

The JBBA | Volume 6 | Issue 1 | 2023 Published Open Access under the CC-BY 4.0 Licence

1

 PEER Reviewed RESEARCH

 OPEN ACCESS
 ISSN Online: 2516-3957

 ISSN Print: 2516-3949
https://doi.org/10.31585/jbba-6-1-(3)2023

A Review of Upgradeable Smart Contract Patterns
based on OpenZeppelin Technique
Shaima AL Amri, Leonardo Aniello, Vladimiro Sassone
School of Electronics and Computer Science, University of Southampton, UK

Correspondence: saaa1n18@soton.ac.uk/shaima.alamri@hotmail.com
Received: 30 December 2022 Accepted: 30 January 2023 Published: 20 March 2023

Abstract
The Ethereum blockchain is one of the main public platforms to run smart contracts and enable decentralised applications. Since data
stored in a blockchain is considered immutable, smart contracts deployed in Ethereum are regarded as tamper-proof and therefore offer
strong protection against attacks aiming at tinkering with the execution flow of an application. Yet, like any other software, a smart
contract needs to be maintained over time to fix bugs or add new features. Deploying every updated version as a brand-new smart
contract in Ethereum leads to problems such as migrating the contract state from the old version and enabling clients to point to the
new version in a timely fashion. The OpenZeppelin framework addresses this limitation by providing libraries that enable the
deployment of upgradeable smart contracts. This is achieved by relying on proxies that act as intermediaries between clients and smart
contracts, allowing the latter to be updated transparently. In this paper, we present the upgradeable smart contract patterns supported
by OpenZeppelin and compare them in terms of security, cost, and performance. To show this paradigm’s prevalence in Ethereum, we
also analyse the usage of OpenZeppelin Upgradeable smart contracts over the last four years.

Keywords: Smart Contract, Immutability, Proxy, Upgradeable, Patterns, OpenZeppelin

JEL Classifications: C80 and C89

1 Introduction

The upgraded smart contract (USC), designed with the
OpenZeppelin technique, is used to reserve the contract state
and redirect calls to the implementation contract (IC). In
addition, it upgrades the IC address when it requires a new
version. In this technique's design, the proxy stores the state of
the IC and maps any new version to the same state [12]. The
upgraded technique is not preventing the known attacks
against smart contracts. The purpose of designing the USC is
to ensure the state cannot be lost and will be mapped to a new
version of IC.

OpenZeppelin is a widely used library for writing secure smart
contracts, and it provides several patterns for implementing
upgradability [6]. These patterns include TransparentProxy,
ERC1967, UUPSUpgradeable, and Beacon [6]. The research
reviews the OpenZeppelin Upgradeable patterns to
understand how they vary based on gas consumption, security,
and performance.

The OpenZeppelin technique of upgrading smart
contracts was invented in 2017. This technique motivates
us to analyse the verified smart contract in Etherscan and
check whether this technique has grown within the last
four years.

The paper is organised as follows. Section 2 introduces Ethereum
and smart contracts, followed by the OpenZeppelin Upgradeable
technique. Section 3 presents the research methods, while Section
4 presents the analysis of upgraded patterns and compares them
based on gas consumption, security, and performance. Section 5
shows the analysis result of the usage of upgradeable patterns
over the last four years. Finally, Section 6 summarises our review
and outlines our future direction.

2 Background
2.1 Ethereum and Smart Contract

Ethereum platform is one of the public blockchain platforms
introduced by Vitalik Buterin [1] to override the limitations of
Bitcoin’s scripting language. Unlike Bitcoins, Ethereum
innovated to support all loops as it is full of Turing
completeness [10]. Moreover, the Ethereum platform is the
most popular for deploying contract-based applications in
several contexts, including financial services, insurance,
education, healthcare, and cryptocurrencies.

A smart contract is designed to verify and enforce legal
contract negotiation. Once it is deployed in the blockchain, no
one can change the code [2]. It is executed and verified by
Ethereum Virtual Machine Environment (EVM), built within
all decentralised nodes in the Ethereum blockchain. The
immutability characteristic of the smart contract made it a
trusted application.

The JBBA | Volume 6 | Issue 1 | 2023 Published Open Access under the CC-BY 4.0 Licence

2

2.2 OpenZeppelin Upgradeable Technique

OpenZeppelin is a popular open-source framework for building
secure, modular, and reusable smart contracts on the Ethereum
platform [11]. The most important approach is implementing
upgradeable smart contracts on the Ethereum platform. Their
approach utilises a proxy, allowing developers to deploy a
contract as an intermediary between a user and the
implementation contract [12]. The proxy will store the state of the
implementation contract to reserve the state when upgrading the
IC to a new version. The upgrade process is done by invoking the
UpgradeTo() function by the EOA, but if the IC had the same
function, this would cause a problem known as function clashing
[7]. This issue can occur because each function in a smart contract
is identified by four-byte at the bytecode level [7] and can not be
tracked by the Solidity compiler because we have two different
contracts: proxy and IC. To solve this issue, OpenZeppelin has
designed a Transparent Proxy pattern [6] with a specific
ProxyAdmin contract which plays the admin role. In addition, the
invocation of any function will be delegated to the suitable
contract according to the caller’s address [7]. The ProxyAdmin
will be the only one that have the right to invoke the
UpgradeTo() function of the proxy.

3 Methodology

The methodology proposed in this research to analyse the
upgradeable patterns involves the following steps:

1. Data Collection: We obtained the smart contract
address and creation timestamp from the Kaggle [4]
dataset, which contains live data of the Ethereum
blockchain. Then, the data was categorised based on
the creation timestamp from 2019 to 2022.

2. Source Code Crawling: We crawled source codes
using the tool provided by [5] and edited them
according to our needs by using the contract
addresses from the previous step as input for our
script. We were able to crawl different contracts
categorised by years.

3. Data Analysis: We classified the dataset according to
OpenZeppelin Upgradeable patterns (e.g.,
TransparentProxy, UUPSUpgradeable, ERC1967, and
Beacon). We used Python panda’s library to classify
and calculate summary statistics for each category.
The result of this step will be discussed and is present
in Section 5.

4 Analysis of OpenZeppelin Upgradeable Patterns
4.1 Upgraded Patterns

The upgradability of a smart contract is done by creating a
new version of the deployed contract. The new version is
designed to overcome the issues which exist in the old version
or by adding new features according to the business needs.
The state of the old version will be mapped to the new
version. However, the upgradability cannot prevent the smart
contract from potential adversaries such as a reentrancy attack.

The OpenZeppelin technique has proposed different patterns.
Each pattern is linked with a different contract to achieve its
purpose. The Proxy contract is represented as the central
core of the upgradeable contract with all patterns because it is
the core of implementing the delegation functionality [6]. The
remaining patterns are designed with different functionalities.

4.1.1 Transparent Proxy

The Transparent Proxy contract is designed to avoid the
function clashing and ensure that only the admin can call the
upgrade function. The following contracts are the main
contracts for implementing this pattern. Figure 1 presents the
deploying Tx of this pattern, where it clearly shows how the
three contracts are created and attached to it is code and
storage. The storage of TransparentUpgradeable Proxy is
responsible for managing the state of itself and IC [6].
Moreover, the storage of the IC will be useless as IC is
responsible for executing the delegated function and sending
the output back to the TransparentUpgradeable contract.

Figure 1. Process of deploying the TransparentProxy pattern

- TransparentUpgradeableProxy is designed to
manage the calls from the end-user to the IC by
checking the caller’s identity [8]. In case the caller is
the admin, his call will only be delegated to the IC for
execution if the caller is an external account.

- ProxyAdmin is designed as an admin of
TransparentUpgradeableProxy. It only has the right
to access the admin functions, which are used for
upgrading the proxy or changing the contract owner
[8]. For that, the ProxyAdmin is always assigned to a
dedicated account.

The JBBA | Volume 6 | Issue 1 | 2023 Published Open Access under the CC-BY 4.0 Licence

3

In case the external accounts invoke a function in IC,
the TransaparentUpgradeable Proxy checks whether
this call is to the admin or IC. The proxy will be
delegated the request to the IC if it is valid. The proxy
will update the state of IC contract once the request is
executed successfully and the output is forwarded to the
external accounts. Figure 2 illustrates how the proxy
manged the IC state. The proxy tracks the state of IC
because all invocation to IC is only done through the
proxy.

Figure 2. Invoking process of IC functions

Upgrading the IC to a new version requires deploying the
new version first and upgrading the address in proxy storage
via ProxyAdmin contract. It is clearly shown in Figure 3
how the upgrade function is executed by the
TransparentUpgradeable Proxy once the ProxyAdmin
validates the identity of the caller.

Figure 3. The Upgrade process of Upgrade function

4.1.2 ERC1967

ERC1967Proxy is designed based on EIP1967 [2], which is
proposed to overcome any clashes that might occur with the
storage layout of IC address. This proxy is not upgradeable
by default. It is inherited into the Proxy contract, which was
designed as the core for delegating the functions. The
function responsible for declaring the storage slot of the IC
address showed in Snapshot 1. The function is defined as a
constructer because it will be executed once the contract is
deployed. In addition, the variable of IC address can be
changed. Figure 4 illustrates the contract created by

deploying the ERC1967 pattern. It shows how
theERC1967Proxy is inherited within the proxy as one
contract because it helps the proxy guarantee that the
ERC1967Upgrade is designed along with ERC1967Proxy to
“provide the getters and events which emit the upgrade
functions of EIP1967 slots” [2].

Figure 4. Process of deploying the ERC1967 pattern

The message invocation process using this pattern is similar to
the previous pattern in Section 4.1.1. In this pattern, the proxy
will delegate the message to IC. Then IC executes the targeted
function and returns the output to a proxy. Finally, the proxy
will delegate the output to the end-user and update the state of
IC.

 In the case of invoking the upgrade function, the transactions
will be executed differently. The owner initiates the invocation
after creating the new contract version and getting IC address.
The IC address will be upgraded by the ERC1967Upgrade,
where it executes the _getImplemntation(old_ICaddress)
function followed by calling the
_UpgradeTo(newIC_address) [6]. The execution of those
functions is emitting the old address to the new address, as
shown in Figure 5.

constructor(address _logic, bytes memory _data)
payable { assert(_IMPLEMENTATION_SLOT ==
bytes32(uint256(keccak256("eip1967.proxy.implemen
tation")) - 1));

_upgradeToAndCall(_logic, _data, false);}

 Snapshot 1. The function of identifying the storage slot of IC
address

The JBBA | Volume 6 | Issue 1 | 2023 Published Open Access under the CC-BY 4.0 Licence

4

Figure 5. The process of Upgrade using ERC1967 pattern

4.1.3 Beacon

 This pattern is designed to call the upgrade function of
different ICs through multiple proxies. It consists of three
contracts, as detailed below.

- BeaconProxy is implemented as a proxy designed to
retrieve the IC addresses for each call initialised by
the UpgradeableBeacon contract [6].

- IBeacon is designed as the interface of BeaconProxy,
as it is responsible for storing the IC addresses. The
BeaconProxy calls the implementation() function
[6] and checks whether the return value is a contract
or not. Then the return address will be used to
delegate the call of the target.

- UpgradeableBeacon acts as an admin who has the
right to upgrade the BeaconProxy. The upgrade
process is done by calling the IBeacon contract,
which holds all IC addresses, and the linked proxies
will be upgraded automatically [6].

Figure 6 illustrates the deployment process of Beacon patterns,
where four different contracts are created. This pattern is
similar to ERC1967 during the upgrade process. Figure 5 as
the upgrade IC address to the new version is done through in
the IBeacon contract as the BeaconProxy is retrieving the
address of IC from IBeacon. However, the interaction
between this contract and the end-user is different. In the case
of invoking a function in IC while using the Beacon pattern,
the call goes through two transactions before being executed
by the IC. First, the BeaconProxy will receive the call and
retrieve the IC address from the IBeacon to delegate the call.
Then, once the BeaconProxy gets the IC address it will
delegate the call to the IC for executing the function, as shown
in Figure 7.

Figure 6. Process of deploying the Beacon pattern

Figure 7. Process of interaction with the Beacon pattern

4.1.4 UUPSUpgradeable
 This pattern is considered an upgradability mechanism built
within the IC contract. It is implemented by using
ERC1967Proxy [6]. In this pattern, the data and contract logic
are designed as one contract, as illustrated in Figure 8. The
invocation of any function is done directly between the end-
user and the contract. However, the upgrade process to a new
version will be authorised first by executing the function
_authorisedUpgrade(Owner Address) [6].

All OpenZeppelin Upgradeable patterns are designed to
preserve the immutability of a contract by holding the
implementation contract state within a proxy contract. This
technique allows the implementation contract to be upgraded
without losing the contract state. Some patterns, such as the
TransparentProxy pattern, are designed to prevent
authorisation issues by allowing a fixed admin to upgrade the
implementation contract. These patterns can be used to ensure
the contract remains upgradeable and secure. For example, the

The JBBA | Volume 6 | Issue 1 | 2023 Published Open Access under the CC-BY 4.0 Licence

5

proxy contract can be deployed using the TransparentProxy
pattern, which allows the admin to upgrade the
implementation contract as needed. In addition, using the
ERC1967 by some patterns is also helpful in avoiding the
proxy selector clashing issue.

Figure 8. Process of deploying the UUPSUpgradeable pattern

4.2 Comparison of Upgradeable Patterns
4.2.1 Gas Consumption (𝐠𝐜)

The contract transactions executed within the EVM and the
cost gas consumption (𝑪𝒈𝒄) for this operation are calculated
according to the transaction type. The gas price is changed
rapidly according to the network usage,1 where the amount of
consumed gas is a fixed value identified within Appendix G[3].
The (𝐠𝐜)	of the initial transaction of creating a smart contract
is 𝟏. 𝟐𝟖𝑴	𝒈𝒘𝒆𝒊 if the gas price is 𝟒𝟎	𝑾𝒆𝒊,	where the
estimated gas consumed is 𝟑𝟐𝟎𝟎𝟎	𝒖𝒏𝒊𝒕𝒔	𝒐𝒇	𝒈𝒂𝒔. The
research aims to determine the (𝒈𝒄) for different types of
transactions of different upgradeable patterns.

o (𝒈𝒄) of Deployment 𝑻𝒙

Since the deployment of an upgradeable contract creates more
than two SCs, then the (𝒈𝒄) depends on the number of
transactions that created new contracts.
For example, in the case of implementing the
TransparentProxy pattern, three SCs will be created
according to Figure 1, and the gas consumption for three
create transactions is 32,000 ∗ 3. Therefore, Equation (1) can
be used to calculate the (𝒈𝒄) of the creation transaction where
(n) is present in the number of contracts created during the
deployment process.
It is identified from Figure 8 that deploying the
UUPSUpgradeable patterns is cheaper than the other patterns.

1 https://etherscan.io/gastracker.

	32,000 ∗ 𝑛, 𝑛	 ∈ ℕ	𝑎𝑛𝑑	𝑛 ≥ 2															(1)

o (𝒈𝒄) of Normal 𝑻𝒙

The 𝐶𝐴𝐿𝐿	𝑎𝑛𝑑	𝐷𝐸𝐿𝐸𝐺𝐴𝑇𝐸𝐶𝐴𝐿𝐿 are categorised as normal
𝑇$ because any 𝐼𝐶 functions are invoked through these
transaction types. We assume the end-user has invoked the 𝐼𝐶
function, which will be delegated to 𝐼𝐶 through 𝑃𝑥 as a
𝐷𝐸𝐿𝐸𝐺𝐴𝑇𝐸𝐶𝐴𝐿𝐿 transaction. The (𝒈𝒄) of the entire process
from the end-user to 𝐼𝐶 is calculated as four different
transactions. According to Appendix G[3] gas consumption of
every transaction costs 21,000, then the total gas
consumption is calculated as in Equation (2). The CALL and
DELEGATE CALL have the same value of (𝒈𝒄) because
they are treated as a transaction.

𝑔𝑐%&'' + 𝑔𝑐()')*&+)%&'' +⋯											(2)

All upgradeable patterns have the same number of
transactions except UUPSUpgradeable as the proxy and IC
combined as one smart contract. For that, it has less (𝒈𝒄)
compared with the remaining patterns.

o (𝒈𝒄) of Upgrade 𝑻𝒙

The upgrade 𝑇$ is a 𝑪𝑨𝑳𝑳 transaction because the upgrade is
the name of the function built within the 𝑷𝒓𝒐𝒙𝒚𝑨𝒅𝒎𝒊𝒏
contract. The 𝐸𝑂𝐴 invokes this function through
𝑷𝒓𝒐𝒙𝒚𝑨𝒅𝒎𝒊𝒏 to upgrade the 𝐼𝐶 address. The (𝒈𝒄) is
determined by calculating the 𝑪𝑹𝑬𝑨𝑻𝑬 transaction of the
new version with the 𝑪𝑨𝑳𝑳 transaction of upgrading 𝐼𝐶
address. Figure 5 illustrates the number of transactions that
can be called to execute the upgrade function.

𝑔𝑐%&'' + 𝑔𝑐,-./0. (3)

The gas consumption for different contract transactions
can vary depending on the transaction type and the contract
code’s complexity. For example, the deployment
transactions consume a fixed amount of gas because this
transaction only involves creating the contract and does not
execute any of its functions. On the other hand, invoking a
function in IC requires multiple transactions to be executed
and complete the call. It includes an average transaction to
initiate the call, internal transactions to execute the
function, and a final transaction to return the result.
Therefore, the gas consumption for these transactions can
be more expensive than the deployment transaction.

Additionally, performing the upgrade to an IC, the owner
must initiate a transaction to update the proxy contract by
changing the address of the old version to the new version.
This transaction consumes gas, as does the deployment
transaction to deploy the new implementation contract.
Therefore, the total gas consumption for an upgrade depends
on the complexity of the new implementation contract and the
number of transactions required to complete the upgrade.

The JBBA | Volume 6 | Issue 1 | 2023 Published Open Access under the CC-BY 4.0 Licence

6

4.2.2 Performance

In our research, we have conducted a qualitative analysis
method to evaluate the performance of different patterns and
perform the comparison between them. The evaluation
estimates the number of transaction rounds required to
execute the target function within the proxy patterns or IC.
The comparison will be based on transaction types as it will
cover in the following sections.

o Performance of Deployment 𝑻𝒙

 The regular deploymentTx of deploying contract requires
one transaction, called creation Tx. In the case of deploying
the different patterns, such as ERC1967 pattern, it also
required three rounds of transactions, as it initialised three
different creation transactions. It is responsible for creating
the ERC1967Proxy, ERC1967Upgrade, and IC. On the
other hand, deploying the Beacon pattern required three
rounds of creation transactions, as shown in Figure 6.
Moreover, deploying the UUPSUpgradeable contract required
two rounds of creation transactions as the UUPSUpgradeable
is built-in with the IC and needs ERC1967Proxy to avoid the
proxy selector clashing issue.

 The performance of this type of transaction can be estimated
by counting the number of rounds required to create each
contract pattern successfully. However, each created contract
is created in an individual block because once the IC is
created, the address will be stored within the proxy pattern and
used later as input to delegate the end-user invocation. For
that, by using our analysis method, we assume that
UUPSUpgradeable patterns have high performance as it
requires only two rounds of creation transactions during the
deployment process.

o Performance of Normal 𝑻𝒙

 The normal Tx is the call initiated by the end-user to IC to
execute the targeted function. In the case of executing a
function of IC via proxy, it required six transactions. Those
transactions represent different types of calls, starting with the
call from the end-user to IC through the proxy. Then, once
the IC receives it, it will be executed and delegated to the end-
user. Finally, the proxy completes the final transaction to
update the contract state once the process is done successfully.
The internal transactions consist of three transactions which
are linked with the original transaction. Once the output from
internal transactions is delegated to the end-user, the six
transactions will be added to the same block with the same
hash value. Figure 5 shows the number of transactions
performed to execute a function in the ERC1967 pattern.

As the proxy plays an essential part in all patterns, we estimate
that ERC1967 and Transparent Proxy patterns have the same
number of transactions to execute the targeted function.
Therefore, the UUPSUpgradeable pattern has the best

performance as the execution of the function is done within
the same contract.

Our method focuses on the number of transactions initiated
to be executed. Other metrics can be considered
experimentally to know which patterns perform better than
others. We aim to evaluate the performance experimentally by
measuring throughput, latency, and code complexity which
can give us an accurate result.

o Performance of Upgrade 𝑻𝒙

Upgraded smart contracts involve the contract owner
changing the address of IC from the old version to the new
version. Figure 5 represents the upgrade process of the
ERC1967 pattern, as the number of transactions performed is
equal to the number of transactions performed by the Beacon
pattern. We assume that both patterns perform similarly
during the upgrade process.

In the case upgrade process done by the TransparentProxy,
the owner calls the upgrade function similarly as the end-user
invokes a function from IC. For that, we assumed that the
number of transactions required for upgrade Tx is similar to
normal Tx. Therefore, we assume that UUPSUpgradeable is
best performed, followed by the TransparentProxy pattern,
and the remaining patterns are performed slower.

4.2.3 Security

The design of an upgradeable contract does not prevent the
known attack of smart contracts, such as reentrancy, because the
main idea of an upgradeable contract is to ensure the immutability
concept of blockchain by reserving the contract state.

In this section, the research aims to discover the security
vulnerabilities that affect upgradeable patterns. First, we have
used some datasets from Section 3. Then, we use the Slither
[1] tool to analyse the source codes of different upgradeable
patterns. Figure 9 shows the result of different affected
vulnerabilities and their impacts on each pattern.

It shows that 20% of the detected vulnerabilities in Beacon
and TransparentProxy patterns have an informational
impact. However, the vulnerabilities categorised as
informational will not affect the safety of upgradability
because they do not affect the upgrade functions. On the
other hand, the ERC1967 pattern is affected by 60% of
detected vulnerabilities equally divided between the
informational, low, and medium impacts. For that, the code
complexity of upgradeable patterns could be one of the main
metrics that might ERC1967 pattern to be the most affected,
with 20% of vulnerabilities with medium impact.

There is no result related to UUPSUpgradeable patterns in
Figure 9. For that, we need to use another analysis tool in
future to verify the results.

The JBBA | Volume 6 | Issue 1 | 2023 Published Open Access under the CC-BY 4.0 Licence

7

Figure 9. The number of affected vulnerabilities based on
OpenZeppelin patterns

Therefore, the good practice to keep the contract safe and
secure is developing the following mechanisms besides the
upgradeable contract [9].

- Ownable
This contract module provides an access control
mechanism and ensures the authorisation of
upgradeable contracts [9]. It is linked with
upgradeable contracts, such as Transparent, Beacon,
and UUPSUpgradeable contracts. The EOA who
deploys this contract will be the owner by default
unless he transfers the ownership to another owner
by invoking the transferOwnership() function,
which is only reachable by the owner. If the
ProxyAdmin account needs to be changed, it will be
done with the Ownable contract’s function.

- ReentrancyGuard
This contract module is designed to prevent reentrant
calls to the contract function [9]. It is built with the
nonReentrant() modifier, which fails any call
execution with a reentrancy pattern.

5 Analyse the Usage of OpenZeppelin Upgradeable

Smart Contracts Over the Last Four Years

In this section, we analyse the use of OpenZeppelin
Upgradeable smart contracts over the last four years. The
analysis starts by using the dataset which been created from
Section 3.3.

 5.1 Result Analysis

 Figure 10 compares the number of upgradeable patterns and
how they evolved over the last four years. For example, the
TransparentProxy pattern’s value increased significantly from
2019 to 2022, with a value of 5116 in 2019 and a value of
53,898 in 2022. These changes represent a growth of more
than 90%. Similarly, the value of the UUPSUpgradeable
pattern increased from 122 in 2019 to 13,134 in 2022.

On the other hand, the value of the ERC1967 pattern
remained relatively constant from 2019 to 2021 but increased
significantly in 2022. However, the value of the Beacon
pattern also increased steadily from 2019 to 2022, with a value
of 9 in 2019 to 229 in 2022.

Overall, the data show that the Transparent and
UUPSUpgradeable patterns are the most upgradeable and are
used between 2019 and 2022. The comparisons discussed
earlier in this paper could be related. It was clear that
Transparent patterns have been invented to overcome the
issue discussed in Section 2.2. In addition, the
UUPSUpgradeable pattern has better performance and is
cheaper. The values of the ERC1967 and Beacon patterns
have remained relatively constant or have increased steadily
over the four years. This analysis provides empirical results of
using upgradeable smart contract patterns based on the
OpenZeppelin technique.

Figure 10 Number of Upgradeable patterns between 2019 and
2022

6 Conclusion and Future Work

In this paper, we reviewed the OpenZeppelin Upgradeable
patterns and compared them from different aspects, such as
cost, performance, and security. We performed some analyses
to find the vulnerabilities that might affect upgradeable smart
contract patterns.

The difference between upgradeable patterns on performance
and gas consumption is performed based on three

The JBBA | Volume 6 | Issue 1 | 2023 Published Open Access under the CC-BY 4.0 Licence

8

transactions: DeploymentTx, NormalTx, and UpgradeTx.
However, the comparison between upgradeable patterns on
performance was based on a qualitative analysis. We found
that the UUPSUpgradeable pattern performs better according
to the number of transactions completed per round. In the
case of gas consumption, the gas consumption while using the
UUPSUpgradeable pattern is cheaper than other patterns. We
assume that the Beacon pattern also consumes much gas and
has slow performance according to the number of transactions
performed during the interaction. Finally, the result analysis
shows that the use of Transparent Proxy of upgradeable
patterns has grown significantly over the last four years.

In future work, we aim to verify the vulnerabilities identified in
Section 4.2.3 by creating a threat model and identifying
upgradeable patterns’ security requirements. In addition, we
will conduct experimental evaluations of the performance of
the upgradeable patterns. The experimental method will
involve measuring key metrics such as throughput, latency,
and code complexity and using these metrics to compare the
performance of different upgradeable patterns.

Competing Interests:
None declared.

Ethical approval:
Not applicable.

Author’s contribution:
The authors worked together to design and conduct this research and prepare the manuscript.

Funding:
University of Southampton
Ministry of Higher Education, Research Innovation Oman

Acknowledgements:
Not applicable.
__

References

[1] J. Feist, G. Grieco, and A. Groce, “Slither: a static
analysis framework for smart contracts”, in 2019
IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB).
IEEE, May 2019. pp. 8-15.

[2] Ethereum, “EIPS/EIP-1967.MD at master
Ethereum/EIPS,” GitHub, 08 Sep. 2022. [Online].
Available: https://github.com/ethereum/EIPs/blob
/master/EIPS/eip-1967.md.

[3] “Yellow paper – github pages.” [Online]. Available:
https://ethereum.github.io/yellowpaper/paper.pdf.

[4] G. BigQuery, “Ethereum blockchain,” Kaggle, 04 Mar.
2019. [Online]. Available:
https://www.kaggle.com/datasets/bigquery/ethereum
-blockchain.

[5] W. Jie, A. S. Koe, P. Huang, and S. Zhang, “Full-stack
hierarchical fusion of static features for smart contracts
vulnerability detection,” 2021 IEEE International
Conference on Blockchain (Blockchain), 2021. Availbale:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arn
umber=9680540.

[6] “Proxies,” OpenZeppelin Docs. [Online]. Available:
https://docs.openzeppelin.com/contracts/4.x/api/pr
oxy.

[7] “Proxy upgrade pattern,” OpenZeppelin Docs. [Online].
Available: https://docs.openzeppelin.com/upgrades-
plugins/1.x/proxies?utm_source=zos&utm_medium=
blog&utm_campaign=proxy-pattern#the-constructor-
caveat.

[8] S. Palladino, “The transparent proxy
pattern,” OpenZeppelin blog, 26 Apr. 2021. [Online].
Available: https://blog.openzeppelin.com/the-
transparent-proxy-pattern/.

[9] “Security,” OpenZeppelin Docs. [Online]. Available:
https://docs.openzeppelin.com/contracts/4.x/api/se
curity.

[10] M. Wohrer and U. Zdun, “Smart contracts: Security
patterns in the ethereum ecosystem and solidity,” in
2018 IEEE 1st Int. Work. Blockchain Oriented Softw. Eng.
IWBOSE 2018 - Proc., vol. 2018-Janua. IEEE, 2018.
pp. 2–8.

[11] “Proxies,” OpenZeppelin Docs. [Online]. Available:
https://docs.openzeppelin.com/contracts/4.x/api/pr
oxy.

[12] S. Palladino, Aquiladev, and Josselinfeist, “Contract
upgrade anti-patterns,” Trail of Bits Blog, 06 Sep. 2018.
[Online]. Available: https://blog.trailofbits.com/
2018/09/05/contract-upgrade-anti-patterns/.

