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ABSTRACT In this paper, we investigate the impact of user pairing on the power consumption of 2-user
non-orthogonal multiple access (NOMA) systems in the downlink. We formulate the joint power allocation
and user pairing problem as a mixed-integer programming problem with the objective of minimizing the
total transmit power consumption. While the pairwise power allocation strategy is straightforward, for a
system with 2K users and K NOMA pairs, there exist (2K)!

2K×K!
possible pairing strategies, resulting in

a combinatorial search space that grows drastically with the number of users in the system. Hence, we
propose an analytical approach to obtain the globally optimum user pairing strategy. Notably, our procedure
has a linear time complexity of O(2K), which is a significant improvement over the suboptimal and
computationally expensive methods in the existing literature. We demonstrate through extensive simulations
that the proposed optimal pairing strategy can attain considerable performance gains in terms of power
savings compared to benchmark schemes. In particular, in a typical deployment environment, 63% of the
total power budget is saved at a mean received signal-to-noise ratio (SNR) of 15.7 dB among the users.
Finally, we evaluate the energy efficiency (EE) of NOMA transmission compared to the EE achieved
through orthogonal multiple access (OMA) transmission. We demonstrate that the EE gain of NOMA
transmission compared to OMA is improved more than sixfold at convergence by adopting the power
minimization approach studied in this work, rather than adopting the sum rate maximization approach
found in the literature.

INDEX TERMS Non-orthogonal multiple access (NOMA), user pairing, power allocation, power mini-
mization, energy efficiency

I. Introduction

NON-orthogonal multiple access (NOMA) has been re-
garded as an enabling technology for beyond fifth-

generation mobile systems [1], [2]. This is particularly true
within the context of emerging new applications for next-
generation communications such as non-terrestrial networks
(NTNs) and internet of things (IoT) applications, where
NOMA’s salient capabilities in interference management
and spectral efficiency enhancement are especially valu-
able. More specifically, NOMA offers superior spectral ef-

ficiency compared to orthogonal multiple access (OMA)
schemes, such as orthogonal frequency division multiple ac-
cess (OFDMA). This is largely due to NOMA’s capability to
allow multiple users to share the same resource blocks (RBs)
which may be in time, frequency, or code. The standard
implementation of NOMA relies on superposition coding at
the transmitter and successive interference cancellation (SIC)
as a decoding strategy at the receiver [1]. 2-user NOMA is
the typical deployment scenario, where the number of users
sharing an RB is limited to a pair of users. The delay incurred
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and SIC error propagation are exacerbated when more users
are multiplexed together [3].

The user pairing strategy is a crucial aspect of the NOMA
system since it can significantly affect system performance.
Equally crucial is the consideration of the implementation
complexity incurred by the user pairing process. Therefore,
there is a pressing need for low-complexity procedures
for user pairing that guarantee optimal performance [4],
[5]. However, deriving the optimal user pairing scheme
along with a suitable power allocation method under any
objective function usually results in a non-convex mixed-
integer programming problem where the full search space
grows combinatorially as the number of users increases.
Accordingly, from a system design perspective, exhaustive
search or computational methods with high complexity are
infeasible in deployment scenarios.

Contrary to the plethora of works targeting sum rate
maximization, there is a relative scarcity of research in the
literature dedicated to power minimization via user pairing.
In particular, the globally optimum solution to the user
pairing problem with the objective of transmission power
minimization remains an unsolved problem. Therefore, ana-
lyzing this user pairing problem in isolation holds consider-
able interest, as it pertains broadly to any NOMA downlink
scenario. For instance, maintaining power efficiency while
achieving quality of service (QoS) requirements is of utmost
importance for NTN nodes such as high altitude platforms
(HAPs) [6]. This is due to the limited power supply in
these scenarios, as opposed to a conventional terrestrial base
station (BS). The most relevant literature on this subject is
discussed in Section I-A.

A. Related Work
Early works on NOMA such as [3] and [7] identified the

crucial impact of user pairing on the performance of NOMA.
In particular, authors in [3] investigated user pairing under
fixed power allocation NOMA (F-NOMA) and cognitive-
radio-inspired NOMA (CR-NOMA). A general framework
of dynamic user pairing was established in this work without
an explicit user pairing strategy. In [8], the conventional
matching algorithm was adopted to perform user pairing
to maximize the achievable sum rate (ASR). Subsequently,
in [9], the authors obtained the globally optimal user pair-
ing strategy for maximizing ASR under the minimum rate
constraints formulated as OMA achievable rates. This work
derived the well-known result that the sum rate is maximized
by pairing the users having the highest channel gains with
the users experiencing the lowest channel gains in a nested
manner. In our work, we refer to this pairing scheme as
near-far (NF) pairing. In [10], another low-complexity user
pairing scheme was proposed, where users within a cluster
are paired successively, based on their power demand coef-
ficients. This approach was shown to improve the decoding
success probability of user pairs.

There have been numerous works investigating user pair-
ing in subsequent works, relying on a variety of approaches.
These include particle swarm optimization (PSO) [11],
deep reinforcement learning (DRL) [12], quantum-inspired
evolutionary strategies [13], multi-armed bandit algorithms
[14], [15], and graph-theoretic algorithms [16]. These works
largely focus on maximizing the sum rate of the system
under various constraints. Moreover, in [17] the authors
propose an iterative algorithm, which is shown to outper-
form some benchmark user pairing strategies within the
formulated framework in terms of maximizing the minimum
downlink rate in the context of cell-free massive multiple-
input multiple-output (MIMO) systems. However, even if
optimality is achieved (most of the works mentioned above
report sub-optimal solutions), these algorithms are generally
unable to cope with the increasing number of users as
complexity becomes a concern.

In [18], the authors considered various factors affecting
power consumption, involving sub-channel allocation and
user pairing. The overall optimization problem was shown
to be NP-hard, which motivated the adoption of a relax-
then-adjust (RTA) algorithm to arrive at a sub-optimal so-
lution, and this was shown to outperform the monotonic
optimization (MO) method adopted in preceding works.
In this work, the rate demands of the users are kept at
a constant value. Most importantly, the authors made the
crucial observation that, while users with relatively large
channel gain differences were more likely to be multiplexed
together, the power consumption is not necessarily mini-
mized by adopting the NF scheme. Following this obser-
vation, the authors highlighted the significance of optimal
user pairing for power minimization. Additionally, authors
in [19] investigated power allocation in cache-aided NOMA
systems. Two novel approaches – one based on a divide-
and-conquer algorithm and another based on a DRL scheme
were proposed.

Furthermore, authors in [20] provided a framework for
achieving energy efficiency (EE) in downlink NOMA trans-
mission in unmanned aerial vehicle (UAV) aided networks.
Diverse user pairing schemes were explored in this paper,
and the observation was made that the choice of user
pairing has a considerable impact on the performance of the
system. Following the results of [9], the authors adopted
the NF pairing scheme in their primary analysis. However,
the main focus of [20] was the optimization of the UAV
altitude rather than user pairing. Building on the work done
in [20], the same authors formulated a joint-optimization
problem in [21] that performs altitude control and user
pairing aiming to minimize power consumption. In this work,
the cat swarm optimization (CSO) algorithm was adopted
for the user pairing task. Some performance gains were
reported compared to random pairing and PSO. However,
the complexity analysis revealed that both the CSO and PSO
entail substantial computational complexity. These methods
also do not guarantee optimality.
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B. Contributions and Paper Organization
To the best of our knowledge, a framework that guarantees

a provably optimal power allocation method along with its
user pairing strategy for the power minimization problem
does not exist in the literature. Against this backdrop, we
note that a deeper analysis of the structure of the problem
could provide a meaningful improvement over the sub-
optimal and relatively high-complexity approaches to this
problem explored in prior works. To this end, the main
contributions of this paper can be summarized as follows.

• We propose the analytical procedure to obtain the
globally optimum power allocation method and user
pairing scheme that minimizes transmission power con-
sumption under minimum data rate requirements. We
first derive the optimal power allocation strategy for
an arbitrary pair of NOMA users. Then, we rigorously
prove that the optimal pairing strategy for K = 2
user pairs generalizes for any K. Notably, the optimum
pairing can be extracted with the proposed technique
with O(2K) time complexity, growing linearly with the
number of users in the system.

• We perform supplementary analyses that provide theo-
retical guarantees on power utilization under the prob-
lem constraints. Specifically, we focus on two critical
aspects of the system. First, we prove that the power
budget allocated per RB supports the required data
rates for any arbitrary pair of users. Secondly, we
determine the minimum power consumption threshold
for the system. This threshold serves as an indicator of
the lowest achievable power consumption that satisfies
the data rate requirements, and its proximity to the
operational region of practical systems can be easily
computed with the users’ channel state information.

• Simulation results show the potential of the proposed
approach in achieving substantial power savings in
typical deployment scenarios. In particular, 63% of the
total power budget is saved at a mean received signal-
to-noise ratio (SNR) of 15.7 dB among the users. The
impact of various environmental profiles, along with
variable amounts of users is also presented.

• We further analyze and discuss the impact of user pair-
ing and associated objectives on the energy efficiency
(EE) of NOMA transmission compared to the EE
achieved through OMA transmission. We demonstrate
that the EE gain of NOMA transmission is improved
more than sixfold at convergence by adopting the power
minimization approach studied in this work, in compar-
ison to adopting the sum rate maximization approach
found in the literature, such as in [9] and [20].

The remainder of this paper is organized as follows. In
Section II, we introduce the system model, and provide
the mathematical formulation of the joint power allocation
and user pairing problem. In Section III we propose the
analytical approach to obtain the user pairing strategy along

Potential
NOMA User Pair

Users Served by the
Base Station

Base Station

FIGURE 1. An illustration of the 2-user downlink NOMA transmission
model, indicating possible user pairing configurations.

with the power allocation method to solve this optimization
problem. Further analyses regarding the analytical bounds of
power utilization are also presented. Performance evaluation
of the proposed pairing scheme with simulation results under
typical deployment scenarios is presented in Section IV,
followed by concluding remarks in Section V.

II. System Model and Problem Formulation
A. System Model

We consider a downlink scenario with 2K users randomly
distributed in a cell, where 2-user NOMA transmission is
employed, resulting in K user pairs. In this model, it is
assumed that the paired users receive the signal in the same
RB (in time, frequency, or code), and different RBs are
allocated orthogonal resources between themselves [3]. A
generic model of this scenario is depicted in Fig. 1. For any
pair of users that shares an RB constituted by individual
users m,n, among these 2K users, the superimposed signal
s transmitted by the BS can be expressed as

s =
√

αnPmaxsn +
√

αmPmaxsm, (1)

where sk, k ∈ {m,n} indicates the signal intended for user
k, and E(|sk|2) = 1, while Pmax is the total power allocated
to the RB and the ratios of Pmax allocated to the user k are
indicated by αk.
The signal received by user n is

yn = hn

(√
αnPmaxsn +

√
αmPmaxsm

)
+ ñn, (2)

and the signal received by user m is

ym = hm

(√
αnPmaxsn +

√
αmPmaxsm

)
+ ñm, (3)

where hk, k ∈ {m,n} is their channel gain defined in (4) and
ñk denotes the noise at user k with power spectral density
(PSD) σ2.
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The channel between the k−th user and the BS, denoted by
hk, can be expressed as [22]

hk =
βk√
dk

ω , (4)

where βk is the Rician distributed small-scale fading coeffi-
cient experienced by user k, dk is the distance between the
user k and the BS, while ω denotes the path loss factor.

In general, we represent individual users in the system by
uk, k ∈ {1, 2, ..., 2K}. As in works such as [3], [9], [20],
among many others, the channel gains corresponding to all
2K users in the system are assumed to be known at the BS
such that |h1|2 ≥ |h2|2 ≥ · · · ≥ |h2K |2 > 0. Therefore, u1

is the user with the highest channel gain, and u2K has the
lowest channel gain. In reference to a pair of users m and
n, we assume that |hn|2 ≥ |hm|2. In other words, user n is
assumed to be the “strong” user in any given pair sharing
an RB. This enables user n to perform SIC to remove the
interference caused by the signal belonging to user m, then
decode its own message. Meanwhile, the signal received by
user m is decoded directly by treating hm

√
αnPmaxsn as

noise [3], [8], [9], [20], [21], [23]. Furthermore, the total
power budget of the system that can be utilized across the
K RBs is denoted by P̃max ≜ K × Pmax.

Based on the above, and assuming that the communication
resources (e.g., bandwidth) are distributed evenly among the
RBs, the achievable individual rates, R

{m,n}
k , k ∈ {m,n}

for the users m and n that form a pair can be expressed,
respectively, as [3], [8], [9]

R{m,n}
m = log2

(
1 +

αm|hm|2
αn|hm|2 + γ−1

)
, (5)

R{m,n}
n = log2(1 + αnγ|hn|2), (6)

where γ ≜ Pmax

σ2 defines the transmit SNR [7].
In contrast, in an OMA scheme, 2K RBs are required in

order to provide coverage for the 2K users. Then, assuming
that the resources are distributed evenly among the RBs as
in our NOMA transmission model, this incurs a multiplexing
loss factor of “ 1

2” on each user [9], assuming that the
same amount of total resources are utilized in both cases.1

Therefore, the achievable rate for any user k in an OMA
scheme is given by

ROMA
k =

1

2
log2(1 + γ|hk|2). (7)

This formulation has been widely adopted in prior works in
order to compare the performance of NOMA against OMA.
Most notably, in major works on user pairing such as [3],
[8], [9], and several subsequent works, such as [15], [20],
[21], [23].

B. Problem Formulation
Our goal in this paper is to analytically derive the power

allocation method and the user pairing strategy that mini-
1This is in reference to the communication resources such as bandwidth,

and does not include power.

mizes power consumption at the BS within the context of
the 2-user NOMA downlink scenario. The power allocation
task involves choosing the power allocation coefficients
αn and αm for the users in each RB. Second, we must
select a suitable user pairing scheme, which is particularly
challenging to address due to the combinatorial nature of the
search space. Specifically, with 2K users in the system, there
exist (2K)!

2K×K!
possible pairing schemes. In this subsection, we

formulate this problem mathematically as a joint problem in
power allocation and user pairing.

Given that there are K RBs to be shared,—each by 2
users—all possible user pairing schemes can be represented
by a binary matrix with dimensions 2K × 2K, which we
denote by U. We construct this matrix such that the columns
m ∈ {1, ..., 2K} and rows n ∈ {1, ..., 2K} are indexed by
the users according to the descending order of their channel
gains. E.g., the first row and column denoted by U1,∗ and
U∗,1 respectively, are reserved for u1. Likewise, the 2K-th
row and column, U2K,∗ and U∗,2K are reserved for u2K .
Then the element in the n-th row of the m-th column of U
can be extracted as un,m in the following manner:

un,m =

{
1, if user n paired with user m, |hn|2 ≥ |hm|2
0, otherwise.

(8)
Hence, the general form of the optimization problem is
formulated as

minimize
{αn,αm,U}

2K∑
n=1

2K∑
m=n+1

un,m

(
αn + αm

)
(9)

s.t.
C1: un,m(αm + αn) ≤ 1, 1 ≤ m,n ≤ 2K (9a)

C2: R{m,n}
n ≥ ROMA

n , 1 ≤ n ≤ 2K (9b)

C3: R{m,n}
m ≥ ROMA

m , 1 ≤ m ≤ 2K (9c)
C4: un,m ∈ {0, 1}, 1 ≤ m,n ≤ 2K (9d)
C5: un,m = um,n, 1 ≤ m,n ≤ 2K (9e)
C6: un,n = 0, 1 ≤ n ≤ 2K (9f)

C7:
2K∑
n=1

un,m = 1, 1 ≤ m ≤ 2K (9g)

C8:
2K∑
m=1

un,m = 1, 1 ≤ n ≤ 2K (9h)

C9: αm, αn > 0, 1 ≤ m,n ≤ 2K. (9i)

The constraint C1 ensures that the power budget Pmax is
not exceeded for any given pair, while the constraints C2
and C3 impose the minimum data rate requirement on each
user to be their respective OMA-achievable rate as expressed
in (7). Constraint C4 guarantees that the solution space
contains only valid entries of U as required by (8). It can be
easily seen that the upper and lower triangular portions of U
contain the same information. For the calculation of the total
power utilized by a pairing scheme, we only consider the
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upper triangular portion of U, as indicated by the objective
function in (9). Therefore, the constraint C5 specifies that the
solution space only contains permutations of the matrix such
that UT = U, and C6 ensures that the diagonal elements of
U are set to 0 as users cannot form pairs with themselves.
Additionally, this also guarantees that the user n with the
higher channel gain in each pair is always indexed by row n
of U, while user m, with the lower channel gain, is always
indexed by column m. Finally, with C7 and C8, we ensure
that each row and column of U individually sum to 1, as
each user must be uniquely contained among one of the K
pairs.

Problem (9) is a non-convex mixed-integer programming
problem [9], [21]. To solve it, we adopt a similar approach
to that in [9], [12], and [24], by decoupling the power
allocation task and the user pairing task to arrive at the
full solution. However, it is important to note that while
we draw inspiration from works such as [9], [12], and
[24], our specific objective function and problem constraints
differ significantly. These distinctions introduce substantial
asymmetries and challenges that render the specific analyt-
ical methods employed in these works unsuitable for our
scenario.

III. Power Allocation and User Pairing
In this section, we propose the analytical procedure to

solve the problem in (9). First, we propose the optimal power
allocation method for any arbitrary pair of NOMA users. In
light of this, we investigate the impact of user pairing on
the overall power utilization of the system and propose the
optimal user pairing scheme. Additionally, we also derive
theoretical bounds on power utilization under the problem
constraints.

A. Optimal Power Allocation for an Arbitrary Pair of Users
We derive the power allocation directly from the con-

straints, similar to the approaches taken in [9], [12], [20],
and [21]. We require that each user in the system achieves
their OMA achievable rate expressed in (7). Then, we know
that the following inequalities must hold:

log2

(
1 +

αm|hm|2
αn|hm|2 + 1

γ

)
≥ ROMA

m , (10)

log2(1 + αnγ|hn|2) ≥ ROMA
n . (11)

After some algebraic manipulations, the lower bounds of αm

and αn, denoted by αmin
m and αmin

n , respectively, can be
derived as

αmin
m =

2R
OMA
m − 1

γ|hm|2

(
1 +

2R
OMA
n − 1

|hn|2
|hm|2

)
, (12)

and

αmin
n =

2R
OMA
n − 1

γ|hn|2
. (13)

Observing (12) and (13), we define the following intermedi-
ate variables Φk and ϕk for uk as

Φk ≜
2R

OMA
k − 1

γ|hk|2
, (14)

and
ϕk ≜ Φkγ|hk|2. (15)

Then, P {m,n}
min ≜ αmin

n + αmin
m can be written as

P
{m,n}
min = Φn +Φm +Φnϕm. (16)

In summary, (16) is the minimum transmit power, as a
portion of Pmax required by an arbitrary pair of users {m,n},
that meets their respective data rate demands, as required by
the constraints C2 and C3 of the optimization problem in
(9).

Additionally, we must ensure that the constraint C1 in (9a)
is never violated under the optimal power allocation strategy
proposed above. This is concisely articulated in Theorem 1.

Theorem 1. The maximum available power per RB de-
noted by Pmax is sufficient to satisfy the rate requirements
ROMA

m and ROMA
n for the users m and n that make up the

NOMA pair {m,n}. Therefore, the condition αm+αn ≤ 1 is
always guaranteed, by choosing αm = αmin

m and αn = αmin
n .

Proof:
We begin by expressing Φk in its most explicit form by
substituting the right-hand side of (7) into (14) as

Φk =

√
1 + γ|hk|2 − 1

γ|hk|2
. (17)

Notice that the term Φ(x) ≜
√
1+x−1
x is a monotonically

decreasing function in x. In other words, the first derivative
Φ′(x) < 0, ∀x ∈ R and x > 0. Additionally, recall that
according to the NOMA principles postulated in Section A,
we require that |hn|2 ≥ |hm|2. Therefore, we have Φm ≥
Φn, (and ϕn ≥ ϕm). Consequently, the inequality

Φn +Φm +Φnϕm ≤ Φm +Φm +Φmϕm (18)

must hold.
With the aforementioned definition of Φ(x), and using

ϕ(x) ≜ xΦ(x), if we let x = γ|hm|2, the right-hand side
of (18), which is a function of γ|hm|2 can be written as
2Φ(x)+Φ(x)ϕ(x). By evaluating the right-hand side of (18)
with these conditions, we get

2Φ(x) + Φ(x)ϕ(x) = 2

√
1 + x− 1

x
+

√
1 + x− 1

x
(
√
1 + x− 1)

= 2

√
1 + x− 1

x
+

x− 2
√
x+ 1 + 2

x
= 1, (19)

∀x ∈ R and x > 0.
Therefore, we obtain the upper bound of P {m,n}

min as 1, since

Φn +Φm +Φnϕm ≤ 1. (20)
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This completes the proof.
In addition to obtaining the proof for Theorem 1, we

make the following observation based on the above analysis.
The upper bound, P {m,n}

min = 1 is reached for any γ when
|hn|2 = |hm|2. However, subject to the exact values of the
variables, P {m,n}

min may approach 1 when γ|hn|2 ≈ γ|hm|2.
This is different from the aforementioned case which is only
dependent on |hn|2 and |hm|2. This is because even when the
channel gains have relatively high variation between them,
an extremely small value of γ, induced by a sufficiently large
value of σ2, can be the dominating term.

As expected, larger values of the channel coefficients
at a given value of γ imply lower power requirements,
thereby driving the power allocation coefficients αmin

m and
αmin
n down. However, since γ > 0 and |hk| > 0 for

k ∈ {1, 2, ..., 2K}, it is easily seen that (12) and (13)
also satisfy the constraint C9 in (9i). In particular, these
conditions require that the numerators and denominators of
(12) and (13) are always positive, resulting in positive values
of αmin

m and αmin
n in all cases.

B. User Pairing
The power allocation strategy provided in the closed-form

expression (16), upheld by Theorem 1, which ensures that
the power budget is never exceeded, effectively solves the
optimization problem in (9) when K = 1. In this case,
there is a single pair of users resulting in just one valid
permutation of the user pairing matrix U. Furthermore, for
K ≥ 2 the pairwise power allocation strategy for minimum
power utilization given an arbitrary pairing scheme can also
be retrieved by (16). In other words, for any given pair of
users, the optimum values for the optimization variables αm

and αn in (9) can be readily extracted by adopting αmin
m

and αmin
n , from (12) and (13), respectively. Building upon

these results, in this subsection we propose the user pairing
strategy that optimally solves the optimization problem in (9)
for any K. Hence, here we are concerned with optimizing
the remaining variable in (9), namely U.

As a crucial first step, consider Lemma 1.
Lemma 1. Subject to the same constraints, the permuta-

tion of U that is required to solve the optimization problem
in (9) is identical to that which solves the minimization
problem with the objective function

minimize
{U}

2K∑
n=1

2K∑
m=n+1

un,m

(
Φnϕm

)
, (21)

which only considers the interaction term Φnϕm.

Proof:
After Section III-A, we know that the minimum power
utilized for any possible pair is given by (16). Therefore,
the objective function of the minimization problem in (9)
can now be written as

minimize
{U}

2K∑
n=1

2K∑
m=n+1

un,m

(
Φn +Φm +Φnϕm

)
. (22)

From this, observe the fact that the first two terms of (16),
namely Φn and Φm must form a constant term across all
possible permutations of U. Following this observation, an
equivalent form of (22) is

minimize
{U}

2K∑
n=1

2K∑
m=n+1

un,m

(
Φnϕm

)
+

2K∑
k=1

Φk, (23)

where the constant term formed by Φn and Φm is isolated as
a separate summation, which does not depend on the variable
U. In other words, Φk for each user k, k ∈ {1, ..., 2K}
appears exactly once when the total power consumption
of a pairing scheme is calculated. Consequently, the term∑2K

k=1 Φk can be treated as a constant when different pair-
ing schemes are compared in terms of their total power
consumption. As a result, the permutation of U that solves
the optimization problem (9) also solves the optimization
problem with the objective function (21) as asserted by the
Lemma. This completes the proof.

Henceforth, we focus on finding the optimal pairing for
(21) to obtain the optimal pairing scheme for our overall
objective of solving problem (9). Furthermore, we employ
prior definitions of the terms Φk, ϕk, Φ(x), and ϕ(x). Note
that the product Φnϕm in the objective function (21) takes
the form Φ(x)ϕ(y), where x = γ|hn|2 and y = γ|hm|2,
while un,m refers to the pair formed by users m and n, where
|hn|2 ≥ |hm|2. Then, based on the fact that |hk|2 ≥ |hk+1|2,
we can establish that

Φk ≤ Φk+1, (24)

and
ϕk ≥ ϕk+1, (25)

for k ∈ {1, ..., 2K − 1}.

1) Optimal Pairing Scheme with 2K = 4 Users
Now, we turn our attention towards deriving the optimal
pairing strategy for the case when K = 2, corresponding
to four users. There are three possible pairing schemes in
this scenario, which result in the following options.

• Option 1: u1 pairs u2, u3 pairs u4 → S1 ≜ Φ1ϕ2 +
Φ3ϕ4,

• Option 2: u1 pairs u3, u2 pairs u4 → S2 ≜ Φ1ϕ3 +
Φ2ϕ4,

• Option 3: u1 pairs u4, u2 pairs u3 → S3 ≜ Φ1ϕ4 +
Φ2ϕ3,

where SP , P ∈ {1, 2, 3} is defined as the explicit sums
obtained by the objective function in (21) when the pairing
scheme is represented by Option P . The pairing schemes
outlined in Options 1, 2, and 3 are illustrated in Fig. 2.
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Option 1:

Option 2:

Option 3:

FIGURE 2. Illustration of user pairings obtained from Options 1, 2, and 3.

Theorem 2. In a NOMA system with four users, the
pairing scheme that minimizes the power consumption is
Option 2, i.e., S2 ≤ S1 and S2 ≤ S3.

Proof:
First, let us explicitly rewrite the inequalities in (24) and (25)
for the case with four users for our visual aid as

Φ1 ≤ Φ2 ≤ Φ3 ≤ Φ4, (26)

and

ϕ1 ≥ ϕ2 ≥ ϕ3 ≥ ϕ4. (27)

Now, let us compare Option 1 and Option 2. If we let a =
Φ1ϕ2, b = Φ3ϕ4, c = Φ1ϕ3, and d = Φ2ϕ4, asserting the
opposite of Theorem 2 we get

S1 < S2,

Φ1ϕ2 +Φ3ϕ4 < Φ1ϕ3 +Φ2ϕ4,

a+ b < c+ d.

(28)

According to (26) and (27), it is clear that a ≥ c and b ≥ d.
We see that this does not hold, implying that the left-hand
side of (28) must be greater than or equal to the right-hand
side. Therefore, S2 ≤ S1. Now, let us compare Options 2
and 3. We can apply the same procedure here. Asserting that
S2 > S3, we get:

S3 < S2,

Φ1ϕ4 +Φ2ϕ3 < Φ1ϕ3 +Φ2ϕ4,

Φ2[ϕ3 − ϕ4] < Φ1[ϕ3 − ϕ4].

(29)

Since ϕ3 ≥ ϕ4 and Φ2 ≥ Φ1, this also results in a
contradiction. Therefore, S2 ≤ S3.

2) Optimal User Pairing Scheme for any 2K = N

We now generalize Theorem 2 to the case with any even
number of users. First, we focus on proving Lemma 2.
Before that, the following definitions are provided.

GN ≜ {u1, u2, ..., uK}, (30)

GM ≜ {uK+1, uK+2, ..., u2K}, (31)

where GN represents the set of users in the system with
the K highest channel gains, and GM represents the set
comprising the users with the K lowest channel gains.

Lemma 2. In a NOMA system with 2K users, the pairing
scheme that solves the optimization problem in (9) does not
contain any pairings among users in GN , or among users in
GM .

Proof:
Lemma 2 states that the optimal pairing scheme cannot be
a pairing scheme in which any pairings exist within GM ,
or equivalently, within GN . For any number M of pairings
within GN , there must also exist M pairings within GM .
Now, if we compare any single pair found within GN with
any pair within GM keeping all other pairings unchanged,
this results in a scenario with four users where the pairing
scheme is given by Option 1. As a consequence of Theorem
2, we can immediately find a better overall pairing scheme
by swapping over the two pairs in consideration to form
pairs in the form of Option 2. This decreases M by 1. This
can be done for all M pairs that may exist within GN and
equivalently in GM , until M = 0, in which case each pair
must contain a user from GN and one from GM . Then, it must
be the case that any pairing scheme with M = 0 utilizes less
power than that if M ≥ 1. Thus, it requires that the optimal
pairing cannot allow pairs to be found within GN and GM ,
as asserted by Lemma 2.
As an example of Lemma 2, consider the arbitrary pairing
scheme illustrated for the six-user scenario depicted in
Fig. 3 as Case A. In this case, GN = {u1, u2, u3} and
GM = {u4, u5, u6}. There is one user pair found within each
set. Namely, u2,3 within GN and u4,5 within GM . Therefore,
M = 1. When considering these two pairs in isolation,
they are in the form of Option 1, since |h2|2 ≥ |h3|2 ≥
|h4|2 ≥ |h5|2. Then, according to Theorem 2, the overall
power consumption of Case A can be immediately lowered
by switching these two pairs to take the form of Option 2
which results in the overall pairing scheme depicted as Case
B in Fig. 3 where M is now reduced to 0.

Theorem 3. In a NOMA system with 2K users in which
the channel gains of the users are known, the pairing scheme
that solves the minimization problem in (9) is to pair uk with
uk+K , k ∈ {1, 2, ...,K}. Therefore, the user pairing matrix
U contains the elements

un,m =

{
1, n = k,m = k +K, k ∈ {1, 2, ...,K},
0, otherwise.

(32)

Proof:
After Lemma 2, we are restricted to only considering user
pairs between GN and GM . Based on the sequences
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FIGURE 3. Illustration of a six-user scenario where M = 1 for the initial
user pairing scheme in Case A, which is immediately improved to Case B
through the application of Lemma 2, where M = 0.

ΦGN
≜ {Φ1,Φ2, ...,ΦK},

ϕGM
≜ {ϕK+1, ϕK+2, ..., ϕ2K},

(33)

the optimal pairing is given by the permutations of ΦGN
and

ϕGM
that minimize their dot product ΦGN

· ϕGM
. The rear-

rangement inequality [25] gives the lower bound when both
sequences are sorted oppositely. Therefore, as established by
the inequalities in (26) and (27), the minimum sum is given
by

Φ1ϕK+1 +Φ2ϕK+2 + ...+ΦKϕ2K . (34)

This can only be achieved by the pairing scheme denoted by
uk,k+K , as stated by Theorem 3. This result directly solves
the minimization problem in (21), and consequently also the
minimization problem in (9) due to Lemma 1. Note that
the rearrangement inequality can also be utilized to prove
S2 < S3.

As emphasized in [4] and [5], low-complexity design for
user pairing is necessary for NOMA’s potential as a feasible
component of future wireless communication systems. In this
regard, the above approach which proves global optimality in
minimizing power utilization is an attractive solution, since
the complexity of the procedure to obtain the optimal pairing
is O(2K). Given the sorted list of channel gains, the only
complexity that arises is the computation of the pairwise
power allocation according to (12) and (13), which grows
linearly with the number of users in the system, similar to the
case in [9]. Within this context, linear complexity in the user
pairing task is considered to be within the low-complexity
regime. This is in contrast to other alternatives, such as
matching theory based user pairing [8], swarm optimization
techniques [11], [21], multi-armed bandit algorithms [14],
[15], graph theoretic user pairing [16], iterative approaches
such as in [17], monotonic optimization [18] which incur
significantly higher computational complexities. Also, the
proposed techniques do not entail strict guarantees of global
optimality for the considered objective functions, in most
of these cases. Nevertheless, the computational complexity
of our procedure can be further reduced owing to the

fact that the power allocation required for each user pair
is independent of all other pairs. As a result, once the
optimal pairs have been identified according to Theorem 3,
the power allocation can be carried out in parallel. Hence,
the scalability of the system can be greatly improved to
accommodate massive amounts of users, by leveraging any
available parallel computation enabled hardware architec-
tures at the transmitter. In the ideal case where enough
parallel computing nodes are available, near-constant time
performance can be achieved when power can be allocated
to the K resource blocks simultaneously.

C. Tight Upper Bound on Power Savings
With the optimal solution for (9) in place, as a supplemen-

tary piece of analysis, we aim to establish a tight upper bound
on the power that can be saved per RB by utilizing NOMA
compared to an OMA scheme. Equivalently, this involves
understanding the lower bound of P {m,n}

min .
We know that P {m,n}

min ≤ 1 based on Theorem 1, and so
the quantity

(
1− P

{m,n}
min

)
Pmax can be thought of as the

power that is saved per RB in comparison to OMA.

Theorem 4. limγ→∞ P
{m,n}
min = |hm|

|hn| . In other words,

at least |hm|
|hn| of the total power Pmax allocated to the pair

{m,n} (|hn|2 ≥ |hm|2 ) is utilized to meet their minimum
rate requirements ROMA

k , k ∈ {m,n}.

Proof:
See Appendix A.

The primary implication of Theorem 4 is that the power
that can be saved by a user pair sharing an RB compared
to OMA is directly proportional to the difference in their
channel gains. This is in line with Theorem 1, where
the total power budget of the RB Pmax is required when
|hm|2 = |hn|2, which is directly corroborated by Theorem
4, according to which P

{m,n}
min = 1, even as γ → ∞ if

|hm|2 = |hn|2.
Furthermore, the total power utilized by some pairing

scheme (represented by P̃ ) as a portion of its total power
budget (represented by P̃max ≜ K × Pmax) in the limit can
be extracted from its user pairing matrix from the power
utilization ratio, P̃

P̃max
as

lim
γ→∞

P̃

P̃max

=
1

K

2K∑
n=1

2K∑
m=n+1

um,n

(
|hm|
|hn|

)
(35)

After Theorem 3, we know that the quantity∑2K
n=1

∑2K
m=n+1 um,n

(
|hm|
|hn|

)
must be minimized by

choosing user pairs uk,k+K , according to (32). As a result,
for any 2K users served by the 2-user NOMA transmission
model we have adopted in this paper, the minimum power
utilization ratio as γ → ∞ is given by

1

K

K∑
k=1

|hk+K |
|hk|

, (36)
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TABLE 1. Simulation parameters.

Parameter Value
Number of users, N 50

Coverage radius 1000 m
Path loss exponent, ω 2, 2.7, 3, 3.5

Rician K-factor 0, 3, 5
Power budget per RB, Pmax 0 dBm

Noise PSD, σ2 0 to −140 dBm

when the users are optimally paired. This limit can be
calculated for any arbitrary pairing scheme in a similar
manner.

IV. Performance Evaluation and Discussions
In this section, we comprehensively evaluate the perfor-

mance of the optimal user pairing strategy through simu-
lations. Each data point in our plots is the average per-
formance based on 103 independent Monte Carlo runs of
random user distributions under the stated channel model.
First, the optimal pairing scheme is benchmarked against
low-complexity pairing schemes commonly found in the
literature. In the latter half of this section, we present further
analyses and discussions regarding the achievable EE in
NOMA transmission, and we compare it to OMA. The
simulation parameters are listed in Table 1.

A. Performance of the Optimal User Pairing Method
We benchmark the power consumption of our proposed

pairing scheme against the following NOMA user pairing
strategies:

• The NF scheme, the well-known pairing scheme de-
rived in [9] for maximizing the sum rate, where uk is
paired with u2K−k+1 for k ∈ {1, 2, ...,K},

• the near-near (NN) scheme, as adopted in [10] and
benchmarked in [20], where user pairs are chosen such
that the user uk is paired with the user uk+1, for
k ∈ {k : k = 2j − 1, j ∈ N, 1 ≤ j ≤ K}, and

• random pairing.

The quantity P̃
P̃max

defined in Section III-C is adopted as the
key performance metric in our numerical simulations, which
is the total transmission power consumed as a portion of the
total power budget. In each case, the power allocated to each
user pair is determined by (16).

In our simulations, we obtain γ, by fixing Pmax at 0 dBm
while varying the noise power σ2 from 0 to −140 dBm, as
detailed in Table 1. However, the specific values of γ do
not correspond exclusively to these values. They can also
be representative of any other combinations of Pmax and σ2

that yield the same power ratio. For example, a γ value of 90
dB is achieved with Pmax set to 0 dBm and σ2 at −90 dBm,
as in our simulations, and the same γ can be obtained with
Pmax = 30 dBm and σ2 = −60 dBm.
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FIGURE 4. The power utilization ratio P̃
P̃max

of various pairing schemes
against γ under the simulation settings in Table 1 with ω = 2 and the
K−factor fixed at 0. For each pairing scheme, P̃

P̃max
as γ → ∞ as

predicted by Theorem 4 is also marked. The secondary axis indicates the
average received SNR of the users at each value of γ.

In Fig. 4, we benchmark the power utilization ratio of
the aforementioned pairing schemes across a wide range of
γ values. In line with [9], the Rician K-factor is set to 0,
which corresponds to the Rayleigh fading environment, and
the path loss exponent ω is set to 2. For reference, the mean
received SNR of the users is plotted in the secondary axis
for each value of γ. We compute the received SNR of the
user m in each pair, denoted by γm

r as

γm
r =

αm|hm|2
αn|hm|2 + γ−1

, (37)

and for each user n, denoted by γn
r , as

γn
r = αnγ|hn|2. (38)

For instance, at γ = 60 dB the mean received SNR among
the users is −2.8 dB, and 15.7 dB at γ = 90 dB as
indicated in Fig. 4.2 At γ = 90 dB we observe 63%
power savings from the power budget with the optimal
pairing scheme, which is a significant improvement over
the benchmark schemes. We also indicate the limit of the
power utilization ratios as γ → ∞ for each pairing scheme,
predicted by Theorem 4. At γ ≈ 120 dB, we can observe

P̃
P̃max

converging to these limits. Here, we can observe about
67% reduction in power consumption from the maximum
power budget when the optimal pairing scheme is adopted.
This can result in considerable power savings in typical
deployment scenarios such as HAPs in NTNs, where efficient
transmission power management is especially crucial [6].
The NF scheme achieves 57% power savings, which is also
a substantial amount. In contrast, the NN scheme consumes
a considerable portion of the power budget even under the
most favorable conditions. This is evidenced by the “NN,
γ → ∞” curve, which indicates that 92% of the total power
budget is required to satisfy the rate demands, as γ → ∞.

2Note that the slight non-linearity observed on the mean received SNR
curve is due to the interference caused by the user n in each NOMA pair,
in the calculation of γm

r in (37).
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FIGURE 5. Effect of various K−factors on the power utilization profiles of
the optimal pairing and NF pairing, for the simulation parameters in Table
1 with ω = 2.

Furthermore, it should be highlighted that considering the
signal attenuation between the BS and the user resulting from
factors such as path loss and shadowing effects, relatively
high values of γ should be expected with typical values
of Pmax and σ2 for the received SNR to be at reasonable
levels, as evident from Fig 4. In particular, the noise power
σ2 is usually assumed to be ≈ −174 dBm/Hz [18], [26],
[27]. As for Pmax, [20] and [21] adopted 30 dBm. Some
variations of Pmax for typical NOMA deployment scenarios
are 33 dBm [12] and 23 dBm [27]. Taking the lowest
possible value among these options for Pmax, we have
γ (dB) = 197 dB, assuming σ2 = −174 dB. Therefore, it is
reasonable to assume that γ, at unity bandwidth, may reach
as high as ≈ 200 dB. For instance, Pmax = 30 dB yields
γ (dB) = 204 dB. However, the noise power is amplified
proportional to the channel bandwidth. For instance, if we
were to utilize a 1 MHz band, this would incur a 60 dB
increase in the noise power. In any case, it should be noted
that narrowband systems, typically operating at bandwidths
in the range of 180 kHz to 200 kHz are usually preferred for
NOMA applications such as IoT access [27], which further
minimizes the possibility of bandwidth-induced impairment
of γ.

Fig. 5 portrays the impact of the small-scale fading
coefficient modeled by the Rician distribution with ω = 2.
We ignore the NN scheme and random pairing in this perfor-
mance comparison. It is observed that more power is saved
relative to the NF scheme in severely fading environments,
which corresponds to low values of the Rician K−factor.
This is corroborated by Theorem 4 as lower values of
K−factor encourage high variance among the channel gains
experienced by the users.

Fig. 6 illustrates the impact of the path loss exponent ω,
on the convergence speed of P̃

P̃max
. A range of ω values

are compared, which capture typical path loss dynamics of
various environmental profiles, such as urban cells (ω ≈
2.7 to 3.5), and shadowed urban cells (ω ≈ 3 to 5) [28].
Specifically, we consider ω = 2, 2.7, 3, and 3.5 in Fig. 6. In
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FIGURE 6. Effect of different values of the path loss exponent ω on the
power utilization profile for K−factor = 0. Here, the noise PSD is varied
from −20 dBm to −170 dBm. Other parameters are as listed in Table 1.

this figure, while maintaining Pmax at 0 dBm as in previous
figures, we extend the range of σ2 to be from −20 dBm to
−170 dBm. The Rician K−factor is set to 0. We observe
that P̃

P̃max
converges at significantly higher γ values for larger

values of ω, as expected. Furthermore, at γ = 110 dBm, the
optimal pairing scheme achieves a power utilization ratio of
≈ 3.4, at ω = 2 as well as ω = 2.7, with ω = 3 relatively
close by with P̃

P̃max
≈ 0.4. At ω = 3.5 we still observe

around 40% power reduction to the maximum power budget,
at P̃

P̃max
≈ 0.6. An interesting observation that follows from

this is that the optimal pairing scheme, when implemented
at some value of ω, can outperform the NF pairing scheme
adopted at lower values of ω in terms of power savings. For
instance, at γ as low as 100 dB, we observe that the optimal
pairing scheme adopted in ω = 2.7 attains a lower P̃

P̃max

than the NF pairing scheme at ω = 2. At γ = 130 dB, the
optimal pairing schemes corresponding to all the values of ω
have started to achieve more power savings than all of their
NF scheme counterparts.

It should be pointed out that for both Fig. 5 and Fig. 6,
the curves presented on the same plots for different channel
parameters do not necessarily attain the same received SNRs
or sum rates, which are directly influenced by the channel
coefficients. However, the optimal pairing scheme and the
benchmarked NF pairing scheme do achieve the same sum
rates under the same channel parameters as is the case with
Fig. 4. Thus, the discussion we have presented in these
figures is deemed to be appropriate in the context of system
design considerations such as power budget design.

The validity of Theorem 1 is also demonstrated from Figs.
4, 5, and 6, since the power utilization ratio P̃

P̃max
does not

exceed its upper bound of 1.
To conclude this subsection, in Fig. 7, we demonstrate

how the pairing schemes perform as the number of users
increases. The NN pairing scheme suffers severely as the
number of users, N increases. This is also understood
through Theorem 4 as the variation between adjacent users
decreases as we increase the number of users in a fixed
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FIGURE 7. Impact of increasing the total number of users N on the power
utilization profiles of various pairing schemes. System parameters in
Table 1 are adopted, with γ = 90 dB, ω = 2, and the K−factor set to 0.

coverage region. Guided by Fig. 4, we select the value of
γ to be equal to 90 dB in this simulation, as we expect
meaningful performance gains in this region, even though

P̃
P̃max

has not fully converged to the minimum.

B. Impact on Energy Efficiency
Our results presented above demonstrate how the user

pairing strategy affects the power consumption while
maintaining the minimum required data rate, in 2-user
NOMA downlink systems. Conversely,—as previously dis-
cussed—the authors in [9] presented the optimal pairing
strategy that maximizes the sum rate with a fixed power
budget. In this section, we study how the optimal user
pairing strategy impacts the EE of the system in these two
scenarios. The EE of transmission aims for the most efficient
utilization of power resources that achieves the data rate
requirements. An optimization problem similar to the mini-
mization problem in (9) with the same data rate constraints
and maximum utilizable power budget, to maximize EE can
be formulated which requires joint optimization of power
control and user pairing. Authors in works such as [29],
and [30] consider this to be an open problem. While the
pursuit of the general solution to this problem is out of the
scope of this paper, the insights obtained from the analysis
and the corresponding simulation results we present here are
intended as a preliminary contribution towards a potential
general solution.

The EE of transmission is defined as [30]

EE =
Total sum rate at the Receiver

Total Power Consumption at the Transmitter
bits/J.

(39)
We observe that the maximum EE of NOMA transmission
that maximizes the sum rate (referred to as EESR−max

NOMA ) is
achieved by adopting the NF pairing scheme. Also, since
the power budget per RB is fixed for both scenarios, the
OMA system collectively utilizes twice as much power to
serve an equivalent number of users, compared to the 2-user
NOMA system. Specifically, to accommodate 2K users, the
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FIGURE 8. Achievable sum rates of various user pairing strategies under
a fixed power budget, for the system parameters as listed in Table 1 with
ω = 2 and the K−factor fixed at 0. Analytical methods adopted from [9].

OMA system requires 2K RBs, compared to the K RBs
in the case of NOMA. Then, the gain in EE achieved by
this approach compared to the EE of OMA (referred to as
EEOMA) can be calculated as

EESR−max
NOMA

EEOMA
=

NF Pairing sum rate
P̃max

÷ OMA sum rate
2× P̃max

=
2× NF Pairing sum rate

OMA sum rate
,

(40)
where P̃max represents the total power required for NOMA
transmission.

Similarly, the maximum EE of NOMA transmission that
minimizes power utilization while maintaining the OMA-
achievable data rate (referred to as EEPU−min

NOMA ) is achieved
by the pairing strategy that we derived in Section B. The gain
in EE of this approach compared to EEOMA can be computed
as

EEPU−min
NOMA

EEOMA
=

OMA sum rate
P̃ ∗

÷ OMA sum rate
2× P̃max

=
2× P̃max

P̃ ∗
,

(41)

where P̃ ∗ is the total power consumed by the optimal pairing
scheme, and P̃max is the total NOMA power budget for K
RBs, twice of which is consumed in the OMA scenario,
similar to the case in (40). Due to this reason, the expressions
(40) and (41) are modulated by a factor of 2. Note that in
these calculations only the power required for transmission,
PT is considered, and additional power consumption from
the circuitry present at the transmitter, PC is omitted for
simplicity. Thus our analysis holds for PT ≫ PC .

To aid our discussion, we have reproduced the results of
[9] as illustrated in Fig. 8. The simulation was carried out in
the same simulation setting and channel distributions as in
Fig. 4. In addition to what is presented in [9] we also report
the pairing strategy uk,k+K which we derived as the optimal
pairing for the power minimization case that we studied, as a
benchmark for this approach, which interestingly turns out to
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FIGURE 9. The maximum achievable EENOMA
EEOMA

corresponding to the sum
rate maximization approach and the power minimization approach with
their respective optimal user pairing strategies for the simulation settings
in Table 1 with ω = 2 and the K−factor fixed at 0.

virtually overlap its optimal pairing strategy (NF pairing). In
other words, the gain in the sum rate achieved through the NF
pairing compared to the optimal pairing strategy for power
minimization is marginal. It is observed from Fig. 4 that
significant gains in sum rate with NF pairing are observed
in a similar region of γ as power savings are observed in
Fig. 4, namely for γ > 60 dB.

Fig. 9 offers a comparison of the gain in EE resulting
from both of the above approaches relative to EEOMA.
Both EEPU−min

NOMA and EESR−max
NOMA observe twice as much EE

compared to EEOMA at the lower end of γ where they
attain the OMA-achievable data rates (as seen on Figs. 4
and 8) by utilizing half the power budget. Furthermore,
EEPU−min

NOMA presents itself with a shape that is a vertically
inverted version of the power utilization curves demonstrated
in Fig. 4. This is easily understood by observing (41),
which is the precise reciprocal of the power utilization ratio
corresponding to the optimal pairing strategy illustrated in
Fig. 4, multiplied by 2. Therefore, the quantity EEPU−min

NOMA as
γ → ∞ can be inferred to be 2 × |hn|

|hm| for any given pair
of NOMA users, from the result of Theorem 4. Also, the
maximum point of the EESR−max

NOMA curve corresponds to the
inflection point of the sum rate achieved by its optimal user
pairing scheme as seen in Fig. 8, which occurs at γ ≈ 60 dB.
EESR−max

NOMA exhibits marginal gains compared to EEPU−min
NOMA

below γ = 60 dB. By γ = 80 dB however, EEPU−min
NOMA

can attain an EE value around 4.5× that of OMA, while
EESR−max

NOMA is on the decline with an EE around 2.4× higher
than EEOMA, on a trajectory towards its baseline value of
2. At the tail end of γ in Fig. 9, EEPU−min

NOMA has converged
to a value of more than 6× EEOMA, demonstrating the fact
that at the operational region of the γ, aiming for minimum
power consumption while maintaining the OMA data rates
is vastly more energy efficient compared to maximizing the
sum rate by utilizing the total power budget.

V. Conclusions
In this paper, we investigated the impact of user pairing

on the power consumption in the 2-user NOMA downlink
scenario. The optimal solution we obtained has linear time
complexity, which is a significant improvement over the
computationally expensive methods usually found in the
literature. Aided by our analysis, we demonstrated that
the proposed optimal pairing strategy shows considerable
performance gains compared to benchmark schemes through
extensive simulation results. In particular, in a representative
benchmark simulation setting, we can achieve the data rate
requirements with this pairing by utilizing 37% of the power
budget, saving 63%. This is approximately 10% less power
utilized compared to the popular NF pairing scheme found
in the literature and approximately 17% less compared to
random pairing. Additionally, the effect of the propagation
environment on the power consumption was studied. We
demonstrated that the highest portion of power is saved
with the Rayleigh fading channel, where the end users
experience the highest variations in the channel coefficients
among themselves. We also established the robustness of
the optimal pairing scheme in environments characterized
by varying path loss dynamics, along with the utility of
adopting the optimal pairing scheme with a variable number
of users. The performance gains in power savings attained
are consistently maintained even with a large number of
users (reported up to N = 120 users) present in the
system. Finally, we carried out an analysis of the EE of
NOMA transmission resulting from our objective of power
minimization, benchmarked that of NOMA transmission
resulting from the sum rate maximization approach studied
in prior works. With a maximum transmit SNR equivalent
to 80 dB, the sum rate maximization approach with its
optimal pairing scheme achieves a gain in EE by a factor
of 2.4 relative the EE achieved by OMA. On the other hand,
the power minimization approach with the optimal pairing
scheme we derived in this work exceeds the EE of OMA
by a factor of 4.5, demonstrating a substantial improvement
in the EE achieved. The natural extension of our research
for future work is to investigate whether a globally optimal
strategy for joint power control and user pairing exists as a
separate solution to the EE maximization objective. Another
interesting avenue to explore is to study the performance
of the proposed scheme within the context of cooperative
NOMA systems.
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Appendix A
Proof of Theorem 4.

Proof:
We prove Theorem 4 by evaluating the expression for
P

{m,n}
min from (16) as γ → ∞. The full expression is as

follows:

lim
γ→∞

P
{m,n}
min = Φn +Φm +Φnϕm

= lim
γ→∞

[√
1 + γ|hn|2 − 1

γ|hn|2
+√

1 + γ|hm|2 − 1

γ|hm|2 +√
1 + γ|hn|2 − 1

γ|hn|2
√

1 + γ|hm|2 − 1

]
. (42)

Since we are taking the limit in γ as the varying term, both
|hm|2 and |hn|2 are treated as constants. If we let x = γ,
a = |hm|2, and b = |hn|2, then, (42) can be rewritten as

lim
γ→∞

P
{m,n}
min = lim

x→∞

[√
1 + bx− 1

bx
+

√
1 + ax− 1

ax
+

√
1 + bx− 1

bx

√
1 + ax− 1

]

= lim
x→∞

√
1 + bx− 1

bx
+ lim

x→∞

√
1 + ax− 1

ax
+

lim
x→∞

√
1 + bx− 1

bx

√
1 + ax− 1. (43)
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Notice that the first two terms in (43) can be written in the
form

lim
x→∞

√
1 + cx− 1

cx
= lim

x→∞

1√
1 + cx+ 1

= 0, (44)

for c ∈ {a, b}, which tends to 0 as x → ∞.
Therefore, we focus on evaluating the limit of the third term
in (43), which can be broken down further as

lim
γ→∞

P
{m,n}
min = lim

x→∞

[√
1 + bx− 1

bx

√
1 + ax− 1

]

= lim
x→∞

1

bx
− lim

x→∞

√
1 + ax

bx
−

lim
x→∞

√
1 + bx

bx
+ lim

x→∞

√
(1 + ax)(1 + bx)

bx
.

(45)

It is easily seen that the first term tends to 0.
The second and third terms can be evaluated by applying
L’Hôpital’s rule [31]. These terms also tend to 0 in the limit.
For completion, some steps of this procedure are shown
below.

lim
x→∞

[√
1 + ax

bx
+

√
1 + bx

bx

]

= lim
x→∞

[
d

dx

√
1 + ax

d
dxbx

]
+ lim

x→∞

[
d

dx

√
1 + bx

d
dxbx

]

= lim
x→∞

[
a

2b
√
1 + ax

]
+ lim

x→∞

[
1

2
√
1 + bx

]
= 0. (46)

The only term that remains to be evaluated is the fourth term

of (45), namely the term limx→∞

[√
(1+ax)(1+bx)

bx

]
. Some

steps of the evaluation procedure are shown below.

lim
x→∞

[√
(1 + ax)(1 + bx)

bx

]

= lim
x→∞

[√
x−2 + (a+ b)x−1 + ab

b

]

= lim
x→∞

√
ab

b
=

√
a

b
. (47)

Consequently, according to our definitions, x = γ, a =
|hm|2, and b = |hn|2, the above analysis yields the solution
to the original limit expression given in (42) as

lim
γ→∞

P
{m,n}
min =

|hm|
|hn|

. (48)

This completes the proof of Theorem 4.
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