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We explain anomalies currently present in various data samples used for the measurement of the 
anomalous magnetic moment of electron (ae) and muon (aμ) in terms of an Aligned 2-Higgs Doublet 
Model with right-handed neutrinos. The explanation is driven by one and two-loop topologies wherein 
a very light CP-odd neutral Higgs state (A) contributes significantly to aμ but negligibly to ae , so as to 
revert the sign of the new physics corrections in the former case with respect to the latter, wherein 
the dominant contribution is due to a charged Higgs boson (H±) and heavy neutrinos with mass at 
the electroweak scale. For the region of parameter space of our new physics model which explains 
the aforementioned anomalies we also predict an almost background-free smoking-gun signature of it, 
consisting of H± A production followed by Higgs boson decays yielding multi-τ final states, which can be 
pursued at the Large Hadron Collider.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It is tempting to conclude that the time-honoured discrep-
ancy between the Standard Model (SM) prediction for the muon 
anomalous magnetic moment and its experimental measurement 
is a firm indication of New Physics (NP) Beyond the SM (BSM). 
Moreover, after improving the determination of the fine structure 
constant, it recently turned out that there is also a significant dif-
ference between the experimental result of the electron anomalous 
magnetic moment and the corresponding SM prediction. Accord-
ing to the latest results, we have the following deviations in the 
anomalous magnetic moments of muon and electrons [1–10]:

δaμ = aexp
μ − aSM

μ = (278 ± 88) × 10−11 ,

δae = aexp
e − aSM

e = (−87 ± 36) × 10−14, (1)

which indicate a 3.1σ and 2.4σ discrepancy between theory and 
experiment, respectively. Fermilab and J-PARC experiments [11,12]
are going to explore these anomalies in the near future with much 
higher precision, but now it is worthwhile speculating what possi-
ble NP phenomena might lie behind these two measurements. In 
doing so, it should be noted that δae and δaμ have opposite signs, 
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which provides a challenge for any BSM explanation attempting to 
account for both of them simultaneously. This generated growing 
interest and several extensions of the SM have been analysed as 
possible origin of the results in (1).

It is clear that any Electro-Weak (EW) scale NP effects that may 
explain the aμ result will lead to corrections to ae of order 10−5

times smaller, due to the typical relative suppression generated by 
the mass ratio (me/mμ)2, and, crucially, with the same sign. There-
fore, the anomalies of aμ and ae cannot be resolved simultaneously 
with the same NP contribution, unless it violates lepton flavour 
universality in a very peculiar way, so as to give a positive contri-
bution to aμ and a negative one to ae . Some attempts along this 
line were in fact pursued by Ref. [13–37].

In this paper, we analyse the anomalous magnetic moment of 
muon and electron in a 2HDM with Right-Handed (RH) neutrinos 
and aligned Yukawa couplings. We emphasise that, in this class of 
models, one can account for the ae through one-loop effects gen-
erated by the exchange of RH neutrinos and charged Higgs bosons. 
At the same time, the measured value of aμ can be obtained 
accurately through two-loop effects generated by a light CP-odd 
neutral Higgs state in combination with charged leptons. This phe-
nomenology requires the H± and A states to be relatively light, so 
that their pair production process has a sizeable cross section at 
the Large Hadron Collider (LHC), thereby enabling one to finger-
print this Aligned-2HDM (A2HDM) with RH neutrinos in the years 
to come.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The plan of this paper is as follows. In the next section we 
describe our NP scenario. In the following one we present the for-
mulae for ae and aμ . After this, we present our results for the two 
anomalous magnetic moments and the aforementioned H± A sig-
nature in two separate subsections. We then conclude.

2. A2HDM with RH neutrinos

The most general Yukawa Lagrangian of the 2HDM can be writ-
ten as

−LY = Q̄ ′
L

(
Y ′

1d�1 + Y ′
2d�2

)
d′

R + Q̄ ′
L

(
Y ′

1u�̃1 + Y ′
2u�̃2

)
u′

R

+ L̄′
L

(
Y ′

1��1 + Y ′
2��2

)
�′

R + L̄′
L

(
Y ′

1ν�̃1 + Y ′
2ν�̃2

)
ν ′

R

+ h.c., (2)

where the quark Q ′
L, u

′
R , d′

R and lepton L′
R , �′

R , ν ′
R fields are defined 

in the weak interaction basis and we also included the couplings 
of the Left-Handed (LH) lepton doublets with the RH neutrinos. 
The �1,2 fields are the two Higgs doublets in the Higgs basis and, 
as customary, �̃i = iσ 2�∗

i . The Yukawa couplings Y ′
1 j and Y ′

2 j , 
with j = u, d, �, are 3 × 3 complex matrices while Y ′

1ν and Y ′
2ν

are 3 × nR matrices, with nR being the number of RH neutrinos. 
Besides implementing the standard Z2 symmetry, potentially dan-
gerous tree-level Flavour Changing Neutral Currents (FCNCs) can 
be tamed by requiring the alignment in flavour space of the two 
Yukawa matrices that couple to the same right-handed quark or 
lepton. This implies1

Y ′
2,d = ζdY ′

1,d ≡ ζdY ′
d, Y ′

2,u = ζu Y ′
1,u ≡ ζu Y ′

u,

Y ′
2,� = ζ�Y ′

1,� ≡ ζ�Y ′
�, Y ′

2,ν = ζνY ′
1,ν ≡ ζνY ′

ν .
(3)

Renormalisation group effects can introduce some misalignment in 
the Yukawa couplings. These provide negligible FCNC contributions 
in the quark sector suppressed by mass hierarchies mqm2

q′/v3 [38,
39].

The Yukawa Lagrangian in Eq. (2) generates a Dirac mass ma-
trix for the standard neutrinos and can also be supplemented by a 
Majorana mass term M ′

R for the RH ones

−LMR = 1

2
ν ′ T

R C M ′
Rν ′

R + h.c., (4)

where C is the charge-conjugation operator. In particular, by ex-
ploiting a bi-unitary transformation in the charged lepton sec-
tor and a unitary transformation on the RH neutrinos, L′

L =
U L LL, �′

R = U �
R �R and ν ′

R = Uν
R νR , it is always possible to diag-

onalise (with real eigenvalues) the charged lepton and Majorana 
mass matrices at the same time,

U †
L Y ′

�U e
R = Y� ≡

√
2

v
diag(me,mμ,mτ ) ,

U
ν T
R M ′

R Uν
R = MR ≡ diag(M1, . . . MnR ), (5)

while Yν = U †
L Y ′

νUν
R remains non-diagonal. In this basis the neu-

trino mass matrix can be written as

−LMν = 1

2
N T

L CMNL +h.c. = 1

2

(
νT

L νc T
R

)
C

(
0 MD

MT
D MR

)(
νL

νc
R

)
,

(6)

1 We have assumed real ζ f . Notice also that the alignment in the neutrino sector 
is not a consequence of the requirement of the absence of FCNCs. Nevertheless, we 
assume that the same mechanism that provides the alignment in the SM flavour 
space also holds for neutrinos.
2

Table 1
Relation between the ζ f couplings of the A2HDM and the 
ones of the Z2 symmetric scenarios.

Aligned Type I Type II Type III Type IV

ζu cotβ cotβ cotβ cotβ

ζd cotβ − tanβ − tanβ cotβ

ζl cotβ − tanβ cotβ − tanβ

with MD = v√
2

Y ∗
ν being the neutrino Dirac mass. This can be diag-

onalised with a unitary (3 + nR) × (3 + nR) matrix U , via(
νL

νc
R

)
= U

(
νl
νh

)
≡

(
U Ll U Lh
U Rcl U Rch

)(
νl
νh

)
, (7)

such that Mν = U TMU provides the masses of the three light 
active neutrinos νl and of the remaining nR heavy sterile neutrinos 
νh .

The Yukawa interactions of the physical (pseudo)scalars2 with 
the mass eigenstate fermions are then described by

−LY =
√

2

v

[
ū(−ζu mu V ud P L + ζd V ud md P R)d

+ ν̄l
(−ζν mνl U †

Ll P L + ζ� U †
Ll m� P R

)
�

+ ν̄h
(−ζν mνh U †

Lh P L + ζ� U †
Lh m� P R

)
�
]

H+ + h.c.

+ 1

v

∑
φ=h,H,A

∑
f =u,d,�

ξ
φ

f φ f̄ m f P R f

+ 1

v

∑
φ=h,H,A

ξ
φ
ν φ

(
ν̄l U †

Ll + ν̄h U †
Lh

)
P R

(
U Ll mνl ν

c
l

+ U Lh mνh νc
h

) + h.c., (8)

where the couplings of the neutral Higgs states to the fermions are 
given by

ξ
φ
u,ν = Ri1 + (Ri2 − iRi3)ζ

∗
u , ξ

φ

d,�
= Ri1 + (Ri2 + iRi3)ζd,�,

(9)

where the matrix R diagonalises the scalar mass matrix. Because 
of the alignment of the Yukawa matrices all the couplings of the 
(pseudo)scalar fields to fermions are proportional to the corre-
sponding mass matrices, hence the A2HDM acronym. Therefore, 
this 2HDM realisation is notably different from the standard four 
Types [40–42], wherein the Yukawa couplings are fixed to well 
defined functions of the ratio of the Vacuum Expectation Values 
(VEVs) of the two Higgs doublets, denoted by tan β , see Table 1.

Then, the charged Higgs boson currents in the lepton sector are 
given by:

−LCC
Y =

√
2

v
ζ�

[(
ν̄l U †

Ll + ν̄h U †
Lh

)
m� P R �

]
H+

−
√

2

v
ζν

[(
ν̄l U †

Ll mνl + ν̄h U †
Lh mνh

)
P L �

]
H+ + h.c. (10)

Finally, the neutral and charged gauge boson interactions of the 
neutrinos are

LZ = g

2 cos θW

(
ν̄l U †

Ll + ν̄h U †
Lh

)
γ μ(U Ll νl + U Lh νh)Zμ,

LW = − g√
2

[(
ν̄l U †

Ll + ν̄h U †
Lh

)
γ μ P L �

]
W +

μ + h.c. (11)

2 Note that, in a generic 2HDM with complex Higgs doublet fields, of the initial 
8 degrees of freedom, upon EW Symmetry Breaking (EWSB), 5 survive as physical 
Higgs states: 2 CP-even, h and H (with, conventionally, mh < mH ), 1 CP-odd, A, and 
2 charged ones with undefined CP, H± .
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Fig. 1. Relevant Feynman diagrams contributing to the g − 2 of the electron at one-loop order. Only the charges vector (W ±) and charged Higgs (H±) currents are shown.
We refer to [43] for further details on the model.

3. Anomalous magnetic moments

The one-loop contributions to the anomalous magnetic moment 
of either lepton are

a� = G F m2
�

4
√

2π2
[g(a) + g(b) + g(c) + g(d) + g2HDM], (12)

where the individual terms are

g(a) = 2
3∑

i=1

|(U Ll)� i |2
[

5

6
+ 1

6

m2
�

M2
W

]
+O

(
m4

�

)
,

g(b) = 2
nR∑
i=1

|(U Lh)� i |2
[

5

6
+ GW ±

(m2
νhi

M2
W

)]
+O

(
m2

�

)
,

g(c) = 2
3∑

i=1

|(U Ll)� i |2
[
− ζ 2

�

12

m2
�

M2
H±

]
+O

(
m4

�

)
,

g(d) = 2
nR∑
i=1

|(U Lh)� i |2 GH±
( m2

νhi

M2
H±

)
+O

(
m2

�

)
,

g2HDM = O
(
m2

�

)
, (13)

with

GW ±(x) = −x + 6x2 − 3x3 − 2x4 + 6x3 log x

4(x − 1)4
,

GH±(x) = ζ 2
ν

3
GW ±(x) + ζνζl

x(−1 + x2 − 2x log x)

2(x − 1)3
. (14)

The index of the contributions corresponds to the different sub-
figures in Fig. 1 where, for simplicity, we show only the diagrams 
determined by the charged currents. The contribution g(a) alone 
would exactly correspond to the SM case if it were not for the 
rescaling induced by the neutrino mixing matrix. Nevertheless, the 
constant terms in g(a) and g(b) sums up to the SM result of 5/3
due to the unitarity of such a mixing matrix. Therefore, these can 
be neglected since they do not contribute to the NP part. The term 
g2HDM contains all the neutral Higgs boson contributions which 
are typical of the 2HDM alone. These are typically suppressed by 
a factor of m2

�/m2
φ , with φ being one of the neutral (pseudo)scalar 

states of the 2HDM.
We can then write the contribution to (g − 2)� , � = e, μ, due to 

charged currents as follows:

a±
� = aW ±

� + aH±
�

= G F m2
�

2
√

2π2

nR∑
i=1

|(U Lh)� i|2
[
GW ±

(m2
νhi

M2
W

)
+ GH±

( m2
νhi

M2
H±

)]
.

(15)

The contribution to (g − 2)� , � = e, μ, from the neutral 
(pseudo)scalars is
3

a0
� =

∑
φ=h,H,A

aφ
� = G F m2

�

4
√

2π2

∑
φ=h,H,A

(
ξ

φ
�

)2 m2
�

m2
φ

Fφ

(
m2

�

m2
φ

)
, (16)

where

Fh(x) = F H (x) � −7

6
− log x , FA(x) � 11

6
+ log x. (17)

For the sake of completeness, we also give the Barr-Zee two-loop 
diagram contributions, [44–49]

atwo-loop
� = G F m2

�α

4
√

2π3

∑
φ=h,H,A

∑
f

Nc
f Q 2

f ξ
φ
� ξ

φ

f

m2
�

m2
φ

Gφ

(
m2

�

m2
φ

)
, (18)

where N f
c is the number of colours and Q f the electric charge 

while

Gφ(x) =
1∫

0

dz
g̃φ(z)

z(1 − z) − x
log

z(1 − z)

x
, with

g̃φ(z) =
{

2z(1 − z) − 1, φ = h, H
1, φ = A

. (19)

The total contribution to the g − 2 is thus given by a� = a±
� +

a0
� + atwo-loop

� . In [50] new Barr-Zee diagrams have been computed. 
New contributions have found to be important in some region of 
the parameter space. We have checked that these corrections are 
not relevant in the parameter space considered here.

Finally we present the Branching Ratio (BR) of the Lepton 
Flavour Violating (LFV) decays �α → �βγ (with α, β = e, μ, τ ), as 
follows:

BR(�α → �βγ )

= C

∣∣∣∣∣
nR∑
i=1

(
U∗

Lh

)
αi(U Lh)βi

[
GW ±

(m2
νhi

M2
W

)
+ GH±

( m2
νhi

M2
H±

)]∣∣∣∣∣
2

, (20)

with

C = α3
W s2

W

256π2

(
m�α

MW

)4 m�α

��α

, (21)

where ��α is the total decay width of the lepton �α and the loop 
functions are given above. The structure of the loop corrections is 
obviously the same as the one appearing above in the charged cur-
rent corrections to (g − 2)� . The measured BR of these LFV decays 
will act as a constraint in our analysis.

4. Results

The solution of the aμ anomaly relies upon a light pseudoscalar 
state A contributing to the dominant two-loop Barr-Zee diagrams, 
as customary in 2HDMs. The explanation of the anomaly is partic-
ularly simple in the ‘lepton-specific’ 2HDM scenario, also dubbed 
Type-IV, in which the couplings of the A and H± bosons to the 
leptons can be enhanced (for large tan β) while those to the quarks 
are suppressed (being proportional to tan−1 β). Indeed, while it is 
always possible to enhance the couplings to the leptons in any of 
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the four standard realisations of the 2HDM, in Type-I and -III this 
is done at the cost of increasing the couplings to the up quark 
(for small tan β). As a consequence, one faces a strong constraint 
from the perturbativity of the top-quark Yukawa coupling. In the 
Type-II, instead, the couplings to the down-quarks are enhanced 
(for large tan β) and severe bounds are imposed by flavour physics 
and direct searches for extra Higgs bosons. These issues can be 
much more easily addressed in the A2HDM since the couplings to 
leptons and quarks are disentangled and ζ� can be raised indepen-
dently of ζu and ζd .

It is worth emphasising that a simultaneous explanation of both 
the ae and aμ anomalies cannot be achieved neither in the Z2
symmetric scenarios of the 2HDM nor in the pure A2HDM, since 
the contributions to the anomalous moments have a fixed sign 
as they both originate from the same ζ� . In [36], this constraint 
has been overcome by decoupling the electron and muon sectors, 
where all Yukawa matrices can be made diagonal in the fermion 
mass basis [51,52]. Here, instead, the degeneracy will be broken 
by exploiting the lepton non-universality that naturally arises in 
RH neutrino models: augmenting the A2HDM with RH neutrinos 
can allow for an independent solution to ae . This is obtained with 
the one-loop diagrams shown in Fig. 1 provided that the charged 
Higgs boson is not too heavy to suppress the loop corrections.

The mass of the charged Higgs boson is bounded from below 
by direct searches at LEP II. In particular, searches for H± pair pro-
duction provide mH± � 93.5 GeV at 95% Confidence Level (CL) [53]
assuming the charged Higgs only decays leptonically into τν . Since 
the mass of the pseudoscalar A state is thus required to be much 
lighter than the charged one, our scenarios realises the mass hier-
archy mA � mH± � mH . The almost degeneracy between the heavy 
neutral scalar and the charged Higgs state is induced by the con-
straints on the EW Precision Observables (EWPOs), i.e., S, T and U . 
Indeed, the most stringent one arises from custodial symmetry and 
reads as3

�T � mH

32π2αv2
(mH± − mH ), (22)

which fixes the mass splitting to (mH± − mH ) ∼O(10 GeV).
As quoted above, the scenarios with light scalar states is 

strongly constrained by flavour physics, in particular by neutral 
meson mixings (�Mq and εK ), leptonic decays of neutral and 
charged mesons as well as radiative B decays (b → sγ ). These 
mostly depend on mH± , ζu,d . Such measurements are reconciled in 
our setup simply by requiring a sufficiently small ζu,d which we 
will set to zero for the sake of simplicity. This in turn implies that 
the Yukawa interactions in our BSM scenario are purely leptophilic. 
This configuration also naturally complies with void searches for 
extra (pseudo)scalars at the LHC. In this respect, we have required 
that the Higgs sector of our model is compliant with the exper-
imental constraints implemented in HiggsSignals [54] (capturing 
the LHC measurements of the discovered Higgs boson4) and in 
HiggsBounds [55] (enforcing limits following the aforementioned 
void searches for the H, A and H± states at past and present col-
liders).

Contributions mediated by the charged Higgs states also af-
fect the leptonic decays �i → � jνν̄ already at tree level, with 
the stronger constraint coming from τ → μνν̄ [56,57]. The cor-
responding bound projects onto the ratio z = ζ 2

� mτ mμ/m2
H± and 

gives |z| < 0.72 at 95% CL [58]. One loop corrections have been 
computed in [59] and found to be sizeable in certain regions of 
the parameter space of 2HDMs. We included them in our analysis.

3 The expression for �T assumes the mass hierarchy mA � mZ � mH± � mH and 
sin(β − α) � 1.

4 In our BSM scenario this is the h state.
4

Fig. 2. The 1 and 2σ regions of the anomalous magnetic moment of the muon in 
the parameter space of mA and ζ� . For the sake of definiteness, the mass of the 
charged Higgs has been chosen as mH± = 200 GeV.

The neutrino data can be fitted by suitably choosing the ele-
ments of the Dirac and Majorana mass matrices, MD and MR . For 
this purpose we refer, for instance, to [43,60] where a throughout 
numerical analysis has been performed. For the study presented 
in this paper, the most relevant constraint is on the square of the 
mixing between light and heavy neutrinos, U Lh , which measures 
the violation of unitarity of the PMNS matrix.

Finally, upper bounds on LFV processes, (BR(μ → eγ ) ≤ 4.2 ×
10−13 , BR(τ → eγ ) ≤ 3.3 × 10−8 , BR(τ → μγ ) ≤ 4.4 × 10−8 at 
90% CL) constrain the RH neutrinos interactions with the charged 
leptons. The charged Higgs boson also affects these decays with a 
large contribution. Since a RH neutrino is only employed in the ex-
planation of the ae anomaly, a non-negligible mixing is strictly re-
quired with the electron family. Therefore, the stringent constraint 
from μ → eγ and the milder one from τ → eγ can be satisfied by 
simply relying on the hierarchy |(U Lh)τ νh |, |(U Lh)μνh | � |(U Lh)e νh |.

4.1. Predictions for δae and δaμ

The contribution to δae arising from the W ± , encoded in the 
GW ± function defined in Eq. (14), is negative but it can never be 
enhanced being fixed by the gauge interactions. For m2

νhi
/M2

W � 1, 
GW ± � −1/2. The impact of the charged Higgs boson in the loop 
functions is, however, much different. As an example, for large 
heavy neutrino masses, it saturates to GH± � ζ�ζν/2 − ζ 2

ν /6 or 
behaves as GH± � (ζ�ζν/2 − ζ 2

ν /12)(m2
νh

/m2
H± ) for larger mH± . In 

both cases, the solution of the ae anomaly is facilitated by large 
and opposite ζ� and ζν . The same effect would also push the 
predicted aμ in the opposite direction with respect to the cur-
rent measurement. This is not an issue since the same hierarchy 
|(U Lh)μνh | � |(U Lh)e νh | required to prevent the LFV bounds also 
suppresses the contribution of the charged Higgs boson to the 
muon g − 2. As well known in the literature, the latter can be 
explained in the 2HDM by the two-loop Barr-Zee diagrams of the 
neutral scalars which provide a positive correction for sufficiently 
light A. The two-loop Barr-Zee diagrams are dominated by the 
charged-lepton loops, and, in particular, by the τ lepton, as a re-
sult of the large value of ζ� . This contribution may compete in ae
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Fig. 3. The anomalous magnetic moment of the electron as a function of (a) ζν , (b) the effective neutrino coupling ζν Yν and (c) the heavy neutrino mass mνh . The horizontal 
solid, dashed and dot-dashed lines correspond, respectively, to the central value, the upper 1σ band and the upper 2σ band. The vertical dashed line in (b) represents the 
maximum allowed value for Yeff = ζν Yν from perturbativity. All the points satisfy the experimental and theoretical constraints as explained in the text and reproduce aμ

at 2σ level. (d) Distribution of points in the (ζν , ζ�) plane complying with all current experimental and theoretical bounds as well as with the solution of the ae and aμ

anomalies at 2σ .
against the one-loop effects discussed above but it is found to be 
subdominant in most of the parameter space.

The results of our analysis are depicted in Figs. 2 and 3. The 
former shows the regions in which the predicted aμ is within 1 
and 2σ around the measured central value. These are projected 
onto the most relevant parameter space defined by mA and ζ� . 
The mass of the charged Higgs boson has been fixed at a refer-
ence value of mH± = 200 GeV. Different choices of mH± slightly 
modify the contours shown in the plot. In Fig. 3 we show the 
prediction for ae . The points are generated by scanning over the 
parameter space of the model and comply with the experimen-
tal and theoretical bounds quoted above while reproducing aμ

within the 2σ range. The parameters are scanned as follows: mνh ∈
(200, 2000) GeV, mH±, mH ∈ (100, 1000) GeV, mA ∈ (10, 60) GeV, 
ζ�, ζν ∈ (−150, 150) and |(U Lh)μνh |2 ∈ (10−5, 10−3). In Fig. 3(a) 
and (b), (g − 2)e is plotted, respectively, against ζν and the ef-
fective coupling ζν Yν which characterises this model and that has 
5

been extensively discussed in [43]. The vertical dashed line shows 
the maximum allowed value required by perturbativity. Finally, 
Fig. 3(d) shows the distribution of points along the ζν and ζ� direc-
tions compliant with all the bounds discussed above as well as ae

and aμ measurements within 2σ . As mentioned already, the two 
couplings must necessarily have opposite signs. In the same pa-
rameter space we can also compute the NP corrections to the aτ . 
The current best measurement at 95% CL is [58,61,62] −0.052 <
aτ < 0.013. The bounds from the LFV processes of the tau strongly 
limit the mixing (U Lh)τ νh such that δaτ is generated from the 
contributions of the neutral scalars and, in particular, from the 
one-loop topologies. We find −1.8 × 10−4 � δaτ �−1.2 × 10−5.

4.2. LHC phenomenology of the extra (pseudo)scalar bosons

In the leptophilic scenario delineated above, the light pseu-
doscalar state A can decay at tree-level via A → ττ with BR close 
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Fig. 4. The LHC production cross sections of pairs of the extra Higgs bosons as functions of mA and mH± = mH .
to 100%. For the charged Higgs boson, instead, the two main open 
decay modes are H± → AW ± , where the interaction is completely 
fixed by the SU (2)L gauge coupling, and H± → τ±ν , which is con-
trolled by the ζ� coupling. Analogously, for the heavy neutral scalar 
state H the two leading decay modes are H → ττ and H → A Z . 
For large mH± , mH , the BRs of the H± and H are solely controlled 
by the coupling g� = ζ� mτ /mH± and are approximated by5

BR
(

H± → AW ±) = BR(H → A Z) = 1

1 + 2g2
�

,

BR
(

H± → τ±ν
) = BR(H → ττ ) = 2g2

�

1 + 2g2
�

. (23)

Since the couplings to the quarks are suppressed, the main pro-
duction modes proceed through the EW interactions. The relevant 
processes are

pp → H± A , pp → H A , pp → H±H , pp → H+H−,

(24)

with the corresponding cross sections being only functions of the 
masses of the corresponding particles. The cross sections at the 
LHC are computed with MadGraph [63] and are shown in Fig. 4. 
The largest contributions arise from H± A and H A.

The main signatures resulting from these processes are charac-
terised by final states with several τ leptons

3τ + /E T , 4τ + W ±, 4τ , 4τ + Z , (25)

where the first two stems from H± A production (with a sublead-
ing component from H±H) while the last two arise from the H A
production. A thorough analysis is beyond the scope of this paper. 
In order to get a feeling of the potential of these channels, here 
we list only an estimate of the inclusive cross section for the cor-
responding SM background

σSM
(

Z W ± → 3τ + /E T
) � 94 fb,

σSM
(

Z Z W ± → 4τ + W ±) � 3.2 × 10−2 fb,

σSM(Z Z → 4τ ) � 11 fb,

σSM(Z Z Z → 4τ + Z) � 1.1 × 10−2 fb . (26)

5 We neglected small deviations from sin(β − α) = 1.
6

5. Conclusions

The measurements of the anomalous magnetic moment of elec-
tron and muon are amongst the most precise ones in the whole of 
particle physics, probing not only the structure of the SM but also 
the possibility of BSM theories entering these experimental ob-
servables. Intriguingly, both of these are currently showing some 
anomalies with respect to the SM predictions.6 Crucially, the two 
results go in different directions, i.e., the measurement of aμ ex-
ceeds the SM result while that of ae lies below the corresponding 
SM yield. This circumstance makes it difficult to find BSM solu-
tions, as multiple new particles are generally needed, each con-
tributing its corrections in different directions, i.e., with different 
signs, unless significant violation of discrete quantum numbers is 
exploited.

In this paper, we adopted an A2HDM supplemented by RH 
neutrinos, respecting all the SM symmetries. In such a BSM frame-
work, a possible explanation to the aforementioned anomalies can 
be attained through one and two-loop topologies wherein the con-
tribution from a very light CP-odd neutral Higgs state interact-
ing with leptons, is tensioned against the one due to a charged 
Higgs boson interacting with the new heavy neutrinos, the latter 
with mass at the EW scale. Crucially, such a spectrum is able to 
explain the two leptonic anomalous magnetic moment measure-
ments while also predicting new hallmark signals in the form of 
qq̄′ → H± A production yielding multi-τ final states, which are al-
most background free at the LHC and thus accessible already with 
current data samples.
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