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Abstract: Predictive models are often complex to produce and interpret, yet can offer valuable 

insights for management, conservation and policy-making through relatively simple approaches.  We 

demonstrate that by using straightforward concepts to describe interactions between model 

components, predictive models can be effectively constructed using basic spreadsheet tools. Using a 

new R package (BBNet), these models can be analysed, visualised, and sensitivity tested to assess 

how information flows through the system’s components. The models are based on Bayesian belief 

networks (BBN) but adapted to overcome some of the complexity and shortcomings of the 

traditional BBN approach. The models are not fully quantitative, but outcomes between different 

modelled scenarios can be considered ordinally (i.e. ranked). Parameterisation of models can also be 

through data, literature, expert opinion, or questionnaires and surveys of opinion. While we have 

focussed on the use of the models in environmental and ecological problems (including with links to 

management and social outcomes), their application does not need to be restricted to these 

disciplines, and use in financial systems, molecular biology, political sciences and many other 

disciplines are possible.    
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1. Introduction 

The paucity of quantitative skills in the environmental workforce and among graduate students is 

well documented [1,2]. Meanwhile, quantitative ecology continues to create and develop 

increasingly sophisticated models, embracing complex mathematics and AI principles [3,4]. As such, 

for many environmental professionals, modelling is not an available tool without employment of 

specialists. Even when models are created, their complexity often makes it hard to convince decision 

makers and end users of the validity. This is especially true for AI approaches like Artificial Neural 

Networks, which lack transparency in how predictions are made [5-7].  

Unlike some of the complexity of ecological models, environmental policy’s evidence needs are often 

quite basic (e.g. ensuring a situation does not get worse, or a population is on an increasing 

trajectory). Such coarse levels of prediction can be useful to ecologists and conservationists who may 

subsequently try to validate models through data collection and experimentation [6,8,9]. However, 

policy and conservation decisions are rarely made in isolation. The effects on other components of 

the wider ‘system’, including the rest of the ecosystem, ecosystem services, local communities, 

employment, and health, also need to be considered [10,11].  

Bayesian belief networks (BBNs) are tools which can be used to model system behaviours and have 

been used in a number of ecological applications [8, 12-16]. They are capable of using a variety of 

information sources in their design and parameterisation, from field data through to qualitative data 

and expert opinion [8, 17]. As such, they can be useful tools to model understudied systems, or to 

study interactions between systems (such as interactions between ecological and social systems) 

[15,17,18].   

However, the complexity of most systems means that the construction of the probability matrices on 

which traditional BBNs are built can become overwhelming and impossible to populate beyond just 

(largely uneducated) guesswork. Furthermore, the inability of reciprocal feedback between network 

nodes (i.e. reciprocal competition between species, or the consideration of both bottom-up and top-

down processes) and inability to construct feedback loops also limit their use in ecological disciplines 

[19]. In complex systems, there is also a tendency for ‘signal loss’ as signals or changes propagate 

through the network, making it difficult to interpret the outcomes [12,19]. More recent work has 

modified these BBN approaches by simplifying the development of probability matrices and 

implementing programming loops to determine reciprocal interactions. Additionally, automated 

computer decision making has been added to ensure signals propagate through the network [8]. 

Computational methods to help estimate uncertainty have also been incorporated in some models 

[20]. The models have been used on a variety of ecological and socio-ecological systems and to help 

examine the effects of environmental policies at local and national/international levels [20,21]. 

Furthermore, while software related issues still arose, the fundamental principles of these models 

and their construction and parameterisation did not require detailed modelling knowledge. These 

tasks could be successfully achieved within a few hours by first year undergraduate students [22].  

The purpose of this paper is to present (1) the underlying theory of the modified Bayesian belief 

networks, (2) introduce the BBNet package as a user-friendly interface for ecological and 

environmental researchers and practitioners with limited modelling experience to produce useful 

and meaningful models, and (3) suggest a workflow for the formulation of these models, including 

parameterisation of the model and dealing with uncertainty.   
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2. Theoretical basis  

BBN models are based on interactions between multiple components of a system, providing a way to 

test how disturbances affect the entire system. For example, in foodwebs with multiple interacting 

species, an increase in the population size of one species can impact the entire ecological 

community, and relative changes to each population can be predicted by the model. However, 

models are not limited to foodwebs. They can also be used to investigate the effects of biological, 

economic, or policy changes on species, ecosystem functions, ecosystem services, and socio-

economic outcomes (examples of these are in the references above). 

More technically, the BBNet package creates models based on causal graphs. Essentially a series of 

nodes (which may represent aspects of interest in the model, e.g. species, ecosystem services, laws, 

social outcomes) are connected by directional edges (direct relationships between the aspects of 

interest or between individual nodes). The relationship between nodes is defined by the edges – a 

fixed parameter of how the child node will respond if the parent node changes. These relationships 

are based on Bayesian inference, although non-Bayesian processes are also used to allow processes 

such as feedback loops and reciprocal interactions and to prevent signal loss (see below in the 

current section). Only direct cause and effect relationships are defined by the edges, indirect effects 

are an outcome of the modelling process. The theoretical basis for the model is based on that in 

Stafford et al. (2015) [8], but a number of updates and useful tools are provided in the BBNet 

package, described in the functions below (section 3).  

For each edge in the network an integer value between -4 and 4 is given to indicate the belief that a 

specific child node may increase or decrease, given an increase in the parent node. Negative 

numbers for edges equate to a mathematical negative relationship between nodes – i.e. an increase 

in the parent node will lead to a decrease in the child node. Positive numbers for edges equate to a 

mathematical positive relationship between nodes - i.e. an increase in the parent node will lead to an 

increase in the child node. A value of 0 does not need to be used for edges, as essentially the edge 

can be removed from the network.  

Nodes are also given values between -4 and 4. These are the ‘prior’ values of each node, and these 

values can change as the model runs (unlike edge values, which do not change). Negative values 

equate to a reduction in the node (e.g. if the node represents a species, a negative value would 

indicate a decline in the population of the species). Positive values represent an increase in the node 

(e.g. an increase in population size). In complex social-ecological systems, there tends to be greater 

certainty over large events and their impacts, and greater uncertainty over smaller events and their 

emergent properties. Therefore, a value of 4 indicates high certainty over a greater magnitude of 

change in each node, and a value of -4 indicates low certainty over a lesser magnitude of change (see 

Table 1 for details of determining parameters for ‘prior’ nodes and edges). Prior values are only set 

for nodes where known changes will occur – e.g. if an intervention to cull a species was proposed, 

only the species culled would have a ‘prior’ value. Other nodes would be left with no prior 

knowledge (values of 0) and the effects on these nodes would be calculated by the model.  
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Table 1. Parameterisation values of edges and priors in the model 

Input 
value 

Edge values Prior values 

4 (or -4) Strong relationship between parent and child 
node, creating a clear and noticeable cause 
and effect relationship. Full (> 95%) 
agreement between sources for the 
relationship 

Full or large magnitude 
implementation of a change (i.e. 
doubling a large population size, 
increasing costs by 70-100%). It would 
be difficult to implement the change in 
greater detail 

3 (or -3) Strong relationship between parent and child 
node, creating a clear and noticeable cause 
and effect relationship. Good agreement 
between sources for the relationship (>75% of 
data agree) 
OR 
Moderate relationship between parent and 
child nodes. Difference is detectable but may 
not be obvious. Full agreement between 
sources for the relationship 

Moderate to large scale 
implementation of a change – i.e. 
removing 50% of a moderately 
abundant population 

2 (or -2) Moderate relationship between parent and 
child nodes. Difference is detectable but may 
not be obvious. Good agreement between 
sources for the relationship (>75% of data 
agree) 
OR 
Weak relationship between parent and child 
nodes. Difference is apparent in studies but 
might not always be significant (i.e. due to low 
sample size). Full (> 95%) agreement between 
sources for the relationship 

Small to moderate change. e.g. deer 
culling to remove 10% of deer 

1 (or -1) Weak relationship between parent and child 
nodes. Difference is apparent in studies but 
might not always be significant (i.e. due to low 
sample size). Good agreement between 
sources for the relationship (>75% of data 
agree) 

Smaller than above 

0 No relationship, or large disagreement 
between sources 

No direct change 

 

In determining edge values and prior node values, thought should be given to the spatial and 

temporal aspects which require modelling. The model has no direct temporal or spatial components 

(although an order of events can be investigated using some of the functions below). Temporal and 

spatial dimensions need to be considered in the edge and prior values, with an awareness that these 

may need to be changed if the temporal or spatial constraints of the model change. A biological 

example of temporal and spatial consideration is given in the case of starvation in the description of 

the rocky shore model below (section 3.1.1). In this example, small changes in species numbers will 

be important due to the limited spatial component of the model (communities are on isolated 

boulders), yet the limited duration of the model means that while grazing may have top down 

effects, starvation (a bottom up effect) is unlikely to have an effect on predators and grazers, and 
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these interactions (or potential edges) are not included in the model. Other examples considering 

spatial and temporal aspects could include comparison of wildfires vs. controlled burning. Over a 

short timescale (i.e. days), and a small spatial area (e.g. the area of a controlled burn), both will have 

similar effects on the ecological communities, decimating biodiversity which was present. However, 

at a larger spatial scale, controlled burning may have much less impact than an uncontrolled fire. At 

longer spatial scales (months to years) the effects on biodiversity will also change (for example, there 

may be benefits of fire to biodiversity). 

The use of integer values between -4 and 4 are added for purposes of clarity in building the model 

and are transferred to a value between 0 and 1 for the purposes of calculations. P(Xi) (the probability 

of the node increasing) is derived from the integer values from -4 to 4 (Table 2). Note, that due to 

there always being some uncertainty in complex systems, both in terms of knowing a node will 

increase or decrease, and in terms of interactions between nodes, probabilities of both priors and 

edges have maximum values of 0.9 and minimum values of 0.1, rather than 1 and 0.  

Table 2. Transformations of prior node values and edge strengths from inputted values to those used 

for calculations 

Input value Value used in 
calculations for 
increase 

-4 0.1 

-3 0.2 

-2 0.3 

-1 0.4 

  0 0.5 

  1 0.6 

  2 0.7 

  3 0.8 

  4 0.9 

 

In the following equations, the probability of a node decreasing (P(Xd) ) is calculated by equation 1:  

P(Xi) + P(Xd) = 1             [1] 

With subscripts i and d indicate increasing or decreasing respectively for the nodes. 

Intermediate probabilities of each node increasing given the different interactions from all 

connecting nodes are calculated using the following Bayesian equation: 

P(Xi|Y)=[P(Xi|Yi)* P(Yi) + P(Xi|Yd)* P(Yd)]           [2] 

where X is the node under consideration (the child node), and Y are the interacting nodes (parent 

nodes, considered one at a time). These values are calculated for each interacting node. 

Where there is no knowledge of a change in value of node Y (i.e. the prior probability of change is 

0.5) then this node is not included in the above equation (however, such inclusion might occur in 

future iterations of the model where the value of the node may have changed). 

At this point, no ‘prior’ information on node X is included in the calculation. To ensure any prior 

knowledge available is maintained in the network, and to allow reciprocal interactions and feedback 

loops, the overall posterior probability for each node is calculated in two ways, the first ensuring that 
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additional information on node interactions add to the certainty provided by the prior, the second 

will ignore prior values if information on species interactions provide more certain information (i.e. a 

value further away from 0.5) than the prior: 

Post(Xi) = P(Xi) + |1 - P(Xi)| * [1-n (P(Xi) * (P(Xi|Y)-0.5))/ n]  [3] 

and  

Post(Xi) = [1-n(P(Xi|Y))] / n               [4] 

where n is the number of interactions with species X. The final value of Post(Xi) is given by the value 

displaying the most certainty (i.e. furthest in magnitude from 0.5). The model is then repeated for 

further iterations to allow information to propagate through the network, but with updated prior 

probabilities such that: 

P(Xi) = Post(Xi)                 [5] 

The model then runs through additional iterations. When all iterations of the model are completed 

(four iterations are included in the bbn.predict() function, some functions allow this to be altered), 

conversion back to a -4 to 4 scale occurs using the following equation (note, these final posterior 

values are not integers): 

Final change = 10 ×(Post(Xi)-0.5)              [6] 

Importantly, only nodes with known prior changes are altered in any scenarios provided at the start 

of a model (see also section 4.4). For example, if simulating a manipulative ecological experiment 

where a species of grazer was removed from an area, only the prior for this species of grazer would 

be altered, with the model calculating the predicted changes to other species based on the edge 

values already assigned to interacting nodes.  

Technically, BBNs calculate the probability of a node increasing or decreasing. However, given 

difficulties in distinguishing probabilities (i.e., belief or certainty of a node increasing or decreasing) 

from magnitude for most natural phenomena (see [20]), the inclusion of equations 1 and 2 above 

disrupt the pure calculation of probability and help prevent signal loss through the network, allowing 

for more meaningful predictions. The conversion back to -4 to 4 reinforces this amalgamation of 

probability and magnitude, by not presenting the data as a probability. While this conversion means 

that model outputs cannot be treated as interval or ratio data (i.e., you cannot numerically measure 

the differences between values -4 to 4), these values can be compared across different models and 

act as ordinal variables as a minimum (i.e. different scenarios can be ranked by changes to variables 

of interest, as per [21]).   

 

3. The BBNet Package 

The BBNet Package consists of a series of functions to create and obtain results from causal graph 

models, as well as two examples of systems with various implemented scenarios. The example 

datasets are discussed, followed by each of the package functions. Additional information, beyond 

the basis of the model described in section 2 above, is provided below, where it relates to particular 

functions in the package.  

The BBNet package is available from both CRAN and GitHub (https://github.com/vda1r22/bbnet).  

You can install the stable version of BBNet from CRAN or GitHub with: 
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install.packages("bbnet")  or 

devtools::install_github("vda1r22/bbnet") 

All data files discussed are available as datasets within the package, or as .csv files in supplementary 

material 1. Further information on datasets and requirements are provided in a video tutorial 

(supplementary material 2). A video tutorial on running the model is provided in supplementary 

material 3. The R markdown script used in the video is provided in supplementary material 4.   

3.1 Example datasets 

3.1.1 Rocky Shore Ecology 

The BBN model here uses the interactions described previously [8]. It is a simple model of rocky 

shore interactions (trophic interactions and competition) between species on isolated boulders on a 

rocky shore. It is designed for scenarios relating to experimental manipulation of predator and grazer 

abundance on isolated boulders over a 4-8 week period, and as such, trophic interactions are top 

down only (starvation is unlikely to occur in this time period, but populations are small, given the 

spatial isolation of the community on boulders – see discussion in [8]). Five csv files are provided 

(supplementary material 1). (1) RockyShoreNetwork.csv provides the edge strengths for the network. 

These are given as values between -4 to +4 (converted as per Table 1 before running the model) and 

represent the probability of a child node increasing given that the parent node was increasing (with a 

value of 1 after conversion to 0 to 1 values). In this file, when opened in a spreadsheet, the node 

listed at the start of each row affects the indicated species in each column (see supplementary 

material 2, creating input files). (2) Dogwhelk_Removal.csv is a scenario for the model, and provides 

initial prior values for each node (note, all nodes have the value of 0, or no change, other than 

dogwhelks) – this scenario represents a removal of all dogwhelks from the area. (3) 

Winkle_addition.csv is a scenario node representing the addition of periwinkles to an area. (4) 

Combined_treatment.csv represents a removal of dogwhelks and addition of periwinkles to an area. 

(5) RockyShoreNetworkDiagram.csv is a slightly altered version of the edge strengths model  -see 

above – in this case, it contains additional parameters for use with the 

BBN.network.diagram() function and has been used with this function to produce Figure 1.  
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Figure 1. Interaction diagram of the Rocky Shore model, produced by the BBN.visualise function. 

Nodes are colour coded to represent functional groups (white = algae, grey = predator, orange = 

grazers, yellow = filter feeders). Arrows point from the parent node to the child node. Red arrows 

indicate negative interactions between nodes. Black arrows (not present in this figure) represent 

positive interactions. 

 

3.1.2 MPA management  

This example contains 3 data files (supplementary material 1). The network model here 

(MPANetwork.csv) is based around a simple foodweb in a Marine Protected Area (MPA), but also 

includes human activities (fishing and scuba diving) and an overall indication of revenue from the 

area (from fishing and diving activities). No management measures are included in the model, but 

the scenarios indicate how these can be implemented – i.e. a potting ban (NoPotting.csv) will reduce 

the lobster fishery node. A no take scenario (NoTake.csv) will affect both fishing nodes. Again, it is 

only the direct effects which are accounted for in the scenario nodes, the model determining the 

changes to other nodes (e.g. an increase in diving due to more fish and lobsters is not included as a 

model prior value in any scenario).  

3.2 BBNet package functions 

3.2.1 bbn.predict()making predictions, bootstrapping and outputting data 

This is the main predictive function, requiring an interaction network in the format of a n+1 

by n matrix or dataframe (where n is the number of nodes, row names form the first column, 

but the column names are imported as a header, resulting in the extra column of row 

names), indicating edge strengths between each node (see examples in sections 3.1 and 
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Supplementary Material 2 for detailed requirements). It also requires between 1 and 12 

scenarios (each scenario represented by a 2 x n dataframe where n is the number of nodes in 

the network) which show initial changes to some of the prior values of the nodes. All of 

these files should have integer values ranging between -4 and 4, indicating the degree to 

which the node increases (negative numbers therefore represent a decrease), with scenario 

files having values of 0 for nodes with no prior information, and the interaction network 

matrix having blank values where no edges connect nodes.  

The function offers potential to ‘bootstrap’ the outputs of the model to understand inherent 

uncertainty. Such uncertainty can arise due to the exact parameterisation of edges and 

priors, and the fact that some interactions have larger changes in magnitude on child nodes 

than others. As such, bootstrapping allows the uncertainty of the predictions to be visualised 

as error bars. Bootstrapping involves randomly selecting and modifying edge strengths to 

determine overall changes to the posterior node values. This bootstrapping process is run 

multiple times (number determined by user – see “boot_max” below) and 95 % confidence 

intervals of the output of each parameter are calculated by removing the highest and lowest 

2.5 % of values for each posterior node (as per methods in [23]). These confidence intervals 

are applied to the actual values calculated using unadjusted parameters. If bootstrapping is 

applied to the modelling process, then the first run through does not adjust any parameters 

and is displayed as the ‘point’ or filled circle in any figures produced, or the first column of 

any numeric output produced.  

R Function and arguments 

bbn.predict(BBN.model, priors1, …, boot_max, values, figure, 

font.size) 

Required arguments 

bbn.model - a matrix or dataframe of interactions between different model nodes (as 
described above) 

priors1 - an X by 2 array of initial changes to the system under investigation for a given 
scenario.  

Optional Arguments 

… priors2 - priors12 - as above, but additional scenarios. 

boot_max - the number of bootstraps to perform. Suggested range for exploratory analysis 

1-1000. For final analysis recommended size = 1000 - 10000 - note, this can take a long time 
to run. Default value is 1, running with no bootstrapping - suitable for exploration of data 
and error checking. 

values - default value 1. This provides a numeric output of posterior values and any 

confidence intervals. Set to 0 to hide this output 

figure - default value 1. Sets the figure options. 0 = no figures produced. 1 = figure is 
saved in working directory as a PDF file (note, this is overwritten if the name is not changed, 
and no figure is produced if the existing PDF is open when the new one is generated). 2 = 
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figure is produced in a graphics window. All figures are combined on a single plot where 
scenario 2 is below scenario 1 (i.e. scenarios work in columns then rows) 

font.size - default = 5. This sets the font size on the figures. 

Example 

my_BBN <- read.csv('RockyShoreNetwork.csv', header=T) 

dogwhelk <- read.csv('Dogwhelk_Removal.csv', header = T) 

winkle <- read.csv('Winkle_addition.csv', header = T) 

combined <- read.csv('Combined_Treatment.csv', header = T) 

bbn.predict(bbn.model = my_BBN, priors1 = dogwhelk, priors2 = winkle, 

priors3= combined, figure = 2, boot_max = 100, values = 0, font.size 

= 7) 

 

3.2.2. bbn.timeseries() understanding node behaviour over different timesteps 

This function helps visualise the flow of information through the network and how changes 
progress through the network over time (e.g. changes occurring in one parameter before 
another - as per trophic cascade or ecological succession type processes). It should be noted 
that the exact values from these functions do not correspond to the more robust 
bbn.predict() which should be used to inform of likely changes (this function does not 
implement equations 2 and 3 detailed in the theoretical basis above).  

As for bbn.predict we need to pass the function a network model and a scenario as a 
minimum. In this case, only one scenario can be analysed at once. The output is a graph of 
each node in the network, visualised across the different timesteps in the model. Note - 
values are plotted on each graph and lines of best fit are drawn using the geom_smooth 
function. Typically this function may not perform well with the variability in values and lack 
of data points, and multiple warning messages may be produced, but the shape of the 
response is still visible. 

R Function and arguments 

bbn.timeseries(BBN.model, priors1, timesteps, disturbance) 

Required arguments 

bbn.model - a matrix or dataframe of interactions between different model nodes as per 
above. 

priors1 - an X by 2 array of initial changes to the system under investigation. The first column 
should be a -4 to 4 (including 0) integer value for each node in the network with negative 
values indicating a decrease and positive values representing an increase. 0 represents no 
change. 

Optional Arguments 

timesteps - default = 5. This is the number of timesteps the model performs. Note, timesteps 
are arbitrary and non-linear. However, something occurring in timestep 2, should occur 
before timestep 3. 
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disturbance - default = 1. 1 - creates a prolonged or press disturbance as per the 
bbn.predict() function. Essentially prior values for each manipulated node are at least 
maintained (if not increased through reinforcement in the model) over all timesteps. 2 - 
shows a brief pulse disturbance, which can be useful to visualise changes as peaks and 
troughs in increase and decrease of nodes can propagate through the network 

Example 

my_BBN <- read.csv('RockyShoreNetwork.csv', header=T) 

dogwhelk <- read.csv('Dogwhelk_Removal.csv', header = T) 

bbn.timeseries(bbn.model = my_BBN, priors1 = dogwhelk, timesteps = 5, 

disturbance = 2) 

 

3.2.3 BBN.visualise() visualising information flow through the network over model 

timesteps 

This produces similar data to bbn.timeseries (section 3.2.2) but in a very different visual 

format. A network diagram (similar to Figure 1) is produced, consisting of all nodes. Each 

node is ordinally weighted with the biggest increase in black and the smallest increase 

(which potentially is a decrease) in white. Not all edges are plotted, only those exceeding a 

certain threshold. This allows the flow of information through the network to be visualised at 

each timestep more clearly.  

R Function and arguments 

bbn.visualise(BBN.model, priors1, timesteps, disturbance, 

threshold, font.size, arrow.size) 

Required arguments 

bbn.model - a matrix or dataframe of interactions between different model nodes 

priors1 - an X by 2 array of initial changes to the system under investigation. The first column 
should be a -4 to 4 (including 0) integer value for each node in the network with negative 
values indicating a decrease and positive values representing an increase. 0 represents no 
change. 

Optional Arguments 

timesteps - default = 5. This is the number of timesteps the model performs. Note, timesteps 
are arbitrary and non-linear. However, something occurring in timestep 2, should occur 
before timestep 3. 

disturbance - default = 1. 1 - creates a prolonged or press disturbance as per the 
bbn.predict() function. Essentially prior values for each manipulated node are at least 
maintained (if not increased through reinforcement in the model) over all timesteps. 2 - 
shows a brief pulse disturbance, which can be useful to visualise changes as peaks and 
troughs in increase and decrease of nodes can propagate through the network 

threshold - default = 0.2. Nodes which deviate from 0 by more than this threshold value will 
display interactions with other nodes. As mentioned, values in these visualisation functions 
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don't directly correspond to those in the bbn.predict function. This value can be tweaked 
from 0 to 4 to create the most useful visualisations. 

font.size - default = 0.7. Changes the font in the figure produced. The value here is a 
multiplier of the default font size used in the igraph package and does not correspond to the 
font.size argument in the bbn.timeseries function. 

arrow.size - default = 4. Changes the size of the arrows. Note, sizes do vary based on 
interaction strength, so this is a multiplier for visualisation purposes. 

Example 

my_BBN <- read.csv('RockyShoreNetwork.csv', header=T) 

dogwhelk <- read.csv('Dogwhelk_Removal.csv', header = T) 

bbn.visualise(bbn.model = my_BBN, priors1 = dogwhelk, timesteps = 5, 

disturbance = 2, threshold=0.05, font.size=0.7, arrow.size=4)  

 

3.2.4 BBN.sensitivity() running sensitivity analysis 

For some methods of model parameterisation, extensive data extraction from literature, or 

expert opinion can be useful. However, this is time consuming, and being aware of the most 

sensitive edge parameters in the model which may affect the desired outputs could help 

concentrate efforts. This function produces a list of the most important edge parameters  

(interaction strengths) that might require  further examination, with importance increasing 

with numerical value (frequency number). 

The function works by bootstrapping, consisting of multiple changes to prior values and 

interaction strengths in the network (the same process used for bootstrapping in the 

bbn.predict function: selecting 10 % of interactions in each iteration and adjusting them by a 

randomly determined amount of up to ± 0.1, based on the probability values, rather than the 

integer input values). The frequency value produced shows the number of times a modified 

interaction shows up as important in causing a change to the listed nodes (the edge is 

counted as important each time it is changed and subsequently is in the 25% of 

bootstrapped cases which caused the biggest changes in the defined nodes of importance). 

As such, those interactions showing as more frequent in the table or figure are likely to be 

most influential in any predictions made. These edge values should be subject to closer 

scrutiny in terms of values used. Note, this does not mean the values are incorrect or should 

be reduced from more extreme values - i.e. from 4 to 3, just that they should be carefully 

checked, e.g. through literature searches, agreement amongst experts etc.  

Required arguments 

bbn.model - a matrix or dataframe of interactions between different model nodes 

One or more nodes (recommended no more than 3) which would be the main outcomes of 

interest in the model. The spelling of these nodes needs to be identical (including capital 

letters) to that in the imported csv file (note, you should include spaces if these are in your 

csv file, rather than the dot notation used once imported into R) – see example below for 

more details. 
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Optional arguments 

boot_max - the number of bootstraps to perform. Suggested range for exploratory analysis 

100-1000. For final analysis recommended size = 1000 - 10000 - note, this can take a long 

time to run. Default value is 1000. 

Example 

bbn.sensitivity(bbn.model = my_BBN, boot_max = 100, 'Limpet', 

'Green Algae') 

 

3.2.5 BBN.network.diagram() creating a diagram of the network 

This function visualises all nodes and interactions in a network, in a similar manner to the 

bbn.visualise function (section 3.2.3), other than the full network, including all edges are 

shown. The strengths and directions of the edges are shown, but information ‘flow’ is not 

shown, and no scenarios are included in the function. Nodes can also be colour coded by 

theme. For simple models, this function can produce a visual representation of the model of 

interest, but for complex models, the visual representation is hard to interpret.  

This function requires a slightly different input file, based on the normal BBN interaction 

model file. The first column is called id and consists of an ‘s’ and a 2-digit number relating to 

the node number (e.g. s01, s02 and so on). The second column is called node.type and is an 

integer value from 1-4. This sets the colour of the node in the network (sticking to a 

maximum of four colours). For example, predators, grazers, filter feeders and algae could be 

colour coded separately. The third column is the same as the first column in the standard 

BBN interaction csv, other than it is titled node.name. It is important to use these column 

names (including capitals and dot notation). The remainder of the columns are exactly as the 

standard BBN interaction csv file (see supplementary material 1 in the Rocky Shore model for 

an example csv file or supplementary material 2 for further details of file requirements). 

Required arguments 

bbn.network - a csv file as described above, with note paid to the first three column names 

Optional arguments 

font.size - default = 0.7. Changes the font in the figure produced. The value here is a 

multiplier of the default font size used in the igraph package and does not correspond to the 

font.size argument in the bbn.timeseries() function. 

arrow.size - default = 4. Changes the size of the arrows. Note, sizes do vary based on 

interaction strength, so this is a multiplier for visualisation purposes. Negative interactions 

are shown by red arrows, and positive interactions by black arrows 

arrange - this describes how the final diagram looks. Default is layout_on_sphere but 

layout_on_grid provides the same layout as in the bbn.visualise() function and ensures nodes 

are structured in the order specified in the network. Other layouts, including 

layout_on_sphere are more randomly determined, and better/clearer diagrams may occur if 

you run these multiple times. Other options are from the igraph package: 
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layout.sphere 

layout.circle 

layout.random 

layout.fruchterman.reingold 

 

Examples 

bbn.network.diagram(bbn.network = my_network, font.size = 0.7, 

arrow.size = 4, arrange = layout_on_sphere) 

bbn.network.diagram(bbn.network = my_network, font.size = 0.7, 

arrow.size = 2, arrange = layout_on_grid) 

 

4. Creating and Parameterising BBNet models 

There are many ways to create BBN models, with differing degrees of time commitment and 

robustness, depending on the purpose of the final model. For example, models can be created and 

parameterised based on interactions assumed to be correct by the model developer. If these models 

were used to develop hypotheses to test experimentally, then this method would be suitable – 

empirical data would support or reject the models developed. A simple model, such as the rocky 

shore model discussed above, could be likely developed from ‘best guess’ estimates of the 

parameters in less than an hour. However, models used to make predictions which are not 

empirically tested may take much longer to develop and involve careful consideration over the 

nodes, edges, and interaction strengths. We discuss how to develop the model step by step, and 

considerations of each stage below. 

4.1 Determining nodes 

In some cases, such as for a species interaction web, determining nodes can be straightforward, as 

each node represents a species, or higher taxonomic group, in the area of interest. For example, in 

the rocky shore model provided [8], the snail species were those commonly found on the boulders 

(other snail species were rare at <1% of total abundance). Seaweeds and barnacles were categorised 

on higher taxonomic classifications, with the assumption that all species within each grouping would 

respond in a similar manner to grazing pressure or competition. When wider environmental aspects, 

ecosystem functions and services, and socio-economics are added to models, the choice of nodes 

becomes more complex. Firstly, there will be output nodes - equivalent of dependent variables, or 

aspects of the system which need measurement. For example, this could be the relative abundance 

of a protected species, the economic value of an ecosystem service, or the amount of carbon 

sequestered within a habitat. Output nodes representing socioeconomic or cultural aspects that are 

not typically quantified require greater consideration, thinking about what an increase or decrease in 

this node represents in a meaningfully way. For example, a concept such as ‘community acceptance’ 

might be hard to quantify with traditional metrics, but the model will show if this is increasing or 

decreasing. There will also be clear input nodes which may have their prior values altered in the 

development of scenarios, such when exploring changes in policy and management, (e.g. preventing 

fishing in a marine protected area) or experimental manipulations (e.g. excluding grazing deer from a 

section of heathland). The intermediate nodes become a little more difficult to determine and relate 
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to typical modelling issues of the need for sufficient detail. BBNs model direct interactions between 

nodes, so a direct causal link should be established between all nodes in a model. However, as long 

as there is sufficient scope to include conflicts between different pathways, then the nodes can be 

quite broad scale. For example, an increase in mature tree coverage in an area is likely to lead to 

increased carbon sequestration, there would be no need to model photosynthetic pathways, for 

example. However, if the aim of a model was to address whether rewilding an area through natural 

succession was to increase carbon sequestration, then a direct link from rewilding to carbon 

sequestration would be incorrect. Rewilding may lead to various processes (including changes in 

predation and grazing) which may influence the amount of woodland, grassland, heathland, and 

other habitats in an area. A direct link between amount of woodland and carbon sequestration (and 

perhaps between grassland and heathland and carbon sequestration, but at different interaction 

strengths) can be made, but the amount of woodland will vary depending on other ecological 

factors.  

Nodes must therefore capture the appropriate amount of detail needed for the model to be useful, 

without including excessive detail. For instance, if the link between amount of habitat and an 

ecosystem service are well established, but the mechanisms by which the habitat provides the 

ecosystem services are unclear, including the mechanism would reduce certainty and predictive 

power in the model and should, therefore, be avoided.  

4.2 Determining edges 

All nodes in the network should interact with other nodes via one or more edges. Unless a node is a 

clear ‘output node’ (see section 4.1), it should connect downstream to a child node. Equally, unless a 

node is a clear ‘input node’, it should act as a child node in the network. These rules, however, are 

not exclusive – an input node may be affected by another node in a network, and an output node 

can still be measured and go on to affect further nodes. Nodes can also have multiple edges as inputs 

or outputs. Edges are also directional. This means that node A can have an effect on node B, but 

node B will not have an effect on node A. Reciprocal interactions are possible (e.g. interspecific 

competition between species, where species A and B are nodes in the network) but are not required. 

For example, in the Rocky Shore model described, competition interactions are reciprocal, but 

trophic interactions were one way, with predators affecting prey only, due to the time over which the 

results were modelled (see [8] for details). In BBNet each edge acts independently on a node as per 

equations 4 and 5 (see section 2). This allows for much more complex networks to be built than 

traditional Bayesian belief networks, which require conditional probability matrices to be built when 

multiple edges act on a node. While some degree of control is lost in the model as a result, careful 

thought about model structure can overcome this (see supplementary material 5). Finally, edges can 

represent either positive or negative interactions. These are defined mathematically, where a 

positive interaction creates a directional change in a child node in the same direction as the parent 

node (i.e. an increase in the parent node leads to an increase in the child node). A negative 

interaction creates a difference in direction between child and parent nodes (i.e. an increase in the 

parent node leads to a decrease in the child node). Care is needed here, especially when human-

centric value judgements can be placed on the nodes. For example, increased use of fossil fuels has a 

[mathematically] positive effect on climate change (as one increases, so does the other). The models 

need this specified as a positive interaction although we tend to associate this as a negative outcome 

for society and the environment.  
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4.3 Determining edge strengths  

Edges are given integer values between -4 and 4, where negative values indicate mathematically 

negative interactions between parent and child nodes. Values of zero indicate no interaction, but for 

simplicity these should be left blank in the interaction matrix file. Decimal values will cause the 

BBNet package to crash and should not be used. The purpose of limiting interaction strengths to 

these integer values is to make the network easier to parameterise when limited information may be 

available. Given the output of the model can be described as ‘ordinal’ between scenarios, these 

levels of interaction strength are enough to provide clear differences between outputs and evaluate 

different scenarios. The bbn.sensitivity function can also highlight parameters which cause the 

biggest differences to the outputs of the models, and therefore need the most data or highest 

certainty to parameterise (section 3.3.4).  

It is possible to use published and grey literature to aid in the parameterisation process. Equally, 

quantitative or qualitative evidence from field or laboratory studies, interviews, focus groups, expert 

opinion, Delphi surveys can also inform the design and parametrisation of the models (section 4.5). 

The amount of evidence and agreement between studies, people or sources will help form the final 

values used in the model (for example, see [24] for a framework for a four stage degree of 

confidence framework). However, the magnitude of the change is also important. We suggest Table 1 

is used to help formulate the edge and prior strengths. 

4.4 Creating Scenarios  

Scenarios are changes to some of the nodes of a network. Prior node values are changed to integer 

values between -4 and 4 if these are directly manipulated or directly influenced nodes in a system. 

For example, in the rocky shore model, one scenario is the removal of dogwhelks from the system. 

All dogwhelks were removed, so the prior value was set to -4 (see table 2). No further changes are 

made to the priors. The effect on dogwhelk removal on other aspects of the community are 

determined by the model as the numeric change in dogwhelks flows through the network. Another 

scenario involved removing dogwhelks and increasing periwinkles. In this case, prior values are 

changed for dogwhelks and periwinkles, as these are directly manipulated, but not for other nodes.  

Changes in law and policy can also be included in model scenarios. In the MPA management scenario 

a potting ban was implemented by reducing the lobster fishery (setting the prior to -4), and a total 

fishing ban to setting both lobster and finfish fisheries nodes to -4. It is possible to include policy 

nodes when building models, and to link these to the relevant nodes in the model with edges (e.g. a 

lobster fishing ban node would link to the lobster fishing node with an edge connection of -4). Such 

approaches can be useful for complex policy scenarios, but it is generally simpler to implement the 

effects of policies directly into a simpler model as priors. Where policies are thought to be weak or 

ineffective, values other than +/- 4 can be used to indicate this inherent weakness in the policy.  

4.5 Involving others in building the model 

The relative intuitiveness of the network model approach does lend itself to a collaborative model 

and scenario building process. Indeed, while a framework for scoring interaction strengths has been 

given; for models which are going to be used beyond the scope of hypothesis development, it is 

useful to have multiple people involved in designing and parametrising models. BBNs can be built 

from expert opinion. Processes such as the Delphi method can be used to obtain agreement on 

nodes and edges [25], and potentially even interaction strength. Disagreements can be resolved by 

assigning disputed edge strengths based on data or literature (as per Table 2) or assessing the 
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importance of the interaction under question using the sensitivity analysis functions. Stakeholder 

groups can also inform nodes, edges and edge strengths in the BBN [18].  

Stakeholder interaction and consultation can also be useful for refining the models and ensuring 

maximum trust in the model outputs [26]. In particular, stakeholders may have views different from 

scientific experts or scientific literature on some topics (e.g. the effects of fishing [27]). Such 

disagreements may involve building two or more models to compare the results of these 

disagreements. Stakeholders can also design scenarios for exploration, based on how policy, 

management, environmental conditions etc. may affect the system being considered. Given the 

relative ease of creating scenarios, it may be possible to produce and analyse these in real time in 

meetings with stakeholder groups.  

Another application of BBNs is in the aiding of transfer of knowledge between academics and 

practitioners (e.g. government policy makers). These models, even if quickly produced, can facilitate 

dialogue between academic knowledge and potential implications and consequences of policy 

formation [20]. They can also be tailored to specific requirements and outcomes. Using BBNs as a 

mechanism for information transfer between academic and practitioner sectors may facilitate some 

of the difficulties currently faced in these knowledge exchange activities [28].  

5. Conclusions 

We have presented an approach to predictive ecological and environmental modelling (which can 

link to social science outcomes) which is rapid and easy to use and understand, particularly for non-

specialists including stakeholders,, at least in terms of the key concepts and processes. BBN models 

will not fulfil every requirement of current modelling processes, and do not produce fully 

quantitative data (e.g. estimates of fish biomass in tonnes, or value of ecosystem services in US$). 

They do, however, allow different scenarios to be explored and evaluated relative to each other, 

predict the direction of change in various parts of a system, and handle complex systems with 

environmental, ecological, and social aspects. Additionally, BBN models can account for feedback 

loops within the system over varying timescales. They can be used to develop hypotheses which can 

be tested empirically, produce results which inform policy, capture stakeholder understanding, and 

address stakeholder concerns and facilitate dialogue with practitioners. However, they can also 

produce meaningful research outputs in their own right and gain understanding of complex system 

dynamics. The methodological overview presented here and the R package functions for the BBNet 

package provide a framework for the use of these models in any of the previously mentioned areas, 

and a user-friendly interface for creating and analysing the models. While we have focussed on the 

use of the models in environmental problems, their application does not need to be restricted to 

this, and use in financial systems, molecular biology, political sciences, and many other disciplines are 

possible.  

    

6. References 

[1] NERC. 2012. Most Wanted II. Postgraduate and Professional Skills Needs in the Environment 

Sector. Natural Environmental Research Council: Swindon. 

[2] Barraquand F, Ezard THG, Jørgensen PS, Zimmerman N, Chamberlain S, Salguero-Gómez R, Curran 

TJ, Poisot T. 2014. Lack of quantitative training among early-career ecologists: a survey of the 

problem and potential solutions. PeerJ 2:e285 https://doi.org/10.7717/peerj.285 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.598033doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598033
http://creativecommons.org/licenses/by/4.0/


[3] AlAdwani M., Saavedra S. 2020 Ecological models: higher complexity in, higher feasibility out J. R. 

Soc. Interface.17:20200607 https://doi.org/10.1098/rsif.2020.0607  

[4] Han BA, Varshney KR, LaDeau S, Subramaniam A, Weathers KC, Zwart J. 2023. A synergistic future 

for AI and ecology. Proceedings of the National Academy of Sciences 120: e2220283120. 

https://doi.org/10.1073/pnas.2220283120  

[5] Cartwright SJ, Bowgen KM, Collop C, Hyder K, Nabe-Nielsen J, Stafford R, Stillman RA, Thorpe RB, 

Sibly RM. 2016. Communicating complex ecological models to non-scientist end users. Ecological 

Modelling. 338: 51-59. https://doi.org/10.1016/j.ecolmodel.2016.07.012  

[6] Schuwirth N, Borgwardt F, Domisch S, Friedrichs M, Kattwinkel M, Kneis D, Kuemmerlen M, 

Langhans SD, Martínez-López J, Vermeiren P. 2019. How to make ecological models useful for 

environmental management. Ecological Modelling. 411: 108784. 

https://doi.org/10.1016/j.ecolmodel.2019.108784  

[7] Pichler M, Hartig F. 2023. Machine learning and deep learning—A review for ecologists. Methods 

in Ecology and Evolution. 14: 994-1016. https://doi.org/10.1111/2041-210X.14061  

[8] Stafford R, Williams RL, Herbert RJ. 2015. Simple, policy friendly, ecological interaction models 

from uncertain data and expert opinion. Ocean & Coastal Management. 118:88-96. 

https://doi.org/10.1016/j.ocecoaman.2015.04.013  

[9] Caldararu S, Rolo V, Stocker BD, Gimeno TE, Nair R. 2023 Ideas and perspectives: Beyond model 

evaluation – combining experiments and models to advance terrestrial ecosystem science, 

Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023 

[10] Pow R, Holmes M. 2017. Thinking differently about our environment: a holistic approach to 

policy. Conservative Environmental Network: London. Available from: 

https://www.helenwhately.org.uk/files/2017-09/CEN%20report.pdf  

[11] Diarra A. 2022. Holistic environmental polices have the opportunity to address health 

disparities. Here’s how. OECD Tackling Coronavirus (Covid-19). Available from: https://www.oecd-

forum.org/posts/holistic-environmental-policies-have-the-opportunity-to-address-health-disparities-

here-s-how  

[12] Lee DC. 2000. Assessing land-use impacts on bull trout using Bayesian belief networks. In: 

Quantitative methods for conservation biology, S Ferson (ed). Springer: New York. pp. 127-147. 

[13] Hammond, T.R., Ellis, J.R., 2002. A meta-assessment for elasmobranchs based on dietary data 

and Bayesian networks. Ecol. Indic. 1, 197-211. https://doi.org/10.1016/S1470-160X(02)00005-5  

[14] Langmead O, McQuatters-Gollop A, Mee LD, Friedrich J, Gilbert AJ, Gomoiu MT, Jackson ML, 

Knudseng S, Minicheva G, Todorova V. 2009. Recovery or decline of the northwestern Black Sea: a 

societal choice revealed by socio-ecological modelling. Ecol. Model. 220, 2927-2939. 

https://doi.org/10.1016/j.ecolmodel.2008.09.011    

[15] Stafford R., Clitherow T.J., Howlett S.J., Spiers E.K.A., Williams R.L., Yaselga B., Zeas Valarezo S., 

Vera Izurieta D.F., Cornejo M. 2016. An integrated evaluation of potential management processes on 

marine reserves in continental Ecuador based on a Bayesian belief network model. Ocean and 

Coastal Management. 121: 60-69. https://doi.org/10.1016/j.ocecoaman.2015.12.010  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.598033doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598033
http://creativecommons.org/licenses/by/4.0/


[16] Spiers, E.K.A., Stafford, R., Ramirez, M., Vera Izurieta, D.F., Cornejo, M. and Chavarria, J., 2016. 

Potential role of predators on carbon dynamics of marine ecosystems as assessed by a Bayesian 

belief network. Ecological Informatics. 36: 77-83. https://doi.org/10.1016/j.ecoinf.2016.10.003  

[17] Založnik, M., Bonsall, M. B., & Harper, S. 2021. The Qualitative Stage of Building Bayesian Belief 

Networks in a Focus Group Setting: Decision-Making under Uncertainty among Vietnamese Rice 

Farmers. Sociological Methods & Research, 50: 75-102. https://doi.org/10.1177/0049124118769094  

[18] Boakes Z. 2024. Coral conservation programmes in Bali, Indonesia: restoration of degraded reefs 

and localised socioeconomic benefits. PhD Thesis. Bournemouth University, UK. 

[19] Newton AC. 2009. Bayesian Belief Networks in environmental modelling: a review of recent 

progress. In: Environmental Modelling: New Research, PN Findley (ed). Nova Science Publishers: New 

York. pp. 13-50. 

[20] Stafford R, Croker AR, Rivers EM, Cantarello E, Costelloe B, Ginige T, Sokolnicki J, Kang K, Jones 

PJS, McKinley E, Shiel C. 2020. Evaluating optimal solutions to environmental breakdown. 

Environmental Science and Policy. 112: 340-347 https://doi.org/10.1016/j.envsci.2020.07.008  

[21] Sokolnicki JR, Woodhatch AL, Stafford R. 2022. Assessing Environmentally Effective Post-COVID 

Green Recovery Plans for Reducing Social and Economic Inequality. Anthropocene Science, 1: 375-

383. https://doi.org/10.1007/s44177-022-00037-x  

[22] Stafford R. and Williams R.L. 2014.Teaching basic numeracy, predictive models and 

socioeconomics to marine ecologists through Bayesian belief networks. F1000Research. 3: 312 

https://doi.org/10.12688/f1000research.5981.1  

[23] Crawley, M.J., 2012. The R Book. Wiley: Chichester, UK. 

[24] IPBES. 2016. The Assessment Report of the Intergovernmental Science-Policy Platform on 

Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production. 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn  

[25] O’Shea, R., Capuzzo, E., Hemming, V., Grebe, G., Stafford, R., et al. 2024. Managing offshore 

multi-use settings: Use of conceptual mapping to reduce uncertainty of co-locating seaweed 

aquaculture and wind farms. Journal of Environmental Management. 358, 120696. 

https://doi.org/10.1016/j.jenvman.2024.120696 

[26] Jones PJS. 2014 Governing Marine Protected Areas: resilience through diversity. Routledge: 

London https://doi.org/10.4324/9780203126295  

[27] Al-Balushi A, Bose S, Govender A. 2016 Stakeholders’ Views on Management Arrangements: A 

Case of Kingfish Fishery in the Sultanate of Oman. Natural Resources, 7, 251-264. 

https://doi.org/10.4236/nr.2016.75022  

[28] Yates KL, Copping JP, Tweddle JF, O’Leary BC. 2024. Benefits and barriers for researcher-

practitioner collaboration on marine and coastal management issues. Environmental Science & 

Policy. 155: 103713. https://doi.org/10.1016/j.envsci.2024.103713 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.12.598033doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598033
http://creativecommons.org/licenses/by/4.0/


 

Supplementary material 1. Input files for edges and priors for each of the two example models. See 

section 3.1 for further details. 

Supplementary material 2. Tutorial video of input file requirements for the BBNet package 

Supplementary material 3. Tutorial video of running BBNet functions using provided data files 

Supplementary material 4. R Markdown script with necessary functions and example R code to 

import input files and run BBNet functions 

Supplementary material 5. Tutorial video on incorporating more complex probability matrices in 

BBNet through model structure 
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