are distinguished by their Q-values in the action selection
algorithm.

The notation of the client and master actions is changed in the training algorithm due
to the subscript i for the minibatch which is used to iterate over the entries of the mini-
batch of size M. Unlike MADDPG, which computes the Q-values of the minibatch as
a batch, the Q-values of the minibatch in the CCM MADRL algorithm are computed
individually because they are processed conditionally as seen with many if clauses in
the algorithm. The training algorithm starts by selecting a minibatch of size M from the
replay memory. Each entry in the minibatch includes the combined state S and action A
of all client agents S, the set of binary actions of the tasks by the master agentAmas, the
total reward of the tasks r̄, the combined next state S′, and a flag that indicates whether
the episode was ended or not, done.

The master agent is trained according to lines 2 through 28. Line 2 computes the target
action for every client and every entry in the minibatch using their next state. The
target action is used to compute the target Q-value using the master agent. Then, lines
3 and 4 concatenate the target actions of the client agents because the master agent
accepts a combined state and action of all clients as input as seen in line 7. Lines 5 and
6 check if the client agents have decided to process the tasks locally or propose them
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Algorithm 5 The action selection algorithm for the client agents and the master
agent

1: Input: state Sn for each client agent n, {K, ze}, and Evaluation flag
2: Output: client actions An for each n with xn decided by collaboration with the

master agent
3: Get action An ← πn (Sn, θn), ∀n ∈ N
4: if Evaluation == False then
5: Compute ϵ using Equation (5.25)
6: noise = random(|N| by |An|)*ϵ
7: An = An + noisen, ∀n ∈ N
8: Clip An to [-1, 1]
9: end if

10: Scale An to [0, 1] using An
2 + 0.5, ∀n ∈ N

11: Generate a random number
12: Qs = [], Index = []
13: if random < ϵ or Evaluation == True then
14: S = {Sn}, A = {An}, ∀n ∈ N
15: for n ∈ N do
16: Get xc,n from An as described in Section 5.5.2
17: if xc,n < 0.5 then
18: xn = 0
19: else
20: Append (Qs, Q (S, A, Sn, An, ϕ)), Append (Index, n)
21: end if
22: end for
23: if Length (Index) ≤ K and Sum (zn ∀n ∈ N and xc,n ≥ 0.5) ≤ ze then
24: for ∀n ∈ N and xc,n ≥ 0.5 do
25: xn = 1
26: end for
27: else
28: Sort Qs, and adjust Index accordingly
29: TotalSizeO f Accepted = 0
30: while Length (Index) > K do
31: n = Pop (Index)
32: xn = 1
33: if TotalSizeO f Accepted + zn ≤ ze then
34: TotalSizeO f Accepted = TotalSizeO f Accepted + zn
35: else
36: xn = 0
37: end if
38: end while
39: end if
40: else
41: Collect the index n of the tasks with xc,n ≥ 0.5 ∀n ∈ N to Index
42: if Length (Index) ≤ K and Sum (zn ∀n ∈ N and xc,n ≥ 0.5) ≤ ze then
43: Execute lines 24 to 26
44: else
45: shuffle Index in to random order
46: Execute lines 29 to 38
47: end if
48: end if
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Algorithm 6 The training algorithm for the client agents and the master agent

1: Sample a random minibatch of transitions (S, A, Amas, r̄, S′, done) of size M from
RM

2: Set target actions A′i,n ← πn

(︂
S′i,n, θ′n

)︂
, ∀n ∈ N, and for i = 1 to M

3: S′i = {S′i,n}, ∀n ∈ N, and for i = 1 to M
4: A′i = {A′i,n}, ∀n ∈ N, and for i = 1 to M
5: Get xi,n from A′i,n as described in Section 5.5.2, ∀n ∈ N, and for i = 1 to M
6: if x′i,n ≥ 0.5, ∀x′i,n ∈ a′i,n, ∀n ∈ N, and for i = 1 to M then

7: Append
(︂

Q′N , Q
(︂

S′i , A′i, S′i,n, A′i,n, ϕ′
)︂)︂

8: end if
9: Q′i = Q′N , for i = 1 to M

10: if Length (Q′i) is 0 for any i then
11: nextQi = Q (S′i , A′i, all zeros, all zeros, ϕ′)
12: else
13: nextQi = Max (Q′i)
14: end if
15: y = [], Qs = []
16: if Amas

i,n = 1 ∃n ∈ N ∃i ∈ M then
17: Append (Qs, Q (Si, Ai, Si,n, Ai,n, ϕ))
18: targetQ = rī + γnextQi ∗ (1− donei)
19: append(y, targetQ)
20: end if
21: if Amas

i,n = 0 , ∀n ∈ N ∃i ∈ M then
22: Append (Qs, Q (Si, Ai, all zeros, all zeros, ϕ))
23: targetQ = rī + γnextQi ∗ (1− donei)
24: append (y, targetQ)
25: end if
26: Compute the TD error: δ = 1

Length(y) ∑
Length(y)
j=1

(︁
yj −Qsj

)︁2

27: Update parameters of master agent ϕ: ϕ← ϕ + αϕ · ∇ϕδ
28: Update target master network ϕ′ ← ϕ
29: for each client n do
30: QN

i = [] for i = 1 to M, tarQ = []
31: Set new actions Anew

i,n ← πn (Si,n, θn), ∀n ∈ N, and for i = 1 to M
32: Anew

i = {Anew
i,n }, ∀n ∈ N, and for i = 1 to M

33: Append
(︂

QN
i , Q

(︂
Si, Anew

i , Si,n, Anew
i,n , ϕ

)︂)︂
, ∀n ∈ N with Amas

i,n = 1, and for i = 1
to M

34: if Length
(︁
QN

i
)︁

is 0 for any i then
35: Qloc = Q

(︁
Si, Anew

i , all zeros, all zeros), ϕ
)︁

36: Append (tarQ, Qloc)
37: else
38: Append

(︁
tarQ, Max

(︁
QN

i
)︁)︁

)
39: end if
40: Compute the gradient for the client:

∇ϕn J(ϕn)← − 1
Length(tarQ) ∑

Length(tarQ)
j=1 ∇ϕn tarQj

41: Update the client parameters θn:
42: θn ← θn − αθ∇θn J (θn)
43: Update target client networks θ′n ← θn
44: end for
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to the master agent. For each task that was proposed to the master, a relative Q-value
is computed on line 7 and the maximum Q-value will be computed in line 13. Line 9
concatenates the Q-values of the offloaded tasks in the same entry of a minibatch. If no
task was offloaded, a Q-value will be computed using a placeholder to train the master
agent so that it is used to give feedback like the classical MADDPG. Then, the combined
reward is provided to the actions selected to offload their tasks as seen in lines 16 to 20.
The current and target Q-values in lines 17 and 17 are used to compute the TD error
in line 26. As seen in lines 21 to 25, if all client agents, at any entry in the minibatch,
decide to process their tasks locally, the master agent concatenates the state and action
of all agents and adds all zeros as a placeholder to learn the Q value when all tasks are
processed locally, and is only used to provide feedback in training the client agents as
seen in line 35.

The training of client agents is seen from lines 29 to 44. They are trained similarly
to the training of actors in classical MADDPG except that the feedback is computed
differently as seen in lines 33 to 39, because the Q value is provided for the client agents
that offloaded their task to the server. Therefore, if one or more clients were offloaded
their task, the feedback for training the clients is computed from the Q value of one of
the offloaded tasks as they are trained with the same rewards. The maximum Q value
of the offloaded tasks is considered for consistency. The calculation of the maximum
Q-value is the same as that of the training for the master agent.

We used DDQN (Van Hasselt et al., 2016) and prioritized experience replay (Schaul
et al., 2016) for better training efficiency.

5.6 Experimental Evaluation

We perform exhaustive experiments as follows. First, we examine the convergence of
CCM MADRL MEC with different learning rates. Second, we compare our algorithm
with other benchmarks and heuristic algorithms. The experiment aims to evaluate the
importance of applying a master agent to MADRL for combinatorial decisions. We did
not evaluate the contribution of CCM MADRL in terms of dimensionality reduction,
which considers the number of channels in the combinatorial action selection, rather
than including them in the state and action spaces of the actors. This is because it
is difficult for the benchmark algorithms to converge using a continuous auction space
that is discretized to the number of channels in the action selection, let alone to compare
with CCM MADRL. Instead, we applied combinatorial action selection using heuristic
ordering to the benchmark algorithms to achieve fairness in the comparison.
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5.6.1 Benchmark Algorithms

The main benchmark for our algorithm is MADDPG for two reasons. First, most exist-
ing task-offloading algorithms use DDPG and MADDPG. Second, our algorithm is an
extension of MADDPG to heterogeneous combinatorial client-master MADRL agents
of the policy gradient and value function techniques that cooperate to make a combina-
tion of continous-valued and combinatorial decisions in a distributed setting. However,
we also developed different heuristic benchmarks to show the impact on different pos-
sible orders of accepting tasks on the MEC server. The heuristic algorithms differ from
the proposed CCM MADRL MEC in that, instead of training a master agent to make
combinatorial decisions about the clients using their Q-values, a stationary algorithm is
used to decide on which of the tasks to approve for processing in the MEC server based
on some ordering mechanism. The heuristic-based MADDPG algorithms are discussed
below.

• MADDPG: This is MADDPG where the UDs will use actor agents to make de-
cisions. If xc,n < 0, the UD assigns its task locally. Otherwise, it forwards its
proposed action to the MEC server. The SDN controller in the BS will only coop-
erate in assigning the UD tasks to different channels considering the constraints.
If the number of tasks proposed to be offloaded by the UDs is not greater than
the number of channels, and if the sum of their size is less than or equal to the
storage capacity of the server, all of them are accepted to the MEC server. The
SDN controller assigns each UD to a different channel and the UDs begin to of-
fload their tasks. Otherwise, if the proposed tasks are greater than the number of
channels or the sum of their size is greater than the storage capacity of the server,
the SDN assigns the UDs to the channels in the order of their offloading time.
Tasks that are not assigned to any channel are discarded. The discarded tasks are
assigned τmax to TMECn as a penalty to discourage similar actions in the future.
This penalty is applied because only the actors are in charge of task-offloading
decisions in MADDPG. Because the penalty can be unfair for benchmark com-
parison, the following heuristics are developed to have equivalent combinatorial
decisions with the CCM MADRL MEC for the tasks that are not accepted. That
is, return the unaccepted tasks to be processed by the UDs rather than dropping
them.

• MADDPG with the shortest offloading time first heuristic: This is similar to MAD-
DPG, with the distinction that, after the combinatorial decision, the tasks that are
not assigned to the channels or storage are designated for local processing within
the UDs.

• MADDPG with deadline/size first heuristic: This is based on the heuristic that of-
floading tasks with critical deadlines and larger sizes to the MEC server improves
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overall latency and power consumption. If xc,n < 0 the UD allocates its task lo-
cally. Otherwise, it proposes its task to the MEC server. Then, if the number of
offloaded tasks is not greater than the channels and if the sum of their size is less
than or equal to the storage capacity of the server, all of them are accepted to the
MEC server. Otherwise, the SDN controller assigns the tasks to the channels in
the order computed by deadline/size first until either the channel constraint or
the storage constraint is met. The rest are assigned to the UDs.

Even if the way tasks are accepted by the MEC server differs between the benchmarks
and the CCM MADRL MEC, the order of processing of the accepted tasks is always in
the order of arrival at the MEC, which is computed using Equation (5.5)

5.6.2 Experimental Settings

The experimental setting is provided in Table 5.2. We use a configuration and data
set similar to Nguyen et al. (2023) because they use a data set from Huawei Telecom.
However, because we introduced the server storage constraint, the size of the tasks
is customized by increasing their size and decreasing the number of cycles per bit re-
quired to process a task similar to the configuration in Zhang et al. (2020). The typical
storage capacity of modern servers is GB and TB. However, because we chose a small
experimental setting of 50 UDs due to computational resources, we considered a stor-
age constraint of 400 MB so that the task offloading problem is combinatorial to the
server. The energy harvesting setting is adapted from Zhang et al. (2020). We used a
seed of 37 for the reproducibility of the simulation environment. Evaluation episodes
are seeded with their index. We used a discount factor of 0.99.

5.6.3 Training Environment and Evaluation Environment

When using continuous-valued actions, such as MADDPG, for resource allocation, it is
not an efficient decision to evaluate the performance of the algorithms while they are
being trained, in the same environment in which they are being trained, and the ac-
tions that are a sum of the output of the actor and exploration noise. First, the number
of tasks generated in the training environment episodes and their resource require-
ments are independent and different. As a consequence, it is not convenient to visual-
ize whether the performance is showing an upward trajectory. In contrast, evaluating
performance using a separate evaluating environment in each episode can show an up-
ward trajectory of performance because the same evaluation environment is used for
every episode of the training. Second, decaying exploration noise can make the algo-
rithm look like it is improving. This is because the exploration noise can round most
of the actions of the actor to 0 and 1 in the early stages of the training. Although the
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Parameter Value
Number of UDs (|N|) 50

Number of channels (K) 10
Time constraint (τn) [0.1-0.9] s

Bandwidth (W) 40 MHz
Maximum power (Pmax) 24 dBm
Minimum power (Pmin) 1 dBm

Maximum power (pmax
n ) of a UD [Pmin - Pmax] dBm

Minimum power (pmin
n ) of a UD Pmin dBm

Maximum local computing resource ( fmax) 1.5 GHz
Minimum local computing resource ( fmin) 0.4 GHz

Maximum local computing resource ( f max
n ) of a UD [ fmin- fmax] GHz

Maximum battery capacity (bmax) of a UD 3.2 MJ
Minimum battery threshold (bmin) of a UD 0.5 MJ

Initial battery level (bmax) of a UD [bmin-bmax] MJ
Normalized uplink channel gain (gn) [5-14] dB

MEC computing resource ( fe) 4 GHz
Task size (zn) [1-50] MB

Server storage capacity (ze) 400 MB
CPU cycles (cn) [300 - 737.5] cycles

Number of processing units (Ue) on the server 8
Energy coefficient (κ) in a UD 5× 10−27

Weight coefficients (λ1, λ2) (0.5, 0.5), (1, 5), (1, 1000)
Energy harvesting (en) of a UD 0.001 J

TABLE 5.2: Experimental parameters of CCM MADRL MEC

actions of the actor can be between 0 and 1 due to the activation functions and scaling,
the exploration noise is large and causes most of the actions to be rounded to 0 and 1,
leading to either no resource allocation or full resource allocation, which is not efficient.
As the noise decays to zero, most of the actions will be between 0 and 1, allowing frac-
tional resource allocation with more efficiency than binary allocation. This effect occurs
regardless of whether the actor is learning or not.

Therefore, we evaluated the performance using a separate environment using only the
actions outputted by the algorithm that do not include the exploration noise.

5.6.4 Hyperparameter Selection and Convergence

The selection of hyperparameters is challenging in DRL. Unlike certain well-defined
algorithms, there is no one-size-fits-all rule for selecting the appropriate hyperparam-
eters in DRL. One of the most influential parameters in hyperparameter tuning is the
learning rate (Gulde et al., 2020). In this experiment, we selected some of the hyperpa-
rameters based on experience in the preceding chapters: replay memory 10000, batch
size 64, target soft update 1, discount factor 0.99. The training algorithm is run at the
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end of each episode for two reasons. The first reason is to provide better generalization
by avoiding overfitting, as observed in the experiments of Chapter 3 and Chapter 4.
The second is to run many episodes and collect many data by increasing the distance
of the training interval. The parameters of the DNNs are selected by trial and error.
The DNN of the client agents has 7 inputs, representing the state of a UD, two hidden
layers of 64 and 32 neurons each with a ReLu activation function, and 3 outputs with a
Tanh activation function representing the action space. The actor agents in the bench-
mark and heuristic algorithms also have the same hyperparameters as the clients of
CCM MADRL MEC. However, because the master agent uses per-client DQN, it has
510 inputs, which includes 10 for the combined input of the states and actions of the
50 agents, and an additional 10 for the per-client input, whereas the critic networks
of the benchmark and heuristic algorithms have only 500 inputs as they are classical
MADDPG algorithms. Apart from the input, the master agent and the critic networks
of the benchmark and heuristic algorithms have the same other hyperparameters: two
hidden layers with 512 and 128 neurons each followed by a single output with linear
activation function. ADAM optimizer is used in all the experiments in this thesis.

As shown in Equation (5.22), the learning rate in DRL is a hyperparameter that regu-
lates the speed with which the weights of the DNNs are updated based on the feedback
from the environment. It defines how much the agent’s Q-values should be updated
based on fresh information collected from the environment. Because it is a combination
of the policy gradient and the value function, selecting the appropriate learning rate is
more challenging than the other parameters in MADDPG and our algorithm. There-
fore, we conducted extensive experiments to find the best combination of learning rates
for the client agents and the master agent as follows.

First, we filter a combination of 16 learning rates by comparing their impacts on the
DNN weights of the client agents and the master agent. The DNNs are initialized with
the same weights using the 23 seed on the PyTorch so that the performance becomes
only an effect of the learning rates. A seed of 23 is also used in the NumPy package
of Python for the random number generators of exploration noise and exploration and
exploitation probability so that all learning rates follow the same exploration and ex-
ploitation sequences.

Figure 5.3 shows the performance using the evaluation environment. Because the re-
sults were saved in an Excel file before plotting them, we found that {Client learn-
ing rate, master learning rate} of {0.1, 0.0001}, {0.01, 0.0001}, {0.001, 0.001}, {0.0001,
0.001}, and {0.001, 0.0001} converged up to -34. The performance with a learning rate
of 0.1 (blue line) for the master agent is overlapped with the performance of the master
agent’s learning rate of 0.01 (yellow line). As presented in Algorithm 4, the evaluation
environment is run after each training episode. We also evaluated the performance of
the CCM MADRL MEC in the training environment, as seen in Figure 5.4. The com-
bination of {Client learning rate, master learning rate} of {0.1, 0.0001}, {0.01, 0.0001},
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and {0.001, 0.0001} converged up to -38 on the training environment while the others
are below -52. However, as explained in Section 5.6.3, the training environment cannot
be used as evidence that the algorithm is training correctly and converging.

Next, we further refined the best learning rates based on the results demonstrated in
Figure 5.3 and Figure 5.4 as follows. The combinations of learning rates of {0.1, 0.0001}
and {0.01, 0.0001} are the same and do not show steady performance, but we took the
latter along with other combinations of learning rates that have shown a steady upward
trajectory in the results shown above such as {0.001, 0.001}, {0.0001, 0.001}, and {0.001,
0.0001} to make further comparisons with multiple experiments and benchmark algo-
rithms in the next section.

As discussed at the beginning of this section, the experiments for the learning rates are
run for the same initialization of DNN weights and the same exploration and exploita-
tion sequences, so that only the learning rate impacts the training of the algorithms.
The learning rate of {0.0001, 0.001 } for client and master, respectively, has shown sta-
ble and steady learning, but learning rates such as {0.01, 0.0001} have shown constant
performance by default in the evaluation environment. The reason they seem to show
an increase in performance in the training environment is due to exploration noise, as
explained in Section 5.6.3. Therefore, to make a general comparison, we performed an-
other experiment for {0.01, 0.0001}, {0.001, 0.001}, {0.0001, 0.001}, and {0.001, 0.0001}
using multiple runs with different initialization weights of DNN and a different evalu-
ation environment as discussed in Section 5.6.5. Their corresponding results are shown
in Figure 5.6, Figure 5.7, Figure 5.5, and Figure 5.8. It can be seen that the performance
of the learning rates with {0.01, 0.0001} and {0.001, 0.001} have declined for the experi-
ments with many runs with different initializations of the weights, as seen in Figure 5.6,
and Figure 5.7 respectively. The reason they have shown competitive performance for
the single-run experiment in Figure 5.3, and Figure 5.4, but declined in Figure 5.6 and
Figure 5.7, could be due to the default weights of the DNN that could be close to con-
vergence with fewer training episodes. Note that the learning rates in Figure 5.3 are
compared for the same initialization of the weights of the neural networks with a seed
of 23. Convergence is relatively better with learning rates of {0.001, 0.0001}, as seen in
Figure 5.8. However, we can see from all experiments that the learning rates of {0.0001,
0.001} for client and master, respectively, have led to better performance as shown in
Figure 5.5. Therefore, the learning rate of {0.0001, 0.001} is selected as the best combi-
nation of learning rates to proceed to the rest of the experiments.

5.6.5 Generalizability

Convergence can be affected by the initialization of the DNN weights, the exploration
noise that is added to the actions of the client agents, and the sequence of exploration
and exploration in the master agent. Therefore, we conducted multiple experiments
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FIGURE 5.3: Performance of the CCM MADRL using the evaluation environment for
different combinations of client agent and master agent learning rates
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FIGURE 5.4: Performance of the CCM MADRL algorithm on the training environment
for different combinations of client agent and master agent learning rates
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for each algorithm using different initializations of the weights, exploration noise, and
different exploration and exploitation sequences for each run of the experiment and
plotted the result with a 95% confidence interval. The importance of using the eval-
uation environment is described in Section 5.6.3. Furthermore, we evaluated the ex-
periment with multiple evaluation episodes for a more general evaluation. Therefore,
the experiment is run for 2000 training episodes and 50 other evaluation episodes that
are performed at every training episode. The results in the figures that used a separate
evaluation environment are an average of 50 evaluation episodes that are evaluated
in each training episode of the environment to see how the training has improved the
convergence in each episode.

5.6.6 Experimental Results Using the Evaluation Environment

Figure 5.5 shows the evaluation for 10 steps per episode using the evaluation environ-
ment. The CCM MADRL algorithm has performed better than the other algorithms
because once the clients choose their action, the master agent also makes a combinato-
rial decision on the action of the clients. This two-step decision provides another option
for convergence in case the client agents stick to local optimal. That is, using a combi-
nation of advantages of the policy gradient and the value function to make decisions,
the CCM MADRL mitigates the challenge of sticking to the local optimal. In contrast,
the actors in the heuristic and benchmark algorithms receive only feedback from the
critic. They took full responsibility for adjusting their actions.

The second subplot in Figure 5.5 (B) shows the percentage of tasks whose deadline
is exceeded. It shows that about 10% of the tasks exceeded their deadline at the best
convergence of the CCM MADRL. The percentage of tasks that exceed their deadline is
inversely proportional to the reward. The higher the reward, the lesser the number of
times the deadline has been exceeded. The last subplot in 5.5 (C) shows the percentage
of UDs that exceed the minimum battery threshold. It can be seen that no UD has
exceeded its minimum battery level because the experimental setting was configured
for 10 steps per episode.

We also carried out the same experiment with learning rates of {0.01, 0.0001} for the
clients and the master, respectively, as shown in Figure 5.6 to support our analysis in
Section 5.6.4. All algorithms showed poor performance because they only use actor
agents to make decisions, but the CCM MADRL algorithm has the advantage over the
others using its master agent. The same effect is observed with learning rates of {0.001,
0.001} as seen in Figure 5.7. The result for learning rates of {0.001, 0.0001} has shown
relatively better performance than seen in Figure 5.8 but is not comparable to learning
rates of {0.0001, 0.001}.
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FIGURE 5.5: Comparison of the CCM MADRL with the heuristic and MADDPG al-
gorithms with a learning rate of 0.0001 and 0.001 for the clients and master agents

respectively
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FIGURE 5.6: Comparison of the CCM MADRL with the heuristic and MADDPG algo-
rithms with learning rates of 0.01 and 0.0001 for the clients and master agents respec-

tively
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FIGURE 5.7: Comparison of the CCM MADRL with the heuristic and MADDPG algo-
rithms with learning rates of 0.001 and 0.001 for the clients and master agents respec-

tively
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FIGURE 5.8: Comparison of the CCM MADRL with the heuristic and MADDPG algo-
rithms with learning rates of 0.001 and 0.0001 for the clients and master agents respec-

tively
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To see the impact on the battery level, we changed the experimental setting and ran it
for 100 steps per episode. We also changed bmax to bmin + 1J so that some UDs have a
small battery capacity. Note that no UD has exceeded the battery threshold in Figure 5.5
(C) because the number of steps per episode is not long enough to run the battery below
the minimum battery threshold.

The CCM MADRL MEC performs better than the heuristic and MADDPG algorithms,
as shown in Figure 5.9. Figure 5.9 (C) shows that CCM MADRL MEC has more UDs
running below the minimum battery threshold than the benchmark and heuristic algo-
rithms. However, the number of UDs that run below the minimum battery level is not
included in the cost function. The penalty for running below the battery threshold is
computed by subtracting the amount of joules it falls below the threshold. Therefore,
it is affected by the scales given to the deadline penalty and the energy penalty. We
use λ1 = λ2 = 0.5 as weight coefficients for latency and energy consumption costs in the
reward function. These coefficients can be varied to give higher priority to the critical
one. The CCM MADRL MEC is trained using the reward computed from the cost func-
tion. CCM MADRL MEC has outperformed the benchmark and heuristic algorithms
for the reward function in which they are trained. The reason why CCM MADRL MEC
is showing more UDs exceeding their battery threshold than the benchmark and heuris-
tic algorithms is that the training focuses on minimizing the sum of latency and energy
consumption costs rather than the number of UDs exceeding their deadline. This can
happen when many UDs exceed their battery threshold with small values than when
fewer UDs exceed their threshold with large values. The experiment was run on Iridis 2,
an HPC cluster at the University of Southampton. The experiment for the result in Fig-
ure 5.9 is carried out with 10 runs for each algorithm for 60 hours. All of the experi-
ments for heuristic and benchmark algorithms were finished earlier, but one of the runs
for the CCM MADRL MEC ran out of time at episode number 1911. For convenience
in plotting with the 95% confidence interval, all runs of the CCM MADRL MEC are cut
after episode 1911 as seen in Figure 5.9. Note that the benchmark and heuristic algo-
rithms have only one Q value in the critic for a combination of state and actions of the
actors. On the other hand, the number of Q values to train in the CCM MADRL MEC
is equal to the number of offloaded tasks or 1 if all of them are allocated locally.

We also experimented with λ1 = 1 and λ2 = 5 because Figure 5.9 (B) looks like the exact
inverse of Figure 5.9 (B). The scales λ1 = λ2 = 0.5 have not provided enough balance
for energy consumption, which is a very low number, and time consumption, which
is relatively higher. The result is plotted in Figure 5.10 with a 95% confidence inter-
val of 40 runs, unlike previous experiments, which are plotted with a 95% confidence
interval of 10 runs. However, the plots do not show a significant difference between
10 runs and 40 runs, other than the shaded range of the confidence interval. Now,
the subplot (B) and subplot (A) do not look exactly inverse to each other. However,

2https://www.southampton.ac.uk/isolutions/staff/iridis.page

https://www.southampton.ac.uk/isolutions/staff/iridis.page
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FIGURE 5.9: Comparison of the CCM MADRL with the heuristic and MADDPG algo-
rithms with learning rates of 0.0001 and 0.001 for the clients and master agents respec-

tively, with 100 steps per episode, and bmax = bmin + 1J
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the subplot (C) shows that CCM MADRL MEC still has more UDs running below the
minimum battery threshold than the benchmark and heuristic algorithms. Neverthe-
less, CCM MADRL MEC has performed better than the other algorithms in the com-
bined performance and shows more advantage in the number of tasks whose deadlines
exceeded. Using a scalar reward for multiobjective functions does not represent the un-
derlying problem (Vamplew et al., 2022), but is not within the scope of this work. Hayes
et al. (2022) has studied the essence and techniques of multiobjective DRL.

Since scaling with λ1 = 1 and λ2 = 5 does not yet balance latency and energy con-
sumption costs in the combined reward, we continue the experiment with λ1 = 1 and
λ2 = 1000 as seen in Figure 5.11. Because energy consumption is scaled to a value
of 1000, it led to the percentage of UDs that exceeded the battery threshold to zero.
CCM MADRL MEC still has shown performance in the combined reward and the per-
centage of UDs exceeding their battery threshold. Note that it seems that the perfor-
mances of the algorithms look overlapped, as seen in Figure 5.11 (A). But this is due
to the magnitude of the total reward, which is in millions due to the effect of the value
of λ2. The maximum value at convergence of the algorithms is; CCM MADRL MEC=-
3207.2385251393675, MADDPG with deadline/size first heuristic = -4063.309111026686,
MADDPG with the shortest offloading time first heuristic = -3895.1804818457117, and
MADDPG=-4567.158552095975.

It can be seen that the benchmark and heuristic algorithms demonstrated a closer per-
formance to the CCM MADRL MEC on 100 steps per episode than in 10 steps per
episode. This difference is caused by overfitting, as observed in Chapter 3 and Chap-
ter 4. Training after 10 steps leads to overfitting to the first episodes, whereas training
after every 100 episodes provides more generalization. The benchmark and heuristic
algorithms are impacted by overfitting more than CCM MADRL MEC because they
use only their actors to select action, while the CCM MADRL MEC uses the advantage
of both clients and master to mitigate overfitting and sticking to local optimal. It can
also be seen from Figure 5.9 that the shortest offloading time first benchmark performs
close to the CCM MADRL MEC algorithm. This is because the energy consumption is
negligible and the latency has a higher priority due to their scales, making the shortest
offloading time first benchmark competitive.

5.6.7 Evaluation with Statistical Tests

We perform statistical tests in the same way as in Section 4.4.2.6. First, we plot the
histogram using the episodes and runs of the experiment as follows. The statistical test
is conducted for the last experiment with λ1 = 1 and λ2 = 1000 as plotted in Figure 5.11
because it visually looks like the algorithms’ performance overlaps.
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FIGURE 5.10: Comparison of the CCM MADRL with the heuristic and MADDPG al-
gorithms with learning rates of 0.0001 and 0.001 for the clients and master respectively,

λ1 = 1 and λ2 = 5, with 100 steps per episode, and bmax = bmin + 1J
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FIGURE 5.11: Comparison of the CCM MADRL with the heuristic and MADDPG al-
gorithms with learning rates of 0.0001 and 0.001 for the clients and master respectively,

λ1 = 1 and λ2 = 1000, with 100 steps per episode, and bmax = bmin + 1J
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FIGURE 5.12: Histogram for the performance of the algorithms shown in Figure 5.11
using the episodes as data sample

As seen in Figure 5.12, the performance of the DRL in episodes is not normally dis-
tributed for the same reason as discussed in Section 4.4.2.6. Figure 5.13 shows that the
distribution is better when the experimental runs are used as a data sample. Unlike
the description in Section 4.4.2.6, the maximum values of the experimental runs are
not computed by averaging over a moving window, because in this chapter a different
evaluation environment is used, which is the same for all episodes.

The statistical test with ANOVA recorded an F-statistic of 4.192263096768374 and a
P-value of 0.005671193240624048 when episodes are used as a sample. Next, we per-
formed a pairwise evaluation of CCM MADRL with each of the benchmark and heuris-
tic algorithms, as presented in Table 5.3. We also repeated the statistical test using the
nonparametric Wilcoxon Mann-Whitney rank sum test as seen in Table 5.4.

Benchmark t-statistic P-value
MADDPG 4.871407961046222 1.1509819197451862e-06

Shortest offload time first MADDPG 2.800671227050114 0.005124157804480162
Deadline divide to size first MADDPG 2.7776572741066237 0.0055007795974677575

TABLE 5.3: T-test between the CCM MADRL and each of the benchmark and heuristic
algorithms using the episodic rewards as sample

As discussed in Section 4.4.2.6, we performed the statistical test on the experimental
runs. The ANOVA assessment provided an F-statistic of 3.4421006126211022 and a



132
Chapter 5. Combinatorial Client-Master Multiagent Deep Reinforcement Learning

for Task Offloading in Mobile Edge Computing

FIGURE 5.13: Histogram for the performance of the algorithms shown in Figure 5.11
using the runs of the experiment as data sample

Benchmark U-statistic P-value
MADDPG 3901260.0 0.0

Shortest offload time first MADDPG 3893365.0 0.0
Deadline divide to size first MADDPG 3892935.0 0.0

TABLE 5.4: Wilcoxon Mann-Whitney rank sum test between the CCM MADRL and
each of the benchmark and heuristic algorithms using the episodic rewards as sample

P-value of 0.01830702538963317. The pairwise comparison using t-test and Wilcoxon
Mann-Whitney rank sum test is provided in Table 5.5 and Table 5.6.

Benchmark t-statistic P-value
MADDPG 2.1486133773494323 0.03476737847989825

Shortest offload time first MADDPG 2.897388989848565 0.0048820984240530545
Deadline divide to size first MADDPG 3.151444433158739 0.002305087554929515

TABLE 5.5: T-test between the CCM MADRL and each of the benchmark and heuristic
algorithms using experimental runs as data sample

All statistical evaluations showed small P-values, leading to the conclusion that the
difference in the performance of the DRL algorithms is not a result of random chance.
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Benchmark U-statistic P-value
MADDPG 1144.0 0.0008961501478583839

Shortest offload time first MADDPG 1065.0 0.010397300466515273
Deadline divide to size first MADDPG 1032.0 0.02457683153819857

TABLE 5.6: Wilcoxon Mann-Whitney rank sum test between the CCM MADRL and
each of the benchmark and heuristic algorithms using experimental runs as data sam-

ple

5.7 Conclusion

In this chapter, we propose a combinatorial client-master MADRL algorithm for task
offloading in MEC. We consider the storage capacity of the server and the number of
communication channels as a combinatorial constraint for the task-offloading problem.
By combining the advantages of both policy gradient and value function methods to
output continuous and combinatorial actions, the CCM MADRL algorithm provides
better convergence than existing homogeneous MADRL algorithms, such as MAD-
DPG. Note that MADDPG combines a policy gradient and a value function to train
its actors, but the critic does not participate in the action selection. CCM MADRL
applies the coalition action selection proposed in Chapter 3 and the per-action DQN
as used in Chapter 4 to make combinatorial decisions on the actions proposed by
the clients. Client agents decide on their continuous-valued resource allocations, and
the master agent makes combinatorial decisions. The experiments demonstrate that
CCM MADRL MEC outperforms the benchmark and heuristic algorithms.

In the future, we plan to extend CCM MADRL MEC to multi-server MEC where mul-
tiple servers cooperate to make combinatorial decisions.
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Chapter 6

Conclusions

6.1 Summary of the Thesis

This thesis started by outlining the different challenges that DRL algorithms face in
online combinatorial resource allocation problems and the research requirements that
must be met. To move forward to the solution, a comprehensive literature review of
DRL-based resource allocation algorithms and their limitations, including the types
of DRL, state and action spaces, and coordination methods in MADRL is conducted.
All categories of literature review are also discussed in terms of their suitability for
the stated research challenges and requirements. Then, two novel approaches are pro-
posed to address arbitrary action and state spaces caused by ASO input and output
in online combinatorial resource allocation problems that brought DRL a challenge:
A coalition action selection approach is proposed to address the constrained arbitrary
action selection in the output, and a computationally efficient stationary input trans-
formation is proposed for ASO inputs. Furthermore, the action selection approach is
extended to MADRL to make efficient combinatorial action selection in task-offloading
problems, considering various resource constraints. CCM MADRL MEC combines the
advantage of policy gradient and value functions to make efficient decisions. The
CCM MADRL MEC has multiple contributions in terms of dimensionality reduction,
non-stationarity, and the ability to work with an arbitrary number of agents.

The results of the experiment support the assertions made in the proposed methodolo-
gies and algorithms. Coalition action selection is evaluated using an online resource
allocation problem with an arbitrary number of task arrivals. It has outperformed the
conventional sequential action selection approach in terms of proximity to an offline
optimal solution, speed of convergence, and execution costs. It retained close to the
offline optimal performance on the online combinatorial resource allocation problem
for varying arrival rates, whereas the performance of the sequential approach declines
as the arrival rate increases. The coalition action selection is implemented using the
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encoder of the transformer neural network. The computationally efficient stationary
ASO input transformation is also evaluated for the same problem as the coalition ac-
tion selection. The stationary ASO input transformation has shown better performance
and lower execution complexity than the transformer-based ASO input transforma-
tion. Finally, the CCM MADRL MEC is evaluated in a task-offloading problem with
various types of constraints. The experiment shows that by taking advantage of the
policy gradient, value functions, coalition action selection, and per-action DQN, the
CCM MADRL algorithm guarantees superior convergence to the MADDPG and com-
plementary heuristic methodologies.

6.2 Advancement of the State-of-the-Art and Achieved Require-
ments

This research has advanced the applicability of DRL algorithms for online combinato-
rial resource allocation problems in many ways, as follows.

• Distributed solution: The CCM MADRL MEC enables a distributed solution
where every entity in the task offloading participates in the decision. The UDs
decide their resource allocation and the server makes combinatorial decisions
about the actions of the UDs. This makes it the first DRL-based work on task
offloading to consider storage constraints. Additionally, the distributed solu-
tion allowed for consideration of heterogeneous constraints on the UDs and the
server. Continuous-valued resource constraints of UDs are considered in the re-
ward function, whereas discrete-valued constraints such as storage and the num-
ber of communication channels are considered in the combinatorial decision.

• Dimensionality reduction: CCM MADRL MEC minimizes the dimension of the
state and action space of the DRL-based task offloading algorithms by consid-
ering the number of channels as a constraint in the combinatorial decision. The
coalition action selection also minimizes the state space and depth of exploration
by selecting multiple actions at a time, which also minimizes the complexity.
Moreover, the proposed stationary state transformation minimizes execution com-
plexity.

• Arbitrary action space and selection: Existing DRL-based resource allocation al-
gorithms assume that one task arrives at a time. Zhang et al. (2009) considered
an arbitrary number of tasks and proposed a sequential action selection approach
using Q-learning. Q-learning does not suffer from the challenges of DRL but at
the same time misses the advantage of deep learning. The coalition action selec-
tion advanced the state-of-the-art in DRL-based resource allocation to consider
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the arrival of an arbitrary number of tasks and select an arbitrary number of ac-
tions based on the resource allocation.

• Coordination and Convergence: Existing MADDPG-based task offloading al-
gorithms converge suboptimally because they use only policy gradient-based
agents to make decisions without knowing the decisions of other agents. They use
the value function-based critic network only for training. CCM MADRL MEC
uses both the policy gradient and value function methods to make coordinated
decisions. The combinatorial decision approach minimizes the drawback of pol-
icy gradient agents being trapped in local optima because the master agent can
select the best combination.

The proposed methods and algorithms have addressed the research requirements de-
scribed in Section 1.2. The coalition action selection approach presented in Chap-
ter 3 addresses Requirement RI , Requirement RI I I , and Requirement RV . The require-
ment to handle the ASO input of Requirement RI I is solved by the stationary ASO
input transformation proposed in Chapter 4. The stationary ASO input transforma-
tion also minimizes the computational cost in the online execution of Requirement RI I I

and the generalizability to any size and any permutation of Requirement RV . The
CCM MADRL MEC in Chapter 5 combines many advantages of existing DRL meth-
ods and the methods proposed in Chapter 3 and Chapter 4 to addressed many of
the research requirements. Using the advantage of the policy gradient and the value
function, it becomes a contribution to meet the dimensionality reduction of Require-
ment RI I I , and the coexistence of heterogeneous agents ( client and master) in Require-
ment RIV . Clients decide on their resource requirements and a continuous-valued ac-
tion proposal to decide the local allocation or propose to the server. The master agent
applies a combinatorial decision to decide which tasks should be accepted and assigned
to the channels. This reduces the dimension of the DNNs. The per-client DQN used
by the master agent also achieves the need for an arbitrary action space of Require-
ment RI I . Furthermore, as discussed in Section 6.4, CCM MADRL MEC meets Re-
quirement RI I . We did not experiment to prove this because the coalition action selec-
tion and the stationary input transformation are supported by an experiment in Chap-
ter 3 and Chapter 4 for arbitrary arrival of tasks, which is evident that it also works for
an arbitrary number of clients.

6.3 Limitations of the Research

This research has the following limitations:
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• As described in Section 3.5.4.4, The experiment for the coalition action selection
and the state transformation has computational resource limitations in extend-
ing for varying numbers of task arrivals beyond 20 because we used the Gurobi
optimizer with an academic license for computing the offline optimal.

• The stationary ASO input transformation in Chapter 4 is theoretically proved to
have a unique transformation for up to an input size of four. The purpose of the
research is to show the importance of stationary ASO input transformation over
transformer-based transformation in terms of computational costs. However, for
large sizes of ASO inputs, the stationary transformation needs to be proportion-
ally customized to be unique.

• The problem description in Chapter 3 is customized from Zhang et al. (2009). As
discussed in Section 3.3, we consider the algorithm to be complementary to the
work of Zhang et al. (2009) where their work decides which of the tasks to send
to which node, and our algorithm decides how the tasks should use the commu-
nication resource by deciding which of the tasks should be allocated and which
of them should be deferred. we chose their problem description because recent
works assume one task arrives at a time. We did not implement their algorithm
to show the integration between the algorithms. Instead, we generate the arrival
of tasks from a uniform distribution to resemble the decision of their algorithm.
This simplification ensures that our experiment is not affected by the convergence
of their work.

• The real storage capacities of the server are in GB and TB. However, due to com-
putational resource limits, the CCM MADRL MEC is simulated on 50 UDs run-
ning their client agents, which do not meet the capacity of a real server. To make
the server storage capacity critical for combinatorial decisions to the tasks of the
UDs, we assumed a server capacity of 400 MB. Note that with 50 UDs, a total of
51 DRL agents are training simultaneously, 50 of which are client agents and one
master agent.

• As with any existing hyperparameter tuning technique in DRL, the learning rates
are selected by trial and error as described in Section 5.6.4. We have noticed ex-
perimentally that some learning rates led to a horizontal line in the performance
evaluation using the evaluation environment. This shows that the weights of
the DNNs stop updating after some level of training. We included a code that
detects whether the weight of the DNNs is updating or not. We noticed that
those learning rates giving a straight line have stopped updating the weight of
the DNN of the actor and client agents at different levels of the training, starting
from the fifth episode whereas the algorithm with client agents learning rates of
0.0001 and master agent learning rate of 0.001 continued to update the weights
of the DNNs until the last episode, showing stable training. This phenomenon
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occurred exclusively on the client agents, but not on the master agent. Accord-
ing to the literature, DNNs can stop updating their weights while training due to
the vanishing gradient that occurs in policy gradient algorithms because of the
type of activation functions they use but this does not happen to value function
methods as they use the ReLu activation function. However, the reason why it
happens for large learning rates but not for small learning rates is understudied,
and we do not analyze it because it is not within the scope of this research.

6.4 Research Extensions, Future Direction, and Applications

Research Extension: The chapters in this research are related to each other. The coali-
tion action selection of Chapter 3 and the application of the per-action DQN for combi-
natorial action selection in Chapter 4 are applied to the CCM MADRL MEC algorithm
in Chapter 5 to select an arbitrary number of tasks proposed by the clients until the
resource constraint on the server is met. This work can be extended as follows.

• By replacing the concatenated states S and actions A in Equation (5.22) and Equa-
tion (5.24) with the transformer as in Chapter 3 or the stationary transformation
in Chapter 4, the CCM MADRL MEC algorithm can be extended to accept ASO
client agents.

• As discussed in Section 5.6.6 for the effects of the values of λ1 and λ2 on the ex-
perimental results, we evaluated our algorithm using a scalar reward which is a
combination of latency and energy consumption. The CCM MADRL MEC can
be evaluated with a vectorized reward (Vamplew et al., 2022) of latency and en-
ergy consumption instead of a scalar reward to benefit from the multiobjective
DRL (Hayes et al., 2022). We did not experiment with a vectorized reward be-
cause it is not within the scope of the research requirements of the thesis, and
multi-objective DRL has already been studied. However, applying the multiob-
jective DRL with vectorized reward can give a better performance from the task
offloading perspective, but it has the same effect on the proposed and the bench-
mark algorithms.

Research Directions: Although this research addresses the challenges of DRL algo-
rithms in resource allocation algorithms, there are many open research directions as
follows.

• The proposed stationary ASO input transformation opens the direction for large
ASO inputs.
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• While coalition action selection is the first work for an arbitrary action space and
arbitrary action selection, it is designed for independent actions. This opens a re-
search direction on how to apply arbitrary action selection for dependent actions
such as an ordered output of cities for the capacitated vehicle routing problem.

• CCM MADRL MEC opens a research direction on how to apply cooperative com-
binatorial decisions with multiple master agents.

• As explained in Section 6.3, the observation in stopping the weights of the learn-
ing rates opens a research direction on the effect of learning rates and the vanish-
ing gradient.

Application Areas: The main application areas of this research are online combina-
torial resource allocation and task-offloading problems. However, they can be cus-
tomized for other combinatorial problems. The coalition action selection can be cus-
tomized to the capacitated vehicle routing problem. The client-master cooperation in
CCM MADRL MEC can also be extended to bargaining mechanisms.
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Salakhutdinov, and Alexander J Smola. Deep sets. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, pages 3394–3404, 2017.

Chongjie Zhang, Victor R Lesser, Prashant J Shenoy, et al. A multi-agent learning ap-
proach to online distributed resource allocation. In Ijcai, volume 9, pages 361–366.
Citeseer, 2009.

Jing Zhang, Jun Du, Yuan Shen, and Jian Wang. Dynamic computation offloading with
energy harvesting devices: A hybrid-decision-based deep reinforcement learning ap-
proach. IEEE Internet of Things Journal, 7(10):9303–9317, 2020. .

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decen-
tralized multi-agent reinforcement learning with networked agents. In International
Conference on Machine Learning, pages 5872–5881. PMLR, 2018.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning:
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