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Abstract

The precise measurement of the top-Higgs coupling is crucial in particle physics,
offering insights into potential new physics Beyond the Standard Model (BSM) carrying
CP Violation (CPV) effects. In this paper, we explore the CP properties of a Higgs
boson coupling with a top quark pair, focusing on events where the Higgs state decays
into a pair of b-quarks and the top-antitop system decays leptonically. The novelty of our
analysis resides in the exploitation of two conditional Deep Learning (DL) networks:
a Multi-Layer Perceptron (MLP) and a Graph Convolution Network (GCN). These
models are trained for selected CPV phase values and then used to interpolate all
possible values ranging from − π

2 to π
2 . This enables a comprehensive assessment of

sensitivity across all CP phase values, thereby streamlining the process as the models
are trained only once. Notably, the conditional GCN exhibits superior performance
over the conditional MLP, owing to the nature of graph-based Neural Network (NN)
structures. Specifically, for Higgs top coupling modifier set to 1, with

√
s = 13.6 TeV and

integrated luminosity of 3 ab−1 GCN excludes the CP phase larger than |5◦| at 95.4%
Confidence Level (C.L). Our Machine Learning (ML) informed findings indicate that
assessment of the CP properties of the Higgs coupling to the tt̄ pair can be within reach
of the HL-LHC, quantitatively surpassing the sensitivity of more traditional approaches.
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1 Introduction

Since when first discovered in the long-lived K-meson rare decay channel KL → 2π back
in 1964 [1], CPV has attracted conspicuous theoretical interest, given that studying its
dynamics in laboratory experiments may eventually open up a window of understanding
on the matter-antimatter asymmetry in the Universe. Unfortunately, all phenomena of the
first kind (including those measured also in the D- and B-meson sectors) can be explained
using the Kobayashi-Maskawa mechanism [2], which, while representing a success of the
SM, is, however, not enough to explain the latter [3–5].

Over the past few decades, many Beyond the BSM scenarios that can accommodate ad-
ditional CPV sources, whether spontaneous or explicit, have been proposed so as to remedy
such a SM flaw. While theoretically viable, these are all strongly constrained by experi-
ments. In particular, very precise measurements of the Electric Dipole Moments (EDMs)
of, e.g., electron and neutron, [6–8] have already placed severe limits on many new CPV
sources [9–12]. In fact, the sensitivities attained herein are far above the SM predictions
[13–15], yet, EDM measurements, both those above and others, being very inclusive in
their nature, are unlikely to determine the actual interactions affected by CPV. Conversely,
collider experiments, despite having weaker sensitivities to CPV effects in comparison, can
afford one, thanks to the huge variety of exclusive quantities that one can define in such
settings, with an insight into the actual CPV dynamics.
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Figure 1: Representative Feynman diagrams corresponding to tt̄H1 production at Leading
Order. Here we show the production through gg fusion (left) and qq̄ annihilation (right).

This is particularly true for BSM frameworks with extended Higgs sectors [16–20],
wherein non-zero EDMs are expected to be the first signal of CPV with collider effects
instead being able to provide additional information on it, see, e.g., Refs. [21–38]. Indeed,
since the discovery of the 125 GeV Higgs boson at the LHC in 2012 [39–41], testing its
CP properties has been high on the ATLAS and CMS agendas, as the SM has a definite
prediction in this respect, i.e., 0+, so that any deviations from this would be a signal of
BSM physics. At present, the status of such measurements is that they are all consis-
tent with the CP-even (or scalar) state of the SM, yet, the possibility of a CP-odd (or
pseudoscalar) component to it (e.g., through mixing with another Higgs state) cannot be
definitely excluded.

A simple BSM setup, exploiting the fact that Nature appears to privilege doublet rep-
resentations of a Higgs field, is the 2-Higgs Doublet Model (2HDM) [19].Herein, an effective
method to test CPV effects is to study the Yukawa interactions between any Higgs boson
(the SM-like one or others) and the top (anti)quark via the Lagrangian term

−Lttϕ0 ∝ t̄
(
gS + igP γ5

)
tϕ0, (1)

where ϕ0 refers to a generic Higgs state with mixed CP quantum numbers and gS(P ) refers
to its corresponding scalar(pseudoscalar) coupling to a tt̄ pair. This vertex is of importance
because a top (anti)quark decays quickly enough so that the information emerging from
such an interaction feeds into its final state distributions. Specifically, the CP quantum
numbers (and also spin) of the Higgs state can be accessed through these, albeit on a
statistical basis.

Phenomenologically, there are a lot of studies in the literature trying to test CPV in
tt̄ϕ0 interactions at colliders [32–34, 36, 42–61]. It is the purpose of this paper the one of
contributing to the endeavour of extracting CPV effects from pp → tt̄ϕ0 at the HL-LHC
[62] through a novel approach exploiting two alternative DL methods: a conditional MLP
and a conditional GCN.

The paper is organised as follows. We describe our theoretical setup in Sec. 2, including
its phenomenological manifestations through the pp → tt̄ϕ0 process, while in Sec. 3 we
introduce the kinematical observables that we will exploit in our numerical analysis. Sec.
4 is devoted to describe the aforementioned conditional Deep NNs (DNNs) in some detail.
We then perform the DL analyses in Sec. 5 and produce our final results in Sec. 6. We
then conclude in Sec. 7. (There is also an appendix where we test the DNN activities in
terms of a toy example).
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2 Setup

2.1 The pp → tt̄ϕ0 process

We consider the production of a scalar boson (ϕ0) with a mass of mϕ0 = 125 GeV at the
LHC in association with a top quark pair. We parameterize the tt̄ϕ0 Lagrangian as follows:

−Ltt̄ϕ0 = mt

υ
κttt̄

(
cos θtt + iγ5 sin θtt

)
tϕ0, (2)

where κtt and θtt, assumed to be real valued, are the free parameters of this simplified
model of Yukawa interaction. (A pure SM Higgs boson is realised for κtt = 1 and θtt = 0◦.)
We assume instead that the coupling modifiers of the Higgs boson to the other fermions
and gauge bosons are SM-like while we allow for the same degree of CPV to be transferred
from ϕ0 to its decay products. Therefore, the Lagrangian for the interaction of ϕ0 with the
other fermions (f = d, u, s, c, b and ℓ, with ℓ = e, µ, τ) and gauge bosons (V = W ±, Z) of
the SM is parameterized as

L = −
∑

f

mf

υ
f̄

(
cos θff + iγ5 sin θff

)
fϕ0 +

∑
V

2m2
V

υ
cos θV V V µVµϕ0, (3)

where we assume that θff = θV V = θtt in our analysis. The master formula for the
production of tt̄ϕ0 final states at a pp collider is given by

σ(pp → tt̄ϕ0) ≡
∑
i,j

∫
dxidxjfi/p(xi, µ2

F )fj/p(xj , µ2
F )σ̂ij→tt̄ϕ0(µ2

R), (4)

where fi/p(xi, µ2
F ) is the probability for parton i to carry a momentum fraction xi = pi/P

of the proton momentum P at a scale µ2
F (factorisation scale) and σ̂ij→tt̄ϕ0 is the partonic

cross section evaluated at a scale µ2
R (renormalisation scale). Representative Leading Order

(LO) Feynman diagrams for such a process are shown in Fig. 1. The scattering amplitude
receives two contributions at LO: gg fusion (left panel of Fig. 1) and qq̄ annihilation (right
panel of Fig. 1). The gluon fusion contribution is important for small momentum fractions
while the (anti)quark contribution is dominant at moderate and large momentum fractions.
However, the total cross section is dominated by the contribution of gluons when integrated
over all the momentum fractions (about 58% for θtt = 0◦).

We employ Madgraph5_amc@nlo version 3.4.1 [63, 64] to calculate the production
cross section and using the LO PDF set NNPDF40_lo_as_01180 [65] through the LHAPDF
library [66]. As for the renormalization and factorization scales, we have adopted a common
(dynamical) choice for the central theory predictions, i.e.,

µ0
F = µ0

R = 1
2
∑

i

√
p2

T,i + m2
i , (5)

which is the sum of the transverse masses of all the final-state particles divided by two.
We note that the theory uncertainties at LO are dominated by those arising from scale
variation (≃ 20%–30%) while PDF uncertainties are negligible (≃ 2%–4%). The K factor
measuring the size of QCD Next-to-LO (NLO) corrections can be of order ≈ 1.1–1.2 (see
Refs. [67, 68] for comprehensive analyses of QCD corrections), but we do not take it into
account in our simulations for consistency reasons, as not all our backgrounds are known
to NLO accuracy. In Fig. 2 we display the cross section defined as

σ ≡ σ(pp → tt̄ϕ0) × BR(t → bℓν)2 × BR(ϕ0 → bb̄), ℓ = e, µ, (6)
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Figure 2: Production cross section of tt̄ϕ0 times the product of the Branching Ratios (BRs)
assuming the top quark decaying leptonically and the scalar boson decaying into bb̄ projected
on the plane of κtt and θtt. We also show the contours corresponding to σ/σSM = 0.2, 1, 2, 3
in solid, dashed, dotted and dash-dotted white lines, respectively. Here, σSM is the cross
section for κtt = 1 and θtt = 0◦.

over the plane of θtt and κtt. The partial width of ϕ0 → bb̄ is calculated at Next-to-next
NLO (NNNLO) using a full resummed running b-quark mass [69–72]. We can see that the
cross section varies between 2 and 36 fb with the maximum being for large κtt and θtt ≈ 0.
Notice that, given that we wish to study (charge and spin) correlations in the tt̄ system,
we are considering here fully leptonic decays of it.

2.2 Mass reconstructions of top (anti)quarks

The dileptonic decays of the tt̄ system lead to two neutrinos in the final state which implies
an ambiguity in the reconstruction of the (anti)top invariant mass. The reconstruction of
the full tt̄ invariant mass is also very important to construct the CP-sensitive observables
described in Sec. 3. At hadron colliders, the only handle to neutrinos in this process is
through the total missing momentum given that the longitudinal momentum of the initial
partons is unknown. The conservation of total momentum of the (anti)top quark and Higgs
boson leads to the following constraints:

M2
W + = (Eℓ+ + Eν)2 − (px

ℓ+ + px
ν)2 − (py

ℓ+ + py
ν)2 − (pz

ℓ+ + pz
ν)2,

M2
W − = (Eℓ− + Eν̄)2 − (px

ℓ− + px
ν̄)2 − (py

ℓ− + py
ν̄)2 − (pz

ℓ− + pz
ν̄)2, (7)

m2
t = (Eb + Eℓ+ + Eν)2 − (px

b + px
ℓ+ + px

ν)2 − (py
b + py

ℓ+ + py
ν)2 − (pz

b + pz
ℓ+ + pz

ν)2,

m2
t̄ = (Eb̄ + Eℓ− + Eν̄)2 − (px

b̄
+ px

ℓ− + px
ν̄)2 − (py

b̄
+ py

ℓ− + py
ν̄)2 − (pz

b̄
+ pz

ℓ− + pz
ν̄)2,

where mt = mt̄ = 172.5 GeV and MW + = MW − = 80.4 GeV are the pole masses of the top
(anti)quark and W ± boson respectively. There are several methods to reconstruct the tt̄
rest frame [73–77]. In this analysis we use an analytical method which aims at solving the
quartic equation in neutrino momentum with the help of the Sonnenschein method [78]1.

1We have implemented this method using Ref. [79]. We have written the entire implementation that can
be found in this github repository in the MadAnalysis 5 framework.
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The number of unknowns in equation 8 are the components of the neutrino momenta which
are eight. First, we use equation 8 to eliminate Eν and Eν̄ . The longitudinal momenta pz

ν

and pz
ν̄ can be further eliminated by other rearrangements of the two equations. Finally,

we can enforce the conservation of the transverse missing momentum to eliminate py
ν and

py
ν̄ , so we get

h4p4
x + h3p3

x + h2p2
x + h1px + h0 = 0, (8)

where px = px
ν and h0, h1, h2, h3, h4 are numerical coefficients that depend on the four-

momentum components of the bottom jets and charged leptons. The solution of this equa-
tion leads to a fourfold ambiguity. Removing the b-tagged jets that may results from QCD
or the Higgs boson decay, we get two other possible combinations from matching the charged
leptons with the b-jets and leading to an eightfold ambiguity. We can then obtain pz

ν and py
ν

from the arrangement we have used previously to eliminate these. The energy component
can be then obtained from

Eν =
√

(px
ν)2 + (py

ν)2 + (pz
ν)2,

Eν̄ =
√

(px
ν̄)2 + (py

ν̄)2 + (pz
ν̄)2. (9)

An important step is to choose the best suited solution for the neutrino momenta. There
are different methods for making this choice: (i) solution that minimises the invariant mass
of the tt̄ system; (ii) solution that uses the target mass of the tt̄ resonance (which may be
more suited for resonance searches); (iii) characterisation of the top quark decay products
using kinematical information. We employ the latter method as it seems to be process-
independent and have small biases. To do so we use the angular information encoded in
the ‘lego’ distance (∆R) between the (anti)top quark and its decay products and between
the decay products themselves plus the ratios of the neutrino momenta with respect of the
visible object momenta used in the reconstruction process. On a event-by-event basis, we
construct these variables for each neutrino solution and we take the solution that maximises
the following Likelihood function:

Lprob. =
∏

i

P (∆R(ν, i)) × P

(
pν

T

pi
T

)
× P

(
Eν

Ei

)
, (10)

where i refers to all charged leptons and b-tagged jets used in equation 8 and P is the
probability assigned to each combination. We have found that our implementation yields
very good results for the top (anti)quark invariant mass, both the individual ones and the
one of the pair. We show the mt and mtt̄ resolution of our reconstruction in Fig. 3, where
we compare the reconstructed masses against Monte Carlo (MC) truth information.

3 CP-sensitive observables

In this section, we briefly review the different angular and energy observables that we use in
this study. In addition to low-level and high-level kinematics variables that we discuss in Sec.
5.1 we also employ 39 angular and energy-ratio features (some distributions are shown in
Fig. 4). Note that these features have been studied extensively in the literature in different
physical applications onto the top (anti)quark sector (see e.g. Refs. [36, 43, 47, 56, 77, 80–
90]).
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Figure 3: The mt (left) and mtt̄ (right) resolution of the analytical mass reconstruction
method outlined in the text. Here, mtruth

t and mthruth
tt̄

refer to the invariant mass of the
(anti)top and the tt̄ system in the last parton shower step before the decay of the (anti)top
quark.

Polarisation and spin-spin correlation observables. They consist of some polar an-
gles of the charged leptons from (anti)top quark decays. The generic expression can be
written as follows [43, 80]:

1
σ

d2σ

d cos θℓad cos θℓb

= 1
4

(
1 + αℓaPa cos θℓa + αℓbPb cos θℓb + αℓaαℓbCab cos θℓa cos θℓb

)
, (11)

where αℓ = ±1 is the spin analysing power of the charged lepton and θℓa,b = ∡(ℓ̂a,b, Ŝa,b).
Here, ℓ̂a,b refers to the direction of flight of the charged lepton in the top (anti)quark rest
frame and Ŝa,b is the spin quantization axis in the basis a. We use three commonly studied
bases2.

• Helicity basis (a = k): The spin quantisation axis is defined as the direction of motion
of the top (anti)quark in the tt̄ Zero-Momentum Frame (ZMF). In this case, cos θk

ℓ+
is defined as

cos θk
ℓ+ = p̂ℓ+ · p̂ZMF

t

|p̂ℓ+ ||p̂ZMF
t |

(12)

and a similar expression holds for cos θk
ℓ− .

• Transverse basis (a = n): In this case, the spin axis is defined as the three vector
transverse to the production plane composed by the top quark direction of motion in
the ZMF and the beam direction3. Therefore, Ŝa is given by

Ŝa = p̂ZMF
t × p̂beam. (13)

2See, e.g., Refs. [91, 92] for some recent measurements of spin-spin correlations in tt̄ production.
3As explained, in tt̄ϕ0 production, the contribution of gluon fusion dominates the production rate which

makes the initial state Bose symmetric. Therefore, and by following the recommendation of Ref. [80], the
value of cos θn,r

ℓ is multiplied by the sign of the scattering angle ϑ = p̂ · p̂t with p̂t = pt/|pt| the top quark
direction of flight in the tt̄ ZMF and p̂ = (0, 0, 1).
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• r-basis (a = r): This basis is defined as the transverse to the plane defined by the top
quark direction of flight in the ZMF and the spin axis in the transverse basis, such
that the three vectors form a complete orthogonal basis. We also weight cos θr

ℓ± by the
sign of the scattering angle between the (anti)quark and a unit vector p̂ = (0, 0, 1).

The polarization of the (anti)top quark can be easily obtained by integrating 11 over
the angle θa

ℓ (or θb
ℓ):

1
σ

dσ

d cos θa
ℓ±

= 1
2

(
1 + αℓ±P a

t,t̄ cos θa
ℓ±

)
. (14)

Laboratory frame observables. We also consider some laboratory frame observables,
i.e., observables that are constructed from the particle momenta in the laboratory frame.
First, the difference in the azimuthal angles of the two charged leptons is a clean observable
that is usually used to measure spin-spin correlations between the top and the antitop
quarks in tt̄ production and decay. It was found in Ref. [36] that it can also serve as a good
discriminator between the different CP hypotheses of the tt̄ϕ0 coupling. It is defined as

∆ϕℓ+ℓ− = |ϕℓ+ − ϕℓ− |, (15)

where ϕℓ± is the azimuthal angle of the charged leptons in the laboratory frame. We also
study the sensitivity of an observable that relies on the reconstruction of the Higgs boson
candidate [47]:

cos θℓϕ0 = (p̂ℓ+ × p̂ϕ0) · (p̂ℓ− × p̂ϕ0)
|(p̂ℓ+ × p̂ϕ0)||(p̂ℓ− × p̂ϕ0)| , (16)

with p̂ℓ+ , p̂ℓ− and p̂ϕ0 being the directions of flight of the positively-charged, negatively-
charged lepton and of the reconstructed Higgs boson candidate in the laboratory frame.
Thus, θℓϕ0 defines the angle spanned by the dilepton system projected on the plane that is
orthogonal to the Higgs boson candidate momentum.

Another angle can be defined from θℓϕ0 , as follows:

cos θ̃ℓϕ0 = λ cos θℓϕ0 , (17)

with λ = sign((p̂b−p̂b̄)·(p̂ℓ− ×p̂ℓ+)) and p̂b and p̂b̄ the directions of flight of the b-(anti)quarks
forming the Higgs boson candidate.

We also include some observables introduced in Ref. [56], from where we show the
definition of the most sensitive observable (and to where we refer the reader for more
details), as follows:

cos ω1 = p̂ϕ0 · (p̂ℓ+ × p̂ℓ−) p̂ϕ0 · (p̂ℓ+ − p̂ℓ−)
|p̂ϕ0 |2|p̂ℓ+ × p̂ℓ− ||p̂ℓ+ − p̂ℓ− |

. (18)

Energy-ratio observables. Observables based on the ratios of the energies of the top
(anti)quark and its decay products may carry some information on its polarisation/helicity
state (see, e.g., Refs. [81–90]). We define these as

u = Eℓ

Eℓ + Eb
, z = Eb

Et
, xℓ = 2Eℓ

mt
, (19)

with Eℓ, Eb and Et being the energies of the charged lepton, b-quark and top quark in the
laboratory frame.
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Figure 4: Examples of some distributions of the angles that are sensitive to the CP nature
of the tt̄ϕ0 coupling for tt̄ϕ0 with θt = 0◦ (blue), tt̄ϕ0 with θt = 90◦ (red) and QCD
backgrounds (black). In the upper panels we show cos θ∗ (left), cos φℓℓ (middle) and cos θℓϕ0

(right). In the middle panels we show the cosine of the polar angle in the helicity basis
(left), in the transverse basis (middle) and in the r–basis (right). The lower panels show
cos ω1 (left), ∆ϕtt̄

ℓ+ℓ− (middle) and ∆ϕℓ+ℓ− (right). All the distributions are normalised to
unity and the calculations are done for κt = 1.

Other observables. We start by considering the opening angle between the two oppo-
sitely charged leptons which is defined as

cos φℓaℓb
= p̂ℓ+ · p̂ℓ−

|p̂ℓ+ ||p̂ℓ− |
, (20)

where p̂ℓ+(p̂ℓ−) is the direction of flight of the charged lepton ℓ+(ℓ−) in the tt̄ ZMF. We also
include two observables studied in Ref. [77]. The first observable is defined as the angle
between the top quark direction of flight in the tt̄ ZMF and the beam three-momentum,
i.e.,

cos θ∗ = p̂ZMF
t · p̂beam

|p̂ZMF
t ||p̂beam|

. (21)

The last observable, denoted by ∆ϕtt̄
ℓ+ℓ− , which is defined as the angle spanned by the

direction of the two leptons on the orthogonal plane to the top quark 3-momentum in the
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tt̄ ZMF

∆ϕtt̄
ℓ+ℓ− = sign[p̂t · (p̂ℓ+ × p̂ℓ−)] arccos

((p̂ZMF
ℓ+ × p̂ZMF

t ) · (p̂ZMF
ℓ− × p̂ZMF

t )
|p̂ZMF

ℓ+ × p̂ZMF
t ||p̂ZMF

ℓ− × p̂ZMF
t |

)
. (22)

4 Conditional DNNs
A conditional DNN for classification is a NN architecture where the classification process
is conditioned on additional input information beyond the raw data. This additional in-
formation, often referred to as conditioning variables or features, can provide context or
guidance to the NN, improving its ability to make accurate predictions. The network takes
as input both the raw data to be classified and additional conditioning information. If the
conditioning information is not directly compatible with the raw input data, it may need
to be processed or transformed into a compatible format. This could involve feature ex-
traction techniques such as encoding categorical variables, dimensionality reduction or any
other preprocessing steps necessary to integrate the conditioning information with the input
data. The network architecture is designed to incorporate the conditioning information into
the classification process. This involves concatenating the conditioning information with
the input data at later layers, passing it through additional conditioning layers to selectively
focus on relevant parts of the input data based on the conditioning information, specifically,
the angle θtt. The network is trained to classify the input data into the appropriate classes
while taking into account the provided conditioning information. This enables the network
to interpolate the results of different values of the conditional variable, θtt, which the model
did not trained on. In general, a conditional DNN is trained on a set of feature variables x
and a conditioned value θtt, in which the network output is

ŷ = F(x, θtt) , (23)

where F is the nonlinear function learned by the network to classify the input features x
conditioned by the value of θtt. The training objective typically involves minimizing a clas-
sification loss function, such as cross-entropy loss, computed between the predicted class
probabilities and the true class labels, while also considering any regularization terms to
prevent overfitting. In this paper, we utilize two conditional DNNs with different struc-
ture, namely, a conditional MLP and a conditional (multi-modal) GNN. Both networks are
trained on four signal points with θtt = 0◦, ±30◦, ±45◦, ±90◦ and interpolate the results for
θtt = ±15◦, ±60◦, ±75◦.

4.1 MLP

Commencing with high-level kinematical distributions, we utilize a MLP model to enhance
the discrimination between signal and background distributions. These distributions encap-
sulate distinctive information regarding the overall structure of both signal and background
events. Consequently, the architecture of the MLP network, comprising fully connected lay-
ers, can discern global features effectively, resulting in robust classification power between
signal and background events. Moreover, the fully connected layers that process the kine-
matical features are comprised by one linear layer which encodes the values of the condition
parameter θtt. In this case, the MLP is able to learn global features of the signal and back-
ground events that can be used to increase the signal to background yield assigned to each
value of θtt, which then enables the model to interpolates the values of θtt that the network
is not trained on it. Accordingly, the MLP is trained on specific values of the angle and is
used to provide the sensitivity to all other values of θtt.
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Despite the MLP capability to achieve high classification performance, the similarity
in kinematical structures between certain background distributions and signal ones dimin-
ishes the overall classification efficiency. However, by implementing initial cuts that maxi-
mize the signal-to-background yield prior to inputting the distributions into the MLP, one
can augment the classification performance. However, the constructed kinematical spec-
tra demonstrate significant intercorrelation, such that applying a cut to any distribution
may influence the structure of others, consequently impeding the MLP classification per-
formance. To mitigate the global impact of these initial cuts, it is imperative to decorrelate
such dependencies across kinematical variables, either via the square-root of the covariance
matrix or Gaussian transformation of variables, as elucidated in [93]. Ultimately, while ini-
tial cuts may bolster classification performance, we have chosen not to apply these, thereby
affording the MLP with complete autonomy in identifying optimal classification boundaries.

The MLP structure consists of two input layers. The first input layer is used to encode
the features with 103 neurons, which is the number of the used features. The second input
layer encodes the value of the condition parameter θtt and it has only one neuron. The first
input layer is followed, sequentially, by three fully connected layers with 256, 128 and 64
neurons and ReLU activation function. Each fully connected layer is followed by a dropout
layer with dropout rate of 20%. The second input layer is followed by one linear layer4 with
64 neurons, to adjust the dimension with the last fully connected layer from the first stream.
The final layers from the two streams are concatenated using a concatenation layer where
the output is passed directly to an output layer with one neuron and sigmoid activation
function.

4.2 GNN

GNNs represent a class of DL models specifically designed for processing graph-structured
data, where a graph is a set of nodes/vertices connected by edges G(V, E). By effectively
leveraging the inherent connectivity and relational information within graphs, GNNs excel
in capturing complex patterns that are not easily accessible to traditional NN architectures.
Central to their operation is the message passing mechanism, where node representations
are iteratively updated by aggregating features from their neighboring nodes, thus encod-
ing both local and global graph structures into the learning process. The versatility of
GNNs is evident in their wide range of applications across various tasks. In graph classifi-
cation, GNNs aim to predict the labels of entire graphs based on their structure and node
features, which is crucial in domains like chemical compound analysis and social network
studies. Node classification, another prominent task, involves predicting the labels of indi-
vidual nodes within a graph, often used in citation networks and social media to identify
categories or communities. Additionally, GNNs are employed in link prediction to forecast
potential connections between nodes, which has significant implications for recommender
systems and network analysis. Through these tasks, GNNs demonstrate their powerful
capability to model complex relational data effectively. GNNs can be broadly categorized
into several types based on their architecture and the specific methods they employ for
node information aggregation. For instance, Graph Convolutional Networks (GCNs) [94]
utilize a convolutional approach, adapting the traditional convolution operations to work
directly on graphs. GCNs can extract meaningful features from nodes and edges, achieving
state-of-the-art performance in graph classification tasks. This adaptability and capability
to model complex relationships make GCNs a versatile and promising approach in HEP
analysis.

4It is important to keep the mapped conditioned parameter without any activation function.
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Figure 5: Schematic diagram of the (multi-modal) GNN, illustrating the flow from the input
graph through the GCN to generate the final output. This output is concatenated with
the high-level variables and processed through a MLP, this resulting in the final output
classification.

For the purpose of constructing a conditional GNN, our approach integrates a multi-
modal network combining GCN with MLP. The GCN component is particularly advan-
tageous for incorporating the topological relationships among nodes and edges, thereby
facilitating the learning of graph-structured data. In our methodology, we represent the
reconstructed particles, their daughters, and parent particles as nodes within the graph.
Following the methodology outlined in [95], each node i in the input layer is represented
as a feature vector x = (I1, I2, I3, I4, pT , E, η, ϕ). This vector encapsulates the properties
of the corresponding particle, where pT denotes transverse momentum, E is the energy, η
represents pseudorapidity and ϕ is the azimuthal angle. Initially, the values of I1 through
I4 are set to zero. The indicator I1 is set to 1 if the particle is a lepton, I2 is set to 1 if the
particle is a b-jet, I3 is set to 1 if it is a neutrino and I4 is set to 1 if it is a reconstructed
top (anti)quark (and 0 otherwise, in all cases). The input graph to the GCN consists of 11
nodes, specifically 2 leptons, 4 b-jets, 2 neutrinos, 2 top (anti)quarks and the Higgs boson,
each characterized by the aforementioned feature vector x. The graph is fully connected,
with edges weighted by the angular distance ∆R(xi,xj) between the particles in nodes i and
j, thereby enabling the model to capture intricate spatial relationships between such parti-
cles. Our model consists of 3 GCN layers, as first introduced in [94], with ReLU activation.
This is followed by max pooling to aggregate the node embedding. The other part of the
model is a basic set of 3 fully connected layers (another MLP), which takes the high-level
variables mentioned earlier that are used to train the basic MLP model. In addition, it also
takes the output of the GCN model. Both inputs are concatenated and fed into the 3 fully
connected layers. Our hybrid approach is trained conditionally similar to the basic MLP
on specific values of the angle and is used to provide the sensitivity to all other values of
θtt. The architecture schematic diagram, depicting all inputs and outputs, is shown in Fig.
5.

For the optimization process, we employed a learning rate of 1 × 10−4 and a weight
decay parameter of 1 × 10−4. These values were selected to balance efficient learning with
the stability of the model. All models developed in our study were constructed using the
PyTorch Geometric framework [96], a powerful and efficient library designed to facilitate
the implementation of graph-based DL models.
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5 DL analysis
In this section we discuss the analysis taking place through the MLP and GNN models
described. Starting with low level information about the reconstructed final state particles,
we discuss how all features for the two DNNs are considered.

5.1 Signal and background kinematics

Considering the leptonic decays of the top (anti)quark and those of the Higgs boson into bb̄,
the final state will consist of two charged leptons (ℓ = e, µ) with opposite electric charge,
at least four b-tagged jets and missing energy. The main background processes arise from
the QCD production of tt̄ in association with two jets (tt̄bb̄, tt̄jj). As our analysis relies
on exactly four b-tagged jets, background processes such as tt̄, multi-jets and V +jets are
subleading. We first apply some basic generator-level cuts on parton-level objects like
electrons, muons, partons and missing energy, i.e.:

pT (ℓ) > 20 GeV, |ηℓ| < 2.5, pT (j) > 25 GeV, |ηj | < 2.5, Emiss
T > 20 GeV. (24)

At the reconstruction level, we require that events do not contain any isolated hadron-
ically decaying τ lepton with pT > 30 GeV and |η| < 2.5. Then we require exactly two
charged leptons (electrons or muons) with pT > 25 GeV and |η| < 2.4 excluding electrons
in the transition region in the calorimeter (i.e., those with 1.44 < |η| < 1.57). The charged
leptons are required to be isolated using tight isolation criteria. We then require that
Emiss

T > 20 GeV. We impose that events should contain at least four b-tagged jets with
pT > 30 GeV and |η| < 2.5. The combination of the two b-tagged jets in the event that
match the charged leptons will be used for the top quark reconstruction as described in
Sec. 2.2 while the remaining b-tagged jets are ordered in transverse momentum for which
case the two leading b-tagged jets are used to form ϕ0 candidates. We require that the tt̄
invariant mass to lie in the window of [132.5, 210.5] GeV. We, however, do not impose any
requirement on the invariant mass of the ϕ0 candidate. After all the events pass the basic
selection criteria, we explore the following variables for more sophisticated DL analyses.

CP-sensitive variables. They consist of 39 variables which were described in detail in
Sec. 3.

Low-level variables. Low-level variables consist of the four components of the momenta
of the top (anti)quarks and Higgs boson decay products. There are 32 variables in total,
as follows.

• The two neutrino candidates from the solution of the Likelihood-based top (anti)quark
reconstruction method (see Sec. 2.2):

η(ν1), pT (ν1), E(ν1), ϕ(ν1), η(ν2), pT (ν2), E(ν2), ϕ(ν2).

• The four momenta of the two charged leptons:

η(ℓ1), pT (ℓ1), E(ℓ1), ϕ(ℓ1), η(ℓ2), pT (ℓ2), E(ℓ2), ϕ(ℓ2).

• The four momenta of the four b-tagged jets:

η(b1), pT (b1), E(b1), ϕ(b1), η(b2), pT (b2), E(b2), ϕ(b2),
η(b3), pT (b3), E(b3), ϕ(b3), η(b4), pT (b4), E(b4), ϕ(b4).
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High-level variables. They consist of more complicated variables which are built upon
the low-level variables. There are 30 variables in total, as follows.

• Invariant mass of the top quark, top antiquark and Higgs boson candidates: mt1 , mt2

and m(b3b4).

• The components of the four momenta of the top quark, top antiquark and Higgs boson
candidates:

η(t1), pT (t1), E(t1), ϕ(t1),
η(t2), pT (t2), E(t2), ϕ(t2),

η(b3b4), pT (b3b4), E(b3b4), ϕ(b3b4).

• The invariant mass, the energy and the transverse momentum of the tt̄ system:

m(t1t2), pT (t1t2), E(t1t2).

• The invariant mass of the tt̄ϕ0 system: m(t1t2b3b4).

• The transverse of the dilepton system: pT (ℓ1ℓ2).

• The scalar sum of the jet transverse momenta including all the b-tagged jets in the
events

Hb
T ≡

∑
i

pT (bi).

• The effective mass

Meff ≡ Hb
T + pT (ℓ1) + pT (ℓ2).

• The minimum and maximum of the transverse momentum and the invariant of the
top (anti)quark and the b-tagged jets forming the Higgs boson candidates:

p1
T ≡ max

i
{pT (bi, t1), pT (bi, t2)}, p2

T ≡ min
i

{pT (bi, t1), pT (bi, t2)}.

5.2 MC event generation and simulation tools

The effective Lagrangian of Sec. 2 is implemented in FeynRules [97]. The output file
in UFO format [98] is used as an input to MadGraph5_aMC@NLO [64] to generate
parton-level samples for both the signal and background events. As mentioned, all signal
and background processes are simulated at LO in QCD. To keep track of spin and correla-
tion effects, we decay the intermediate resonances by using MadSpin [99]. Pythia version
8309 is used to add parton showering, hadronisation and heavy hadron decays to the event
samples [100]. The detector response is modelled using the Simplified Fast-detector Sim-
ulator (SFS) [101] in the MadAnalysis 5 framework [102–105]. The simulation of the
reconstructed objects such as tracks, isolated electrons, jets, hadronically-decaying τ lepton
and missing transverse energy (Emiss

T ) is done following the same lines of Ref. [106], which
is based on a CMS analysis targeting the search of right-handed gauge bosons in the two
leptons and two jet events [107]. We have, however, slightly modified the detector card in
this analysis by assuming a flat 85% b-tagging and 10% mis-tagging efficiencies across all
the pseudorapidity and transverse momentum values. Jets are clustered with the anti-kt

algorithm [108] with a jet radius of R = 0.4 using FastJet version 3.4.1 [109].
As mentioned, for the DNN analysis, we use PyTorch Geometric[96] for building

the GNN network, while standard PyTorch [110] is used for the MLP. Finally, the Sikit-
Learn package [111] is used to facilitate network training and evaluation.
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5.3 Training the network

Once the datasets are prepared, we commence training the networks to understand the
complex, non-linear relationships between the input data and their corresponding labels.
Additionally, the network learns to interpolate between the trained values of the conditioned
parameter. Events are organized into a feature dataset with dimensions (n, 103), where n
represents the number of events in the training dataset, and a conditional input vector with
the value of θtt. The training dataset is composed of equally-sized events generated with
θtt = 0◦, ±30◦, ±45◦, and ±90◦, each containing 100000 events, resulting in a training signal
dataset of size 400000 events. The conditional parameter vector is prepared with the exact
value of θtt in radians to facilitate better convergence of the network to the minimum of
the loss function.

For the background dataset, the conditional parameter input is a vector of the same
length as the training background dataset, containing random values between 0 and π/2.
Since the primary objective of the network is to learn a global pattern of the signal events
and interpolate between the trained values, we utilize training datasets of size 400000 and
300000 for both signal and background, respectively. This strategy is akin to assigning
higher weights to the signal events, enabling the network to focus more on learning the
features of the signal events.

For network evaluation, we utilize equal-sized, new, unseen datasets for the signal and
background, each consisting of 100000 events. For each of the training datasets we assign
the label Y = 1 for signal events while for background events we assign the label Y = 0.
In order to remove the network dependence on the position of the signal and background
events, we stack the signal and background events in one data set and shuffle it together
with the assigned labels. During the network training stage, during each epoch (defined
as number of passes of the entire data sets), the network updates the weights assigned to
the neurons for each event via backward propagation of errors. The network then tries to
minimize the error between its predictions and the true labels by reaching a global minimum
of some loss function. For this purpose we use a binary cross-entropy as a loss function
and a Adam optimizer to optimize the network convergence to the global minimum of the
loss function. Finally, the network repeats the process until it reaches the desired accuracy.
Once the model is trained, we test it by using completely unseen new data sets to measure
the network performance.

We prepared seven test datasets according to the value of θtt = 0◦, ±15◦, ±30◦, ±45◦, ±60◦,
±75◦ and ±90◦. These datasets are prepared of equal size of the signal events and back-
ground events. We stress here, that the network is trained on signal events with θtt =
0◦, ±30◦, ±45◦ and ±90◦, and it used to interpolate the points in between.

For all networks, we train the model with 20 epochs with batch size equalling a 500
sample. The dimension of the final output probability, Ŷ , is 1 × 2, (Psig, Pbkg), with P
ranging between [0, 1]. If Psig > 0.5 (Pbkg < 0.5), the corresponding event is classified as
most likely being a signal event and if Psig < 0.5 (Pbkg > 0.5) the corresponding event is
classified as most likely being a background event.

6 Results

In this section we present the results of using a conditional MLP and GNN to probe the CPV
phase in pp → tt̄ϕ0 production, followed by tt̄ → bb̄W +W − → bb̄ℓν̄ℓ̄ν and ϕ0 → bb̄, at the
HL-LHC with center-of-mass energy of 13.6 TeV. The discriminative ability of each network
determines how effectively it distinguishes between signal and background features, a metric
quantified by the Receiver Operating Characteristic (ROC) curve. Enhanced discrimination
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Figure 6: Left: contour plot for varying integrated luminosity and θtt at fixed value of
κtt = 0.1. Right: contour plot for varying θtt and κtt at fixed integrated luminosity L = 1000
fb −1. The contour colors represent the value of the signal significance. Finally, the upper
raw represents the GNN results while the lower one represents the MLP results.

performance is indicated by a higher true positive rate compared to the false positive rate
in the ROC curve. To optimize the performance of each network, we individually adjust
the cut on the ROC curve, aiming to boost the signal-to-background yield by calculating

S√
S+B

at each bin of the ROC curves. Post-application of these cuts, the number of signal
and background events is taken into account to compute the signal significance and ensuing
limits.

This enables us to test the signal discovery hypothesis or setting an upper limit on
the total cross section under the non-observation hypothesis. These can be determined by
optimizing the signal-to-background cut on the DNN output, achieved using the following
significance formula [112–115]:

σsys =
[
2
(

(Ns + Nb) ln (Ns + Nb)(Nb + σ2
b )

N2
b + (Ns + Nb)σ2

b

− N2
b

σ2
b

ln(1 + σ2
b Ns

Nb(Nb + σ2
b ))
)]1/2

, (25)

where Ns and Nb represent the counts of signal and background events, respectively, and σb

denotes the total uncertainty in the background events. Fig. 6 shows the signal significance
on the κtt for θtt values ranges from −π

2 to π
2 for the GNN (top) and MLP (bottom).

Left plots display the contours for varying integrated luminosity and θtt at fixed value of
κtt = 0.1 while the right plots display the contours for varying θtt and κtt at fixed integrated
luminosity L = 1000 fb −1. For all results the GNN shows an improvement over the MLP.

As mentioned previously, the conditional network is used to interpolate the significance
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Figure 7: Contour plots for 1 (68% CL) and 2 sigma (95% CL) of the MLP output when
tested on different signal benchmark points using 30000 test events. The model is trained on
θtt = 0◦, 30◦, 45◦, 90◦ and interpolates the results for θtt = 15◦, 60◦, 75◦. The 50% quantile
and 1σ error are written on top of each histogram. Events with MLP output near 1 are
considered as most likely signal events while those with MLP output near 0 are considered
as most likely background events. Blue and red dashed lines indicates the 0.5 value of the
network output. For background correlation with all signal points, the upper left corner
represents the true classified signal and background events while other corners represent
the mis-identified rates. For signal-to signal correlations the upper right corner represents
the true classified events.

for new signal points with different θtt values. To test the network performance for the
interpolation we test the correlation of the network output of the background and all tested
signal events. Fig. 7 shows the contour plots for 1 (68% CL) and 2 sigma (95% CL)
of the MLP output when tested on different signal benchmark points using 30000 test
events5. The model is trained on θtt = 0◦, ±30◦, ±45◦, ±90◦ and interpolates the results
for θtt = ±15◦, ±60◦, ±75◦. The 50% quantile and 1σ error is written on top of each
histogram. Events with MLP output near 1 is considered as most likely signal events,

5We opted to present the MLP results only, withe positive phase values, as the GNN output has similar
response for interpolation.
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Figure 8: cos θ∗ distribution, defined in eq. 21, in the signal region defined from GCN
training for θtt = 0◦ (black), θtt = 45◦ (red) and θtt = 90◦ (blue). For all the cases, the
background contribution is added. Here, we assume that ϵb = 70%.

while those with MLP output near 0 are considered as most likely background events.
Blue and red dashed lines indicates the 0.5 value of the network output. For background
correlation with all signal points, the upper left corner represents the true classified signal
and background events while other corners represent the mis-identified rates. For signal-
to-signal correlations the upper right corner represents the true classified events. In short,
it is clearly shown that the network is able to correctly interpolate to new points within 1σ
level. Furthermore, this figure also indicates that conditional MLP has a good interpolation
performance to new points within 1σ level.

We close this section by showing the results of the shape analysis of the observables
after the MLP and GNN optimization. Events passing the signal region definition, are used
for the calculation of the Log-Likelihood function defined as

log(L) = −
∑

i

[
ni log

(
ni

νi

)
+ νi − ni

]
, (26)

with ni and νi being the number of events for the expected (θtt = 0◦ + QCD) and the
alternative (θtt ̸= 0◦ + QCD) hypotheses respectively. The sum runs over all the bins and
all the observables being used. For the MLP case, we have used four observables as input:
∆ϕℓ+ℓ− , cos φℓℓ, ∆ϕtt

ℓℓ and cos θ∗ while for the GNN case we have used three observables:
cos φℓℓ, cos θk

ℓ and cos θ∗ (an example is shown in Fig. 8). It is found that these observables
are the most sensitive to the CP nature and show the best feature importance in the training
stage of the NN algorithms. The results for the binned log-likelihood are shown in Fig. 9 for
300 fb−1 (left) and 3000 fb−1 (right) for the two networks being considered in our analysis.
For κtt = 1, the GNN algorithm shows a superior performance as compared to the MLP
algorithm as we can see that already 300 fb−1 is enough to probe θtt of order 20◦. We
summarize below the expected exclusions at 95.4% CL:
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Figure 9: The log likelihood as a function of θtt for the two networks: MLP (cyan) and
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two nominal b-tagging efficiencies of 70% (solid) and 85% (dashed). The solid and dashed
black lines correspond to the 68.4% and 95.3% confidence levels respectively. All the results
are shown for κtt = 1.

θMLP
tt ∈

{
[−60◦, 60◦] for L = 300 fb−1,

[−45◦, 30◦] for L = 3000 fb−1.

θGNN
tt ∈

{
[−10◦, 10◦] for L = 300 fb−1,

[−5◦, 5◦] for L = 3000 fb−1,
(27)

where we assumed ϵb = 85%. We note that the results for case of ϵb = 70% are not extremely
different as can be seen in Fig. 9. Moreover, GNN results surpass the combined analysis in
[59] in which the CP phase is excluded for |θtt| ≥ 18◦ at

√
s = 14 TeV and L = 3000fb−1,

assuming κtt = 1.

7 Conclusions

DL is currently the state-of-the-art approach in many ML applications to particle physics
(amongst other disciplines), yet the evaluation and training of DL models is generally still
quite time-consuming and altogether computationally expensive. The so-called conditional
computation approach has been thus proposed to tackle such a problem, as it operates by
selectively activating only parts of the concerned network at a time. We have thus embraced
it here in two different implementations: MLP and GNN.

Armed with such computational tools, we have chosen a particle physics problem which
is particularly suited to these approaches, given the large multiplicity of the final state
(having eight particles to start with), the necessity of reconstructing masses of intermediate
objects (five of these) and, finally, the need of extracting subleading CPV effects from a
large variety of kinematical observables (nine of these). The target process was pp → tt̄ϕ0,
where ϕ0 is a generic neutral Higgs boson, which is currently being targeted by the ATLAS
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and CMS collaborations for the purpose of measuring the Yukawa coupling between the top
(anti)quark and the SM-like Higgs boson discovered in 2012 (hSM). In such a process, this
is done in so-called ‘open production’ (wherein the top (anti)quark is produced as a real
object in the final state), so as to be able to compare it against the same coupling measured
in so-called ‘closed production’ (wherein the top (anti)quark is produced as a virtual object
in the loop of gluon-gluon fusion). Possibly more importantly, the extraction of such a
coupling in the former case, unlike the latter one, offers the unique possibility of testing
the CP properties of the interaction between ϕ0 and tt̄, by exploiting correlations amongst
the momenta of the decay products of both the top (anti)quark pair and Higgs boson. In
particular, in our analysis, we have assumed leptonic decays of the tt̄ system and bb̄ ones
of the ϕ0 state. Given that such CP properties can only be accessed through differential
distributions (rather than inclusively at integrated cross section level), specifically, through
their characteristic line-shapes, a significant number of events is necessary for this purpose,
hence, as collider setup, we have chosen here the HL-LHC.

Following a sophisticated MC analysis based on, again, state-of-the-art event generation
down to the detector level, we have been able to prove the superiority of our (conditional)
MLP and GNN approaches with respect to more traditional ones, wherein either a cut-and-
count selection is solely exploited or else this is used in combination with more trivial ML
informed methods. In particular, assuming foreseen energy and luminosity of the HL-LHC,
we have proven that one can establish sensitivity to all CPV phase values between −π

2 and
π
2 , including distinguishing between CP-even and -odd components in the signal sample.
Furthermore, we have also tensioned the MLP against the GNN implementation and found
that the latter exhibits better performance than the former. Finally, notice that, in order
to unable validation of the results obtained here, our code and data are available on GitHub
at https://github.com/AHamamd150/Conditional−GNN.
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A Verify the network performance with a toy example

Following the methodology outlined in [116] for conditional DNN, we validate our network
architecture by replicating the illustrative toy example presented in the aforementioned
paper. This example involves a simplified scenario featuring a single feature x and a cor-
responding conditional parameter θ. The input features are Gaussian distributions with
mean values equal to θ and a standard deviation of σ = 2.5. Specifically, we examine signal
points corresponding to θ = −2, −1, 0, 1, 2, while the background points follow a uniform
distribution, as depicted in Figure 10 (left).

In preparing the training dataset, we generate 500, 000 signal points by stacking equally
sized features for each θ value. Since the primary objective of the network is to learn the
distinguishing features of the signal events and interpolate between them, we incorporate
smaller number of background points specifically 150, 000 points, but with equal size of
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Figure 10: Left: training distributions in which the signal are represented by Gaussian and
the background represented by a uniform distribution. Right: the network output as a
function of the value of the input feature x, for various choices of the input parameter θ.
Orange and green distributions represnt the points that the network has not seen during
the training with θ = −0.5, 0.5, respectively.

siganl and background for test. For the conditional input vector, θ, we concatenate the
five values corresponding to each x, resulting in a single vector of length 500, 000. For
background events, we create a vector of random variables ranging between −2 and 2. The
labels assigned to signal points are Y = 1, while background points are labeled as Y = 0.

For this example, we consider a conditional MLP that has two input layers, one for the
feature x and one for the conditional parameter θ. Input layer of the feature x is followed by
three FC layers with number of neurons 300, 300, 100 and ReLU activation function; while
the second input layer is followed by a linear layer with 100 neurons and no activation
function. The two layers with 100 neurons are concatenated and passed to an output layer
with one neuron and sigmoid activation function. The model is trained with 5 epochs and
batch of size 500 points. We use a mean squared error function and Adam optimizer with
learning rate of 10−4.

The network attains a training accuracy of 95.8% and a test accuracy of 95.7%. The
network output is shown in Figure 10 (right plot) in blue. To evaluate its performance
further, we introduce new points with θ values not included in the training set, specifically
−0.5 and 0.5, represented by the orange and green distributions, respectively.
Remarkably, the network demonstrates its capability to interpolate to these novel θ
values, despite not being explicitly trained on them.
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