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Climate change is known to affect the distribution and composition of species, but concomitant 26 

alterations to functionally important aspects of behaviour and species-environment relations are 27 

poorly constrained. Here, we examine the ecosystem ramifications of changes in sediment-dwelling 28 

invertebrate bioturbation behaviour - a key process mediating nutrient cycling – associated with 29 

near-future environmental conditions (+1.5 °C, 550 ppm [pCO2]) for species from polar regions 30 

experiencing rapid rates of climate change. We find that responses to warming and acidification vary 31 

between species and lead to a reduction in intra-specific variability in behavioural trait expression 32 

that adjusts the magnitude and direction of nutrient concentrations. Our analyses also indicate that 33 

species behaviour is not predetermined, but can be dependent on local variations in environmental 34 

history that set population capacities for phenotypic plasticity. We provide evidence that certain, but 35 

subtle, aspects of inter- and intra-specific variations in behavioural trait expression, rather than the 36 

presence or proportional representation of species per se, is an important and under-appreciated 37 

determinant of benthic biogeochemical responses to climate change. Such changes in species 38 

behaviour may act as an early warning for impending ecological transitions associated with 39 

progressive climate forcing. 40 

 41 

1 | Introduction 42 

Narratives of the ecological consequences of climate change often centre on biodiversity, food-web 43 

structure and productivity [1-3], rather than the ecological consequences of alternative outcomes 44 

that typically form the prelude to compositional restructuring and/or altered levels of biodiversity [4-45 

5]. Species responses to a changing climate can include avoidance through dispersal [6], acclimation 46 

through phenotypic plasticity [7-8], including adjustments to physiological regulation [9], and 47 

adaptation through genetic modification [10]. However, these alternative strategies are not always 48 

viable or, when available, are not necessarily equally weighted as an effective means of response 49 

[11]. Indeed, in areas of greater risk from environmental change, such as those at higher latitudes, 50 

opportunities for dispersal (including instances of > 40 days, [12]) and adaptation are often limited 51 



due to local evolutionary history and ecology [13], meaning that phenotypic plasticity becomes the 52 

de facto mechanism of response [14]. For organisms with very long generation times, as is common 53 

in polar regions [15-16], behavioural acclimatisation can maximise an individual’s chance of survival 54 

[17-18] in advance of genetic adaptation [19], unless fecundity is sufficient to increase the likelihood 55 

that gene adaptations arise in the population [20]. Previous work mainly focuses on invertebrate 56 

physiological plasticity in relation to ocean warming [21-22] and acidification [23-25], with less 57 

emphasis on behavioural plasticity [26], even though changes in behaviour often form the first 58 

practical response to altered environmental context [27-28] and can have consequences for other 59 

ecosystem attributes [29]. Consequently, the specifics of how and when climate related change 60 

affects the way in which species behaviour modifies ecosystem functioning is under-appreciated [30-61 

31]. 62 

 63 

The activities of sediment-dwelling invertebrates redistribute pore water fluids and sediment 64 

particles, ultimately affecting carbon and nutrient cycles [32-33]. It follows, therefore, that any 65 

directional change in species behaviour or trait expression will have important consequences for 66 

ecosystem process and function [34]. Such changes, although species and context dependent [35-67 

37], reflect individual responses to changing circumstances that may maintain [38], reduce [35] or 68 

enhance [39-41] functioning, making it difficult to characterise species contributions to alterations in 69 

ecosystem properties. Disentangling these effects is frustrated by the fact that changes in behaviour 70 

are also accompanied by compensatory responses [42-43] that affect dominance patterns [44-45], 71 

and other factors, which can partially, or wholly, offset functional responses to forcing [46]. 72 

Nevertheless, field observations show that a shift in the type and amount of faunal activity can lead 73 

to environmental transitions [3] that exert a disproportionate influence on ecosystem properties and 74 

functioning over and above the effects caused by changes in species diversity [47-48] and 75 

composition [49,45]. It is important to note, however, that although flexible behavioural strategies 76 

can improve short-term fitness [50-51], any associated functional consequences [52-53] may not 77 



materialise until much later and can be hard to distinguish from other temporal changes in the 78 

system [54]. 79 

 80 

We anticipated that changes in species behaviour will be more pronounced in regions of fast paced 81 

climate change [3, 55], as genetic and other coping mechanisms are less likely to be enacted in time. 82 

We speculated, given the closure of dispersal and adaptation as viable options, that adjustments to 83 

individual behaviour would dominate species responses to change [56] at higher latitudes. Here, 84 

using sediment-dwelling invertebrate species obtained from the Arctic Barents Sea (the bivalve 85 

Astarte crenata, sea star Ctenodiscus crispatus and polychaete Cistenides hyperborea) and Antarctic 86 

Peninsula (the protobranch Aequiyoldia eightsi and bivalve Laternula elliptica), two areas currently 87 

experiencing amplified climate change [57-58], we explore the combined effects of near-term ocean 88 

warming (+1.5 °C) and elevated levels of atmospheric carbon dioxide (550 ppm [CO2]) on aspects of 89 

species behaviour known to influence biogeochemical cycling. As we anticipate that the direction and 90 

magnitude of change in behaviour will diverge between species [4, 59-60], we also include individuals 91 

of Astarte crenata and Ctenodiscus crispatus from two locations within the Barents Sea that contrast 92 

in temperature and sea ice dynamics; here, our expectation is that individual species responses will 93 

be in line with previous observations [3], but will be more pronounced when species are from 94 

locations experiencing narrower environmental variation. We use these data to demonstrate the 95 

importance of behavioural change and compensatory mechanisms, including numeric and/or 96 

biomass increases and performance enhancement [42-43], in moderating how benthic environments 97 

respond to external forcing. We show, for five species of polar benthic invertebrates, that the ability 98 

to modify behaviour in the face of climatic forcing does not guarantee that species contributions will 99 

remain unchanged. Our findings emphasise the importance of context-dependency and have 100 

implications for the functional contributions of populations facing climate change, their capacity to 101 

adapt in the face of further environmental transitions, and suggest that the onset of phenotypic 102 

expression may serve as an early warning for impending ecological change. 103 



 104 

2 | Results 105 

We find evidence that individual movement and burial behaviour, sediment particle reworking 106 

activity, burrow ventilatory activity, and associated nutrient concentrations at the sediment-water 107 

interface, can be dependent on environmental condition (ambient climate treatment vs future 108 

climate treatment of +1.5 °C and 550 ppm [CO2]), location, and species identity (Supplementary 109 

Models S1 to S29). However, observed effects seldom formed full factorial interactions between the 110 

three dependent variables (8 of 29 models). Despite observing mortalities in the bivalve Astarte 111 

crenata (2 individuals, 1 from each climate), Ctenodiscus crispatus (4 individuals, 3 ambient and 1 112 

future climate), and Cistenides hyperborea (1 ambient climate), it was possible to relate our 113 

response variables in ecosystem process (sediment particle reworking: surface boundary roughness, 114 

median mixed depth of particle reworking and maximum mixed depth of particle reworking; burrow 115 

ventilation activity) and functioning (nutrient concentrations: ammonium, nitrite, nitrate and 116 

phosphate) to species behaviour (individual movement: response time; burial behaviour: burial 117 

time) in all aquaria. We found no evidence that differences in mortality (assessed using total 118 

biomass as a random effect) affected response. 119 

 120 

2.1 | Effects on individual behaviour 121 

All individuals of C. crispatus (nT = 18) initiated movement within 60 minutes, with 16 individuals 122 

completing reburial, but we found no evidence that response time was affected by environmental 123 

condition, location or their interaction (intercept only model: L-ratio = 1.420, d.f. = 1, p = 0.234; Fig. 124 

1a). However, response times were less variable between individuals from station B13 (coefficient of 125 

variation, CV = 34.5%) relative to individuals from station B16 (CV = 62.9%). Regardless of location, 126 

mean burial time of C. crispatus was influenced by environmental condition (F[1,12] = 5.285, p < 0.05), 127 

with reburial time halving under future conditions (Fig. 1b). For C. hyperborea, 9 individuals (nT = 11) 128 

responded within 60 minutes, with comparable response rates across both environmental conditions 129 



(F[1,7] < 0.001, p = 0.992; Fig. 1a). However, no individuals reburied under ambient conditions and an 130 

insufficient number of individuals (n = 3) reburied within 60 minutes under future conditions for 131 

reliable statistical analysis. For A. eightsi, response time was not dependent on environmental 132 

condition (intercept only model, L-ratio = 2.277, d.f. = 1, p = 0.131; Fig. 1c), despite a substantial 133 

reduction in intra-specific variability under future conditions (CV: ambient, 95.7 %; future, 51.5%). 134 

Burial time for A. eightsi was weakly dependent on environmental condition (L-ratio = 3.5943, d.f. = 135 

1, p = 0.0580), despite a reduction in intra-specific variability (CV: ambient = 42.3%, future = 28.4%) 136 

and burial time (Fig. 1d). We found no effect of biomass as a random factor in any of these models. 137 

 138 

2.2 | Effects on ecosystem process 139 

Surface boundary roughness (SBR) in the presence of A. crenata and C. crispatus (Fig. 2a–b) was 140 

dependent on the independent effects of species (L-ratio = 10.056, d.f.= 1, p < 0.01) and location (L-141 

ratio = 4.010, d.f. = 1, p < 0.05), but not environmental condition (L-ratio = 3.238, d.f. = 1, p = 0.072). 142 

For C. hyperborea, we also found no evidence that SBR was affected by changes in environmental 143 

condition (L-ratio = 0.025, d.f. = 1, p = 0.8740) despite an increase in intra-specific variability under 144 

future conditions (CV: ambient, 2.5%; future, 31.4%; Fig. 2c). For A. eightsi and L. elliptica, we found 145 

no effect of environmental condition, species identity, or their interactions, on SBR (F[1,8] = 3.005, p = 146 

0.121; Fig. 2d). 147 

 148 

The median mixed depth of particle reworking (f-SPILmed) for A. crenata and C. crispatus was 149 

dependent on the independent effect of environmental condition (F[1,18] = 5.2018, p < 0.05; Fig. 2e). 150 

However, there was no effect of environmental condition on f-SPILmed for C. hyperborea (L-ratio = 151 

0.338, d.f. = 1, p = 0.126; Fig. 2f) or for A. eightsi and L. elliptica (F[1,8] = 2.955, p = 0.124; Fig. 2g). In 152 

contrast, maximum mixed depth (f-SPILmax) was dependent on a species identity × location interaction 153 

for A. crenata and C. crispatus (F[1,20] = 7.8123, p < 0.05), with species identity (ω2 = 0.537) more 154 

influential than location (ω2 = 0.316). Specifically, f-SPILmax was deeper in aquaria containing C. 155 



crispatus from station B16 than it was in aquaria containing A. crenata from station B16 and, to a 156 

lesser extent, station B13 (Fig. 2h). For C. hyperborea, f-SPILmax was not dependent on environmental 157 

condition (intercept only model: f-SPILmax, L-ratio = 0.695, d.f.= 1, p = 0.405), but there was some 158 

evidence for a reduction in intra-specific variability between treatments (CV: ambient, 22.8 %; future, 159 

11.5 %; Fig. 2i). In contrast, we found that f-SPILmax for A. eightsi and L. elliptica was dependent on an 160 

environmental condition × species identity interaction (F[1,8] = 7.962, p < 0.05), with species identity 161 

(ω2
 = 1.103) more influential than environmental condition (ω2

 = 0.907). Specifically, f-SPILmax was 162 

deeper for A. eightsi relative to L. elliptica, with a larger difference observed under future conditions 163 

(Fig. 2j). 164 

 165 

The burrow ventilation activity ([∆Br-]) of A. crenata and C. crispatus was dependent on an 166 

environmental condition × location × species identity interaction (F[1,16] = 7.910, p < 0.05), with 167 

species identity the most influential independent variable (ω2 = 0.678), followed by location (ω2 = 168 

0.481) and environmental condition (ω2 = 0.376). In individuals from station B13, irrespective of 169 

species identity, [∆Br-] was unchanged by environmental condition (Fig. 2k). However, whilst [∆Br-] of 170 

A. crenata from station B16 was negligible ([∆Br-] values were positive) in both ambient and future 171 

environmental conditions, [∆Br-] for C. crispatus increased 7-fold (values more negative) under the 172 

future environmental condition (Fig. 2l). [∆Br-] of C. hyperborea was also affected by environmental 173 

condition (L-ratio = 5.879, d.f. = 1, p < 0.05) with an increase in burrow ventilation activity under 174 

future environmental conditions (Fig. 2m). In contrast, there was no effect of environmental 175 

condition or species identity on [∆Br-] for A. eightsi and L. elliptica (intercept only; L-ratio = 0.764, d.f. 176 

= 1, p = 0.382; Fig. 2n), but we did observe a reduction in intra-specific variability between 177 

treatments (CV: ambient, 713 %; future, 293 %). 178 

 179 

2.3 | Effects on ecosystem functioning 180 



Our analyses reveal that, for A. crenata and C. crispatus, ammonium ([NH4-N]) was influenced by the 181 

independent effect of species identity (F[1,22] = 14.951, p < 0.0001), with positive lnRRs in aquaria 182 

containing C. crispatus and negative lnRRs in aquaria containing A. crenata (Fig. 3a). We find that the 183 

effect size for [NH4-N] is not dependent on environmental condition in the presence of C. hyperborea 184 

(intercept only models: [NH4-N], F[1.4] = 1.047, p = 0.364; Fig. 3b), A. eightsi or L. elliptica (intercept 185 

only model, L-ratio = 0.009, d.f. = 1, p = 0.925; Fig. 3c). For nitrite ([NO2-N]), whilst there is evidence 186 

of a weak dependence on environmental condition in the presence of L. elliptica and A. eightsi (L-187 

ratio = 3.532, d.f. = 1, p = 0.060; Fig. 3g), the effect size of [NO2-N] in the presence of A. crenata and 188 

C. crispatus was dependent on an environmental condition × location × species identity interaction 189 

(L-ratio = 4.629, d.f. = 1, p < 0.05). For the latter, model coefficients revealed that location was most 190 

influential (L-ratio = 7.714, d.f. = 4, p = 0.103), followed by species identity (L-ratio = 6.955, d.f. = 4, p 191 

= 0.138) and environmental condition (L-ratio = 5.952, d.f. = 4, p = 0.203). In aquaria containing 192 

infauna from station B13 (A. crenata and C. crispatus), irrespective of species identity, and for A. 193 

crenata in station B16, the effect size of [NO2-N] was not affected by environmental condition (Fig. 194 

3d–e). For station B16, however, the effect size of [NO2-N] in aquaria containing C. crispatus 195 

decreased under future environmental conditions. Similarly, the effect size for nitrate ([NO3-N]) in 196 

the presence of A. crenata or C. crispatus was dependent on an environmental condition × location × 197 

species identity interaction (F[1,16] = 3.057, p = 0.09), with species identity the most influential 198 

independent variable (ω2 = 0.281), followed by location (ω2 = 0.207) and environmental condition (ω2 199 

= 0.136). Notably, environmental condition had no effect on the activities of A. crenata and C. 200 

crispatus at station B13 but did influence the behaviour of C. crispatus at station B16 (Fig. 3h–i). In 201 

contrast, for aquaria with C. hyperborea, we find no influence of environmental condition on the 202 

effect size of [NO2-N] ([F[1.4] = 1.324, p = 0.314; Fig. 3f), but the effect size of [NO3-N] increased under 203 

future conditions (F1.4 = 60.821, p < 0.01; Fig. 3j). For L. elliptica and A. eightsi, the effect size of [NO3-204 

N] was dependent on the independent effect of environmental condition (L-ratio = 9.720, d.f. = 1, p < 205 

0.01; Fig. 3k), with an increased effect size under future conditions for both species. 206 



 207 

The effect size for phosphate ([PO4-P]) was not dependent on any of our explanatory variables 208 

(intercept only model; Fig. 3l) for A. crenata and C. crispatus. However, we found independent 209 

effects of environmental condition on [PO4-P] for C. hyperborea (L-ratio = 3.123, d.f. = 1, p = 0.078; 210 

Fig. 3m) and independent effects of environmental condition (L- ratio = 7.865, d.f. = 1, p < 0.01) and 211 

species identity (L- ratio = 4.662, d.f. = 1, p < 0.05) on [PO4-P] for A. eightsi and L. elliptica (Fig. 3n). 212 

Intra-specific variability (CV) in the effect size for [PO4-P] decreased under future conditions for A. 213 

eightsi (ambient, 69.7%; future, 50.6%) and C. hyperborea (ambient, 68.6%; future, 49.7%), but 214 

increased for L. elliptica (ambient, 11.7%; future, 47.6%). 215 

 216 

3 | Discussion  217 

Our findings demonstrate that conditions representative of anticipated near-future climate change 218 

can lead to fundamental shifts in functionally important aspects of sediment-dwelling invertebrate 219 

behaviour. These effects can be substantive; here we observed a doubling of burial rate, deepening 220 

of particle mixing and a change in the magnitude and direction of biogeochemical dynamics that are 221 

sufficient to change the functional role of a species (A. eightsi [36]). This observation is important, 222 

because alterations in individual functional capacity that are distinct from functional shifts caused by 223 

changes in community composition and/or novel environmental conditions are common [61,3], and 224 

likely result from changes in the strength and nature of a portfolio of sublethal responses, including 225 

species interactions [62-63], compensatory mechanisms [41-42] and/or other subtle phenotypic 226 

responses [54,64]. Changes in macronutrient cycling under climate forcing is not trivial to detect [65], 227 

however, and may be masked by the pH buffering effects of [CO2] driven alkalinity changes [66] on 228 

microbial mediated pathways of nutrient recycling. 229 

 230 

The behavioural changes with warming and acidification observed here may be even more important 231 

ecologically in polar regions than they would be at lower latitudes. Seasonality results in many 232 



species entering low energy and activity states similar to aestivation in winter that can last several 233 

months [67-68]; in this study, as in L. elliptica [69], although juvenile A. eightsi growth is known to be 234 

similar across summer and winter [70]. Therefore, in the presence of species that respond to 235 

seasonal cues, greater levels of species activity, leading to greater microbial and nutrient 236 

remobilisation from sediments [32-33], may occur for longer in polar regions as the summer season 237 

extends under climate change [71]. If widespread, it follows that there will be positive ramifications 238 

for phytoplankton productivity over the long term [1, 3]. Although this is not the only mechanism 239 

underpinning nutrient provision for productivity, we speculate that outcomes associated with 240 

benthic responses to climate change could include changes in the phenology of the initiation of 241 

productivity and early intensity of phytoplankton growth [72], with downstream impacts for primary 242 

and secondary consumers. 243 

 244 

Whilst the effects of a near-future climate in our experiments were comparatively weaker than the 245 

effects of species identity and location, consistent with theoretical expectations [73-74], we did note 246 

a reduction in intra-specific variation that reflected changes in environmental context and location 247 

[37]. This can be very important for maintaining populations [75], enabling adaptation to changing 248 

environmental conditions [76] and stability in ecosystem functioning [77]. However, whilst sublethal 249 

responses may enable species to persist in, or for longer, under novel circumstances, other 250 

phenotypic costs may constrain or inhibit an individual’s ability to adjust further [78-79]. Hence, 251 

reductions in intra-specific variation may serve as an early warning for impending ecological 252 

transitions associated with progressive forcing and potentially inform more timely management 253 

actions, reinforcing the need for continual monitoring of faunal activity and the ecological constraints 254 

that modify functionally important aspects of species behaviour [80]. 255 

 256 

The variation in intra-specific behaviour observed here under enhanced warming and [CO2] is 257 

consistent with other behavioural studies [81], physiological responses in polar benthic species [21] 258 



and incorporates regional contextualisation [13]. Whilst our study was not explicitly designed to 259 

examine species range shifts or gradients of environmental change, an important feature was that 260 

our locations were positioned to the north and south of the oceanographic polar front, contrasting in 261 

benthic biogeography [82], bioturbation activity and functioning [3]. Hence, we were able to show 262 

that individuals predisposed to a wider inter-annual thermal range exhibit a more reserved 263 

behavioural response to change than those inhabiting a narrower thermal range [83]. Thus, plasticity 264 

in response mirrors the level of local environmental fluctuation [84]. Whilst spatial associations 265 

between environmental temperature range and physiological thermal tolerances are not atypical in 266 

ectothermic species [13, 85, 86], this does mean that high latitude populations may be at greater risk 267 

of local extinction over the long term. As thermal tolerance narrows with decreasing seasonality in 268 

temperature towards the poles [16, 87], and will likely be further constrained with ocean warming 269 

[88], populations already at the edge of their thermal limits will most likely have less scope to 270 

compensate and adapt to change [89]. Indeed, changes in species composition and abundance are 271 

well documented across areas of environmental transition [3] and show similar patterns of functional 272 

change, as observed here. Temperature-driven responses are, however, typically complicated by 273 

interactions with other abiotic drivers [74] and are likely to lead to both amplified and dampened 274 

effects in spatially stochastic ecosystems [90]. Yet, previous investigations have predominantly 275 

focused on spatial distributions of species turnover [64], functional diversity [91-92] and redundancy 276 

[93], rather than characterising intraspecific variability of species-environment interactions. The 277 

latter can be a more important driver of the short-term functional response of communities than 278 

changes in species composition, dominance, or richness [94-95]. For example, the shallower 279 

burrowing activity of invertebrates held under more acidified conditions [96] allows species to evade 280 

the physiological effects of decreasing pH, but simultaneous burrowing and ventilatory [40] 281 

responses to warming to maintain environmental continuity may negate the need for such avoidance 282 

behaviour [97]. We observed similar changes across multiple aspects of functionally important 283 

behaviour that may have led to non-additive effects on net functioning that were not possible to 284 



distinguish. Nevertheless, the cumulative effect of such short-term behavioural responses is likely to 285 

be decisive for the composition [28], population dynamics [98], connectivity [99] and functioning 286 

[100] of benthic communities that will be moderated by seasonal timing [54] and local circumstance 287 

[13, 36], including interannual variability [3]. 288 

 289 

Quantitative information on the functional role of individual species is rare for both polar regions 290 

[101], yet understanding, and accounting for, species responses to climate change is fundamental to 291 

improving the likelihood of determining the most realistic ecosystem future [102]. We contend that 292 

this task will be frustrated by context-dependent variation in both intra- and inter-specific responses 293 

to forcing that are not readily captured using fixed trait modalities [35, 103]. Where the overall 294 

outcome of species responses remains largely unresolved, reductions in the variation of conspecific 295 

responses [95, 104] may form a viable alternative for some predictive models. Furthermore, our 296 

findings lend support to the view that location-dependent variation in behavioural responses can be 297 

attributed to localised thermal plasticity driven by exposure to divergent temperature seasonality 298 

trends [8, 84, 105]. Inter- and intra-specific variations in vulnerability, effect-and-response traits [79] 299 

and interactions between species [106-107] can facilitate functional redundancy and/or post-change 300 

compensations [42-43]. A mechanistic approach that explicitly tests suspected abiotic and biotic 301 

signals is necessary for establishing patterns of response [108] across multiple levels of biological 302 

organisation [109-110], enabling more likely projections of the functional consequences of change. 303 

 304 

4 | Material and methods 305 

4.1 | Fauna and sediment collection 306 

We obtained individuals of the bivalve Astarte crenata, asteroid Ctenodiscus crispatus and 307 

polychaete Cistenides hyperborea from replicate SMBA (Scottish Marine Biological Association, 50 × 308 

50 cm) box cores, and 15 minute Agassiz trawls in the Barents Sea (stations B13, 74.3 °N, 30.0 °E; 309 

B16, 80.3 °N, 30.0 °E, 263-375m depth; JCR18006, RSS James Clark Ross, Supplementary Fig. S1a, 310 



Table S1) in July 2019. Individuals of the protobranch Aequiyoldia eightsi and bivalve Laternula 311 

elliptica were collected by SCUBA divers at Rothera Point, Adelaide Island, West Antarctic Peninsula 312 

(67.3 °S, 68.1 °W, 10-20 m depth, Supplementary Fig. S1b) in March-April 2019. We obtained surficial 313 

sediment (< 5 cm depth) from SMBA box cores at the Barents Sea stations B13, B14 and B16 314 

(Supplementary Table S1) for the Arctic species, and from the intertidal mud flats of the Hamble, UK 315 

(50.9 °N, 1.3 °W) for the Antarctic species. Each sediment was sieved (500 µm) within a seawater 316 

bath to retain the fine fraction and to remove macrofauna and debris. Sediment particle size 317 

(Supplementary Fig. S2) was determined using a Malvern Mastersizer 2000 He-Ne LASER diffraction 318 

sizer. Mean particle size, sorting, skewness and kurtosis were quantified using GRADISTAT [111]. Loss 319 

on ignition was used to determine sediment organic matter content (%). 320 

 321 

4.2 | Experimental design and set-up  322 

Sediment (mean ± s.e., n = 38: particle size = 60.30 ± 3.91µm, organic matter content = 5.502 ± 0.212; 323 

Supplementary Table S2) and species were distributed across 42 clear acrylic aquaria (internal LWH: 324 

12 x 12 x 33 cm, 3 replicates treatment-1: species × location × climate scenario; Supplementary Table 325 

S3), designed to accommodate representative field densities (Arctic species, 2 ind. aquarium-1; 326 

Antarctic species, 1 ind. Aquarium-1; ([112]; Supplementary Table S4) and the size and burrowing 327 

requirements of each species (sediment depth: A. crenata, C. crispatus & C. hyperborea, 16 cm; A. 328 

eightsi, 12 cm; L. elliptica, 19 cm; [113-114]). Aquaria were randomly placed within one of two 329 

insulated seawater reservoirs ([3], Supplementary Fig. S3) in the Biodiversity and Ecosystem Futures 330 

Facility, University of Southampton (UK). All aquaria were filled with seawater (salinity 33, 10 µm 331 

sand filtered, UV sterilized) to ~12 cm above the sediment-water interface and maintained in the 332 

dark. After transitionary period to aquarium conditions (21 days, 09-29/09/2019), fauna was exposed 333 

to ambient (1 ± 0.5°C, ~400 ppm atmospheric [CO2]) or indicative near-future (2.5 ± 0.5 °C, ~550 ppm 334 

atmospheric [CO2]) environmental conditions. Water temperature and atmospheric [CO2] were 335 

increased from ambient to treatment levels in 0.5°C and 50 ppm increments every 7 days (21 days, 336 



29/09/2019-20/10/2019) to minimise adverse physiological responses [115]. During both the 337 

transitionary and experimental period (92 days, 21/10/2019 – 21/01/2020), species were fed ad 338 

libitum; C. crispatus and C. hyperborea with commercially available fish food (Aquarian Tropical 339 

Flake; 0.03 g week-1), and A. crenata, A. eightsi and L. elliptica with precultured phytoplankton (15 ml 340 

3× week-1, 33:33:33 mix: Isochrysis sp., Tetraselmis sp., and Phaeodactylum sp.). This period of time 341 

was sufficient for the establishment of microniche formation [116] and vertical biogeochemical 342 

gradients indicated by colour change [117]) to form in the sediment. Partial seawater exchanges 343 

(weekly, 50% volume) prevented accumulation of excess food and nutrients. Measurements in 344 

behaviour, ecosystem process and functioning were taken at the end of the experimental period. 345 

  346 

4.3 | Seawater carbonate chemistry, temperature, and salinity 347 

Atmospheric [CO2] (Supplementary Fig. S4) was controlled using a custom-made CO2-air mixing 348 

system which continually maintained and monitored [CO2] in the air mixture supplied to each 349 

individual experimental core using infrared analysers (LI-COR LI-840A) [54]. This approach facilitates 350 

natural variability within the carbonate system [118].Temperature, pH (NBS scale, Mettler-Toledo 351 

InLab Expert Pro temperature-pH combination electrode; weekly three-point calibration using 352 

technical buffer solutions pH 4.01, 7.00, 9.21, Mettler-Toldedo), and salinity (WTW™ TetraCon™ 325 353 

Standard conductivity electrode; weekly calibration using conductivity standard solution 12.88mS, 354 

Mettler-Toldedo) were measured weekly and total alkalinity (AT, Apollo SciTech Titrator AS-ALK2) 355 

was measured in weeks 2, 6 and 11 in each experimental core. AT analysis followed standard HCl 356 

titration protocols of the Carbonate Facility, University of Southampton. DIC, [pCO2], [Ωcalcite], 357 

[Ωaragonite], [NCO3] and [CO3] were calculated (CO2calc carbon calculator, v 4.0.9) ([119]; 358 

Supplementary Figures S5, S6). 359 

 360 

4.4 | Behavioural response of individuals 361 



Behaviour of C. crispatus, C. hyperborea and A. eightsi were quantified using measurements of 362 

movement and burial behaviour at the sediment surface. Individuals (morphology, ± 0.01 mm; 363 

blotted wet weight, ± 0.001 g, Supplementary Table S5) were placed in separate treatment-364 

acclimatised viewing trays containing sediment (depth 5 cm) overlain with sea water (depth 3 cm) 365 

and viewed (≤ 60 minutes) with a benchtop video camera (Logitech C920 HD Pro, 1080p; 366 

Supplementary Fig. S7). The time taken to initiate movement (response time, s) and to complete 367 

burial (burial time, s) was recorded (3 frame s-1, SkyStudioPro) and analysed frame-by-frame (VLC 368 

Media Player). We incorporated biomass as a random factor in the statistical analysis to account for 369 

any intra-specific variation in size. 370 

 371 

4.5 | Effects on ecosystem process and functioning 372 

Sediment particle reworking activity of all five species was determined from the redistribution of 373 

fluorescent particulate luminophore tracers (30 g aquarium-1, 125 – 250 μm diameter, 12 days 374 

09/01/2020-21/01/2020; [120]). All four aquarium sides were imaged under UV light (Canon EOS 375 

400D, 3888 x 2592 pixels, effective resolution 74 x 74 μm pixel-1), stitched together (Adobe 376 

Photoshop CC 2019; Supplementary Figures S8 to S12), and the distribution of luminophores was 377 

analysed using ImageJ (version 1.46r; [120]). From these profile data (Supplementary Fig. S13), we 378 

calculated the mean (f-SPILmean, time dependent indication of mixing), median (f-SPILmed, typical short-379 

term depth of mixing) and maximum (f-SPILmax, maximum extent of mixing) mixed depth of particle 380 

redistribution. Given the shape of the vertical distribution of luminophores (non-continuous), f-SPILmean 381 

was an unsuitable descriptor of the distribution profile and not considered for statistical analysis. The 382 

rugosity of the sediment-water interface (upper – lower limit = surface boundary roughness, SBR) 383 

provides an indication of surficial activity. 384 

 385 

Ventilatory behaviour [101] of all five species was estimated from absolute changes in the 386 

concentration of sodium bromide [NaBr] [54]. Dissolved [NaBr] was standardised across all aquaria 387 



(mean starting concentration = 1353.816 ± 317.264 mg L-1) and [NaBr] was determined using a 388 

Tecator flow injection auto-analyser (FIA Star 5010 series). Negative values of [NaBr] (∆[Br-] mg L-1) 389 

over an 8-hour period indicate increased infaunal ventilatory activity. 390 

 391 

As faunal activity mediates nutrient concentrations, we determined water column [NH4-N], [NO3-N], 392 

[NO2-N] and [PO4-P] (µmol L-1, ~10ml, filtered 0.45 μm NALGENE nylon matrix) for all five species 393 

once a month (Supplementary Fig. S14) using a QuAAtro 39 auto-analyser (SEAL Analytical) as a 394 

measure of ecosystem functioning. As nutrient concentrations will also reflect differences in the 395 

volume of sediment between species treatments, we calculated the log response ratio (lnRR = 396 

ln[concbefore/concafter]; [121]), an effect size that quantifies proportionate change. As patterns of [NOx-397 

N] are reciprocal to those of [NH4-N] but indicate beneficial biogeochemical processes (e.g. 398 

denitrification), lnRR values for [NO2-N] and [NO3-N] were multiplied by -1 to align the direction of 399 

ecosystem functioning. 400 

 401 

4.6 | Statistical analysis 402 

Analysis of Variance (ANOVA) models were developed for each dependent variable (movement and 403 

burial behaviour: response time, burial time; ecosystem process: SBR, f-SPILmedian,
 f-SPILmax, ∆[Br-]; 404 

ecosystem functioning: [NH4-N], [NO3-N], [NO2-N], [PO4-P]). For A. crenata and C. crispatus, we 405 

determined the effects of the independent variables; environmental condition (2 levels: ambient, 406 

future), location (2 levels: stations B13 and B16; Supplementary Fig. S1a), species identity (2 levels), 407 

and their interactions, whilst for A. eightsi and L. elliptica, we determined the effects, alone and in 408 

combination, of the independent variables environmental condition (2 levels) and species identity (2 409 

levels). As C. hyperborea was found at a single station, we determined only the effects of 410 

environmental condition (2 levels). Intra-specific variability within treatment levels was determined 411 

using the coefficient of variation. 412 

 413 



Model assumptions were visually assessed using standardised residuals vs fitted values plots, Q-Q 414 

plots, and Cook's distance [122]. Where there was a violation of homogeneity of variance, we used a 415 

varIdent variance-covariance structure and generalised least-squares (GLS) estimation [123-124] to 416 

allow residual spread to vary amongst groups. We determined the optimal fixed-effects structure 417 

using backward selection informed by Akaike Information Criteria (AIC) and inspection of model 418 

residual patterns. For the GLS analysis, we determined the optimal variance-covariance structure 419 

using restricted maximum-likelihood (REML) estimation by comparing the initial ANOVA model 420 

without variance structure to equivalent GLS models incorporating specific variance terms. These 421 

models were compared against the initial ANOVA model using AIC informed by visualisation of model 422 

residuals. We determined the optimal fixed structure of the most suitable model by applying 423 

backward selection using the likelihood ratio test with maximum-likelihood (ML) estimation 424 

[122,124]. For ANOVA models with interactions, we calculated the effect size (ω2, [125]) of each 425 

independent variable in R [126] using the effectsize package [127]. For GLS models with interactions, 426 

we determined the relative importance of each independent variable by comparing the minimal 427 

adequate model with a model with the independent variable of interest, and all its interactions, 428 

removed using likelihood ratio (L-ratio) in the nlme package [123]. Details of initial and minimal 429 

adequate models (Model S1 to S29) are provided in electronic supplementary material. 430 
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11 | Figure legends 811 

Figure 1. The effects of species identity, location and environmental condition (ambient, open 812 

symbols; future, closed symbols) on (a,c) mean (± s.e.) response time and (b,d) mean (± s.e.) burial 813 

time for Ctenodiscus crispatus (□) and Cistenides hyperborea (△) obtained from station B13 (red) 814 

and B16 (blue) in the Barents Sea and Aequiyoldia eightsi (◇) obtained from Rothera Point (black). 815 

Individuals of C. hyperborea did not rebury under ambient conditions. 816 

 817 

Figure 2. The effects of species identity, location and environmental condition (ambient, open 818 

symbols; future, closed symbols) on (mean ± s.e.) (a,b,c,d) SBR (mm), (e,f,g) f-SPILmedian (mm), (h,i,j) f-819 

SPILmax (mm) and (k,l,m,n) [∆Br-] (mg.L-1) in mesocosms containing (a,b,d,h,k,l) Astarte crenata (○) or 820 

Ctenodiscus crispatus (□) from station B13 (red), B16 (blue) or both locations combined (gold), 821 

(c,f,i,m) mesocosms containing Cistenides hyperborea (△) obtained from station B13 and (d,g,j,n) 822 

mesocosms containing Aequiyoldia eightsi (◇) or Laternula elliptica (▽) obtained from Rothera Point. 823 

For ∆[Br-], negative values indicate increased bioirrigation. Sediment profile images and associated 824 

luminophore distribution profiles are presented in Supplementary Figures S8-S11 825 

 826 

Figure 3. The effects of species identity, location and environmental condition (ambient, open 827 

symbols; future, closed symbols) on (mean ± s.e.) effect size of nutrient concentrations (lnRR) over 828 

the experimental period as indicated by (a,b,c) [NH4-N], (d,e,f,g) [NO2-N], (h,i,j,k) [NO3-N] and (l,m,n) 829 

[PO4-P] in mesocosms containing (a,d,e,h,i,l) Astarte crenata (○) or Ctenodiscus crispatus (□) from 830 

station B13 (red), B16 (blue) or both (gold), (b,f,j,m) mesocosms containing Cistenides hyperborea 831 

(△) obtained from station B13 and (c,g,k,n) mesocosms containing Aequiyoldia eightsi (◇) or 832 

Laternula elliptica (▽) obtained from Rothera Point. A positive effect size indicates an increase in 833 

nutrient release from the sediment into the water column over the experimental period, while a 834 



negative effect size signifies an increase in the uptake of nutrients from the water column into the 835 

sediment. 836 
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