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Post-adiabatic models of extreme- and intermediate-mass-ratio inspirals will require calculations
of second-order gravitational self-force effects in the spacetime of a spinning, Kerr black hole. We
take a step toward such calculations by implementing the recently formulated Teukolsky puncture
scheme with Green-Hollands-Zimmerman metric reconstruction [CQG 39, 015019 (2022)]. This
scheme eliminates the critical obstacle of gauge singularities that arise in the standard “no-string”
metric reconstruction. Our first proof-of-principle implementation is limited to the simple case of
circular orbits in Schwarzschild spacetime, but the method also applies to generic orbits on a Kerr
background. We conclude with a discussion of various approaches to the second-order self-force
problem in Kerr.
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I. INTRODUCTION

We are currently standing at the beginning of a golden
era in astronomy. Since their ground-breaking discov-
ery [1], gravitational waves have opened an entirely
new way to probe a vast range of astrophysical set-
tings. Because these waves interact very weakly with
their surroundings, we will be able to probe systems
at far greater distances than ever before. Furthermore,
we will be able to study systems and phenomena which
emit very little, if any, electromagnetic waves, such as
black holes, dark matter and dark energy. The upcom-
ing next-generation space-based gravitational-wave de-
tectors, such as LISA [2, 3], promise to open the way to
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study uncharted territories. Specifically, one of the main
targets of the LISA mission is the study of extreme-mass-
ratio inspirals (EMRIs) [4, 5]. These systems, consisting
of the inspiral of a stellar-mass, compact body into a
massive black hole in a galactic core, will serve as unique
probes of black-hole physics and enable tests of general
relativity with unparalleled precision.

Currently, the most viable method of modelling these
systems is with gravitational self-force theory [6, 7], an
asymptotic approximation in the limit m≪M , where m
and M are the companion’s and black hole’s respective
masses. Moreover, while self-force theory was originally
conceived to model EMRIs, even low-order self-force cal-
culations and waveforms have been found to be highly
accurate for all mass ratios m/M ≲ 10−1 [8, 9]. At ze-
roth order in the mass ratio, the compact body, modelled
as a test particle, follows a geodesic around the massive
black hole. At first order, radiation-reaction effects come
into play, inducing a metric perturbation which exerts a
so-called self-force on the particle, accelerating it away
from its background geodesic trajectory. Current state-
of-the-art calculations at linear order allow for generic
orbits (i.e., inclined and eccentric) around Kerr black
holes [10, 11]. A detailed scaling argument [7, 12] and
parameter-estimation studies [13] show that to achieve
the necessary phase accuracy for LISA data analysis, self-
force models need to include the second-order dissipative
effects as well. On the long timescale of the inspiral,
t ∝ M2/m, these second-order dissipative effects accu-
mulate to have an impact on the phase evolution compa-
rable to first-order conservative effects: both contribute
O((m/M)0) to the waveform phase [7, 12, 14]. An over-
arching goal of the EMRI modeling community is to com-
pute all such necessary first- and second-order effects to
produce complete waveform models with so-called first-
post-adiabatic (1PA) accuracy [15–18], in which phase
errors are O(m/M).1

Intuitively, one can expect the modelling of second-
order effects to be substantially more difficult than first-
order ones, as the former now include nonlinear infor-
mation. This intuition turns out to be correct: while
the foundations of second-order self-force theory are well
understood [21–23], and concrete calculations have been
performed for the relatively simple case of quasicircular
orbits in Schwarzschild spacetime [8, 24, 25], there have
not yet been any second-order self-force calculations in
the astrophysically realistic case of orbits around a Kerr
black hole. This is now one of the central challenges in
EMRI modelling.

1 The “nPA” counting stems from multiscale (or post-adiabatic)
expansions of the field equations [7, 12, 14, 19], which are now
the almost-universal basis for self-force waveform models because
they inherently maintain phase accuracy on the long time scale of
an inspiral while enabling rapid waveform generation [20]. How-
ever, the full multiscale framework will not be needed for the
calculations in the present paper.

What are the main differences in second-order calcula-
tions in Kerr spacetime as opposed to linear-order ones?
To answer this, it is important to remind the reader of
the traditional first-order framework.

At linear order in perturbation theory, one solves the
linearised Einstein equation for the (first-order) met-
ric perturbation hab, sourced by a point-particle stress-
energy tensor Tab that models the inspiraling object:

Eab(h) = Tab. (1)

This is a system of ten coupled linear partial differential
equations. In a Schwarzschild background, the equations
can be fully separated using a basis of tensor spherical
harmonics. A major obstacle in Kerr spacetime is that
the equations are not separable using any known basis
of functions. While progress has been made to solve the
system directly (see [26] and references therein), histori-
cally the focus has instead been on solving a single, fully
separable scalar equation, the Teukolsky equation, for ei-
ther of the two gauge-invariant perturbed Weyl scalars
ψ0 or ψ4.

In vacuum regions, each of the Weyl scalars contains
almost all the information about the linear metric per-
turbation hab [27]. In fact, there is a well-developed pro-
cedure that reconstructs hab in a radiation gauge from ψ0

(or ψ4). This metric reconstruction procedure, first de-
veloped by Chrzanowski, Cohen and Kegeles, is dubbed
the CCK procedure [28, 29]. One of its drawbacks is that
it is only applicable in vacuum regions [30, 31]. Nonethe-
less, it can still be applied to self-force calculations, by
carrying it out separately in the two vacuum regions in-
side and outside the particle’s orbit. The metric recon-
structed in this fashion is then in a no-string radiation
gauge [32–35]. Perhaps surprisingly, this method is still
useful in the case of eccentric orbits, where the particle
now evolves inside a libration region rmin < r < rmax,
meaning that (in the frequency domain) the entire libra-
tion region is nonvacuum. In this case, the CCK proce-
dure is still applicable in the vacuum regions r < rmin

and r > rmax and the method of extended homogeneous
solutions [36, 37] allows one to extend the solutions ob-
tained in the vaccum regions into the libration region.
This is the only method that has been used to compute
the first-order self-force on fully generic, inclined and ec-
centric bound orbits in Kerr spacetime [10, 11].

One is, however, faced with two major roadblocks when
attempting to apply the above methods at second or-
der. First, the no-string metric reconstruction at first
order is highly singular on the time-dependent sphere
that intersects the particle at each instant, containing
both jump discontinuities and Dirac-delta singularities
there [34, 38]. While these do not pose a problem at
linear order, the second-order source term is constructed
from quadratic combinations of the first-order metric per-
turbation (and its first and second derivatives). In the
no-string radiation gauge it would therefore contain ill-
defined products of distributions. Secondly, this source
term at second order is not confined to a compact spatial
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domain, meaning neither the CCK reconstruction nor the
method of extended homogeneous solutions is applicable.

Recently, two avenues have emerged to get around
these problems. Both methods are based on new re-
construction procedures. Building on earlier work in
Refs. [39, 40], it was shown that the metric perturba-
tion in Lorenz gauge can be reconstructed from solutions
to a set of separable Teukolsky equations [41, 42]. The
Lorenz-gauge metric perturbation has a well-behaved
singularity structure confined to the particle’s location.
This reconstruction procedure has been applied to ho-
mogeneous perturbations [41] and to the inhomogeneous
perturbation of a point mass on a circular orbit in Kerr
spacetime [42]. Recent work has extended the approach
to work with generic, extended sources [43, 44]. The
method requires the solution to up to six2 Teukolsky
equations: two spin-2, two spin-1 and two spin-0 — as
opposed to just one spin-2 Teukolsky equation in the
standard CCK approach — and the solution of one of
the spin-0 equations acts as a noncompact source for the
other spin-0 equation (equivalently, the two spin-0 equa-
tions can be treated as a coupled system with a compact
source).

Another reconstruction procedure, which we adopt
here, was introduced by Green, Hollands, and Zimmer-
man (GHZ) [45], who showed that sourced metric per-
turbations can be obtained by supplementing the CCK
procedure with the addition of a corrector tensor, xab,
which is obtained by solving a sequence of three ordi-
nary differential equations (ODEs), one of which is com-
plex. In Ref. [46] (hereafter Paper I), based on this new
procedure, one of the authors of this paper formulated a
puncture scheme that avoids the pathological singulari-
ties of the no-string radiation gauge. The basic idea is to
split the retarded field into two parts: a puncture field,
hPab, which encodes the point-particle singularity; and a
residual field, hRab := hab − hPab, which is more regular.
As in any puncture scheme [47], hPab is calculated ana-
lytically, and hRab becomes the numerical variable. In the
GHZ puncture scheme developed in Paper I, the punc-
ture is put in the Lorenz gauge (or an even more regular
gauge [48, 49]), thereby keeping the singularity in a de-
sirable, non-pathological form. The residual field is then
calculated using GHZ reconstruction. The ultimate dif-
ference between this approach and the one in Ref. [42] is
simply a gauge choice: the procedure in Ref. [42] puts the
entirety of the metric perturbation in the Lorenz gauge,
whereas the procedure in Paper I only puts the singu-
lar piece of the metric perturbation in the Lorenz gauge,
while putting the regular piece in a radiation gauge. We
discuss the relative merits of the two methods in the con-
clusion, Sec. X.

2 Strictly speaking, the Teukolsky-Starobinsky identities mean we
only need one spin-2 and one spin-1 equation, but they are com-
plex so we still have 6 degrees of freedom

Regardless of whether Lorenz-gauge or GHZ recon-
struction is used, there are several advantages to using
a puncture scheme. Most prominently, since it makes
hRab the numerical variable, it allows one to work with
smoother fields, which translates into more rapid con-
vergence of numerical approximations (including mode
sums, discretisations onto a grid, and inverse Fourier
transforms). In addition, the self-force exerted on the
particle can be calculated directly from hRab. At linear
order, puncture schemes bring increased computational
cost as the residual field has an extended effective source,
even in the case of circular orbits. However, at second or-
der this is immaterial because the physical source extends
over the entire spacetime anyway. Moreover, puncture
schemes are currently the only viable approach to second-
order self-force theory [6, 7]. We discuss the utility of the
GHZ puncture scheme at second order in further detail
in Sec. X.

In this work, we implement the GHZ puncture scheme
for the first time in a realistic scenario: a point mass in
circular orbit around a Schwarzschild black hole. (Paper I
had previously demonstrated the scheme in the simpler
case of a static particle in flat spacetime.) In Sec. II, we
give an overview of the scheme and of our main results.
In Secs. IV–VIII, we compute, step by step, the different
ingredients necessary to obtain the complete metric per-
turbation. In Sec. IX, as a consistency check, we show
we obtain the correct value of the Detweiler redshift us-
ing the new GHZ puncture scheme. In that section we
also discuss the regularity of the reconstructed GHZ met-
ric. Some review and technical material is relegated to
appendices.

We adopt geometric units with G = c = 1. All plots of
numerical results are in units with M = 1. Unlike Paper
I, we use a mostly positive, (−+++) signature.

II. OVERVIEW

In this section, we review the GHZ puncture scheme,
summarize the main features of our implementation, and
preview our results. Readers who are uninterested in the
more technical details of our calculations can skip directly
to Sec. IX after reading this section.

Figures 1–4 provide a visualization of the puncture
scheme and how it contrasts with a standard no-string
reconstruction and completion procedure. These fig-
ures, along with Table I, can be used as aids to the
text throughout this section. We note that the text in
this section refers to the generic scenario of a bound
orbit with time-dependent radius rp, but the figures
specialize to the specific case of a circular orbit with
rp = r0 = constant, which we specialize to in subse-
quent sections. Similarly, the text does not necessarily
specialize to mode-decomposed fields, but Table I refers
to the (spin-weighted) spherical-harmonic modes that we
use in later sections.
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A. Punctures and residual fields

We consider an asymptotic expansion of the metric of
the form gab = gab+ ϵhab+O(ϵ2), where gab is the back-
ground Schwarzschild metric of mass M , and ϵ = m/M is
the mass ratio of the binary. The linear perturbation hab
satisfies the linearised Einstein equation, Eq. (1). The
stress-energy tensor Tab = ϵTab+O(ϵ2) describes a point
mass and is given by

Tab = 8πM

∫
uaubδ

4(x, xp(τ))dτ, (2)

where the factor of M appears because we have factored
out ϵ; τ is the particle’s proper time as defined in the
background metric gab; xp(τ) is its worldline, which will
be approximated as a geodesic3 in gab; ua = gab dx

b
p/dτ

is the particle’s 4-velocity; and δ4 is the covariant delta
function in gab. For convenience, we incorporate the Ein-
stein equation’s usual factor of 8π into Tab.

A core feature of self-force theory is the split of the
physical, retarded field hretab into two distinct pieces,
called the Detweiler-Whiting singular (hsab) and regular
(hrab) fields, hretab = hsab + hrab. The singular field is a
particular solution of Eq. (1). It contains only local in-
formation about the field created by the particle’s mass
and is singular at the particle’s position. The regular
field is instead a (smooth) homogeneous solution of (1),
which contains information about global boundary con-
ditions. In general, this split is not unique since one can
always add a homogeneous solution to the definition of
hsab. However, a judicious split makes it possible to ex-
press the self-force only in terms of the regular field [50–
52]. Specifically, we can choose the split such that the
motion of the particle is a geodesic in the effective metric
g̃ab := gab + ϵhrab +O(ϵ2).

In most situations, it is not possible to calculate the
exact singular field hsab and corresponding exact regular
field hrab. Instead, one considers a local expansion for hsab,
written as a series in powers of distance to the particle.
For example, in Fermi normal coordinates centered on
the particle, hsab behaves at leading order like a Coulomb
field,

hsab =
2M

s
δab +O(s), (3)

where s denotes the proper (orthogonal) distance from
the particle’s worldline and δab is the Kronecker delta.
(Like in the leading-order stress-energy tensor, a factor
of M appears because we have factored out ϵ.) This
local expansion, or an analogous one in any convenient

3 In a complete treatment, xp here would instead be the leading-
order (non-geodesic) term in a multiscale expansion of the orbital
motion [7, 14, 19]. However, as discussed in those references,
the distinction does not materially affect the calculations in this
paper.

coordinates, is truncated at some finite order, resulting
in an approximate solution to Eq. (1), valid only in the
vicinity of the particle, called the puncture field, hPab. We
refer the reader to Refs. [53, 54] for how to construct the
puncture in practice.

The difference between the retarded and puncture
field, hRab := hretab − hPab, is called the residual field. Since
hPab is only an approximate solution to (1), the residual
field is only approximately a homogeneous solution, sat-
isfying the equation

Eab(hR) = Tab − Eab(hP). (4)

If the puncture were precisely equal to hsab, then the right-
hand side would vanish identically, and the residual field
would coincide with the regular field. If hPab is an nth-
order puncture, in the sense that it includes terms up
to order sn (inclusive), then Eab(hP) ∼ ∂2hPab is a Cn−2

field at s = 0 and smooth everywhere else.4 hRab is then
Cn at s = 0, and hRab = hrab + O(sn+1). At the level of
individual ℓm modes in a spherical-harmonic expansion,
which will be our focus here, the degree of regularity
is generally increased by two due to the integration over
the sphere, leading to residual field modes hR,ℓmab that are
Cn+2 functions of r at the particle’s orbital radius rp.

The puncture can be extended away from the particle
in any convenient way. For example, if we strictly define
hPab as a series expansion in coordinate distance from the
particle, we can attenuate it away from the particle using
a window function, W. This window function must be
chosen to ensure that

hPab := hPabW (5)

has the same local expansion as hPab at the particle when
truncated at the same order. In this paper, we take W
to be a radial box function, such that

hPab := [Θ(r − rmin)−Θ(r − rmax)]h
P
ab, (6)

where Θ(x) is the usual Heaviside function. The radii
rmin/max are chosen such that the particle’s orbital radius
rp always lies in the range rmin ≤ rp ≤ rmax. Following
tradition, we refer to the support of the window function
W as the worldtube (though for our choice of box function
it is in fact a shell surrounding the black hole). The
amended residual field

hRab := hretab − hPab (7)

then obeys

Eab(hR) = Tab − Eab(hP ) =: TRab, (8)

4 What we call an nth-order puncture would often be referred to as
an (n+2)nd-order puncture. The “(n+2)nd” label corresponds
to the total number of orders from 1/s to sn.
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which applies over the entire spacetime. TRab is dubbed
the effective source.

The residual field hRab has the properties that (1) its
value and the value of its first n derivatives at the particle
coincide with those of the regular field hrab, (2) hRab = hretab
outside the worldtube. In what is commonly referred to
as the effective source approach or puncture scheme, one
solves Eq. (8) directly for the residual metric perturba-
tion hRab. This is in contrast to the mode-sum regulariza-
tion approach, where one instead solves for the modes of
the physical metric perturbation hretab and then extracts
physical effects of hRab by subtracting the modes of hPab
before summing over modes [55]. We refer the reader to
Ref. [47] for a more thorough discussion and comparison
of these and other methods.

As stated in the Introduction, the goal of Paper I’s
puncture scheme is to compute the residual field hRab
through GHZ reconstruction, leaving the puncture in the
Lorenz gauge. This means we solve Eq. (8) by recon-
structing part of hRab through the CCK procedure (or
more accurately, a CCK-Ori procedure [30]) and com-
pleting it through the addition of a corrector tensor. In
the following subsections we summarise this procedure,
tracking the regularity of relevant fields encountered at
each stage, and summarizing these regularity properties
at the level of individual ℓm modes in Table I.

B. Residual Weyl scalar

The first step is to define a residual Weyl scalar ψR0 ,
constructible from hRab by applying a certain second-order
differential operator T ab

0 :

ψR0 := T ab
0 hRab = ψret0 − ψP0 . (9)

The puncture ψP0 is computed directly from hPab,

ψP0 := T ab
0 hPab. (10)

Similarly, ψret0 is the Weyl scalar associated with hretab .
ψret0 satisfies the Teukolsky equation with a point-

particle source,

Oψret0 = Sab0 Tab, (11)

where O and Sab0 are again certain second-order differ-
ential operators. ψR0 , on the other hand, satisfies the
Teukolsky equation with an effective source,

OψR0 = Sab0 T
R
ab = Sab0 Tab −OψP0 , (12)

where we made use of the identity OT ab
0 = Scd0 Ecdab [56].

To make the index structure clear, here we have defined
Ecdabhab = Ecd(h). The quantities T ab

0 hab, Sab0 Tab, and
O are given explicitly in Appendix A.

The Teukolsky equations (11) and (12) are both sup-
plemented with retarded boundary conditions at the hori-
zon and null infinity, such that ψR0 reduces to ψret0 outside

r hP,ℓm
ab 2ψ

P
ℓm 2ψ

R
ℓm −2Φ

R
ℓm xℓmab hR,ℓm

ab

r0 C0 Θ, δ Cn Cn+4 Cn+2 Cn+2

rmin/max Θ Θ, δ, δ′ Θ, δ, δ′ C1 Θ Θ

TABLE I. Regularity properties of relevant quantities at the
particle’s orbital radius r0 and at the worldtube boundaries
rmin/max. Θ, δ, and δ′ denote Heaviside, Dirac delta, and the
first derivative of Dirac delta functions, respectively. n refers
to the order of the puncture.

the worldtube. In practice, then, there are two routes to
calculating ψR0 : (1) solve Eq. (12) for ψR0 directly, or (2)
solve Eq. (11) for the retarded field first and then com-
pute ψR0 = ψret0 − ψP0 . We detail these two methods in
Sec. IV.

Since Tab describes a point-particle source, Sab0 Tab is
made up of terms proportional to δ(r − rp(u)) and its
first and second derivatives, where u is a time coordinate
(which will later be taken to be retarded time). The
solution to Eq. (11) is then a piecewise smooth function,

ψret0 = ψ−
0 Θ(rp(u)−r)+ψ+

0 Θ(r−rp(u))+ψδ0δ(r−rp(u)),
(13)

where ψ±
0 are homogeneous solutions. Note this expres-

sion is valid at the level of ℓmmodes, which is the context
of most of our calculations in this paper.5 This type of
behaviour is displayed in Fig. 2, where we see smooth
vacuum fields modes connected by discontinuous jumps
at the particle’s orbital radius.

Since the residual field ψR0 has an extended source that
fills the worldtube, it has a more complicated structure.
Outside the worldtube, where the puncture vanishes, ψR0
reduces to the vacuum solutions ψ±

0 . Inside the world-
tube, (at the level of modes) the retarded field’s δ func-
tion and discontinuity are precisely cancelled by ψP0 , leav-
ing a residual field whose degree of smoothness at the or-
bital radius is governed by the order of the puncture, as
listed in Table I. At the worldtube boundaries rmin and
rmax, the box window function in the puncture (6) intro-
duces δ and δ′ functions in ψP0 and therefore in ψR0 (both
in 4D and at the mode level). This type of behavior is
displayed in Figs. 3 and 4, where we see smooth vacuum
fields outside the worldtube, finitely differentiable resid-
ual fields in the worldtube interior, and jumps and delta
functions at the junctions between these regions.

C. Residual Hertz potential

From ψR0 , one can obtain a spin-weight s = −2 object,
called the ingoing radiation gauge (IRG) Hertz potential

5 The sum of modes, yielding the four-dimensional function, con-
tains no delta function or Heaviside functions but instead has
a local power-law singularity supported only on the particle’s
worldline. See, e.g., Eq. (170a) in Ref. [57].
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r0

vacuum region vacuum regionTab ∼ δ(r − r0)

Oψ−
0 = 0

þ4Φ̄− = 2ψ−
0

O†Φ− = 0

ĥ−ab = 2Re(S†
abΦ

−)

−LΞgab

ingoing bc

Oψ+
0 = 0

þ4Φ̄+ = 2ψ+
0

O†Φ+ = 0

ĥ+ab = 2Re(S†
abΦ

+)

ġab

outgoing bc

FIG. 1. Summary of the no-string CCK reconstruction and completion procedure. The total solution in each region is given
by the sum of the boxed quantities.
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FIG. 2. Representative modes of the quantities computed in
traditional no-string CCK reconstruction and completion.

ΦR, by solving the radial inversion relation,6

Þ4
Φ̄R = 2ψR0 , (14)

where Φ̄R := (ΦR)⋆ and similarly for other Hertz poten-
tials. Throughout, an upper ‘⋆’ denotes complex conjuga-
tion. The operator Þ is a Geroch-Held-Penrose (GHP)
derivative along outgoing null curves, making Eq. (14)
a fourth-order ODE along those curves. We refer the
reader to Appendix A for a summary of the GHP for-
malism. In appropriate retarded coordinates (u, r) and
with an appropriate choice of Newman-Penrose tetrad, Þ
simply reduces to a radial derivative ∂

∂r .

6 Here we follow the conventions of Paper I. In the conventions of
Ref. [7], for example, the factor of 2 is instead a factor of 4.

The Hertz potential also satisfies the adjoint Teukolsky
equation

O†ΦR = ηR, (15)

where ‘†’ on an operator denotes the adjoint, and where
the source ηR satisfies a transport equation along outgo-
ing null geodesics, which will not be needed here. The
support of ηR generically extends from rmin to ∞. How-
ever, in practice, we instead solve vacuum equations out-
side the worldtube,

O†Φ± = 0. (16)

In the region connected to null infinity, we impose purely
outgoing boundary conditions at null infinity, corre-
sponding to Φ+, while in the region connected to the
black hole horizon, we impose purely ingoing boundary
conditions at the horizon, corresponding to Φ−. These
conditions determine the homogeneous solutions Φ± in
each region, up to an overall constant. The overall
constants are then fixed by Eq. (14), which becomes
Þ4

Φ̄± = 2ψ±
0 in these regions.7 Note that, in these

7 For Φ−, this procedure yields the same field as one would obtain
by integrating Eq. (14) outward along outgoing null rays from
the past horizon. However, note that for Φ+, this procedure
differs from integrating Eq. (14) inward along radial null rays
from future null infinity, which would yield an alternative field

Φ̄+
alt(u, r) = 2

∫ r

∞

∫ r4

∞

∫ r3

∞

∫ r2

∞
ψ+
0 (u, r1)dr1dr2dr3dr4. (17)

Such a field would not satisfy O†Φ+ = 0; instead, it would have
a noncompact source, O†Φ+

alt = ηR, that extends to future null
infinity. Unfortunately, Paper I does not distinguish between
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rmin r0 rmax

vacuum region effective-source region vacuum region

Oψ−
0 = 0

þ4Φ̄− = 2ψ−
0

O†Φ− = 0

ĥ−ab = 2Re(S†
abΦ

−)

−LΞgab

ingoing bc

OψM0 = SabTRab

⇔ ψM0 = ψret0 − ψP0

þ4Φ̄M = 2ψM0

ĥMab = 2Re(S†
abΦ

M)

−LΞgab, xMab

Oψ+
0 = 0

þ4Φ̄+ = 2ψ+
0

O†Φ+ = 0

ĥ+ab = 2Re(S†
abΦ

+)

ġab

outgoing bc

FIG. 3. Summary of the GHZ puncture scheme. As in Fig. 1, the total solution in each region is given by the sum of the boxed
quantities. Note that inside the worldtube, ψM

0 = ψR
0 .

4 6 8 10 12 14 16
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r/M

Re(ĥR,22nn − ĥS,22nn Θ+)

(LΞg)
00
nn

ġ00nn
Re(xM,22

nn )

FIG. 4. Representative modes of the quantities entering into
the solution (30) in the GHZ puncture scheme with a puncture
of order n = 2. Note that ĥR,22

nn − ĥS,22
nn Θ+ corresponds to ĥ−

nn

for r < rmin, and ĥ+
nn for r > rmax.

regions, the residual Weyl scalar coincides with the re-
tarded solution, ψR0 = ψret0 , and the corresponding Hertz
potential will therefore be labelled by Φret. This nota-
tion serves to indicate that Φ± are the Hertz potentials
that are constructed in the traditional no-string method
of obtaining the retarded metric perturbation sourced by
a point particle; we do not mean to suggest that Φret is
the retarded solution to a field equation.

Inside the worldtube, we solve Eq. (14) numerically for

Φ+ and Φ+
alt. The mathematics in Paper I consistently describes

Φ+, but text in Paper I, particularly text above Eq. (39) therein,
incorrectly conflates Φ+ with Φ+

alt. Either solution can be used,
but Φ+

alt is acausal, and Φ+ is the field that is consistent with
the traditional no-string solution.

ΦR, subject to boundary/jump conditions at r = rmin,
which are determined from Eq. (14). We label this inter-
nal solution ΦM (with ‘M’ indicating the ‘middle’ region
or effective ‘matter’ region). Equation (14) also provides
jump conditions at r = rmax; see Sec. V for more details.
Requiring the Hertz potential to satisfy these jump con-
ditions across r = rmax requires one to add an additional
field, ΦS , to Φ+ at r > rmax. This additional field, re-
ferred to as the shadow field, satisfies the homogeneous
version of Eq. (14) and the inhomogeneous version of
Eq. (15). The total residual field can then be written in
the form

ΦR = Φ−Θ− +ΦMΘM + (Φ+ +ΦS)Θ+. (18)

In the above, we defined Θ− := Θ(rmin − r), Θ+ :=
Θ(r−rmax), and ΘM := 1−Θ−−Θ+. In particular, note
that ΘM (r) = 1 inside the worldtube rmin < r < rmax.
Our use of Heaviside functions here does not indicate
discontinuity at the worldtube boundaries: since ψR0 con-
tains Dirac δ′ terms there and ΦR is four integrals of ψR0 ,
the solution (18) is C1 at rmin and rmax.

Although we included it in Eq. (18), ΦS is never re-
quired (or calculated) in our GHZ puncture scheme. We
recall the reason why below.

D. Residual metric perturbation: Hertz term

Next, from ΦR, one can compute a (0, 2) tensor via the
explicit relation

ĥRab = 2Re
(
(S†

0)abΦ
R
)
, (19)

which satisfies the IRG conditions ĥRabl
a = 0 = gabĥRab,

where la is the principal outgoing null vector, given in
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Eq. (A39) in the Kinnersley tetrad.
Splitting the right-hand side of Eq. (19) into the three

domains gives

ĥRab = ĥ−abΘ
− + ĥMabΘ

M + (ĥ+ab + ĥSab)Θ
+, (20)

where each field is constructed from the corresponding
term in Eq. (18). Note that the second-order differential
operator (S†

0)ab did not introduce Dirac delta distribu-
tions in ĥRab because ΦR is C1 at the worldtube’s bound-
aries. However, the two derivatives do introduce jump
discontinuities there; see Table I for more details.

Like ΦS , the shadow field ĥSab is never explicitly needed
or calculated. The fields ĥ±ab satisfy the vacuum linearised
Einstein equation Eab(ĥ±) = 0. If we were to reduce
the worldtube to zero size, effectively removing the term
involving ΘM , and additionally discard the shadow field
ĥSab, then Eq. (20) would reduce to the traditional form
of the no-string CCK metric reconstruction.

E. Residual metric perturbation: corrector tensor

The reconstructed field ĥRab is not, on its own, a solu-
tion to the linearised Einstein equation (8). Intuitively,
this failure is associated with the fact that if ĥRab is in the
IRG, then Ell(ĥR) = 0 [31]. It follows that, since TRll ̸= 0,
ĥRab cannot satisfy (8). The novel step in the GHZ pro-
cedure is to supplement CCK-Ori reconstruction with a
corrector tensor, xRab, defined to satisfy the components
of the Einstein equations that ĥRab cannot,

(
TRab − Eab(xR)

)
la = 0. (21)

As shown by GHZ, the total field ĥRab+xRab then satisfies
the full set of equations (8).

Equation (21) is a system of four real independent
equations. The GHZ scheme adopts the following ansatz
for the corrector tensor:

xRab = 2m(am̄b)x
R
mm̄ − 2l(am̄b)x

R
nm

− 2l(amb)x
R
nm̄ + lalbx

R
nn, (22)

where xRnm̄ = (xRnm)⋆ and we have adopted a Newman-
Penrose null tetrad {lα, nα,mα, m̄α}; see, e.g., Eq. (A39)
for the Kinnersley tetrad. The key feature of this ansatz
is its inclusion of a trace component, xRmm̄; the trace term,
which is omitted in CCK-Ori reconstruction, is what al-
lows the corrector tensor to satisfy (21). By project-
ing (21) into the la, na and ma directions, one obtains a

sequence of three ODEs along the integral curves of la,

−ρ2Þ
(

1

ρ2
ÞxRmm̄

)
= TRll , (23)

−1

2
Þ
(
ρ2Þ

(
xRnm
ρ2

))
= TRlm +NxRmm̄, (24)

−ρ2Þ
(
xRnn
ρ

)
= TRln + UxRmm̄ +VxRnm + V̄xRnm̄,

(25)

where the spin coefficient ρ is given in Eq. (A12) and the
operators N , U , V and V̄ are given in Eqs. (A35)-(A38).
This hierarchical system of transport equations can be
solved for xRmm̄, xRnm and xRnn, in that order.

The transport equations are supplemented with triv-
ial data at the past horizon, implying that xRab vanishes
for all r < rmin. We then solve the equations within the
worldtube rmin < r < rmax, subject to boundary/jump
conditions at r = rmin; see Sec. VII. For r > rmax, the
transport equations dictate that another shadow field ap-
pears, such that the global solution takes the form

xRab = xMabΘ
M + xSabΘ

+. (26)

Again observe that no delta functions arise at the world-
tube boundaries despite the presence of δ′ terms in TRab;
this is due to a fortuitous cancellation on the right-hand
side of Eq. (25), which we describe below. Also again note
that we will not explicitly need or calculate the shadow
field.

F. Total residual metric perturbation

The total residual metric perturbation is the sum of
the reconstructed piece (20) and the corrector piece (26):

hR
′

ab = ĥ−abΘ
−+(ĥMab+x

M
ab)Θ

M+(ĥ+ab+ĥ
S
ab+x

S
ab)Θ

+. (27)

Here we have added a prime on the residual field to indi-
cate that this is not yet in our ultimate choice of gauge.

To put the residual field in its final form, we will per-
form a gauge transformation of the shadow field ĥSab+x

S
ab.

There are three reasons for this. First, it is simply un-
necessary to calculate ĥSab + xSab. Second, the source TRab
has finite differentiability at the particle, and the trans-
port equations (14) and (23)–(25) cause the shadow field
to inherit this nonsmoothness at all points along ougoing
null geodesics emanating from the particle to future null
infinity; this string singularity is increasingly softened as
the order of the puncture is increased, but it is still un-
desirable. Third, the ℓ = 0, 1 modes in the shadow field
are not in an asymptotically flat gauge, which means,
for example, that the orbital frequencies measured at the
particle are not those measured by an inertial observer at
infinity, and “invariant” quantities such as the Detweiler
redshift consequently take incorrect values; for discus-
sions of this point, see Refs. [6, 38], for example.
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In fact, since r > rmax is a vacuum region, the CCK
term ĥ+ab contains almost all of the invariant content
there. This follows from the fact that T ab

0 ĥ+ab = ψ+
0 ,

while the shadow field contributes nothing to the Weyl
scalar: T ab

0 (ĥSab + xSab) = 0. Wald’s theorem [27] there-
fore implies that the shadow field can only be composed
of a perturbation ġab toward another Kerr solution plus
a gauge perturbation Lξgab, meaning

ĥSab + xSab = ġab + Lξgab (28)

for some ġab and ξa.
We split ξa into an ℓ = 0, 1 piece Ξa that is strictly

linear in time and a piece ξaS that has at most periodic
time dependence. We then subtract a gauge perturbation
generated by

ξa = Ξa + ξaSΘ
+. (29)

In this way, we subtract LΞgab from hab over the entire
range of r, not only in the region r > rmax. This is nec-
essary because Ξa alone alters frequency values, and it
must be subtracted globally to ensure that the frequen-
cies throughout spacetime are those measured by an in-
ertial observer at infinity. The final form of the metric
perturbation in the resulting “shadowless gauge” is hence

hRab = (ĥ−ab − LΞgab)Θ
− +

(
ĥMab + xMab − LΞgab

)
ΘM

+
(
ĥ+ab + ġab

)
Θ+ − 2ξS(arb)δ(r − rmax), (30)

where rb := ∂br. The vector field Ξa is calculated in
Eq. (137) below. The vector field ξaS , which now appears
in the Dirac δ term in Eq. (30), is given in Paper I in
terms of TRab. In this paper we will not explicitly calculate
the δ term in the residual field, but we return to it in the
Conclusion.

Note that if one were to shrink the worldtube to zero
size, rmin → rmax → r0, the terms involving ΘM would
disappear. The field hRab would then be precisely the same
as the retarded field in the standard no-string construc-
tion. See Fig. 1 for a pictorial summary of the CCK re-
construction and completion, and Fig. 2 for a plot show-
ing the different quantities involved. Similarly, see Figs. 3
and 4 for a summary of the corresponding GHZ puncture
procedure.

In Table I, we give a summary of the theoretical ex-
pectation of the (ir)regularity of most of the involved
quantities, decomposed into Fourier and harmonic modes
(raised and lower mode indices have the same meaning);
see for example Eqs. (46), (39), (74), and (103). The
coordinates (t, r, θ, ϕ) are the usual Schwarzschild coordi-
nates, and u is the outgoing null coordinate, see Eqs. (31)
and (34). Note that the first two equations show a de-
composition into Fourier-t modes, instead of u-modes,
but this does not affect regularity of the modes.

For the most part, the degree of regularity at the par-
ticle can be straightforwardly predicted by, for example,
counting the number of derivatives and integrals at each

stage of the calculation. The puncture modes hP,ℓmab ,
given in Lorenz gauge, have a well-known kink at the
particle, due to the presence of terms involving |r − r0|.
The second-order differential operator T ab

0 therefore in-
troduces a jump and delta function into the modes of
ψP0 (denoted by 2ψ

P
ℓm, where the left-subscript “2” refers

to its spin weight). The regularity of the residual field
modes 2ψ

R
ℓm = 2ψ

ret
ℓm − 2ψ

P
ℓm depends on the order of

the puncture: the n = −1 term in hPab removes the δ
function in 2ψ

ret
ℓm , the n = 0 term removes the jump dis-

continuity, and so on. For a puncture of order n ≥ 0,
2ψ

R
ℓm is therefore Cn. The Hertz potential modes −2Φ

R
ℓm

are obtained by integrating (radially) 2ψ
R
ℓm four times,

implying it is Cn+4 at the particle. The reconstructed
field ĥR,ℓmab , which involves two derivatives of −2Φ

R
ℓm, is

therefore Cn+2.

The regularity of the corrector tensor is slightly less
straightforward. The effective stress-energy modes TR,ℓmab
are Cn at the particle, analogous to 2ψ

R
ℓm. The second-

order radial ODEs (23) and (24) then imply that xR,ℓmmm̄

and xR,ℓmnm (and xR,ℓmnm̄ ) are Cn+2. But Eq. (25) dic-
tates that xR,ℓmnn is obtained via a single integration of
the stress-energy tensor. As a result, one might naively
think that the modes of xRnn would only be Cn+1 instead
of Cn+2. However, it turns out that they are one degree
more regular than naively expected due to cancellations
on the right-hand side of Eq. (25). These cancellations,
described in Sec. VII, are also the reason no Dirac δ terms
appear at the worldtube boundaries in Eq. (26). As a
consequence, the modes xR,ℓmab are all at least Cn+2 at
the particle.

III. CALCULATION OF THE LORENZ-GAUGE
PUNCTURE

The first step in all puncture schemes is the calculation
of the puncture field. Although mode decompositions of
singular fields are a standard ingredient in most self-force
calculations, they typically make use of approximations
which are incompatible with our GHZ-Teukolsky punc-
ture scheme. A similar issue also affects punctures used in
dealing with the problem of infinite mode coupling when
constructing the source for second-order self-force calcu-
lations [58]. As such, and since the same puncture was
an essential ingredient in producing existing results from
second-order self-force [8, 24, 25], we defer a full descrip-
tion of the construction of the puncture to a forthcoming
paper [59] and give here only the essential details.

Once the puncture is in hand, the bulk of our calcula-
tions in later sections reduce to solving radial differential
equations. We do so numerically, making use of the Black
Hole Perturbation Toolkit (BHPToolkit) [60] and Math-
ematica’s built-in function NDSolve.
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A. Circular orbits in Schwarzschild spacetime

While our overview in the preceding section remained
general, we will from now on focus our attention on a
particle in a circular orbit around a Schwarzschild black
hole. The background metric gab, in Schwarzschild coor-
dinates (t, r, θ, φ), is

ds2 = −f(r)dt2 + dr2

f(r)
+ r2(dθ2 + sin2 θdφ2), (31)

where f(r) := 1 − 2M/r. At leading order in the mass
ratio, the particle is a test particle that moves along
(timelike) geodesics of the background metric gab. Given
the background symmetry, we can assume without loss
of generality that the motion is in the equatorial plane
θ = π/2. Then, for a circular orbit with trajectory
xa = (t, r0, π/2, φp(t)) the four-velocity is given by

ua = ut(1, 0, 0,Ωφ), (32)

where ut := (1 − 3M/r0)
−1/2 and Ωφ := dφp/dt =√

M/r30. The point-particle stress-energy tensor (2) re-
duces to

Tab = 8πM
uaub
r20u

t
δ(r − r0)δ (θ − π/2) δ(φ− Ωφt). (33)

Given the importance of outgoing null rays in the
GHZ procedure, it is useful to adopt outgoing Eddington-
Finkelstein coordinates, (u, r, θ, φ), defined by u := t−r⋆,
where r⋆ is the usual tortoise coordinate r⋆ = r +
2M ln (r/2M − 1). We will refer to Schwarzschild coordi-
nates and Eddington-Finkelstein coordinates as t-slicing
and u-slicing coordinates, respectively. In u slicing, the
metric takes the form

ds2 = −f(r)du2 − 2drdu+ r2(dθ2 + sin2 θdφ2). (34)

B. Puncture with exact mode decomposition

The construction of the puncture begins from a 4D,
covariant expression for a Lorenz-gauge puncture derived
from an approximation to the Detweiler-Whiting singular
field [51]. The approximation is obtained as a covariant
expansion in 4D distance from the worldline and is given
explicitly in Eq. (4.7) of Ref. [53]. It includes the leading-
order term given in Eq. (3), but we also keep a further
three orders in the expansion so that the puncture agrees
with the Detweiler-Whiting singular field through order
(distance)2 from the worldline; in our nomenclature this
corresponds to an order n = 2 puncture.

Following the methods in Ref. [53], this covariant ex-
pression is then converted to a coordinate expression in
terms of a rotated coordinate system such that the par-
ticle is instantaneously at the north pole. The conver-
sion process involves re-expanding covariant distances in
terms of coordinate distances, again preserving terms in

the puncture through order (distance)2. We then make
the standard choice ∆t = 0, such that the field point
and the reference point on the worldline are at the same
Schwarzschild time; this has the effect of making all time
dependence appear implicitly via the dependence of the
puncture on the coordinate location of the worldline.
This yields our final, exact8 definition for the puncture
hPab (t, r, θ, φ).

We next follow Ref. [61] and decompose the puncture
onto the Barack-Lousto-Sago (BLS) basis of tensor spher-
ical harmonics [62, 63], which provide an orthogonal basis
for symmetric rank-2 tensors in Schwarzschild spacetime.
We further decompose the time dependence into Fourier
modes, with ω representing the frequency of the mode
(in our case of circular orbits in Schwarzschild spacetime
ω = mΩφ and the Fourier transform is discrete). The
result is a decomposition

hPab(t, r, θ, φ) =

10∑

i=1

∑

ℓ,m

aiℓ
r
hPiℓm(r)Y iℓmab (θ, φ)e−imφp(t)

(35)
where aiℓ is an ℓ-dependent constant, where the infinite
sum over ℓ starts at ℓ = 0 for i = 1, 2, 3, 6, at ℓ = 1 for
i = 4, 5, 8, 9, and at ℓ = 2 for i = 7, 10, and where the
sum over m is over all integers −ℓ ≤ m ≤ ℓ.

To obtain the puncture mode coefficients hPiℓm(r), we
must integrate the 4D puncture field against a spherical
harmonic over spheres of constant (t, r). This is most
efficiently done by considering the modes hPiℓm′(r) with
respect to the rotated coordinate system and then apply-
ing an exact rotation at the level of modes [61]:

hPiℓm(r) =
∑

m′

Dℓ
mm′hPiℓm′(r) (36)

where Dℓ
mm′ is the Wigner-D matrix for the time-

dependent rotation.
Traditionally, the angular integrals over the sphere are

made analytically tractable by making approximations
such that the mode-decomposed puncture captures the
behaviour of the exact puncture only near the worldline.
In particular, the integrals can be approximated by a
power series in ∆r := r − r0 [53]. Similarly, the use
of a rotated coordinate system means that the puncture
can be approximated by a small number of m′ modes
[61]. By considering a sufficient number of powers of
∆r and a sufficient number of m′ modes, one can ensure
that, when summed over modes and evaluated on the
worldline, the mode decomposed puncture and its first
few derivatives agree with those of the exact puncture

8 Note that the puncture is exact both in terms of the rotated,
time-dependent coordinate system and in terms of the original,
unrotated coordinate system in which the worldline is on an equa-
torial orbit; the two are related by an exact, time-dependent 3D
rotation.
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(the number of derivatives is in one-to-one correspon-
dence with the number of powers of ∆r and the number
of m′ modes). Unfortunately, neither of these approxi-
mations are valid when using a puncture to address the
problem of infinite mode coupling in second-order self-
force calculations [58], and they also prove problematic in
our context of a GHZ-Teukolsky puncture scheme. One
reason for this is that the expansion in powers of ∆r nec-
essarily introduces a divergence at large ℓ at all points
away from ∆r = 0, implying that the ℓ-mode sum of the
residual field diverges everywhere except at the particle;
see the discussion around Eq. (127) in Ref. [46]. Instead,
we work with an exact mode decomposition of the punc-
ture, which we next describe, so that we do not need to
be concerned with such issues.

Fortunately, the approach used in approximate mode
decompositions can be adapted to instead produce exact
decompositions. A version of this exact mode decompo-
sition approach is detailed in the context of scalar fields
in Sec. IV B of Ref. [58]. Defining the rotated angular co-
ordinates (θ′, φ′) in which the particle is instantaneously
at the north pole (θ′ = 0), the approach essentially relies
on Eq. (44) of Ref. [58], which gives a closed form for the
integral over θ′ in the case where the integral is against
a scalar spherical harmonic with m′ = 0. Integrals for
m′ ̸= 0 can be reduced to the m′ = 0 form by integrating
by parts m′ times. Similarly, integrals against vector and
tensor harmonics can be reduced to the same form using
identities relating associated Legendre polynomials and
their derivatives. This just leaves the integral over φ′.
This can also, in principle, be written in closed form in
terms of complete elliptic integrals. In practice, however,
the complexity of the expressions meant that we found it
more straightforward to evaluate them as 1D numerical
integrals.

In summary, our puncture is constructed using a nat-
ural extension of the hybrid analytical-numerical mode
decomposition scheme developed in Ref. [58]. We also
adopt the following practical choices in our implementa-
tion:

1. We use a second order puncture, accurate through
order (distance)2 from the worldline;

2. We use the angular window function W4
10 from

Ref. [58] to smooth undesirable behaviour at the
south pole while preserving four orders in the be-
haviour in the radial direction and modes up to
m′ = 10;

3. We truncate the sum over rotated modes at m′ =
10, which we found sufficient to recover the full
unrotated puncture up to approximately machine
precision;

4. We use the NIntegrate function in Mathematica
with up to 32 digits of working precision, so that
the integral is determined to approximately ma-
chine precision.

IV. CALCULATION OF THE RESIDUAL WEYL
SCALAR

The next step in our scheme is to calculate the residual
Weyl scalar ψR0 . It satisfies Eq. (12), which we reproduce
here for convenience, along with the corresponding equa-
tion for the spin-weight s = −2 Weyl scalar ψR4 :

OψR0 = Sab0 TRab, (37)

O′ψR4 = Sab4 TRab. (38)

The second-order differential operators O,O′, Sab0 and
Sab4 are explicitly given in Appendix A. In principle, one
could calculate the residual IRG Hertz potential from ei-
ther ψR0 or ψR4 . Following Paper I, we choose to work with
ψ0 exclusively, but we include the equations satisfied by
ψ4 because we will encounter them while reconstructing
the Hertz potential.

The Teukolsky equation is fully separable in a basis of
Fourier modes and spin-weighted spheroidal harmonics,
even in Kerr spacetime. In Schwarzschild spacetime the
spheroidal harmonics reduce to spherical ones. The spe-
cific form of the mode ansatz then depends on the choice
of tetrad. Choosing the Kinnersley tetrad, decomposing
into Fourier-t modes, and specialising to circular orbits
in Schwarzschild spacetime, we write the ansatz as

ψ0 =

∞∑

ℓ=2

ℓ∑

m=−ℓ

ψ2 ℓm(r) 2Yℓm(θ, ϕ)e−imΩφt, (39)

r4ψ4 =

∞∑

ℓ=2

ℓ∑

m=−ℓ

ψ−2 ℓm(r)−2Yℓm(θ, ϕ)e−imΩφt, (40)

T0 := Sab0 Tab

= − 1

2r2

∞∑

ℓ=2

ℓ∑

m=−ℓ

T2 ℓm(r) 2Yℓm(θ, ϕ)e−imΩφt,

(41)

T4 := r4Sab4 Tab

= − 1

2r2

∞∑

ℓ=2

ℓ∑

m=−ℓ

T−2 ℓm(r)−2Yℓm(θ, ϕ)e−imΩφt,

(42)

where it is understood that the expansions apply for the
retarded, residual, and puncture fields and for the physi-
cal and effective sources. In the above, the left subscripts
are used to keep track of the quantities’ spin weights
s = ±2.

We remark that, while the choice of t slicing has
traditionally been used when computing homogeneous
solutions of the Teukolsky equation, our final result
for the modes of retarded, puncture and residual fields
are all written in u-slicing. At the level of modes,
the transition from t to u slicing corresponds to a
simple multiplicative factor: the radial coefficients in
expansions of the form

∑
ℓmR

[u]
ℓm(r) sYℓme

−imΩφu and
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∑
ℓmR

[t]
ℓm(r) sYℓme

−imΩφt are related by

R
[u]
ℓm(r) = R

[t]
ℓm(r)e−imΩφr⋆ . (43)

This applies to the mode decompositions of all fields.
The radial coefficients ψs ℓm(r) satisfy the radial

Teukolsky equation:

s□ℓm ψs ℓm :=
[
∆−s d

dr

(
∆s+1 d

dr

)

+
K2 − 2is(r −M)K

∆
+ 4ismΩφr − λs ℓm

]
ψs ℓm = Ts ℓm,

(44)

where ∆ := r2f(r) and K := mr2Ωφ. In Schwarzschild
spacetime, the eigenvalues λs ℓm are given explicitly as

λs ℓm = ℓ(ℓ+ 1)− s(s+ 1). (45)

In the following subsections, we calculate ψR0 at the
level of its individual modes 2ψ

R
ℓm. As explained below

Eq. (12), we can find these modes in two different ways:
either by first calculating ψret0 and subtracting ψP0 or by
directly solving the field equation (37) for ψR0 . We refer
to the first as the subtraction method and the second as
the effective-source method. In either approach, the key
input is the puncture field modes 2ψ

P
ℓm. We describe our

calculation of 2ψ
P
ℓm before turning to our implementation

of the two methods.

A. Puncture field

It is straightforward to compute ψP0 from hPab using the
definition of the perturbed Weyl scalar in terms of the
metric perturbation, ψP0 := T ab

0 hPab, given in Eq. (A26).
As described in Sec. III, the puncture is computed using
the BLS tensor spherical harmonics [62, 63]. Here we
express the modes of ψP0 , defined as in Eq. (39), directly
in terms of the BLS modes hPiℓm.

We start by writing the modes of T ab
0 hPab in terms of the

modes hP,ℓmab in a spin-weighted harmonic decomposition,

hPab =

∞∑

ℓ=|s|

ℓ∑

m=−ℓ

hP,ℓmab (r) sYℓm(θ, φ)e−imΩφt, (46)

where s denotes the spin weight of the given tetrad com-
ponent (e.g., s = 0 for hP,ℓmll , s = −1 for hP,ℓmlm̄ , etc.); see
Appendix A. We suppress the spin weight s of the modes
hP,ℓmab (t, r) for notational simplicity. We then re-express
the modes hP,ℓmab in terms of the BLS modes hPiℓm using
the conversions in Appendix B. (Note the mode indices
ℓ,m have the same meaning whether they are subscripts

or superscripts.) Our result for 2ψ
P
ℓm is

2ψ
P
ℓm = −

√
(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

4r3f2
(
hP1ℓm + hP2ℓm

)

−
(
f2∂2r − (∂rf)∂t + 2f∂t∂r + ∂2t

) (
hP7ℓm − ihP10,ℓm

)

4rf2
√

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

+

√
(ℓ− 1)(ℓ+ 2)

4r2f2
√
ℓ(ℓ+ 1)

(−∂rf + f∂r + ∂t)

×
(
hP4ℓm + hP5ℓm − i(hP8ℓm + hP9ℓm)

)
, (47)

where it is understood that ∂t = −imΩφ. The same
relationship holds between 2ψ

R
ℓm and hRiℓm and between

2ψ
ret
ℓm and hretiℓm.
Now recall that hPab = hPabΘ

M . The sharp window
function ΘM causes a jump in the puncture hPab at the
worldtube’s edges, which then translates into radial δ and
δ′ distributions for 2ψ

P
ℓm. Consequently, the Weyl scalar

modes 2ψ
P
ℓm are schematically of the form

2ψ
P
ℓm = 2ψ

smooth
ℓm (r)ΘM (r) + ψδ,P0,ℓmδ(r − r0)

(2ψ
δ,P
ℓm )±δM (r) + (2ψ

δ′,P
ℓm )±δ′

M
(r) (48)

for some smooth ψsmoothℓm and constants ψδ,P0,ℓm, (2ψ
δ,P
ℓm )±,

and (2ψ
δ′,P
ℓm )±. In the above, we defined for convenience,

δM (r) := Θ′M = δ(r − rmin)− δ(r − rmax), (49)

δ′
M
(r) := Θ′′M = δ′(r − rmin)− δ′(r − rmax). (50)

The ± superscripts indicate that these quantities are to
be evaluated at rmin or rmax, depending on which δ func-
tion they are associated with. This form is obtained by
making use of the distributional identities

F (x)δ(x− x0) = F (x0)δ(x− x0), (51)
F (x)δ′(x− x0) = F (x0)δ

′(x− x0)

− F ′(x0)δ(x− x0). (52)

Doing so, one finds the coefficients 2ψ
δ,P
ℓm and 2ψ

δ′,P
ℓm are

explicitly given by

2ψ
δ,P
ℓm = −

(f + fr∂r + 2r∂t)
(
hP7ℓm − ihP10,ℓm

)

4fr2
√

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)
(53)

+
(ℓ− 1)(ℓ+ 2)

(
hP4ℓm + hP5ℓm − i(hP8ℓm + hP9ℓm)

)

4fr2
√
(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

,

2ψ
δ′,P
ℓm = −

hP7ℓm − ihP10,ℓm

4r
√

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)
, (54)

where ∂t is understood as −imΩφ. Finally, we use
Eq. (43) to convert to u slicing.
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B. Subtraction method

In the subtraction method, we calculate 2ψ
R
ℓm from

2ψ
ret
ℓm using

2ψ
R
ℓm = 2ψ

ret
ℓm − 2ψ

P
ℓm. (55)

In the remainder of this section we write formulae for
generic s rather than specializing to s = 2. This is be-
cause, while the residual and puncture fields are only
computed for s = +2, solutions to the Teukolsky equa-
tion for s = −2 will also play a role when computing the
(s = −2) Hertz potential in later sections.

The retarded field modes are obtained via the method
of variation of parameters. Specifically, we make use of
the Teukolsky package from the BHPToolkit to compute
two linearly independent solutions to the homogeneous
radial Teukolsky equation (44), referred to as the “in”
and “up” solutions. When combined with the Fourier
time factor, the “in” solutions represent purely ingoing
waves at the future horizon. The “up” solutions, com-
bined with the Fourier factor, instead represent purely
outgoing waves at future null infinity. Their asymptotic
behaviours are

sψ
in
ℓm(r) ∼ ∆−se−imΩφr⋆ , r → 2M, (56)

sψ
up
ℓm(r) ∼ r−(1+2s)eimΩφr⋆ , r → ∞. (57)

The inhomogeneous retarded solution is then written
in terms of these homogeneous solutions, sψin0 and sψ

up
0 ,

as

sψ
ret
ℓm = sC

in
ℓm(r)sψ

in
ℓm(r) + sC

up
ℓm(r)sψ

up
ℓm(r), (58)

where the weighting coefficients are given by

sC
in
ℓm(r) =

∫ ∞

r

sψ
up
ℓm(r′)

sW (r′)∆(r′)
Ts ℓm(r′)dr′, (59)

sC
up
ℓm(r) =

∫ r

2M

sψ
in
ℓm(r′)

sW (r′)∆(r′)
Ts ℓm(r′)dr′, (60)

with

sW (r) := sψ
in
ℓm(r)

dsψ
up
ℓm

dr
− sψ

up
ℓm

dsψ
in
ℓm(r)

dr
. (61)

Since the retarded field is sourced by a point-particle
stress-energy, sTℓm is a linear combination of δ(r − r0)
and its first and second derivatives. The integrals can
therefore be evaluated explicitly in terms of the homoge-
neous solutions (and their derivatives) on the worldline.
The integrals are constants for r > r0 and r < r0, with
sC

in
ℓm = 0 when r > r0 and sC

up
ℓm = 0 when r < r0. The

modes of the retarded solution therefore split into two
solutions inside and outside the particle’s orbit:

sψ
ret
ℓm(r) =

{
sψ

−
ℓm := sC

−
ℓm sψ

in
ℓm(r), r < r0,

sψ
+
ℓm := sC

+
ℓm sψ

up
ℓm(r), r > r0,

(62)

4 6 8 10 12 14 16
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−2
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2

4

·10−3

rmin r0 rmax

r/M

Re(2ψ
ret
ℓm)

Re(2ψ
R
ℓm)

FIG. 5. The ℓ = m = 2 mode of the retarded and resid-
ual Weyl scalars, ψret

0 and ψR
0 . The retarded field mode is

discontinuous at the particle’s orbital radius r0. 2ψ
ret
ℓm also

contains a δ function at r0, although not visible in the plot.
The residual field is continuous at r0 but discontinuous on
the worldtube’s edges, rmin/max, and additionally contains a
δ and δ′ there, a consequence of our choice of sharp window
function.

where the constants

sC
−
ℓm := sC

in
ℓm(r < r0) =

∫ ∞

2M

sψ
up
ℓm(r′)

sW (r′)∆(r′)
Ts ℓm(r′)dr′,

(63)

sC
+
ℓm := sC

up
ℓm(r > r0) =

∫ ∞

2M

sψ
in
ℓm(r′)

sW (r′)∆(r′)
Ts ℓm(r′)dr′

(64)

can be explicitly evaluated in terms of the coefficients
of δ, δ′, and δ′′ in Ts ℓm. As before, we modify these
expression by including the appropriate exponential fac-
tor to bring the mode solution from t- to u-slicing using
Eq. (43).

In addition to sψ
±
ℓm, the retarded field modes contain

a term proportional to δ(r − r0), as shown in Eq. (13).
The coefficient of the delta function can be obtained
straightforwardly by evaluating the weighting coefficients
sC

in
ℓm(r) and sC

up
ℓm(r); the result is necessarily identical

to the coefficient ψδ,P0 appearing in Eq. (48). Since the
delta functions therefore cancel out in 2ψ

R
ℓm, we will not

need the explicit value of ψδ,P0 here.

C. Effective-source method

In the effective-source approach, we directly solve
Eq. (37) for the residual field. At the level of modes,
the equation becomes

2□ℓm 2ψ
R
ℓm = 2Tℓm − 2□ℓm2ψ

P
ℓm =: 2S

eff
ℓm. (65)

Therefore, solving this alternative field equation with an
effective source, 2S

eff
ℓm, will yield the residual field with-

out the need for mode-by-mode subtraction of the punc-
ture field from the retarded field. Furthermore, the punc-
ture field, ψPℓm, is defined in such a manner that doing
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this cancellation at the level of the field equation will
leave us with a source that does not involve Dirac delta
distributions.

We solve Eq. (65) using a worldtube approach, based on
the similar scheme implemented in [64]. Schematically,
the residual radial Teukolsky function obeys Eq. (65) in-
side the worldtube; outside the worldtube the residual
is identical to the retarded field and thus is a solution
to the homogeneous Teukolsky equation. Quantitatively,
we adopt the following ansatz for the residual field,

2ψ
R
ℓm =





2a
in
ℓm 2ψ

in
ℓm r < rmin,

2b
up
ℓm 2ψ

up
ℓm

+2b
in
ℓm 2ψ

in
ℓm + 2ψ

inh
ℓm

rmin < r < rmax,

2a
up
ℓm 2ψ

up
ℓm r > rmax.

(66)
Here 2ψ

inh
ℓm is the particular inhomogeneous solution

found from the standard variation of parameters ap-
proach, in analogy with Eq. (58):

2ψ
inh
ℓm = 2Cinℓm(r)2ψ

in
ℓm(r) + 2Cupℓm(r)2ψ

up
ℓm(r), (67)

with

sCinℓm(r) =

∫ rmax

r

2ψ
up
ℓm(r′) 2S

eff
ℓm(r′)

2W (r′)∆(r′)
dr′, (68)

2Cupℓm(r) =

∫ r

rmin

2ψ
in
ℓm(r′) 2S

eff
ℓm(r′)

2W (r′)∆(r′)
dr′. (69)

Here, the unknown coefficients 2a
in/up
ℓm and 2b

in/up
ℓm are

constrained by demanding continuity of 2ψ
ret
ℓm = 2ψ

R
ℓm +

2ψ
P
ℓm and

d2ψ
ret
ℓm

dr
at the worldtube boundaries, yielding

2a
up
ℓm =

1

2ψ
up
ℓm(rmax)

{
2ψ

up
ℓm(rmax)[2b

up
ℓm + 2Cupℓm(rmax)]

+ 2b
in
ℓm 2ψ

in
ℓm(rmax) + 2ψ

P
ℓm(rmax)

}
, (70)

2a
in
ℓm =

1

2ψinℓm(rmin)

{
2b
up
ℓm 2ψ

up
ℓm(rmin)

+ 2ψ
in
ℓm(rmin)[2b

in
ℓm + 2C

in
ℓm(rmin)] + 2ψ

P
ℓm(rmin)

}
.

(71)

Similarly, the coefficients 2b
in/up
ℓm are given by

2b
up
ℓm =

W [2ψ
P
ℓm(r), 2ψ

in
ℓm(r)]

W [2ψinℓm(r), 2ψ
up
ℓm(r)]

∣∣∣∣
r=rmin

,

2b
in
ℓm =

W [2ψ
P
ℓm(r), 2ψ

up
ℓm(r)]

W [2ψ
up
ℓm(r), 2ψinℓm(r)]

∣∣∣∣
r=rmax

,

(72)

where W [ψ1, ψ2] := ψ1
dψ2

dr − ψ2
dψ1

dr is the usual Wron-
skian. We note that since the residual field must reduce
to the retarded field outside the worldtube, the coeffi-
cients 2a

up/in
ℓm are necessarily found to be equal to the

coefficients 2C
±
ℓm in the retarded solution (62).
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FIG. 6. ℓ-mode behaviour of ψret
0 and ψR

0 at the particle,
r = r0 = 10M, θ = π/2 (top, log-log grid), and away from the
particle, r = 8M, θ = π/2 (bottom, semilog grid). Note the
much larger range in ℓ in the bottom panel.

The placement of the worldtube boundaries should
have no effect on our results on the whole, but practi-
cally we find the constraints |r0 − rmin/max| ≲ 3M and
rmin > 3M ensure an optimal level of error.

D. Behaviour of the modes of the retarded,
puncture and residual fields

Due to the point-particle source, the modes of the re-
tarded and puncture fields are discontinuous at r = r0.
See, for example, Fig. 5 for the jump in the ℓ = m = 2
mode. They also contain a radial delta function δ(r −
r0), as alluded to earlier. In the residual field modes
2ψ

R
ℓm(r) := 2ψ

ret
ℓm(r) − 2ψ

P
ℓm(r), the distributional con-

tent and discontinuities cancel out. More precisely, the
jumps in the retarded and puncture field modes across
r = r0 are such that 2ψ

R
ℓm is Cn there, where n denotes

the order of the puncture.
The sum over the modes of ψret0 does not converge at

the particle, as expected for a divergent quantity. On
the other hand, the sum of modes of ψR0 converges alge-
braically at the particle, as one would expect for a finitely
differentiable function. For the second-order puncture
used here, the terms in the sum fall off asymptotically as
ℓ−2 for large ℓ. This is shown in the top panel of Fig. 6,
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where we plot the ℓ-modes

2ψℓ(r, θ) :=

ℓ∑

m=−ℓ
2ψℓm(r)eimΩφr⋆

2Yℓm(θ, 0), (73)

evaluated at the particle’s position r = r0, θ = π/2, for
the retarded and residual field. Note that the exponential
factor arises because 2ψℓm is in u slicing, and we have
used 2Yℓm(θ, φ)e−imΩφt = 2Yℓm(θ, 0)eim(φ−Ωφt) and set
φ = Ωφt.

In the bottom panel of Fig 6, we show a similar plot,
but where the ℓ-modes are evaluated at r = r0 − 2M ,
away from the particle. In principle, away from r = r0
fields are smooth functions on the sphere and we should
expect the mode-sum to converge exponentially. As is
clear from the plot, despite computing the retarded and
residual fields up to ℓ = 90, a clear exponential behaviour
cannot be observed. This is in contrast to the clean poly-
nomial behaviour at the particle despite a much smaller
range in ℓ shown in the upper plot. Upon investigating
this feature [MC: The two following points seem to refer
only to ψR0 whereas the way we’ve raised this feature two
sentences earlier referred to both “the retarded and resid-
ual fields" - so perhaps add here that the following only
applies to the feature specifically for the residual field?]
more closely, we can remark that: (1) this poor behaviour
worsens the further away the puncture is evaluated from
the particle, with a particularly poor behaviour for r < r0
and for small r0; (2) the order of the puncture strongly
affects this behaviour; for example, when computing the
residual field using a zeroth-order puncture (instead of a
second-order one as is otherwise the case throughout the
rest of this work) at r = r0 − 2M = 8M , the residual
field has a zero crossing at around ℓ ≃ 41, whereas it
does not for a second-order puncture; see again Fig. 6,
where the residual field only crosses through zero around
ℓ ≃ 87. This poor behaviour away from the particle is
expected to be particularly significant for second-order
calculations.

V. CALCULATION OF THE RESIDUAL HERTZ
POTENTIAL

Generically, the Hertz potential Φ is a solution to a
fourth-order linear differential equation, sourced by ei-
ther ψ0 or ψ4. There are in fact four such equations,
which come in pairs called the angular and radial inver-
sion formulae, one pair each for the cases sourced by ψ0

and ψ4. The choice of which formula is used, and which
Weyl scalar one is working with, determines whether the
ensuing reconstructed metric will be in the IRG or out-
going radiation gauge (ORG) [7]. In the present case,
we will work with the radial inversion relation, given in
Eq. (14), in order to reconstruct the metric perturbation
in the IRG from ψ0.

When solving the radial inversion relation, it is conve-
nient to work with the complex conjugate of the Hertz

potential, Φ̄ := Φ⋆. We can decompose Φ and Φ̄ in spin-
weighted spherical harmonics,

Φ =

∞∑

ℓ=2

ℓ∑

m=−ℓ
−2Φℓm(r) Y−2 ℓm (θ, φ)e−imΩφu, (74)

Φ̄ =

∞∑

ℓ=2

ℓ∑

m=−ℓ
2Φ̄ℓm(r) Y2 ℓm (θ, φ)e−imΩφu. (75)

Note Φ̄ has spin weight +2, motivating the notation
2Φ̄ℓm(r), but it is not a solution to the s = +2 Teukol-
sky equation. These expansions are used for the residual
Hertz potential as well as for the no-string vacuum po-
tentials outside the worldtube. The well-known identity

sY
⋆
ℓm = (−1)m+s Y−s ℓ−m (76)

implies that the modes of Φ and Φ̄ are simply related by

2Φ̄ℓm = (−1)m(−2Φl−m)⋆. (77)

(Note that the quantity on the left represents a mode of a
complex-conjugated field, while the quantity on the right
represents the complex conjugate of a mode coefficient.)
The inversion relation (14) is then given by

d4

dr4
2Φ̄

R
ℓm = 22ψ

R
ℓm, (78)

where 2ψ
R
ℓm is the mode coefficient in u slicing.

As explained in Sec. II C, we only directly solve
Eq. (78) inside the worldtube. Outside the worldtube, we
solve the vacuum adjoint Teukolsky equation O†Φ± = 0
for the no-string potentials Φ±. In analogy with 2ψ

±
ℓm,

the modes −2Φ
±
ℓm are proportional to “in” and “up” vac-

uum solutions to the s = −2 radial Teukolsky equation.
As reviewed in Appendix C, the constants of proportion-
ality are determined by imposing Eq. (78).

For non-static modes (in this case, modes where m ̸=
0), the final expressions (see again Sec. II C), in u slicing,
are given by

2Φ̄
ret
ℓm(r) = 2A+

ℓm2C
+
ℓm−2ψ

up
ℓm(r)eimΩφr⋆ , r > rmax,

(79)

2Φ̄
ret
ℓm(r) = 2A−

ℓm2C
−
ℓm−2ψ

in
ℓm(r)eimΩφr⋆ , r < rmin,

(80)

where 2C
±
ℓm are the coefficients in Eq. (62), and

A+
ℓm :=

16ω4

p
, (81)

A−
ℓm :=

1

(w + 4iM)(w2 + 4M2)w
, (82)

p := −2λ
2
ℓm(−2λ

2
ℓm + 2)2 + 144ω2M2, (83)

w := 8ωM2. (84)

Here we have corrected transcription errors that ap-
peared in Eq. (53) of Paper I.
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For static modes, they instead read

2Φ̄
ret
ℓ0 (r) =

2M4

(ℓ− 1)4
2C

+
ℓ0−2ψ

up
ℓ0 (r), r > rmax,

2Φ̄
ret
ℓ0 (r) =

2M4

(ℓ− 1)4
2C

−
ℓ0−2ψ

in
ℓ0 (r), r < rmin.

(85)

Note that the functional form of the above formulae is
sensitive to the choice of normalisation of the basis func-
tions (although the actual numerical values of 2Φ̄

ret
l0 , of

course, are not); see Appendix C for details. To our
knowledge, Eq. (85) appears here for the first time.

Moving now to solving for the Hertz potential inside
the worldtube, we solve the ODE (78) with the fol-
lowing boundary conditions on the worldtube boundary
r = rmin:

lim
r→rmin

+
∂nr 2Φ̄

R
ℓm = ∂nr 2Φ̄

ret
ℓm + [∂nr 2Φ̄

R
ℓm], (86)

for n = 0, 1, 2, 3. In the above, [F ] := (limr→r+min
F (r))−

(limr→r−min
F (r)) denotes the jump of the quantity F (r)

across rmin. In other words, we demand that the jump of
the Hertz potential (and its first three derivatives) across
the worldtube at rmin matches the jump induced by the
puncture.

The jumps [∂nr 2Φ̄
R
ℓm] can be easily computed in terms

of the coefficients of the delta functions in ψR0 . Specifi-
cally, recalling the schematic form of ψR0 in Eq. (48), in
a neighbourhood of r = rmin we have

2ψ
R
ℓm = 2A

o
ℓmδ

′(r − rmin) + 2B
o
ℓmδ(r − rmin), (87)

plus a piecewise smooth function. Note that 2A
o
ℓm and

2B
o
ℓm are constants. By integrating the inversion relation

in a neighbourhood of rmin, we find these δ functions then
imply that

[2Φ̄
R
ℓm] = [Þ2Φ̄

R
ℓm] = 0, (88)

[Þ2
2Φ̄

R
ℓm] = 2 2A

o
ℓm, (89)

[Þ3
2Φ̄

R
ℓm] = 2 2B

o
ℓm, (90)

as given in [46] (with a change in sign convention).
In Fig. 7, we show the large-ℓ behavior of the modes

of the residual Hertz potential, −2Φ
R
ℓm, at the particle,

r0 = 10M . Here, in analogy with Eq. (73), we define the
ℓ modes as

ΦRℓ (r, θ) :=

ℓ∑

m=−ℓ
−2Φ

R
ℓm(r)eimΩφr

⋆

−2Yℓm(θ, 0) (91)

and evaluate at r = r0, θ = π/2. We would naively
expect a power-law behaviour that is dependent on the
order of the puncture, but a clear power law cannot be
identified for ℓmax = 40.

We do not display a corresponding plot for the retarded
field. But we note that, unlike the residual field, the
retarded field exhibits clear power-law convergence at the
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FIG. 7. Large-ℓ behavior of the modes of ΦR at the particle,
r = r0 = 10M , rmin = 8M and rmax = 12M .

particle. More precisely, if the fields Φ± are evaluated at
the particle (as in a traditional no-string solution), then
after summing over the m-modes, the large-ℓ behaviour
of the Hertz potential modes are given by −2Φ

ret
ℓ ∼ ℓ−2.

This contrasts with the sum of the ℓ-modes of ψret0 , which
diverges at the particle like ℓ2; as expected, the Hertz
potential is four orders more regular than the Weyl scalar.

VI. RESIDUAL METRIC PERTURBATION:
HERTZ TERM

From the Hertz potential, most of the residual met-
ric perturbation is reconstructed via Eq. (19). The
reconstructed metric perturbation is in the IRG since
ĥRabℓ

b = 0 = gabĥRab. The only non-trivial components
are

ĥRmm =
(
(S†

0)m̄m̄ΦR
)⋆
, (92)

ĥRnm =
(
(S†

0)nm̄ΦR
)⋆
, (93)

ĥRnn = (S†
0)nnΦ

R +
(
(S†

0)nnΦ
R
)⋆
. (94)

Decomposing the LHS and RHS in spherical harmonics
and u slicing as given in Eqs. (46) and (75), we find the
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modes are explicitly given by

ĥℓmmm =

(
2−2Φ̄

′
ℓm(r)

r
− −2Φ̄

′′
ℓm(r)

)
, (95)

ĥℓmnm = − 1

r2

√
(ℓ− 1)(ℓ+ 2)

2

×
(
−2−2Φ̄ℓm(r) + r−2Φ̄

′
ℓm(r)

)
, (96)

ĥℓmnn = −
√
(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

2r2

×
(
−2Φ̄ℓm(r) + (−1)m−2Φ̄

⋆
ℓ−m(r)

)
, (97)

ĥℓmm̄m̄ = (−1)m
(
ĥℓ−mmm

)⋆
, (98)

ĥℓmnm̄ = (−1)m+1
(
ĥℓ−mnm

)⋆
. (99)

VII. RESIDUAL METRIC PERTURBATION:
CORRECTOR TENSOR

The generic form of the corrector tensor xRab is given in
Eq. (22). In particular, there are only three non-trivial
pieces (one of which is complex): xRnn, xRnm, and xRmm,
along with xRnm := (xRnm)⋆. These three pieces satisfy the
hierarchical system of equations (23)–(25). In the Kin-
nersley tetrad and u slicing coordinates, these equations
become radial ODEs given by

−(∂2r + 2r−1∂r)x
R
mm = TRll , (100)

−
(
1

2
∂2r + r−1∂r − r−2

)
xRnm = TRlm +NxRmm, (101)

(
r−1∂r + r−2

)
xRnn = TRln + UxRmm +Vxnm

+VxRnm, (102)

where the operators N , U , V and V are given in
Eqs. (A35)–(A38).

As usual, one can decompose xRab and TRab into spin-
weighted spherical harmonic and Fourier u-modes,

xRab =

∞∑

ℓ=|s|

ℓ∑

m=−ℓ

xR,ℓmab (r) Ys ℓm (θ, ϕ)e−imΩφu, (103)

TRab =

∞∑

ℓ=|s|

ℓ∑

m=−ℓ

TR,ℓmab (r) Ys ℓm (θ, ϕ)e−imΩφu, (104)

where s is the spin weight of the tetrad component (s = 0
for xRnn, s = 1 for xRnm, etc.). When applied directly
to the radial modes, the operators N , U , V and V are

explicitly given by

N = −
√
(l − s)(l + s+ 1)

2
√
2r

∂

∂r
, (105)

U =
1

2r2

[
−
(
l2 + l − 4imrΩφ − 2

)
+ (106)

(
2imr2Ωφ − 6M + 4r

) ∂

∂r
+ r(r − 2M)

∂2

∂r2

]
, (107)

V =

√
(l − s+ 1)(l + s)

(
3 + r ∂∂r

)

2
√
2r2

, (108)

V = −V. (109)

At the level of the radial modes, the usual property
of the spin-weighted spherical harmonics then implies
that xR,ℓmnm = (−1)m+1

(
xR,ℓ−mnm

)⋆. Furthermore, one can

check explicitly that xR,ℓ−mab = (−1)ℓ
(
xR,ℓmab

)⋆
. Com-

bining both relations, one finds a simple relationship be-
tween the radial modes of xRnm and xRnm, namely

xR,ℓmnm = (−1)ℓ+m+1xR,ℓmnm . (110)

From now on in this section, we will suppress mode in-
dices ℓm for brevity.

The form of the solution for the corrector tensor is
given in Eq. (26). In that solution, we only require the
piece inside the worldtube, denoted xMab , which we obtain
by solving the ODEs (100)-(102) numerically. Recall that
the puncture hPab = hPabΘ

M . Since the effective stress
energy TRab := Tab − Eab(hP ) ∼ ∂2hP , it follows that TRab
contains both δ and δ′ distributions on the worldtube’s
boundaries. This distributional content results in jump
conditions on the corrector tensor across the worldtube.
Since we are only interested in computing the corrector
tensor inside the worldtube, we only need to account for
the distributional content at r = rmin.

Therefore, with the distributional content at r = rmax

ignored, each of the terms appearing on the RHS of (100)-
(102) are of the schematic form,

TRab = (· · · )Θ(r − rmin) + δT−
abδ(r − rmin)

+ ∆T−
abδ

′(r − rmin), (111)

NxRmm = (· · · )Θ(r − rmin) +
1

2
ð−x−mmδ(r − rmin),

(112)

VxRnm = (· · · )Θ(r − rmin) +
1

2
ð′−x−nmδ(r − rmin),

(113)

VxRnm = (· · · )Θ(r − rmin) +
1

2
ð−x−nmδ(r − rmin),

(114)

UxRmm = (· · · )Θ(r − rmin) +
f−

2
x′

−
mmδ(r − rmin)

+

(
imΩφ +

2f−

rmin

)
x−mmδ(r − rmin)

+
f−

2
x−mmδ

′(r − rmin), (115)
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where a prime on xab denotes a radial derivative and a
‘−’ superscript on a quantity indicates evaluation of that
quantity at rmin. In the case of discontinuous quantities,
such as the corrector tensor itself, the superscript denotes
the limit from above, as in

x−ab := lim
r→(rmin)+

xRab = lim
r→(rmin)+

xMab . (116)

In the above, the operators ð and ð′ are to be under-
stood as the operator acting directly at the level of radial
modes, in which case they simply reduce to a multiplica-
tive factor

ð = −
√

(l − s)(l + s+ 1)√
2r

, (117)

ð′
=

√
(l + s)(l − s+ 1)√

2r
. (118)

There are multiple equivalent ways of translating the
δ and δ′ source terms into boundary/jump conditions
for the corrector tensors. One way is to use the explicit
integral solution of the ODE system, given in Eqs. (59)-
(61) of Ref. [46]. Only the distributional content will
contribute in computing xRab (and its first derivative) at
rmin.

Alternatively, one can work with the ODE system it-
self. Returning to the ODE for xRmm, Eq. (100), we re-
quire the corrector tensors to vanish outside the world-
tube r < rmin. The corrector tensor xRab then contains a
Heaviside function at r = rmin. Explicitly writing it out
in Eq. (100) for example, and using the standard identity
F (r)δ′(r− rmin) = F−δ′(r− rmin)−∂rF−δ(r− rmin), we
find the left-hand side reads,

(· · · )Θ(r − rmin)−
2

r

(
xMmm + r∂rx

M
mm

)
δ(r − rmin)

− xMmmδ
′(r − rmin) (119)

= (· · · )Θ(r − rmin)−
(

2

rmin
x−mm + x′

−
mm

)
δ(r − rmin)

− x−mmδ
′(r − rmin). (120)

Equating the coefficients in front of δ(r−rmin) and δ′(r−
rmin) in this expression to the corresponding coefficients
in Eq. (111) gives

x−mm = −∆T−
ll , (121)

x′
−
mm =

2

rmin
∆T−

ll − δT−
ll . (122)

We can then proceed in a similar fashion for the
jump conditions of xRnm and xRnn. The left-hand side of

Eq. (101) reads,

(· · · )Θ(r − rmin)−
(
xMnm
r

+ ∂rx
M
nm

)
δ(r − rmin)

− 1

2
xMnmδ

′(r − rmin) (123)

= (· · · )Θ(r − rmin)−
(
x−nm
rmin

+
1

2
x′

−
nm

)
δ(r − rmin)

− 1

2
x−nmδ

′(r − rmin). (124)

The right-hand side is

TRlm +Nxmm = (· · · )Θ(r − rmin)

+

(
δT−

lm +
1

2
ð−x−mm

)
δ(r − rmin)

+ ∆T−
lmδ

′(r − rmin). (125)

Equating the δ and δ′ on both sides gives

x−nm = −2∆T−
lm, (126)

x′
−
nm = −ð−x−mm +

4

rmin
∆T−

lm − 2δT−
lm. (127)

Finally, turning our attention to (102), the left-hand
side is simply

(· · · )Θ(r − rmin) +
x−nn
rmin

δ(r − rmin). (128)

The right-hand side reads

(· · · )Θ(r − rmin)+{
δT−

ln +

(
imΩφ +

2f−

rmin

)
x−mm +

f−

2
x′

−
mm

+

√
ℓ(ℓ+ 1)

2
√
2rmin

(x−nm − x−nm)

}
δ(r − rmin)

+

(
∆T−

ln +
f−

2
x−mm

)
δ′(r − rmin). (129)

Equating both sides, one can check that the coefficient in
front of δ′(r − rmin) vanishes, ∆T−

ln + f−

2 x
−
mm = 0, and

we are left with

x−nn = rmin

[
δT−

ln +

(
imΩφ +

2f−

rmin

)
x−mm

+
f−

2
x′

−
mm +

√
ℓ(ℓ+ 1)

2
√
2rmin

(x−nm − x−nm)

]
. (130)

The cancellation of the δ′ term in the last equation was
previously alluded to in Sec. II E. It occurs because x−mm̄
can be expressed in terms of Tll using Eq. (121). The
would-be δ′ is then given by ∆T−

ln − f−

2 ∆T−
ll . These two

terms cancel because the δ′ in TRll arises from ∂r∂rh
P
mm̄

while the δ′ in TRln arises from f
2∂r∂rh

P
mm̄; these are the

only terms in TRll and TRln involving two radial derivatives.
The same cancellation is responsible for all components
of xR,ℓmab being Cn+2 rather than Cn+1 at the particle, as
also alluded to in Sec. II E.
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VIII. GAUGE CORRECTION AND
COMPLETION OF THE METRIC

PERTURBATION

There are two final ingredients in the metric pertur-
bation (30): the perturbation ġab toward another Kerr
solution, which appears for r > rmax, and the gauge per-
turbation −LΞgab, which appears for r < rmax.

In the traditional no-string reconstruction procedure,
ġab appears instead for all r > r0, and −LΞgab appears for
all r < r0. Finding these two contributions was referred
to as the completion problem [11, 35, 65], referencing the
fact that the CCK reconstructed metric perturbation was
incomplete. In the Schwarzschild case, the CCK recon-
structed (retarded) metric only corresponds to the ℓ > 1
tensor spherical-harmonic modes of the solution to the
linearized Einstein equations with point-particle source,
and the completion problem reduced to solving the ℓ = 0
and ℓ = 1 pieces of the Einstein equations.

Our main conclusion in this section is that ġab and the
gauge vector Ξa in the GHZ puncture scheme are identi-
cal to their values in the traditional no-string retarded-
field solution. This should be intuitively reasonable be-
cause we expect our solution outside the worldtube to be
identical to the traditional no-string solution.

We begin with the perturbation ġab. As shown in Pa-
per I (extending Ref. [11]), ġab can be written simply
in terms of the total mass and angular momentum con-
tained within (and on the boundaries of) the worldtube.
The nontrivial components are

ġnn =
2

r
Ṁ, (131)

ġnm = −i
√
2

r2
J̇ sin θ, (132)

with9

Ṁ =
1

8π

∫

Σt

TRabt
adΣb, (133)

J̇ = − 1

8π

∫

Σt

TRabφ
adΣb, (134)

where Σt is a hypersurface of constant t, dΣb =
f−1tbr2 sin θ dr dθ dφ is the future-directed surface ele-
ment on the hypersurface, and ta and φa are the time-
like and axial Killing vectors. In the case of a point-
particle source Tab (rather than the extended, effective
source TRab), the integrals evaluate to the specific orbital

9 Here we correct the expressions in Paper I by a factor −1/(8π).
The minus sign arises because we use a future-directed surface el-
ement; the common convention [66], deriving the surface element
from the restriction of the 4D Levi-Civita tensor, instead has a
future-directed unit normal and a past-directed surface element.

energy E0 and angular momentum L0,

Ṁ = E0 := −gabuatb =
1− 2M

r0√
1− 3M

r0

, (135)

J̇ = L0 := gabu
aφb =

√
Mr0

1− 3M
r0

. (136)

As argued in Paper I, these values also remain unchanged
in our puncture scheme because the puncture’s contri-
bution to TRab contributes nothing to the integrals (133)
and (134). The puncture’s contribution vanishes because
Stokes’ theorem can be used to express

∫
Σt

Eab(hP )tadΣb
as an integral over the 2D boundary of Σt; since hPab
vanishes outside the worldtube, the boundary integral
likewise vanishes.

We now turn to the gauge perturbation −LΞgab, which
is generated by the linear-in-time vector Ξa. Tradition-
ally, in a no-string reconstruction, this perturbation can
be understood to enforce continuity conditions on the
stationary axially symmetric piece of the metric pertur-
bation, thereby ensuring that the coordinate frequency
Ωφ has the same meaning inside and outside the orbit.
This is crucial for obtaining the correct values of quasi-
invariant quantities such as the Detweiler redshift [67].
As shown in Paper I, it also serves to prevent Dirac delta
distributions whose coefficient grows linearly with time.

Following Paper I, we write Ξa as10

Ξa = −u (αta + βφa) , (137)

where α and β are constants given by the (ℓ,m) = (0, 0)
and (ℓ,m) = (1, 0) modes of the Held quantities ao and
co,

α =
⟨ao00⟩√
4π

, (138)

β = −i
√

3

4π
⟨co10⟩ , (139)

where

⟨F ⟩ := lim
T→∞

1

2T

∫ T

−T
Fdu (140)

is an infinite time average; in our case, this average sim-
ply eliminates m ̸= 0 modes. In the above, the Held

10 Our expression differs from Paper I by an overall sign to account
for the change in metric signature.
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scalars ao and co are given by the following integrals:

ao = −1

2

∫ ρ+max

ρ−min

dρ2

∫ ρ2

ρ−min

dρ1
TRll
ρ41

+
ρmax

2

∫ ρ+max

ρ−min

dρ1
TRll
ρ41
, (141)

bo = −1

2

∫ ρ+max

ρ−min

dρ1
TRll
ρ41
, (142)

co =
1

3

[
ρmaxð+bo + 2

∫ ρ+max

ρ−min

dρ

ρ2
(
TRlm +NxRmm̄

)
]
,

(143)

where ρ = −1/r. The superscript ± over ρmin and
ρmax indicate that the support of the δ functions are in-
cluded in the integration domain; so the integrals run
from ρ−min = ρmin − 0+ to ρ+max = ρmax + 0−. ð+ sim-
ply equals, at the level of modes, to Eq. (117) evaluated
at rmax. We refer to Paper I for the derivation of these
results in a mostly negative signature.

One observes that these integrals are very similar to the
integral form of the corrector tensors; see Eq. (59-61) in
Paper I for these expressions in a mostly negative signa-
ture. For example, the first integral in the expression of
ao precisely equals that of −xRmm̄. The only notable dif-
ference is that the integrals for the scalars ao, bo and co

include the distributional contribution at rmax, whereas
the integrals for the corrector tensor do not (while they
do contain the distributional contributions at rmin via its
boundary conditions). Therefore, the first integral in the
expression of ao is simply the quantity −xRmm̄ evaluated
at the worldtube boundary r = rmax, plus the distribu-
tional contribution at rmax. In other words, we can write

∫ ρ+max

ρ−min

dρ2

∫ ρ2

ρ−min

dρ1
TRll
ρ41

=

∫ ρ−max

ρ−min

dρ2

∫ ρ2

ρ−min

dρ1
TRll
ρ41

+

∫ ρ+max

ρ−min

dρ2

∫ ρ2

ρ−min

dρ1
TRll
ρ41
,

(144)
= −xmm̄(rmax)

+

∫ ρ+max

ρ−max

dρ2

∫ ρ2

ρ−min

dρ1
TRll
ρ41

(145)

and similarly for bo and co.

The remaining integrals from ρ−max to ρ+max can be eas-
ily evaluated exactly since only the δ and δ′ terms in
TRll at r = rmax will contribute (which were ignored in
Eq. (111)). Denoting δT+

ab and ∆T+
ab as the coefficients

of δ(r− rmax) and δ′(r− rmax) of TRab respectively, and a
+ superscript indicates evaluation at r = rmax, the final

expressions for the Held scalars ao, bo and co are

ao = −1

2

[
−xMmm̄(rmax) + a1

]

+
ρmax

2

[
−r2max∂rx

M
mm̄(rmax) + a2

]
, (146)

bo = −1

2

[
−r2max∂rx

M
mm̄(rmax) + a2

]
, (147)

co = − 1

3rmax
ð+bo +

1

3

[
−∂rxMnm(rmax)

− 2

rmax
xMnm(rmax) + 2c1

]
. (148)

where

a1 := ∆T+
ll , (149)

a2 := rmax(rmaxδT
+
ll − 2∆T+

ll ), (150)

c1 := δT+
lm +

√
ℓ(ℓ+ 1)xMmm̄(rmax)

2
√
2

. (151)

We find by inspection that ⟨bo10⟩ = 0 because the cor-
responding ℓm mode of the stress energy vanishes. Fur-
thermore, the constants α and β are independent of the
worldtube size. In particular, we find numerically that
their values are the same as those computed from a point-
particle stress-energy [38],

α = − 1

r0

√
1− 3M

r0

, β = − 2Ωφ

r0

√
1− 3M

r0

. (152)

IX. ANALYSIS OF THE RESIDUAL FIELD:
DETWEILER REDSHIFT AND SOFTENED

STRING

A strong consistency check of the GHZ procedure is to
recover the known value of the Detweiler redshift. In the
first subsection below, we will first calculate the redshift
via the CCK reconstruction, before moving to the results
using the GHZ infrastructure in the next subsection. In
the following, for a tensor Fab, we will define Fuu :=
uaubFab as the contraction with the 4-velocity ua, with
the understanding that this quantity is to be evaluated
in the limit to the particle. In particular, we will identify
the redshift with the quantity huu.

A. Traditional method: mode-sum regularization
in the no-string gauge

Perhaps the most straightforward way to compute the
redshift at the particle is the following:

1. First, compute the retarded no-string reconstructed
metric perturbation, ĥretab = 2Re

(
(S†

0)abΦ
ret

)
.

2. Subtract the puncture from the retarded field,
ĥretab −hPab. Note that, while ĥretab is in the (ingoing)
radiation gauge, the puncture is in Lorenz gauge.
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3. Complete the metric reconstruction by adding the
ℓ = 0, 1 modes. These correspond to +ġab to the
right of the particle, r > r0, and −LΞgab to the left
of the particle r < r0; see again Fig. 1.

hR,Nab = ĥretab − hPab − LΞgabΘ(r0 − r)

+ ġabΘ(r − r0). (153)

Here the N indicates that this residual field is in
the traditional no-string radiation gauge [34]. It
is therefore related to ours by a gauge transforma-
tion [38].

4. Contract this quantity with the four-velocity and
evaluate at the particle.

Note that, since the retarded Hertz potential has been
computed separately to the left and right of the parti-
cle following the no-string gauge prescription, it is not
continuous across the particle, and thus neither is the re-
sulting reconstructed metric, ĥretab . Making it continuous
across the particle would require the introduction of the
shadow field ΦS .

We have two different formulae for the redshift, de-
pending on whether one wishes to take the limit to the
particle from “the left” or “the right”:

hRuu =

∞∑

ℓ=0

(
ĥret,ℓuu − hP,ℓuu

)
− LΞguu, r → r−0 , (154)

hRuu =

∞∑

ℓ=0

(
ĥret,ℓuu − hP,ℓuu

)
+ ġuu, r → r+0 . (155)

We refer to the redshift calculated in this manner as
hCCK
uu . In these expressions, the sum is defined in analogy

with Eq. (73):

∞∑

ℓ=0

(
ĥret,ℓuu − hP,ℓuu

)

=

∞∑

ℓ=|s|

ℓ∑

m=−ℓ

(
ĥret,ℓmab − hP,ℓmab

)
uaub

× eimΩφr⋆
sYℓm(π/2, 0), (156)

where s is the spin weight of each tetrad component hab
(s = 0 for hnn, s = 1 for hnm, etc.). Since ĥretab is
obtained from a CCK metric reconstruction procedure,
its ℓ = 0 and 1 modes vanish, while the Lorenz-gauge
hP,ℓmab includes these low modes. Since the redshift is a
gauge-invariant quantity, it turns out that both formulae
are equivalent. In fact, one can check analytically that
LΞguu = −ġuu.

In practice, the ℓ-modes of the reconstructed metric are
computed to some finite ℓ = ℓmax. Since the ℓ-mode con-
tributions to the redshift scale according to some power
law, the contributions beyond ℓ > ℓmax can be approxi-
mately accounted for by fitting for this power-law tail.

To benchmark our results, we checked that our calcu-
lation of hCCK

uu agrees with the known values [68] within
a relative error ∼ 10−8.

r0 hGHZ
uu hCCK

uu |hGHZ
uu /hCCK

uu −1|

8 −0.2809995(3) −0.2809995(6) ∼ 1× 10−7

9 −0.2439048(6) −0.2439048(4) ∼ 1× 10−7

10 −0.2160628(2) −0.2160628(8) ∼ 3× 10−7

12 −0.1765575(0) −0.1765575(8) ∼ 5× 10−7

50 −0.0404192(5) −0.0404192(9) ∼ 1× 10−6

TABLE II. Comparison between the redshift hGHZ
uu as calcu-

lated from our GHZ puncture scheme and as calculated from
traditional no-string CCK reconstruction and completion for
different orbital radii r0/M . In each case, the ℓ-modes of
hGHZ
uu were computed up to ℓmax = 40 and the contribution

of higher modes was included using a power-law fit.

B. GHZ puncture scheme results and comparison

In the GHZ puncture scheme, the final residual field
is given by Eq. (30). In particular, only three quantities
enter the calculation of the redshift:

hRuu = uaub
(
ĥMab + xMab − LΞgab

)
|r=r0 . (157)

We refer to the redshift calculated in this manner as
hGHZ
uu .
We again use a power-law tail fit to account for the

contribution of large-ℓ modes. Concretely, we numeri-
cally compute contributions up to ℓmax = 40 and use a
power-law fit for the contributions with ℓ > ℓmax.

In Fig. 8, we plot the individual ℓ-modes of both hCCK
uu

and hGHZ
uu for r0/M = 10 and worldtube size rmin = 8M ,

rmax = 12M . We find good agreement for both methods
mode by mode. Table II compares hGHZ

uu to hCCK
uu for

a range of r0/M , again showing good agreement. The
listed values include a power-law tail fit in all instances;
typically, this improves the relative error by a factor ∼
10−2.

Finally, we also verified that, within numerical errors,
hGHZ
uu does not depend on the worldtube size, although

its individual contributions ĥMuu and xMab do.

C. Softened string singularity

In the typical no-string CCK reconstruction, the recon-
structed metric is highly singular at the particle’s orbital
radius, possessing both a jump discontinuity and a delta
function there. Alternatively, in a half-string reconstruc-
tion (as would be obtained by the GHZ scheme without
a puncture [46]), there is a strong singularity emanating
along null rays from the particle to infinity or from the
particle to the horizon.

By using a puncture scheme, we soften this singular
behavior. In particular the residual reconstructed met-
ric perturbation is Cn at the particle (in four dimensions;
Cn+2 at the level of modes). Nonetheless, there is a resid-
ual, softened string singularity that is confined inside the
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FIG. 8. ℓ-mode contributions of the Detweiler redshift at r0 = 10M , computed either using the traditional CCK (blue squares),
or the new GHZ (red crosses) method. Inset: absolute difference between the two methods.

worldtube, in the region r0 < r < rmax. Specifically, the
presence of this softened string is due to the fact that that
effective stress-energy tensor TRab is Cn−2 at the particle,
as is ψR0 . In the GHZ reconstruction, these functions
are integrated along integral curves of la to obtain the
Hertz potential ΦR and the corrector tensors xRab. As a
result, the singularity at s0 = 0 is propagated along la.
In general, the integration increases the singularity’s di-
mension by one but reduces its strength by one as well.
Consequently, the corrector tensors, the Hertz potential,
and, by extension, the reconstructed metric emerge as Ck
functions of coordinates along this string. The value of k
is contingent upon the field under consideration and is de-
termined by the order of the puncture. Paper I estimated
that hRab is at worst Cn−3 but also observed this is overly
pessimistic in known cases. The strength of the string
singularity in the retarded half-string solution is ∼ 1/ϱ2

(i.e., C−3), where ϱ is the distance from the string [34].
If the singularity is weakened by one order with each ad-
ditional order of the puncture, we can expect hRab to be
Cn−1 at the string for an nth-order puncture. This would
suggest hRab should be C1 for our n = 2 puncture, with
the local behavior ∼ ϱ2 ln ϱ.

We can numerically investigate the degree of regularity
of our reconstructed metric hRab by integrating it over the
2-sphere, S2, with radius r0 < rs < rmax. Specifically,
we consider the L2-norm,

||hRab||L2(r) :=

∫

S2

|hRab|2 sin θdθdϕ

=
∑

ℓ≥|s|

ℓ∑

m=−ℓ

|hR,ℓmab (r)|2, (158)

where the last equality follows from the orthonormality of
the (spin-weighted) spherical harmonics. Standard meth-

ods [69] show that if hRab has the expected string singu-
larity ∼ ϱ2 ln ϱ, then

ℓ∑

m=−ℓ

|hR,ℓmab (r)|2 ≤ C(r)
(2ℓ+ 1)

[ℓ(ℓ+ 1)]2
∼ ℓ−3 (159)

for some ℓ-independent C(r).
In Fig. 9, we show the ℓ-mode contributions of

||hRnn||L2(rs), for rs := (r0 + rmax)/2. Other tetrad com-
ponents show qualitatively the same behaviour. We find,
surprisingly, an exponential decay with ℓ, instead of a
polynomial behaviour as one would have expected. The
appearance of an exponential behaviour itself is expected,
since the reconstructed metric contains smooth pieces,
but one would expect these pieces to be subdominant
compared to the Ck pieces which only decay algebraically
with ℓ. As shown in Fig. 9, we do not find any hint of
polynomial behaviour up to ℓ = 40, suggesting that the
amplitude of the softened string is rather small. Quan-
titatively, if our estimate (159) is correct, our numerical
results suggest C(rs) ≲ 0.00023. If this turns out to be a
general feature of the GHZ reconstruction, the presence
of the softened string may not be an important consider-
ation for accurate second-order calculations.

X. CONCLUSION

We have presented the first implementation of Pa-
per I’s GHZ-Teukolsky puncture scheme in an astro-
physically relevant scenario, going beyond Paper I’s
simple proof-of-concept implementation in flat space-
time. Our calculations, for a particle in circular or-
bit in Schwarzschild spacetime, also mark the first con-
crete use of GHZ reconstruction for a nontrivial physi-
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FIG. 9. ℓ-mode contributions to the L2 norm of hR
nn on

the 2-sphere S2 centered at radius rs = (r0 + rmax)/2, with
r0 = 10M and rmax = 12M . Away from the particle, hR

nn

can be written as a sum of smooth and Ck pieces (the soft-
ened string), which are expected to converge exponentially
and polynomially with ℓ, respectively. At least up to ℓ = 40,
we only observe exponential behaviour, suggesting that the
magnitude of the softened string is small.

cal system. As a crucial test of our implementation, we
have recovered the known values of the Detweiler red-
shift [67, 68], for different values of the orbital radius
r0/M , and checked that these values are independent of
the worldtube size.

The ingredient in the GHZ reconstruction that extends
the CCK-Ori reconstruction is the inclusion of a corrector
tensor. This tensor obeys a simple set of semi-decoupled
first- and second-order ODEs that can be solved very
efficiently. The most time-consuming aspect of our im-
plementation is numerically computing the exact mode
decomposition of the puncture, and to a lesser extent,
computing the solutions to the Teukolsky equation.

The initial aim of Paper I’s scheme was to compute the
first-order metric perturbation in a sufficiently regular
gauge as input for second-order calculations. The resid-
ual first-order metric perturbation we obtain is smooth
everywhere, except at the particle and on a string from
the particle to r = rmax, where the regularity of the first-
order metric perturbation depends on the order of the
puncture. This finite differentiability leads to polyno-
mial, rather than exponential, decay of mode coefficients.
However, for the highest-order punctures in the litera-
ture, such as the one we use here, this effect of the field’s
non-smoothness is mild; at the string, it is numerically
undetectable up to ℓ = 40.

Our particular implementation of the puncture scheme
also gives rise to another type of singularity: jump dis-
continuities and delta functions at the worldtube bound-
aries. These occur for two reasons. First, our use of a box
window function in our puncture causes a gauge discon-
tinuity because the retarded field outside the worldtube
is in a radiation gauge while the retarded field hRab + hPab

inside the worldtube is in a mixed gauge (with hRab in
an IRG and hPab in the Lorenz gauge). Second, our
use of a discontinuous gauge transformation to elimi-
nate the “shadow field” outside the worldtube leads to
both discontinuities and delta functions at r = rmax; see
Eq. (30). All of these features can be eliminated by re-
placing Heaviside functions with smooth window func-
tions that smoothly taper the puncture and the gauge
vector to zero.

However, such tapering is likely not needed in the case
of the delta function (and jump) created by the discon-
tinuous gauge vector (29). Even though the distributions
at first order will formally lead to ill-defined products
of distributions in the quadratic source term at second
order, one can sidestep that problem by directly deriv-
ing jump conditions for the second-order fields across the
worldtube boundaries. In a smooth gauge, there is no
jump in the retarded field across the boundary. Un-
der a gauge transformation generated by the vector field
ξaS , the second-order metric perturbation changes by an
amount ∆h

(2)
ab = 1

2L2
ξS
gab − LξSh(1)ab [7], where we have

added superscript labels to indicate the perturbative or-
der of the fields, and where h(1)ab is in the gauge contain-
ing the shadow field. Combining these facts, we find that
the jump caused by the discontinuous gauge vector (29)
is simply

[
h
(2)
ab

]
= ∆h

(2)
ab

∣∣
rmax

. Note that computing this
jump is only possible because ξaS is known explicitly [46].

Our results therefore demonstrate that the GHZ punc-
ture scheme is a viable path toward second-order second-
order self-force calculations in Kerr spacetime. In the
remainder of this section, we compare it to several alter-
natives.

A. Roads to second-order self-force in Kerr

As mentioned in the Introduction, there are now sev-
eral possible avenues to second-order self-force calcula-
tions in a Kerr background:

1. Traditional no-string CCK reconstruction and com-
pletion equipped with suitable regularization.

2. The GHZ puncture scheme demonstrated here.

3. A Lorenz-gauge metric reconstruction procedure
following Dolan et al. [41, 42].

4. Directly solving the coupled Lorenz-gauge Einstein
equations in an m-mode decomposition, following
Osburn and Nishimura [26].

All of these are methods of obtaining first-order solutions
that are sufficiently regular to use as input at second
order. There are then also several options for solving
the second-order field equations, whether starting from
Teukolsky equations [70] or directly solving the second-
order Einstein equations.
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The no-string option would likely be the simplest, as
it mostly reduces to solving two vacuum Teukolsky equa-
tions (for the Weyl scalar and the Hertz potential). Since
the no-string retarded metric perturbation contains jump
discontinuities and delta functions, one would have to ap-
propriately regularize it if using it within a second-order
quadratic source. As we have pointed out regarding delta
functions at our worldtube boundary, this is not neces-
sarily an intractable obstacle. However, little work has
been done to this end.

The GHZ puncture scheme is perhaps the second sim-
plest option, since it only adds a small number of simple
radial ODEs. However, its significant downside, relative
to the alternatives, is that it requires the exact mode
decomposition of the puncture. At least as of this writ-
ing, this means numerically integrating the puncture over
spheres of constant r on a grid of r values within the
worldtube. This procedure contrasts with earlier punc-
ture schemes in which the puncture modes are obtained
analytically as an expansion in powers of r − r0. As dis-
cussed in Paper I, such expansions introduce divergences
at large ℓ at all points away from the particle. Since
the residual and puncture fields of the first-order metric
perturbation are in different gauges, their ℓ-mode-sum
divergences do not readily cancel each other in the total,
retarded field (as they would in a Lorenz-gauge puncture
scheme). An exact mode decomposition of the puncture
circumvents this by never introducing spurious large-ℓ di-
vergences in the first place, but it is substantially more
expensive than other steps in the calculation. Currently,
this exact mode decomposition is also the only missing
ingredient for implementing the GHZ puncture scheme
in Kerr; all other tools for such a calculation are ready
at hand.

However, this drawback of the GHZ puncture scheme
might ultimately be immaterial. The only extant method
of computing the second-order quadratic source requires
the exact puncture modes in any case [58]. In that sense,
the exact mode decomposition does not represent an ad-
ditional cost for the GHZ puncture scheme.

The Lorenz-gauge reconstruction method of Dolan
et al. is moderately more complicated than the GHZ
scheme, in that it requires solving several additional
Teukolsky equations, one of which has a noncompact
source. To date, it has also been more limited than the
GHZ procedure because it has been restricted to vacuum
reconstruction; although it has been applied to point-
particle sources on circular orbits in Kerr [42], several
key steps in the calculation assumed vacuum away from
the particle’s worldline. However, this restriction is not
fundamental, and an extension to generic sources should
soon be available [43, 44]. Even without such an exten-
sion, the existing results for the first-order metric per-
turbation for circular orbits could serve as an immediate
starting point for second-order calculations in Kerr.

Directly solving the Lorenz-gauge Einstein equations
in an m-mode puncture scheme, as proposed by Osburn
and Nishimura, is numerically the most complicated op-

tion but conceptually the simplest. This approach avoids
a full ℓm mode decomposition because the Lorenz-gauge
Einstein equations are not separable in such a decomposi-
tion. Instead, one solves coupled two-dimensional elliptic
PDEs in r and θ for the metric perturbation components.
As of this writing, work with this method has nearly
completed the calculation of the first-order Lorenz-gauge
metric perturbation for circular orbits in Kerr [71], com-
plementing the ℓm-mode results of Dolan et al.

An m-mode scheme is generally more expensive than a
full separation of variables because it involves PDEs in-
stead of ODEs. However, we note that both the GHZ and
Lorenz-gauge reconstruction schemes might actually ben-
efit from an m-mode implementation. One recurring dif-
ficulty when working in ℓmmodes is the poor convergence
of the ℓ-mode sum close to the particle, which leads to
major challenges when constructing the quadratic source
at second order [58]. While slow convergence might be
partly alleviated using a puncture scheme with a high-
order puncture [72, 73], we find that some residual quan-
tities do not exhibit a “clean” power-law convergence, as
shown in Fig. 7. This prevents us from extrapolating
higher mode numbers by fitting, which in turn impacts
the final accuracy of the model. All of these poor con-
vergence properties might be at least partially bypassed
by an m-mode scheme [73].

B. Further applications

As was also mentioned in the Introduction (and in Pa-
per I), a Teukolsky puncture scheme could have addi-
tional benefits beyond yielding sufficiently regular fields
for second-order calculations. This is true regardless of
whether one uses GHZ or Lorenz-gauge reconstruction.
One such benefit is more rapid convergence of numeri-
cal approximations. In the case of eccentric orbits, this
could resolve Gibbs phenomena simply by working with
smoother fields. The standard method of overcoming
Gibbs phenomena has been the method of extended ho-
mogeneous solutions, but that method becomes increas-
ingly expensive for more eccentric orbits due to large can-
cellations (of more than 30 digits in some cases [74]). A
puncture scheme could be a fruitful alternative.

The emergence of non-vacuum reconstruction meth-
ods also opens up the possibility of obtaining second-
order metric perturbations from solutions to the second-
order Teukolsky equation [45, 70]. While it is likely that
only the second-order Weyl scalar is needed for first-post-
adiabatic waveform generation [70], the complete metric
perturbation would be needed to calculate second-order
conservative effects, which enter the waveform at second
post-adiabatic order. The GHZ puncture scheme repre-
sents a viable method for that purpose. Although the
GHZ reconstruction was originally derived for bounded
sources, it necessarily yields a particular solution even
for unbounded ones, such as the quadratic source at sec-
ond order.
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In fact, formally, little changes in the GHZ procedure
at second order. The GHZ procedure divides into three
steps: (1) solving the Teukolsky equation for a Weyl
scalar, (2) solving an inversion relation for the Hertz po-
tential and applying derivatives to obtain a reconstructed
metric perturbation, and (3) completing the metric per-
turbation by solving radial ODEs for the corrector tensor.
Each of these steps can be carried out at second order.
However, in practice, the puncture scheme from Paper I
relies on having vacuum regions outside the worldtube,
which allows easy use of ready-at-hand vacuum solutions,
easy algebraic inversion to obtain the Hertz potential,
and easy removal of the shadow field. At second order,
one would instead have to directly solve inhomogeneous
equations over the whole spacetime at each step. The
major challenge then lies in dealing with the unbounded
second-order source. In the Lorenz gauge, this noncom-
pact source leads to infrared divergences, in turn neces-
sitating alternative formulations of the small-mass-ratio
expansion near the horizon and future null infinity [75].
Such problems could be exacerbated in a GHZ solution in
the IRG, which is not an asymptotically flat gauge even
at first order. However, as recently outlined by Spiers
et al. [70], problems in the infrared might be entirely
bypassed by transforming to a well-behaved Bondi-type
gauge at first order before proceeding to second order.
The resulting asymptotically well-behaved second-order
source would then also enable use of compactified hyper-
boloidal slices at second order, substantially alleviating
the expense of solving the inhomogeneous second-order
equations with noncompact sources [76–78].
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Appendix A: GHP formalism

In the GHP formalism, each quantity has a well-defined
type {p, q} which expresses how the quantity transforms
under spin and boost transformation. The group of such
transformations is isomorphic to multiplication by a com-
plex number λ, and an object f of type {p, q} transforms
as f → λpλ̄qf . We will use the notation f

o
= {p, q}.

Only objects of the same type can be added together,
which provides a useful consistency check on any equa-
tions. Note that the product of an object of type {p1, q1}
with an object of type {p2, q2} produces an object of type
{p1 + p2, q1 + q2}.

As part of the GHP formalism, as in the Newman-
Penrose formalism, one adopts a double-null tetrad basis
of the form (la, na,ma, m̄a). The vectors are normalised
such that

lana = −1, mam̄a = 1, (A1)

and all other product combinations are zero. The metric
in this basis therefore reads

gab = −2l(anb) + 2m(am̄b). (A2)

We remark here that the above choice of normalisation
corresponds to mostly positive signature for the back-
ground metric gab. The tetrad legs have the following
GHP type:

l
o
= {1, 1}, n

o
= {−1,−1}, (A3)

m
o
= {1,−1}, m̄

o
= {−1, 1}. (A4)

All other GHP objects’ type can be deduced by counting
the factors of the tetrad vectors in their definition. In
particular,

hll
o
= {2, 2}, hln o

= {0, 0}, hlm o
= {2, 0}, hlm̄ o

= {0, 2},
(A5)

hnn
o
= {−2,−2}, hnm o

= {0,−2}, hnm̄ o
= {−2, 0},

(A6)

hmm
o
= {2,−2}, hmm̄ o

= {0, 0}, hm̄m̄ o
= {−2, 2}.

(A7)

From the tetrad vectors (la, na,ma, m̄a), one can next
introduce the spin coefficients, defined to be the 12 direc-
tional derivatives of the tetrad vectors. Of these, eight
have a well-defined GHP type, and are given by

κ = −lµmν∇µlν
o
= {3, 1}, (A8)

κ′ = −nµm̄ν∇µnν
o
= {−3,−1}, (A9)

σ = −mµmν∇µlν
o
= {3,−1}, (A10)

σ′ = −m̄µm̄ν∇µnν
o
= {−3, 1}, (A11)

ρ = −m̄µmν∇µlν
o
= {1, 1}, (A12)

ρ′ = −mµm̄ν∇µnν
o
= {−1,−1}, (A13)

τ = −nµmν∇µlν
o
= {1,−1}, (A14)

τ ′ = −lµm̄ν∇µnν
o
= {−1, 1}. (A15)

The remaining four spin coefficients do not have a well-
defined GHP type by themselves, but instead appear in
the definition of four GHP derivative operators. When
acting on an object of GHP type {p, q}, they are given
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by

Þ = lµ∇µ − pϵ− qϵ̄
o
= {1, 1}, (A16)

Þ′
= nµ∇µ + pϵ′ + qϵ̄′

o
= {−1,−1}, (A17)

ð = mµ∇µ − pβ + qβ̄′ o
= {1,−1}, (A18)

ð′ = m̄µ∇µ + pβ′ − qβ̄
o
= {−1, 1}, (A19)

where

β =
1

2
(mµm̄ν∇µmν −mµnν∇µlν) , (A20)

β′ =
1

2
(m̄µmν∇µm̄ν − m̄µlν∇µnν) , (A21)

ϵ =
1

2
(lµm̄ν∇µmν − lµnν∇µlν) , (A22)

ϵ′ =
1

2
(nµmν∇µm̄ν − nµlν∇µnν) . (A23)

The definition of the (linearized) Weyl scalars ψ0 and
ψ4 can be found for example in Eq. (54) of Ref. [7], which
uses a mostly positive convention:

ψ0 := Cabcdl
amblcmd = T ab

0 hab, (A24)

ψ4 := Cabcdn
am̄bncm̄d = T ab

4 hab, (A25)

where Cabcd is the linearized Weyl tensor. In a mostly
negative sign convention, such as in [46], an additional
minus sign is added to the above definition to ensure that
the resulting Teukolsky equations are independent of sign
convention. The operators T ab

0 and T ab
4 are explicitly

given by

T ab
0 hab = −1

2

{
ð2hll + (Þ− ρ)(Þ− ρ)hmm

− [(Þ− ρ)ð+ ð(Þ− 2ρ)]hlm} , (A26)

T ab
4 hab = −1

2

{
ð′2hnn + (Þ′ − ρ′)(Þ′ − ρ′)hm̄m̄

−
[
(Þ′ − ρ′)ð′ + ð′(Þ′ − 2ρ′)

]
hnm̄

}
. (A27)

The source operators Sab0 and Sab4 in the Teukolsky
equations, (37)-(38), are given by

Sab0 Tab := ð
[
(Þ− 2ρ)Tlm − ðTll

]
(A28)

+ (Þ− 5ρ)
[
ðTlm − (Þ− ρ)Tmm

]
,

Sab4 Tab := ð′
[
(Þ′ − 2ρ′)Tnm̄ − ð′Tnn

]

+ (Þ′ − 5ρ′)
[
ð′Tnm̄ − (Þ′ − ρ′)Tm̄m̄

]
. (A29)

Their adjoints are also important as they directly appear
when reconstructing the metric perturbation from the
Hertz potential, (19). The adjoints are

(S†
0)ab = −lalbð2 −mamb(Þ− ρ)(Þ+ 3ρ)

+ l(amb)[Þð− ð(Þ+ 3ρ)], (A30)

(S†
4)ab = −nanbð′2 − m̄am̄b(Þ′ − ρ′)(Þ′

+ 3ρ′)

+ n(am̄b)[Þ′ð′ − ð′(Þ′
+ 3ρ′)]. (A31)

The operators on the left-hand sides of the Teukolsky
equation are

O := 2
(
(Þ− 4ρ− ρ̄)(Þ′ − ρ′)− ðð′ − 3ψ2

)
, (A32)

O′ = 2
(
(Þ′ − 4ρ′ − ρ̄′)(Þ− ρ)− ð′ð− 3ψ2

)
, (A33)

where, in the Kinnerlsey tetrad, ψ2 = Mρ3. We also
require the adjoint of O, which is related to O′ by

O† = ρ−4O′ρ4. (A34)

Finally, the operators appearing as source terms in the
ODEs for the corrector tensor, (23)-(25), are given by

N =
1

2
(Þ− ρ)ð, (A35)

U =
1

2

[
ð′ð+ ðð′ − 2Ψ2 + (Þ′ − 2ρ′)ρ+ (Þ− 2ρ)ρ′

+ρ(3Þ′ − 2ρ′) + ρ′(3Þ− 2ρ)− 2Þ′Þ+ 2ρρ′
]
,

(A36)

V =
1

2
(Þ− 4ρ)ð′, (A37)

V =
1

2
(Þ− 4ρ)ð. (A38)

So far, the discussion has been kept general. We now
specialise to the Kinnersley tetrad. In t-slicing coordi-
nates, the Kinnersley tetrad reads

lα =
1

f

{
1, f, 0, 0

}
, (A39)

nα =
1

2

{
1,−f, 0, 0

}
, (A40)

mα =
1√
2 r

{
0, 0, 1,

i

sin θ

}
. (A41)

In u-slicing coordinates, the Kinnersley tetrad reads in-
stead,

lα =

{
0, 1, 0, 0

}
, (A42)

nα =

{
1,−f

2
, 0, 0

}
, (A43)

mα =
1√
2 r

{
0, 0, 1,

i

sin θ

}
. (A44)

The scalar quantities (A8)-(A15) in the Kinnersley
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tetrad are

β = β′ =
cot θ

2
√
2r
, (A45)

ϵ = 0, (A46)

ϵ′ = − M

2r2
, (A47)

κ′ = κ = 0, (A48)
σ′ = σ = 0, (A49)

ρ = −1

r
, (A50)

ρ′ = − f

2r
, (A51)

τ ′ = τ = 0. (A52)

In t-slicing in the Kinnersley tetrad, the radial GHP
operators are

Þ =
1

f

(
∂

∂t
+ f

∂

∂r

)
, (A53)

Þ′
=

1

2

(
∂

∂t
− f

∂

∂r

)
− p+ q

2

M

r2
, (A54)

while in u-slicing, they are given by

Þ =
∂

∂r
, (A55)

Þ′
=

(
∂

∂u
− f

2

∂

∂r

)
− p+ q

2

M

r2
. (A56)

The angular operators in the Kinnersley tetrad are (in
both slicings)

ð = −1

r −sL†, (A57)

ð′ = −1

r s
L, (A58)

sL = − 1√
2

(
∂

∂θ
− i

sin θ

∂

∂φ
+ s cot θ

)
, (A59)

where s := (p − q)/2 is the spin weight of the quantity
that the operator acts on. The operators −sL† and sL
serve to, respectively, raise and lower the spin-weight of
the harmonics they act on,

−sL†
sYlm =

√
(ℓ− s)(ℓ+ s+ 1)

2 s+1Ylm, (A60)

sL sYlm = −
√

(ℓ+ s)(ℓ− s+ 1)

2 s−1Ylm. (A61)

Appendix B: Tetrad to BLS basis

Below, we give the formulas relating the modes of the
(not trace-reversed) metric perturbation in the Kinners-
ley tetrad basis to its BLS quantities hiℓm, i = 1, . . . 10.

See Table 1, page 29 in Ref. [7] for comparison. With ℓm
mode indices suppressed, the relations are

hll =
h1 + h2
rf2

, (B1)

hln =
h3
2r
, (B2)

hlm = −h4 + h5 − i(h8 + h9)

2rf
√
2ℓ(ℓ+ 1)

, (B3)

hlm̄ =
h4 + h5 + i(h8 + h9)

2rf
√
2ℓ(ℓ+ 1)

, (B4)

hnn =
h1 − h2

4r
, (B5)

hnm =
−h4 + h5 + i(h8 − h9)

4r
√

2ℓ(ℓ+ 1)
, (B6)

hnm̄ =
h4 − h5 + i(h8 − h9)

4r
√

2ℓ(ℓ+ 1)
, (B7)

hmm =
h7 − ih10

2r
√
(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

, (B8)

hmm̄ =
h6
2r
, (B9)

hm̄m̄ =
h7 + ih10

2r
√
(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

. (B10)

Appendix C: Modes of the no-string Hertz potential

The modes of the no-string Hertz potentials Φ± are
obtained by solving the vacuum adjoint Teukolsky equa-
tion O†Φ± = 0 in the two regions outside the world-
tube (r < rmin for Φ− and r > rmax for Φ+). We ob-
tain these as solutions to the spin-weight −2 Teukolsky
equation, using the relationship O†Φ = r4O′(r−4Φ); cf.
Eq. (A34). That relationship implies −2Φℓm (when mul-
tiplied by e−imΩφr

∗
to account for our use of u slicing)

satisfies the radial Teukolsky equation (44). Recall that
ψret0 is a solution to the s = 2 Teukolsky equation, which
is written as a linear combination of so-called “in” and
“up” basis functions as in Eq. (62). In analogy with 2ψ

±
ℓm

in Eq. (62), −2Φ
±
ℓm are proportional to the s = −2 “in”

and “up” basis solutions:

−2Φ
+
ℓm = −2a

+
ℓm−2ψ

up
ℓm(r)eimΩφr∗ (C1)

−2Φ
−
ℓm = −2a

−
ℓm−2ψ

in
ℓm(r)eimΩφr∗ , (C2)

where the exponential accounts for our use of u slicing.
Following Ori [30], we can determine the coefficients

−2a
±
ℓm by evaluating the ODE (78) in a neighbourhood

of the horizon or null infinity, allowing us to relate −2a
±
ℓm

to the coefficients 2C
±
ℓm appearing in Eq. (62). In half of

cases, doing this by directly expanding Eq. (78) requires
analytically computing the basis solutions to fourth or
fifth order in the 1/r or (r − 2M) expansion, essen-
tially because Eq. (78) is a fourth-order ODE. In these
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cases, the procedure is facilitated by using the Teukolsky-
Starobinsky identities to relate the s = ±2 basis solutions
to each other.

Ori only carried out this procedure for ω ̸= 0, but the
same method can be used in the static case, as detailed in
Ref. [79]. However, there are some typographical errors
in that paper (which we detail at the end of this ap-
pendix). We therefore will derive Eq. (85) for the static
modes of the Hertz potential here.

Let us first start with generic modes (i.e., not nec-
essarily static). In t-slicing and for the retarded fields,
Eq. (78) is re-written as

D4
m2Φ̄

ret
ℓm(r) = 22ψ

ret
ℓm(r), (C3)

where

Dm :=
d

dr
− i

mΩφ
f(r)

. (C4)

The Hertz potential Φret satisfies the spin s = −2 Teukol-
sky equation, thus its radial modes −2Φ

ret
ℓm(r) satisfy the

spin s = −2 radial Teukolsky equation. The Teukolsky-
Starobinsky identities [80, 81] yield

p 2Φ̄
ret
ℓm(r) = ∆2 (D⋆

m)
4
∆2 (Dm)

4
2Φ̄

ret
ℓm(r), (C5)

where p is given in Eq. (83). Thus, applying the operator
∆2 (D⋆

m)
4
∆2 to Eq. (C3), we obtain

p 2Φ̄
ret
ℓm(r) = 2∆2 (D⋆

m)
4
∆2

2ψ
ret
ℓm(r). (C6)

To relate the coefficients −2a
−
ℓm in −2Φ

−
ℓm to the coeffi-

cients 2C
−
ℓm in 2ψ

−
ℓm, we can simply substitute the leading

asymptotic near-horizon behavior of the “in” solutions in
Eq. (C3). Doing the same for the “up” solutions near in-
finity would require four orders in 1/r; we then instead
use Eq. (C6), which requires only the leading terms in
the asymptotic forms of sψ

up
ℓm to determine the coefficient

−2a
+
ℓm. The immediate outcome of these calculations is

shown in Eqs. (79) and (80).
Let us turn to the static case, m = 0. In this case,

obviously, there is no difference between u-slicing and t-
slicing. The radial Teukolsky solutions are easy to find
in closed form:

sψ
in
ℓ0 (r) = (ℓ+ s+ 1)−2s

Γ(1 + s)

Γ(1− s)

( r

2M
− 1

)−s
×

2F1

(
−ℓ, ℓ+ 1, 1− s, 1− r

2M

)
, if s > 0,

(C7)

sψ
in
ℓ0 (r) = 2−2s

( r

2M
− 1

)−s
×

2F1

(
−ℓ, ℓ+ 1, 1− s, 1− r

2M

)
, if s ≤ 0,

(C8)

sψ
up
ℓ0 (r) = 2−s−ℓ−1

( r

2M
− 1

)−s ( r

2M

)−ℓ−1

× (C9)

2F1

(
ℓ+ 1, ℓ+ 1− s, 2ℓ+ 2,

2M

r

)
, ∀s.

The specific choices of hypergeometric functions for the
solutions are made so that sψinℓ0 is regular at r = 2M and
sψ

up
ℓ0 is regular at r = ∞; here we have used the normal-

ization choices made in the BHPToolkit. Note that any
normalization choices are without loss of generality since
the normalizations are taken care of by the Wronskian in
Eqs. (61)–(64), which is equal to

sW (r) = −M
1+2s2ℓ+|s|+1Γ

(
ℓ+ 3

2

)
(|s|)!∆−1−s

√
π (ℓ+ |s|)! (C10)

for the static solutions in Eqs. (C7)-(C9) for any spin s.
It is easy to check that

2∆2 (D0)
4
∆2

2ψ
in/up
ℓ0 (r) = 2M4 p1/2 −2ψ

in/up
ℓ0 (r) (C11)

with p = ((ℓ− 1)4)
2. Since, from Eq. (62),

2ψ
ret
ℓ0 (r) =

{
2C

−
ℓ0 2ψ

in
ℓ0 (r) r < rmin,

2C
+
ℓ0 2ψ

up
ℓ0 (r) r > rmax,

(C12)

it follows from Eq. (C6) and using Eq. (C11) (together
with D⋆

0 = D0) that

2Φ̄
ret
ℓ0 (r) =

2M4

(ℓ− 1)4
2C

+
ℓ0−2ψ

up
ℓ0 (r), r > rmax,

2Φ̄
ret
ℓ0 (r) =

2M4

(ℓ− 1)4
2C

−
ℓ0−2ψ

in
ℓ0 (r), r < rmin.

(C13)

This is Eq. (85).
We finish by detailing some typographical errors in the

static-mode section (Sec. III.B) and the section for the
modes of the Hertz potential (Sec. III.C) of Ref. [79]11.
In the following, all equation numbers correspond to
Ref. [79].

1. In Eq. (54) there is a factor 1/2! missing in front
of (3− s)s−2. Furthermore, the coefficient of the
sBlmn is denoted by “divergent terms" but these
terms are not actually divergent for spin s =
−1,−2.

2. In Eq. (55), the term with sBlmn inside the paren-
thesis should instead read:

· · ·+ (−1)ssBlmn

√
π
(
l + 3

2

)
s− 1

2

22l+2
+ . . . (C14)

3. In Eq. (62), the signs of s in the two Pochhammer
functions in the numerators are wrong; also, the ‘+’
after sBlm should not be there.

11 We note that some typographical errors in the Phys. Rev. D
version of Ref. [79] were corrected in its arXiv version and so
we do not include those here. That is, we only include here the
typographical errors which we believe are still present in both
the Phys. Rev. D and current arXiv versions.
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4. The boundary conditions should be reversed on one side of Eq. (79), so that it reads:

∆s
sR̄

±
lmn = −sR

̸±
lmn. (C15)

5. On the LHS of Eq. (81), the ∆2 term should be
outside the operator D4

mn.
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