
Journal of Optimization Theory and Applications
https://doi.org/10.1007/s10957-024-02437-y

Third Order Dynamical Systems for the Sum of Two
Generalized Monotone Operators

Pham Viet Hai1 · Phan Tu Vuong2

Received: 25 May 2023 / Accepted: 4 April 2024
© The Author(s) 2024

Abstract
In this paper, we propose and analyze a third-order dynamical system for finding zeros
of the sum of two generalized operators in a Hilbert space H. We establish the exis-
tence and uniqueness of the trajectories generated by the system under appropriate
continuity conditions, and prove exponential convergence to the unique zero when the
sum of the operators is strongly monotone. Additionally, we derive an explicit dis-
cretization of the dynamical system, which results in a forward–backward algorithm
with double inertial effects and larger range of stepsize. We establish the linear con-
vergence of the iterates to the unique solution using this algorithm. Furthermore, we
provide convergence analysis for the class of strongly pseudo-monotone variational
inequalities.We illustrate the effectiveness of our approach by applying it to structured
optimization and pseudo-convex optimization problems.
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1 Introduction

In practical applications, many nonlinear phenomena can be represented as finding a
zero of a monotone operator. This problem arises in various contexts, such as solving
variational inequalities related to monotone operators, minimizing convex functions,
finding fixed points of nonexpansive mappings, and more. One of the most widely
used methods for solving this problem is the proximal point algorithm, which was
originally proposed by Martinet and systematically studied by Rockafellar [39] in the
context of Hilbert spaces.

Another important problem is to find a zero of the sum of two maximally monotone
operators

find x∗ ∈ H such that 0 ∈ A(x∗) + B(x∗). (1.1)

Problem (1.1) arises in a wide range of applications such as convex optimization,
image processing, and signal processing. A crucial special case of Problem (1.1) is
the following variational inequality (VI) problem

find x∗ ∈ H such that 0 ∈ NC (x∗) + B(x∗), (1.2)

where C is a nonempty closed convex subset of H and NC (x∗) is the normal cone of
C at x∗.When B is single-valued, the VI problem (1.2) is equivalent to finding a point
x∗ ∈ C such that

〈B(x∗), y − x∗〉 ≥ 0 ∀y ∈ C . (1.3)

The Douglas-Rachford splitting algorithm [22], presented by Lions and Mercier
[32], is a fundamental method to solve such problems. Under additional assumptions
on the involved operators, linear rates of convergence for the algorithm are possible.
Some other splitting methods are derived from the Douglas-Rachford algorithm (such
as the primal-dual hybrid gradient method [35], Alternating Direction Method of
Multiplier (ADMM) [23], and Spingarn’s method of partial inverses [23]). There are
many other methods for solving Problem (1.1), especially when one of the operators
is single-valued. A popular method for solving this problem is the forward–backward
algorithm,which consists of a forward stepwith one operator and a backward stepwith
another. The algorithm generates a sequence of iterates that converges to a solution
under suitable assumptions on the operators. The forward–backward algorithm has
been widely studied and applied in both finite-dimensional and infinite-dimensional
settings [11, 24, 33, 38].

Nowadays, there is a growing interest in connecting and integrating optimization
with other fields. This research direction has become increasingly attractive as it can
provide new insights into optimization results and lead to interesting findings. Among
the emerging research directions, there is a line of works that uses ordinary differential
equations (ODEs) to design algorithms for optimization problems [2, 3, 9, 14], varia-
tional inequalities [18, 27, 34, 43], monotone inclusions [1, 5, 6], fixed point problems
[15, 17] and equilibrium problems [20, 36, 42, 45]. Using ODE interpretation not

123



Journal of Optimization Theory and Applications

only provides a better understanding of Nesterov’s scheme, but also helps design new
schemes with similar convergence rates. The readers can refer to [9, 10, 18, 40] and
references therein for more examples.

1.1 Some Historical Aspects

The Heavy Ball with Friction method is a popular optimization algorithm based on
inertial dynamics. The algorithm was proposed by Polyak to accelerate the gradient
method in optimization [37]. It introduces an inertial system with a fixed viscous
damping coefficient

x (2)(t) + γ x (1)(t) + ∇ f (x(t)) = 0, (1.4)

for minimizing a convex and differentiable function f . Note that, when f has a Lips-
chitz continuous gradient then ∇ f is a co-coercive operator (see definition in Sect. 2).
Attouch and Alvarez extended the heavy ball dynamical system (1.4) for constrained
optimization as well as co-coercive operator in [4]. Recently, Boţ and Csetnek [15]
studied the second order dynamical system with variable viscous damping coefficient

x (2)(t) + γ (t)x (1)(t) + λ(t)B(x(t)) = 0,

for finding a zero of a co-coercive operator B. The results were applied to second
order forward–backward dynamical systems for monotone inclusion problems (1.1)

x (2)(t) + γ (t)x (1)(t) + λ(t)[(x(t)) − JA(x(t) − ηB(x(t))] = 0, (1.5)

where A is maximal monotone and B is co-coercive. Here JA � (I + A)−1 is the
resolvent of an operator Awith I stands for the identity operator. When the operator is
onlymerelymonotone but not co-coercive, a second order forward–backward–forward
dynamical system and its discretization have been recently proposed and investigated
in [19]. In particular, when the operator A + B is strongly monotone, the exponential
convergence rate of the second order dynamical system (1.5) was obtained in [16].
Under suitable conditions on parameters, the authors established the convergence rate
of O(e−t ) for the trajectories.

Attouch, Chbani and Riahi are the first authors who studied third order dynamical
system for minimizing a convex and differentiable function in Hilbert spaces [7, 8].
They proposed and studied the (TOGES) dynamical system [7]

x (3)(t) + α

t
x (2)(t) + 2α − 6

t2
x (1)(t) + ∇ f (x(t) + t x (1)(t)) = 0. (1.6)

Using the temporal scaling techniques, the third order dynamical system (1.6) was
reformulated as a second order dynamical system and the convergence analysis was
obtained using Lyapunov’s energy function techniques developed for second order
dynamical system. The authors showed a convergence rate of the values of the order
1
t3
, i.e. f (x(t) + t x (1)(t)) − infH f ≤ C

t3
for some constant C > 0 and obtained the
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convergence of the trajectories towards optimal solutions of minx∈H f (x). When the
objective function f is strongly convex, the authors established an exponential rate
of convergence. Proximal-based algorithms obtained by temporal discretization of
(TOGES)was also investigated.Nevertheless, the rate of values of f (x(t)) in (TOGES)
in only of order 1

t , i.e. f (x(t)) − infH f ≤ C
t , which is not completely satisfactory

from the point of view of fast optimization. Hence, very recently, an improved version
of (TOGES), called (TOGES-V) has been proposed and investigated by the same
authors in [8]

x (3)(t) + α + 7

t
x (2)(t) + 5(α + 1)

t2
x (1)(t) + ∇ f

(
x(t) + 1

4
t x (1)(t)

)
= 0,

where they obtained the rate O
(

1
t3

)
for f (x(t)) − infH f .

1.2 Our Contributions

In this paper, we propose for the first time a third order dynamical system for the
monotone inclusion (1.1) and investigate its convergence properties in both continu-
ous time and discrete time settings. The motivation of considering third (or higher)
order dynamical system comes from the fact that it can potentially provide faster con-
vergence rate, as seen in optimization problems [7, 8]. This will be also the case of
monotone inclusion obtained in this paper. Indeed, we derive the convergence rate of
O(e−εt ) for some ε > 1 (in particular for ε = 2) under suitable choices of parame-
ters, which is significantly faster than the classical results obtained in [16] for second
order dynamical systems. In discrete setting, the third order dynamical system pro-
vides a new forward backward algorithm with double momentum and a larger range
of stepsize.

In contrast to the classical monotone inclusion problem, where each individual
operator A and B is required to be (maximally) monotone, we only require A and B to
be generalizedmonotone (seeDefinitions in Sect. 2). This approach allows us to handle
not only the classicalmonotone inclusion problembut also the problemof finding zeros
of the sum of a weakly monotone operator and a strongly monotone operator, and
the pseudo-monotone variational inequalities. Applications of these models include
minimizing the sum of a weakly convex function and a strongly convex function [21,
26] or minimizing a pseudo-convex function. The convergence analysis developed in
this paper is purely relied on Lyapunov’s energy function techniques, in contrast to
the temporal scaling technique using in [7, 8]. In summary, our contributions are as
follows:

• Propose a third order dynamical system for the sum of two generalized monotone
operators.

• Establish the existence anduniqueness of the trajectories generated by the proposed
dynamical system.

• Provide the exponential convergence analysis of the trajectories to the unique
solution of the inclusion, and show that it is faster than classical results.
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• Investigate the temporal discretization of the system and prove the linear con-
vergence of the corresponding forward–backward algorithm with double inertial
effects.

• Study the third order dynamical system for strongly pseudo-monotone variational
inequalities.

The paper is structured as follows. In Sect. 2, we introduce some terminologies
and results that are necessary for the analysis presented in the subsequent sections. In
Sects. 3 and 4, we focus on solving Problem (1.1) under the assumption of generalized
monotonicity of the operators involved. In Sect. 3, we propose a third-order dynamical
system and establish its exponential convergence to the zero of Problem (1.1). The
explicit discretizationof this system leads to a new forwardbackward algorithmstudied
in Sect. 4. In Sect. 5, motivated by the third-order dynamical system, we find the
solution of Problem (1.2) under the assumption of strong pseudo-monotonicity of the
operator B.

2 Preliminaries

We start the section with listing the notations used. The set of integers is denoted by
Z and the set of real numbers is denoted by R. Let Z≥1 = { j ∈ Z : j ≥ 1} and
R≥0 = {t ∈ R : t ≥ 0}. The symbol g(k) stands for the k-th derivative of the function
g.

Throughout this workH is a real Hilbert space with inner product 〈·, ·〉 and induced
norm ‖ · ‖. We use the notation A : H ⇒ H to indicate that A is a set-valued operator
defined on H, and A : H → H to indicate that A is a single-valued operator on H.

Let A be an operator onH. The graph of A is GraA = {(x, u) ∈ H×H, u ∈ A(x)}.
The inverse of A, denoted by A−1, is the operator with graph GraA−1 = {(u, x) ∈
H × H, u ∈ A(x)}.

2.1 GeneralizedMonotone Operators

We first recall some generalized versions of monotone operator defined and studied
in [21, 29].

Definition 2.1 The operator A : H ⇒ H is called γA-monotone if there exists a scalar
γA ∈ R such that

〈u − v, x − y〉 ≥ γA‖x − y‖2 ∀ (x, u), (y, v) ∈ GraA.

The constant γA is referred to the monotonicity modulus of A. We also say that A is
maximally γA-monotone if it is γA-monotone and there is no γA-monotone operator
whose graph strictly contains GraA.

Remark 2.2 Note that in the definition of generalizedmonotonicity, γA can be negative.
If γA = 0, then the generalized monotonicity reduces to the classical monotonicity.
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If γA > 0, then A is strongly monotone. Finally, if γA < 0 then A is called weakly-
monotone. For more detailed discussion on (maximally) monotone operators and the
connection to optimization problems, we refer the readers to [12, 13, 21].

Definition 2.3 The single-valued operator T : H → H is called

1. γT -strongly pseudo-monotone if γT > 0 and

〈T (x), y − x〉 ≥ 0 �⇒ 〈T (y), y − x〉 ≥ γT ‖x − y‖2

for all x, y ∈ H.
2. γT -cocoercive if γT > 0 and

〈T (x) − T (y), x − y〉 ≥ γT ‖T (x) − T (y)‖2 ∀x, y ∈ H.

3. LT -Lipschitz continuous if LT > 0 and

‖T (x) − T (y)‖ ≤ LT ‖x − y‖ ∀x, y ∈ H.

Remark 2.4 It is clear from theCauchy–Schwartz inequality that if T is γT -co-coercive
then it is 1/γT -Lipschitz continuous.

The resolvent of an operator A is denoted as JA � (I + A)−1, where I is the
identity operator. We will need the following properties of resolvent operator.

Lemma 2.5 [21] Let A : H ⇒ H be an γA-monotone operator and let ω > 0 such
that 1 + ωγA > 0. Then the followings hold:

1. JωA is single-valued;
2. JωA is (1 + ωγA)-co-coercive;
3. dom JωA = H if and only if A is maximally γA-monotone.

2.2 Absolutely Continuous Functions

Definition 2.6 A function h : R≥0 → R
d is called locally absolutely continuous if it

is absolutely continuous on every compact interval, which means that for each interval
[t0, t1] there exists an integrable function g : [t0, t1) → R

d such that

h(t) = h(t0) +
t∫

t0

g(s) ds ∀t ∈ [t0, t1].

Remark 2.7 If h : R≥0 → R
d is a locally absolutely continuous function, then it

is differentiable almost everywhere and its derivative agrees with its distributional
derivative almost everywhere.
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Proposition 2.8 For s, u ≥ 0 and m ∈ Z≥1, it holds

s∫
u

etεg(m)(t) dt = esε

⎛
⎝m−1∑

j=0

(−ε)m−1− j g( j)(s)

⎞
⎠ + (−ε)m

s∫
u

etεg(t) dt

−euε

⎛
⎝m−1∑

j=0

(−ε)m−1− j g( j)(u)

⎞
⎠ .

Proof The case when m = 1 is done by using integration by parts. Now we suppose
that the conclusion holds for m and prove the case m + 1. Indeed, we have

s∫
u

etεg(m+1)(t) dt =
s∫

u

etε dg(m)(t) = etεg(m)(t)

∣∣∣∣
s

u
− ε

s∫
u

etεg(m)(t) dt,

which together with the induction assumption completes the proof. ��

2.3 A Third Order Dynamical System

In this paper, we propose the following dynamical system for Problem (1.1).

y(3)(t) + α2y
(2)(t) + α1y

(1)(t) + α0[y(t) − JωA(y(t) − ωB(y(t)))] = 0,

(2.1)

where α2, α1, α0, ω > 0 and y( j)(t0) = v j , j ∈ {0, 1, 2}.
The solution of dynamical system (2.1) is understood in the following sense.

Definition 2.9 A function y(·) is called a strong global solution of Eq. (2.1) if it holds:
1. For every j ∈ {0, 1, 2, 3}, y( j) : [t0,+∞) → H is locally absolutely continuous;

in other words, absolutely continuous on each interval [δ, η] for η > δ > t0.
2. y(3)(t)+α2y(2)(t)+α1y(1)(t)+α0[y(t)−JωA(y(t)−ωB(y(t)))] = 0 for almost

every t ≥ t0.
3. y( j)(t0) = v j , j ∈ {0, 1, 2}.
Proposition 2.10 (Equivalent form) Equation (2.1) is equivalent to the system
x (1)(t) = G(x(t)), where G : H × H × H → H × H × H is defined by

G(x1, x2, x3) = (x2, x3,−α1x2 − α2x3 − α0[x1 − JωA(x1 − ωB(x1))]) ,

where (x1, x2, x3) ∈ H × H × H.

Proof The conclusion follows from doing the change of variables

(x1(t), x2(t), x3(t)) =
(
y(t), y(1)(t), y(2)(t)

)
.

��
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Theorem 2.11 (Existence and uniqueness of a solution) Consider dynamcial system
(2.1), where α0, α1, α2, ω > 0 and the operator A : H ⇒ H is γA-maximally mono-
tone, B : H → H is γB-monotone and L-Lipschitz such that 1 + ωγA > 0. Then for
each v0, v1, v2 ∈ H there exists a unique strong global solution of (2.1).

Proof We endow H × H × H with scalar product

〈(y1, y2, y3), (z1, z2, z3)〉H×H×H = 〈y1, z1〉 + 〈y2, z2〉 + 〈y3, z3〉 .

We show that the operator G is Lipschitz. Indeed, let y = (y1, y2, y3), z =
(z1, z2, z3) ∈ H × H × H. We have

‖JωA(y1 − ωB(y1)) − JωA(z1 − ωB(z1))‖2

≤ 1

(1 + ωγA)2
‖y1 − z1 − ω(B(y1) − B(z1))‖2

≤ (1 + ωL)2

(1 + ωγA)2
‖y1 − z1‖2,

and so

‖G(y) − G(z)‖2H×H×H ≤ ‖y2 − z2‖2 + ‖y3 − z3‖2

+(α2
1 + α2

2 + 2α2
0)
[
‖y2 − z2‖2 + ‖y3 − z3‖2 + ‖y1 − z1‖2

+‖JωA(y1 − ωB(y1)) − JωA(z1 − ωB(z1))‖2
]

≤ ‖y2 − z2‖2 + ‖y3 − z3‖2

+(α2
1 + α2

2 + 2α2
0)

[
1 + (1 + ωL)2

(1 + ωγA)2

]
‖y − z‖2H×H×H

≤
[
1 + (α2

1 + α2
2 + 2α2

0)

(
1 + (1 + ωL)2

(1 + ωγA)2

)]
· ‖y − z‖2H×H×H.

By using the Cauchy–Picard theorem (see, for example, [28, Proposition 6.2.1]), we
get the existence and uniqueness of a strong global solution. ��

2.4 Difference Operators

In the section, we give the discrete counterpart of the dynamical system (2.1). To
that aim, we recall the operation of forward difference and its properties used in the
convergence analysis. For z : Z → H and κ ∈ Z≥1, we denote

z

(κ+1) � (z


(κ)

)
, where z
(n) � z(n + 1) − z(n).

Remark 2.12 Let f , g, h : Z → H and θ ∈ R. It can be proven that

〈h, g〉
 (n) = 〈
h
(n), g
(n)

〉 + 〈
h
(n), g(n)

〉 + 〈
h(n), g
(n)

〉
,
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and consequently

θn+1g
(n) = (θng)
(n) + (1 − θ)θng(n),

(‖ f ‖2)
(n) = ‖ f 
(n)‖2 + 2
〈
f 
(n), f (n)

〉
.

Consider the difference equation, which is the discrete version of (2.1):

z

(3)

(n) + α2z

(2)

(n) + α1z

(n) + α0[z(n) − JωA(z(n) − ωB(z(n)))] = 0,

(2.2)

where α2, α1, α0, ω > 0.

Proposition 2.13 (Equivalent form) Equation (2.2) has an equivalent form

z(n + 3) = (3 − α2)z(n + 2) + (2α2 − α1 − 3)z(n + 1)

+ (α1 + 1 − α2)z(n) − α0[z(n) − JωA(z(n) − ωB(z(n)))]. (2.3)

Proof The proof makes use of the facts that

z

(2)

(n) = z(n + 2) − 2z(n + 1) + z(n),

z

(3)

(n) = z(n + 3) − 3z(n + 2) + 3z(n + 1) − z(n).

��
Remark 2.14 The numerical scheme (2.3) can be re-written as

z(n + 3) = z(n + 2) + (2 − α2)(z(n + 2) − z(n + 1))

+ (α2 − α1 − 1)(z(n + 1) − z(n))

− α0[z(n) − JωA(z(n) − ωB(z(n)))], (2.4)

which is a forward–backward algorithm with double momentum.

3 Continuous Time Dynamical System

In this section, we will establish the exponential convergence of dynamical system
(2.1) under the following assumption and notations.

Assumption 3.1 (i) The coefficients α0, α1, α2 > 0.
(ii) The operator A : H ⇒ H is maximally γA-monotone, B : H → H is γB-

monotone and L-Lipschitz continuous such that

γ � γA + γB > 0. (3.1)
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(iii) The parameter ω > 0 satisfies

1 + ωγA > 0, (3.2)

1

ω
>

L2

4γ
+ L − γ. (3.3)

Remark 3.1 Condition (3.1) implies that the sum operator A+ B is strongly monotone
but not the individual operator A, B. A similar condition was studied in [21]. An
direct application of this model is to minimize a sum of a weakly convex function and
a strongly convex function. Condition (3.2) is imposed to ensure that the resolvent
operator JωA is single valued. Finally, condition (3.3) means that the stepsize ω must
be bounded from above. Note that condition (3.3) gives

1 >
L2

4γ
· 1

1
ω

+ γ − L
.

Hence, we can find θ > 0 such that

1 > θ >
L2

4γ
· 1

1
ω

+ γ − L
. (3.4)

The following notations are used.

� � 2ω

2ωγ + 1

(
1

ω
+ γ − L − L2

4θγ

)
, δ � 2ωγ (1 − θ)

2ωγ + 1
. (3.5)

3.1 Global Exponential Convergence

First, we consider the dynamical system (2.1) whose the global convergence relates
to the following parameters

⎧⎪⎪⎨
⎪⎪⎩
A2 � �α1

α0
,

A1 � �α2α1
α0

− 3,

A0 � �α2
1

α0
− 2α2,

{
B1 � �α2

α0
,

B0 � �
α0

(α2
2 − 2α1),

C0 � �

α0
. (3.6)

We denote the functions

a(t) � ‖y(t) − x∗‖2, bk(t) � ‖y(k)(t)‖2. (3.7)

Theorem 3.2 Suppose that the operators A and B satisfy Assumption 3.1. Let x∗ be
the unique solution of Problem (1.1). Let θ satisfy (3.4) and denote the parameters as
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in (3.5)–(3.6). Assume that there exists ε > 0 such that the following conditions hold

−ε3 + α2ε
2 − α1ε + δα0 ≥ 0, (3.8)

A2ε
2 − A1ε + A0 ≥ 0, (3.9)

3ε2 − 2α2ε + α1 ≥ 0, (3.10)

−2A2ε + A1 ≥ 0, (3.11)

−B1ε + B0 ≥ 0, (3.12)

α2 > 2ε. (3.13)

Then the trajectories y(·)generated by dynamical system (2.1) converges exponentially
to x∗, i.e., there exist positive numbers μ, η such that

‖y(t) − x∗‖ ≤ μ ‖y(t0) − x∗‖ e−ηt ∀t ≥ t0.

Proof In the next arguments, we often use the identities:

b(1)
1 (t) = 2

〈
y(2)(t), y(1)(t)

〉
,

b(2)
1 (t) = 2

〈
y(3)(t), y(1)(t)

〉
+ 2‖y(2)(t)‖2 = 2

〈
y(3)(t), y(1)(t)

〉
+ 2b2(t).

Since

a(1)(t) = 2
〈
y(1)(t), y(t) − x∗

〉
,

a(2)(t) = 2
〈
y(2)(t), y(t) − x∗

〉
+ 2b1(t),

a(3)(t) = 2
〈
y(3)(t), y(t) − x∗

〉
+ 3b(1)

1 (t),

we have

2
〈
y(3)(t) + α2y

(2)(t) + α1y
(1)(t), y(t) − x∗

〉

= a(3)(t) + α2a
(2)(t) + α1a

(1)(t) − 3b(1)
1 (t) − 2α2b1(t). (3.14)

We observe

‖y(3)(t) + α2y
(2)(t) + α1y

(1)(t)‖2
= α1b

(2)
1 (t) + α2α1b

(1)
1 (t) + α2

1b1(t) + α2b
(1)
2 (t) + (α2

2 − 2α1)b2(t) + b3(t).

(3.15)
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Using the definition of resolvent, equation (2.1) gives the following

B

(
y(3)(t) + α2y(2)(t) + α1y(1)(t)

α0
+ y(t)

)
− B(y(t))

− y(3)(t) + α2y(2)(t) + α1y(1)(t)

ωα0

∈ (A + B)

(
y(3)(t) + α2y(2)(t) + α1y(1)(t)

α0
+ y(t)

)
,

which combined with 0 ∈ (A + B)(x∗) and the γ -monotonicity of A + B implies

γ

∥∥∥∥∥
y(3)(t) + α2y(2)(t) + α1y(1)(t)

α0
+ y(t) − x∗

∥∥∥∥∥
2

≤
〈
B

(
y(3)(t) + α2y(2)(t) + α1y(1)(t)

α0
+ y(t)

)

−B(y(t)) − y(3)(t) + α2y(2)(t) + α1y(1)(t)

ωα0
,

y(3)(t) + α2y(2)(t) + α1y(1)(t)

α0
+ y(t) − x∗

〉
.

Since the operator B is L-Lipschitz, we can estimate the right hand side of the inequal-
ity above and then

γ

∥∥∥∥∥
y(3)(t) + α2y(2)(t) + α1y(1)(t)

α0
+ y(t) − x∗

∥∥∥∥∥
2

≤ 1

α2
0

(
L − 1

ω

)
‖y(3)(t) + α2y

(2)(t) + α1y
(1)(t)‖2

+
〈
B

(
y(3)(t) + α2y(2)(t) + α1y(1)(t)

α0
+ y(t)

)
− B(y(t)), y(t) − x∗

〉

− 1

ωα0

〈
y(3)(t) + α2y

(2)(t) + α1y
(1)(t), y(t) − x∗

〉
.
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Note that by the Cauchy–Schwarz inequality

〈
B

(
y(3)(t) + α2y(2)(t) + α1y(1)(t)

α0
+ y(t)

)
− B(y(t)), y(t) − x∗

〉

≤ L

α0
‖y(3)(t) + α2y

(2)(t) + α1y
(1)(t)‖ · ‖y(t) − x∗‖

≤ L2

4α2
0θγ

‖y(3)(t) + α2y
(2)(t) + α1y

(1)(t)‖2 + θγ a(t).

Thus, we get

γ

∥∥∥∥∥
y(3)(t) + α2y(2)(t) + α1y(1)(t)

α0
+ y(t) − x∗

∥∥∥∥∥
2

≤ 1

α2
0

(
L − 1

ω
+ L2

4θγ

)
‖y(3)(t) + α2y

(2)(t) + α1y
(1)(t)‖2

− 1

ωα0

〈
y(3)(t) + α2y

(2)(t) + α1y
(1)(t), y(t) − x∗

〉
+ θγ a(t). (3.16)

Note that

γ

∥∥∥∥∥
y(3)(t) + α2y(2)(t) + α1y(1)(t)

α0
+ y(t) − x∗

∥∥∥∥∥
2

= γ

α2
0

‖y(3)(t) + α2y
(2)(t) + α1y

(1)(t)‖2 + γ a(t)

+2γ

α0

〈
y(3)(t) + α2y

(2)(t) + α1y
(1)(t), y(t) − x∗

〉
.

Inserting the equality above into (3.16), we obtain

�

α0
‖y(3)(t) + α2y

(2)(t) + α1y
(1)(t)‖2 + δα0a(t)

+2
〈
y(3)(t) + α2y

(2)(t) + α1y
(1)(t), y(t) − x∗

〉
≤ 0, (3.17)

which implies, by (3.14) and (3.15), that

a(3)(t) + α2a
(2)(t) + α1a

(1)(t) + δα0a(t)

+A2b
(2)
1 (t) + A1b

(1)
1 (t) + A0b1(t) + B1b

(1)
2 (t) + B0b2(t) + C0b3(t) ≤ 0.

By (3.4), we have � > 0 and so is C0. Thus, we can write

a(3)(t) + α2a
(2)(t) + α1a

(1)(t) + δα0a(t)

+A2b
(2)
1 (t) + A1b

(1)
1 (t) + A0b1(t) + B1b

(1)
2 (t) + B0b2(t) ≤ 0.
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Multiplying both sides by eε(t−t0) and then using Proposition 2.8, we get

eε(s−t0)[(ε2 − α2ε + α1)a(s) + (α2 − ε)a(1)(s) + a(2)(s)]

+(−ε3 + α2ε
2 − α1ε + δα0)

s∫
t0

eε(t−t0)a(t)dt

+eε(s−t0)[(−A2ε + A1)b1(s) + A2b
(1)
1 (s)]

+(A2ε
2 − A1ε + A0)

s∫
t0

eε(t−t0)b1(t)dt

+B1e
ε(s−t0)b2(s) + (−B1ε + B0)

s∫
t0

eε(t−t0)b2(t)dt ≤ D1,

for some constant D1, which implies, after using (3.8), (3.9), (3.12) and (3.4), that

eε(s−t0)[(ε2 − α2ε + α1)a(s) + (α2 − ε)a(1)(s) + a(2)(s)]
+eε(s−t0)[(−A2ε + A1)b1(s) + A2b

(1)
1 (s)] + B1e

ε(s−t0)b2(s) ≤ D1,

Intergrating the above inequality with respect to the variable s ∈ [t0; t] we deduce

eε(t−t0)a(1)(t) + (α2 − 2ε)eε(t−t0)a(t) + (3ε2 − 2α2ε + α1)

t∫
t0

eε(s−t0)a(s)ds

+A2e
ε(t−t0)b1(t) + (−2A2ε + A1)

t∫
t0

eε(s−t0)b1(s)ds ≤ D1t + D2.

for some constant D2. Using (3.10), (3.11), (3.4), we get

eε(t−t0)a(1)(t) + (α2 − 2ε)eε(t−t0)a(t) ≤ D1t + D2. (3.18)

Note that equation (3.18) reduces to the following

a(t) ≤ e−(α2−2ε)(t−t0)D3

+e−(α2−2ε)(t−t0)

t∫
t0

e(α2−3ε)(s−t0)(D1s + D2) ds.

for some constant D3.
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– If α2 ≥ 3ε, then e(α2−3ε)(s−t0) ≤ e(α2−3ε)(t−t0), and so

a(t) ≤ e−(α2−2ε)(t−t0)D3 + e−ε(t−t0)

t∫
t0

(D1s + D2) ds. (3.19)

– If 2ε < α2 < 3ε, then e(α2−3ε)(s−t0) ≤ 1, and so

a(t) ≤ e−(α2−2ε)(t−t0)

⎛
⎝D3 +

t∫
t0

(D1s + D2) ds

⎞
⎠ . (3.20)

The arguments above show that y(·) converges exponentially to x∗. ��
Remark 3.3 It follows from (3.19) that a(t) converges to 0 with the rate of O((Pt2 +
Qt + Rt)e−εt ) for some constants P, Q, R, while the rate obtained from (3.20) is
O((Pt2 + Qt + Rt)e−(α2−2ε)t ). With the suitable choice of ε and α2, these rates can
be controlled so that they are faster than the rate O(e−t ) of the second order dynamical
systems established in [16].

3.2 Parameters Choices

We now discuss the question “how to find ε?”. It can be seen from (3.19) that the larger
ε implies the faster rate. Finding the maximal value of ε is cumbersome as it depends
on many other parameters. However, we will discuss how to find a "good enough" ε

in this section. The following remark offers a way which concerns the coefficients.

Remark 3.4 If A0, A1, B0 satisfy

A0, A1, B0 > 0, (3.21)

then conditions (3.8)–(3.13) can be obtained by letting ε → 0+.

In the following result, we simplify the assumption (3.21) in algebraic terms of the
coefficients α0, α1, α2.

Corollary 3.5 Consider equation (2.1), under Assumption 3.1. Let x∗ be the unique
solution of Problem (1.1). Let θ satisfy (3.4). Denote (3.5)–(3.6). Then y(·) converges
exponentially to x∗ provided that coefficients α0, α1, α2, ω satisfy the following con-
ditions

α1 <
α2
2

2
, (3.22)

α0 < � · min

{
α1α2

3
,

α2
1

2α2

}
. (3.23)
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Let us first examine Theorem 3.2 when ε = 1, for which it matches the rate obtained
for the second order dynamical system established in [16].

Theorem 3.6 Suppose that the operators A and B satisfy Assumption 3.1. Let x∗ be
the unique solution of Problem (1.1). Let θ satisfy (3.4) and denote the parameters as
in (3.5)–(3.6) and

ϕ � 1

�δ
. (3.24)

Then y(·) converges exponentially to x∗ provided that coefficients α0, α1, α2, ω satisfy

α2 > max{3, 3ϕ + 2, 4ϕ}, (3.25)

β � max {2α2 − 3, ϕ(2α2 − 3)} < α1 < β � 0.5α2(α2 − 1), (3.26)

q � α1 − α2 + 1

δ
< α0 < p � � · min

{
α1(α2 − 2)

3
,
α1(α1 − α2 + 1)

2α2 − 3

}
.

(3.27)

Proof First, we show that (3.25) ensures the validity of (3.26); that is β < β. Indeed,

it follows from (3.25) that α2 > 3 and so 2α2 − 3 <
α2(α2−1)

2 . Also from (3.25), we
have α2 > 4ϕ and then

α2(α2 − 1)

2
>

α2(2α2 − 3)

4
> ϕ(2α2 − 3).

Next, we show that (3.25)–(3.26) ensure the validity of (3.27); that is q < p. It results
from (3.25) that α2 > 3ϕ + 2 and so

α1 − α2 + 1

δ
<

α1

δ
< � · α1(α2 − 2)

3
.

Meanwhile, by (3.26), we have α1 > ϕ(2α2 − 3), which gives

α1 − α2 + 1

δ
< � · α1(α1 − α2 + 1)

2α2 − 3
.

Now we can obtain the exponential convergence of y(·) by using Theorem 3.2 for
ε = 1. ��

Now let us examine Theorem 3.2 when ε = 2. In this case, we will obtain from
(3.19) that the convergence rate of a(t) is

O((Pt2 + Qt + R)e−2t ),

which is faster than the rate O(e−t ) obtained in [16] for the second order dynamical
system.
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Theorem 3.7 Suppose that the operators A and B satisfy Assumption 3.1. Let x∗ be
the unique solution of Problem (1.1). Let θ satisfy (3.4) and denote the parameters
as in (3.5)–(3.6) and (3.24). Then y(·) converges exponentially to x∗ provided that
coefficients α0, α1, α2, ω satisfy

α2 > max{8ϕ, 6, 6ϕ + 4}, (3.28)

β � max{4(α2 − 3), 4ϕ(α2 − 3)} < α1 < β � 1

2
α2(α2 − 2), (3.29)

q � 2

δ
(α1 − 2α2 + 4) < α0 < p � �α1 · min

{
α1 − 2α2 + 4

2(α2 − 3)
,
1

3
(α2 − 4)

}
.

(3.30)

Proof Like in Theorem 3.6, we must check β < β. Indeed, we have

1

2
α2(α2 − 2) >

1

2
α2(α2 − 3) > 4ϕ(α2 − 3).

Next is to prove q < p. It follows from (3.29) that

α1 > 4(α2 − 3) > 2(α2 − 2),

which gives

α1 − 2α2 + 4 > 0. (3.31)

Again using (3.29), we get α1 > 4ϕ(α2 − 3), which gives

�α1

2(α2 − 3)
>

2

δ
. (3.32)

From (3.31)–(3.32), we obtain

�α1 · α1 − 2α2 + 4

2(α2 − 3)
>

2

δ
(α1 − 2α2 + 4). (3.33)

We observe α1(α2 − 6ϕ − 4) + 12ϕ(α2 − 2) > 0, which is equivalent to saying that

�α1 · 1
3
(α2 − 4) >

2

δ
(α1 − 2α2 + 4). (3.34)

Hence, the inequality q < p follows from (3.33)–(3.34).We left the reader to checking
(3.8)–(3.13). Thus, y(·) converges exponentially to x∗. Moreover, it follows from
(3.19) that the convergence rate is

O((Pt2 + Qt + R)e−2t ),

for some constants P, Q, R. ��
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4 Discrete Time Dynamical System

In this section, we establish the linear convergence of the numerical scheme (2.3) for
solving (1.1) under the following additional assumption.

Assumption 4.1 The coefficients α0, α1, α2 satisfy

�

α0
(1 − α2 + α1) > 1, (4.1)

�

α0
(2α1 − α2) < 3, (4.2)

�α1

α0
> 3, (4.3)

where � is defined in (3.5).

We denote the following parameters

⎧⎪⎪⎨
⎪⎪⎩
D2 � �α1

α0
− 3,

D1 � �α2α1
α0

− 2α2 − 3,

D0 � �α2
1

α0
− 2α2 − α1,

{
E1 � �

α0
(α2 − 2α1) + 3,

E0 � �
α0

(α2
2 − 2α1 − α2α1) + α2 + 3,

(4.4)

F0 � �

α0
(1 − α2 + α1) − 1 (4.5)

and

u(n) � ‖z(n) − x∗‖2, ck(t) � ‖z
(k)
(n)‖2. (4.6)

Remark 4.1 Under Assumption 4.1, we have F0, E1, D2 > 0. Note also that under
Assumption 3.1, the stepsize ω must be bounded from above, i.e.

ω <
4γ

L2 + 4Lγ − 4γ 2 .

This upper bound ofω is larger than that of the classical forward–backward algorithm,
which is ω <

2γ
L2 (see e.g. [13, Proposition 25.9]) when A is maximal monotone and

B is γ− strongly monotone and L-Lipschitz continuous.

4.1 Global Linear Convergence

Theorem 4.2 Suppose that the operators A and B satisfy Assumption 3.1. Let x∗ be
the unique solution of Problem (1.1). Let θ satisfy (3.4) and denote the parameters as
in (3.5), (4.4), (4.5) and Assumption 4.1 holds. Assume that there exists ξ > 0, ξ �= 1

123



Journal of Optimization Theory and Applications

such that the following conditions hold

−ξ3 + α2ξ
2 − α1ξ + δα0 ≥ 0, (4.7)

D2ξ
2 − D1ξ + D0 ≥ 0, (4.8)

3ξ2 − 2α2ξ + α1 ≥ 0, (4.9)

−2D2ξ + D1 ≥ 0, (4.10)

−E1ξ + E0 ≥ 0, (4.11)

α2 > 3ξ. (4.12)

Then z(n) converges linearly to x∗, i.e. there exist M > 0 and q ∈ (0, 1) such that

‖z(n) − x∗‖ ≤ Mqn ∀n.

Proof Since

u
(n) = 2
〈
z
(n), z(n) − x∗

〉 + c1(n),

u
(2)
(n) = 2

〈
z


(2)
(n), z(n) − x∗

〉
+ 2c


1 (n) + 2c1(n) − c2(n),

u
(3)
(n) = 2

〈
z


(3)
(n), z(n) − x∗

〉

+3c
(2)

1 (n) + 3c

1 (n) − 3c


2 (n) − 3c2(n) + c3(n),

we have

2
〈
z


(3)
(n) + α2z


(2)
(n) + α1z


(n), z(n) − x∗
〉

= u
(3)
(n) + α2u


(2)
(n) + α1u


(n)

−3c
(2)

1 (n) − (2α2 + 3)c

1 (n) − (2α2 + α1)c1(n)

+3c

2 (n) + (α2 + 3)c2(n) − c3(n). (4.13)

We observe

‖z
(3)
(n) + α2z


(2)
(n) + α1z


(n)‖2
= α1c


(2)

1 (n) + α2α1c


1 (n) + α2

1c1(n)

+(α2 − 2α1)c


2 (n) + (α2

2 − 2α1 − α2α1)c2(n) + (1 − α2 + α1)c3(n).

(4.14)
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Using the definition of resolvent, equation (2.2) gives

B

(
z


(3)
(n) + α2z


(2)
(n) + α1z
(n)

α0
+ z(n)

)

−B(z(n)) − z

(3)

(n) + α2z

(2)

(n) + α1z
(n)

ωα0

∈ (A + B)

(
z


(3)
(n) + α2z


(2)
(n) + α1z
(n)

α0
+ z(n)

)
,

which combined with 0 ∈ (A + B)(x∗) and the γ -monotonicity of A + B implies

γ

∥∥∥∥∥
z


(3)
(n) + α2z


(2)
(n) + α1z
(n)

α0
+ z(n) − x∗

∥∥∥∥∥
2

≤
〈
B

(
z


(3)
(n) + α2z


(2)
(n) + α1z
(n)

α0
+ z(n)

)

−B(z(n)) − z

(3)

(n) + α2z

(2)

(n) + α1z
(n)

ωα0
,

z

(3)

(n) + α2z

(2)

(n) + α1z
(n)

α0
+ z(n) − x∗

〉
.

Since the operator B is L-Lipschitz, we can estimate the right hand side of the inequal-
ity above and then

γ

∥∥∥∥∥
z


(3)
(n) + α2z


(2)
(n) + α1z
(n)

α0
+ z(n) − x∗

∥∥∥∥∥
2

≤
〈
B

(
z


(3)
(n) + α2z


(2)
(n) + α1z
(n)

α0
+ z(n)

)
− B(z(n)), z(n) − x∗

〉

+ 1

α2
0

(
L − 1

ω

)
‖z
(3)

(n) + α2z

(2)

(n) + α1z

(n)‖2

− 1

ωα0

〈
z


(3)
(n) + α2z


(2)
(n) + α1z


(n), z(n) − x∗
〉
.
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Note that by the Cauchy–Schwarz inequality

〈
B

(
z


(3)
(n) + α2z


(2)
(n) + α1z
(n)

α0
+ z(n)

)
− B(z(n)), z(n) − x∗

〉

≤ L

α0
‖z
(3)

(n) + α2z

(2)

(n) + α1z

(n)‖ · ‖z(n) − x∗‖

≤ L2

4θγ α2
0

‖z
(3)
(n) + α2z


(2)
(n) + α1z


(n)‖2 + θγ u(n).

Thus, we get

γ

∥∥∥∥∥
z


(3)
(n) + α2z


(2)
(n) + α1z
(n)

α0
+ z(n) − x∗

∥∥∥∥∥
2

≤ 1

α2
0

(
L − 1

ω
+ L2

4θγ

)
‖z
(3)

(n) + α2z

(2)

(n) + α1z

(n)‖2 + θγ u(n)

− 1

ωα0

〈
z


(3)
(n) + α2z


(2)
(n) + α1z


(n), z(n) − x∗
〉
. (4.15)

Note that

γ

∥∥∥∥∥
z


(3)
(n) + α2z


(2)
(n) + α1z
(n)

α0
+ z(n) − x∗

∥∥∥∥∥
2

= γ

α2
0

‖z
(3)
(n) + α2z


(2)
(n) + α1z


(n)‖2 + γ u(n)

+2γ

α0

〈
z


(3)
(n) + α2z


(2)
(n) + α1z


(n), z(n) − x∗
〉
.

Inserting the equality above into (4.15), we get

�

α0
‖z
(3)

(n) + α2z

(2)

(n) + α1z

(n)‖2 + δα0u(n)

+2
〈
z


(3)
(n) + α2z


(2)
(n) + α1z


(n), z(n) − x∗
〉
≤ 0,

which implies, by (4.13) and (4.14), that

u
(3)
(n) + α2u


(2)
(n) + α1u


(n) + δα0u(n)

+D2c
(2)
1 (n) + D1c

(1)
1 (n) + D0c1(n) + E1c

(1)
2 (n) + E0c2(n) + F0c3(n) ≤ 0.

By (4.1), the inequality above gives

u
(3)
(n) + α2u


(2)
(n) + α1u


(n) + δα0u(n)

+D2c

(2)

1 (n) + D1c


1 (n) + D0c1(n) + E1c



2 (n) + E0c2(n) ≤ 0.
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Setting

ε � 1

1 − ξ
.

Then ε > 1 and conditions (4.7)–(4.12) can be written as

δα0ε
3 + α1ε

2(1 − ε) + (α2ε + 1 − ε)(1 − ε)2 ≥ 0, (4.16)

D0ε
2 + D1(1 − ε)ε + D2(1 − ε)2 ≥ 0, (4.17)

α1ε
2 + 2α2ε(1 − ε) + 3(1 − ε)2 ≥ 0, (4.18)

D1ε + 2D2(1 − ε) ≥ 0, (4.19)

E0ε + E1(1 − ε) ≥ 0, (4.20)

εα2 + 3(1 − ε) > 0. (4.21)

Through multiplying both sides by εn+3 and then using Remark 2.12,

(εn+2u
(2)
)
(n) + (α2ε + 1 − ε)(εn+1u
)
(n)

+[α1ε
2 + (α2ε + 1 − ε)(1 − ε)](εnu)
(n)

+[δα0ε
3 + α1ε

2(1 − ε) + (α2ε + 1 − ε)(1 − ε)2]︸ ︷︷ ︸
≥0 (by (4.16))

εnu(n)

+D2(ε
n+2c


1 )
(n) + [D1ε − D2(ε − 1)](εn+1c1)

(n)

+[D0ε
2 + D1(1 − ε)ε + D2(1 − ε)2]︸ ︷︷ ︸

≥0 (by (4.17))

εn+1c1(n)

+E1(ε
n+2c2)


(n) + [−E1(ε − 1) + E0ε]︸ ︷︷ ︸
≥0 (by (4.20))

εn+2c2(n) ≤ 0.

Let m ∈ Z≥1. After summing from n = 0 to n = m − 1,

εm+2u
(2)
(m) + (α2ε + 1 − ε)εm+1u
(m) + [α1ε

2 + (α2ε + 1 − ε)(1 − ε)]εmu(m)

+D2ε
m+2c


1 (m) + [D1ε − D2(ε − 1)]εm+1c1(m) + E1ε
m+2c2(m)︸ ︷︷ ︸

≥0 (by (4.2))

≤ M1,

where M1 is some positive constant. Again using Remark 2.12,

(εm+1u
)
(m) + [α2ε + 2(1 − ε)](εmu)
(m)

+[α1ε
2 + 2α2ε(1 − ε) + 3(1 − ε)2]︸ ︷︷ ︸

≥0 (by (4.18))

εmu(m)

+D2(ε
m+1c1)


(m) + [D1ε − 2D2(ε − 1)]︸ ︷︷ ︸
≥0 (by (4.19))

εm+1c1(m) ≤ M1.

123



Journal of Optimization Theory and Applications

Let κ ∈ Z≥2. After summing from m = 1 to m = κ − 1,

εκ+1u
(κ) + [α2ε + 2(1 − ε)]εκu(κ) + D2ε
κ+1c1(κ)︸ ︷︷ ︸

≥0 (by (4.3))

≤ M1κ + M2,

where M2 is some positive constant. Again using Remark 2.12,

(εκu)
(κ) + [α2ε + 3(1 − ε)]εκu(κ)︸ ︷︷ ︸
≥0 (by (4.21))

≤ M1κ + M2,

which implies, after summing from κ = 2 to κ = n − 1, that

εnu(n) ≤ M1n
2 + M2n + M3 ≤ M4n

2.

Here n ∈ Z≥3 and M3, M4 are some positive constants. Let q such that 1 < q < ε.
We have

u(n) ≤ M4n2

εn
=
(q

ε

)n · M4n2

qn
≤ M5

(q
ε

)n
,

where M5 is some constant. The inequality above means that z(n) converges linearly
to x∗. ��

4.2 Parameters Choices

Let us discuss nowhow to choose the parameters fulfilling all Assumptions in Theorem
4.2. Note that if D0, D1, E0 satisfy

D0, D1, E0 > 0, (4.22)

then conditions (4.16)–(4.21) hold by letting ξ → 0+.

The following result simplifies the assumption (4.22) in algebraic terms of the
coefficients α0, α1, α2.

Corollary 4.3 Suppose that the operators A and B satisfy Assumption 3.1. Let x∗ be
the unique solution of Problem (1.1). Let θ satisfy (3.4) and denote the parameters
as in (3.5) (4.4), (4.5). Then z(n) converges linearly to x∗ provided that coefficients
α0, α1, α2, ω satisfy

α2 < 2, (4.23)

max{0, α2 − 1} < α1 <
α2
2

α2 + 2
, (4.24)

α0 < � · min

{
α2
1

α1 + 2α2
, 1 − α2 + α1

}
. (4.25)
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Proof Since α1 <
α2
2

α2+2 , we have E0 > α2 + 3 > 0. Also using α1 <
α2
2

α2+2 and the
fact that α2 < 2, we get

α1 <
α2
2

α2 + 2
<

α2

2
, (4.26)

which gives (4.2). It follows from (4.26) that α1 < α2 and so

�α1

3
>

�α2
1

α1 + 2α2
> α0.

The last inequality proves (4.3). Thus, Assumption 4.1 holds. Note that

α1 <
α2
2

α2 + 2
<

2α2
2

α2 + 3
,

which gives

�α1α2

2α2 + 3
>

�α2
1

α1 + 2α2
> α0

and then D1 > 0. ��
Remark 4.4 Note that there are common choices of parameters satisfied both Corollary
3.5 (as ε → 0) and Corollary 4.3 (as ξ → 0). The reader can check the following
selection

α2 < 1,

α1 <
α2
2

α2 + 2
,

α0 < � · min

{
1

3
α1α2,

α2
1

α1 + 2α2

}
.

Remark 4.5 An important application of the monotone inclusion (1.1) is the following
important optimization problem

min
x∈H

f (x) + g(x), (4.27)

where f : H → R is a differentiable function with L-Lipschitz continuous gradient
for some L > 0 and g : H → R ∪ {+∞} is a proper and lower semicontinuous
function.

Recall that the Fréchet subdifferential of g at x is defined by

∂̂g(x) :=
{
u ∈ H, lim inf

y→x

f (y) − f (x) − 〈u, y − x〉
‖y − x‖ ≥ 0

}
.
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It is well known that if g is differentiable at x , then ∂̂g(x) = {∇g(x)}. When g
is a convex function, the Fréchet subdifferential coincides with the classical convex
subdifferential, i.e.

∂̂g(x) = ∂g(x) = {u ∈ H : g(y) ≥ g(x) + 〈u, y − x〉 ∀y ∈ H}.
We notice that, if g is proper, γg-convex and lower semicontinuous then ∂̂g is maxi-
mally generalized γg-monotone. We assume that f and g are respectively γ f and γg
convex functions such that γ = γ f + γg > 0. Then the set of minimizers of (4.27)
coincides with the solution set of the following monotone inclusion problem

find x∗ ∈ H such that 0 ∈ ∇ f (x∗) + ∂̂g(x∗), (4.28)

for which the results obtained from previous Sections can be applied.

5 Strongly Pseudo-monotone Variational Inequality

Let C be a nonempty and closed convex subset of H. The normal cone of C at x is
defined as

NC (x) = {u ∈ H, 〈u, y − x〉 ≤ 0, ∀y ∈ C},
which ismaximallymonotone [13]. In this section, we focus on the restrictive category
of Problem (1.1) of the form

find x∗ ∈ H such that 0 ∈ A(x∗) + NC (x∗). (5.1)

Note that, if A is γA-monotone, then (5.1) is a special case of (1.1). Indeed, the sum
of two monotone operators is still monotone [13]. However, this is not the case if A is
non-monotone (e.g. only pseudo-monotone). For example, the operator

A(x1, x2) := (x21 + x22 )(−x2, x1)
T

is pseudo-monotone but A + ε I is not (pseudo)-monotone for any ε > 0 (see [41,
Counterexample 2.1]).

In this section, we will consider the case when A is γ -strongly pseudo-monotone
and hence the results obtained in the previous Sections cannot be directly applied.
Problem (5.1) is equivalent to the variational inequality V I (A,C): find x∗ ∈ C such
that

〈A(x∗), y − x∗〉 ≥ 0 ∀y ∈ C . (5.2)

For each x ∈ H, there exists a unique point inC (see, e.g., [31]), denoted by PC (x),
such that

‖x − PC (x)‖ ≤ ‖x − y‖ ∀y ∈ C .
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Some well-known properties of the metric projection PC : H → C are given in the
following lemma [25, 31].

Lemma 5.1 Assume that the set C is a closed convex subset of H. Then we have the
following:

(a) PC (.) is a nonexpansive operator, i.e., for all x, y ∈ H, it holds that

‖PC (x) − PC (y)‖ ≤ ‖x − y‖.

(b) For any x ∈ H and y ∈ C, it holds that

〈x − PC (x), y − PC (x)〉 ≤ 0.

Assumption 5.1 (i) The coefficients α0, α1, α2 > 0.
(ii) The operator A : H → H is γ -strongly pseudo-monotone and L-Lipschitz

continuous.
(iii) The parameter ω > 0 satisfies

ω <
4γ

L2 . (5.3)

Remark 5.2 Under Assumption 5.1 (ii) and (iii), the problem V I (A,C) has a unique
solution [30].

We will need the following important estimate and error bounds.

Proposition 5.3 [44] Let C ⊂ H be a nonempty closed convex subset. Let A be an
operator that is γ -strongly pseudo-monotone and L-Lipschitz on C. Let x∗ be the
unique solution of Problem (5.2). For every ω > 0 and x ∈ H, we have

〈x − PC (x − ωA(x)), x − x∗〉 ≥
(
1 − ωL2

4γ

)
‖x − PC (x − ωA(x))‖2 (5.4)

and

‖x − x∗‖ ≤ 1 + ωγ + ωL

ωγ
‖x − PC (x − ωA(x))‖. (5.5)

In the whole section, we denote

μ � 1 − ωL2

4γ
, η �

(
ωγ

1 + ωγ + ωL

)2

. (5.6)
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5.1 Continuous Time

In this case, we consider

y(3)(t) + α2y
(2)(t) + α1y

(1)(t) + α0[y(t) − PC (y(t) − ωA(y(t)))] = 0, (5.7)

where y( j)(t0) = v j , j ∈ {0, 1, 2}.
Denote

⎧⎪⎪⎨
⎪⎪⎩
G2 � μα1

α0
,

G1 � μα2α1
α0

− 3,

G0 � μα2
1

α0
− 2α2,

{
H1 � μα2

α0
,

H0 � μ
α0

(α2
2 − 2α1),

K0 � μ

α0
. (5.8)

5.1.1 Global Exponential Convergence

Theorem 5.4 Suppose that Assumption 5.1 is satisfied. Let x∗ be the unique solution
of Problem (5.2). Let the parameters be denoted by (5.6) and (5.8). Assume that there
exists ε > 0 such that the following conditions hold

−ε3 + α2ε
2 − α1ε + μηα0 ≥ 0, (5.9)

G2ε
2 − G1ε + G0 ≥ 0, (5.10)

3ε2 − 2α2ε + α1 ≥ 0, (5.11)

−2G2ε + G1 ≥ 0, (5.12)

−H1ε + H0 ≥ 0, (5.13)

α2 > 2ε. (5.14)

Then the trajectory y(·) generated by dynamical system (5.7) converges exponentially
to x∗.

Proof Consider the functions in (3.7). Similarly as (3.14), we also have

a(3)(t) + α2a
(2)(t) + α1a

(1)(t) − 3b(1)
1 (t) − 2α2b1(t)

= 2
〈
y(3)(t) + α2y

(2)(t) + α1y
(1)(t), y(t) − x∗

〉
= 2α0 〈[−y(t) + PC (y(t) − ωA(y(t)))], y(t) − x∗〉 . (5.15)

On one hand, by (5.4), we can estimate

α0 〈[−y(t) + PC (y(t) − ωA(y(t)))], y(t) − x∗〉
≤ −α0μ‖y(t) − PC (y(t) − ωA(y(t)))‖2 = − μ

α0
‖y(3)(t) + α2y

(2)(t) + α1y
(1)(t)‖2

= − μ

α0
[α1b

(2)
1 (t) + α2α1b

(1)
1 (t) + α2

1b1(t) + α2b
(1)
2 (t) + (α2

2 − 2α1)b2(t) + b3(t)].
(5.16)
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On the other hand, by (5.4) and (5.5), we get

α0 〈[−y(t) + PC (y(t) − ωA(y(t)))], y(t) − x∗〉 ≤ −α0μηa(t). (5.17)

Thus, using (5.16) and (5.17), we estimate (5.15) as follows

a(3)(t) + α2a
(2)(t) + α1a

(1)(t) + α0μηa(t)

+G2b
(2)
1 (t) + G1b

(1)
1 (t) + G0b1(t) + H1b

(1)
2 (t) + H0b2(t) + K0b3(t) ≤ 0.

(5.18)

By arguments similar to those used in Theorem 3.2 but now applied to (5.18); meaning,
do integrating after three times, we get the exponential convergence of y(·). ��

5.1.2 Parameters Choices

Remark 5.5 If G0,G1, H0 satisfy

G0,G1, H0 > 0, (5.19)

then conditions (5.9)–(5.14) can be obtained by letting ε → 0+.

In the following result, we simplify the assumption (5.19) in the term of the upper
and lower bounds of the coefficients α0, α1, α2.

Corollary 5.6 Suppose that Assumption 5.1 is satisfied. Let x∗ be the unique solution
of Problem (5.2). Let the parameters be denoted by (5.6) and (5.8). Then the trajectory
y(·) generated by dynamical system (5.7) converges exponentially to x∗ provided that
coefficients α0, α1, α2, ω satisfy the following conditions

α1 <
α2
2

2
,

α0 < μ · min

{
α1α2

3
,

α2
1

2α2

}
.

Now we examine Theorem 5.4 when ε = 1.

Corollary 5.7 Suppose that Assumption 5.1 is satisfied. Let x∗ be the unique solution
of Problem (5.2). Let the parameters be denoted by (5.6) and (5.8) and

ψ � 1

μ2η
. (5.20)
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Then the trajectory y(·) generated by dynamical system (5.7) converges exponentially
to x∗ provided that coefficients α0, α1, α2, ω satisfy the following conditions

α2 > max{3, 3ψ + 2, 4ψ}, (5.21)

β � max {2α2 − 3, ψ(2α2 − 3)} < α1 < β � 0.5α2(α2 − 1), (5.22)

q � α1 − α2 + 1

μη
< α0 < p � μ · min

{
α1(α2 − 2)

3
,
α1(α1 − α2 + 1)

2α2 − 3

}
.

(5.23)

Proof First, we show that (5.21) ensures the validity of (5.22); that is β < β. Indeed,

it follows from (5.21) that α2 > 3 and so 2α2 − 3 ≤ α2(α2−1)
2 . Also from (5.21), we

have α2 > 4ψ and then

α2(α2 − 1)

2
>

α2(2α2 − 3)

4
> ψ(2α2 − 3).

Next, we show that (5.21)–(5.22) ensure the validity of (5.23); that is q < p. It results
from (5.21) that α2 > 3ψ + 2 and so

α1 − α2 + 1

μη
<

α1

μη
< μ · α1(α2 − 2)

3
.

Meanwhile, by (5.22), we have α1 > ψ(2α2 − 3), which gives

α1 − α2 + 1

μη
< μ · α1(α1 − α2 + 1)

2α2 − 3
.

Now we can prove the exponential convergence of y(·) by using Theorem 5.4 for
ε = 1. ��

5.2 Discrete Time

We consider the difference equation

z

(3)

(n) + α2z

(2)

(n) + α1z

(n) + α0[z(n) − PC (z(n) − ωA(z(n)))] = 0,

(5.24)

where α2, α1, α0, ω > 0.
Denote

⎧⎪⎪⎨
⎪⎪⎩
S2 � μα1

α0
− 3,

S1 � μα2α1
α0

− 2α2 − 3,

S0 � μα2
1

α0
− 2α2 − α1,

{
T1 � μ

α0
(α2 − 2α1) + 3,

T0 � μ
α0

(α2
2 − 2α1 − α2α1) + α2 + 3,

(5.25)

R0 � μ

α0
(1 − α2 + α1) − 1. (5.26)
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5.2.1 Global Exponential Convergence

Assumption 5.2 The coefficients α0, α1, α2, ω satisfy

μ

α0
(1 − α2 + α1) > 1, (5.27)

μ

α0
(2α1 − α2) < 3, (5.28)

μα1

α0
> 3, (5.29)

where μ is defined in (5.6).

Remark 5.8 Under Assumption 5.2, we have R0, T1, S2 ≥ 0.

Theorem 5.9 Suppose that Assumptions 5.1 and 5.2 are satisfied. Let x∗ be the unique
solution of Problem (5.2). Let the parameters be denoted by (5.6) and (5.25)–(5.26).
Assume that there exists ξ > 0, ξ �= 1 such that the following conditions hold

−ξ3 + α2ξ
2 − α1ξ + μηα0 ≥ 0, (5.30)

S2ξ
2 − S1ξ + S0 ≥ 0, (5.31)

3ξ2 − 2α2ξ + α1 ≥ 0, (5.32)

−2S2ξ + S1 ≥ 0, (5.33)

−T1ξ + T0 ≥ 0, (5.34)

α2 > 3ξ. (5.35)

Then the sequence z(·) generated by (5.24) converges linearly to x∗.

Proof Consider the functions (4.6). Similarly as (4.13), we also have

u
(3)
(n) + α2u


(2)
(n) + α1u


(n)

−3c
(2)

1 (n) − (2α2 + 3)c

1 (n) − (2α2 + α1)c1(n)

+3c

2 (n) + (α2 + 3)c2(n) − c3(n)

= 2
〈
z


(3)
(n) + α2z


(2)
(n) + α1z


(n), z(n) − x∗
〉

= 2α0 〈−z(n) + PC (z(n) − ωA(z(n))), z(n) − x∗〉 . (5.36)
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On one hand, by (5.4), we can estimate

α0 〈−z(n) + PC (z(n) − ωA(z(n))), z(n) − x∗〉
≤ −α0μ‖z(n) − PC (z(n) − ωA(z(n)))‖2
= − μ

α0
‖z
(3)

(n) + α2z

(2)

(n) + α1z

(n)‖2

= − μ

α0
[α1c


(2)

1 (n) + α2α1c


1 (n) + α2

1c1(n)

+(α2 − 2α1)c


2 (n) + (α2

2 − 2α1 − α2α1)c2(n) + (1 − α2 + α1)c3(n)].
(5.37)

On the other hand, by (5.4) and (5.5), we get

α0 〈−z(n) + PC (z(n) − ωA(z(n))), z(n) − x∗〉 ≤ −α0μηu(n). (5.38)

Thus, using (5.37) and (5.38), we estimate (5.36) as follows

u
(3)
(n) + α2u


(2)
(n) + α1u


(n) + α0μηu(n)

+S2c

(2)

1 (n) + S1c


1 (n) + S0c1(n) + T1c



2 (n) + T0c2(n) + R0c3(n) ≤ 0.

(5.39)

Setting

ε � 1

1 − ξ
,

then ε > 1 and conditions can be written as

δα0ε
3 + α1ε

2(1 − ε) + (α2ε + 1 − ε)(1 − ε)2 ≥ 0,

S0ε
2 + S1(1 − ε)ε + S2(1 − ε)2 ≥ 0,

α1ε
2 + 2α2ε(1 − ε) + 3(1 − ε)2 ≥ 0,

S1ε + 2S2(1 − ε) ≥ 0,

T0ε + T1(1 − ε) ≥ 0,

εα2 + 3(1 − ε) > 0.

By arguments similar to those used in Theorem 4.2 but now applied to (5.39); meaning,
do summing after three times, we get the exponential convergence of z(·). ��

5.2.2 Parameters Choices

Remark 5.10 If S0, S1, T0 satisfy

S0, S1, T0 > 0, (5.40)
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then we can get conditions (5.2.1)–(5.2.1) by letting ξ → 0.

The following result simplifies condition (5.40) in the term of the lower and upper
bounds of the coefficients α0, α1, α2. There are common choices of parameters satis-
fied both Corollary 5.6 and Corollary 5.11 below.

Corollary 5.11 Suppose that Assumptions 5.1 and 5.2 are satisfied. Let x∗ be the unique
solution of Problem (5.2). Let the parameters be denoted by (5.6) and (5.25)–(5.26).
Then z(·) converges linearly to x∗ provided that coefficients α0, α1, α2, ω satisfy

α2 < 2, (5.41)

max{0, α2 − 1} < α1 <
α2
2

α2 + 2
, (5.42)

α0 < μ · min

{
α2
1

α1 + 2α2
, 1 − α2 + α1

}
. (5.43)

Proof Since α1 <
α2
2

α2+2 , we have T0 > α2 + 3 > 0. Also using α1 <
α2
2

α2+2 and the
fact that α2 < 2, we get

α1 <
α2
2

α2 + 2
<

α2

2
, (5.44)

which gives (5.28). It follows from (5.44) that α1 < α2 and so

μα1

3
>

μα2
1

α1 + 2α2
> α0.

The last inequality proves (5.29). Thus, Assumption 5.2 holds. Note that

α1 <
α2
2

α2 + 2
<

2α2
2

α2 + 3
,

which gives

μα1α2

2α2 + 3
>

μα2
1

α1 + 2α2
> α0

and then S1 > 0. ��
Remark 5.12 We consider the following optimization problem

min
x∈C f (x), (5.45)

where C is a nonempty and closed subset of H, f : H → R is a γ -strongly pseudo-
convex on C and differentiable function with L-Lipschitz continuous gradient for
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some L > 0. Recall that the differentiable function f is called γ -strongly pseudo
convex if there exists γ > 0 such that

〈∇ f (x), y − x〉 ≥ 0 �⇒ 〈∇ f (y), y − x〉 ≥ γ ‖x − y‖2

for all x, y ∈ C . For more details on generalized convexity functions and their
characterization, the readers are referred to [29]. The optimization problem (5.45)
is equivalent to the following strongly pseudo-monotone variational inequality

〈∇ f (x∗), y − x∗〉 ≥ 0 ∀y ∈ C . (5.46)

As a consequence, all the results presented in this section can be applied directly to
the pseudo-convex optimization problem (5.45).
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19. Boţ, R.I., Sedlmayer, M., Vuong, P.T.: A relaxed inertial forward–backward–forward algorithm for
solving monotone inclusions with application to GANs. J. Mach. Learn. Res. 24, 1–37 (2023)

20. Cavazzuti, E., Pappalardo, P., Passacantando, M.: Nash equilibria, variational inequalities, and dynam-
ical systems. J. Optim. Theory Appl. 114, 491–506 (2002)

21. Dao,M., Phan, H.: AdaptiveDouglas–Rachford splitting algorithm for the sum of two operators. SIAM
J. Optim. 29, 2697–2724 (2019)

22. Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three
space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

23. Eckstein, J., Bertsekas,D.:On theDouglas–Rachford splittingmethod and the proximal point algorithm
for maximal monotone operators. Math. Program. 55, 293–318 (1992)

24. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems,
Vols. I and II. Springer, New York (2003)

25. Goebel, K., Reich, S.: UniformConvexity, HyperbolicGeometry, andNonexpansiveMappings.Marcel
Dekker, New York (1984)

26. Guo, K., Han, D., Yuan, X.: Convergence analysis of Douglas–Rachford splitting method for strongly+
weakly convex programming. SIAM J. Numer. Anal. 55, 1549–1577 (2017)

27. Ha, N.T.T., Strodiot, J.J., Vuong, P.T.: On the global exponential stability of a projected dynamical
system for strongly pseudomonotone variational inequalities. Opt. Lett. 12, 1625–1638 (2018)

28. Haraux, A.: Systemes Dynamiques Dissipatifs et Applications, Recherches en Mathematiques
Appliquees 17. Masson, Paris (1991)

29. Karamardian, S., Schaible, S.: Seven kinds of monotone maps. J. Optim. Theory Appl. 66, 37–46
(1990)

30. Kim, D.S., Vuong, P.T., Khanh, P.D.: Qualitative properties of strongly pseudomonotone variational
inequalities. Opt. Lett. 10, 1669–1679 (2016)

31. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.
Academic, New York (1980)

32. Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer.
Anal. 16, 964–979 (1979)

33. Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math.
Imaging Vis. 51, 311–325 (2015)

34. Nagurney, A., Zhang, D.: ProjectedDynamical Systems andVariational Inequalities with Applications.
Kluwer Academic, Norwell (1996)

123

https://doi.org/10.1080/02331934.2022.2119084
https://doi.org/10.1080/02331934.2022.2119084


Journal of Optimization Theory and Applications

35. O’Connor, D., Vandenberghe, L.: On the equivalence of the primal–dual hybrid gradient method and
Douglas–Rachford splitting. Math. Program. 179, 85–108 (2020)

36. Pappalardo, M., Passacantando, M.: Stability for equilibrium problems: from variational inequalities
to dynamical systems. J. Optim. Theory Appl. 113, 567–582 (2002)

37. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput.
Math. Math. Phys. 4, 1–17 (1964)

38. Passty, G.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math.
Anal. Appl. 72, 383–390 (1979)

39. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14,
877–898 (1976)

40. Su, W., Boyd, S., Candes, E.J.: A differential equation for modeling Nesterov’s accelerated gradient
method: theory and insights. In: Advances in Neural Information Processing Systems (NIPS) 27 (2014)

41. Tam, N.N., Yao, J.C., Yen, N.D.: Solution methods for pseudomonotone variational inequalities. J.
Optim. Theory Appl. 138, 253–273 (2008)

42. Vinh, L.V., Tran, V.N., Vuong, P.T.: A second-order dynamical system for equilibrium problems.
Numer. Algorithms 91, 327–351 (2022)

43. Vuong, P.T.: The global exponential stability of a dynamical system for solving variational inequalities.
Netw. Spat. Econ. 22, 395–407 (2022)

44. Vuong, P.T.: A second order dynamical system and its discretization for strongly pseudo-monotone
variational inequalities. SIAM J. Control Optim. 59, 2875–2897 (2021)

45. Vuong, P.T., Strodiot, J.J.: A dynamical system for strongly pseudo-monotone equilibrium problems.
J. Optim. Theory Appl. 185, 767–784 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Third Order Dynamical Systems for the Sum of Two Generalized Monotone Operators
	Abstract
	1 Introduction
	1.1 Some Historical Aspects
	1.2 Our Contributions

	2 Preliminaries
	2.1 Generalized Monotone Operators
	2.2 Absolutely Continuous Functions
	2.3 A Third Order Dynamical System
	2.4 Difference Operators

	3 Continuous Time Dynamical System
	3.1 Global Exponential Convergence
	3.2 Parameters Choices

	4 Discrete Time Dynamical System
	4.1 Global Linear Convergence
	4.2 Parameters Choices

	5 Strongly Pseudo-monotone Variational Inequality
	5.1 Continuous Time
	5.1.1 Global Exponential Convergence
	5.1.2 Parameters Choices

	5.2 Discrete Time
	5.2.1 Global Exponential Convergence
	5.2.2 Parameters Choices


	Acknowledgements
	References


