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We designed a protocol for digital quantum computation of a gauge theory with a topological term in
Minkowski spacetime, which is practically inaccessible by standard lattice Monte Carlo simulations. We
focus on 1þ 1 dimensional quantum electrodynamics with the θ term known as the Schwinger model and
test our protocol for this on an IBM simulator. We construct the true vacuum state of a lattice Schwinger
model using adiabatic state preparation which, in turn, allows us to compute an expectation value of the
fermion mass operator with respect to the vacuum. Upon taking a continuum limit we find that our result in
the massless case agrees with the known exact result. In the massive case, we find an agreement with mass
perturbation theory in the small-mass regime and deviations in the large-mass regime. We estimate
computational costs required to take a reasonable continuum limit. Our results imply that digital quantum
simulation appears a promising tool to explore nonperturbative aspects of gauge theories with real time and
topological terms.
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I. INTRODUCTION

Gauge theory plays a central role in understanding our
universe as all the known fundamental forces are
described in the framework of gauge theory. Quantum
chromodynamics (QCD) is the gauge theory describing
the strong interaction among quarks and gluons. Since
QCD is asymptotically free, we need a nonperturbative
treatment at low energy to interpolate perturbative picture
of quarks/gluons and physics of hadrons. The only
successful first-principle approach to handle this is lattice
QCD in which we conventionally consider QCD on 4D
Euclidean spacetime and discretize the spacetime by
lattice to make the path integral finite dimensional.
Evaluating the regularized path integral numerically and
taking a continuum limit carefully, one can study non-
perturbative phenomena such as confinement and chiral
symmetry breaking, and reproduce the correct hadron

spectrum [1–4]. Numerical integration of the path integral
in lattice-field theory is usually done by the Markov Chain
Monte Carlo method which regards Boltzmann weight as
a probability. Therefore, it encounters a problem when the
integrand is nonreal positive and highly oscillating so that
sampling becomes much less efficient. This problem,
known as the sign problem physically happens, e.g.,
when we have topological terms [5], chemical potentials
[6], or real time [7]. All of the above cases are crucial to
understand our universe and therefore, an efficient way to
explore the above situations is highly demanded [3–7].
There are various approaches to challenge the sign

problem within the framework of the path integral formalism
[6]; however, there is limited success as the sign problem
gets stronger. One may wonder if it is possible to attack
gauge theories with the sign problem by switching to the
Hamiltonian formalism where the sign problem is absent
from the beginning. Instead, we have to regularize infinite-
dimensional Hilbert space and play with huge vector space
whose dimension is typically more than exponential of
spatial volume in the unit of UV cutoff. It seems beyond
the capacity of current/near-future supercomputers when
spacetime dimension is not low. However, it is reasonable to
expect that quantum computers do this job in the not so
distant future. Anticipating growth of quantum computa-
tional resources, it is worth to develop methods to analyze
gauge theories suitable for quantum computers to prepare for
the coming era of quantum supremacy [8,9]. It is particularly
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important to identify suitable algorithms and estimate
computational resources required to take a reasonable
continuum limit.
In this paper, we design a protocol for a digital quantum

simulation of a gauge theory with a topological term on
Minkowski spacetime which is practically inaccessible by
the standard Monte Carlo approach. We focus on the
Schwinger model with the θ term [10–13], which is 1þ 1
dimensional Uð1Þ gauge theory coupled to a Dirac
fermion described by the Lagrangian,

L0 ¼ −
1

4
FμνFμν þ gθ

4π
ϵμνFμν

þ iψ̄γμð∂μ þ igAμÞψ −mψ̄ψ ; ð1Þ

where γ0 ¼ σ3, γ1 ¼ iσ2, γ5 ¼ γ0γ1, and Fμν ¼
∂μAν − ∂νAμ. The physical parameters of this model are
the gauge coupling g, topological angle θ, and fermion mass
m. We discretize the space by lattice, keeping time con-
tinuous and work in Hamiltonian formalism. Then, we
construct the true vacuum of the lattice Schwinger model
at finite ðg; θ; mÞ by a digital quantum simulation via
adiabatic state preparation and compute the vacuum expect-
ation value (VEV) of the fermion mass operator ψ̄ψ. We take
a continuum limit and find that our result in the massless case
agrees with the exact result known in literature [14–17]. In
the massive case, we find an agreement with mass pertur-
bation theory [18,19] for smallm and deviations for largem.
Our results imply that digital quantum simulation is already a
useful tool to explore nonperturbative aspects of gauge
theories with topological terms on Minkowski spacetime
even in current computational resource. Here we use a
classical simulator for quantum hardware rather than real
quantum computers for the purpose of designing quantum
algorithms for gauge theories. Its implementations on a real
quantum device is left as future work, that is, another vital
task especially in the forthcoming Noisy Intermediate-Scale
Quantum (NISQ) era [20].
Many efforts have already been made in designing and

implementing digital quantum simulations of quantum-field
theories [21–41] as well as analog quantum simulations
[42–55]. In particular, the Schwinger model provides an
ideal laboratory for developing quantum algorithms with
limited quantum resources foreseeing larger-scale digital
quantum simulations of various gauge theories. So far,
applications of quantum algorithms for the Schwinger model
are limited to θ ¼ 0, and performed with a free vacuum and
quenching evolution [28,29,33,39,56], while analog quan-
tum simulations have been implemented in [51,55].
The present work demonstrates how to construct the

true vacuum in an interacting gauge theory with the
topological term by a digital quantum simulation. We
believe that our results open up potential applications of
digital quantum simulation to quantum-field theory since
the preparation of true ground state is indispensable to

calculate various observables such as scattering ampli-
tudes nonperturbatively.1

II. SCHWINGER MODEL AS QUBITS

First, we rewrite the lattice Schwinger model in terms of
spin operators which act on the Hilbert space represented
by qubits according to [62]. Instead of directly analyzing
the system with the Lagrangian (1), we consider the
Lagrangian obtained by the chiral rotation ψ → ei

θ
2
γ5ψ to

absorb the θ term via the transformation of the path integral
measure [63]. Therefore, we can study the same physics by
the Lagrangian,

L ¼ −
1

4
FμνFμν þ iψ̄γμð∂μ þ igAμÞψ −mψ̄eiθγ

5

ψ : ð2Þ

In the temporal gauge A0 ¼ 0, the Hamiltonian of this
model is

H¼
Z

dx

�
−iψ̄γ1ð∂1þ igA1Þψ þmψ̄eiθγ

5

ψ þ 1

2
Π2

�
; ð3Þ

where Π≡ _A1 is the conjugate momentum of A1. The
gauge invariance of physical Hilbert space is guaranteed by
imposing the Gauss law:

0 ¼ −∂1Π − gψ̄γ0ψ : ð4Þ

A. Lattice theory with staggered fermion

To implement a quantum simulation algorithm, we need
a regularization to make the Hilbert space finite dimen-
sional. For the Schwinger model, this is done just by
placing the theory on a lattice and imposing the Gauss
law2 [29]. Let us consider the theory on 1D spatial lattice
with N sites and lattice spacing a keeping the time
continuous. Using the staggered fermion [64,65], the
lattice Hamiltonian is given by3

H ¼ −i
XN−1

n¼1

�
w − ð−1Þn m

2
sin θ

�
½χ†neiϕnχnþ1 − H:c:�

þm cos θ
XN
n¼1

ð−1Þnχ†nχn þ J
XN−1

n¼1

L2
n; ð5Þ

where w ¼ 1=ð2aÞ and J ¼ g2a=2. We have rescaled the
gauge operators as ϕn ↔ −agA1ðxÞ and Ln ↔ −ΠðxÞ=g,

1Schwinger model with the θ term has been studied by other
approaches without using quantum computing in [57–61].

2This is true for open boundary condition while there is a
remaining gauge degree of freedom for periodic boundary
condition.

3Note that staggered fermion in 1þ 1 dimensions in Hamilton
formalism has only one taste.
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where ϕn lives on a site n while Ln lives on a link between
sites n and nþ 1. A two-component Dirac fermion ψðxÞ ¼
ðψuðxÞ;ψdðxÞÞT is translated into a pair of neighboring one-
component fermions according to the correspondence (see
Appendix A for details):

χnffiffiffi
a

p ↔

�
ψuðxÞ n∶ even

ψdðxÞ n∶ odd
: ð6Þ

They satisfy the (anti-)commutation relations

fχ†n;χmg¼δmn; fχn;χmg¼0; ½ϕn;Lm�¼ iδmn; ð7Þ

and the Gauss law on the lattice is

Ln − Ln−1 ¼ χ†nχn −
1 − ð−1Þn

2
: ð8Þ

B. Mapping to spin system

We rewrite the system in terms of spin variables in three
steps. Firstly, we perform the Jordan-Wigner transforma-
tion [66], which maps the fermions to spin variables as

χn ¼
�Y

l<n

− iZl

�
Xn − iYn

2
; ð9Þ

where ðXn; Yn; ZnÞ stands for the Pauli matrices ðσ1; σ2; σ3Þ
at site n. Secondly, we specify a boundary condition and
solve the Gauss law. We impose an open boundary
condition which restricts Ln to a constant at the boundary.
Solving the Gauss law, we rewrite Ln in terms of the spin
variables as

Ln ¼ L0 þ
1

2

Xn
l¼1

ðZl þ ð−1ÞlÞ; ð10Þ

where the constant L0 specifies our boundary condition.
The Schwinger model with ðθ; L0Þ is equivalent to the one
with ðθ þ 2πL0; 0Þ [12] and therefore we can take L0 ¼ 0
without loss of generality. Finally, we can eliminate ϕn by
the redefinition4 χn →

Q
l<n½e−iϕl �χn.

Thus, the lattice Schwinger model is purely described in
terms of the spin variables:

H ¼ HZZ þH� þHZ; ð11Þ

where

HZZ ¼
J
2

XN−1

n¼2

X
1≤k<l≤n

ZkZl;

H� ¼ 1

2

XN−1

n¼1

�
w− ð−1Þnm

2
sinθ

�
½XnXnþ1þYnYnþ1�;

HZ ¼
mcosθ

2

XN
n¼1

ð−1ÞnZn−
J
2

XN−1

n¼1

ðnmod 2Þ
Xn
l¼1

Zl; ð12Þ

up to irrelevant constant terms. Note that the nonlocal
interactions in HZZ show up as a consequence of solving
the Gauss law constraint. For the formulation based on (1),
see Appendix B.

III. ADIABATIC PREPARATION OF VACUUM

We study the VEV of the mass operator:

hψ̄ðxÞψðxÞi ¼ hvacjψ̄ðxÞψðxÞjvaci; ð13Þ

where jvaci is the ground state of the full Hamiltonian H.
Here, instead of directly studying the local operator
ψ̄ðxÞψðxÞ, we analyze the operator averaged over space:

1

2Na
hvacj

XN
n¼1

ð−1ÞnZnjvaci; ð14Þ

whose continuum limit is the same as hψ̄ðxÞψðxÞi by
translational invariance.
We prepare the vacuum state jvaci using the adiabatic

theorem as follows. We first choose an initial Hamiltonian
H0 of a simple system such that its ground state jvaci0 is
unique and known. Next, we consider the following time
evolution of jvaci0:

T exp

�
−i

Z
T

0

dtHAðtÞ
�
jvaci0; ð15Þ

where T exp denotes a time-ordered exponential. The
adiabatic Hamiltonian HAðtÞ is an Hermitian operator
satisfying

HAð0Þ ¼ H0; HAðTÞ ¼ H: ð16Þ

The adiabatic theorem claims that, if the system described
by the Hamiltonian HAðtÞ is gapped and has a unique
ground state, then the ground state of H is obtained by the
time evolution

jvaci ¼ lim
T→∞

T exp

�
−i

Z
T

0

dtHAðtÞ
�
jvaci0: ð17Þ

In practice, we take finite T and discretize the integral, and
therefore we can obtain only an approximation of the
vacuum. This implies that an expectation value of an

4If we took a periodic boundary condition, then L0 was
dynamical and one of ϕn ’s could not be eliminated by the
redefinition.
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operator under the approximate vacuum has intrinsic
systematic errors. In Appendix D, we discuss how we
estimate the systematic errors.
In our simulation, we take the initial Hamiltonian H0 as

H0 ¼ HZZ þHZjm→m0;θ→0; ð18Þ

wherem0 ∈ R≥0 can be arbitrary in principle; however, it is
chosen so that systematic errors become small. The ground
state of H0 is

jvaci0 ¼ j0i ⊗ j1i ⊗ � � � ⊗ j0i ⊗ j1i; ð19Þ

where Zj0i ¼ j0i and Zj1i ¼ −j1i. In order to evolve it
into the desired vacuum state we choose the following
adiabatic Hamiltonian:

HAðtÞ ¼ HZZ þH�;AðtÞ þHZ;AðtÞ; ð20Þ

with H�;A and HZ;A obtained by replacing the parameters
of H� and HZ in the Hamiltonian (11) as

w→
t
T
w; θ→

t
T
θ; m→

�
1−

t
T

�
m0 þ

t
T
m: ð21Þ

We take finite T and approximate the time evolution (17) by
[67,68]

jvaci ≃UðTÞUðT − δtÞ � � �Uð2δtÞUðδtÞjvaci0; ð22Þ

where UðtÞ ¼ e−iHAðtÞδt and δt ¼ T
M with a large positive

integerM. The most naive way to approximate the operator
UðtÞ is

UðtÞ ¼ e−iHZZδte−iH�;AðtÞδte−iHZ;AðtÞδt þOðδt2Þ: ð23Þ

While we use this approximation for θ ¼ 0 with
ðT; δtÞ ¼ ð100; 0.1Þ, we use an improved version of (23)
for θ ≠ 0 with ðT; δtÞ ¼ ð150; 0.3Þ by using

UðtÞ ¼ e−iH�;AðtÞδt2e−iHZZδte−iHZ;AðtÞδte−iH�;AðtÞδt2 þOðδt3Þ;
ð24Þ

which is detailed in Appendix E. We implement all the
operators in the time evolution by combinations of quantum
elementary gates provided by IBM Qiskit library (see
Appendix C). Finally, in the process of measurement of
the mass operator, we take the number of shots to be 106 in
all the data points. This induces statistical errors in addition
to the systematic errors.

A. Estimation of number of gates

Here we have used a classical simulator for quantum
hardware to see how our algorithm practically works and

grasp a future prospect on applications of real quantum
computers to quantum-field theory. The maximal number
of qubits in our simulation is 16, which is not so big even
in current technology. While this is quite encouraging, the
adiabatic preparation of state adopted here requires a large
number of gates: our quantum circuit for 16 qubits without
improvement of Trotter decomposition has about 250
single-qubit gates and 270 two-qubit gates at each time
step which has been repeated about 1000 times. This
would make much noise and be hard to perform stable
simulations when we implement our simulation on NISQ
devices.

IV. RESULTS

A. Massless case

Let us first focus on the massless case and compare with
the exact result in the continuum theory [14–17],

hψ̄ðxÞψðxÞi ¼ −
eγ

2π3=2
g ≈ −0.160g; ð25Þ

where γ is the Euler-Mascheroni constant. Note that the
θ parameter is irrelevant in this case since our lattice
Hamiltonian is independent of θ for m ¼ 0. We take a
physical limit for fixed physical parameters ðg;m; θÞ in
two steps: (i) Take infinite volume limit. Namely, for
fixed w ¼ 1=2a and the physical parameters, we compute
the observables for various N’s and then extrapolate them
to N → ∞ with quadratic polynomial in 1=N. Repeating
this for multiple values of w, we obtain data of infinite
volume limit for various lattice spacing a at fixed
physical parameters. This step is illustrated in Fig. 1
(left). (ii) Extrapolate the data of the infinite volume limit
to the continuum limit a → 0 with quadratic polynomial
in ag. This procedure is demonstrated in Fig. 1 (right).
Repeating the above procedures, we have obtained g

dependence of the mass operator in the continuum limit as
shown in Fig. 2. We see that our result agrees with the
exact result. Note that the massless case cannot be easily
explored by the standard Monte Carlo approach because
computational cost to evaluate effects of fermions in the
standard approach is OððamÞ−1Þ [69]. This point is
another advantage of our approach over the standard
Monte Carlo approach.

B. Massive case

Next, we consider the massive case. For this case, there is
a result by mass perturbation theory [18,19]:

hψ̄ðxÞψðxÞi ≈ −0.160gþ 0.322m cos θ; ð26Þ

up to Oðm2Þ. There is a subtlety in comparison with this
result: the observable is UV divergent logarithmically and
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we need to regularize it. Here we adopt a lattice counterpart
of a regularization used in [18] which is a subtraction of the
free-theory result. Specifically, we take infinite volume limit
without subtraction as in Fig. 1 (left) but subtract the result at
J ¼ 0 and N → ∞ in taking the continuum limit:

hψ̄ðxÞψðxÞifree ¼−
mcosθ

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðmacosθÞ2

p KðzÞ;

KðzÞ ¼
Z π

2

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− zsin2t

p ; z¼ 1− ðma sinθÞ2
1þðmacosθÞ2 :

ð27Þ

In other words, we replace hψ̄ψi in Fig. 1 (right) by hψ̄ψi −
hψ̄ψifree for the massive case.
In Fig. 3, we plot our result in the continuum limit for

ðg; θÞ ¼ ð1; 0Þ and ðg; θÞ ¼ ð1; 3π=5Þ against m, and com-
pare with the mass perturbation theory (26). We see that our
result agrees with the mass perturbation theory in small-
mass regime for the both values of θ. As increasing mass, it
deviates from (26) and finally approaches zero. This large-
mass asymptotic behavior is expected since the large-mass
limit should be the same as the free-theory result which we
have subtracted. Our result for θ ¼ 0 also agrees with
previous numerical result obtained by tensor network
approach [70]. Furthermore, we compare θ dependence
of the VEV of the mass operator for the parameters in
Fig. 4, for which the mass perturbation (26) is expected to
be well behaved: ðg;mÞ ¼ ð1.0; 0.1Þ.5We see that our data
agree with the mass perturbation for most values of θ while
we get small deviations around θ ¼ π within our current
accuracy. Thus, we conclude that our approach practically
works well for nonzero ðg;m; θÞ.

V. SUMMARY AND DISCUSSIONS

In this paper, we have designed the protocol for the
digital quantum simulation of the Schwinger model with

FIG. 2. The VEV of the mass operator for m ¼ 0 is plotted
against coupling constant g. The red solid line shows the exact
result, which is approximately −0.160g. The error bars take
account of extrapolation errors as well as the statistical and
systematic errors.

FIG. 1. (Top) Infinite volume limits for some values of w at
g ¼ 1, m ¼ 0, θ ¼ 0. For each w, we compute the VEV of the
mass operator hψ̄ψi for N ¼ ½4; 16� and extrapolate it to N → ∞
by fitting the data to a quadratic polynomial of w=N shown by
the solid curves. The error bars in the data points and error
bands include both statistical and systematic errors. (Bottom)
Continuum limits at m ¼ 0, θ ¼ 0 for g ¼ 1. The solid curve
shows the fit function which is a quadratic polynomial in ag.
The error bars and the error band take account of the
extrapolation errors as well as the statistical and other system-
atic errors.

FIG. 3. The VEV of the mass operator at g ¼ 1 is plotted
against the mass m for θ ¼ 0 (blue ×’s) and θ ¼ 3π=5 (green
circles). The red diamonds show the numerical result at θ ¼ 0
obtained by the tensor network approach in [70]. The lines show
the result (26) of the mass perturbation. The error bars are fitting
errors in taking the continuum limit.

5It is expected that the Schwinger model at θ ¼ π has a critical
point atm ≃ 0.33g and first-order phase transition associated with
spontaneous breaking of charge conjugation symmetry (or
equivalently parity) for larger m. Therefore, we are not passing
any phase transition point in Fig. 4.
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the θ term as the first example of applications of quantum
algorithms for gauge theory with topological terms. We
have converted the Schwinger model to the spin system on
the spatial lattice and then constructed the true vacuum state
of the model using adiabatic state preparation. We have
computed VEV of the fermion mass operator, taken the
continuum limit, and found agreement with the results in
literature. Our results imply that digital quantum simulation
is already tool to explore nonperturbative aspects of gauge
theories with real time and topological terms.
Our estimation for number of gates in our simulation hints

at large noise and difficulty performing stable simulations
when implemented on NISQ devices. Therefore, it is
important to save the number of gates and reduce noise
by improving the algorithm. One way is to improve the
Suzuki-Trotter decomposition so that we can take smaller
time steps M to achieve similar errors. Another way is to
change the adiabatic Hamiltonian (20) so that we can take
smaller adiabatic time T. In principle, the adiabatic
HamiltonianHAðtÞ can be any Hermitian operator satisfying
)16 ) as long as the system during the adiabatic process is

gapped and has a unique ground state.
There are various interesting applications and generaliza-

tion of our work. An obvious application is to compute other
observables in the Schwinger model. Specifically, the
massive Schwinger model is known to exhibit confinement
[71] and therefore it would be interesting to explore physics
of confinement in a situation where standard Monte Carlo
approach is inapplicable. Another interesting direction is to
apply our methods to other theories. Our formulation to
rewrite gauge theory in terms of qubits can be directly
applied to any 1þ 1 dimensional Uð1Þ gauge theory
coupled to fermions. It would also be interesting to imple-
ment a digital quantum simulation of 1þ 1 dimensional
non-Abelian gauge theories.
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APPENDIX A: OPERATOR CORRESPONDENCE
BETWEEN DIRAC AND STAGGERED

FERMIONS

The Dirac fermion operator ψðxÞ ¼ ðψuðxÞ;ψdðxÞÞT is
translated into those of staggered fermions as follows
[64,65]:

χnffiffiffi
a

p ↔
�
ψuðxÞ n∶ even

ψdðxÞ n∶ odd
: ðA1Þ

Here, we see how the bilinear operators ψ̄γ1∂1ψ , ψ̄ψ , and
ψ̄γ5ψ are written in terms of the staggered fermions. We
start with the fermion kinetic operator ψ̄γ1∂1ψ :

ψ̄ðxÞγ1∂1ψðxÞ

¼ ψ†
uðxÞψdðxþ 1Þ − ψdðxÞ

2a
þ ψ†

dðxÞ
ψuðxÞ − ψuðx − 1Þ

2a
;

¼ 1

2a2
½χ†2xðχ2xþ1 − χ2x−1Þ þ χ†2x−1ðχ2x − χ2x−2Þ�: ðA2Þ

Thus, we arrive at the following expression:

a
XN=2

x¼1

ψ̄ðxÞγ1∂1ψðxÞ ¼
1

2a

XN−1

n¼1

½χ†nχnþ1 − χ†nþ1χn�: ðA3Þ

Next, we convert the fermion mass operator ψ̄ψ :

ψ̄ðxÞψðxÞ ¼ ψ†
uðxÞψuðxÞ − ψ†

dðxÞψdðxÞ;

¼ 1

a
½χ†2xχ2x − χ†2x−1χ2x−1�; ðA4Þ

which leads us to

a
XN=2

x¼1

ψ̄ðxÞψðxÞ ¼
XN
n¼1

ð−1Þnχ†nχn: ðA5Þ

Finally, we consider the pseudo-mass operator ψ̄γ5ψ. Since
it is a fermion bilinear operator involving off-diagonal
matrix, the conversion to staggered fermion yields a
hopping term connecting even and odd sites:

FIG. 4. The VEVof the mass operator at g ¼ 1 and m ¼ 0.1 is
plotted against θ=2π (blue symbols). The curve shows the result
(26) of the mass perturbation with fixed g and m.
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ψ̄ðxÞγ5ψðxÞ ¼ ψ†
uðxÞψdðxÞ − ψ†

dðxÞψuðxÞ

≈
1

2
½ψ†

uðxÞψdðxÞ − ψ†
dðxÞψuðxÞ�

þ 1

2
½ψ†

uðxÞψdðxþ 1Þ − ψ†
dðxþ 1ÞψuðxÞ�

¼ −
1

2a
½χ†2x−1χ2x − χ†2xχ2x−1�

þ 1

2a
½χ†2xχ2xþ1 − χ†2xþ1χ2x�; ðA6Þ

where we have used ψdðxþ 1Þ ¼ ψdðxÞ þOðaÞ to modify
the operator, which recovers the original one in the
continuum limit a → 0. Thus, the pseudo-mass operator
is rewritten as

XN=2

x¼1

ψ̄ðxÞγ5ψðxÞ ¼
1

2

XN−1

n¼1

ð−1Þn½χ†nχnþ1 − χ†nþ1χn�: ðA7Þ

APPENDIX B: ALTERNATIVE METHOD:
WITHOUT CHIRAL ROTATION

Here we rewrite the Schwinger model based on the
Lagrangian (1) without the chiral rotation in terms of the
spin variables. In the temporal gauge, conjugate momentum
of A1 is

Π ¼ ∂L
∂ _A1

¼ _A1 þ gθ
2π

; ðB1Þ

and therefore the Hamiltonian is

H¼
Z

dx

�
−iψ̄γ1ð∂1þ igA1Þψ þmψ̄ψ þ 1

2

�
Π−

gθ
2π

�
2
�
:

ðB2Þ

Using the staggered fermion, the lattice Hamiltonian is
given by

H ¼ −iw
XN−1

n¼1

½χ†neiϕnψnþ1 − χ†nþ1e
−iϕnχn�

þm
XN
n¼1

ð−1Þnχ†nχn þ J
XN−1

n¼1

�
Ln þ

θ

2π

�
2

; ðB3Þ

where Ln corresponds to −ΠðxÞ=g and the operators satisfy
the commutation relations (7) as well as the Gauss law
(8) on physical states. Applying the Jordan-Wigner trans-
formation (9), taking the open boundary condition with
constant L0, and solving the Gauss law, we obtain the
lattice Hamiltonian:

H ¼ w
XN−1

n¼1

½σþn σ−nþ1 þ H:c:� þm
2

XN
n¼1

ð−1ÞnZn

þ J
XN−1

n¼1

�
L0 þ

θ

2π
þ 1

2

Xn
l¼1

ðZl þ ð−1ÞlÞ
�
2

: ðB4Þ

In this formulation, it is clear that the theory with ðθ; L0Þ is
equivalent to ðθ þ 2πL0; 0Þ. Digital quantum simulation in
this formulation can be implemented in a similar way to the
formulation in the main text. It would be interesting to
perform a digital quantum simulation in this formulation
and see how this formulation practically works.

APPENDIX C: DETAILS ON QUANTUM
SIMULATION PROTOCOL

Here we write down all the qubit operations used in
quantum circuits in this paper. First we write down single-
qubit operation which acts on a superposition of

j0i ¼
�
1

0

�
and j1i ¼

�
0

1

�
: ðC1Þ

Some of most basic operations are Pauli matrices:

X¼
�
0 1

1 0

�
; Y ¼

�
0 −i
i 0

�
; Z¼

�
1 0

0 −1

�
ðC2Þ

In terms of ðX; Y; ZÞ, we also use

RXðϕÞ¼ e−
iϕ
2
X; RYðϕÞ¼ e−

iϕ
2
Y; RZðϕÞ¼ e−

iϕ
2
Z: ðC3Þ

The only two-qubit operation used in this paper is controlled
X (controlled-NOT):

ðC4Þ

which acts on superposition of jii ⊗ jji with i, j ¼ 0, 1.
In particular, CX satisfies

CXj0i⊗ jαi¼j0i⊗ jαi; CXj1i⊗ jαi¼j1i⊗Xjαi: ðC5Þ

We can construct all the operators in (23) by combina-
tions of the quantum elementary gates RX;Y;Z and CX. First,
e−iHZδt is simply realized by a product of single-qubit
operations:

e−iHZδt ¼
YN
n¼1

RðnÞ
Z ð2cnδtÞ; ðC6Þ
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where RðnÞ
Z ðϕÞ stands for a RZðϕÞ gate acting on the nth

qubit and cn is defined by
P

N
n¼1 cnZn ¼ HZ;AðtÞ. The other

two unitary operators in (23) involve two-qubit operations.
The operator e−iHZZδt needs the following two-qubit oper-
ations of

e−i
Jδt
2
Z1Z2 ; ðC7Þ

to appropriate pairs of qubits. This operator is the same as the
interaction of the Ising model and its concrete realization is

e−i
Jδt
2
Z1Z2 ¼ CXð12ÞRð2Þ

Z ðJδtÞCXð12Þ; ðC8Þ

with a quantum gate given by

ðC9Þ

The operator e−iH�tδt
T can be constructed in a similar way. It

needs the two-qubit operations of

e−i
w̃δt
2
ðX1X2þY1Y2Þ ¼ e−i

w̃δt
2
X1X2e−i

w̃δt
2
Y1Y2 þOðδt2Þ; ðC10Þ

to appropriate pairs. Here, w̃ is defined by w̃ ≔ t
T w − ð−1Þn

2

ðð1 − t
TÞm0 þmÞ sinðθ t

TÞ. This is concretely realized by

e−i
w̃δt
2
X1X2 ¼ CXð12ÞRð1Þ

X ðw̃δtÞCXð12Þ; ðC11Þ

e−i
w̃δt
2
Y1Y2 ¼

Y2
j¼1

RðjÞ
Z

�
π

2

�
·e−i

w̃δt
2
X1X2 ·

Y2
j¼1

RðjÞ
Z

�
−
π

2

�
; ðC12Þ

whose circuit diagrams are, respectively, given by

ðC13Þ

ðC14Þ

For example, we implement the time evolution operator
UðtÞ (23) with lattice size N ¼ 4 by the following quantum
circuit:

ðC15Þ

where the argument of each unitary gate is suppressed and
can be read off from (12), (21), and (23):RðnÞ

Z → RðnÞ
Z ð2cnδtÞ,

XnXnþ1 → XnXnþ1ðw̃δt2 Þ, YnYnþ1 → YnYnþ1ðw̃δt2 Þ, Z1Z2 →
Z1Z2ðJδtÞ, Z1Z3 → Z1Z3ðJδt2 Þ, and Z2Z3 → Z2Z3ðJδt2 Þ.

APPENDIX D: ESTIMATION OF SYSTEMATIC
ERRORS

Herewe explain how we estimate systematic errors shown
in the main text. A VEV of an operator O is defined by

hOi ¼ h0jOj0i; ðD1Þ

where here we denote ground state of a system under
consideration by j0i. Suppose we would like to find an
approximation of this quantity by using an adiabatic
preparation of the vacuum as in the main text. Let us denote
the approximate vacuum obtained in this way as j0Ai. Then,
we approximate the VEV (D1) by

hOiA ¼ h0AjOj0Ai; ðD2Þ

which is generically different from the true VEV. The state
j0Ai can be expanded as
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j0Ai ¼
X∞
n¼0

cnjni; ðD3Þ

where jni is the nth excited state of the full HamiltonianH of
the system. If we take the adiabatic time T and the number of
steps M in the Suzuki-Trotter decomposition sufficiently
large, then we expect jc0j ≃ 1 ≫ jcn≠0j and j0Ai is almost
the true vacuum.
Now we propose how to estimate systematic error in

approximating the VEV (D1) by (D2). Let us consider the
quantity

hOiAðtÞ ¼ h0AjeiHtOe−iHtj0Ai: ðD4Þ

If we managed to prepare the vacuum exactly, i.e.,
j0iA ¼ j0i, then this quantity was reduced to hOi and
independent of t since the vacuum is the eigenstate of H.
However, this quantity depends on t when we have only
approximation of the vacuum. Let us see how it depends on
t using the expansion (D3):

hOiAðtÞ ¼
X∞
n¼0

jcnj2hnjOjni

þ 2
X
m≠n

Reðc�mcneiðEm−EnÞthmjOjniÞ; ðD5Þ

which implies that this quantity oscillates around the
constant

P∞
n¼0 jcnj2hnjOjni as varying t. If we have a

nice approximation of the vacuum such that jc0j ≫ jcn≠0j,
then we approximately have

hOiAðtÞ ≃ jc0j2
�
hOi þ

X∞
n¼1

Re

�
2c�nc0
jc0j2

eiðEn−E0ÞthnjOj0i
�

þO
����� cnc0

����
2
��

; ðD6Þ

which approximately oscillates around ≃hOi. Therefore, the
quantity hOiAðtÞ represents intrinsic ambiguity in predicting
the true VEV hOi by the adiabatic state preparation. Thus, in
the main text, we regard

1

2
ðmaxhOiAðtÞ þminhOiAðtÞÞ ðD7Þ

as central value, and

1

2
ðmaxhOiAðtÞ −minhOiAðtÞÞ ðD8Þ

as systematic error in approximating the true VEV hOi by
the adiabatic preparation of the vacuum.
Figure 5 demonstrates the above procedure for the VEV

of the mass operator computed in the main text. In Fig. 5
(left), we fix the Trotter step to δt ¼ 0.1 and plot the results

for different values of the adiabatic time T. We find that the
expectation value of the mass operator under the state
e−iHtj0Ai oscillates around the true VEV obtained of the
Hamiltonian as expected. We also find that the result with
larger T has smaller amplitude. This reflects the fact that the
approximate vacuum j0Ai with larger T is closer to the true
vacuum and therefore the systematic error must be smaller
for larger T. In Fig. 5 (right), we fix T as T ¼ 100 and plot
the results for different values of δt. The green circles show
that if we do not take sufficiently small δt, then approxi-
mation of the time-evolution operator e−iHt breaks down
and it does not oscillate around the correct value. In Fig. 6,
the adiabatic time dependence of the systematic errors
associated with the mass operator is shown for different
fermion masses and θ values. All the curves are roughly
proportional to 1=T. It nicely shows that the smaller
fermion mass or larger θ result in larger systematic errors.
Thus, it is important to take appropriate values of T and δt
to get reasonable approximations.
Finally, we comment on the potential reduction of the

number of Trotter steps. One can actually tell from Fig. 5 that
104 ∼ 105 shots would be enough to maintain the same order
of the total error. For instance, if we decrease the number of
shots to 104, the statistical error is roughly 10 times larger,
whose magnitude is comparable to the adiabatic error.

FIG. 5. The expectation value of the mass operator under the
state e−iHtj0Ai for ðg;m; N; wÞ ¼ ð1; 0; 4; 0.5Þ against t obtained
by simulations with m0 ¼ 0.5 and 106 shots. The red dashed line
is the result obtained by diagonalization of the Hamiltonian. The
error bars are statistical errors. (Left) At fixed δt ¼ 0.1 with some
values of T. (Right) At fixed T ¼ 100 with some values of δt

FIG. 6. The systematic errors of the mass operator under the
state e−iHtj0Ai for ðg; N; wÞ ¼ ð1; 8; 0.5Þ against the inverse
adiabatic time 1=T obtained by simulations with 106 shots.
All the data points are obtained by exact time evolution of the
Hamiltonian without the Trotter decomposition.
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APPENDIX E: IMPROVEMENT OF THE
SUZUKI-TROTTER DECOMPOSITION

The first-order Suzuki-Trotter decomposition is

e−iðH1þH2Þδt ¼ e−iH1δte−iH2δt þOðδt2Þ; ðE1Þ

for noncommuting operators H1 and H2. This error is
reduced by using the second-order decomposition,

e−iðH1þH2Þδt ¼ e−iH1
δt
2e−iH2δte−iH1

δt
2 þOðδt3Þ: ðE2Þ

Let us apply this improvement to our adiabatic
state preparation. First we decompose the adiabatic
Hamiltonian as

HAðtÞ ¼ H̃ZðtÞ þ H̃XðtÞ þ H̃YðtÞ; ðE3Þ

where

H̃Z¼HZZþHZ;AðtÞ

H̃X¼
1

2

XN−1

n¼1

hXYðtÞXnXnþ1;

H̃Y ¼
1

2

XN−1

n¼1

hXYðtÞYnYnþ1;

hXYðtÞ¼
t
T
w−

ð−1Þn
2

��
1−

t
T

�
m0þ

t
T
m

�
sin

�
t
T
θ

�
: ðE4Þ

This implies that the Hamiltonian can be divided into
three sets of operators:

H̃Z∶fZ1;…; ZN; Z1Z2; Z1Z3;…; ZN−1ZNg;
H̃X∶fX1X2; X2X3;…; XN−1XNg;
H̃Y∶fY1Y2; Y2Y3;…; YN−1YNg: ðE5Þ

The operators commute with each other within each set.
Then, the time evolution operator UðtÞ ¼ e−iHAðtÞδt is
approximated by

UðtÞ ¼ e−iH̃Y
δt
2e−iH̃X

δt
2e−iH̃Zδte−iH̃X

δt
2e−iH̃Y

δt
2 þOðδt3Þ: ðE6Þ

In this improvement, the quantum circuit for 16 qubits has
about 400 single-qubit gates and 500 two-qubit gates at
each time step while the one without the improvement has
250 single-qubit gates and 270 two-qubit gates. Note that
the improvement saves the number of gates in the total
time evolution since it needs smaller time steps to achieve
the same accuracy.
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