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Abstract — This paper describes technology for autonomous robotic inspection of subsea communication cables. The 
method uses camera equipped Autonomous Underwater Vehicles (AUV) and develops intelligent subsystems to find, 
track and generate surveillance summaries of cables without interrupting their service. We present an overview of the 
methods being developed and describe initial proof-of-concept of the intelligent subsystems. The methods are being 
integrated on an AUV with field trials planned in 2024.

1 Introduction 
The socioeconomic function of all nations relies on a 
network of >500 subsea cables, totalling 1.4 million 
kilometres in length and transmitting over 95% of internet 
data [1]. 200 to 300 cable faults occur each year, with 80% 
caused by activities such as fishing and anchoring, and 
natural hazards accounting for most of the rest. Strategies 
to improve critical cable infrastructure resilience include: 
• Reduce damage consequence via network redundancy 
• Reduce downtime through rapid damage detection 

and repair 
• Reduce damage risk through surveillance and 

preventative measures  
This paper proposes the use of camera-equipped 
Autonomous Underwater Vehicles (AUVs) to efficiently 
gather high-resolution cable surveillance information and 
rapidly identify and report threats to cable integrity. 

In shallow coastal areas, cables are buried to reduce 
accidental anchor and fishing damage risks. However, the 
majority of seafloor cables lay exposed on the seafloor far 
from shore. Surveillance presents significant challenges: 
• Cables are narrow (diameters <30mm, Fig. 1) making 

them hard to detect. Condition inspection and 
identifying abnormalities requires sub-cm resolution 

• Cable route knowledge is uncertain, typically with 
lateral offsets of 5 to 10% water depth excepted on the 
as laid location, with further displacement possible 
due to currents, landslides and accidental snagging 

These challenges are compounded by the high cost of 
offshore surveys (with survey vessels costing £20k-£50k 

  
Fig. 1. Cross section of subsea cable next to a coin for scale 

per day of operation), and navigational challenges of 
Global Navigation Satellite System (GNSS) denied subsea 
environments, where position errors accumulate at 1% 
distance travelled or 1% of vehicle depth with surface 
acoustic tracking using sensor aided inertial navigation [2]. 

The core of the problem is that the uncertainty in prior 
cable route knowledge far exceeds the narrow swath of the 
high-resolution sensors needed to detect and inspect the 
cables. This makes the traditional pre-programmed 
waypoint following used by AUVs ineffective. 
Furthermore, the large volumes of high-resolution data 
gathered makes manual analysis unacceptably slow and 
error prone in the context of surveillance where there is an 
inherent need to minimise delays to response. 

2 Objectives 
We propose inspection of in-service subsea 
communication cables using AUVs equipped with 
cameras, lasers and intelligent realtime processing. As 
with other forms of surveillance, we expect large volumes 
of high-resolution data, the majority of which will not 



UDT 2024 
UDT Technical PaperTemplate            Presentation/Panel 
 

 

show any abnormality or cause for concern. To improve 
efficiency, we aim to develop the following capabilities: 
• Realtime AI-enabled cable detection: Robust cable 

detection based on self-supervised feature learning to 
detect cables on a wide range of seafloor types [3,4] 

• Cable-relative navigation: Probabilistic navigation 
that leverages approximate cable route knowledge as 
priors, updating these on the fly using realtime 
observations to guide cable tracking and search 

• AI-based anomaly flagging: Identification of 
anomalies on or near cables for rapid reporting of 
these through wireless communication channels [4] 

The methods are being implemented on the University 
of Southampton’s Smarty200 AUV (Fig. 2 and Table 1 for 
specification). However, the approaches are platform and 
sensor agnostics, and are compatible with any camera and 
laser scan equipped AUV with a Doppler enabled 
navigational suite (i.e., Doppler velocity log, inertial 
measurement unit, depth and altitude sensors). This 
includes deep-diving AUVs capable of covering up to 
100km per day with more than a week of endurance, with 
recent demonstration of shore-launched long-range 
imaging surveys [5]. There are also numerous examples of 
multiple AUVs being simultaneously operated from a 
single support vessel [6]. The scalability in numbers 
allows for significant reduction of operational cost per 
length of inspected cable through the use of AUVs 
compared to tethered, remotely operated vehicles (ROVs). 

  
Fig. 2. Illustration of the Smarty200 AUV’s imaging setup 

 
Table. 1. Smarty200 AUV specification 

Length, mass 2.0m, 70kg (in air) 

Endurance, range, depth 12h, 12km, 200m (maximum) 

Speed, altitude 0.3m/s, 1 to 3m 

Swath, resolution 1.5 to 4.5m, <1mm 

3D imaging Recon LS 12MP camera with 
structured light line laser 

Navigation,  
obstacle avoidance 

Sprint Nav Mini DVL-INS 
USBL (Avtrak Nano),  
Micron scanning sonar 

Communication Acoustics (Avtrak Nano, in water) 
Wifi, Iridium (at surface) 

3 Approach 
Cable detection: Optical methods can achieve sufficient 
realtime resolution to resolve cables and determine their 
relative position and orientation to guide AUV navigation. 
While active and passive electro-magnetic (EM) sensors 

can also detect cables (including shallow buried sections) 
from up to 5m range with ~10m measurement footprint 
[7], they indicate bulk presence/non-presence of ferrous 
material and/or electrical currents, which is not ideal for 
guiding local autonomous navigation. The advantage of 
cameras over high-resolution acoustics such as Synthetic 
Aperture Sonar (SAS) is that although SAS can achieve 
large swaths ~200m, achieving cm-resolution requires 
processing of acoustic waveforms that cannot be achieved 
in realtime and so is unavailable for AUV navigation. Both 
EM and SAS have measurement swaths smaller than cable 
route uncertainties and cameras are still needed to identify 
anomalies, requiring a combined sensing approach. 

Fig. 3 shows examples of images and structured light 
line laser-bathymetry from previous trials of our team, 
showing the varied appearance of cables and their 
background substrates, with intermittent local burial 
through natural processes. The sub-cm resolution 
bathymetry provides detailed context such as landing 
marks of an ROV skid next to the cable (centre image), 
which are hard to spot in images. Our detection is based on 
location-guided self-supervised feature learning methods 
developed in our previous research (Fig. 4) where we 
compare the location-guided autoencoder LGA [3] and 
geo-referenced contrastive learning of representation, 
GeoCLR [4]. An advantage of self-supervised methods is 
that they do not rely on human labelled training data to 
learn the features they use to describe images. Instead they 
learn features from unlabelled inputs directly. Location-
guiding allows the methods to prioritise features that 
reoccur in nearby images, making these approaches 
effective at describing features that extend beyond the 
footprint of a single image frame. In marine applications, 
where light attenuation limits image footprints to <10m, 
this allows large scale spatial patterns and linear 
infrastructure to be efficiently described. 

We analysed an AUV image dataset consisting of 
113,658 image patches and paired laser-bathymetry maps. 
The dataset has 36,000 human ground truth labels, of 
which 1563 are of cables. The dataset was gathered during 
the FK180731 cruise of the RV Falkor, using a camera and 
laser scanning system similar to that on Smarty200. We 
assessed the algorithms’ ability to detect cables, and the 
time taken to classify each image patch when using image 
only and combined image and laser-bathymetry. 

 
 Fig. 3. Example images and laser-bathymetry of subsea cables 
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Fig. 4. Illustration of the self-supervised feature learning 
methods (left) LGA and (right) GeoCLR used in this work [3,4] 

Navigation: A probabilistic navigation method is 
developed to guide cable search patterns using uncertain 
cable route maps as input. The method treats cable route 
estimation as a graph-based Simultaneous Localisation 
and Mapping (SLAM) problem [8], updating cable route 
estimates on the fly using realtime cable observations. This 
bounds the search space when detection is not possible, 
and back fills route estimates to unobserved regions.  

Fig. 5 shows the concept. The cable search pattern is 
initially bounded by the cable route uncertainty. Search 
patterns are parameterised through the angle of incidence 
of the AUV relative to the cable route estimate, where the 
uncertainty envelope bounds search trajectories to form a 
zig-zag (dotted lines in Fig. 5). Once the cable is observed, 
it is tracked based on realtime cable detection (orange in 
Fig. 5). If cable detection is unsuccessful for any reason, 
the observation updated cable route estimate is used to 
guide the search trajectory. The updated uncertainty 
boundaries grow from the observed regions using cable 
catenary calculations that model the maximum divergence 
of cables based on assumed friction and cable load bearing 
calculations. Since the search envelope grows smoothly 
with range from successful detections, the method 
recovers quickly from momentary loss of cable tracking 
due to vehicle manouevring (e.g., obstacle avoidance) or 
local occlusion. We assess the method using simulated 
cable routes and uncertain route priors and investigate 
sensitivity to the steepness of the zig-zag search pattern.  

Rapid remote awareness: To minimise the time from 
observation of an anomaly to human awareness, we have 
developed a flexible dataset query capability that can 
interact with large image datasets over available wireless 
communication channels without reliance on physical 
recovery of the AUV.  AUV camera surveys typically 
gather images at a rate of ~1/s, resulting in >10,000 images 
being gathered in a single deployment. Since AUVs are 
often deployed at the same time as other AUVs and marine 
systems, reliance on physical recovery to access their data 
forms a bottleneck that can introduce significant delays to 
human awareness of threats (e.g., ROV operations, 
deployment or recovery of other assets can occupy ship 
cranes, crew and constrain manoeuvrability to recover 
AUVs by several hours). We assess the effectiveness of  

 
Fig. 5. Illustration of the probabilistic navigation method 

enabling humans to flexibly interact with large image 
datasets using the same self-supervised feature learning 
used for cable detection as the AI back-end. The 
framework allows humans to present any query image, 
where the corresponding location of the image in the AI 
feature space is used to rank all images in the dataset 
according to their similarity to the query. Returning similar 
images together with their georeferences allows prioritised 
image subsets to be presented to humans. Since similarity 
can be determined from already computed image feature 
spaces, querying an entire dataset takes milliseconds, and 
can be done interactively over low-communication 
bandwidths to efficiently understand large datasets. 
Interaction can be over acoustic modems, typically 
available during missions if ships support AUVs for 
acoustic localisation, or via wifi from a nearby ship once 
an AUV has surfaced.  Global interaction (e.g., to shore) is 
possible over satellite networks, where we have previously 
transmitted ~100kB summaries of >100GB raw image 
datasets over the Iridium network (~20min at the surface). 
Since the AUV navigation estimates used to georeferenced 
anomalies have order of magnitude lower uncertainty than 
the initial cable route estimates, subsequent operations can 
efficiently revist relevant seafloor locations. 

4 Results and discussion 
This section provides proof-of-concept demonstrations of 
each intelligent subsystems. Table 2 summarises cable 
detection results using the LGA and GeoCLR feature 
learners, with and without laser-bathymetry information. 
The performance is assessed against human-expert 
labelled ground truth using standard accuracy metrics. 
GeoCLR outperforms LGA, achieving an F1-score of 0.85 
(max. 1.0). The precision (0.97) indicates a low false 
positive rate, and the recall (0.75) indicates some cables 
are not detected. Addition of depth information does not 
improve the results, where for the LGA it leads to 
confusion of the learning network. Both methods are 
realtime deployable from a standard AUV embedded CPU. 

Fig. 6 shows a simulated example of the probabilistic 
navigation method applied with a search angle of 60O 
Table. 2. Cable detection performance and processing time on 
Smarty200’s Intel Core i7 2.20GHz Dual Core, 8GB RAM 

Precision: 
Recall: F1 

RGB RGB+D Time per 
image (ms) 

LGA 0.82:0.56:0.67 0.33:0.36:0.35 371.4 
GeoCLR 0.97:0.75:0.85 0.94:0.73:0.82 376.5 
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 Fig. 6. Graph-SLAM based probabilistic cable route estimation 
using uncertain priors, observations and cable catenary models 

relative to the estimated cable route. Panel A shows the 
initial cable route and uncertainty prior that guides the 
initial search. In Panel B, the AUV search finds the actual 
cable route on the second zig-zag leg and tracks the cable. 
Panel C shows the response to a region of buried cable, 
where the observation updated route estimate and 
uncertainty are used to bound the search. Panel D shows 
the final cable route estimate after all observations. 

Fig. 7 shows query results on the 113,658 image 
dataset, where sandbags are used as a query example (these 
do not pose a threat). The dataset has 25 sandbags in total. 
The figure shows the 50 images judged to be most similar 
to the query (top left image) according to GeoCLR’s 
feature space. Table 3 summarises the performance when 
each of the 25 sandbags was used as the query. The results 
indicate order-of-magnitude reduction in data that needs to 
be looked at compared to a random search.  

Currently, the proposed intelligent subsystems are 
being integrated on the University of Southampton’s 
Smarty200 AUV, where field trials are planned in 2024. 

 
Fig. 7. Top 50 similarity return for a query image (top left) 

Table. 3. GeoCLR driven query results (median performance) 
% of 25 targets to find 60 80 96 100 
% of dataset to check 1.0 2.3 6.0 7.3 
% for random search 56.0 76.0  92.0 96.0 
η gain over random 56.0x 33.0x 15.3x 13.2x 
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