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Responsibility in Infinite Games

Xiulin Cui and Pavel Naumov

Abstract There are two distinct forms of responsibility that can be found in
literature: counterfactual responsibility and responsibility for “seeing to it that”.
It has been previously observed that, in the case of strategic games, the counter-
factual form of responsibility can be defined through responsibility for “seeing
to it that”, but not the other way around.

The article considers these two forms of responsibility in the case of infinite
extensive form games. The main technical result is that, in this new setting,
neither of the two forms of responsibility can be defined through the other. Some
preliminary results for finite extensive form games are also given.

1 Introduction

In this article, we study two forms of responsibility in infinite games. As an example,
consider a situation in which Alice and Bob just got married and received a box of
fancy chocolate candies as a wedding gift. They have eaten all but one candy and
each of them feels uncomfortable eating the last candy.
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Figure 1 Infinite game played on a finite graph.

This situation can be modelled as an infinite game on a finite graph [12] depicted
in Figure 1. This graph has three states. In two of these states, labelled by a and
b, players Alice and Bob, respectively, make a decision either to “pass” the choice
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to the other player or to “eat” the last candy. The game can either run forever or
terminate if one of the players eats the candy and, thus, transitions the game into the
third (final) state. For the sake of this example, we assume that Alice starts the game.
To show this, we marked state A as the initial state of the game.
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Figure 2 Infinite extensive form game. Propositional variable p represents the state-
ment “The last candy is eaten”.

To analyse the responsibility of agents in infinite games on finite graphs, it is
convenient to represent them as infinite extensive form games [7, 5, 1]. Such a repre-
sentation of our game is depicted in Figure 2. Descending paths in this tree starting
at the root node correspond to different plays of the game. Our game has a unique
infinite path that corresponds to a play under which the candy is never eaten. It also
has infinitely many finite paths, terminating in the leaf nodes, that correspond to the
plays under which the candy is eaten. In this article, we study statements about the
outcomes (leaf nodes) of the games. An example of such a statement is “the last
candy is eaten”. We denote it by propositional variable p. Note that each leaf node
in our diagram is labelled with variable p. This reflects the fact that the statement
“the last candy is eaten” is true in each of the outcomes of the game.

Although each infinite game on a finite graph, like the one depicted in Figure 1,
can be unfolded into an infinite extensive form game, like in Figure 2, the converse
is not true. Infinite extensive form games capture a more general class of games than
infinite games on finite graphs. In this article, we study responsibility in the more
general class of infinite extensive form games.

Let us now suppose that the game ends in outcome w1, see Figure 2. In other
words, Alice eats the last candy the first moment she is given a chance to do this.
Note that by doing this (going right on the tree) she made the statement “the last
candy is eaten” to be unavoidably true. Indeed, if she would have chosen a different
action (going left) the last candy might have never been eaten. Each time when
an agent takes an action that makes a statement unavoidably true (and it was not
unavoidably true before the action), we say that the agent is responsible for seeing to
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it that the statement is true. We write this as

w1 ⊩ SAlice(“the last candy is eaten”). (1)

We read statement (1) as “on the path of play leading to outcome w1, Alice has seen
to it that the last candy is eaten”. Modality S has been extensively studied in STIT
logic [3, 9, 10, 8, 19]. The version of seeing-to-it that we consider in this article is
known under the name “achievement stit” [4, 10].

Let us now return to our example and consider outcome w2. Note that the last
candy is also eaten on the path leading to this outcome, but it is Bob, not Alice, who
made the statement “the last candy is eaten” unavoidably true. Thus,

w2 ⊩ SBob(“the last candy is eaten”), (2)
w2 ⊮ SAlice(“the last candy is eaten”).

In general, statement

wi ⊩ SAlice(“the last candy is eaten”)

is true iff number i is odd. By the truth set JϕK of a formula ϕ we mean the set of
all outcomes in which ϕ is satisfied. In our case, JSAlice(“the last candy is eaten”)K
is the set {w2i+1 | i ≥ 0}. We visualise this set on the left diagram in Figure 3.

…

⟦SAlicep⟧

…

⟦SBob¬SAlicep⟧

…

⟦CBobSAlicep⟧

Figure 3 Propositional variable p represents the statement “the last candy is eaten”.
Grey squares on each diagram show the elements of the corresponding truth set.

Recall from statement (2) that, in outcome w2, Bob is responsible for seeing to it
that the last candy is eaten. Although he can be blamed for this, he has an excuse. By
making the move into leaf node w2, Bob made it unavoidable that statement SAlice p
is false, see the left diagram in Figure 3. Thus,

w2 ⊩ SBob¬SAlice(“the last candy is eaten”).

In other words, in outcome w2, the kind newlywed husband Bob has seen to it that
his wife is not responsible for seeing to it that the last candy is eaten.

In general, the statement

wi ⊩ SBob¬SAlice(“the last candy is eaten”)

is true iff number i is even. We show the truth set of the formula

JSBob¬SAlice(“the last candy is eaten”)K

on the middle diagram in Figure 3.
Let us go back to outcome w1, where Alice eats the last candy the first moment

she is given a chance to do this. We have previously noticed, see statement (1), that
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in this outcome she has seen to it that the last candy is eaten. Observe that by making
the move into leaf node w1 she made it unavoidable that statement SBob¬SAlice p is
false, see the middle diagram in Figure 3. Hence,

w1 ⊩ SAlice¬SBob¬SAlice(“the last candy is gone”).

In other words, she made sure that her darling husband has no excuse to eat the last
candy!

Seeing-to-it modality S captures one possible form of responsibility. A very dif-
ferent definition of responsibility is proposed by Frankfurt: “a person is morally re-
sponsible for what he has done only if he could have done otherwise” [6]. Although
Frankfurt himself discusses many limitations to this definition, it became one of the
standard approaches to defining responsibility in philosophy [21]. We refer to this
form of responsibility as counterfactual responsibility. This form of responsibility is
also sometimes called “backward responsibility” [22]. We use modality C to capture
counterfactual responsibility. Logical systems for reasoning about counterfactual re-
sponsibility have been proposed in [13, 16, 15, 14].

As an example, recall from (1) that, in outcome w1, Alice is seeing to it that the
last candy is eaten. Note that she can easily avoid seeing to this by never eating the
last candy. Thus, in outcome w1, Alice is counterfactually responsible for seeing to
it that the last candy is eaten:

w1 ⊩ CAliceSAlice(“the last candy is gone”).

At the same time, if the game ends in outcome w1, then Bob has no chance to prevent
Alice from seeing to it that the last candy is eaten:

w1 ⊮ CBobSAlice(“the last candy is gone”).

It is interesting to point out that the situation is different in outcome w3, where
Alice is also responsible for seeing to it that the last candy is eaten. Prior to reaching
this outcome, Bob had an opportunity to eat the last candy himself (go to outcome
w2). By doing this, he would prevent Alice from being responsible for seeing to it
that the last candy is eaten. Thus, in outcome w3, Bob is counterfactually responsible
for Alice seeing to it that the last candy is eaten:

w3 ⊩ CBobSAlice(“the last candy is gone”).

To put it in other words, on the path of play leading to outcome w3, Bob had a chance
to spare Alice from the temptation to eat the last candy. He did not do this and, as a
result, is counterfactually responsible. In general, the statement wi ⊩ CBobSAlice p is
true for each odd integer i ≥ 3, see right diagram in Figure 3.

Finally, observe from the right diagram in Figure 3 that along the path of play
leading to outcome w3, Alice could have easily prevented CBobSAlice p from being
true if she would have eaten the candy herself the first moment she had a chance to
do this:

w3 ⊩ CAliceCBobSAlice(“the last candy is gone”).

2 Contribution

In this article, we formally define modalities S and C and study the properties of the
interplay between them. One possible way to study these properties is to develop an
axiomatic system for the language containing both modalities. Another is to study
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the definability of one of these modalities through the other. In this work, we focus
on the definability results.

The definability of modalities S and C through each other has been previously
investigated by Naumov and Tao [17, 18]. The setting of their work is significantly
different from the setting of the last candy game because they consider strategic
games in which all agents act simultaneously and just once. In that setting, they
establish two important results. First, they show that counterfactual modality C can
be defined through seeing-to-it modality S as follows:

Caϕ ≡ ϕ ∧Sa¬Sa¬ϕ. (3)

The expression Sa¬Sa¬ϕ by itself has been studied in philosophy literature, where
it is referred to as “forbearing” [20, p.45] and “refraining” [2]. Second, Naumov and
Tao have shown that, in the case of strategic games, seeing-to-it modality S is not
definable through counterfactual modality C.

In this article, we formally define modalities S and C for infinite extensive form
games and show that, unlike the strategic games’ case, neither of them is definable
through the other. Indirectly, these results, together with the observations in [17,
18], show that infinite extensive form games provide a significantly richer than the
strategic game setting for modelling multiagent interactions. We also discuss the
possibility of extending our results to finite extensive form games and state some
partial results there.

The rest of the article is structured as follows. First, we define infinite extensive
form games and related notations. Then, we introduce the formal syntax and seman-
tics of our modal language. In Section 5, we show that modality S is not definable via
modality C. In Section 6, we show that modality C is not definable via modality S.
In Appendix 7, we discuss some preliminary results for finite extensive form games.
Section 8 concludes.

3 Infinite Games

Throughout the article, we assume a fixed set of propositional variables and a fixed
set of agents. By an infinite extensive form game we mean a (possibly infinite) tree
whose non-leaf nodes are labelled by agents and whose leaf nodes are labelled by
sets of propositional variables. Different nodes might have the same label and not
all labels have to be used. When we say that a tree is possibly infinite, we mean that
any node of the tree might have infinitely many children and that the tree might have
(at most ω) infinite depth. We assume that the path from the root of the tree to each
node has a finite length. We refer to leaf nodes as outcomes.

An example of an infinite extensive form game is depicted in Figure 4. In this
game, for example, non-leaf nodes n1 and n2 are labelled by agents a and b, respec-
tively. Outcomes w1 and w2 are labelled with sets {p} and ∅, respectively.

By Ancestors(n) of a node n we mean the finite set of all nodes on the path from
the root node of the game to node n. In our example, Ancestors(n2) = {n1,n2} and
Ancestors(w1) = {n1,n2,n4,w1}.

By Subtree(n) we mean the (possibly infinite) set of nodes located at the subtree
starting at node n. In our example, Subtree(n3) is the finite set {n3,w3,n6,w4,w5},
but Subtree(n2) is the infinite set {n2,n4,n5,w1,w2, . . .}.

By Outcomes(n) we mean the (possibly infinite) set of all outcomes in the set
Subtree(n). In our example, Outcomes(n3) is the set {w3,w4,w5}.
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Figure 4 An infinite extensive form game.

By a strategy of an agent a in the subtree starting at node n, we mean a function
that to each node labelled with agent a in the set Subtree(n) assigns a specific outgo-
ing edge of this node. The set of all such functions is denoted by Strategiesa(n). In
our example, “choose left” function ℓ(m), that assigns the left outgoing edge to each
node m labelled with agent a in the entire tree, belongs to set Strategiesa(n1). As
another example, consider “choose left on the left, choose right on the right” func-
tion f (m) that assigns the left outgoing edge to each node m labelled with agent a in
Subtree(n2) and assigns the right outgoing edge to each node m labelled with agent
a in Subtree(n3). This function also belongs to the set Strategiesa(n1).

For any strategy s ∈ Strategiesa(n), by Outcomesa(n,s) we mean the set of out-
comes w ∈ Outcomes(n) such that for each non-leaf node m on the path from node
n to outcome w, the path contains the edge s(m). For example, for our “choose left”
function ℓ ∈ Strategiesa(n1) set Outcomesa(n1, ℓ) contains outcome w2 and does not
contain outcomes w1, w3, w4, and w5. At the same time, for a similar “choose left”
function ℓ′ ∈ Strategiesa(n3) for the subtree starting at node n3, set Outcomesa(n3, ℓ

′)
is the set {w3,w4}.

4 Syntax and Semantics

The language Φ that we consider in this article is defined by the grammar:

ϕ := p | ¬ϕ | ϕ ∨ϕ | Saϕ | Caϕ,

where p is a propositional variable and a is an agent. We read Saϕ as “agent a sees
to ϕ” and Caϕ as “agent a is counterfactually responsible for ϕ”. We assume the
conjunction ∧, constant false ⊥, and constant true ⊤ are defined through negation ¬
and disjunction ∨ in the standard way.

Definition 1 For any outcome w of an infinite extensive form game and any for-
mula ϕ ∈ Φ, the satisfaction relation w ⊩ ϕ is defined as follows:

1. w ⊩ p, if outcome w is labelled with a set containing propositional variable
p,

2. w ⊩ ¬ϕ , if w ⊮ ϕ ,
3. w ⊩ ϕ ∨ψ , if w ⊩ ϕ or w ⊩ ψ ,
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4. w ⊩ Saϕ , if there exists a non-root node n ∈ Ancestors(w) such that n⇝ ϕ ,
node parent(n) is labelled with agent a, and parent(n) ̸⇝ ϕ ,

5. w ⊩ Caϕ if w ⊩ ϕ and there is a node n ∈ Ancestors(w) and a strat-
egy s ∈ Strategiesa(n) of agent a such that u ⊮ ϕ for each outcome
u ∈ Outcomesa(n,s).

where for any node n and any formula ϕ relation n⇝ ϕ hold when Subtree(n) is
finite and u ⊩ ϕ for each outcome u ∈ Outcomes(n).

For any given game, let the truth set JϕK of a formula ϕ ∈ Φ be the set of all
outcomes (leaf nodes) w of the game such that w ⊩ ϕ .

Definition 2 Formulae ϕ,ψ ∈ Φ are semantically equivalent if JϕK= JψK in each
infinite extensive form game.

5 Undefinability of S through C

In this section, we show that, in the infinite extensive form game setting, modality
S is not definable through modality C. Without loss of generality, we assume that
our language contains a single propositional variable p and just two agents, a and b.
We can assume that the language has only two agents because we do not require all
agents to be used as labels of non-leave nodes.

Traditionally, the undefinability of one modality through another is established
using the bisimulation technique. In our case, this approach would consist in spec-
ifying two games that are indistinguishable in the language without modality S and
are distinguishable using modality S.

In this article, we use a different method of proving undefinability. This new
method, called “truth set algebra”, has been recently proposed by Knight and Nau-
mov [11]. The method is based on the analysis of “truth sets” of formulae for a given
single game.

In our case, we use the infinite extensive form game depicted atop of Figure 5.
In the game, first, agent a is given a chance to make proposition variable p false. If
agent a does not do this, variable p will never become false. Instead, agents a and b
will take turns to decide either to terminate the game with p being true or to continue
the game.

We visualise truth set JϕK by shading grey all outcomes that belong to the set.
The four middle diagrams in Figure 5 visualise sets JpK, J¬pK, J⊥K, and J⊤K.

Lemma 1 JCaϕK,JCbϕK ∈ {JpK,J¬pK,J⊥K,J⊤K} for any ϕ ∈ Φ, such that
JϕK ∈ {JpK,J¬pK,J⊥K,J⊤K}.

Proof We consider the following three cases separately:
Case I: JϕK = JpK. Then, JϕK = {w2,w3,w4, . . .}, see Figure 5. Thus, formula ϕ is
satisfied in outcomes w2, w3, w4, . . . Agent a can prevent ϕ in each of these outcomes
by going to outcome w1. Hence, agent a is counterfactually responsible for ϕ in each
of the outcomes w2, w3, w4, . . . Thus, JCaϕK = {w2,w3,w4, . . .}= JpK.

At the same time, agent b cannot prevent ϕ in each of the outcomes w2, w3, w4,
. . . Thus, JCbϕK =∅= J⊥K.

In Figure 5, we show these two observations by arrows labelled with Ca and Cb
from the diagram representing set JpK to the diagrams representing sets JpK and J⊥K,
respectively.
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Figure 5 Towards undefinability of modality S via modality C. In the bottom dia-
gram, the colours of leaf nodes alternate starting from the second leaf from the top.

Case II: JϕK = J¬pK. Thus, JϕK = {w1}, see Figure 5. Note that agent a had a
strategy to guarantee that the game does not end in an outcome in which p is true.
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The strategy consists in going left on the first step. What agent a does after that is
not important. Thus, w1 ⊩ Ca p. Statement Ca p is not satisfied in all other outcomes
by item 5 of Definition 1 because p is not satisfied in all of the other outcomes.
Therefore, JCaϕK = {w1}= J¬pK.

At the same time, along the path leading to outcome w1, agent b had no strat-
egy to guarantee that the game does not end in an outcome in which ϕ is true.
Thus, w1 ⊮ Cbϕ . Statement Cbϕ is not satisfied in all other outcomes by item 5
of Definition 1 because ϕ is not satisfied in all of the other outcomes. Therefore,
JCbϕK =∅= J⊥K.

In Figure 5, we show these two observations by arrows labelled with Ca and Cb
from the diagram representing set J¬pK to the diagrams representing sets J¬pK and
J⊥K, respectively.
Case III: JϕK = J⊥K. Thus, JϕK = ∅, see Figure 5. Hence, formula ϕ is not
satisfied in each outcome of the game. Thus, by item 5 of Definition 1, formu-
lae Caϕ and Cbϕ also are not satisfied in each outcome of the game. Therefore,
JCaϕK = JCbϕK =∅= J⊥K.
Case IV: JϕK = J⊤K. Hence, the truth set [ϕK contains all outcomes of the game,
see Figure 5. This means that the only way to guarantee that the game does not
end in an outcome in which ϕ is true is to guarantee that the game does not end
at all. Neither of the agents has such ability for the game in Figure 5. Therefore,
JCaϕK = JCbϕK =∅= J⊥K.

Lemma 2 JϕK ∈ {JpK,J¬pK,J⊥K,J⊤K} for any formula ϕ ∈ Φ that uses only
modality C.

Proof We prove the lemma by induction on the structural complexity of formula
ϕ . If formula ϕ is a propositional variable p, then the statement of the lemma is true
because set {JpK,J¬pK,J⊥K,J⊤K} contains JpK.

Suppose formula ϕ has the form ¬ψ . Thus, for any outcome w,

w ∈ JϕK ⇔ w ∈ J¬ψK ⇔ w ⊩ ¬ψ ⇔ w ⊮ ψ ⇔ w /∈ JψK,

by the definition of J·K, item 2 of Definition 1, and again the definition of J·K. In
other words, the set of outcomes JϕK is the complement of the set of outcomes JψK.
Note that for each of the four truth sets depicted in the middle of Figure 5, the com-
plement of this set is also among those four sets. For example, the complement of
J¬pK is JpK. Thus, the induction hypothesis JψK ∈ {JpK,J¬pK,J⊥K,J⊤K} implies
that JϕK ∈ {JpK,J¬pK,J⊥K,J⊤K}.

Let formula ϕ have the form ψ ∨χ . Then, for any outcome w,

w ∈ JϕK ⇔ w ∈ Jψ ∨χK ⇔ w ⊩ ψ ∨χ ⇔ w ⊩ ψ or w ⊩ χ

⇔ w ∈ JψK or w ∈ JχK ⇔ w ∈ JψK∪ JχK.

by the definition of J·K, item 3 of Definition 1, and again the definition of J·K. In
other words, the set of outcomes JϕK is the union of the set of outcomes JψK and
the set of outcomes JχK. Note that for any pair of the four truth sets depicted
in the middle of Figure 5, the union of these sets is also among those four sets.
For example, the union of JpK and J¬pK is J⊤K. Thus, the induction hypothesis
JψK,JχK ∈ {JpK,J¬pK,J⊥K,J⊤K} implies that JϕK ∈ {JpK,J¬pK,J⊥K,J⊤K}.
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Finally, let formula ϕ have the form Cgψ , where g∈{a,b}. In this case, the induc-
tion assumption JψK∈{JpK,J¬pK,J⊥K,J⊤K} implies that JϕK∈{JpK,J¬pK,J⊥K,J⊤K}
by Lemma 1.

Lemma 3 JSa pK /∈ {JpK,J¬pK,J⊥K,J⊤K}.

Proof It suffices to show that the truth set JSa pK is depicted at the bottom of Fig-
ure 5.

Consider any node wi, where i ≥ 1. By item 4 of Definition 1, for wi ⊩ Sa p to be
true, along the path leading to wi, there must exist a non-root node n such that

A. node parent(n) is labelled with agent a,
B. parent(n) ̸⇝ ϕ ,
C. n⇝ ϕ .

By Definition 1, the condition n⇝ ϕ implies that Subtree(n) is finite. Thus, the
conditions (A), (B), and (C) potentially can be satisfied only if n = wi. Hence, for
the game depicted atop of Figure 5, statement wi ⊩ Sa p is true if

(A′) node parent(wi) is labelled with agent a,
(B′) parent(wi) ̸⇝ ϕ ,
(C′) wi⇝ ϕ .

Condition (A′) is satisfied iff index i is an odd number. Condition (B′) is true for each
index i because Subtree(parent(wi)) is not finite for each i, see definition of relation
⇝ in Definition 1. Finally, condition (C′) is satisfied for each integer i ≥ 2, see the
game as depicted atop of Figure 5. Therefore, wi ⊩ Sa p iff i is an odd number such
that i ≥ 2.

The next result follows from the two lemmas above and Definition 2.

Theorem 1 (undefinability) Formula Sa p is not semantically equivalent to any
formula in language Φ that does not use modality S.

6 Undefinability of C through S

In this section, we show that modality C is not definable through modality S. Without
loss of generality, we again assume that our language contains a single propositional
variable p and just two agents, a and b. To prove the desired result, it suffices to
show that modality Ca is not definable through any combination of modalities Sa
and Sb. We actually prove a slightly stronger result that Ca is not definable through
any combination of Sa, Sb, and Cb.

Just like in the previous section, we apply the “truth set algebra” technique. This
time, we use the game and the truth sets depicted in Figure 6.

Lemma 4 JSaϕK,JSbϕK,JCbϕK ∈ {JpK,J¬pK,J⊥K,J⊤K}, for any ϕ ∈ Φ where
JϕK∈{JpK,J¬pK,J⊥K,J⊤K}.

Proof The proof of the lemma is similar to the proof of Lemma 1. The dashed
lines between the four diagrams in the centre of Figure 6 show how the modalities
map the truth sets into each other. For example, the dashed arrow labelled with Sa
from the truth set JpK to the truth set J⊥K denotes the fact that if JϕK = JpK, then
JSaϕK = J⊥K.

The proof of the next lemma is identical to the proof of Lemma 2 except that it uses
Lemma 4 instead of Lemma 1.
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Figure 6 Towards undefinability of modality C via modality S. In the bottom dia-
gram, the colours of leaf nodes alternate starting from the second leaf from the top.
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Lemma 5 JϕK ∈ {JpK,J¬pK,J⊥K,J⊤K} for any formula ϕ ∈ Φ that uses only
modalities Sa, Sb, and Cb.

Lemma 6 JCa pK /∈ {JpK,J¬pK,J⊥K,J⊤K}.

Proof It suffices to show that the truth set JCa pK is depicted at the bottom of Fig-
ure 6.

Consider any node wi, where i ≥ 1. By item 5 of Definition 1, for wi ⊩ Ca p to be
true, the following conditions should be satisfied:

A. wi ⊩ p,
B. there must exist a node n ∈ Ancestors(wi) and a strategy s ∈ Strategiesa(n)

of agent a such that u ⊮ p for each outcome u ∈ Outcomesa(n,s).
Note that condition (A) above is satisfied if and only if number i is odd, see the game
as depicted atop of Figure 6.

Observe also that node n = parent(w2) and strategy “always go right” (into a leaf
node) satisfy condition (B) for each integer i ≥ 2. At the same time, condition (B)
cannot be satisfied for i = 1, see the game as depicted atop of Figure 6.

Therefore, wi ⊩ Ca p iff i is an odd number such that i ≥ 2.

The next result follows from the two lemmas above and Definition 2.

Theorem 2 (undefinability) Formula Ca p is not semantically equivalent to any
formula in language Φ that does not use modality Ca.

Note that, as stated earlier, we proved slightly more than the undefinability of C
through S. Namely, we have shown that Ca is not definable through any combination
of modalities Sa, Sb, and Cb.

7 Future Work: Finite Games

By a finite extensive form game we mean any infinite extensive form game, as de-
fined in Section 3, whose tree has finitely many nodes. Thus, we treat finite games
as a subclass of infinite games.

In this article, we have shown that modalities S and C are not definable through
each other for infinite extensive form games. The existing proofs of Theorem 1 and
Theorem 2 do not apply to the subclass of finite extensive form games because the
games depicted in Figure 5 and Figure 6 are not finite.

Natural and interesting questions for future research are if Theorem 1 and Theo-
rem 2 hold for the class of finite extensive form games. Although we do not know
an answer to either of these questions, we have partial results for each of them.

Definition 3 Formulae ϕ,ψ ∈ Φ are semantically equivalent over finite games if
JϕK = JψK in each finite extensive form game.

7.1 On definability of S via C Theorem 1 shows that modality S is not definable
through modality C. More specifically, the proof of this theorem gives an example of
an infinite two-player game in which modality Sa is not definable through modalities
Ca and Cb.

Although we do not know if the same can be done for finite games, we can show
that, over the class of finite games, modality Sa is not definable through modality Ca
only. To do this, we again use the “truth set algebra” technique.
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a

b
p

p

⟦Sap⟧

Ca

⟦p⟧ ⟦⊤⟧⟦¬p⟧ ⟦⊥⟧

CaCa

Ca

Figure 7 Towards undefinability of Sa through Ca over the class of finite games.

Consider the finite extensive form game depicted atop of Figure 7. The proofs
of the following three lemmas are similar to the proof of Lemma 1, Lemma 2, and
Lemma 3. The cases in the proof of Lemma 7 are shown using dashed arrows in
Figure 7 similar to how it was done in Figure 5 for Lemma 1.

Lemma 7 If JϕK ∈ {JpK,J¬pK,J⊥K,J⊤K}, then JCaϕK ∈ {JpK,J¬pK,J⊥K,J⊤K},
for any formula ϕ ∈ Φ.

Lemma 8 JϕK ∈ {JpK,J¬pK,J⊥K,J⊤K} for any formula ϕ ∈ Φ that uses only
modality Ca.

Lemma 9 JSa pK /∈ {JpK,J¬pK,J⊥K,J⊤K}.

The next result follows from the two lemmas above and Definition 3.
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a

b

a
p

p

⟦¬p⟧ ⟦Cap⟧⟦Sa¬p⟧ ⟦¬Sa¬p⟧ ⟦Sa ¬Sa¬p⟧ ⟦p⋀Sa ¬Sa¬p⟧

Figure 8 Counterexample for equivalence (3).

Theorem 3 (undefinability) Formula Sa p is not semantically over finite games
equivalent to any formula in language Φ that does not use modalities Sa, Sb, and Cb.

7.2 On definability of C via S Although we do not know if modality C is definable
through modality S over the class of finite extensive form games, we do know that
equivalence (3) does not hold for the finite games. To observe this, it suffices to
construct a single finite game and to show that the sets JCa pK and Jp∧Sa¬Sa¬pK are
not equal for that specific game.

An example of such a game is depicted atop Figure 8. Below it, we show the
computation of the truth set Jp∧Sa¬Sa¬pK by constructing diagrams for truth sets
of all subformulae of the formula p∧Sa¬Sa¬p. Finally, in the right-most position
of the bottom row in Figure 8, we show the truth set JCa pK. As the diagrams show,
sets JCa pK and Jp∧Sa¬Sa¬pK are not equal for this game.

8 Conclusion

In this article, we defined and studied counterfactual and seeing-to-it forms of re-
sponsibility in infinite extensive form games. We have shown that, unlike the case of
strategic games, neither of these two forms of responsibility can be defined through
the other. We have also discussed preliminary undefinability results for the class of
finite extensive form games. Note that although we stated all our undefinability re-
sults in terms of arbitrary infinite games, a slightly stronger version of these results
holds. Namely, it is easy to see that all games used to prove undefinability could be
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“folded” into finite graphs similar to the one depicted in Figure 1. Thus, the unde-
finability results hold for a more restricted class of “periodic” infinite games that can
be obtained by unfolding finite graphs.

Interesting direction for future research is the axiomatisation of the interplay be-
tween modalities S and C.
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