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Immunomodulatory role of Keratin 76 in oral
and gastric cancer
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Keratin 76 (Krt76) is expressed in the differentiated epithelial layers of skin, oral cavity and

squamous stomach. Krt76 downregulation in human oral squamous cell carcinomas (OSCC)

correlates with poor prognosis. We show that genetic ablation of Krt76 in mice leads to

spleen and lymph node enlargement, an increase in regulatory T cells (Tregs) and high levels

of pro-inflammatory cytokines. Krt76−/− Tregs have increased suppressive ability correlated

with increased CD39 and CD73 expression, while their effector T cells are less proliferative

than controls. Loss of Krt76 increases carcinogen-induced tumours in tongue and squamous

stomach. Carcinogenesis is further increased when Treg levels are elevated experimentally.

The carcinogenesis response includes upregulation of pro-inflammatory cytokines and

enhanced accumulation of Tregs in the tumour microenvironment. Tregs also accumulate in

human OSCC exhibiting Krt76 loss. Our study highlights the role of epithelial cells in mod-

ulating carcinogenesis via communication with cells of the immune system.
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Keratins, the intermediate filament proteins of epithelial
cells, are essential for normal tissue function, acting as a
scaffold that enables cells to resist stress and damage1.

Mutations that impair keratin assembly have been identified in a
range of human skin disorders, typically leading to skin blistering
or abnormal differentiation2. Recent studies have highlighted a
novel role for keratins as regulators of inflammation and
immunity in epithelia3–8.

Krt76 is a type II intermediate filament protein expressed in the
differentiating, non-proliferative layers of a subset of stratified
epithelia in human and mouse9. Krt76 is the most significantly
downregulated gene encoding a structural protein in human oral
squamous cell carcinoma (OSCC) and correlates strongly with
poor prognosis10. OSCC arises from the multilayered epithelial
lining of the mouth and the lips. It involves mostly the tongue,
but can also occur in the floor of the mouth, gingiva, lip, cheek
and palate. Despite advances in treatment, the 5 year survival rate
for OSCC remains stubbornly low, at 50–60%11.

In patients, KRT76 is detected in 100% of normal gingivo-
buccal epithelial biopsies, 44% of oral preneoplastic lesions and
35% of OSCC10. However, Krt76-null mice do not develop
spontaneous OSCC, indicating that loss of Krt76 alone is not
sufficient to induce tumours10. Nonetheless, genetic ablation of
Krt76 in mice results in skin barrier defects, epidermal hyper-
proliferation and inflammation12,13, with mild hyperplasia and
keratinisation of the buccal epithelium10.

Here we have investigated the role of Krt76 in oral and sto-
mach epithelial homoeostasis and the response of those tissues to
the chemical carcinogen 4-nitroquinoline N-oxide (4NQO)14,
which mimics the carcinogenic effects of tobacco and alcohol
ingestion15. We provide evidence for a previously unidentified
role of Krt76 in regulating immunity in mice and demonstrate its
importance in tumour progression.

Results
Keratin 76 is expressed in oral epithelia and stomach. To
analyse Krt76 expression and function, we used Krt76 mutant
mice (Krt76tm1a(KOMP)Wtsi) generated by the Wellcome Sanger
Institute Mouse Genetics Project13,16,17 (Fig. 1a). As a result of
splicing of the lacZ trapping element to Krt76 exon 2, homo-
zygous mice do not express Krt76 (Krt76−/−). Heterozygous mice
(Krt76+/−), expressing one copy of Krt76 and one copy of the
lacZ reporter under the control of the endogenous promoter,
were used to visualize Krt76 expression in the oral cavity and
stomach. Krt76 was first expressed at embryonic day 17.5 (E17.5)
in the tongue, palate and stomach (Fig. 1b, c) and expression
continued in those locations throughout adulthood (Fig. 1e–i).
Expression in the tongue occurred predominantly on the dorsal
surface and lateral border, with fewer cells labelled in the ventral
tongue (Fig. 1c–e). Krt76 was also strongly expressed in the palate
(Fig. 1b, f). Expression was observed in the buccal mucosa but not
in the outer lip, defining a clear boundary between the two epi-
thelia (Fig. 1g). Krt76 expression was confined to the suprabasal
layers in all oral epithelia (Fig. 1c–g, i).

Mouse stomach contains two well-defined areas: the non-
glandular forestomach (also known as squamous stomach, which
connects to the oesophagus) and the glandular stomach. Krt76
expression was confined to the suprabasal layers of the squamous
stomach (Fig. 1h). Expression of Krt76 was further confirmed by
antibody labelling (Fig. 1c, i) and qRT-PCR (Fig. 1j).

Loss of Krt76 results in lymph node and spleen enlargement.
Although it was previously reported that loss of Krt76 results in
hyperplasia of the buccal epithelium10, we observed no histolo-
gical abnormalities in the tongue or forestomach and no obvious

changes in epithelial proliferation in Krt76−/− mice, as assessed
by EdU labelling (Fig. 2a–c). However, between the ages of 4 and
8 months all Krt76−/− mice spontaneously developed a large cyst
(up to 17 mm in diameter) between the lower jaw and the fore-
limbs (Fig. 2d–f). Each cyst was filled with fluid and was juxta-
posed to the salivary gland (Fig. 2g). Immunofluorescence
staining for B220 (CD45R) and CD3 revealed the presence of B
and T cells, respectively, establishing that the cysts were enlarged
submandibular lymph nodes (Fig. 2h, i). Flow cytometric analysis
of the lymphocyte populations confirmed that the cyst cells were
CD4+ or CD8+ mature T cells (Fig. 2j). Compared with the
heterozygous controls (Krt76+/−), the lymph nodes in other body
sites were also increased in size (Fig. 2k), even though Krt76 was
not expressed in control lymph nodes (Supplementary Fig. 1a-b).
Consistent with the increased size of the lymph nodes, there was a
2.2- to 3.9-fold increase in the absolute number of mesenteric,
submandibular, axillary and inguinal lymph node cells in
Krt76−/− mice compared with heterozygous littermate controls
(Fig. 2l).

No changes were observed in thymus size or cellularity
(Fig. 2m–o). However, Krt76−/− mice had enlarged spleens, with
a 2.2-fold increase in the number of cells in the spleen (Fig. 2p–r).
In addition, adult Krt76−/− mice consistently weighed less than
control mice (Fig. 2s).

We conclude that loss of Krt76 results in splenomegaly and
lymphadenopathy, indicative of systemic inflammation.

Increased effector and regulatory T cells. To dissect the
inflammatory phenotype of Krt76−/− mice, flow cytometric
analysis of immune cell populations was performed. The per-
centage of total lymphocytes that were B cells (B220+ TCRβ-) was
increased in Krt76−/− mouse lymph nodes (Supplementary
Fig. 1c-d) compared to heterozygous controls. The percentage of
T cells (TCRβ+ CD3+ CD4+) that were effector T cells (CD4+

CD44high CD62Llow) was significantly increased in the spleen and
lymph nodes (Fig. 3a). Effector T cells are known to play an
important role in anti-tumour immunity18. There was also a
significant increase in regulatory T cells (Tregs; TCRβ+CD4
+CD3+Foxp3+ 19) in the lymph nodes and thymus of Krt76−/−

mice, but not in the spleen (Fig. 3b). Tregs are potent anti-
inflammatory cells that, among other functions, impede the anti-
tumour immune response in a variety of cancers20.

The changes in the levels of T effector cells, Tregs and B cells
correlated with a striking upregulation of circulating IL-6, IL-10
and TNFα (Fig. 3c). The fluid inside the lymphoid cysts of
Krt76−/− mice also had significantly elevated IL-6, IL-10 and
TNFα (Fig. 3d). The levels of IFNγ, IL-2 and IL-4 were not altered
(Fig. 3c). TNFα is known to stimulate Treg expansion21.

To examine whether loss of Krt76 also resulted in local
inflammation, we measured cytokine mRNA levels in the tongue
and squamous stomach. This revealed a significant upregulation
of TNFα in the tongue and IL-4 and TSLP in the squamous
stomach (Fig. 3e). Consistent with these local increases in
cytokine production, the total immune cell infiltrate (total CD45+

cells) was significantly increased in the tongue and squamous
stomach when compared to heterozygous controls (Fig. 3f, g). We
also confirmed the previously reported increase in the skin
inflammatory infiltrate12,13 (Fig. 3f, g).

Taken together, these data demonstrate that loss of Krt76
results in local and systemic inflammation.

Characterisation of Tregs and T effector cells. To discover
whether the functionality of Tregs and T effector cells differed in
Krt76−/− and control mice we performed in vitro suppression
assays (Fig. 4; Supplementary Fig. 2). Tregs were isolated from the
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Fig. 1 Keratin 76 is expressed in the oral epithelia and squamous stomach. a Krt76 knockout strategy. Krt76−/− mice were generated by disruption of the
Krt76 gene via a knockout first allele targeting construct (reporter-tagged insertion with conditional potential). These animals have a splice acceptor-LacZ
reporter gene integrated in the targeting gene, between exon 1 and 2, which allows tracing of gene expression whilst disrupting Krt76 protein expression.
b X-gal staining (blue) of beta-galactosidase expressed under the control of the Krt76 promoter in the oral cavity and stomach (arrows) of Krt76+/−

mouse embryos at E17.5. c Immunofluorescence labelling with anti-Krt76 (green) and anti-Krt14 (red) antibodies in the oral cavity and stomach of mouse
embryos at E17.5. Bottom row: left hand panel is higher magnification view of boxed area in right hand panel. d Whole-mount X-gal staining of Krt76+/−

reporter mice at post-natal day 2 (P2) shows Krt76 expression in the dorsal and lateral tongue, with partial expression in the ventral tongue. e–h X-gal
staining (blue) of beta-galactosidase expressed under the control of the Krt76 promoter in tongue (e), palate (f), lip and buccal mucosa (g) and in stomach
(h) of Krt76+/− adult mice. h Mouse stomach is subdivided into two major histologically distinct regions: the squamous stomach lined with a stratified
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expression is restricted to the squamous stomach region. i Immunofluorescence labelling with anti-Krt76 (green) and anti-Krt14 (red) antibodies of adult
wild-type mouse tissues, confirming the specificity of both anti-Krt76 antibody and X-gal staining. Samples were counterstained with nuclear dye DAPI
(4′,6-diamidino-2-phenylindole). Dotted line delineates basement membrane. j Krt76 mRNA qRT-PCR analysis of adult tissues, relative to Gapdh (n= 3
mice, means ± s.e.m. are shown). Scale Bars= 500 µm (b, c), 100 µm (e–i)
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spleen of control and Krt76−/− mice and co-cultured at different
ratios with CFSE-labelled CD4+CD25- responder T cells (Tresp),
which include the T effector population. The suppression of
proliferation was measured by flow cytometry (Fig. 4a, b).
Krt76−/− Tregs inhibited Tresp proliferation more effectively
than control Tregs, whether the Tresp were from control (Fig. 4b)
or Krt76−/− mice (Supplementary Fig. 2a). In addition, the

proliferative activity of Krt76−/− Tresp in the absence of Tregs
was lower than that of control Tresp (Fig. 4c).

The higher suppressive capacity of Krt76−/− Tregs correlated
with increased capacity to inhibit expression of the pro-
inflammatory cytokines IFNγ and IL17 and the anti-
inflammatory cytokine IL-10, whether the Tresp cells were from
control (Fig. 4d) or Krt76−/− mice (Supplementary Fig. 2b).
Tregs from Krt76−/− mice expressed higher levels of the Treg
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suppressive markers CD39 and CD73 compared to control Tregs
(Fig. 4e, f). CD39+ Tregs are known to suppress T cell
proliferation and inflammatory cytokine production more
efficiently than CD39 Tregs22. The differences between the
properties of Tregs from Krt76−/− and control mice did not
reflect a difference in Foxp3 expression levels (Fig. 4g).

We conclude that Tregs from Krt76−/− mice have enhanced
suppressive function and Tresp are less proliferative compared
with cells from control mice.

Increased tumour incidence in Krt76−/− mice. To determine
whether the loss of Krt76 directly impacts tumour incidence in
the oral cavity, we treated control (wild-type Krt76+/+ and het-
erozygous Krt76+/−) and Krt76−/− mice with a synthetic carci-
nogen 4NQO14 (Fig. 5a) that mimics the carcinogenic effects of
tobacco and alcohol ingestion15. In wild-type mice 4NQO indu-
ces carcinoma in the oral cavity and oesophagus, but not in the
remainder of the digestive tract23. Mice received 100 µg/ml of
4NQO in the drinking water for 16 weeks and were monitored for
the appearance and progression of lesions for a total of 28 weeks
(Fig. 5a). Hyperplasia of the dorsal tongue was evident by 6 weeks
and from 10 weeks mice had raised localised white lesions cor-
responding to dysplasias (Fig. 5a–c). From 16 weeks full OSCCs
began to appear in all regions of the oral cavity (Fig. 5b, c) and by
22 weeks all mice had developed at least one tumour (Fig. 5f). The
development of tumours was similar in male and female mice.

To explore the significance of the downregulation of Krt76 that
occurs in human OSCCs10, we monitored changes in the
expression of Krt76 by LacZ labelling in 4NQO-treated Krt76+/−

mice. Krt76 downregulation was first observed in hyperplastic
oral epithelium (Fig. 5d; 13 out of 15 mice), consistent with the
findings in human patients10. 10 out of 13 dysplasias and 4 out of
4 invasive SCC had focal or total loss of Krt76 (Fig. 5d, arrowed).
Nevertheless, even when tumours developed within the same
mouse, some lesions had lost Krt76 expression whereas others
retained it (Fig. 5d, I and II). This was confirmed with
immunostaining for Krt76; as expected (Fig. 1, Supplementary
Fig. 3d), Krt76, when present, was co-expressed with differentia-
tion markers such as Loricrin (Fig. 5e).

We next compared the incidence of oral cavity tumours in
Krt76+/+, Krt76+/− and Krt76−/− mice (Fig. 5f). There was no
significant difference between Krt76+/+ and Krt76+/− mice;
however, Krt76−/− mice developed OSCC earlier. In Krt76−/−

mice, the average onset of lesions was at 12 weeks after treatment
(n= 16), compared to 17 weeks in control mice (n= 14 Krt76+/+

and n= 27 Krt76+/−, p < 0.0001). Furthermore, in Krt76−/− mice

the incidence was 100% by 14 weeks (Fig. 5f, n= 16). Many of the
tumours had areas that were LacZ-negative, indicating down-
regulation of Krt76 or loss of Krt76-expressing cells (Fig. 5d).

None of the Krt76+/+ or Krt76+/− control mice developed
tumours in the stomach by 28 weeks from the start of 4NQO
treatment (Fig. 5g). However, Krt76−/− mice started developing
tumours in the squamous stomach by week 16 and by week 28
89% of the mice had a stomach tumour (Fig. 5g). No tumours or
dysplasias were observed in the glandular stomach, regardless of
genotype (Fig. 5h). As shown in Fig. 5h (arrow), there was
extensive downregulation of Krt76 expression in stomach
tumours.

We conclude that Krt76 ablation accelerates 4NQO-induced
tumour progression in the tissues where Krt76 is expressed,
namely the oral cavity and squamous stomach.

Tongue and stomach epithelial integrity. It has previously been
reported that Krt76−/− epidermis exhibits reduced expression of
tight junction proteins, Claudins, and an increase in the number
of suprabasal layers12,13 (Supplementary Fig. 3f). In contrast there
was no reduction in Claudin1, Claudin3 or Claudin7 expression
in Krt76−/− tongue or stomach epithelium (Supplementary
Fig. 3f). There was no difference in the total thickness of tongue
and stomach epithelium between control and Krt76−/− mice, nor
in the suprabasal (Loricrin, Filaggrin or Involucrin-positive)
layers (Supplementary Fig. 3d, e), although by Q-PCR a reduction
in Involucrin was observed in Krt76−/− stomach (Supplementary
Fig. 3f).

The epithelial integrity of the oral epithelia of Krt76−/− mice
was assessed by a whole-mount Toluidine Blue dye penetration
assay24 and was found not to be defective (Supplementary
Fig. 3b). Furthermore, following introduction of FITC-dextran by
oral gavage there were no differences in the concentration of
FITC-dextran in blood serum between control and Krt76−/−

mice (Supplementary Fig. 3c). The previously reported delay in
epidermal barrier formation12 was confirmed (Supplementary
Fig. 3a).

To examine whether there was increased penetration of
commensal microorganisms that could lead to an activation of
immune cells, we measured the bacterial load of the tongue and
stomach epithelia by Gram staining and performed whole-mount
fluorescence in situ hybridisation (FISH) with a universal
bacterial probe (BacUni)25. Bacterial penetration was largely
confined to the cornified layers of the tongue filiform papillae in
both Krt76−/− and control mice, demonstrating that there was no

Fig. 2 Loss of Krt76 leads to enlarged lymph nodes and spleen, without affecting tongue and stomach epithelial homoeostasis. Immunostaining (a) and
quantification (b) of EdU-labelled cells per mm of tongue and squamous stomach epithelia (n= 3 mice/genotype, 2 sections/mouse and >6 fields
quantified per section, means ± s.e.m. are shown). c Hematoxylin-eosin (H&E) stained sections. d Krt76−/− 6 month-old mouse with a neck cyst
(arrowed). e Mean age (±s.e.m.) of onset of macroscopic neck lymphoid cysts in Krt76−/− (n= 16) and control mice (n= 41) (****p≤ 0.0001, unpaired t-
test). fMacroscopic views of submandibular lymph nodes from control and Krt76−/− mice and cyst from Krt76−/− mouse. Pictures are representative of 9
mice/genotype. g Hematoxylin-eosin stained sections of neck lymphoid cyst inside the lymph nodes (LN) at early (left) and advanced (right) stages,
juxtaposed to the salivary glands (SG). h, i Immunofluorescence staining of lymph nodes and lymphoid cyst sections with (h) anti-B220 (B cell marker) and
(i) anti-CD3 (T cell marker) with DAPI counterstain. j Representative flow cytometry dot plots showing T cell populations from thymus (CD4+ and CD8+),
submandibular lymph nodes (CD4+ or CD8+) and neck lymphoid cyst (CD4+ or CD8+, as the lymph nodes) from Krt76−/− and control mice, showing
percentages of total live cells (n= 3 experiments, n= 4 mice/experiment/genotype). k Lymph nodes from control and Krt76−/− mice. Pictures are
representative of 9 mice from each genotype. l Quantification of the total absolute number of cells in lymph nodes of control and Krt76−/− mice.
m, n Thymus size (m) and thymus cell number (n) in control and Krt76−/− mice. o Representative photograph of thymus from control and Krt76−/− mice.
p, q Spleen weight (p) and absolute spleen cell numbers (q) in control and Krt76−/− mice. r Representative photograph of spleens from control and Krt76
−/− mice. s Total body weight of control (n= 27) and Krt76−/− (n= 10) mice. l, m, n, p, q mean ± s.e.m., *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****p≤
0.0001, unpaired t-test, n= 4 mice/genotype, measured in duplicate and experiment repeated twice. Scale bars: 100 µm (a, c, g–i), 500 µm (f, k, o, r). Sub
submandibular, Ax axillar, Mes mesenteric, Ing inguinal
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significant difference in bacterial load or penetration (Supple-
mentary Fig. 3g-h).

We conclude that loss of Krt76 did not compromise the
integrity and barrier properties of tongue and stomach epithelia
and that the increased tumour incidence in Krt76−/− mice is not
linked to defective epithelial barrier formation.

Local and systemic inflammatory response to carcinogen. Since
Krt76−/− mice exhibit local and systemic inflammation, we
examined whether this was exacerbated by 4NQO treatment.

Tongue and squamous stomach were collected after 2 weeks of
4NQO treatment to assess whether the levels of inflammatory
cytokines were altered. The levels of cytokines were increased
upon 4NQO treatment of both Krt76+/− control and Krt76−/−

mice compared to untreated mice (Fig. 6a compared to Fig. 3c).
However, blood serum levels of IFNγ, IL-4, IL-6, IL-10 and TNFα
were significantly higher in 4NQO-treated Krt76−/− than control
mice (Fig. 6a).

In the tongue there were significantly more stromal CD45+

cells in Krt76−/− versus control mice prior to 4NQO treatment
(Fig. 3f, g), following 2 weeks of treatment and in 4NQO-induced
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hyperplasias (Fig. 6b, c). In Krt76−/− stomach, the number of
local CD45+ cells increased in the stroma adjacent to 4NQO-
induced tumours (Fig. 6d).

Immunofluorescence labelling for Foxp3 revealed an increase
of Tregs in both tongue and squamous stomach of Krt76−/− mice
compared to control mice, whether normal or tumour-bearing
tissue (Fig. 6e–h). The number of Tregs increased in hyperplasias
and dysplasias of Krt76−/− tongue compared to controls and
there was a marked accumulation of Tregs in tumour stroma
(Fig. 6e, g, arrowheads, h). Furthermore, lesions in Krt76−/−

tongue and stomach presented a concomitant decrease in effector
T cells (Fig. 6i). Total CD4+ cells were increased in the stomach
but not in the tongue (Fig. 6i). Consistent with the findings in
mice, there was an increase in stromal FoxP3+ cells underlying
Krt76-negative- regions of human OSCC (Fig. 7a) even when the
differentiation marker Involucrin was still expressed (Fig. 7b).

Two cytokines that control Tregs are IL-18, which regulates
Treg function26,27, and IL-33, which is constitutively expressed in

barrier epithelial cells28,29 and promotes Treg accumulation and
maintenance in inflamed tissues30. Consistent with the accumu-
lation of Tregs, IL-18 levels were significantly increased in
4NQO-treated (2 weeks) Krt76−/− compared to Krt76+/− tongue
(Fig. 6j). In addition, IL-33 was increased in Krt76−/− tongue and
squamous stomach after 4NQO treatment (Fig. 6j).

We conclude that the increased cancer susceptibility of
Krt76−/− mice is correlated with an exacerbated systemic and
inflammatory response to carcinogen, including the accumulation
of Tregs in the tongue and squamous stomach.

Increased Tregs correlate with accelerated tumour formation.
To examine whether targeting Tregs influences tumour onset
in Krt76−/− mice, we developed mixed bone marrow (BM)
chimeras by sublethally irradiating control and Krt76−/− mice
and reconstituting them with BM from Depletion of Reg-
ulatory T Cell (DEREG) transgenic mice31 (Fig. 8a, b). DEREG
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mice express a diphtheria toxin receptor-enhanced green
fluorescent protein (DTR-eGFP) fusion protein under control
of the endogenous Foxp3 promoter, allowing both visualisa-
tion and diphtheria toxin-induced ablation of Foxp3+ Tregs.
Successful engraftment was verified by analysing the

percentage of Foxp3GFP+ Tregs in the chimeras 6 weeks after
reconstitution (Fig. 8c). As expected, there were more
Foxp3GFP+Tregs in Krt76−/− than control mice (Fig. 8c).

We ablated donor Tregs by injecting diphtheria toxin (DT, or
PBS as a control) for the first 5 weeks of the 4NQO carcinogenesis
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protocol (Fig. 8b). This time point was selected to coincide with
the development of hyperplasia (Fig. 6h). After DT-injection for
5 weeks, donor Foxp3GFP+ Tregs were significantly reduced in
DEREG/Krt76−/− and control DEREG/Krt76+/+ chimeric mice
(Fig. 8c). However, when all the mice in each cohort had
developed tumours and were subjected to end-point analysis, the
total number of Tregs was significantly increased in DT-treated
compared to PBS-treated DEREG/Krt76−/− mice (Fig. 8d). In
control DEREG/Krt76+/+ mice, the increase in lymph node Tregs
following DT treatment was not statistically significant (Fig. 8d).
However, in the spleen of DT-treated DEREG/Krt76+/+ mice
there was a significant increase in Tregs (Fig. 8e). Further analysis
of Krt76−/− chimeras (Fig. 8f) showed that while, as expected,
donor GFP+ Tregs were reduced there was a significant increase
in recipient GFP- Tregs, accounting for the increase in total Tregs.

Quantitation of 4NQO-induced carcinogenesis revealed that
DT treatment accelerated tumour formation in both control and
Krt76−/− mice (Fig. 8g). Thus higher levels of Foxp3+ Tregs
correlate with more rapid tumour development in both control
and Krt76−/− mice. The major effect of Krt76 deletion on tumour
susceptibility may therefore be via enhanced accumulation of
Tregs.

Discussion
Stratified, terminally differentiated epithelia, such as epidermis
and oral epithelium, provide protective barriers against the
environment, and their function depends on structural proteins,
such as keratins. Until recently, keratins were mainly regarded as
cytoskeletal scaffolds; however, there is an emerging role for
keratins in the regulation of epidermal immunity3–6,8,32,33. For
example, Krt1 is not only crucial to maintain skin integrity, but
also regulates innate immunity by restricting IL-18 release from
keratinocytes5. Krt17 acts as a regulator of skin immune
responses and loss of Krt17 promotes reduced cell proliferation,
leading to a delay in skin tumour onset6. Likewise, Krt16 regulates
early inflammation and innate immunity in skin32.

Krt76 is the most significantly downregulated gene encoding a
structural protein in human OSCC10,34 and downregulation
correlates strongly with poor prognosis10. We have found that
Krt76-null mice exhibit a marked inflammatory disease pheno-
type with systemic components: splenomegaly and lymphade-
nopathy (Fig. 2). This is correlated with a significant expansion of
B cells (Supplementary Fig. 1c, d), effector T cells and Tregs
(Fig. 3a, b), as well as an upregulation of inflammatory cytokines
(Fig. 3c).

The Krt76−/− mouse serves as a model to explore the link
between chronic inflammation and cancer, providing an oppor-
tunity to examine the impact of aberrant epithelial differentiation
and consequent chronic inflammation on tumorigenesis. It is
known that Krt76−/− mice do not develop spontaneous tumour
lesions in the oral mucosa10 or skin. However, we have shown
that in response to 4NQO treatment Krt76−/− mice are more

predisposed to developing tumours in those sites where Krt76 is
normally expressed, namely the tongue and squamous stomach
(Fig. 5f, g).

The enhanced sensitivity of Krt76−/− mice to carcinogenesis
was not due to defective epithelial barrier formation. In addition,
although some of the effects of Krt17 are attributable to its
nuclear location6,33, we failed to detect nuclear Krt76 by antibody
labelling and Krt76 is not predicted to have a nuclear localisation
signal35. Instead the cancer susceptibility of Krt76−/− mice cor-
related with a higher number of Tregs in secondary lymphoid
organs and an enhanced accumulation of Tregs in the tongue and
squamous stomach, which increased further in the tumour
microenvironment (Fig. 6e–h). There was also a reduction in
effector T cells in Krt76−/− mice in the tumour microenviron-
ment. We conclude that keratins not only regulate inflammation
and immunity in the skin (reviewed in3) but also in the oral cavity
and squamous stomach.

Tregs were originally identified because of their ability to
prevent organ-specific autoimmune disease by maintaining lym-
phocyte homoeostasis and regulating activated T cells20. How-
ever, there is emerging evidence that they play a major role in the
tumour microenvironment20,36 and contribute to tumour growth
and progression by inhibiting the antitumor immune
response19,26,37. Increased numbers of FoxP3+/CD25+ Tregs are
observed in a subset of human OSCC and in the early stages of
tumour progression in several mouse models38. While this has
been linked to an immunosuppressive tumour microenviron-
ment39–42, there is still controversy about whether tumours with
increased Tregs have a better or worse prognosis43.

Krt76−/− mice exhibited deregulated cytokine expression.
Anti-tumour function of dendritic cells is suppressed through IL-
1044 and we found IL-10 to be upregulated in Krt76−/− mice,
particularly after 4NQO treatment. Increased levels of IL-10 are
also reported in patients with OSCC45. However, IL-6, which is a
key cytokine in encouraging cancer cell proliferation46, was also
upregulated in Krt76−/− mice. After carcinogen treatment, we
observed an increase in serum IFNγ (Fig. 6a), consistent with the
fact that IL-18, which is also upregulated (Fig. 6j), stimulates
IFNγ production47. Krt76−/− effector T cells produced more
IFNγ than control effector T cells in culture (cf. Figure 4d and
Supplementary Fig. 2b).

In addition to being more abundant, Tregs from Krt76−/−

mice had enhanced suppressive function, which correlated with
higher levels of CD39 and CD73 expression (Fig. 4). CD39 is
expressed on human and murine Tregs and is known to mediate
immune T cell suppression by the downstream production of
adenosine48. CD39+ Tregs suppress T cell proliferation more
efficiently than CD39- Tregs22. The coordinated expression of
CD39 and CD73 on Tregs in Krt76−/− mice can explain their
enhanced suppressive function. Tregs from CD39−/− mice have
impaired suppressive function in vitro and fail to block transplant
rejection in vivo48. Furthermore, Treg expression of CD39 and

Fig. 5 Tongue and squamous stomach tumour incidence in Krt76−/− mice. a Schematic of 4NQO tumorigenesis protocol. b Representative macroscopic
views of each stage of tongue tumour development. c, d Representative images of hematoxylin & eosin staining (H&E) (c) and X-gal staining (blue) (d) and
respective macroscopic views of the tongue of control (n= 41 mice) and Krt76−/− mice (n= 16 mice). X-gal staining is used to visualize Krt76 expression.
e Immunostaining for Krt76 (green) and Loricrin (red) (terminal differentiation marker) in a tongue section bearing two tumours, one of which expresses
Krt76. f Tumour incidence in Krt76+/+ (n= 14, median= 17 weeks), Krt76+/− (n= 27, median= 16 weeks) and Krt76−/− mice (n= 16 mice, median=
10.5 weeks) (no significant difference between the wild-type Krt76+/+ and the heterozygous Krt76+/− controls; ****p < 0.0001 for Krt76−/− when
compared to both controls; one-way ANOVA, Mantel–Cox test and Grehan–Breslow–Wilcoxon test). g Incidence of squamous stomach tumours in control
(Krt76+/+ and Krt76+/−) (n= 16) and Krt76−/− mice (n= 9) harvested 16–28 weeks after the initiation of 4NQO treatment. h Representative images of
H&E and X-gal staining (blue) of tumours in the squamous stomach. X-gal staining is used to visualize Krt76 expression. Dotted lines delineate the
squamous stomach area. Scale bars: 100 µm
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ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05872-4

10 NATURE COMMUNICATIONS |  (2018) 9:3437 | DOI: 10.1038/s41467-018-05872-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


CD73 is greater in human HNSCC than in healthy tissue49,
characterised by increased adenosine-mediated suppression of
effector T cells48,49.

In support of a positive role for Treg in 4NQO carcinogenesis,
we found that partial depletion of donor Tregs in chimeric mice
led to an increase in total Tregs and a corresponding acceleration
of tumour formation, both in Krt76−/− and control mice. We
propose that upon loss of Krt76 the increase in the immuno-
suppressive Treg infiltrate leads to a failure in anti-tumour
immunity linked to exaggerated suppression of anti-tumour-
associated antigen-reactive lymphocytes. How loss of Krt76 exerts
its effects requires further investigation; however, mechanisms
involving inflammasome activation50 or epithelial production of
danger-associated molecular pattern (DAMP) proteins51 are
possibilities.

The inability to resolve chronic inflammation is considered one
of the initial triggers of carcinogenesis52, while immunosup-
pression is a crucial tumour immune-evasion mechanism and the
main obstacle to successful tumour immunotherapy20. Our study
highlights the importance of keratins as immunomodulators and
the potential significance of highly suppressive CD39+ Tregs in
OSCC, making them potentially attractive targets for new cancer
therapies. The Krt76−/− mouse provides a paradigm for under-
standing how the differentiated epithelial layers contribute to oral
carcinogenesis by provoking both local and systemic immune
responses43.

Methods
Animal procedures. All animal procedures were subject to institutional ethical
review and performed under the terms of a UK Home Office license. KRT76−/−

(Krt76tm1a(KOMP)Wtsi) mice were obtained from the Wellcome Sanger Institute
Mouse Genetics Project13,16,17. Heterozygous Krt76+/− mice were crossed to
obtain knockout (Krt76−/−) and littermate control (heterozygous Krt76+/− or
wild-type Krt76+/+) mice. DEREG mice31 were kindly provided by Caetano Reis e
Sousa (The Francis Crick Institute). Mice were maintained on the C57Bl/6 N
genetic background.

In some experiments, mice received a dose of 500 µg EdU (5-ethynyl-2′-
deoxyuridine, Invitrogen) in PBS intraperitoneally 2 h before tissues were harvested
to assess proliferation. Tregs were depleted by intraperitoneal injection of 20 ng

diphtheria toxin (DTX; Sigma) per g mouse (as in Fig. 8b), once a week for
5 weeks53. Grafting efficiency was confirmed by analysing Foxp3 GFP+ cells by
flow cytometry at indicated time-points. Sample sizes were determined on the basis
of prior power calculations.

Human samples. Human tissues were obtained from the Guy’s & St Thomas’ NHS
Foundation Trust research biobanks, which are licensed by the Human Tissue
Authority (licence number 12121).

BM reconstitution. In BM transplantation experiments (Fig. 8), 8- to 16-week-old
male and female Krt76−/− and control littermate recipients (Krt76+/−) were
treated with acidified water at least 10 days before irradiation. Statistical power was
calculated using the resource equation and animals were randomly assigned to
treatment groups. Allogenic BM transplants were performed 24 h after total body
irradiation
(two times 5.5 Gy, separated by 3 h). Donor BM was isolated from the tibia and
femur of male mice. BM reconstitution was performed by intravenous injection of
2 × 106 BM cells in 200 µl PBS. Chimerism was confirmed by analysing
Foxp3GFP+ cells in the blood by flow cytometry.

4NQO carcinogenesis. 4NQO (Sigma, diluted to 100 µg/ml) was administered in
the drinking water and fed to mice as the sole source of drinking water during the
carcinogen-treatment period. 4NQO-containing water was prepared and changed
once a week for 16 weeks. After that period, mice were given normal drinking
water. During the experiments, the mice were maintained with regular mouse chow
and water (with or without 4NQO) ad libitum. Once a week 4NQO-treated mice
were sedated with inhaled isoflurane and the oral cavities were screened for lesions
(hyperplasias, dysplasias and SCCs).

Flow cytometry. Lymph nodes, thymus and spleen were harvested from treated
mice, mechanically disrupted, passed through a 40 µm cell strainer (BD Falcon)
and rinsed with PBS to remove debris. Red blood cells were lysed using
Ammonium–Chloride–Potassium Lysing Buffer. Cell number was determined
using a Scepter Cell Counter (Merck Millipore). Tongue and stomach tumours
were dissociated using Tumour Dissociation Kit (Miltenyi Biotec) according to the
manufacturer’s recommendations.

Single cells were labelled according to standard procedures. Briefly, single-cell
suspensions were washed once in Stain Buffer and resuspended at 1 × 106 cells/ml.
Nonspecific staining was blocked with Fc block (CD16/CD32, clone 93) prior to
cell surface staining with the following antibodies: CD3ε PECy7 (145-2C11), CD3ε
FITC (145-2C11), CD4 PerP.Cy5.5 (RM4-5), CD4 PE (RM4-5), CD8α PE (53–6.7),
CD8α FITC (53–6.7), CD8 BV605 (53–6.7), TCRβ APC (H57-597), B220 APCCy7
(RA3-6B2), CD25 APCe780 (PC61.5), CD62L PerCPCy5.5 (MEL-14), CD73 FITC
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Fig. 7 Krt76 expression and Foxp3+ Treg infiltration in human OSCC. a Representative images of H&E staining and immunostaining for Krt76 and Foxp3+

Tregs in human OSCCs. b Representative images of immunostaining of Krt76, keratin 14 (Krt14) and involucrin (IVL) with nuclear DAPI counterstain in
human OSCC. Scale bars: 100 µm
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(eBioTY/11.8), CD39 PE (24DM51), CD44 AlexaFluor700 (IM7) (all from
eBioscience, used at 1/100 dilution).

Intracellular staining for Foxp3 PE-Cy7 (FJK.165, eBioscience) was performed
after fixation with Foxp3 Fixation Buffer and permeabilization with Foxp3
Permeabilization Buffer (eBioscience). 4′,6-Diamidino-2-phenylindole (DAPI,
Molecular Probes) was used to exclude dead cells, or Fixable Viability Dye eFluor
455UV (eBioscience) in intracellular staining. Labelled cells were analysed on a BD

LSRFortessa cell analyser. All data were analysed using FlowJo software. The gating
strategy for Treg and effector T cell populations is shown in Supplementary Fig. 4.

Histology. For frozen sections, tissues were embedded in OCT (optimal cutting
temperature compound), sectioned and post-fixed in 4% paraformaldehyde/PBS
pH 7.4 for 10 min before staining. X-gal staining on frozen sections was performed
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as described54. The tissues were sectioned and stained with haematoxylin and eosin
(H&E) and with Gram stain (Sigma) by conventional methods. Images were
acquired using a Hamamatsu slide scanner and analysed using NanoZoomer
software (Hamamatsu).

Immunofluorescence staining. Frozen sections were fixed in 2% paraformalde-
hyde/PBS pH 7.4 and blocked with 10% goat serum, 2% BSA, 0.02% fish skin
gelatin and 0.05% TritonX100 (Sigma) in PBS for 1 h at room temperature. Paraffin
sections of human OSCC were subjected to heat-mediated antigen retrieval (citrate
buffer, pH6) prior to blocking. Primary antibodies were incubated overnight at
4 °C, followed by 1 h incubation at room temperature in secondary antibody.

The following primary antibodies were used: Foxp3 (eBioscience, clone FJK-16s,
1/100, and Abcam, clone 236 A/E7, 1/50), anti-Loricrin, anti-Krt76 (Santa Cruz,
clone F-12, 1/100, and Sigma, HPA019656, 1/100), Krt14 (Covance, PRB-155P, 1/
1000), B220/CD45R (eBioscience, clone RA3-6B2, 1/100), CD3 (BD Pharmingen,
clone 17A2, 1/150), CD45 (BD Pharmingen clone 30-F11, 1/150); and secondary
antibodies: anti-goat, anti-mouse and anti-rabbit Alexa Fluor 488, 568 and 633
(Life Technologies, 1/300).

EdU staining was performed with a Click-it EdU imaging kit (Life
Technologies) according to the manufacturer’s recommendations. DAPI (Life
Technologies) was used as a nuclear counterstain. Slides were mounted using
ProLong Gold anti-fade reagent (Life Technologies). Images were acquired with a
Nikon A1 Upright Confocal microscope. Images were analysed using ICY image
analysis software55.

Quantification of cell number and epithelial thickness. Images were quantified
using open-source ICY software plug-in Manual Counting55. Positively stained
cells for CD45, EdU or Foxp3 were counted per length of the epithelium analysed
or per stromal area (as delineated in Fig. 3). The total number of nuclei was
quantified using DAPI staining. All cell count analyses were performed using
sequential sections from well-oriented tongue or stomach blocks in a blind manner
on an average of 10 independent fields per animal (n= 3–6 animals/genotype/
experiment). Representative images from two to three independent experiments
with at least three biological replicates per group are shown. All statistical analyses
were carried out using Prism 7 (Graph Pad).

Fluorescence in situ hybridisation with BacUni. Pieces of tongue and stomach
epithelia were collected and sectioned in a sterilised setup. Sections were fixed in
1:1 acetone-to-methanol and incubated with PNA FISH probes at 55 °C. A uni-
versal bacteria probe (BacUni; AdvanDx) and probe for C. dubuliniensis
(AdvanDx) were used25. DAPI was used for nuclear counterstaining. Slides were
mounted using ProLong Gold anti-fade reagent (Life Technologies). Images and Z-
stacks were acquired with a Nikon A1 Upright Confocal microscope. Evaluation of
bacterial location was performed on three-dimensional z-stacks using ICY
software.

Epithelial permeability assays. Whole embryos or dissected tongues were
dehydrated through a methanol series (25, 50, 75 and 100% methanol, 60 s per
step), rehydrated in PBS, and then stained immediately with 0.1% toluidine blue in
water for 10 min, with agitation at room temperature. Samples were briefly washed
in PBS and immediately photographed using a Nikon SWZ18 and Nikon DS-Ri2
camera.

Stomach barrier function was assessed using a FITC-labelled dextran method.
Briefly, food and water were withdrawn for 4 h and mice were sedated with inhaled
isoflurane and orally administrated with the permeability tracer by oral gavage (60
mg/100 g body weight of FITC-labelled dextran, MW 4000; FD4, Sigma-Aldrich).
After 30 min, blood was collected by cardiac puncture into Microtainer SST tubes
and fluorescence intensity was determined using GloMax® Discover Multimode
Microplate Reader (Promega; excitation, 492 nm; emission, 525 nm). FITC-dextran
concentrations were determined using a standard curve generated by serial dilution
of FITC-dextran.

Tissue collection, RNA extraction and gene-expression analysis. Biopsies were
homogenised using GENTLEMACS (Miltenyi Biotec) according to the manu-
facturer’s recommendations. Total RNA from homogenised tissues was isolated
and purified using the Purelink RNA micro kit (Invitrogen) with on-column
DNaseI digestion, according to the manufacturer’s instructions. Complementary
DNA was generated using SuperScriptIII (Invitrogen). Quantitative real-time PCR
reactions were performed with TaqMan Fast Universal PCR Master Mix and
Taqman probes (Thermo Fisher Scientific, Supplementary Table 1) on a 7900HT
real-time PCR machine (Applied Biosystems) on biological triplicates.

In vitro T-cell suppression assay. CD4+ T lymphocytes were purified from
splenic cell suspensions using Dynabeads® Untouched™MouseCD4 Cells kits (Life
Technologies) followed by CD25+ magnetic-activated cell sorting (MACS)
according to the manufacturer’s instructions (Miltenyi Biotec). Cell purity was >
96% as determined by flow cytometry. 1 × 106 cells/ml were resupended in com-
plete RPMI-1640 medium (Thermo Fisher Scientific) containing L-glutamine (2
mM, Gibco), penicillin/streptomycin (100 U/ml, Gibco), HEPES (1 mM, Gibco), 2-
Mercapthoethanol (50 mM, Gibco) and 10% foetal calf serum (Thermo Fisher
Scientific). CD4+ CD25- T effector cells (Tresp) were labelled with 5 nM CFSE
(Vybrant CFDA SE Cell Tracer kit, Molecular Probes, Life Technologies) for 15
min at 37 °C, resuspended at a concentration of 1 × 106 cells/ml in complete RPMI-
1640 medium and co-cultured with different numbers of CD4+ CD25+ Tregs at a
range of dilution ratios, in the presence of 10 × 105 antigen-presenting cells and
monoclonal anti-CD3e mAb (1 µg/ml, clone 145-2c11, BD Pharmingen), in a final
volume of 200 µl culture medium in 96-well round-bottom plates. Each sample was
tested in duplicate or triplicate. After culture for 72 h at 37 °C in a humidified
atmosphere of 5% CO2, Near-IR Live/Dead fixable dead cell stain kit (Thermo-
Fisher) was added to exclude dead cells and CFSE dilution was analysed by flow
cytometry using a BD LSRFortessa. All data were analysed using FlowJo software.
Relative proliferation was calculated as proliferation index without or with Tregs
and % suppression calculated.

Cytokine analysis by cytometric bead array multiplex assays. Blood was col-
lected by cardiac puncture and left to clot for 2 h at room temperature. Serum was
collected after centrifugation for 20 min at 4 °C. Supernatants from the suppression
assays were collected and kept at −80 °C prior to analysis. Levels of IFNγ, IL-2, IL-
4, IL-6, IL-10 and TNFα were analysed in the serum or in cell culture supernatants
using a mouse cytometric bead array Th1/Th2/ Th17 cytokine kit (BD Biosciences)
following the manufacturer’s instructions. Data were acquired using the BD
FACSCanto system (BD Biosciences) and analysed using FlowJo software. All
samples were measured in technical duplicates and biological replicates (n= 4 for
each group).

Statistical analysis. All graphs and statistical calculations were generated using
Prism7 (GraphPad) software. Statistical significance was computed with the test
indicated in each figure legend. The number of experiments and animals analysed
are indicated in each figure.

Data availability. The data that support the findings of this study are available
within the manuscript and its supplementray information or from the authors
upon reasonable request.
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