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Abstract: In the attempt to explain possible data anomalies from collider experiments in terms

of New Physics (NP) models, computationally expensive scans over their parameter spaces are

typically required in order to match theoretical predictions to experimental observations. Under

the assumption that anomalies seen at a mass of about 95 GeV by the Large Electron-Positron

(LEP) and Large Hadron Collider (LHC) experiments correspond to a NP signal, which we attempt

to interpret as a spin-0 resonance in the (B − L) Supersymmetric Standard Model ((B − L)SSM),

chosen as an illustrative example, we introduce a novel Machine Learning (ML) approach based on

a multi-objective active search method, called b-CASTOR, able to achieve high sample efficiency

and diversity, due to the use of probabilistic surrogate models and a volume based search policy,

outperforming competing algorithms, such as those based on Markov-Chain Monte Carlo (MCMC)

methods.
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1 Introduction

The Standard Model (SM) of particle physics was finally confirmed in all its sectors after the

discovery of a Higgs boson with a mass of 125 GeV at the Large Hadron Collider (LHC) in July

2012 [1, 2]. While the SM has been successful in explaining the elementary constituents of matter

and their interactions, several hints of New Physics (NP), known as anomalies, are slowly arising

[3, 4], bringing new research questions to the current status of particle physics. These anomalous

results span over a large energy range, a brief review can be found in [5], coming from precision

measurements and direct experimental searches, including flavour observable, anomalous magnetic

moment of the muon, the W± boson mass and the possible existence of additional neutral spin-

0 particle, the latter being the primary focus of this work. Anomalous experimental signals at

≈ 95GeV have been reported in searches for new Higgs bosons. Different experimental analyses

support this anomaly: a γγ (di-photon) excess seen at CMS [6], a τ+τ− (di-tau) excess again by

CMS [7] as well as a bb̄ excess seen by LEP [8].

Such anomalies can be addressed by Beyond the Standard Model (BSM) scenarios. The latter are

motivated by the need to explain, either individually or collectively, a variety of flaws of the SM:

e.g., the absence of neutrino masses, the unexplained baryon-antibarion asymmetry in the universe,

no candidate for Dark Matter (DM), etc. It is thus intriguing to see whether such theoretical

constructions can also be used to explain the aforementioned 95 GeV anomalies. In fact, a variety

of such BSM scenarios have been invoked in the latter context: [9–12]. Of all such theoretical

frameworks, we focus here on the (B − L)SSM, as a distinctive example of a model realisation of

Supersymmetry that can explain all such aforementioned SM flaws (see Ref. [13]) as well as the γγ

anomaly at 95 GeV [14]. From a physics point of view, the purpose is thus to assess whether such

a BSM scenario is also able to explain the τ+τ− and bb̄ excesses.

However, there is a pressing technical problem in such an endeavour: the regions in the parameter

space of a BSM scenario capable of accommodating a combination of experimental results are sparse

and possibly disconnected1. Furthermore, the parameter space of these models is typically highly

dimensional and is defined within large ranges of the fundamental inputs. The computational cost

associated with numerically evaluating a specific configuration of a BSM model using a typical High

Energy Physics (HEP) software toolbox is high.

The HEP community has lately relied on Monte Carlo Markov Chain (MCMC) sampling methods to

explore the parameter space of particle physics models: HEPfit [15], GAMBIT [16] and Magellan

[17] are examples of public toolkits of this kind2, developed to address the demand for readily

applicable sampling strategies. Despite the effectiveness of MCMC methods (and variations thereof)

to perform probabilistic inferences, fitting models to data and their widespread use in the physical

sciences [19], these methods still confront the obstacles discussed above.

Continuous developments in ML based methods for exploring parameter spaces in BSM scenarios

aim to address these challenges. Neural Network (NN) based methods [20, 21] have been proposed,

adopting different formulations, such as regression and classification. For regression the physical

observables are learned in an incremental manner, while for classification the viability of a parameter

space configuration is treated as a label. Further, in both cases the learned model is incorporated

into a policy to perform an informed sampling strategy. An alternative approach was developed in

[22, 23], using Active Learning (AL) practices to train a NN discriminator. The primary aim of this

1In this work, the total region in the parameter space that can accommodate a combination of desired values for

the objectives is referred to as the Satisfactory region and is denoted by S.
2A modification to the MCMC approach very popular in the HEP community is ‘nested sampling’, as used in

Multinest [18].
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approach is to incrementally learn the decision boundary in regions of the parameter space where

the model is allowed. Although NN based methods offer diversity in the search space configurations

leading to an informative characterisation of the satisfactory regions, they require large datasets

to achieve high accuracy, which can be challenging when dealing with computationally expensive

HEP toolbox. This sample efficiency problem was noted in [24], where an alternative strategy was

employed, re-framing a parameter space scan as a single-objective Black-Box Optimisation (BBO)

problem. Although in single-objective optimisation there is a clear notion of optimality, many cases

in BSM phenomenology involve multiple conflicting objectives, i.e., observables, to be optimised

simultaneously. Multi-objective optimisation introduces the concept of Pareto front (also called

Pareto frontier or Pareto curve), the set of solutions where no individual objective can be improved

without loss in at least one other objective. However, for multi-objective optimisation problems

[25], the availability of a broader set of solutions, those that are near optimal, allows for a more

comprehensive characterisation and understanding of the black-box function, i.e., the BSM model

under study. In the context of BSM phenomenology, a greater effective sample set correlates to the

notion of fine-tuning, meaning that a large and diverse set of solutions in a model corresponds to

a low fine tuning. Techniques such as AL [26] and Active Search (AS) [27] are employed to extend

optimisation beyond the Pareto front.

This work aims at filling identified gaps in the existing literature by focusing on improving sample

efficiency for computational expensive numerical evaluations of BSM models (the aforementioned

(B − L)SSM being out benchmark example), a comprehensive characterisation of the total region

in their parameter space that satisfy desired values in multiple observables while achieving sample

diversity within these discovered regions. A batched Bayesian Multi-Objective (BMO) AS approach

is developed which we name b-CASTOR3. In this approach, multiple phenomenological signatures

of a particular BSM model are set as the multiple objectives, constrained by experimental mea-

surements. These can refer to particle masses, Branching Ratios (BRs), production cross-sections

or any model prediction information. To make parameter sampling more efficient, we use surrogate

models to approximate the objectives, a common practice in Bayesian Optimisation (BO) [28]. In

particular, we model the objectives with Gaussian Process based models[29]. This probabilistic

formulation enables us to introduce the expected coverage improvement acquisition function, in-

troduced in [27]. This policy seeks to improve volume coverage within the satisfactory regions of

the search space to propose new candidate solutions in a sequential manner. Lastly, we develop

a sampling strategy to allow multi-point evaluations and tunable control over the exploration and

exploitation trade-off. This balances the extent to which parameters are selected far from the best

predictions of the surrogate model that adapts to the previously chosen samples.

Two test experiments are presented, a double-objective 2D test function and a BSM phenomenology

study. We compare the results of the proposed search method b-CASTOR with MCMC implemen-

tation [19, 30], based on the Metropolis-Hastings algorithm. As intimated, regarding the BSM

phenomenology analysis, our focus is on the (B − L)SSM, a non-minimal realisation of Supersym-

metry. It features a diverse Higgs sector composed of two Higgs doublets and two Higgs singlets,

which can then be used to potentially explain (some of) the anomalies seen at ∼ 95 GeV [31–33]. In

addition, the (B − L)SSM introduces three extra neutralinos, corresponding to the Superpartners

of two singlet scalars and a new neutral gauge boson Z ′. The lightest neutralinos could function as

potential candidates for cold Dark Matter (DM) [34]. Being a Supersymmetric scenario, it does not

suffer from the hierarchy problem. Furthermore, it embeds a neutrino mass generation mechanism

in the form of seesaw dynamics. Hence, it is a model which goes above and beyond the mere purpose

of explaining data anomalies. Our findings indicate that the algorithm efficiently characterises the

3For batched Constraint Active Search with TPE Optimisation and Rank based sampling.
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satisfactory region in the parameter space of the (B − L)SSM that can explain the LHC anomaly

in the h → γγ channel, enhancing scans conducted in previous studies [31–33]. However, given

updated experimental results, it is essential to consider additional channels, such as h → ττ (LHC)

and h → bb̄ (LEP). With this updated experimental information, our approach did not find points

capable of simultaneously explaining all three channels.

The plan of the paper is as follows. The next section is devoted to explain how the discussed

experimental anomalies can potentially be linked to the chosen theoretical framework. Then, we

introduce our MO AS approach. This is then followed by our results and conclusions, in turn.

2 Higgs Bosons in the (B − L)SSM

2.1 Experimental Searches

Results for new Higgs boson experimental searches are expressed as limits on a variable µ, known

as the signal strength modifier, that measures one parameter scalings of the total SM rate for

a particular signal channel or ensemble of signal channels. These variables are defined as the

production cross section for a specific channel times a decay BR involving the new Higgs boson,

normalised to the SM value of the same process, for a given mass. In this work we start by

focusing on the combined results of Higgs boson searches at CMS [6] and ATLAS [35] in the γγ

final state. The searches reported excesses of 2.9σ and 1.7σ in the two experiments, respectively,

with a (resonant) mass value of 95.4 GeV. The relevant signal strength mesured is expressed as

follows:

µexp
γγ = µATLAS+CMS

γγ =
σexp(gg → ϕ → γγ)

σSM(gg → H → γγ)
= 0.27+0.10

−0.09, (2.1)

where ϕ is the possible particle behind the observed anomaly and H is a would-be SM Higgs boson,

both with a 95.4 GeV mass. This is the anomaly which was addressed within the (B − L)SSM in

Ref. [31] and for which an explanation was found therein.

Additionally, though, two other search channels presented anomalies which support the possibility

of such a γγ resonance. LEP [8] reported a now long-standing anomaly in searches for light Higgs

bosons in the e+e− → Z(H → bb̄) channel, corresponding to a 2.3σ local excess at a Higgs mass

98 GeV 4, leading to a signal strength modifier given by

µexp
bb =

σ
(
e+e− → Zϕ → Zbb̄

)
σSM

(
e+e− → ZH → Zbb̄

) = 0.117± 0.057. (2.2)

The CMS collaboration has detected an excess in the low-mass region for the gluon-fusion production

mode and decay into τ±τ−pairs [7], which is consistent with the excess observed in the di-photon

search by CMS. For a mass value of 95GeV, CMS has reported a local significance of 2.6σ. This

corresponds to a signal strength

µexp
ττ =

σexp (gg → ϕ → τ+τ−)

σSM (gg → H → τ+τ−)
= 1.2± 0.5. (2.3)

The reported results of searches for light neutral scalars at the LHC, using the γγ and τ+τ−

channels, and at LEP, using the bb̄ channel, when combined, offer compelling evidence supporting

the interpretation of these NP signals within the framework of BSM theories. This assumed scenario

constitutes the focus of our investigation, which we carry out by first extending previous studies on

a possible explanation of the γγ anomaly with the (B − L)SSM model and finally by considering

all three results simultaneously.

4Note that the various mass values reported here are consistent with each other given the limited mass resolutions,

especially in the case of bb̄ and τ+τ− final states.
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2.2 The (B − L)SSM

The (B−L)SSM is essentially the Minimal Supersymmetric Standard Model (MSSM) extended by

a U(1)B−L gauge symmetry,

G = U(1)Y ⊗ SU(2)L ⊗ SU(3)c ⊗ U(1)B−L,

wherein the U(1)B−L symmetry (which is an accidental one in the SM) is spontaneously broken

through the Higgs mechanism. The Superpotential of the model is given by

WBLSSM =yuQ̂Ĥ2Û
c + ydQ̂Ĥ1D̂

c + yeL̂Ĥ1Ê
c + µĤ1Ĥ2

+ yνL̂Ĥ2N̂
c + yN N̂ cχ̂1N̂

c + µ′χ̂1χ̂2.
(2.4)

Here, the first four terms corresponds to the MSSM Superpotential, incorporating the Yukawa

interactions with their respective Yukawa couplings, namely yu, yd and ye. Additionally, a bilinear

term between the SU(2)L Higgs doublet Superfields Ĥ1 and Ĥ2 with opposite hypercharge Y = ±1

represents a globally Supersymmetric Higgs mass term. Additional terms describe the interactions

between the (s)neutrinos N̂ and the singlet Higgs Superfield χ̂1. The corresponding Yukawa coupling

constants are denoted as yv and yN . Furthermore, Q and L denote the left-handed quark and lepton

doublet Superfields, while Û , D̂ and Ê represent the right-handed up-type, down-type and electron-

type singlet Superfields, respectively. The corresponding soft Supersymmetry breaking terms and

the details of the associated spectrum can be found in Refs. [33, 36, 37]. (The superscript c

represents charge conjugation.)

The masses for the physical neutral (B − L)SSM Higgs states can be obtained from

H0
1,2 =

1√
2
(v1,2 + σ1,2 + iϕ1,2) ,

χ0
1,2 =

1√
2

(
v′1,2 + σ′

1,2 + iϕ′
1,2

)
,

(2.5)

where v1,2 and v′1,2 are the Vacuum Expectation Values (VEVs) of the Higgs fields H1,2 and χ1,2,

respectively, which radiatively break the (B−L) symmetry. The real and imaginary components in

(2.5) represent the CP-even (scalar) and CP-odd (pseudoscalar) Higgs states. The CP-odd neutral

Higgs mass-squared matrix at the tree-level in the basis (ϕ1, ϕ2, ϕ
′
1, ϕ

′
2) is given by

A2 =


Bµ tanβ Bµ 0 0

Bµ Bµ cotβ 0 0

0 0 Bµ′ tanβ′ Bµ′

0 0 Bµ′ Bµ′ cotβ′

 , (2.6)

with

Bµ = −1

8

{
−2g̃gBLv

′2 cos 2β′ + 4M2
H1

− 4M2
H2

+
(
g21 + g̃2 + g22

)
v2 cos 2β

}
tan 2β,

Bµ′ = −1

4

(
−2g2BLv

′2 cos 2β′ + 2M2
χ1

− 2M2
χ2

+ g̃gBLv
2 cos 2β

)
tan 2β′,

where tanβ = v2
v1

and tanβ′ =
v′
2

v′
1
. Here, gBL is the gauge coupling constant of U(1)B−L and g̃ is

the gauge coupling constant of the mixing between U(1)Y and U(1)B−L. Finally, g1 and g2 are the

U(1)Y and SU(2)I gauge coupling constants, respectively.
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The CP-even neutral Higgs mass-squared matrix at the tree level in the basis (σ1, σ2, σ
′
1, σ

′
2) is given

by

M2 =

(
M2

hH M2
hh′(

M2
hh′

)T M2
h′H′

)
, (2.7)

where MhH is the MSSM CP-even mass matrix which results into an SM-like Higgs boson h with

a mass mh ∼ 125 GeV and a heavier Higgs boson H with a mass mH ∼ O(1 TeV). The additional

(B − L)SSM mass matrix Mh′H′ reads

M2
h′H′ =

(
m2

A′c2β′ + g2BLv
′2
1 − 1

2m
2
A′s2β′ − g2BLv

′
1v

′
2

− 1
2m

2
A′s2β′ − g2BLv

′
1v

′
2 m2

A′s2β′ + g2BLv
′2
2

)
, (2.8)

with cx = cosx and sx = sinx. Thus, the eigenvalues of this matrix can be given as

m2
h′,H′ =

1

2

{
m2

A′ +m2
Z′ ∓

√
(m2

A′ +m2
Z′)

2 − 4m2
A′m2

Z′ cos2 2β′
}
. (2.9)

The mass of h′ can be estimated by

mh′ ≃
(
m2

A′M2
Z′ cos2 2β′

m2
A′ +M2

Z′

) 1
2

≃ O(100 GeV), (2.10)

demonstrating the viability of generating a light Higgs state within the model. Finally, the matrix

Mhh′ can be written as

M2
hh′ =

1

2
g̃gBL

(
v1v

′
1 −v1v

′
2

−v2v
′
1 v2v

′
2

)
, (2.11)

generating mixing between (B − L)SSM Higgs bosons and MSSM-like Higgs states. The CP-even

physical Higgs mass states can be obtained by diagonalising the Higgs mass-squared matrix given

by eq. (2.7) with a unitary matrix R as follows:

RM2R† = diag
{
m2

h,m
2
h′ ,m2

H ,m2
H′

}
. (2.12)

We then perform a parameter search, to fit the two lighter Higgs states in (2.12), as solutions

consistent with the experimental reports in eqs. (2.1)-(2.3).

2.3 (B − L)SSM Predictions and HEP Software

A phenomenological analysis is typically made through a series of HEP software packages sequen-

tially stacked, henceforth called HEP-Stack denoted HModel. Here we use SARAH [38, 39], a

Mathematica package for Supersymmetric and non-Supersymmetric model building, and for each

model we calculate the mass and coupling spectrum using SPheno (SP) [40, 41]. Then, MadGraph

(MG) [42] is used for the computations of the cross sections relevant for the signal strength-modifiers

defined in eqs. (2.1), (2.2) and (2.3).

We also use HiggsBounds (HB) [43] and HiggsSignals (HS) [44] for experimental testing of the

model configurations. HB compares existing exclusion limits from Higgs searches with the model

predictions of the Higgs sector, generating an upper limit to a corresponding signal cross section

prediction. Therefore, with HB we can check whether a given model, whose spectrum is evaluated at

a particular configuration, is excluded at the 95% Confidence Level (C.L.) by existing Higgs boson

searches. This information is given by the quantity kHB
0 , with kHB

0 ≤ 1 if the model configuration

is accepted. HS tests, in contrast, the model prediction of a Higgs sector with an arbitrary number

of Higgs bosons against the properties of the observed state as measured by the LHC experiments
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ATLAS [2] and CMS [1] in 2012. The main results from HS are reported in the form of a χ2
HS value

and the number of observables considered.

As mentioned in sections 2.1 and 2.2, our first real case study is to use our search algorithm

in the (B − L)SSM model to allocate the excesses reported in neutral scalar searches for a 95

GeV resonance. The dimensionality of the search space is reduced by fixing mZ′ = 2500 GeV,

tanβ′ = 1.15, gBL = 0.53, g′BL = 0.14 and tan′ β ≤ 1.2 [31, 33, 45], restricting the search space X
to eight model parameters

X =
{
x ∈ R8 : x =

(
M0,M1/2, tanβ,A0, µ, µ

′, Bµ, Bµ′
)}

(2.13)

in the ranges described in Table 1.

Parameter Range

M0 100− 1000 GeV

M1/2 1000− 4500 GeV

tanβ 1− 60

A0 1000− 4000 GeV

µ 1000− 4000

µ′ 1000− 4000

Bµ 105 − 107

Bµ′ 105 − 107

Table 1: Ranges defining the search space for each parameter in the (B − L)SSM.

We define the objective space Y as the space of physical observables and informative outputs

generated by the HEP-Stack H(B−L)SSM. These outputs are the desired targets that we seek to

constrain to specific values. Specifically, we aim for the masses of the lighter Higgs particles in

the model, denoted as mh and mh′ in eq. (2.12), to have mass values of 125 GeV and 95 GeV

respectively, with a certain precision. Additionally, the signal strength modifier µγγ should satisfy

the experimental value defined in (2.1). Lastly, we require the experimental checks from HB and

HS to yield positive outcomes, ensuring that kHB
0 ≤ 1 and χ2

HS ≤ 136.6, these are the default values

of the two programs. Thus, we formulate a five-dimensional objective space Y as follows:

Y =
{
y ∈ R5 : y =

(
mh′ ,mhSM , µγγ , χ2

HS, k
HB
0

)}
(2.14)

with constraints defined in a vector τ for latter reference,

τ γγ =



mhSM = 125± δm GeV

mh′ = 95± δm GeV

µγγ = 0.27+0.10
−0.09

χ2
HS ≤ 136.6

kHB
0 ≤ 1

(2.15)

where we take δm = 5 GeV as an acceptance window for the masses. As previously mentioned, for

a particular parameter space configuration x ∈ X , the HEP-Stack H(B−L)SSM to evaluate is formed

by SP, HB, HS and MG. High-precision spectrum calculations typically require approximately

120 seconds on average for each query to the HEP-Stack. However, in certain parameter space

configurations, this time can extend up to 300 seconds. The computational cost emphasises the

need for the search algorithm to prioritise sampling efficiency, which means maximising the number

of positive parameter space configurations per H(B−L)SSM evaluations.
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3 Active Search Formulation

The execution time of the HEP-Stack, H(B−L)SSM poses significant challenges for conventional pa-

rameter exploration methodologies such as MCMC methods. In response, parallel MCMC methods

have been developed [17] or alternatives to MCMC-MH have been employed such as nested sampling

[46]. These techniques struggle to identify a large and diverse set of parameter configurations that

concurrently satisfy numerous constraints when limited to a small budget of calls to H(B−L)SSM.

To address this issue, we have articulated the problem within the framework of Active Search (AS)

[47]. AS is a search methodology that utilises existing knowledge – a series of evaluations – of an

objective function to identify points to sample that belong to a rare category. The rare category

in this paper refers to the subset of all available parameter values x whose corresponding observ-

ables y returned by a HEP-Stack, H(x) satisfy a set of constraints denoted by τ . Here, eq. (2.15)

exemplifies these constraints for H(B−L)SSM. We adopt a two-stage iterative strategy. In the first

stage, by iteration step t we construct the dataset Dt := (Xt,Yt) := ({xj}tj=1 , {yj}tj=1). We fit a

surrogate function f : Rn → Rm, where n is the dimension of the search space and m the number of

constraints. This function aims to approximate y ≈ f(x) based on the dataset Dt. The surrogate

f suggests points to sample, thus reducing the search space to query H and is well defined across

the entire parameter space X . In the second stage of the iteration t, the surrogate function will be

queried by a search policy to create a batch of configurations X⋆ ∈ X that are likely to belong to

the satisfactory set S of configurations that satisfy the set of constraints τ :

S = {x | y = H(x) ∧ yi ⪰ τi, i = 1, . . . ,m} . (3.1)

Each sample point in X∗ is then evaluated in the HEP-Stack HModel under study and the dataset

Dt+1 is updated according to Dt+1 = Dt ∪ (X∗,Y∗).

The search policy is a crucial component in the AS framework. At each iteration t, the policy

utilises the surrogate model f , fitted on Dt, to direct exploration by selecting data points either

from uncertain of underrepresented areas of the data in the search space, or to direct exploitation

by choosing data points expected to yield the most useful information according to the predictions

of the surrogate model. This strategic balance between the two sampling behaviors, is known as

the exploration-exploitation trade-off.

3.1 Search Policy

3.1.1 Constraint Active Search

We adopt the conceptual and methodological advances of Constraint AS (CAS), a method devel-

oped for constrained multi-objective cases [27]. In particular, we employ the Expected Coverage

Improvement (ECI) policy developed for the CAS method [27]. ECI provides a diversity measure

in the search space X by defining a hyper-sphere of radius r around a parameter space point x,

called the neighbourhood, given by

Nr(x) = {x′ : d (x,x′) < r} (3.2)

where d is the Euclidean distance. The total neighbourhood for a set of input points X given a

dataset D is defined as the coverage neighbourhood,

Nr(X) =
⋃
x∈X

Nr(x),

Thus, the volume utility function can be defined,

uS(D) = Vol (Nr(D) ∩ S) (3.3)
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where uS measures the total volume of S covered by the neighborhood Nr(D). We also define the

total volume covered as uT. CAS aims to discover the dataset D that covers as much volume of the

satisfactory region S as possible through the maximisation of the ECI policy function,

α (x | D) = Ey [uS (Dt ∪ (x,y))− uS (Dt)] (3.4)

Therefore, at time step t of the search, the policy proposes a configuration x∗ through

x∗ = argmax
x∈X

α (x | Dt) (3.5)

3.1.2 Batch Evaluation

Originally, the optimisation of ECI is made point-wise and sequentially, with well established rou-

tines, such as L-BFGS-B [48]. These classical optimisation methods are sufficient, given the original

focus of ECI on experiment design, where the global search budget was relatively low, with order

of O(102) points. However, in this work, our goal is to densely populate S, i.e., to collect as many

samples from S as possible. Since ECI, eq. (3.4), depends directly on the size of the dataset Dt at

iteration t of the search process, the time required to optimise it increases accordingly. To execute

eq. (3.5) efficiently we use the Tree-structured Parzen Estimator (TPE) algorithm [49]. TPE is a

variant of BO, commonly used for hyper-parameter optimisation in Machine Learning.

The TPE optimisation process evaluates ECI a number of times to generate a historical dataset

D̃TPE := (X̃, α(X̃)) known as trials, from which the optimal parameter value x∗ in eq. (3.5) is

identified. D̃TPE contains parameter configurations with sub-optimal ECI values, but which lie

within the satisfactory region S. Hence, evaluating this subset of sub-optimal configurations on H
accelerates the collection of parameter space points within S. For this purpose, instead of selecting

a single estimated maximal point x∗ to evaluate H(x∗), we sample a set of Nbatch parameter points

X∗ = [x∗
0,x

∗
1, ..,x

∗
Nbatch

] from D̃TPE and evaluate every point on H in each iteration of the search.

This method, referred to as batch evaluation, accelerates the filling of the S region in the search

process, as the HEP-Stack H allows parallel evaluations of each configuration in the batch.

The batch X∗ is sampled according to a rank-based sampling strategy that interpolates between

pure greedy prioritisation and uniform random sampling, initially developed in the context of Rein-

forcement Learning [50] and called stochastic prioritisation. In this scheme, each x̃ ∈ X̃ is assigned

a rank rk(x̃) so that,

rk(x̃i) ≤ rk(x̃j) for α(x̃i) ≥ α(x̃j). (3.6)

This determines the probability of sampling

P (x̃i) =
rk(x̃i)

−β∑
x̃j∈X̃ rk(x̃j)−β

, (3.7)

where β determines the extent to which α(x̃) prioritises selection, with β = 0 corresponding to

uniform sampling. Thus, points with higher ECI value will be more likely to be sampled, while also

enabling exploration of the parameter space by sampling low value ECI.

3.2 Surrogate Models

We utilise an independent Gaussian Process (GP) as a surrogate model for each objective function.

For H(B−L)SSM, this approach involves approximating each of the five objective variables in Y as

defined in eq. (2.14). Using GPs is a common practice in BO [51] approaches. GPs model the entire

distribution of possible functions that can describe a given set of observations as a multivariate

Gaussian distribution [29, 52]. This provides not only a point estimate of an objective but also
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quantifies the uncertainty associated with that estimate. This uncertainty is crucial for search

methods, as it provides key information that guides the control over the exploitation-exploration

trade-off, as described in section 3. A GP defines a probability distribution over functions f(x)

which is specified completely by the mean function µ(x) and covariance function k (x,x′) and can

be written as,

f(x) ∼ GP (µ(x), k (x,x′)) (3.8)

with,
µ(x) = E[f(x)]

k (x,x′) = E [(f(x)− µ(x)) (f(x′)− µ(x′))]

where x are values in the input domain (here, parameters in Table 1) and (x,x′) all possible pairs

of parameter values. The covariance function, also known as the kernel function, specifies how

the output of the function at one input x covaries with the output at another input x′. The

choice of kernel function determines the smoothness, periodicity and other structural properties of

the functions sampled from the GP prior family. In this work we use the Matérn kernel class of

covariance functions, defined as

kνℓ (x, x
′) =

21−ν

Γ(ν)

(√
2ν |x− x′|

ℓ

)ν

Kν

(√
2ν |x− x′|

ℓ

)
, (3.9)

where ℓ is a parameter that controls the length-scale over which correlations persist whereas ν

parameter controls the level of smoothness of the modified Bessel function Kν .

For any N observed points {xi}Ni=1 K(xi, xj) defines the matrix elements of the covariance matrix of

a N -dimensional Gaussian, where K is the Matérn kernel kνℓ . For an observed data-set D = {X,Y }
of parameter values X and target evaluations Y , the targets Y ∗ corresponding to parameter values

X∗ are described by a posterior predictive distribution using Bayesian inference. Considering the

case where the observations Y are noise free and the prior mean is zero, the joint distribution of

the training outputs Y and the test outputs Y ∗ is also a Gaussian with covariance matrix[
Y

Y ∗

]
∼ N

([
0

0

]
,

[
K(X,X) K (X∗, X)

K (X,X∗) K (X∗, X∗)

])
(3.10)

where K(X,X) defines the sub-matrix representing the covariance corresponding to D obtained by

evaluating the kernel function kνℓ on the pairwise combinations of outputs for each element in X.

K (X∗, X) and K (X∗, X∗) represents elements of the covariance between training points X and

unseen points X∗. The posterior predictive distribution of Y ∗ for the test points X∗ is conditioned

on the data-set D:

p (Y ∗ | X∗, X, Y ) =
p (Y ∗, Y | X,X∗)

p(Y | X,X∗)
. (3.11)

By inverting the block covariance matrix, we obtain the mean vector and covariance matrix of the

distribution over predictions Y ∗

µ (Y ∗ | X∗,D) =K (X∗, X)K(X,X)−1Y and

Σ (Y ∗ | X∗,D) =K (X∗, X∗)−K (X∗, X)K(X,X)−1K (X,X∗) ,
(3.12)

respectively. The optimal set of hyper-parameters {ℓ, ν} for the Matérn kernel function kνℓ is

determined by maximising the log marginal likelihood, expressed as:

log p(Y | X,θ) = −1

2
Y ⊤kνℓ (X,X)−1Y − 1

2
log |kνℓ (X,X)| − n

2
log 2π (3.13)

where n is the number of data points. Consequently, the training phase of the GPs involves

maximising 3.13. In our study, we perform a training phase for the GPs in each iteration of the

search process.
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3.3 b-CASTOR

Building on the components described in the previous sections, we now introduce our algorithm,

b-CASTOR, which stands for batched Constrained Active Search with TPE Optimisation and

Rank based sampling.

The algorithm starts by initialising a specific number of points5, denoted as N0, creating the initial

dataset D0. Each search iteration involves fitting an independent Gaussian Process (GP) model to

each objective, using the current observation dataset Di. The ECI policy (3.4) is then optimised

by the TPE algorithm over policy evaluations D̃TPE generated over NTPE trials. These evaluations

are ordered by their ECI values and a priority is assigned to each point in this set as described in

section 3.1.2. A batch of points X∗ is selected from D̃TPE based on the probability distribution

constructed with the priorities. Each sample point in X∗ is then evaluated in the HEP-Stack HModel

under study and the dataset Di+1 is updated according to Di+1 = Di ∪ (X∗,Y∗). This iterative

process continues until it reaches the pre-established number of total iterations, Titer, or when a

total number of samples is met, denoted by Tsamples. The pseudo-code is described in Algorithm 1.

Algorithm 1 b-CASTOR

1: Initialise parameters: N0 (number of initial points), NTPE (number of TPE trials), Nbatch (batch size),

T (number of search iterations) and β (prioritisation parameter).

2: Generate a initial dataset D0 with N0 points.

3: for i = 1, T do

4: Fit Surrogate models to Di.

5: Optimise ECI using TPE algorithm with NTPE trials generating D̃TPE.

6: Assign a rank rk(x̃) for each x̃ ∈ X̃ in D̃TPE following eq. (3.6).

7: Sample a batch X∗ = [x∗
0,x

∗
1, ..,x

∗
Nbatch

] from D̃TPE using probabilities P (x̃i) from eq. (3.7).

8: Evaluate X∗ in HEP-Stack HModel

9: Update Di+1 = Di ∪ (X∗,Y∗)

10: end for

In section 4, we perform a grid hyper-parameter search for NTPE, β and r (defined in eq. (3.2)) for

a test objective function. We also implement a linear decay in r = {rinitial, rfinal} along the search

process. This configuration on r enables an early discovery of the S region and subsequent fine

resolution filling. The values of rinitial and rfinal are also considered in the grid hyper-parameter

search.

3.4 Performance Study

We compare our algorithm with a Markov chain Monte Carlo (MCMC) method, specifically, the

Metropolis-Hastings (MH) algorithm [19, 30] (hereafter, denoted my MCMC-MH). The sampling

with the MH is performed with the construction of a joint likelihood for the objectives. For each

objective yi, constrained by either a threshold a or a window with limits [a, b], we define a likelihood

given by

L(yi) =


σ(yi, a) yi > a

1− σ(yi, a) yi < a

σ(yi, a)− σ(yi, b) a < yi < b

(3.14)

where σ is the Sigmoid function and is defined as,

σ(y, a) =
1

1 + e−(y−a)/ϵ
(3.15)

5We use a Sobol sequence [53], a quasi-random low-discrepancy sequence of points in the search space.
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Here ϵ is a parameter that controls the smoothness of the Sigmoid function and a shifts the center of

the Sigmoid. Then, the total likelihood for a point (x,y) used for MCMC-MH sampling is defined

as,

L(y) =
∏
i

L(yi) (3.16)

Given an initial proposal step-size, we adjust this step-size actively to reach a target acceptance

rate of 0.234 [54]. The scale is increased by 10% if the acceptance rate is above a the threshold and

decreased by 10% if the acceptance rate is below.

Lastly, two main metrics are monitored for both search strategies. The satisfactory points per

objective function call and the ratio of satisfactory points to total points in the dataset per call.

3.5 Technical Implementation

We employ the Expected Coverage Improvement acquisition function implementation provided by

the BoTorch library [55]. BoTorch provides various components required in BO, including acqui-

sition function optimisation and optimisation metrics. Additionally, it incorporates probabilistic

models from the library GPytorch [56] a library for scalable GP inference, built on PyTorch [57].

We utilise the TPE implementation available in Optuna [58], an open source hyperparameter opti-

misation framework. The code developed for this work has been incorporated into a general library

for AS in order to perform phenomenological studies and will be publicly released alongside an

upcoming manual for it.
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Figure 1: Ground truth for the 2D double objective test function fBH(θ1, θ2) as per eq. (4.1),

featuring contour levels to demonstrate the constraints on the objectives. On the left, the S region

within the search space is depicted.

4 Results

4.1 Double-objective 2D Test Function

We constructed a simple double-objective, 2D test function, denoted fBH(θ), from the Booth and

Himmelblau functions [59], a uni- and multi-modal function, respectively, defined as

fBH(θ) =

{
fB(θ1, θ2) = log

[
(θ1 + 2θ2 − 7)2 + (2θ1 + θ2 − 5)2

]
,

fH(θ1, θ2) = log
[(
θ21 + θ2 − 11

)2
+
(
θ1 + θ22 − 7

)2]
.

(4.1)
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Figure 2: Performance metrics across ten independent runs for b-CASTOR (blue) and MCMC-

MH (green), with mean values depicted in darker shades.
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Figure 3: b-CASTOR results for different independent runs.

The parameter space is defined as θ ∈ [−5, 5]. Additionally, the search process is subject to the

constraints on the objectives given by

τ fBH
=

{
fB(θ1, θ2) = 2± 1,

fH(θ1, θ2) < 3.
(4.2)

This simple set-up imitates the complexity of sparse and disconnected satisfactory regions in the

search space of multiple objectives. The ground truth satisfactory regions for both objectives in

fBH(θ1, θ2) are shown in Figure 1.

As mentioned in section 3.3, we performed a hyper-parameter grid search for the number of policy

evaluations NTPE, priority scaling β (eq. (3.7)) as well as the parameter resolution limits rinitial
and rfinal in eq. (3.2). The hyper-parameter search space is defined by the set of values in Table 2,

together with the fixed hyper-parameters. We selected NTPE = 500, β = 2, rinitial = 0.02 and

rfinal = 0.0002. For the MCMC-MH algorithm, an initial step size of 0.4 was established, optimised

for the potential discovery of the disconnected S regions. In order to evaluate the consistency of

convergence for both the b-CASTOR and MCMC-MH algorithms, we performed 10 searches. For

this we have set the hyper-parameters as mentioned and restricted the search to 2200 calls to the

objective test function. This was done in anticipation of the application to querying the HEP-Stack,

where the complexity of the search is dominated by time needed for evaluating each query. The

performance metrics are presented in Figure 2. b-CASTOR achieved an average of 2090 satisfactory

parameter values by the end of the search (excluding the initial dataset), indicating that 94.57% of
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Figure 4: MCMC-MH results for different independent runs.

the objective function calls resulted in parameter space configurations that satisfy the constraints

on the objectives. In contrast, MCMC-MH recorded an average of 338 satisfactory points at the

end of the search, corresponding to 15.29% of the total calls. Out of the 10 searches conducted, the

results of three runs per algorithm are illustrated in Figures 3 and 4.

Hyper-parameter Value

N0 10

Nbatch 10

Tsamples 2200

NTPE {100, 300, 500}
β {1, 2}
(rinitial,rfinal) {(0.2, 0.02), (0.02, 0.002), (0.02, 0.0002)}

Table 2: b-CASTOR hyper-parameters for the search in fBH. Values in brackets define the hyper-

parameter grid search space.

The superior performance of b-CASTOR over MCMC-MH is evident from the results shown in

these plots. A high number of TPE trials allows the collection of a large number of samples, which

are distributed across high values of the ECI acquisition function. By setting a quadratic priority

parameter, β = 2, the ranked-sampling strategy is adjusted to strictly favour exploitation over

exploration. Consequently, in each search iteration, the proposed batch X∗ is more likely to contain

a set of parameter values that meet all the constraints – a satisfactory set – and show sufficient

variability in the parameters found – a diverse set – leading to a high sample efficiency of the

search. Figure 3 demonstrates that with b-CASTOR the S region can be accurately characterised

without having to explore the entire search space. In contrast, MCMC-MH in Figure 4 exhibits

lower sample efficiency, with many evaluations spread across areas surrounding the S region.

Furthermore, as mentioned in section 3.3, setting the radius parameter r in eq. (3.2) to have

a linear decay allows early exploration when the initial size of the radius is relatively big com-

pared to the search space leading to a comprehensive initial estimation of the satisfactory region.

Subsequently, since the radius decreases with each iteration, the S region gets densely populated.

However, sections of the S region not identified in the initial low-resolution phase are likely to

remain undiscovered. This behaviour is observed in Figure 3 (c), where a small segment of the S
region in the top-left quadrant remains undetected. Nonetheless, b-CASTOR extends its explo-

ration to uncover additional sections of the S region once the previously discovered areas are fully
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covered, by leveraging the uncertainty estimation of the surrogate model on unexplored regions in

the search space.

4.2 The (B − L)SSM and a 95 GeV Higgs Boson

We now examine the first phenomenology case study with (B−L)SSM model, searching for model

configurations that can explain the γγ anomaly, defined in equation (2.1). As described in section

2.3, the objective function is defined as follows:

H(B−L)SSM :
(
M0,M1/2, tanβ,A0, µ, µ

′, Bµ, Bµ′
)
→
(
mh′ ,mhSM , µγγ , χ2

HS, k
HB
0

)
where each objective is constrained by τ specified in eq. (2.15). One issue that arises in sampling

methods for BSM phenomenology is to guarantee the physical validity of each parameter configu-

ration. In certain BSM models, SP fails to converge to a physical spectra for a significant portion

of points within the search space, being the case for the (B − L)SSM. In [20] they addressed this

challenge by employing a NN classifier as a preliminary step to regression on observables. In [60]

they include these points as points outside the satisfactory set, assigning them a zero likelihood.

In this work, for we discard the non-physical points and only work with valid parameter space

configurations.

The hyper-parameters for the b-CASTOR search are outlined in table 3. We have allocated a

greater number of TPE trials compared to the test function. This decision is based on findings

from section 4.1, which demonstrated that an increase in TPE trials enhances the sample efficiency

of the b-CASTOR search process.

Figure 5 illustrates the performance of both algorithms throughout the search process. b-CASTOR

identified 1636 satisfactory configurations, constituting up to 50% of the total H(B−L)SSM calls,

which amounted to 3240. In contrast, MCMC-MH was able to find only 25 satisfactory configura-

tions, representing a mere 0.008% of the total calls.

Hyper-parameter Value

N0 400

Nbatch 30

TS (Total samples) 3240

NTPE 2500

β 2

(rinitial,rfinal) (10−2, 10−6)

Table 3: b-CASTOR hyper-parameters for the search in H(B−L)SSM.

The results obtained from each algorithm, b-CASTOR and MCMC-MH, are depicted in Figures 6

and 7, respectively, using corner plots. These plots constitute a triangular grid of 2-Dimensional

(2D) scatter plots for each pair of variables, supplemented by marginal histograms for individual

variables. The figures integrate a selection of relevant dimensions from both the search space, X ,

and the objective space, Y; specifically, {M0,M1/2, tanβ,A0} from X and {mh′ ,mhSM , µγγ} from

Y. The dimensions of interest in the objective space are highlighted with green axes titles and green

bands marking the constraints, defined in eq. (2.15), within each plot.

Upon comparing Figures 6 and 7, it is evident that, with an equivalent number of function calls,

b-CASTOR comprehensively characterises the S region in a sample efficient manner, in contrast

to MCMC-MH, which encounters difficulties in accurately characterising this region. b-CASTOR
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Figure 5: Performance metrics for b-CASTOR (blue) and MCMC-MH (orange), for the search in

H(B−L)SSM fitting µexp
γγ .
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Figure 6: b-CASTOR results for H(B−L)SSM fitting µexp
γγ . A selection of dimensions from both

the search and objective spaces is presented; {M0,M1/2, tanβ,A0} (with black axis titles) and

{mh′ ,mhSM , µγγ} (with green axis titles), respectively. Green bands represent the experimental

constraints on the objectives.
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Figure 7: MCMC-MH results for H(B−L)SSM fitting µexp
γγ . A selection of dimensions from both

the search and objective spaces is presented; {M0,M1/2, tanβ,A0} (with black axis titles) and

{mh′ ,mhSM , µγγ} (with green axis titles), respectively. Green bands represent the experimental

constraints on the objectives.

concentrates on exploring the neighbourhood areas of the identified portion of the S region, simul-

taneously ensuring these portions are densely populated. Conversely, MCMC-MH explores a more

extensive area within the valid search space, centred around a few S points, as we can read from

the blue marginal plots of the search space dimensions {M0,M1/2, tanβ,A0} in Figure 7, without

prioritising samples within the S region. This sampling behaviour results from the nature of the

Gaussian proposal distribution in the MCMC-MH algorithm.

Subsequently, µbb can be included in the objectives, using the experimental value defined in eq.

(2.2). The objective space is then defined as follows:

Yγγ+bb =
{
y ∈ R6 : y =

(
mh′ ,mhSM , µγγ , µbb, χ

2
HS, k

HB
0

)}
(4.3)
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constrained to

τ γγ+bb =



mhSM = 125± δm GeV

mh′ = 95± δm GeV

µγγ = 0.27+0.10
−0.09

µbb = 0.117± 0.057

χ2
HS ≤ 136.6

kHB
0 ≤ 1

(4.4)

where we considered δm = 5 GeV. Incorporating µbb necessitates the addition of the relevant cross-

section, computed by MG, thereby increasing the computational cost associated with H(B−L)SSM.

Consequently, we conduct the b-CASTOR search utilising the same hyper-parameters as in Table

3, albeit with a reduced total sample budget of ∼ 1000 function calls, owing to the increased com-

putational cost. b-CASTOR achieved 5% of satisfactory points, which corresponds to ∼ 50 points.

Under identical settings, MCMC-MH failed to identify any satisfactory configurations restricted to

the same number of function calls. We allowed MCMC-MH to continue running until it located

at least one satisfactory point, achieving a rate of approximately 1 in 4000. The results for the

discovered S points by b-CASTOR are shown in Figure 8.

Finally, we conducted a b-CASTOR search for the three reported signal-strength modifiers µγγ , µbb

and µττ , with experimental values defined in eqs. (2.1), (2.2) and (2.3), respectively. The search

was unable to identify satisfactory parameter space configurations, suggesting that the (B−L)SSM

cannot simultaneously accommodate the three signals, within the designated search parameter space

X , as defined in eq. (2.13), with parameter ranges specified in Table 1.

5 Conclusions

In this paper, we have introduced b-CASTOR, a novel multi-objective active search method for

computationally expensive BSM scenarios. It effectively identifies S, the satisfactory region of

the corresponding parameter space that can accommodate a combination of desired values for the

objectives while achieving high sample efficiency due to the use of probabilistic surrogate models for

approximating the multiple objectives. It provides sample diversity in the search space by leveraging

the ECI acquisition function, a volume based metric that operates to maximise the covered volume

of the S region.

The paper evaluated b-CASTOR using two case studies. The first case involved a double-objective

and a 2D test function designed to replicate the complexity of sparse and disjoint satisfactory

regions. The second case focused on BSM phenomenology, specifically employing the (B − L)SSM

scenario to allocate the observed signal at approximately 95 GeV from Higgs searches. Specifically,

in this work, we attempt to find explanations to three possible data anomalies emerged at the above

mass value in the γγ, ττ (at the LHC) and bb̄ (at LEP) invariant masses.

We conducted a comparative analysis between our proposed search method, b-CASTOR, and a

MCMC-MH. Our findings illustrate the effectiveness of our algorithm in characterising the S region

within the parameter space of the (B − L)SSM model, by efficiently finding solutions herein in

the case of the longest established anomaly, i.e. the one in the γγ channel, obtained in the form

a light scalar state, h. However, considering updated experimental data for the channels h →
ττ and h → bb̄, our approach did not find points capable of simultaneously explaining all three

channels. Nonetheless, it identified nine points capable of satisfying the signal strengths µγγ and

µbb concurrently.
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Figure 8: b-CASTOR results for H(B−L)SSM fitting µexp
γγ and µexp

bb . A selection of dimensions from

both the search and objective spaces is presented; {M0,M1/2, tanβ,A0} (with black axis titles) and

{mh′ ,mhSM , µγγ , µbb} (with green axis titles), respectively. Green bands represent the experimental

constraints on the objectives.

b-CASTOR is robust against the choice of the resolution parameter r when the gradual decay on this

parameter is implemented. Our experiments have consistently found that this configuration on r

causes a large scale discovery of the S region early in the early stages of the search. The exploration-

exploitation trade-off in our algorithm is determined by the interplay between the trials used for

each ECI optimisation, the quantity of samples obtained through the Rank-based sampling strategy,

and their prioritisation level. An increase in the number of ECI optimisation trials improves the

accuracy of policy optimisation but strains the inference time efficiency of the surrogate model.

Then, a higher degree of prioritisation leads to an increase in sample efficiency but diminishes

exploration, consequently reducing the potential for discovery of the satisfactory region. However,

the issue of low exploration can be mitigated by increasing the number of Rank-based samples.

Nonetheless, adding more samples per iteration results in slower re-training of the surrogate model

in each iteration. Therefore, utilising probabilistic surrogate models capable of scaling to larger

datasets and with faster inference time efficiency, such as Bayesian Neural Networks (BNNs) [61],
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Figure 9: Scatter plots of the data set derived from the five-dimensional b-CASTOR search,

evaluated in MG for µγγ , µbb and µττ . It illustrates that while none of the points satisfy the

three experimental signal-strengths modifier values simultaneously, nine points (marked with red

crosses) meet the criteria for both µexp
γγ and µexp

bb , suggesting potential areas of interest for further

exploration.

represents a potential avenue for further development.

We specifically compare our approach with MCMC-MH, as the latter is well-established in the

community. Nevertheless, it is important to note that this comparison might not be entirely fair

[19]. MCMC-MH operates under assumptions that we are testing against, such as requiring a long

enough Markov Chain so that the MH algorithm samples the full posterior probability density

function across the entire parameter space. This comparison serves as a proof-of-concept that a

search algorithm could better suit our objectives of comprehensively characterising the S region in

a sample-efficient manner. Exploring b-CASTOR performance against emerging approaches from

the ML and AI community within HEP [21, 22, 60, 62] could yield valuable insights into potential

enhancements and application scenarios.

A The TPE Algorithm

The Tree-structured Parzen Estimator (TPE) algorithm a variant of BO methods [49], commonly

use for hyper-parameter optimisation in ML. In each iteration of our search we optimise ECI with

TPE to generate a set of candidates. TPE utilizes Parzen Estimators as surrogate models to directly

approximate p(x | y), formulated as follows:

p(x | y) =
{
l(x) if y < y∗

g(x) if y ≥ y∗,
(A.1)

where l(x) and g(x) are the probability densities modeling the two group of observations. The

value y∗ is defined to be a quantile γ of the observed y values satisfying p (y < y∗) = γ. In TPE,

p(x, y) is parameterised as p(y)p(x | y) to facilitate the optimisation of Expected Improvement (EI)

acquisition function, although an explicit model for p(y) is not needed since with this considerations

the EI acquisition function becomes proportional to,

EIy∗(x) ∝
(
γ +

g(x)

l(x)
(1− γ)

)−1

(A.2)
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Maximizing this equation leads to selecting points x that predominantly align under the distribution

l(x) rather than g(x).
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