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Abstract
Evaluating pain in speech represents a critical challenge in high-
stakes clinical scenarios, from analgesia delivery to emergency
triage. Clinicians have predominantly relied on direct verbal
communication of pain which is difficult for patients with com-
munication barriers, such as those affected by stroke, autism,
and learning difficulties. Many previous efforts have focused
on multimodal data which does not suit all clinical applications.
Our work is the first to collect a new English speech dataset
wherein we have induced acute pain in adults using a cold pres-
sor task protocol and recorded subjects reading sentences out
loud. We report pain discrimination performance as F1 scores
from binary (pain vs. no pain) and three-class (mild, moder-
ate, severe) prediction tasks, and support our results with ex-
plainable feature analysis. Our work is a step towards provid-
ing medical decision support for pain evaluation from speech to
improve care across diverse and remote healthcare settings.
Index Terms: speech paralinguistics, health, medical conversa-
tions, pain assessment, speaker states

1. Introduction
The perception and management of pain, which encompasses
neurological, psychological, and cognitive dimensions, poses
a significant challenge in the medical field. Pain perception
transcends mere sensory inputs, integrating emotional and cog-
nitive aspects that markedly influence its intensity and charac-
ter [1]. Moreover, the complexity of pain perception is exacer-
bated by neuroplastic changes following surgical interventions,
highlighting the necessity to understand pain modulation mech-
anisms for efficacious management [2]. Although patients fre-
quently possess the capability to express and explicitly commu-
nicate their pain verbally, this task becomes particularly chal-
lenging for individuals unable to do so, such as those affected
by stroke [3], learning difficulties [4], autism [5], and young
children [6]. For these patients, the identification of objective,
non-invasive indicators of pain is crucial to ensure the provision
of timely and appropriate care. Even when a patient is able to
communicate with the clinician, their self-reported pain ratings
reflect individual, subjective experiences of pain, making them
difficult to quantify and assess reliably [7].

Historically, machine learning models have provided valu-
able insights into pain assessment across various contexts [8],
utilising methodologies such as electromyography (EMG),
electroencephalogram (EEG), skin conductance, and electro-
cardiography (ECG) to predict pain levels and outcomes. Re-
cent advancements have even leveraged wearable technologies
(e.g. Apple Watch) for continuous monitoring [9], facilitating
early interventions in conditions like sickle cell disease. The
development of personalized pain assessment offers a novel

and relatively untapped opportunity. With the advent of wear-
able technologies, speech, replete with digital biomarkers and
distinct ‘Digital Biomarker Fingerprints,’ can provide unique
insights into individual health states [10]. This approach to
healthcare, which leverages the ubiquitous nature of audio data,
holds the promise of identifying personalized health character-
istics through these digital fingerprints. The feasibility of this
method has been demonstrated, albeit preliminarily, in recent
work [11, 12, 13], which used audio analysis for assessing dif-
ferent types of pain in various languages.

A critical step toward trustworthy pain decision support
tools requires understanding which kinds of acoustic features
to exploit in order to improve the accuracy of pain assess-
ment. This knowledge has wide application in the medical do-
main [14], from analgesia administration to medication titra-
tion. Healthcare professionals, through established rapport
and ongoing patient interactions, are adept at discerning pain
through verbal and nonverbal cues. However, recent shifts to-
wards telephonic and video consultations have diminished the
efficacy of these cues, underscoring the need for a reliable,
distance-compatible decision-support tool. Our exploration of
pain assessment through speech processing contributes to this
enduring problem, promising to bridge the gap in patient care,
particularly in distance-led (e.g. telephone/video conference)
health settings.

One of the main research gaps that this paper addresses is
that there are no existing English speech datasets available for
acute pain assessment in adults that are labeled with clinically-
relevant pain scales [15]. In this paper, we make the following
contributions:
• Present a new English speech-only pain dataset from acute

pain inducement and identify functional acoustic features that
correlate with reported pain.

• Utilize these features with discriminative machine learning to
predict pain levels in two tasks: presence/absence of pain and
mild/moderate/severe pain.

• Show how different functional features contribute to pain
level assessment.

2. Related Work
Previous work on pain assessment has spanned multiple disci-
plines and input modalities including functional near-infrared
spectroscopy (fNIRS) [16], and electroencephalography (ECG)
data [17]. It has also been viewed from the standpoint of ‘af-
fective computing’ [18]. However, individuals express pain dif-
ferently and features beyond clear affect must be considered,
including speech rate, breathiness, mispronunciation, restarts,
etc. Reliable detection of pain from key acoustic features re-
mains unsolved. More recently, there was a renewed call for



research efforts to develop AI tools that support clinicians with
pain assessment from bioacoustic markers in speech [19] and
our work takes a step forward towards that goal.

Automated pain recognition has invited two streams of re-
search: pain detection which treats the problem as a binary clas-
sification task, and pain intensity assessment as a multi-class
classification or regression task. Another research dimension in
this domain is the use of unimodal input [13, 20] versus mul-
tiple modalities (audio, video, physiological) [21]. Although
speech and sound have proven very effective for analysing the
expression of emotions at an early stage of human development
(e.g., crying infants [22]), there remains much to be explored
for adult pain assessment, especially for real-time applications.
With increasing use of telehealth delivery and emergency call-
ing, there is a growing need for speech-based research on pain
assessment.

The first to report findings of bioacoustic markers of pain
from the speech signal was [11]. They developed a proof-of-
concept solution to detect the presence or absence of pain using
speech from interviews of adult hospital patients suffering var-
ious acute and chronic conditions. While their sample size was
quite small (400 speech instances), they derived two new types
of features from low-level descriptors (LLDs) and reported
promising results using support vector machines on a binary
prediction task. Further work from [12] classified pain assess-
ment for adults from speech using a combination of prosodic
features, mel frequency cepstral coefficients (MFCCs) and deep
neural network bottleneck features. Their best reported bal-
anced accuracy was 74.2% on a binary task (mild/severe) and
54.2% on a three-class task (mild/moderate/severe).

Similar to our work in this paper, [13] collected a German
speech pain dataset based on a cold pressor task to induce acute
pain. However, it was an uncontrolled collection and limited
only to German speech, making explainability difficult and gen-
eralisation across languages uncertain. They reported best per-
formance on three-class pain prediction with 42.7% unweighted
average recall, which is only slightly better than chance given
the imbalance of pain levels in their dataset. They used acous-
tic features, MFCCs, and deep spectrum VGG16 features [23]
on mel frequency spectrograms. Our work addresses a simi-
lar problem, but using clinically-relevant pain levels with our
newly collected English speech pain dataset where acute pain
was induced by a cold pressor task. Our work includes binary
pain detection as well as three-class assessment with promising
results using functional acoustic features. Our work also con-
tributes new understanding towards explainability about how
different acoustic features influence pain classification.

3. Data Collection
We followed a protocol common to the discipline of psychology
to induce acute pain in adult human subjects using very cold wa-
ter (0-4°C) in a Cold Pressor Task (CPT) [24, 25] while eliciting
and recording speech1. Pain level ground truth was assumed, as
in clinical contexts, that subjects reported pain accurately ac-
cording to their experience and individual perspectives.

3.1. Recruitment and Compensation

Participants were 15 undergraduate (12 female, 3 male, mean
age: 18.73, sd: 0.96) Psychology students from the United

1This study was approved by the University of Southampton ethics
board, reference ERGO 80074.A1

Kingdom who participated in return for partial course credit2.
Participants were excluded from the study if they reported: high
blood pressure; a heart or circulation problem; dysthymia; a car-
diovascular disorder; history of Raynaud’s syndrome, fainting,
seizures, or frostbite; an open cut, sore, or bone fracture on or
near to either hand; a neurological disorder; diabetes; epilepsy;
or pregnancy. Participants were required to be aged between
18 and 35 years. Participants were provided with details of the
study procedure, purpose, and their rights, including the right to
withdraw from the study or to end each trial by removing their
hand from the water.

3.2. Pain Inducement: The Cold Pressor Task

The CPT is a commonly used task for the induction of discom-
fort to mild pain [26, 27]. Participants were asked to immerse
their hand into cold water (0-4°C) while performing a speaking
task (Section 3.3). To provide a control condition and collect
data for the no-pain condition, we included a warm water (34-
37°C) condition. To minimize risk to the participants, and in
accordance with the ethical guidelines, participants immersed
their hand for a maximum duration of up to three minutes – or
until they withdrew their hand from the water [26]. To prevent
the buildup of micro climate within the water tanks, the water
was circulated with a water pump (5.8 L/h).

Participants were randomly assigned to one of four groups,
varying the order of which hands, left (L) or right (R), was
placed into the cold (C) or warm (W) water. The four exper-
imental groups were: (1) LC-LW-RC-RW, (2) LW-LC-RW-RC,
(3) RC-RW-LC-LW, and (4) RW-RC-LW-LC. Prior to the first
trial, the participant’s hand temperatures were recorded using an
infrared thermometer, providing a baseline to ensure that their
hand temperatures could be brought back to their specific base-
line following the final trial. Participants submerged their en-
tire hand in the water, with the palm facing upwards. After
every instance of cold water exposure, participants placed that
same hand into a nearby warm water bath to bring their hand up
to baseline temperature to minimize discomfort and to proceed
with the next trial. Following the experiment, participants were
debriefed and provided with a take-home debriefing sheet.

3.3. Speech Elicitation and Collection

During the CPT protocol for both warm and cold water im-
mersion (water tubs were side-by-side to minimize movement
around the room), participants read aloud sentences from a ran-
domized selection of Harvard Sentences3 [28] that were pre-
sented on 50” screen approximately 2 meters away. Every sixth
sentence required them to say a pain statement to register their
pain level on a 1-10 scale, as follows: “On a scale from 1–10,
the pain I feel right now is...”. The order of the sentences were
randomized per subject and manually advanced by the research
team, to allow speakers to read the sentences at their own pace.
Speech was collected from two microphones: (1) Røde Wire-
less PRO close-talking mic with lapel placed approximately 10”
from each speaker’s chin (primary), and (2) Blue Yeti desktop
microphone placed approximately 20” from the speaker. All
audio was collected as one utterance per wave file, as 16-bit
mono PCM 16 kHz. The data collection room was approxi-
mately 10x10’. In total, from the 15 participants, we collected

2The bias towards females reflects recruitment from a Psychology
undergraduate program predominately comprised of females.

3https://www.cs.columbia.edu/˜hgs/audio/
harvard.html



1,518 female utterances (avg: 126.5 sd: 27.5) and 429 male
utterances (avg: 143, sd: 6.4). Due to the variability across
genders and very small sample of male utterances, in our ex-
periments (Section 5.3) we report results for female-only and
mixed gender. We used data from the primary (Røde) lapel mic.

3.4. Ethics

Automatic pain discrimination has the potential to be misused
outside of the medical domain (e.g., using pain levels for tor-
ture or abuse) while it can also provide decision support tools
to legitimate health professionals. Our data collection and re-
search activities aligned with a Responsible Research and Inno-
vation (RRI) approach 4 called the AREA (Anticipate, Reflect,
Engage, Act) framework [29] to guide our ethics application
and to determine whether this work should be undertaken. We
followed the ethical guidelines of our institution precisely and
we adhere to all applicable regulations regarding data sharing.
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Figure 1: Distribution of utterances labeled for pain in the bi-
nary and three-class discrimination tasks, indicating distribu-
tion of male and female utterances.

4. Speech Data Pre-Processing
All 1,947 utterances were manually reviewed by the authors
for quality control. We removed 225 utterances wherein: a
speaker’s words were cut off, other speakers were present in
the audio, noise interference was present including noise from
outside of the recording room, from the CPT equipment, the
speaker bumping the microphone against the water tubs or the
subject shifting in an audible manner.

The pain statements (Section 3.3) were used to label utter-
ances by manually extrapolating the reported pain level back-
wards for the previous five utterances, allowing us to label ev-
ery utterance with the subject’s self-reported pain level. If the
pain statement was not available due to our quality control pro-
cedure, then we removed the previous sentences that remained
unlabeled. For pain levels wherein subjects reported two pain
levels (e.g., ”between 5 and 6” or “8.75”) we rounded up to the
nearest integer. Likewise, if a subject reported a pain of 0, this
was re-labeled as 1 since we used a pain scale of 1-10.

All recordings were trimmed using voice activity detection
(VAD) to remove any leading and trailing silence using the
Python webrtcvad toolkit with the lowest aggressiveness set-
ting5 and we removed 14 utterances where the duration was
less than 1.5s. Our final dataset6 contained 1,690 utterances

4https://www.ukri.org/who-we-are/
epsrc/our-policies-and-standards/
framework-for-responsible-innovation/

5https://github.com/wiseman/py-webrtcvad/
tree/master?tab=readme-ov-file

6Fully anonymized statistical acoustic features can be made avail-
able by contacting the lead author.

and 76.88 minutes of data of which 1,301 utterances were from
female speakers (duration avg: 2.69s, sd: 0.45) and 389 utter-
ances (duration avg: 2.84s, sd: 0.45) were from male speakers.

5. Pain Discrimination Experiments
From Figure 1, we adjusted the reported pain levels p in our
dataset to align with two discriminative tasks: presence or ab-
sence of pain (“binary task”) and mild, moderate, severe pain
(“three-class task”). For the binary pain labels, we considered
1-3 as no pain and 4-10 as pain. For the three-class problem, we
treated 1-3 as mild, 4-6 as moderate, and 7-10 as severe [15].

5.1. Acoustic Features

We extracted 6,373 functional acoustic features using the
Python openSMILE [30] toolkit from the ComParE2016 [31]
feature set, which is known for being used in a variety of non-
semantic and paralinguistic acoustic events, including previous
work on pain assessment [13]. We applied standard normal
scaling (mean 0, unit variance), followed by principle compo-
nents analysis (PCA), and used a Scree Test to determine that
the optimal number of components was 45 in both tasks .

5.2. Classifiers and Hyper-parameters

To establish the first baseline on this dataset, we explored sev-
eral machine learning algorithms with hyper-parameter tuning.
Using the Python Scikit-Learn toolkit [32], we selected sup-
port vector machines (SVM), which have previously shown to
be useful for this task, Logistic Regression (Logit), and multi-
layer perceptron (MLP). To select hyper-parameters, we split
our dataset into 70/30 train/test and performed gridsearch on the
training set with stratified 10-fold cross-validation (stratified by
label not speaker). For SVM, we explored different kernels (lin-
ear, radial basis function, and polynomial), as well as values for
the regularization parameter C = {0.001−0.1, step = 0.001},
with gamma = 1/n features. For Logit, we translated the
labels into integers (0 and 1 for binary, and 0, 1, 2 for three-
class) and explored values for the inverse regularization strength
C = {0.001 − 0.1, step = 0.001}. For MLP, we explored
different hidden layer sizes of 1-6 layers using 256 nodes per
layer, and activation function set to ReLU [33]. We explored
different learning rate initializations of lr = {0.1, 0.01, 0.001}
with constant, adaptive and inverse scaling, as well as alpha =
{0.0001, 0.001, 0.01}, and early stopping. All other parame-
ters were set to default values. We found the best parameters by
optimizing for F1 score with micro averaging. The best hyper-
parameters, feature names, and example mel frequency spectro-
grams are available7.

5.3. Results

Table 1 presents performance as F1 score with micro averag-
ing highlighting best performance on 10-fold cross validation
and held-out test. We identified the best hyper-parameters from
cross-validation and applied that to our test set. The SVM with
polynomial kernel performs similarly to MLP in both tasks, in-
cluding female-only and mixed gender utterances, with SVM
slightly better on cross-validation. As a baseline, we show a ran-
dom classifier (representing random guessing). We further in-
vestigated how different speakers affect classifier performance
using hold-one-out speakers in a separate train/test split, and

7https://rhoposit.github.io/interspeech2024



found that these models do not generalize well to unseen speak-
ers, which should be explored in future work. This could be
due to the size or imbalance of the dataset, and further moti-
vates new directions toward personalized pain assessment.

Table 1: Classifier performance on two tasks (binary and three-
class), reporting normalized F1 scores, for utterances that were
female-only as well as mixed male and female. Dark blue is best
performance, light blue is second-best performance.

Binary Three-Class
Female Mixed Female Mixed

SVM
- CV 80.0 ± 3.8 80.3 ± 1.7 69.9 ± 4.3 70.9 ± 4.6
- Test 78.0 73.8 70.6 67.3
Logit
- CV 71.8 ± 3.4 73.8 ± 5.5 66.7 ± 3.5 66.4 ± 2.8
- Test 72.1 70.6 69.6 62.9
MLP
- CV 79.3 ± 2.5 78.9 ± 3.0 68.3 ± 2.7 68.3 ± 4.9
- Test 78.3 72.8 70.1 68.4

Random 50.0 50.0 33.3 33.3

5.4. Feature Analysis

Explainability is an important aspect of any automated tech-
nique that may influence or contribute to clinician decision-
making. Of the 45 features identified through PCA, 22 were
spectral descriptors, 16 were energy descriptors, and 7 were
voicing descriptors. Here, we explore how the different features
contribute to classifier decisions using SHAP values [34]. We
used the best-performing SVM model for each task from Sec-
tion 5.3 and fit a Kernel Explainer to a stratified background
model of 260 utterances for each task. We report the top 9
features for female-only speakers in the binary (Figure 2) and
three-class (Figure 3) assessments. From both figures, we iden-
tify key features that contribute to classifier decisions:

1. PC1 audspecRasta lengthL1norm sma flatness
2. PC2 pcm fftMag spectralRollOff75.0 sma de stddev
3. PC3 audSpec Rfilt sma[1] lpc1
4. PC4 audSpec Rfilt sma[3] lpgain

Feature PC1 is a feature corresponding to the relative spec-
tral transform (RASTA) [35] applied to the auditory spectrum,
which uses a band-pass filter on the energy in each frequency
subband to smooth over noise variations and can simulate hu-
man audition. PC2 is a spectral roll off point, which can be
linked to voice/unvoiced speech and breathiness. PC3 and PC4
represent mel frequency spectrum Perceptual Linear Prediction
(PLP) cepstral coefficients and are known to be used in speech
emotion recognition tasks [36]. Explanations of which features
are most useful for pain assessment can contribute to develop-
ing more trustworthy tools for clinicians to adopt in practice, as
we have demonstrated in this crucial first step.

6. Discussion and Future Work
We have presented a framework from which we collected and
curated a new English speech dataset based on induced acute
pain in adults. We identified key acoustic features that can
discriminate well for pain detection and pain assessment. We
showed that our SVM and MLP classifiers performed well on
both tasks. Although our results are not directly comparable

Sum 36 Feats

Figure 2: Beeswarm plot showing SHAP values for the top
9 features corresponding to classification decisions on the
(female-only) binary detection task, n=250.

Sum 36 Feats

Figure 3: Heatmap plot showing SHAP values for the top 9 fea-
tures and corresponding decisions f(x)) on the (female-only)
three-class pain assessment task, n=250.

to previous work due to differences in underlying data, we
achieved overall better performance than what has been pre-
viously reported for unimodal pain assessment from speech.
The limitations of our dataset (number of speakers and gen-
der imbalance) necessitated reporting separate results for fe-
male speakers and our classifiers did not generalize well to un-
seen speakers. To address this limitation, we have begun col-
lecting a larger dataset of 50 participants with closer gender
balance, which will be made publicly available for academic
use. Our efforts will allow deeper exploration of automatic pain
assessment, including more variety of speech features such as
prosody and learning directly from spectrograms. We are inter-
ested in developing techniques that can more finely assess pain
levels beyond a three-class granularity. The goal that we are
working toward is to develop low-cost decision support tools
for health professionals who stand to benefit from knowing
that pain-related information can be found in the speech signal.
Such tools have wide implications for the future of medicine,
including personalized health monitoring, remote health con-
versations, and mitigation of bias when delivering analgesia.
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[14] C. Fröjd, C. Lampic, G. Larsson, G. Birgegård, and L. v. Essén,
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