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1 Introduction

Modelling time series processes with variable coefficients has received considerable attention in recent
years in the wake of several financial crises and high volatility due to frequent abrupt changes in the
market. Justification for the use of such structures in econometric modelling can be found in Cavaliere
and Taylor (2005), Cavaliere and Georgiev (2008), Giraitis et al. (2014), Harvey et al. (2018), Chambers
and Taylor (2020). Models with time-varying coefficients (hereafter time-varying models) are extensively
applied by practitioners, and their importance is widely recognized (see, for example, Petrova, 2019).
Crucial advances in both the theory and the empirics for these structures are the works by Whittle (1965),
Abdrabbo and Priestley (1967), Rao (1970), Hallin (1979, 1986), Singh and Peiris (1987), Kowalski and
Szynal (1991) and Grillenzoni (1993, 2000).

This paper provides a general framework for the study of nonstationary autoregressive moving average
models with time-varying coefficients and drift as well as heteroscedastic errors (hereafter TV-ARMA,
see eq. (1)). It comprises explicit solution representations along with analogous representations for the
fundamental properties of these models, whereas the scope of the useful tool of characteristic polynomial
representations is diminished when variable coefficients are present (see, for details, Hallin, 1986, and
Grillenzoni, 1990). There are two large classes of stochastic models: the ones with deterministically and
those with stochastically varying coefficients. Both have been widely applied in many fields of research,
such as economics, finance and engineering but traditionally they have been examined separately. The
new framework unifies the study of these models, as the title of the paper suggests.

For the standard ARMA(p, q) models with constant parameters, it is well known that the coefficients
in the Wold representation can be expressed either in terms of the roots of the autoregressive (AR) poly-
nomial or, equivalently, as determinants of banded Toeplitz-Hessenberg matrices1 in which the elements
of each nonzero diagonal are the constant AR coefficients (see the matrix in eq. (8)).2 In the case of
time-varying models, the coefficients in a generalization of the Wold decomposition, referred to as the
Wold-Cramér decomposition,3 can be expressed in terms of domain restrictions of the so-called one-sided
Green function (see online Appendix E2), referred to in the rest of the paper simply as the Green func-
tion.4 Following Miller (1968), in a series of papers, Hallin (1979, 1984, 1986), Singh and Peiris (1987),
and Kowalski and Szynal (1991) employ the Green function to describe the fundamental properties of
models with deterministically varying coefficients and zero-mean. However, the lack of an explicit repre-
sentation of the Green function led to recursive methods for its computation (see also Grillenzoni, 2000,
and Azrak and Mélard, 2006).

The standard banded Toeplitz matrix formulation of ARMA models with constant coefficients is
replaced here by banded Hessenberg matrices and their determinants (called banded Hessenbergians)
will play a key role in the new closed-form solutions provided by this paper (see, for comparison, eqs.
(4) and (8); for details on Hessenbergians and their properties see, for example, the book of Vein and
Dale, 1999 and the references cited therein). More specifically, a banded Hessenberg matrix in which
the nonzero diagonals are occupied by the time-varying AR coefficients, evaluated at consecutive time
instances, is called principal matrix (see eq. (4)). Its determinant is called principal determinant. This is a
fundamental solution of the difference equation associated with a TV-ARMA model, as highlighted by the
title phrase “one solution fits all”, which explicitly represents the above-mentioned domain restriction of
the Green function (see Paraskevopoulos and Karanasos, 2021). A method which constructs the principal
determinant is grounded on prior research established by Paraskevopoulos (2012, 2014). This method
applied to infinite systems associated with linear difference equations as well as the linear computational
complexity of banded Hessenbergians are discussed in online Appendix F1.

The main contribution of this work is a novel explicit solution representation of time-varying processes
recursion in terms of the principal determinant (see eq. (16)). This is a fruitful result of using Hessenberg
matrix determinant properties. To the best of our knowledge no prior studies have established fully

1In the open literature the Hessenbergian attribute of such matrices does not usually appear.
2Toeplitz matrices are square matrices in which all elements along a diagonal have the same value. They are banded

because above the superdiagonal and below the p-th subdiagonal the elements of the matrix are zero. Moreover, the elements
of the superdiagonal are (-1)s.

3Cramér’s generalization to the Wold decomposition is also referred to as the Wold-Cramér representation.
4A detailed account of the one-sided Green function and its restriction is presented in Paraskevopoulos and Karanasos

(2021). For a discussion on the alternative wording regarding the “Green function” or “Green’s function” see Wright (2006).
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explicit solution representations of TV-ARMA models and of their fundamental properties, due to the
lack of analogous representations of the Green function. Some consequences are discussed in what follows.

Under an absolute summability assumption of the principal determinant function (condition 17) our
new representation of the solution yields a variety of important results summarized below. Condition
(17) along with the boundedness of the drift and of the moving average (MA) coefficients guarantee
the existence of a unique asymptotically stable second order solution process, that is the Wold-Cramér
decomposition of the model in L2 (see Theorem 2). This result is generalized by Theorem 3 showing
the existence and uniqueness of second order solution processes without invoking the boundedness of
the drift, but provided that a p-dimensional nonzero first moment vector has been estimated by the
time series data. In both formulations the demeaned processes (purely-nondeterministic) have the same
Wold-Cramér representation in a closed linear subspace of L2.

Explicit forms for the first two unconditional moments along with sufficient and necessary conditions
for their existence are obtained in Propositions 2 and 3. Singh and Peiris (1987), Kowalski and Szynal
(1991) and Grillenzoni (2000) provided regularity conditions ensuring that various mean zero processes
with deterministically varying coefficients are second order.5 Replacing the Green function involved in
the formulas established in the above cited references with the principal determinant, these formulas turn
into fully explicit expressions. A potential application of the Wold-Cramér decomposition to asymptotic
theory, based on a decomposable Bernoulli shift, is discussed in Remark 1 of Section 4.1.

The solution representations of the model obtained in Theorems 1,2,3 yield explicit optimal linear
predictor formulas along with analogous forecasting and associated mean square errors, when either
infinite or finite sequences of data are observed (see Section 5). The invertibility of a second order
solution process is guaranteed by the absolute summability condition, which is also explicitly expressed
by a banded Hessenbergian, but now they are occupied by the MA coefficients of the model (see eq.
(G.2) in online Appendix G1). We illustrate formally one of the focal points in Hallin’s (1986) analysis
concerning the asymptotic efficiency of such models. Namely, that in a time-varying setting two forecasts
with identical forecasting horizons, but at different times, yield different mean squared errors.

Various processes with stochastically varying coefficients are treated within our unified framework in
Section 6. Another goal of this work is to show that, in the case of AR models with random coefficients,
when the principal determinant function converges to zero almost surely, then the process converges in
distribution (see Theorem 4). Furthermore, the double stochastic autoregressive model is also employed
to formulate some of its fundamental properties explicitly.

The paper concludes with an empirical application to inflation persistence in the United States over
the time period from the last quarter of 1963 up to the beginning of 2018 (see Section 6.3), which employs
a time-varying model of inflation dynamics grounded in statistical theory. In particular, we estimate an
AR process with abrupt structural breaks and we compute an alternative measure of second-order time
dependent persistence, which distinguishes between changes in the dynamics of inflation and its volatility
as well as their persistence. Our main conclusion is that persistence increased after 1976, whereas from
1986 onwards it declines and stabilizes to even lower levels than the pre-1976 period. Our results are in
line with those in Cogley and Sargent (2002), who find that the persistence of inflation in the United
States rose in the 1970s and remained high during this decade, before starting a gradual decline from the
1980s until the early 2000s.

The outline of the paper is as follows. Section 2 introduces the notation and the main assumptions
used throughout the paper, followed by the principal determinant. The next Section presents the explicit
representation for an extensive family of time-varying ARMA models, based on the general solution
of the associated TV-LDE(p). Section 4 presents explicit formulas for the second order properties of
the model, including the Wold-Cramér decomposition, the first two unconditional moments and the
autocovariance function. In the next Section, explicit optimal linear forecasts are established. Section 6
is concerned with AR models in which the drift and the AR coefficients are stochastically varying. The
next Section presents an empirical study for inflation persistence. The final Section of the paper contains
some concluding remarks and future work.

Throughout the paper the proofs of the statements, formulated in the main body, are included in the
Appendix and a few of them are deferred to the online Appendix.

5That is, although they are nonstationary, their second moments exist being finite and time-varying.
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2 Time-varying ARMA

The main notation and assumptions associated with TV-ARMA processes are presented in Section 2.1.
In Section 2.2, the principal determinant is introduced.

2.1 The Model

Throughout the paper we adopt the following notation: Z will stand for the set of integers and Za for
its subset defined by Za = {z ∈ Z : z ≥ a} for a ∈ Z. The set of real numbers (resp. positive and
non-negative real numbers) is denoted by R (resp. R>0 and R≥0). Moreover, (Ω,F , P ) stands for a
probability space and L2(Ω,F , P ) (in short L2) stands for the Hilbert space of real random variables
with finite first two moments.

Let p ∈ Z1 and q ∈ Z1. A TV-ARMA(p, q) model is a stochastic process {yt} satisfying for each t ∈ Z

yt = φ(t) +

p∑
m=1

ϕm(t)yt−m + ut (1)

with moving average term ut given by

ut = εt +

q∑
l=1

θl(t)εt−l,

where ϕm(t), θl(t) and φ(t) are deterministic (real valued functions) or stochastic with ϕp(t)θq(t) ̸= 0
for all t ∈ Z, {εt} is a mean zero random process (E(εt) = 0 for all t) such that E(εtεs) = 0 for s ̸= t
(uncorrelatedness condition) with time-varying variance E(ε2t ) = σ2(t) such that 0 < σ2(t) ≤ M < ∞ for
all t. The above conditions ensure that εt ∈ L2 and εt, εs are orthogonal, whenever s ̸= t.

A solution {yt} to the recursive process (1) requires p initial condition values. These are considered
as realizations of the prescribed random variables ys+1−p, ..., ys for any s < t, which are taken from the
time series data in the recent or remote past. An explicit representation of yt is expressed directly in
terms of ys+1−p, ..., ys for any s < t, as established in eq. (16).

If the AR coefficients, ϕm(t), the MA coefficients, θl(t), and the drift, φ(t), are deterministic (resp.
stochastic), we shall refer to eq. (1) as DTV-ARMA (resp. STV-ARMA: Further assumptions for these
processes are considered in Section 6).6

The forcing term υt is assigned to be the time-varying drift plus the MA term:

υt
def
= φ(t) + ut. (2)

The associated linear difference equation of eq. (1) (briefly TV-LDEs(p)) is defined by

yt =

p∑
m=1

ϕm(t)yt−m + υt, for all t ∈ Z. (3)

The general solution of eq. (3) is decomposed into two parts, the general homogeneous solution (see eq.
(10)) plus the particular solution (see eq. (12)).

In this work, both assumptions of stationarity and homoscedasticity have been relaxed (see also,
among others, Singh and Peiris, 1987, Kowalski and Szynal, 1991, and Azrak and Mélard, 2006), which
is likely to be violated in practice and we allow {εt} to follow, for example, a stochastic volatility or a
time-varying GARCH type of process (see, for example: Karanasos et al., 2014 and Canepa et al., 2022)
or we allow for abrupt structural breaks in the variance of εt (see Section 6.3). In the available open
literature the theoretical properties of time varying processes are demonstrated within the framework of
mean zero processes. In this study the presence of a nonzero drift is essential to ensure the existence of
nonzero time-varying first order moments.

The general model nests both the AR one as a special case when q = 0 and the specification in which
the drift, the AR and MA coefficients, and the variances are all constants, adopting the conventional
identifications for this purpose: φ(t) = φ, ϕm(t) = ϕm, θl(t) = θl, σ

2(t) = σ2 for all t.

6Notice that in our setting the time-varying coefficients can depend on the length of the series as well, as in Azrak and
Mélard (2006); see also Examples D.2 and D.3 in online Appendix D1.
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The relation between the process under consideration and its innovations is essentially described by
the Wold-Cramér decomposition (see Section 4.1), which is the main analytical tool for studying the
asymptotic efficiency of the model (see Karanasos et al., 2020). In this case, the latest time-point of the
observable random variables, denoted here by s, moves to the remote past (s → −∞), while the forecast
time-point, denoted here by t, is kept fixed.7

The product of companion matrices is commonly used (see, for example Kowalski and Szynal 1991) to
derive the Green function associated with eq. (1), but without providing an explicit form for the entries
of the matrix product. Paraskevopoulos and Karanasos (2021) capitalized on the connection between
the product of companion matrices and time-varying stochastic difference equations but in the opposite
direction. That is, they went the other way around and by finding an explicit and compact representation
of the fundamental solutions associated with TV-ARMA models, they obtained an analogous represen-
tation for the elements of the associated companion matrix product. Some consequences are presented
in online Appendix F3 of this paper.

2.2 The Principal Determinant

To distinguish scalars from vectors, we adopt lower and uppercase boldface symbols within square brackets
for column vectors and matrices respectively: x = [xi], X = [xij ]. Row vectors are indicated within round
brackets and usually appear as transpositions of column vectors: x′ = (xi). For every pair (t, s) ∈ Z2

such that s < t the principal matrix associated with eq. (1), is defined by

Φt,s
def
=



ϕ1(s+ 1) −1

ϕ2(s+ 2) ϕ1(s+ 2)
. . .

...
...

. . .
. . .

ϕp(s+ p) ϕp−1(s+ p)
. . .

. . .
. . .

ϕp(s+ p+ 1)
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

ϕp(t− 1) ϕp−1(t− 1) · · · ϕ1(t− 1) −1
ϕp(t) · · · ϕ2(t) ϕ1(t)


. (4)

Here and in what follows empty spaces in a matrix have to be replaced by zeros. Φt,s is a lower Hessenberg
matrix of order k = t−s. It is also a banded matrix with total bandwidth p+1 (the number of its nonzero
diagonals, i.e., the diagonals whose elements are not all identically zero), upper bandwidth 1 (the number
of its nonzero superdiagonals), and lower bandwidth p− 1 (the number of its nonzero subdiagonals). In
particular, the elements of Φt,s are: (−1) occupying the entries of the superdiagonal, the values of the
first AR coefficient ϕ1(·) (from time s + 1 to time t), occupying the entries of the main diagonal, the
values of the (r + 1)-th AR coefficient ϕr+1(·) for r = 1, 2, . . . , p − 1 (from time s + 1 + r to time t),
occupying the entries of the r-th subdiagonal, and zero entries elsewhere. If the order k of Φt,s is less
than or equal to p, that is k ≤ p, then Φt,s is a full lower Hessenberg matrix.

For every pair (t, s) ∈ Z2 with s < t, the principal determinant associated with eq. (4) is defined by:

ξ(t, s)
def
= det(Φt,s). (5)

Formally ξ(t, s) is a banded Hessenbergian (determinant of a lower Hessenberg matrix; for recent devel-
opments on Hessenbergians, see Jeerawat and Daowsud, 2022 and the references cited therein).

We further extend the definition of ξ(t, s) on the entire Z2 by assigning the additional values:

ξ(t, s)
def
=

{
1 if t = s
0 if t < s.

(6)

7The forward asymptotic efficiency of the model (so-called by Hallin, 1986, Granger-Andersen) is strongly related to the
forecasting problem. It directs attention to the asymptotic properties of the mean square forecasting error (MSE for short),
as the time t moves to the far future, while s is kept fixed. Due to space considerations, results on the forward asymptotic
efficiency of TV-ARMA(p, q) models are not presented here, but are available in Karanasos et al., 2020, Section 6.3.
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Eq. (6) indicates the initial conditions located before and include the time point s. The difference
k = t− s ∈ Z1 stands for the forecasting horizon. In Proposition A3 (see Appendix A.2), it is shown that
ξ(t, s) is the solution of the homogeneous linear difference equation associated with eq. (3), that is

yt =

p∑
m=1

ϕm(t)yt−m, (7)

taking on the initial values ys+1−p = 0, ..., ys−1 = 0, ys = 1. As the initial value problem solution is
unique, ξ(t, r) must coincide with the Green function restriction for t ∈ Zs+1−p and s ≤ r ≤ t − 1 + p
(see online Appendix E2).

Example 1 The AR polynomial Φ(B) = 1 −
∑p

m=1 ϕmBm associated with eq. (7), whenever ϕm(t) =
ϕm (constant AR coefficients), is explicitly expressed in terms of the characteristic values as Φ(B) =∏p

m=1(1−λmB). In this case, the banded Hessenbergian ξ(t, s) turns into a banded Toeplitz-Hessenberg
matrix determinant (for details on Toeplitz matrices see, for example, the book by Gray, 2006)8 and
satisfies the identity (usually called Widom’s determinant formula; see Widom, 1958), that is

ξ(k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1 −1
ϕ2 ϕ1 −1

ϕ3 ϕ2 ϕ1
. . .

...
...

...
. . .

. . .

ϕp ϕp−1 ϕp−2
. . .

. . .
. . .

ϕp ϕp−1
. . .

. . .
. . .

. . .

ϕp ϕp−1 ϕp−2 · · · ϕ1 −1
ϕp ϕp−1 · · · ϕ2 ϕ1 −1

ϕp · · · ϕ3 ϕ2 ϕ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

p∑
m=1

λk+p−1
m∏p

n=1
n̸=m

(λm − λn)
, (8)

where k = t − s indicates the order of the matrix. Clearly ξ(t, s) does not depend on t, s but on their
difference and is therefore denoted as ξ(k) with independent variable the forecasting horizon k. The
second equality in eq. (8) follows (only if λm ̸= λn) from standard results in ARMA models (see, for
example, Karanasos, 1998, 2001, and in particular, eq. (2.6) in the latter citation).

3 Explicit Solution Representations

In the upcoming Subsections we shall use the principal determinant to describe explicitly the general
homogeneous and particular solutions of TV-LDE(p), the sum of which yields the general solution of eq.
(3).9 It leads to an explicit and computationally tractable solution representation of TV-ARMA pro-
cesses, described in Theorem 1. A useful decomposition of the innovation part of the solution, especially
for forecasting, is presented in Proposition 1.

3.1 Homogeneous Solution

We start by establishing a fundamental set of p solutions, being all banded Hessenbergian functions with
entries the AR coefficients of the model. This is a crucial result (see for further details Appendix A.1),
which enables one to obtain the Green function explicitly (see the introductory notes to online Appendix

8For the use of Toeplitz matrices on double-differenced AR(1) models see Han (2007).
9In linear algebra there have been some isolated attempts to deal with the problem, which have been criticized on a

number of grounds. For example, Mallik (1998) provides a compact and explicit solution for the aforementioned equations,
but it appears not to be computationally tractable. Lim and Dai (2011) point out that “although explicit solutions for
general linear difference equations are given by Mallik (1998), they appear to be unmotivated and no methods of solution are
discussed”. More recently, an alternative explicit and compact solution representation, which is computationally tractable,
is presented in Paraskevopoulos and Karanasos, 2021. This is based on the Infinite Gauss-Jordan elimination method (see
online Appendix F1 and the reference cited there.)
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F3 and for more details see Paraskevopoulos and Karanasos, 2021) as well as the general homogeneous
solution of TV-LDEs(p).

In a similar manner with the principal matrix and determinant eqs. (A.1) and (A.2) in Appendix A.1
define another p−1 banded Hessenbergian solutions of eq. (7) (see Proposition A1(ii)), which along with
the principal determinant, which is identified as ξ(1)(t, s), form a fundamental set of solutions

Ξs = {ξ(1)(t, s), ξ(2)(t, s), ..., ξ(p)(t, s) : t ≥ s+ 1− p},

that is a set of p linearly independent solution sequences associated with eq. (7) (see Proposition A2).
We show in Proposition A1(i), that ξ(m)(t, s), can also be expressed exclusively in terms of the principal
determinant and the AR coefficients, that is:

ξ(m)(t, s) =

p+1−m∑
r=1

ϕm−1+r(s+ r)ξ(t, s+ r). (9)

As a consequence of the superposition principle of TV-LDEs, the general solution of eq. (7) can be
expressed as a linear combination of the elements of Ξs (see Proposition A3 in Appendix A.2)

yhomt,s =

p∑
m=1

ξ(m)(t, s)ys+1−m for t ∈ Zs+1−p, (10)

where {ys+1−p, ..., ys} is a sequence of p initial condition values. The two variable notation for the
homogeneous solution, yhomt,s , is consistent with that used for the principal determinant function (or the
Green function), as the latter is the solution of eq. (7) under the initial values ys = 1 and ys−n = 0 for
n = 1, ..., p− 1. This is a suitable notation for the asymptotic properties of TV-ARMA(p, q) processes.

Applying eq. (9) to eq. (10), we obtain the homogeneous solution entirely in terms of the principal
determinant:

yhomt,s =

p∑
m=1

p+1−m∑
r=1

ϕm−1+r(s+ r)ξ(t, s+ r)ys+1−m. (11)

Expanding the determinant ξ(t, s+ r) in eq. (11), yhomt,s can be ultimately expressed in terms of the AR
coefficients, exclusively. This explicit representation of the homogeneous solution was recorded in earlier
versions of the paper (see, for example, Karanasos et al., 2020, and the references cited there).10

3.2 A Particular Solution and its Decomposition

Recalling that υt = φ(t) + ut (see eq. 2), a particular solution to eq. (3) subject to the initial condition
values ys = ys−1 = ... = ys+1−p = 0 is given by

ypart,s =

t∑
r=s+1

ξ(t, r)υr. (12)

A proof of the above formula is demonstrated in Proposition A4 of Appendix A.2, noting that the solution
in eq. (12) depends both on t and s. This has to be compared with the equivalent result presented in Miller
(1968, p. 40, eqs. (2.8) and (2.9)), but now in a fully explicit and directly computable representation.
The sum of eqs. (10) (or (11)) and (12) yields the general solution of eq. (3).

In Proposition 1 below, we introduce a decomposition of the innovation part in eq. (12), which will
be used throughout this paper. But first we introduce the following definition:

Definition 1 Define the function on Z2 by

ξq(t, r)
def
= ξ(t, r) +

q∑
l=1

ξ(t, r + l)θl(r + l). (13)

10An analogous result for the multivariate case was given by Miller (1968) and Hallin (1986), but without explicitly giving
the Green matrix. An explicit representation of the Green matrix can be found in online Appendix F3.

7



For each arbitrary but fixed s ∈ Z, we define the function on Z2 by

ξs,q(t, r)
def
=

q∑
l=s+1−r

ξ(t, r + l)θl(r + l). (14)

As ξq(t, r) is equal to ξ(t, r) plus a sum of terms consisting of the first q instances of ξ(t, r+l) multiplied by
corresponding MA coefficients, it can also be expressed as a banded Hessenbergian (the proof is deferred
to the online Appendix Section E1). The same holds, for ξs,q(t, r). We shall refer to ξq(t, r) and ξs,q(t, r)
as banded Hessenbergian coefficients, which are fully explicit (expressed in terms of the model coefficients)
and more compact, compared with the corresponding coefficients “g(t, s)” in eq. (2.2), defined by Peiris
(1986) (see also equation’s (2.3) coefficients “G(t, s)” in Singh and Peiris, 1987).

Proposition 1 The innovation part of the particular solution in eq. (12) can be decomposed into two
parts as follows:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξq(t, r)εr +

s∑
r=s+1−q

ξs,q(t, r)εr. (15)

A formal proof of this result is provided in Appendix A.3. The integer interval
{
s + 1, ..., t}, in the

relevant summations of the above equation, consists of k = t − s points, known as the length of the
interval that coincides with the forecasting horizon. In the first summation of the right-hand side, the
errors whose index ranges over

{
s+1, ..., t} are unobservable. In the second one, the time interval extends

from s+ 1− q to s and therefore the errors whose index ranges over
{
s+ 1− q, ..., s} are observable.

3.3 The Main Result

The aforementioned results on linear difference equations are applied herein to obtain an explicit rep-
resentation to the solution of eq. (1) in the following Theorem. This is a consequence of the general
solution representation of a TV-LDE(p) in eq. (3) as a sum of homogeneous and particular solutions,
established in Sections 3.1 and 3.2, that is

yt =

p∑
m=1

ξ(m)(t, s)ys+1−m +

t∑
r=s+1

ξ(t, r)(φ(r) + ur)

for all s with s < t. Notice that for each fixed t, the random variable yt is independent of the past time
point s, because it satisfies eq. (1) for any s, while both homogeneous and particular solution functions
depend both on t and s. Applying eq. (15) to the second sum of the above expression of yt, the upcoming
Theorem follows immediately.

Theorem 1 An alternative explicit representation of yt in eq. (1) in terms of the prescribed sequence
{yr, s+ 1− p ≤ r ≤ s} for any s ∈ Z such that s < t is given by:

yt =

p∑
m=1

ξ(m)(t, s)ys+1−m︸ ︷︷ ︸
Homogeneous Solution Part

+

t∑
r=s+1

ξ(t, r)φ(r)︸ ︷︷ ︸+
Particular Solution:

Drift Part

t∑
r=s+1

ξq(t, r)εr +

s∑
r=s+1−q

ξs,q(t, r)εr.︸ ︷︷ ︸
Particular Solution: Innovation Part

(16)

The right-hand side of eq. (16) comprises four summation parts all involving the principal determinant.
In view of Proposition 1, the sum of its last three parts is the particular solution given by eq. (12).
More analytically, the first sum (the homogeneous solution in eq. (10)) is a product of the fundamental
solutions multiplied by prescribed random variables . The second sum (the drift part of the particular
solution in eq. (12)) is formed by products involving the principal determinant ξ(t, r) multiplied by the
drift φ(r). The terms of the third sum (the first part of the “MA decomposition”, see eq. (15)), are
the banded Hessenbergian coefficients ξq(t, r) in eq. (13) multiplied by the unobservable errors. Finally,
the terms of the fourth sum (the second part of the “MA decomposition”) are the banded Hessenbergian
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coefficients ξs,q(t, r) in eq. (14), multiplied by observable errors. In the available open literature there
are no fully explicit solution representations of eq. (1), in which all the coefficients are easily handled
and computationally tractable expressions (as being banded Hessenbergians). A compact representation
of eq. (16) and its equivalence with the single determinant representation obtained by Kittappa (1993)
are established in Paraskevopoulos and Karanasos, 2021.

The methodology presented in this Section can be used in the study of infinite order autoregression
models as well as in the case of the fourth order moments for time-varying GARCH models (see, for
example, Canepa et al., 2022).

Another advantage of our TV-ARMA representation is its generality. That is, in deriving it we do
not make any assumptions on the time dependent coefficients. Therefore, it does not require a case by
case treatment. In other words, we suppose that the law of evolution of the coefficients is unknown, in
particular they may be stochastic (either stationary or nonstationary) or deterministic. Therefore, no
restrictions are imposed on their functional form. In the deterministic case, the model allows for known
abrupt changes, smooth changes and mixtures of them. If the changes are smooth the coefficients can
depend on an exogenous variable, say xt, or t or both. In the stochastic case the model includes the
generalized random coefficient (GRC) AR specification (see, for example, Glasserman and Yao, 1995,
and Hwang and Basawa, 1998) as a special case. In the aforementioned case the model also allows for
periodicity. We should also mention that the solution includes the case where the variable coefficients
depend on the length of the series (see the Examples D.2 and D.3 in online Appendix D1). Another
consequence is an efficient approach to optimal linear forecasts based on a finite set of past observations,
presented in Section 5. As in the case of AR(1) processes, the latter result follows from the explicit
solution representation for the family of TV-ARMA(p, q) models, described by eq. (16).

3.4 Asymptotic Stability

The asymptotic stability11 problem is to provide sufficient conditions which ensure that a class of stochas-
tic processes solving eq. (1) approaches a solution independently of the prescribed p initial conditions
(the effect of the initial conditions is gradually dying out) as s → −∞, that is when the homogeneous
solution in eq. (16) tends to zero, under a prescribed type of convergence. The explicit representation of
the homogeneous solution in eq. (10) makes it possible to provide such types of condition in Theorem 2
in the upcoming Section (see for example the absolute summability condition in (17)).12 Stability charac-
terizes the statistical properties (

√
T convergence and asymptotic normality, where T is the sample size)

of least squares (LS) and quasi-maximum likelihood (QML) estimators of the time-varying coefficients.13

4 Second Order Structure

Having specified a general explicit solution formula for the TV-ARMA types of model, we turn our
attention to the explicit representation of their Wold-Cramér decomposition along with their second order
structure and the optimal linear forecast formulas associated with them. In this Section we shall restrict
ourselves to the treatment of DTV-ARMA processes. In Section 6, we consider STV-AR processes.

11As pointed out by Grillenzoni (2000) stability is a useful feature of stochastic models because it is a sufficient (although
not necessary) condition for optimal properties of parameter estimates and forecasts. Since model (1) can be expressed in
Markovian form, stability conditions are necessary for many other significant properties, such as irreducibility, recurrence,
regularity, non evanescence and tightness (see Grillenzoni, 2000 for details).

12Due to space considerations, alternative conditions on the asymptotic stability of TV-ARMA(p, q) models are not
presented here, but are available in Karanasos et al., 2020, Sections 4 and 5. In particular the conditions in Theorem 2,
established therein, include the “bounded random walk” of Giraitis et al. (2014), also used by Petrova (2019).

13Azrak and Mélard (2006) have considered the asymptotic properties of QML estimators for a large class of ARMA
models with time dependent coefficients and heteroscedastic innovations. The coefficients and the variance are assumed
to be deterministic functions of time, and depend on a finite number of parameters which need to be estimated. Other
researchers have also considered the statistical properties of maximum likelihood estimators for very general nonstationary
models. For example, Dahlhaus (1997) has obtained asymptotic results for a new class of locally stationary processes, which
includes TV-ARMA processes (see Azrak and Mélard, 2006, and the references therein).
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4.1 Wold-Cramér Decomposition

In Theorems 2 and 3, we show the existence and uniqueness of the Wold-Cramér decomposition (see
Cramér, 1961)14 and, therefore, impulse response functions (IRFs), for the DTV version of the model in
eq. (1). In particular, we provide an explicit condition, that is

t∑
r=−∞

|ξ(t, r)| < ∞, for all t, (absolute summability condition) (17)

which, along with the boundedness hypothesis for the MA coefficients, enables us to introduce fully
explicit second order formulas for the Wold-Cramér decomposition in eqs. (18a) and (20a).

Peiris (1986), Singh and Peiris (1987), Kowalski and Szynal (1991), working with processes of zero
drift, derive their solution representation as a purely nondeterministic process of mean zero in terms of
the Green function. The presence of a drift yields a more complete and realistic model, in which the
solution representation can be decomposed into two orthogonal parts, a deterministic part and a random
one. We start with a more restrictive, but equally important result on the class of asymptotically stable
second order solution processes.

Theorem 2 Let the condition in (17) hold. Also let the drift φ(t) and MA coefficients θl(t), 1 ≤ l ≤ q,
be bounded functions in t. Then there exists a unique asymptotically stable second order solution process
yt of eq. (1), given explicitly by:

yt =

t∑
r=−∞

ξ(t, r)φ(r) +

t∑
r=−∞

ξq(t, r)εr. (18a)

A proof of the Theorem is given from first principles in Appendix B.1, supported by the results demon-
strated in: Lemma B1, Corollary B1 and Proposition B1. Formally yt in eq. (18a) is decomposed into
two orthogonal parts, a nonrandom part (the unconditional expectation of the process), and a mean zero

random one. In all that follows, we shall use the notation zt
def
=
∑t

r=−∞ ξq(t, r)εr. Under the conditions of
Theorem 2 zt exists, being the random part of yt in eq. (18a). Moreover, eq. (18a) can also be viewed as
the mean square limit of eq. (16), as s → −∞. This follows from two facts, both shown in Appendix B.1:
i)
∑p

m=1 ξ
(m)(t, s)ys+1−m → 0, as s → −∞, which establishes that lims→−∞ yhomt,s = 0 or equivalently

that the process yt is asymptotically stable (see the proof of Theorem 2) and ii)
∑s

r=s+1−q ξs,q(t, r)εr → 0,
as s → −∞ (see Corollary B2). Proposition B1(iv) in Appendix B.1 shows that yt in eq. (18a) can be

rewritten as yt =
∑t

r=−∞ ξ(t, r)υr. Thus eq. (12) implies:

yt = lim
s→−∞

ypart,s . (18b)

In the following remark we discuss a potential application of Theorem 2.15

Remark 1 Theorem 2 could be useful to design or perform (asymptotic) inference. In particular, eq.
(18a) is potentially very helpful even for those who wish to work on asymptotic theory. For example,
a convenient way to study the approximation of partial sums of yt, would be to show that for the very
general class of TV-ARMA models, yt is a decomposable Bernoulli shift. In the online Appendix F4,
we summarize what such a causal process is (see, also for more details, Massacci and Trapani, 2022).
More specifically, if yt satisfies a decomposable Bernoulli shift, then many results follow, e.g., a functional
central limit theorem (FCLT) or a strong invariance principle (SIP) of the form:

max
1≤k≤T

1

kζ

∣∣∣∣ k∑
t=1

yt −W (k)

∣∣∣∣ = OP (1),

where W (k) a Wiener process and ζ < 1
2 . This result would be extremely helpful to study structural breaks

for example.

14Since a nonstationary generalization of Wold’s result was given by Cramér, it is referred to either as Wold-Cramér
decomposition or Cramér-Wold decomposition (see Nelson, 2008).

15We are indebted to an anonymous reviewer of this paper who provided us all necessary information to produce this
Remark.
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The main result of Theorem 2 is generalized by Theorem 3 below. It is shown that second order solutions
of eq. (1) exist, without invoking the boundedness of the drift, but all other conditions of Theorem 2
remain the same. This is grounded on Proposition F.1(i) (see online Appendix F2.2), which shows that
any second order solution process yt of eq. (1) is decomposed into two orthogonal parts: a mean zero
random process {yt −E(yt)} and a first moment process {E(yt)}, simultaneously satisfying the following
equations

zt =

p∑
m=1

ϕm(t)zt−m + ut, (19a)

µt = φ(t) +

p∑
m=1

ϕm(t)µt−m (19b)

for zt = yt − E(yt) and µt = E(yt), respectively.
In all that follows M(ε) (resp. Mt(ε)) stands for the closed linear subspace of L2 spanned by

{εt, t ∈ Z} (resp. {εs,−∞ < s ≤ t}). On account of Mt(ε) ⊂ M(ε), if zt ∈ Mt(ε) for all t ∈ Z, then
{zt} is a process in M(ε).

Theorem 3 (Generalization) Let the absolute summability in (17) and the boundedness of MA coef-

ficients θl(t), 1 ≤ l ≤ q, hold. Given a first moment process µt, which satisfies eq. (19b), the process

yt = µt +

t∑
r=−∞

ξq(t, r)εr, (20a)

is a unique second order solution of eq. (1) such that E(yt) = µt and

E(y2t ) =
t∑

r=−∞
ξ2q (t, r)σ

2(r) +
(
E(yt)

)2
< ∞. (20b)

The proof of Theorem 3 is presented in Appendix B.1 The second order moment of yt in eq. (20b) is
shown in Subsection 4.2 (see the discussion below Proposition 2). Under the conditions of Theorem 3,
eq. (20a) entails that for every t ∈ Z

yt − µt = zt =

t∑
r=−∞

ξq(t, r)εr, (20c)

which is a unique mean zero solution process of eq. (19a) in M(ε). Formally, yt in eq. (20a) satisfies
eq. (1), when yt takes on p prescribed random variables of the form ys+1−m = E(ys+1−m) + zs+1−m

for 1 ≤ m ≤ p and for any s < t, and therefore yt also satisfies eq. (16). As the demean eq. (20a) is
future independent, that is zt can be expressed in terms of the current and past values of εr, we shall also
refer to yt as a causal solution of DTV-ARMA models. The uniqueness of zt (see the proof of Theorem
3) entails that two causal solutions must differ in their means, exclusively (for further details see the
discussion below the proof of Proposition F.1 in online Appendix F2.2). The conditions of Theorem 3,
which yield the causal solution in eq. (20a), will be referred to as a causal environment. Certainly the
conditions of Theorem 2 furnish a stronger causal environment.

In practice, a vector µs = [µs, µs−1, ..., µs+1−p] of p consecutive values of the first moment process
{µt} can be estimated by the time series data via regression techniques (see Fuller, 1996). Employing
µs as the initial condition vector, the whole process {µt} in eq. (19b) can be constructed (see eq. (F.13)
in online Appendix F3). In the above cited references (stated below (17)) and more recently in Grillenzoni
(2000), and Azrak and Mélard (2006), the Wold-Cramér decomposition is computed via recursion. In
sharp contrast, eqs. (18a) and (20a) provide more complete and explicit representations for the solution
of eq. (1). To the extent of our knowledge, in the accessible literature on TV-ARMA processes, there is
no fully explicit representation of the Wold-Cramér decomposition. Moreover, Theorem 3 (resp. Theorem
2) can be rephrased by replacing condition (17) and the boundedness of the MA coefficients with the

regularity conditions (see Singh and Peiris, 1987, Kowalski and Szynal, 1991). Accordingly, regularity
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conditions also yield an explicit solution representation of eq. (1), which is given by eq. (20a) (resp. by
eq. (18a), whereas in this case the boundedness hypothesis of the drift is a prerequisite). Moreover, the
solution formulas in Theorems 3 and 2 explicitly recover the mean zero second order solution processes
of demean DTV-ARMA(p, q) models (φ(t) = 0 for all t), established in the above cited references.

The regularity conditions noted above are not, however, necessary for yt ∈ L2, since they do not cover
the case of periodic coefficients (see Grillenzoni, 1990 or Karanasos et al., 2014a, 2022). A necessary condi-
tion for the regularity conditions to hold is the square summability of ξ2q (t, r), that is

∑t
r=−∞ ξ2q (t, r) < ∞

for all t ∈ Z (see online Appendix F5).

4.2 Unconditional Moments

In this Subsection we present explicit formulae for the first and second unconditional moments of the
Wold-Cramér decomposition in eq. (18a) for DTV-ARMA processes coupled with sufficient and necessary
conditions for their existence, as the following Proposition demonstrates.

Proposition 2 Let the conditions of Theorem 2 hold. Then the unconditional mean of the asymptotically
stable process yt in eq. (18a) is given by

E(yt) =
t∑

r=−∞
ξ(t, r)φ(r) (21a)

and its unconditional variance is given by

Var(yt) =
t∑

r=−∞
ξ2q (t, r)σ

2(r). (21b)

Necessary conditions for the process yt in eq. (18a) to be first and second order, on account of eqs. (21a)
and (21b), are respectively:

lim
s→−∞

ξ(t, s)φ(s) = 0 and lim
s→−∞

ξ2q (t, s)σ
2(s) = 0 for all t.

Moreover, the condition lims→−∞ ξ(t, s) = 0, is sufficient for the above two limits to exist, due to the
boundedness of φ(r), θl(r) and σ2(r).

A proof of the formulas in eqs. (21a) and (21b) is included in Proposition B1(iii) of Appendix B.1, provided
that the conditions of Theorem 2 hold. Three illustrative examples for the Var(yt) are presented in
online Appendix D1. The unconditional mean E(yt) is of the same form for both the AR and the ARMA
processes. Moreover, both solution processes in eqs. (18a) and (20a) share identical unconditional
variances. The logical connections between the conditions that are described in the above Proposition
are summarized in the following commutative diagrams (see Appendix B.2 for a proof):

t∑
r=−∞

ξ(t, r)φ(r) ∈ R ⇐=

t∑
r=−∞

|ξ(t, r)| < ∞ =⇒
t∑

r=−∞
ξ2q (t, r)σ

2(r) < ∞

=⇒ =⇒ =⇒ =⇒ =⇒

lim
s→−∞

ξ(t, s)φ(s) = 0 ⇐= lim
s→−∞

ξ(t, s) = 0 =⇒ lim
s→−∞

ξ2q (t, s)σ
2(s) = 0.

Commutative Diagrams

4.3 Autocovariance Function

In the following Proposition, we state an explicit expression of the covariance structure for the Wold-
Cramér decomposition of DTV-ARMA(p, q) processes.
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Proposition 3 Let the conditions of Theorem 3 hold. Then the time-varying ℓ-order autocovariance
function γt(ℓ) = Cov(yt, yt−ℓ), ℓ ∈ Z0, of a second order solution process {yt} given in eq. (20a), exists
and is given explicitly by

γt(ℓ) =

t−ℓ∑
r=−∞

ξq(t, r)ξq(t− ℓ, r)σ2(r). (22)

Moreover, limℓ→∞ γt(ℓ) = 0.

A proof of Proposition 3 is presented in Appendix B.3. The time-varying variance of yt in eq. (21b), is
recovered by applying γt(ℓ) for ℓ = 0, that is γt(0) = Var(yt).

From a computational viewpoint, the covariance structure of the process yt can be numerically eval-
uated by computing the banded Hessenbergian coefficients, ξq(t, r) in eq. (13) and substituting these in
eq. (22). The next remark highlights the importance of the existence of finite second moments.

Remark 2 Azrak and Mélard (2006) considered the asymptotic properties of QML estimators for the
DTV-ARMA models, where the coefficients depend not only on t but on the sample size T too (see Alj et
al., 2017, for the multivariate case). In their Theorem and Lemma 1 the existence of finite second order
moments was required. They also showed there that the dependence of the model on T has no substantial
effect on their conclusions except that a.s. convergence is replaced by convergence in probability, since
convergence in L2 norm implies convergence in probability (see Lemma 1′ in their paper).

5 Forecasting

The invertibility is crucial for obtaining reliable approximate forecasts based on a finite sequence of past
observations (see, for example, Hamilton, 1994, p. 85). The inversion of a second order mean zero solution
process is discussed in this Section along with forecasting. We derive two generic explicit forms for the
k-step-ahead optimal linear predictor (in L2 sense), based on, respectively, infinite and finite sequences
of observable random variables coupled with their forecast and mean square errors.

Recalling that zt =
∑t

r=−∞ ξq(t, r)εr stands for the unique mean zero solution process of eq. (19a)
in M(ε).

Invertibility. The invertibility of {zt} is discussed in some details in online Appendix G1. By analogy
with the definition of the principal matrix, we there define the banded Hessenberg matrix Θt,s (see eq.
(G.2)), whose entries are the opposite sign moving average coefficients of eq. (1). The associated principal
determinant is defined by ϑ(t, s) = det(Θt,s). By analogy with the definition of ξq(t, r) in eq. (13), the
associated banded Hessenbergian coefficients are: ϑp(t, r) = ϑ(t, r) −

∑p
m=1 ϑ(t, r + m)ϕm(r + m). We

show in Theorem G.1 that in a causal environment the additional condition
∑t

r=−∞ |ϑ(t, r)| < ∞, is

sufficient for the invertibility of zt and its explicit representation is given by:

εt =

t∑
r=−∞

ϑp(t, r)zr.

Let Mt(z) be the closed linear subspace of L2 spanned by {zr,−∞ < r ≤ t}. Under both absolute
summability conditions, i.e.,

∑t
r=−∞ |ξq(t, r)| < ∞ and

∑t
r=−∞ |ϑ(t, r)| < ∞, the representation of zt in

terms of εr coupled with the above representation of εt in terms of zr ensure that Mt(z) = Mt(ε) for all
t ∈ Z. Replacing the aforementioned absolute summability conditions with the AR and MA regularity
conditions, respectively, they also ensure that Mt(z) = Mt(ε) for all t ∈ Z (see, for example, Singh and
Peiris, 1987). The conditions ensuring the invertibility of the solution process yt will be referred to as
invertible environment.

Forecasts Based on Infinite Observations. The following approach is appropriate for large sample
optimal linear forecasts. In what follows t stands for the forecast time point, k = t−s for s < t denotes the
forecast horizon and {εr}r≤s is the sequence of observable random variables. The orthogonal projection
of zt on the closed subspace Ms(ε) of M(ε), is the k-step-ahead optimal linear predictor of zt, based on

13



Ms(ε), which is given explicitly by:

P̂ (zt |Ms(ε)) =

s∑
r=−∞

ξq(t, r)εr.

Replacing the absolute summability conditions with the AR and MA regularity conditions, established
in the references cited in Section 4.1, identical forecasting formulas for the process {zt} are obtained,
but now the banded Hessenbergian coefficients ξq(t, r) are explicitly expressed directly in terms of the
coefficients of the model in eq. (1), without invoking recursion for their computation.

Assuming in addition that {εt} is a white noise martingale difference sequence, relative to {zs−r}0≤r<∞,
that is E(εt|zs, zs−1, ...) = 0 for all t, the above stated linear predictor coincides with the conditional ex-
pectation of zt based on Ms(ε), that is the k-step-ahead optimal predictor minimizing the corresponding
mean square error (see Brockwell and Davis, 2016, p. 334).

Following Hamilton (1994, p.74), we shall denote by Ê
(
yt |Ms(ε)

)
the orthogonal projection of yt ∈ L2

on the closed linear subspace of L2 spanned by the sequence {1, εs, εs−1, ...}, which is also an orthogonal
sequence, and contains all constants. Let {µt} be the estimated first moment process generated by eq.
(19b). An explicit representation of the linear predictor of yt in eq. (20a) for t > s is given by adding
the estimated mean E(yt) = µt to the foregoing forecast P̂ (zt |Ms(ε)), that is:

Ê(yt |Ms(ε)) = E(yt) +
s∑

r=−∞
ξq(t, r)εr.

The forecast error FEt,s
def
= yt − Ê(yt |Ms(ε)) = zt − Ê(zt |Ms(ε)) and the associated mean square error

MSEt,s
def
= Var(FEt,s) are also explicitly expressed in the forthcoming eqs. in (23b), being identical to

the counterpart errors obtained therein.
In an invertible environment, since Mt(z) = Mt(ε) for all t ∈ Z, the sequence {zr}r≤s can also

be identified as the sequence of observable random variables. In this environment the optimal linear
predictor formula is presented in online Appendix G2.

If the conditions of Theorem 2 hold, then E(yt) is given by eq. (21a) and therefore the k-step-ahead
optimal linear predictor formula, stated above, is modified by replacing E(yt) with

∑t
r=−∞ ξ(t, r)φ(r).

Forecasts Based on Finite Observations. In what follows, we discuss a more realistic approach to
forecasting, focusing on finite size sample forecasts. If we have a finite number of observations, say N ,
at our disposal, we can truncate the series of Ê(yt |Ms(ε)) up to and including the (s+ 1−N) term to
obtain approximations to the k-step-ahead optimal linear forecasts obtained in the previous paragraph.

An alternative optimal linear forecasting approach to the one based on infinite observations is obtained
by taking advantage of the second order solution in eq. (20a), but written as in eq. (16) (see the discussion
below eq. (20c) in Section 4.1). Let Ks for s < t stand for the linear subspace of L2 spanned by the set:
{ys, ys−1, . . . ys+1−p} ∪ {εs, . . . , εs+1−q} ∪ {1}. Formally Ks is closed, as being the span of a finite set of
elements of L2. In this case ys−i for 0 ≤ i ≤ p− 1 and εs−i for 0 ≤ i ≤ q − 1 are the observable random
variables. The optimal linear predictor of yt in eq. (16), based on Ks, along with the forecast and mean
square errors are explicitly expressed in the following Proposition.

Proposition 4 The k-step-ahead optimal linear predictor of yt ∈ L2 in eq. (16), based on Ks, is:

Ê(yt | Ks) =

p∑
m=1

ξ(m)(t, s)ys+1−m +

t∑
r=s+1

ξ(t, r)φ(r) +

s∑
r=s+1−q

ξs,q(t, r)εr. (23a)

The forecast error FEt,s = yt − Ê(yt|Ks) and its associated mean square error (its variance) are:

FEt,s =

t∑
r=s+1

ξq(t, r)εr, MSEt,s =

t∑
r=s+1

ξ2q (t, r)σ
2(r). (23b)

As the expectation of FEt,s is zero, the forecast is unbiased.

14



A proof of Proposition 4 is deferred to online Appendix G2. Since the expressions of FEt,s and MSEt,s

are independent of ys, we conclude that both error formulas in eq. (23b) remain invariant for any second
order solution process. More specifically, for any two second order solutions of eq. (1), say yt and y∗t ,

it follows that yt − Ê(yt|Ks) =
∑t

r=s+1 ξq(t, r)εr = y∗t − Ê(y∗t |Ks). These error formulas are identical
to those associated with an infinite sequence of past observations, as already stated in the preceding
paragraph.

In the case of ARMA models with constant parameters, by using t− r in place of (t, r), the coefficient

ξ(m)(t, s) in eq. (9) becomes ξ(m)(t − s) =
∑p+1−m

r=1 ϕm−1+rξ(t − s − r) and the banded Hessenbergian

coefficient in eq. (14), becomes ξs,q(t, r) =
∑q

l=s+1−r ξ(t− r− l)θl, where ξ(r) is given by eq. (8). In this
case, the k-step-ahead optimal linear predictor in eq. (23a) takes the form:

Ê(yt | Ks) =

p∑
m=1

ξ(m)(t− s)ys+1−m + φ

t∑
r=s+1

ξ(t− r) +

s∑
r=s+1−q

q∑
l=s+1−r

ξ(t− r − l)θlεr. (23c)

We should highlight the fact that eq. (23c) coincides with the formula obtained by Karanasos, 2001, in
his Theorem 1, eq. (2.7) (see, for more details, online Appendix D2).

Some further consequences. For each time point t, the forecast error in eq. (23b) converges in
Mt(ε), as s → −∞, to the mean zero random part of eq. (20a) (or eq. (18a)), that is:

lim
s→−∞

FEt,s =

t∑
r=−∞

ξq(t, r)εr.

Moreover, the linear optimal forecast, based on Ms(ε) and the mean square error converge respectively
to the first moment and to the unconditional variance, as s → −∞, that is:

lim
s→−∞

Ê(yt |Ms(ε)) = E(yt),

lim
s→−∞

MSEt,s =

t∑
r=−∞

ξ2q (t, r)σ
2(r) = Var(yt).

We remark that the explicit form of the variance for a Gaussian process is essential for the determi-
nation of the confidence intervals for Ê(yt |Ks ).

Finally, we formulate one of the main arguments made by Hallin (1986), which states that unlike
the constant parameters case, in a time-varying coefficient setting two MSEs with the same forecasting
horizon k, but at different time points, are no longer equal. With this in mind, consider two distinct
pairs of time points, say (t1, s1) and (t2, s2), such that t1 − s1 = t2 − s2 = k. The associated MSEs are:

MSEt1,s1 =

t1∑
r=s1+1

ξ2q (t1, r)σ
2(r), MSEt2,s2 =

t2∑
r=s2+1

ξ2q (t2, r)σ
2(r).

Changing the summation limits ([s1 + 1..t1] and [s2 + 1..t2]), both to [0..k − 1], we get:

MSEt1,s1 =

k−1∑
r=0

ξ2q (t1, t1 − r)σ2(t1 − r), MSEt2,s2 =

k−1∑
r=0

ξ2q (t2, t2 − r)σ2(t2 − r).

Accordingly, in a time-varying coefficient setting, a comparison betweenMSEt1,s1 andMSEt2,s2 , whenever
t1 − s1 = t2 − s2, entails that: MSEt1,s1 ̸= MSEt2,s2 . In contrast, in a constant parameter setting, the
two MSEs coincide, since: MSEt1,s1 = MSEk = MSEt2,s2 , where

MSEk = σ2
k−1∑
r=0

ξ2q (r).
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6 Stochastic Coefficients

In Sections 4 and 5, we restricted ourselves to the treatment of DTV models. In this Section we examine
processes with stochastically varying coefficients. For simplicity, instead of ARMA processes, we will
concentrate on the AR specification. In particular, we will investigate two models: the random coefficients
one and the double stochastic AR process.16 But first we will express the STV-AR model in a companion
matrix form. The proofs of the present Section are provided in Appendix C.

6.1 Companion Matrix Form

In this Subsection we show how to utilize the principal determinant (Green function) and the m-th
fundamental solution in order to obtain a compact and explicit representation of the companion matrix.

The STV-AR(p) process, can be expressed as

yt = ϕ0t + ϕ′
tyt−1 + εt, (24)

where yt−1 = (yt−1, yt−2, . . . , yt−p)
′ is a p× 1 vector of preceding random variables of yt, and ϕt = (ϕ1t,

ϕ2t, . . . , ϕpt)
′ is a p × 1 vector of the autoregressive random coefficients. Notice that we denote the

stochastically varying coefficients, including the drift ϕ0t, by ϕmt, m = 0, . . . , p, instead of ϕm(t), which
was the notation used for the deterministic ones.

It is well known that model (24) can be written in a companion matrix form:

yt = ϕ0t +Φtyt−1 + εt, (25)

where ϕ0t = (ϕ0t 0 . . . 0)′, εt = (εt 0 . . . 0)
′, and the companion (square) matrix Φt of order p associated

to the vector ϕt is given by

Φt =


ϕ1t ϕ2t . . . ϕp−1,t ϕpt

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...
...
...

...
...

0 0 . . . 1 0

 . (26)

That is, the STV-AR(p) process is converted to a p-dimensional vector STV-AR(1) model. For any set
of p prescribed random variables ys, iterating eq. (25) yields

yt = Ct,sys +
t∑

r=s+1

Ct,r(ϕ0r + εr), (27)

where Ct,s =
t∏

r=s+1
Φt,r is the product of companion matrices with initial square matrix Ct,t = I of order

p. It follows directly from eq. (27) and Theorem 1 (see, for more details, Paraskevopoulos and Karanasos,
2021, see also, online Appendix F3) that the p-dimensional square matrix Ct,s is given by

Ct,s =


ξ(1)(t, s) ξ(2)(t, s) · · · ξ(p)(t, s)

ξ(1)(t− 1, s) ξ(2)(t− 1, s) · · · ξ(p)(t− 1, s)
...

...
...
...
...

...
ξ(1)(t− p+ 1, s) ξ(2)(t− p+ 1, s) · · · ξ(p)(t− p+ 1, s)

 .

In other words the element occupying the (n+ 1,m)-th entry of the matrix Ct,s (n = 0, . . . , p− 1) is the
m-th fundamental solution ξ(m)(t−n, s). We recall that ξ(1)(t, s) is given in eq. (5), where now ϕm(t) in
eq. (4) is replaced by ϕmt, and ξ(m)(t, s) is given in eq. (A.2).

16Some results concerning the generalized random coefficient (GRC) model are not presented here, but are available at
Karanasos et al. (2020), Section 7.3.
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6.2 Random Coefficients AR Model

In this Subsection we examine the random coefficient AR(p) model (with acronym RC-AR(p)), which is
given by eq. (24), using for this the following notation and specifications: ϕ∗

t = (ϕ0t ϕt)
′, t = s+1, s+2 . . .,

is an i.i.d. (p + 1)-dimensional random vector of the coefficients, and the i.i.d. errors, {εt, t ≥ s + 1}
are independent of the random drift and autoregressive coefficients. Also let εs be a random variable
independent of everything else, being the initial state.

Let us call |·| the Euclidean norm on the space Rp. Let Rp×p be the space of p × p matrices with
elements in R and ||·|| be the matrix norm induced by |·| (this is known as the spectral norm, defined as
the largest singular value of the matrix).

Condition 1 ξ(t, s)
a.s→ 0 as t → ∞.

The proof of the next Theorem follows from the fact that ξt,s
a.s→ 0 as t → ∞ implies that ||Ct,s||

a.s.→ 0 as
t → ∞ and, therefore, Theorem 2.1 in Erhardsson (2014) applies.

Theorem 4 Consider the RC-AR(p) model. Under Condition 1 the following are equivalent:

i) yt convergences in distribution as t → ∞,

ii)
∞∑

r=s+1
|Cr−1,sεr| < ∞ a.s.,

iii)
t∑

r=s+1
Cr−1,sεr converges a.s., as t → ∞,

iv) Ct−1,sεt
a.s.→ 0, as t → ∞,

v) supt≥s+1 |Ct−1,sεt| < ∞ a.s.

As pointed out by Erhardsson (2014) the implications (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) remain valid

even if condition ||Ct,s||
a.s.→ 0 as t → ∞ does not hold.

To the best of our knowledge no prior studies have provided an analogous condition to Condition 1
for the RC-AR(p) model.

6.3 Double Stochastic AR Models

In this Subsection we examine the more general case where the autoregressive coefficients follow AR
processes. We show that for this model the unconditional variance exists in R>0 provided that the
associated Green function convergences in L2, a result which is in line with Theorem 2(ii). In other
words, we investigate the double stochastic AR model, hereafter termed DS-AR (for double stochastic
processes and in particular ARMA processes with ARMA coefficients, see, for example, Grillenzoni, 1993,
and the references therein). This model is defined by eq. (24) but in this case the coefficients, ϕmt for
m = 1, . . . , p, follow AR processes:

ϕmt = βm0 +

pm∑
l=1

βmlϕm,t−l + emt, (28)

where βm0 and βml are constant coefficients and pm ∈ Z≥1 for all m : 1 ≤ m ≤ p. {emt} are martingale
difference sequences defined on L2, where emt and εt±b, b ∈ Z, are mutually independent for all m, b, and
t. We will also assume that the drift in eq. (24) is time invariant, that is, ϕ0t = ϕ0 for all t.

The results in Sections 4 and 5 can be easily modified to cover DS-AR models by replacing the fun-
damental solutions with their respective (unconditional and conditional) expectations. More specifically,
we present two Theorems followed by two Propositions (their proofs essentially repeat the arguments of
the proofs of those in Sections 4 and 5).

There are two sufficient conditions ensuring the Wold-Cramér decomposition of DS-AR(p) models,
and therefore the existence of the first two unconditional moments:

t∑
r=−∞

|E
(
ξ(t, r)

)
| < ∞ for all t (first-order absolute summability),

t∑
r=−∞

E
(
ξ2(t, r)

)
< ∞ for all t (second-order summability).

 (29)
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Remark 3 Generally, it is very difficult to verify if the two summability conditions are fulfilled. Only
some special cases allow for explicit solutions (see, Andĕl, 1991, and the references therein). A sufficient
condition for the absolute summability to hold is that {

∑p
m=1 ϕmt} belongs with probability one to the

interval (−1, 1), nearly everywhere, that is, with the exception, at most, of a finite number of t (see, for
example, Grillenzoni, 1993). Similarly, a sufficient condition for the square summability to hold is that

with probability one λ
(max)
t [Φ⊗2

t ] < 1, nearly everywhere, where λ
(max)
t [Φ⊗2

t ] refers to the modulus of the
largest eigenvalue of Φ⊗2

t = Φt ⊗ Φt and ⊗ stand for the Kronecker product; we recall that Φt is the
companion matrix (see eq. (26)).

Theorem 5 Let the two summability conditions in (29) hold. The Wold-Cramér decomposition (in L2

sense) is a solution of the DS-AR(p) model in eq. (24), where its AR coefficients are given by eq. (28),
being of the form:

yt =

t∑
r=−∞

ξ(t, r)(ϕ0 + εr). (30)

Theorem 6 If all the AR coefficients, ϕmt, m = 1, . . . , p, are strictly stationary, then eq. (24) has a
stationary solution of the type (30) if and only if

∞∑
r=1

∣∣E(ξ(r, 1))∣∣ < ∞ and

∞∑
r=1

E
(
ξ2(r, 1)

)
< ∞.

In what follows, we present explicit formulae for the first and second unconditional moments for the
DS-AR family of processes coupled with sufficient and necessary conditions for their existence.

Proposition 5 Under the two conditions in (29), it follows from Theorem 5 that the unconditional mean
of the DS-AR(p) process in eq. (30) exists in R and is given by

E(yt) = ϕ0

t∑
r=−∞

E
(
ξ(t, r)

)
. (31)

A necessary condition for the absolute summability to hold is

lim
s→−∞

E
(
ξ(t, s)

)
= 0.

Moreover, the unconditional variance of the process exists in R>0 and it is given by

Var(yt) = ϕ2
0 Var

( t∑
r=−∞

ξ(t, r)
)
+ σ2

ε

t∑
r=−∞

E
(
ξ2(t, r)

)
.

A necessary condition for the second-order summability to hold is

lim
s→−∞

E
(
ξ2(t, s)

)
= 0.

We notice that lims→−∞ E
(
ξ2(t, s)

)
= 0 is equivalent to lims→−∞ ||ξ(t, s)||2L2

= 0, which, in turn, is

equivalent to lims→−∞ ||ξ(t, s)||L2
= 0. In this latter case, we write lims→−∞ ξ(t, s)

L2= 0.

Proposition 6 Following the notation of Proposition 4, let Ks be the smallest closed linear subspace of
L2 spanned by the finite observable sequence

{ys, ..., ys+1−p} ∪
( m⋃

i=1

{ϕi,s, ϕi,s−1, . . . , ϕi,s+1−pi
}
)
.

The k-step-ahead optimal (in L2-sense) linear predictor of the DS-AR(p) process is:

Ê(yt | Ks) =

p∑
m=1

Ê
(
ξ(m)(t, s)|Ks

)
ys+1−m + ϕ0

t∑
r=s+1

Ê
(
ξ(t, r) |Ks

)
.
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Moreover, lims→−∞ Ê(yt |Ks ) = E(yt), which is given by eq. (31). The forecast error FEt,s for the above
k-step-ahead predictor, is given by

FEt,s = ϕ0

t∑
r=s+1

(
ξ(t, r)− Ê(ξ(t, r) |Ks )

)
+

t∑
r=s+1

ξ(t, r)εr +

p∑
m=1

(
ξ(m)(t, s)− Ê(ξ(m)(t, s)|Ks)

)
ys+1−m,

and its variance Var(yt |Ks ), based on Ks, is given by

Var(yt|Ks) = Var
((

ϕ2
0

t∑
r=s+1

ξ(t, r) +

p∑
m=1

ξ(m)(t, s)y2s+1−m

)
|Ks

)
+ σ2

ε

t∑
r=s+1

Ê
(
ξ2(t, r)|Ks

)
(we recall that ξ(t, r) have been introduced in eqs. (4) and (5), where ϕm(t) are now replaced by ϕmt).
Finally, lims→−∞ Var(yt |Ks ) = Var(yt), which is given in Proposition 5.

Remark 4 If the AR coefficients are deterministically varying, then the results in Proposition 6 coincide
with those in Proposition 4 for the AR model.

7 Modelling Inflation

In this Section we directly link econometric theory with empirical evidence. In our empirical applica-
tion, we consider the possible presence of structural breaks in inflation for the United States. Although
the empirical example serves as an illustration of the practical usefulness of the proposed approach and
a further examination of the structural breaks versus long memory debate17 is beyond the scope of this
paper, we should highlight the fact that the unified theory can be applied to infinite order autoregressions
with either constant or variable coefficients. Since a special case of such a process is the time-varying
long memory specification with structural breaks, our methodology unifies the concurring views of long
memory and structural breaks. We use quarterly data on the GDP deflator as the measure of the price
level. The data set consists of observations from 1963Q4 to 2018Q1. The Figure below plots the data
used for the empirical investigation. Inflation is calculated as the quarterly change of price level at an
annualized rate calculated as πt = 400(ln(Pt/Pt−1).

In terms of inflation modelling, the period under consideration is of particular interest as it covers the
boom-time inflation of the late 1960s, the stagflation in the 1970s, and the double-digit inflation of the
early 1980s. During this period substantial shifts in monetary policy occurred, most notably the Fed’s
radical step of switching policy from targeting interest rates to targeting the money supply in the early
1980s. Therefore when modelling inflation it is important to allow for time-varying parameters. In what
follows we estimate AR(p) models with abrupt structural breaks.18

The optimal model is an AR(2) process with 2 deterministic abrupt breaks [DAB-AR(2; 2)] at fixed
points of time t1 and t2, where t1 > t2. The process is defined by

yt =

 φ1 + ϕ1,1yt−1 + ϕ2,1yt−2 + σ1et if t > t1
φ2 + ϕ1,2yt−1 + ϕ2,2yt−2 + σ2et if t2 < t ≤ t1
φ3 + ϕ1,3yt−1 + ϕ2,3yt−2 + σ3et if t ≤ t2,

(32)

17Sibbertsen (2004) reviews the literature on misspecifying structural breaks as long-range dependence and proposes
various methods for distinguishing both these phenomena. As pointed out by Sibbertsen in many situations it is not clear
whether the observed dependence structure is real long memory or an artefact of some other phenomena such as structural
breaks. Long memory in the data would have strong consequences (i.e., for forecasting future events it is important to know
whether the data exhibits long-range dependence or if it is an artefact of structural breaks). However, distinguishing both
of these phenomena is difficult because their finite sample properties are rather similar.

18Various unit root tests show that, in general, we can reject the null hypothesis of a unit root in inflation series (see,
for details, the online Appendix H1). Many studies have also investigated the orders of integration of the Fisher equation
variables. In particular, Sun and Phillips (2004) find that the three Fisher components (that is, nominal and real interest
rates, and expected inflation) are integrated of the same order, with memory parameter in the range (0.75, 1). There is a
voluminous literature on the long memory versus structural break debate (see, for example, the book by Goerg, 2010). For
a recent discussion of long range dependence and multiple structural changes in the persistence of European inflation rate
series see Karanasos et al. (2016).
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GDP implicit price deflector for the US

where et ∼ i.i.d. (0, 1) for all t and 0 < σ2
i ≤ M , i = 1, 2, 3. An explicit solution representation is given

by eq. (I.1) in online Appendix I1.
The choice of the number of lags was based on the modified AIC and the Bayesian information criteria.

The break points are treated as unknown. Note that breaks in the variance are permitted provided that
they occur on the same dates as the break in the autoregressive parameters.

Coming to the estimation procedure, the first step is to identify possible points of parameter changes.
In order to do so the Bai and Perron (2003) sequential test on inflation rates is used to identify possible
breaks during the sample period. The Bai-Perron test (for details, see online Appendix H2) concludes
that there are two structural breaks. The results of the structural break test are summarized in Panel A
of Table 1 below.

A possible limitation of structural break models is that they are typically sample period dependent.
Therefore, their forecasting performance may be affected by the assumption that an abrupt break at one
point in time is a one off shock to inflation and therefore not persistent (for a detailed discussion on the
weaknesses of the structural break approach in analyzing and forecasting time series such as inflation see
Sun and Phillips 2004; Phillips, 2005). Note that in the literature, fractionally integrated specifications
have often been used to model inflation along with those with structural breaks. In this respect, taking
into account fractional integration may produce better forecasting properties.19

The first break occurred in the mid-1970’s, when the Fed tightened monetary policy to fight the high
inflation rate after the end of the Bretton Woods period. The second break occurred in 1986, when the
Fed embarked on an aggressive policy to reduce inflation, which reached unusually high levels starting
from the 70s. As a conclusion, inflation fell from 10.5% at the end of 1980 to 1.1% in 1986Q2, which is
also the date of the estimated break.20

19Empirical studies on fractional integration analysis include, among others, Baillie, et al. (2002), Hsu (2005), Canarella
and Miller (2017) and Iacone et al. (2019). However, as Diebold and Inoue (2001) point out, structural breaks in time
series can induce a strong persistence in the autocorrelation function and hence generate spurious long memory (see also
Granger and Hyung, 2004). In the same vein, Perron and Qu (2006) show how a stationary short memory process with
level shifts can generate spurious long memory. In this respect, Sun and Phillips (2004) propose a robust semiparametric
estimator that explicitly allows for the presence of short memory noise in the data (see also Phillips, 2007). Since the
suggested Whittle estimator makes it possible to separate low frequency component from high frequency behavior, it may
have better forecasting properties with respect to the model in eq. (32). The use of fractional integration (and especially a
time-varying type) is certainly promising and it will be considered in future work.

20McConnell and Perez-Quiros (2000) have detected a fall in the volatility of output after 1984 as well.
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Table 1. Structural break test and estimation results.

Panel A: Bai and Perron tests of L+ 1 vs. L sequentially determined breaks
Null hypotheses F-Statistic Critical Value

H0 : 0 vs 1 57.96∗∗ 13.98
H0 : 1 vs 2 18.13∗∗ 15.72
H0 : 2 vs 3 13.57 16.83

Panel B: Model Estimation and Misspecification Tests
Period φi ϕ1,i ϕ2,i σi

1964Q2-1976Q3 0.496∗∗
(0.224)

0.470
(0.108)

∗ 0.376∗
(0.102)

1.077∗
(0.367)

1976Q4-1986Q2 3.637∗
(0.954)

0.710∗
(0.119)

0.127
(0.112)

2.300∗
(0.689)

1986Q3-2018Q1 2.859∗
(0.396)

0.247∗
(0.082)

−0.314∗
(0.077)

2.160∗
(0.489)

R2 0.614
Breusch-Godfrey Test 2.055

(0.561)

White Test 3.103
(0.376)

Log-Likelihood -482.91

Panel A reports the calculated Bai-Perron test for structural breaks along with the critical value of the test taken from Bai

and Perron (2003). Panel B provides the estimated parameters along with the associated standard errors. The notations
∗,∗∗ indicate the statistical significance at 1% and 5%, respectively. The p values for the misspecification tests are given in

parenthesis.

7.1 Estimation Results

As far as the estimation results are concerned Panel B of Table 1 reports the QML estimated parameters
for the model and the relative misspecification. Note that the White-heteroskedasticity standard errors
are reported in parentheses. According to the reported parameter estimates, the inflation process is well
approximated by a second-order autoregression. Moreover, the drift parameters φi, i = 1, 2, 3 increase
from φ3 = 0.496 before 1976Q3 to φ2 = 3.637 during the period 1976-1986. The increase in the drift
reflects the fact that toward the second half of the 70s until the middle of the 80s the inflation level
was stubbornly high. After 1986 the smaller magnitude of the estimated drift reflects the lower average
inflation rates that the US enjoyed over the last three decades. This is in line with the finding in Levin and
Piger (2004), who provide statistical evidence for a fall in the intercept after the early 1990s. Kozicki and
Tinsley (2002) interpreted this shift as a change in the long-run inflation target of the Federal Reserve.

Considering now the estimated autoregressive parameters, ϕ1,i and ϕ2,i, according to the estimates
until 1986 the inflation process had a high intrinsic persistence (ϕ1,3+ϕ2,3 = 0.846 ≃ ϕ1,2+ϕ2,2 = 0.837),
but it has fallen ever since. These results are consistent with the findings in Cogley and Sargent (2002)
(see also Brainard and Perry, 2000, and Taylor, 2000). With respect to the variance parameter σi, we see
that the volatility of the innovation was relatively high during the decade 1976-1986 (σ2 = 2.30) and it
has fallen slightly in the last thirty years (σ1 = 2.160). However, it did not go back to the relatively low
level before 1976 (σ3 = 1.077). This is probably due to the fact that the last period included the turmoil
of the financial crisis that started in 2005 (see, for example, Stock and Watson, 2009).

Our estimated model confirms that changes in inflation dynamics can be explained by changes in the
drift, the intrinsic persistence and the variance parameter. To summarize our results, we find evidence
that the parameters in the models capturing persistence change over time. Therefore, not allowing
for time-varying parameters in the estimation procedure would result in a less accurate modelling of
the inflation process. This, in light of the simulation results in online Appendix H3, may lead to poor
forecasting. Finally, the misspecification tests are reported at the bottom of Panel B. It turns out that the
Breusch-Godfrey for autocorrelation does not reject the null hypothesis of no serial correlation. Similarly,
the White test for heteroscedasticity does not reject the null hypothesis of homoscedasticity, therefore
indicating that the model does not suffer from misspecification.
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7.2 Inflation Persistence

The model presented in eq. (32) can be used as a base for a new measure of inflation persistence. In
the empirical literature a common approach for modelling inflation persistence is to estimate a univariate
AR(p) specification, where the sum of the estimated autoregressive parameters is used to approximate
the sluggishness with which the inflation process responds to macroeconomic shocks and/or apply unit
root tests (see, for example, Fuhrer and Moore, 1995; Angeloni et al., 2006; Devpura et al., 2021). In an
influential paper Pivetta and Reis (2007) applied a Bayesian approach to produce a time-varying measure
of inflation persistence. Estimating the persistence of inflation over time using different measures and
procedures is beyond the scope of this paper.21 In this Section we depart from their study in an important
way, that is we contribute to the measurement of inflation persistence over time by taking a different
approach to the problem and estimate a DAB-AR model of inflation dynamics grounded on econometric
theory, and we compute an alternative measure of persistence, that is, the second-order persistence (using
the methodology in online Appendix I3), which distinguishes between changes in the dynamics of inflation
and its volatility (and their persistence).

As pointed out in the above cited reference, estimates of the inflation persistence affect the tests
of the natural hypothesis neutrality. Therefore detecting whether persistence has recently fallen is key
in assessing the likelihood of recidivism by the central bank. In addition, if the central bank feels
encouraged to exploit an illusory inflation-output trade off, the result could be high inflation without
any accompanying output gains. Furthermore, research on dynamic price adjustment has emphasized
the need for theories that generate inflation persistence.

Table 2, below, presents the within each period time invariant first and second-order measures of per-
sistence for all three periods. The first three columns report the three first-order measures of persistence:

Table 2. Persistence for each of the three periods/models.

First and Second-order Measures of Persistence
Period First-Order Second-Order

LAR 1/(1-SUM) E(πt) S0 P2(πt |εt ) Var(πt)
1964Q2 − 1976Q3 0.892 6.493 3.221 7.784 2.692 3.122
1976Q4 − 1986Q2 0.858 6.135 22.313 31.688 3.002 15.881
1986Q3 − 2018Q1 0.560 0.937 2.679 0.652 1.150 5.365

For each period, n = 1, 2, 3 we use the six alternative measures to calculate the (within each period time invariant) first

and second-order persistence.

LAR (largest autoregressive root), 1/(1 − SUM) (where SUM is the sum of the AR coefficients) and
E(πt)). For the first two measures Period 1 yields the highest persistence. In particular, the persistence
(measured by 1/(1− SUM)) decreases by 5.5% in the post-1976 period and it decreases further by 85%
in the post-1986 period. The mean of inflation, E(πt), increases by 59.3% in the second period and it
decreases by 88% in the third period. The last three columns of Table 2 report the three second-order

measures of persistence, i.e., S0,
22 P2(πt |εt )

def
=

Var(πt)

Var(εt)
and Var(πt); see the online Appendices I1 and

I2, and in particular Proposition I1, to see how the variance is calculated. For two out of the three
measures the post-1986 period exhibits the lowest persistence whereas the persistence is the highest in

21Pivetta and Reis (2007) applied a Bayesian approach, which explicitly treats the autoregressive parameters as being
stochastically varying and it provides their posterior densities at all points in time. From these, they obtained posterior
densities for the measures of inflation persistence. Such estimates of persistence are forward-looking, since they are meant
to capture the perspective of a policy maker who at a point in time is trying to foresee what the persistence of inflation will
be. They also estimated forward-looking measures of persistence that the applied economist forms at a point in time, given
all the sample until then. Pivetta and Reis (2007) also used an alternative set of estimation techniques for persistence. They
assumed time invariant autoregressive parameters and re-estimated their AR model on different sub-samples of the data,
obtaining median unbiased estimates of persistence for each regression. Finally, Pivetta and Reis also employed rolling and
recursive unit root tests. In the online Appendix H1 we employ a number of unit root tests.

22Cogley and Sargent (2002) measured persistence by the spectrum at frequency zero, S0. As an example, for the time

invariant AR(2) model this will be given by: S0 =
σ2
ε

2π(1− ϕ1 − ϕ2)2
.
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the second period. The variance of inflation, V ar(πt), from 1976 to 1986 is almost five times the variance
of inflation of the pre-1976 period and it is almost three times the variance of the post-1986 period.

The following couple of graphs23 depict the measures P2(πt |εt ) and Var(πt), reflecting the dynamics
of the second-order time-varying inflation persistence.
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In the x-axis each unit represents a year-quarter starting with 1964Q2, chosen as the first. In particular,
1976Q3 = 49 (49-th year-quarter) and 1986Q2 = 88 (88-th year-quarter). Some key features for the
graph of the inflation variance V ar(πt) are discussed in what follows. i) In the pre-76 period the graph is
constant: V ar(πt) = 3.122. ii) Within the post-76 and pre-86 period, the graph increases abruptly next
to the quarter 1976Q4, but at a decreasing rate, in the end reaching the highest value V ar(πt) = 15.881.
iii) In the post-86 period the graph stabilizes to V ar(πt) = 5.365, after an abrupt drop next to the
quarter 1986Q3. Analogous statements can be addressed for the inflation persistence graph P2(πt |εt ).
As illustrated above, the main difference between the shapes of the two graphs is due to the abrupt
drop next to the quarter 1976Q4 followed shortly afterwards by an abrupt increase at a decreasing rate.
Details of how we construct the graphs are presented in online Appendix J.

The following couple of graphs depict the measures P1(πt |εt )
def
=

E(πt)

φ(t)
and E(πt) for the first-order

time-varying persistence.
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23The graphs have been designed and plotted using Mathematica drawing tools.
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In sum, our main conclusion is that for our chosen specification (DAB-AR model) the preferred
measure of persistence, that is the second-order persistence, as measured by the P2(πt|εt) of inflation,
increased considerably from 1976 onwards, whereas in the post-1986 period the persistence falls to even
lower levels than the pre-1976 period. Our results are in line with those in Cogley and Sargent (2002),
who find that the persistence of inflation in the United States rose in the 1970s and remained high during
this decade, before starting a gradual decline from the 1980s until the early 2000s (similar to the results
of Brainard and Perry, 2000, and Taylor, 2000). Stock and Watson (2002) found no evidence of a change
in persistence in U.S. inflation. However, they found strong evidence of a fall in volatility. Therefore
their results are in agreement with ours.

8 Conclusions and Future Work

The unified scheme presented in the present paper covers the subclass of stochastic processes, which
belong to the large family of TV-ARMA models endowed with a variable drift. In the available literature,
the Green function representations of the second order properties of this type of model, based on an
analogous Wold-Cramér representation, have been extensively reported. Notwithstanding, they are not
fully explicit, due to the lack of an analogous representation of the Green function. Along these research
lines, a theoretical gap emerges between LDEs with constant coefficients and higher order TV-LDEs,
concerning the explicit representation of their general solution. Thanks to the principal determinant
representation of the Green function, we have filled in the aforesaid gap, which made it possible to
recover and extend the fundamental properties of time-varying processes, fully explicit representations
establishing for them.

Our methodology is a practical tool that can be applied to many dynamic problems. As an illustration
we constructed an AR specification with abrupt breaks, which is grounded on econometric theory. The
second moment structure of this construction was employed to obtain a new time-varying measure of
second-order persistence. With the help of a few examples, including smooth transition AR processes,
periodic and cyclical formulations, we have demonstrated how to encompass various time series processes
within our unified framework (see online Appendix D).

To summarize, we have identified a lack of an effective and broadly applicable approach to time-
varying models with counterpart nonzero mean. Responding to this challenge we explicitly obtain: a
solution representation of such models for any sequence of p consecutive prescribed random variables.
This enables us to treat ARMA processes with variable coefficients within a unified scheme, including
the cases of deterministic and stochastic ones. We further obtain, a banded Hessenbergian representation
of their unique Wold-Cramér decomposition, highlighting its strong connection with their asymptotic
stability. We derive the second moments of these processes along with necessary and sufficient conditions
for their existence, which (in the case of the deterministically varying coefficients) are prerequisites for
the quasi maximum likelihood and central least squares estimation. We also present, conditions for the
invertibility of such processes, followed by optimal linear forecasts based on infinite and finite sets of
observations. Finally, a sufficient condition for their asymptotic efficiency grounded on the boundedness
of the mean square error (see Karanasos et al., 2020) is deduced.

We developed this new technique, which can be applied virtually unchanged to any “ARMA” environ-
ment, that is to the even larger family of time-varying models, with ARMA representations (i.e., GARCH
type of [or stochastic] volatility and Markov switching processes). Thus our results can be applied to
TV-GARCH models too, without any significant modifications. This generic framework releases us from
the need to work with characteristic polynomials and enables us to examine a variety of specifications
and to solve a number of problems, helping us to deepen our familiarity with their distinctive features.

The empirical relevance of the theory has been illustrated through an application to inflation rates.
Our estimation results led to the conclusion that U.S. inflation persistence has been high since 1976,
whereas after 1986 the persistence falls to even lower levels than the pre-1976 period, a finding which
agrees with those of Brainard and Perry (2000), Taylor (2000) and Cogley and Sargent (2002).

The usefulness of our unified theory is apparent from the fact that it enables us to analyse an abun-
dance of models and solve a plethora of problems. In addition, an extension of the methodology developed
in this paper enables us to (just to mention a few consequences): i) examine in depth infinite order au-
toregressions with either constant or variable coefficients, since it releases us from the need to work with
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characteristic polynomials, ii) obtain the fourth moments of TV-GARCH models, which themselves fol-
low linear time-varying difference equations of infinite order, taking advantage of the fact that various
GARCH formulations have weak ARMA representations (see, for example, Karanasos, 1999), iii) work
out the fundamental time series properties of time-varying linear VAR systems (since it can be easily
modified and applied to a multivariate setting; see, for example, Karanasos et al., 2014), iv) derive explicit
formulas for the nonnegativity constraints and the second moment structure of both constant and time-
varying multivariate GARCH processes (thus extending the results in He and Teräsvirta, 2004, Conrad
and Karanasos, 2010, and Karanasos et al., 2022a).

Hallin (1986) applied recurrences in a multivariate context to obtain the Green matrices. Work is at
present continuing on the multivariate case. When this has been completed one should be able to apply
the methods of this paper to multivariate TV ARMA and GARCH models without any major alterations.
Spectral factorization is another important problem that can be solved by our new representations.

Some of these research issues are already works in progress and the rest will be addressed in future
work.

Appendices

In the appendices we provide proofs for the statements and formulas reported earlier in the paper in-
cluding some supporting material. The standard notation used in the main body of the paper is followed
throughout the appendices.

A Time-varying ARMA

In this Section, we present an autonomous procedure for the proofs of the statements of Section 2.2. The
origins of the main tool of our analysis (principal determinant) is based on the work of Paraskevopoulos,
2012 and 2014, and discussed in the online Appendix F1. In particular, we show there how the Hessen-
bergian representations of the fundamental solutions and therefore of the Green function, are constructed
by the infinite Gauss-Jordan elimination method.

The banded Hessenberg matrixΦt,s in eq. (4) whose determinant is the so-called principal determinant
is reduced to the well known banded Toeplitz matrix, when the coefficients of eq. (1) are constants (see
eq. (8)). Compact representations of banded Hessenbergians, established in Marrero and Tomeo (2012,
2017) and Paraskevopoulos and Karanasos (2021), can be applied to derive analogous representations for
the principal determinant. These results endow compact representations to the fundamental properties
of TV-ARMA models, presented in the main body of the paper.

A.1 A Fundamental Set of Solutions

In the literature, a fundamental set of solutions play a crucial role for the solution representation of
linear difference equations with variable coefficients in terms of the Green function. Their existence is
theoretically established by the fundamental theorem of linear difference equations (see Elaydi, 2005,
p.72). Thanks to the superposition principle (see the previously cited reference) the general solution of
eq. (7) can be expressed as a linear combination of the elements of a fundamental set of solutions.

In this Subsection we define the banded Hessenbergian solutions ξ(m)(t, s) for 1 ≤ m ≤ p of eq. (7)
(see eqs. (A.1) and (A.2)) and show that they form a fundamental set of solutions (Ξs).

In Subsection 2.2, we have introduced the principal determinant ξ(t, s). In this Subsection we also
show that the principal determinant can also be used to generate the remaining p − 1 elements of Ξs

(see Section 3.1). In particular, we derive the formula in eq. (A.3), which shows that every fundamental
solution ξ(m)(t, s) can be exclusively expressed in terms of the principal determinant ξ(t, s) and the
autoregressive coefficients.

In order to save space, we shall interchangeably use the notation t− s and k. We define the matrix:
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Φ
(m)
t,s = (A.1)

ϕm(s+ 1) −1

ϕm+1(s+ 2) ϕ1(s+ 2)
. . .

...
...

. . .
. . .

ϕp(s+ p+ 1−m) ϕp−m(s+ p+ 1−m)
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

ϕp−1(s+ p)
. . .

. . .
. . .

. . .
. . .

ϕp(s+ p+ 1)
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

ϕp(t− 1) ϕp−1(t− 1) · · · ϕp−m(t− 1) · · · ϕ1(t− 1) −1
ϕp(t) · · · ϕp+1−m(t) · · · ϕ2(t) ϕ1(t)



.

Φ
(m)
t,s for m ≥ 2, is derived from Φt,s (see eq. (4)), by replacing its first column with the column vector:(

ϕm(s+ 1), ϕm+1(s+ 2), . . . , ϕp(s+ p+ 1−m), 0, . . . , 0
)′
.

In other words, each matrix in the sequence {Φ(m)
t,s }1≤m≤p, differs from any other matrix in this sequence

only in the first column. Formally Φ
(m)
t,s is a banded Hessenberg matrix of order k = t− s. The principal

matrix Φt,s (resp. principal determinant ξ(t, s)) is identified with Φ
(1)
t,s (resp. ξ(1)(t, s)). For notational

convenience we will interchangeably use Φ
(1)
t,s (resp. ξ(1)(t, s)) in place of Φt,s (resp. ξ(t, s)).

The sequences {ξ(m)(t, s)}t≥s−p+1 for 1 ≤ m ≤ p, that is the elements of the set Ξs, are defined by

ξ(m)(t, s) =

 det(Φ
(m)
t,s ) If t > s

1 If t = s+ 1−m
0 If s+ 1− p ≤ t ≤ s and t ̸= s+ 1−m.

(A.2)

Applying eq. (A.2) with s = t− 1, we conclude that: ξ(m)(t, t− 1) = ϕm(t).
In Lemma A1(i) (resp. (ii)), we give the cofactors of the elements of the first column (resp. last row)

of Φ
(m)
t,s (see for a proof Paraskevopoulos and Karanasos, 2021, Lemma 1).

Lemma A1 i) The cofactor of the coefficient ϕm+n(s+1+n) in the first column of Φ
(m)
t,s coincides with

ξ(t, s+ 1 + n) for n = 0, ..., p−m.

ii) The cofactor of the coefficient ϕn(t), in the last row of Φ
(m)
t,s coincides with ξ(m)(t−n, s), n = 1, ..., p.

The following Proposition is a direct consequence of Lemma A1 (for further details see the previously
cited reference).

Proposition A1 i) The cofactor expansion of ξ(m)(t, s) along the first column of Φ
(m)
t,s is given by

ξ(m)(t, s) =

p+1−m∑
r=1

ϕm−1+r(s+ r)ξ(t, s+ r), (A.3)

which coincides with the expression of ξ(m)(t, s) in eq. (9).

ii) The cofactor expansion of ξ(m)(t, s) along the last row of Φ
(m)
t,s gives:

ξ(m)(t, s) =

p∑
n=1

ϕn(t)ξ
(m)(t− n, s). (A.4)
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Eq. (A.4) entails that the sequence ξ(m)(t, s), t ≥ s + 1 − p is the solution of eq. (7) under the initial
values ξ(m)(s + 1 − m, s) = 1 and ξ(m)(s + 1 − n, s) = 0, whenever n = 1, 2, ..., p and n ̸= m (for an
alternative proof, see Paraskevopoulos and Karanasos, 2021, Proposition 2). The linear independence of
the p solution sequences ξ(m)(t, s), t ≥ s+ 1− p, for 1 ≤ m ≤ p, is verified in the following Proposition:

Proposition A2 For any arbitrary but fixed s ∈ Z the set

Ξs = {ξ(1)(t, s), ξ(2)(t, s), ..., ξ(p)(t, s), t ≥ s+ 1− p}

is a fundamental set of solutions associated with eq. (7).

Proof. For each fixed s consider the sequence matrices in t associated with the set Ξs:

Ξt,s =


ξ(1)(t, s) ξ(2)(t, s) ... ξ(p)(t, s)

ξ(1)(t− 1, s) ξ(2)(t− 1, s) ... ξ(p)(t− 1, s)

...
...

...
...
...

...
ξ(1)(t+ 1− p, s) ξ(2)(t+ 1− p, s) ... ξ(p)(t+ 1− p, s)

 .

The Definition in eq. (A.2) entails that the matrix Ξs,s is the identity matrix of order p. Therefore, Ξs

is |Ξs,s| = 1 ̸= 0. It turns out that |Ξt,s| ̸= 0 for all t ≥ s and the set Ξs is linearly independent (see
Elaydi, 2005, Corollary 2.14. p.69). Moreover, as the dimension of the homogeneous solution space of
eq. (7) is p, the set Ξs is a fundamental set of solutions associated with eq. (7).

Ξt,s is known as the Casorati matrix associated with the fundamental solution set Ξs, that is Ξt,s

coincides with the product of companion matrices, first expressed in a fully explicit form in earlier ver-
sions of the paper (see, for example, Karanasos et al., 2020). This matrix form plays a central role both
in the explicit representation of the Green function (see Paraskevopoulos and Karanasos, 2021) as well
as in the explicit solution representation in the vector case, as illustrated in online Appendix F3.

A.2 Homogeneous and Particular Solutions

The following Proposition provides an expression of the homogeneous solution as a linear combination of
the fundamental solutions, the coefficients of which are the initial condition values.

Proposition A3 The solution of eq. (7), taking on the prescribed initial values {ys+1−m}0≤m≤p, is given
by eq. (10).

Proof. As Ξs, defined in Proposition A2, is a fundamental set of solutions, every solution of eq. (7) can

be expressed as yhomt,s =
∑p

m=1
amξ(m)(t, s). Fixing the initial values at ys+1−m = cm for m = 1, 2, ..., p,

it remains to show that cm = am for all m : 1 ≤ m ≤ p. Taking into account that

ξ(m)(s+ 1−m, s) = 1 and ξ(m)(s+ 1− r, s) = 0, whenever 1 ≤ r ≤ p and r ̸= m,

for each m such that 1 ≤ m ≤ p, we have:

cm = ys+1−m = yhoms+1−m,s =

p∑
r=1

arξ
(r)(s+ 1− r, s) = amξ(m)(s+ 1−m, s) = am.

This completes the proof of Proposition A3.

Recalling that υr = φ(r) + ur, the following Proposition provides a particular solution of eq. (3).

Proposition A4 The expression of ypart,s in eq. (12) is a particular solution of eq. (3) taking on zero
initial values, i.e., ys+1−i = 0 for 1 ≤ i ≤ p and it can be expressed as a single Hessenbergian:

ypart,s = (A.5)
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

υs+1 −1

υs+2 ϕ1(s+ 2)
. . .

.

..
.
..

. . .
. . .

υs+p+1−m ϕp−m(s+ p+ 1−m)
. . .

. . .

...
...

. . .
. . .

. . .

υs+p ϕp−1(s+ p)
. . .

. . .
. . .

υs+p+1 ϕp(s+ p+ 1)
. . .

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .
. . .

υt−1 ϕp(t− 1) ϕp−1(t− 1) · · · ϕp−m(t− 1) · · · ϕ1(t− 1) −1
υt ϕp(t) · · · ϕp+1−m(t) · · · ϕ2(t) ϕ1(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof. Let us denote by y∗t,s the determinant on the right-hand side of eq. (A.5). In order to show

that ypart,s =
∑t

r=s+1 ξ(t, r)υr solves eq. (3) subject to zero initial values, it suffices to show the following
statements:

i) y∗t,s solves eq. (3), ii) ypart,s = y∗t,s and iii) the solution ypart,s holds for zero initial conditions, that is
whenever ys+1−m = 0 for all 1 ≤ m ≤ p.

These statements are shown below:
i) Working with elementary properties of determinants, in what follows we give the cofactors of the
elements occupying the last row of the determinant y∗t,s. We consider the following two cases:

ia) The cofactor of υt is the determinant of a lower triangular matrix whose main diagonal elements are
(−1)’s, the number of which is (k − 1). As υt occupies the (k, 1) entry of the matrix, it follows from
(−1)k+1(−1)k−1 = 1 that the cofactor of υt is 1.

ib) The remaining nonzero entries of the last row of y∗t,s are the AR coefficients ϕm(t) for 1 ≤ m ≤ p,
each of which has a cofactor of the form:

y∗t−m,s =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

υs+1 −1

υs+2 ϕ1(s+ 2)
. . .

...
...

. . .
. . .

υs+p ϕp−1(s+ p)
. . .

. . .

υs+p+1 ϕp(s+ p+ 1)
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .

υt−m−1 ϕp(t−m− 1) ϕp−1(t−m− 1) · · · ϕ1(t−m− 1) −1

υt−m ϕp(t−m) · · · ϕ2(t−m) ϕ1(t−m)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(for further details see Paraskevopoulos and Karanasos, 2021).
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As a consequence, the cofactor expansion of y∗t,s along the last row gives:

y∗t,s =

p∑
m=1

ϕm(t)y∗t−m,s + υt = φ(t) +

p∑
m=1

ϕm(t)y∗t−m,s + ut.

This shows that y∗t,s satisfies eq. (3).
ii) Working along the first column of y∗t,s, the cofactor of υs+i is ξ(t, s + i) for 1 ≤ i ≤ k. Thus, the
cofactor expansion of y∗t,s along the first column yields:

y∗t,s = υs+1ξ(t, s+ 1) + υs+2ξ(t, s+ 2) + ...+ υtξ(t, t) =

t∑
r=s+1

ξ(t, r)υr = ypart,s ,

as required.
iii) Applying eq. (A.5) for t = s+ 1, ..., s+ p, we have:

ypars+1,s = vs+1, ypars+2,s = ϕ1(s+ 2)ypars+1,s + vs+2, ..., ypars+p,s =

p−1∑
m=1

ϕm(s+ p)ypars+p−m,s + vs+p.

We can write

ypars+i,s =

i−1∑
m=1

ϕm(s+ i)ypars+i−m,s + vs+i +

p∑
m=i

ϕm(s+ i)ys+i−m,

whenever
p∑

m=i

ϕm(s+ i)ys+i−m = 0

for all i,m such that 1 ≤ i ≤ m ≤ p. Since s+ i−m ≤ s for any i,m such that 1 ≤ i ≤ m ≤ p, it follows
that ys+i−m are initial condition values. The latter equation can be expressed as

ϕp(s+ p) 0 0 ... 0
ϕp−1(s+ p− 1) ϕp(s+ p− 1) 0 ... 0

...
...

...
...
...
...

...
ϕ1(s+ 1) ϕ2(s+ 1) ϕ3(s+ 1) ... ϕp(s+ 1)




ys
ys−1

...
ys+1−p

 =


0
0
...
0

 ,

which is a triangular linear system with nonzero elements in the main diagonal and therefore nonsingular.
It follows directly that {ys+1−p = 0, ..., ys = 0} is a solution. Moreover since the system is nonsingular the
solution is unique. Finally, expanding the determinant in eq. (A.5) along the first column, the expression
in eq. (12) follows immediately.

A.3 Decomposition

In this Subsection we prove Proposition 1, which provides the reported decomposition of the innovation
part of eq. (1).

Proof of Proposition 1. Let us write ur in eq. (1) as ur =

q∑
l=0

θl(r)εr−l, provided that θ0(r)
def
= 1 for

all t. The left side of eq. (15) can be expressed as:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξ(t, r)

q∑
l=0

θl(r)εr−l =

q∑
l=0

t∑
r=s+1

ξ(t, r)θl(r)εr−l

=

t∑
r=s+1

ξ(t, r)θ0(r)εr +

q∑
l=1

t∑
r=s+1

ξ(t, r)θl(r)εr−l.

Splitting the second double sum in the right-hand side of the above equation into two parts, it takes the
form:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξ(t, r)θ0(r)εr +

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l +

q∑
l=1

t∑
r=s+1+l

ξ(t, r)θl(r)εr−l. (A.6)
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As the extended definition of ξ(t, s) in eq. (6) entails that ξ(t, r+ l) = 0, whenever r+ l > t (or r > t− l),
the second sum in the last double sum of eq. (A.6) can be rewritten as:

t∑
r=s+1+l

ξ(t, r)θl(r)εr−l =

t−l∑
r=s+1

ξ(t, r + l)θl(r + l)εr =

t∑
r=s+1

ξ(t, r + l)θl(r + l)εr.

Substituting the above sum into eq. (A.6) we get:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξ(t, r)θ0(r)εr +

q∑
l=1

t∑
r=s+1

ξ(t, r + l)θl(r + l)εr +

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l,

or equivalently

t∑
r=s+1

ξ(t, r)ur =

q∑
l=0

t∑
r=s+1

ξ(t, r + l)θl(r + l)εr +

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l. (A.7)

Using the definition of ξq(t, r) in eq. (13), eq. (A.7) can be rewritten as:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξq(t, r)εr +

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l. (A.8)

By expanding the double sum in eq. (A.8), we have:

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l = ξ(t, s+ 1)θ1(s+ 1)εs︸ ︷︷ ︸
l=1, r=s+1

+ ξ(t, s+ 2)θ2(s+ 2)εs + ξ(t, s+ 1)θ2(s+ 1)εs−1︸ ︷︷ ︸
l=2, r=s+1,s+2

+ ξ(t, s+ 3)θ3(s+ 3)εs + ξ(t, s+ 2)θ3(s+ 2)εs−1 + ξ(t, s+ 1)θ3(s+ 1)εs−2︸ ︷︷ ︸
l=3, r=s+1,s+2,s+3

+ · · ·

+ ξ(t, s+ q)θq(s+ q)εs + · · ·+ ξ(t, s+ 1)θq(s+ 1)εs+1−q︸ ︷︷ ︸
l=q, r=s+1,s+2,...,s+q

.

By rearranging terms, we can rewrite the latter double sum as:

q∑
l=1

s+l∑
r=s+1

ξ(t, r)θl(r)εr−l = [ξ(t, s+ 1)θ1(s+ 1) + ξ(t, s+ 2)θ2(s+ 2) + · · ·+ ξ(t, s+ q)θq(s+ q)]εs︸ ︷︷ ︸∑q
l=1 ξ(t,s+l)θl(s+l)εs

(A.9)

+ [ξ(t, s+ 1)θ2(s+ 1) + · · ·+ ξ(t, s+ q − 1)θq(s+ q − 1)]εs−1︸ ︷︷ ︸
q∑

l=2

ξ(t,s−1+l)θl(s−1+l)εs−1

+ · · ·+ ξ(t, s+ 1)θq(s+ 1)εs+1−q︸ ︷︷ ︸
q∑

l=q

ξ(t,s+1−q+l)θl(s+1−q+l)εs+1−q

=

s∑
r=s+1−q

q∑
l=s+1−r

ξ(t, r + l)θl(r + l)εr.

Therefore, substituting the result of eq. (A.9) back into eq. (A.8), we obtain the expression:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξq(t, r)εr +

s∑
r=s+1−q

q∑
l=s+1−r

ξ(t, r + l)θl(r + l)εr. (A.10)

Substituting the defining formula of ξs,q(t, r) (see eq. (14)) into eq. (A.10) the latter takes the form:

t∑
r=s+1

ξ(t, r)ur =

t∑
r=s+1

ξq(t, r)εr +

s∑
r=s+1−q

ξs,q(t, r)εr,

that is eq. (15), as required.
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B Second Order Structure

In this Section we show the Cramér-Wold decomposition of DTV-ARMA(p, q) processes along with their
second order properties, reported in Section 4.1.

B.1 Wold-Cramér Decomposition

In Lemma B1 and Proposition B1 below, we provide some essential statements for the proof of the
main results of this Subsection given by Theorems 2 and 3. We remark that for each fixed t ∈ Z the
deterministic drift φ(t) along with the coefficients ϕm(t) and θl(t) are constants in R, since they are values
of corresponding functions, while εt, yt, ut are all random variables. Since the results valid for the process
yt under the conditions of Theorem 3 are more general, they are also valid for the process yt under the
conditions of Theorem 2.

Lemma B1 Let the condition (17) and the boundedness of the MA coefficients hold. Then the following
statements hold true:

i)
∑t

r=−∞ |ξq(t, r)| < ∞ for all t.

ii) Assuming in addition that the drift is a bounded real valued function in t ∈ Z, then the first infinite
sum of yt in eq. (18a) converges in R and its expectation is:

E
( t∑
r=−∞

ξ(t, r)φ(r)
)
=

t∑
r=−∞

ξ(t, r)φ(r) ∈ R (finite) for all t ∈ Z.

iii) Recalling that υr = φ(r) + ur (see eq. (2)), we have: E(υr) = φ(r). Additionally, if the drift is a
bounded real valued function in t ∈ Z, then {υr} is a bounded process in L2, that is supr E(υ2

r) ≤ V < ∞
for V ∈ R>0.

A proof of Lemma B1 is deferred to online Appendix F2.1. As the absolute summability implies square
summability, Corollary B1 below follows directly.

Corollary B1 If the conditions of Lemma B1 hold, then

t∑
r=−∞

ξ2q (t, r) < ∞ for all t ∈ Z. (B.1)

In the next Proposition we present some results, which support the statements reported in Section 4.1
including those involved in the proof of Theorem 2. These results are supplemented by Proposition F.1
in online Appendix F2.2, including those involved in the proof of Theorem 3. Remark F.1 in online
Appendix F2.2 summarizes some well known results used in the proofs of Proposition B1 and Theorem
3 below. The uncorrelatedness assumption (see Section 2) entails that {εs, s ≤ t} is an orthogonal basis
of Mt(ε).

Proposition B1 Let er = εr||εr||−1
L2

. The following statements hold true:

i) If
∑t

r=−∞ ξ2q (t, r)σ
2(r) < ∞, then et = {er}r≤t is an orthonormal basis of Mt(ε) and the Fourier

representation of zt in terms of et is given by
∑t

r=−∞ ξq(t, r)σ(r)er with

E(z2t ) =
t∑

r=−∞
ξ2q (t, r)σ

2(r).

Moreover, for every arbitrary but fixed t ∈ Z, the process zt =
∑t

r=−∞ ξq(t, r)εr exists in Mt(ε) if and

only if
∑t

r=−∞ ξ2q (t, r)σ
2(r) < ∞.

ii) Let 0 < m ≤ σ2(t) ≤ M < ∞ for all t. Then the weaker condition in eq. (B.1), compared to the above
condition in (i), is necessary and sufficient for zt to exist in Mt(ε).
iii) If the conditions of Theorem 3 hold, then zt also exists in Mt(ε) and E(zt) = 0 for all t. The uncon-
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ditional variance of the processes yt in eq. (20a) is given by eq. (21b).
iv) If the conditions of Theorem 2 hold, the process yt in eq. (18a) can be rewritten as yt =

∑t
r=−∞ ξ(t, r)υr.

In this case the unconditional mean of yt in eq. (18a) can be explicitly expressed by eq. (21a).
v) Both processes in eqs. (18a) and (20a) have the same unconditional variance given in eq. (21b), which
also coincides with the unconditional variance of zt.

Proof. i) Since E(ε2t ) = σ2(t) > 0, it turns out that ||εt||L2
̸= 0 for all t, whence εt ̸= 0. By the definition

of et we infer: ||et||L2 = 1. It follows that E(erej) =
{

0 if r ̸= j
1 if r = j

and et = {er}r≤t also spans Mt(ε).

Taking into account that a closed linear subspace of a Hilbert space is a separable Hilbert space, we
conclude that the sequence et is an orthonormal basis of Mt(ε). On account of

ξq(t, r)εr = ||εr||L2
ξq(t, r)er = σ(r)ξq(t, r)er,

it follows directly that zt can be rewritten as:

zt =

t∑
r=−∞

σ(r)ξq(t, r)er.

Thereby σ(r)ξq(t, r) are the unique Fourier coefficients of the representation of zt in terms of the or-

thonormal basis et. Accordingly ||zt||2L2
= E(z2t ) =

∑t
r=−∞ ξ2q (t, r)σ

2(r). The equivalence

zt ∈ Mt(ε) ⇐⇒
t∑

r=−∞
ξ2q (t, r)σ

2(r) < ∞

follows immediately (see Remark F.1 in online Appendix F).
ii) Sufficiency: The following implications show that the condition in (B.1) is sufficient for zt ∈ Mt(ε):

t∑
r=−∞

ξ2q (t, r) < ∞ =⇒ M

t∑
r=−∞

ξ2q (t, r) < ∞ =⇒
t∑

r=−∞
σ2(r)ξ2q (t, r) ≤

t∑
r=−∞

Mξ2q (t, r) < ∞

=⇒ zt ∈ Mt(ε).

Necessity: As 0 < m ≤ σ2(r) for all r with r ≤ t, the following implications hold:

zt ∈ Mt(ε) =⇒ E(z2t ) =
t∑

r=−∞
ξ2q (t, r)σ

2(r) < ∞ =⇒ m

t∑
r=−∞

ξ2q (t, r) ≤
t∑

r=−∞
ξ2q (t, r)σ

2(r) < ∞.

On account of m ̸= 0, it follows from m
∑t

r=−∞ ξ2q (t, r) < ∞ that 1
m (m

∑t
r=−∞ ξ2q (t, r)) < ∞, that is∑t

r=−∞ ξ2q (t, r) < ∞, as required.
iii) As the absolute summability implies square summability (see Corollary B1) zt also exists in Mt(ε)

for all t ∈ Z. Moreover, as the absolute summability is sufficient for switching expectation with infinite
summation, on account of E(εt) = 0 for all t ∈ Z, the first order moment of zt follows from:

E(zt) = E

(
t∑

r=−∞
ξq(t, r)εr

)
=

t∑
r=−∞

ξq(t, r)E(εr) = 0.

Moreover, the expression of the unconditional variance and of the second order moment of zt coincide
and therefore, by statement (i), is given by:

Var(zt) = E(z2t ) =
t∑

r=−∞
ξ2q (t, r)σ

2(r).

iv) As r + l > t for all l, r such that 1 ≤ l ≤ q and t − l + 1 ≤ r ≤ t, it follows that ξ(t, r + l) = 0. In
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the case when l = 0, it follows that
∑t

r=t+1 ξ(t, r + l)θl(r + l)εr =
∑t

r=t+1 ξ(t, r)εr = 0 too. Therefore
we conclude that:

q∑
l=0

t∑
r=t−l+1

ξ(t, r + l)θl(r + l)εr = 0. (B.2)

Call θ̃l = supr |θl(l+r)| ∈ R>0 for each l = 1, ..., q. In what follows we shall use the notation: Θ = max
0≤l≤q

θ̃l.

As the absolute summability condition in (17) implies that
∑t

r=−∞ |ξ(t, r + l)| < ∞ (see eq. (F.3) in
online Appendix F2.1), we conclude that

t∑
r=−∞

|ξ(t, r + l)θl(r + l)| ≤ Θ

t∑
r=−∞

|ξ(t, r + l)| < ∞.

Starting with the definition of ξq(t, r) in eq. (13) the following chain of equalities holds:

zt =

t∑
r=−∞

ξq(t, r)εr =

t∑
r=−∞

q∑
l=0

ξ(t, r + l)θl(r + l)εr

(switching summation) =

q∑
l=0

t∑
r=−∞

ξ(t, r + l)θl(r + l)εr

(spliting summation) =

q∑
l=0

t−l∑
r=−∞

ξ(t, r + l)θl(r + l)εr +

q∑
l=0

t∑
r=t−l+1

ξ(t, r + l)θl(r + l)εr

(removing zero terms, =

q∑
l=0

t−l∑
r=−∞

ξ(t, r + l)θl(r + l)εr
see eq. (B.2))

(changing the summation limits) =

q∑
l=0

t∑
r=−∞

ξ(t, r)θl(r)εr−l

(switching summation) =

t∑
r=−∞

q∑
l=0

ξ(t, r)θl(r)εr−l

(by definition of ur) =

t∑
r=−∞

ξ(t, r)ur,

that is t∑
r=−∞

ξ(t, r)ur = zt (in L2). (B.3)

Let us call xt =
∑t

r=−∞ ξ(t, r)υr. It follows from eq. (B.3) that

xt =

t∑
r=−∞

ξ(t, r)υr =

t∑
r=−∞

ξ(t, r)(φ(r) + ur) =

t∑
r=−∞

ξ(t, r)φ(r) +

t∑
r=−∞

ξ(t, r)ur

=

t∑
r=−∞

ξ(t, r)φ(r) +

t∑
r=−∞

ξq(t, r)εr = yt (in L2).

It turns out that yt = xt in L2, as claimed. Finally as E(zt) = 0, taking the expectations on both sides
of eq. (18a), on account of the infinite sum convergence in Lemma B1(ii), the unconditional expectation
of yt in eq. (21a) follows.
v) As the yts either in eq. (18a) or in eq. (20a) differ from zt in E(yt), the unconditional variances of yts
are identical with Var(zt). Hence, eq. (21b) follows. This completes the proof of the Proposition.
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Proof of Theorem 2. Under the conditions of Theorem 2 we have established in Lemma B1(ii) and
Proposition B1(iii) the existence of both terms of yt in eq. (18a), respectively. It remains to be shown
that the process yt in eq. (18a) is: i) a solution of eq. (1), ii) asymptotically stable and iii) unique.

i) The compact representation of yt, i.e., yt =
∑t

r=−∞ ξ(t, r)υr, is used to show that {yt} solves eq. (1).

Applying the expression yt−m =
∑t−m

r=−∞ ξ(t − m, r)υr for m = 0, 1, ..., p to eq. (3), it suffices to show
that:

t∑
r=−∞

ξ(t, r)υr =

p∑
m=1

ϕm(t)

t−m∑
r=−∞

ξ(t−m, r)υr + υt. (B.4)

Let p = 1. Applying eq. (A.4) for p = m = 1, it takes the form ξ(t, r) = ϕ1(t)ξ(t − 1, r). Starting with
the right-hand side of eq. (B.4), we have:

ϕ1(t)

t−1∑
r=−∞

ξ(t− 1, r)υr + υt =

t−1∑
r=−∞

(
ϕ1(t)ξ(t− 1, r)

)
υr + (1 υt)

=

t−1∑
r=−∞

ξ(t, r)υr + ξ(t, t)υt

=

t∑
r=−∞

ξ(t, r)υr,

as required. It remains to establish that eq. (B.4) holds for p ≥ 2. If t − m + 1 ≤ r ≤ t − 1 and
2 ≤ m ≤ p, then r > t − m, which implies that ξ(t − m, r) = 0. Moreover, if m = 1, it follows that∑t−1

r=t ϕm(t)ξ(t−m, r)υr = 0. Therefore we conclude that:

p∑
m=1

t−1∑
r=t−m+1

ϕm(t)ξ(t−m, r)υr = 0. (B.5)

The following equalities hold:

p∑
m=1

ϕm(t)

t−m∑
r=−∞

ξ(t−m, r)υr =

p∑
m=1

t−m∑
r=−∞

ϕm(t)ξ(t−m, r)υr

(adding some zero terms, =

p∑
m=1

t−m∑
r=−∞

ϕm(t)ξ(t−m, r)υr +

p∑
m=1

t−1∑
r=t−m+1

ϕm(t)ξ(t−m, r)υr

see eq. (B.5))

(condensed sum) =

p∑
m=1

t−1∑
r=−∞

ϕm(t)ξ(t−m, r)υr

(switching summation) =

t−1∑
r=−∞

(
p∑

m=1

ϕm(t)ξ(t−m, r)

)
υr

(applying eq. (A.4) for m = 1) =

t−1∑
r=−∞

ξ(t, r)υr =

t∑
r=−∞

ξ(t, r)υr − υt.

This shows that eq. (B.4) holds (in L2 sense), as required.
ii) Taking into account that yhomt,s = yt − ypart,s and that the solution process yt in eq. (18a) can be
equivalently expressed as

yt = lim
s→−∞

ypart,s

(see eq. (18b)), the following equivalences hold

yt = lim
s→−∞

ypart,s ⇐⇒ lim
s→−∞

||yt − ypart,s ||L2
= 0 ⇐⇒ lim

s→−∞
||yhomt,s ||L2

= 0 ⇐⇒ lim
s→−∞

yhomt,s
L2= 0,
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that is, {yt} is asymptotically stable, as required.
iii) Let {xt} be an asymptotically stable stochastic process in L2, which solves eq. (1). Then we shall
show that xt coincides with yt in eq. (18a) for all t. In view of eq. (16), we can write xt in a more
condensed form as

xt =

p∑
m=1

ξ(m)(t, s)xs+1−m +

t∑
r=s+1

ξ(t, r)υr

for each t, s with s < t. Thus

||xt −
t∑

r=s+1

ξ(t, r)υr||L2 = ||
p∑

m=1

ξ(m)(t, s)xs+1−m||L2 for all s : s < t. (B.6)

Taking into account that xhom
t,s =

∑p
m=1 ξ

(m)(t, s)xs+1−m, it follows from the asymptotic stability as-

sumption on {xt} that lims→−∞ ||
∑p

m=1 ξ
(m)(t, s)xs+1−m||L2 = 0. Thus, taking the limits to both sides

of eq. (B.6) as s → −∞, it follows that

lim
s→−∞

||xt −
t∑

r=s+1

ξ(t, r)υr||L2
= 0,

that is lims→−∞
∑t

r=s+1 ξ(t, r)υr = xt or equivalently
∑t

r=−∞ ξ(t, r)υr = xt in L2. Proposition B1(iv)

entails that yt =
∑t

r=−∞ ξ(t, r)υr, whence xt = yt in L2, as asserted. This completes the proof of the
Theorem.

Corollary B2 Let the conditions of Theorem 2 hold. Then the last summation in eq. (16) tends to zero
in L2, as s → −∞, that is:

lim
s→−∞

s∑
r=s+1−q

ξs,q(t, r)εr
L2= 0.

A proof of Corollary B2 is a combination of eqs B.3 and eq. 15 (see online Appendix F2.1).

Proof of Theorem 3. Let {µt} be any estimated first moment solution process generated by eq. (19b)
and {yt} be defined by eq. (20a). Then we shall show that: i) the first moment of yt is E(yt) = µt for all
t, ii) {yt} is second order, iii) {yt} solves eq. (1) and (iv) {yt} is unique.
i) Apply the expectation operator, E, to both sides of eq. (20a). It follows from

∑t
r=−∞ ξq(t, r) < ∞ (see

Lemma B1(i)) that E commutes with infinite summation. Use the above result along with the linearity
of E and the fact that E(εr) = 0 to conclude that E(zt) = 0. Thus E(yt) = µt, as required.
ii) As {µt} is deterministic and zt ∈ Mt(ε) ⊂ L2 iii) It is established in Proposition F.1(ii) that {yt −
E(yt)}, where yt−E(yt) = zt , solves eq. (19a). Since {E(yt)} solves eq. (19b), it follows from Proposition
F.1(i) that {yt} in eq. (20a) solves eq. (1).
iv) To see the uniqueness of {yt}, consider any other second order process, say {y∗t }, which solves eq.
(1) with E(y∗t ) = µt. It follows from Proposition F.1(i) that {y∗t − E(y∗t )} is a mean zero process
which solves eq. (19a). Moreover, it follows from the uniqueness of {rt} (see Proposition F.1(ii)), that
y∗t − E(y∗t ) = rt = zt. Taking into account that E(y∗t ) = µt = E(yt), we conclude that

y∗t = E(yt) + zt

which coincides with yt (in the L2 sense). This completes the proof of Theorem 3.
Any second order solution process of eq. (1) can be expressed as yt = E(yt) + rt, where zt ∈ Mt(ε).

As the inner product ⟨zt,E(yt)⟩ = E(zt E(yt)) = E(yt)E(zt) = 0, it follows that yt − zt = E(yt) ∈ M⊥
t (ε).

B.2 Unconditional Moments

In this Subsection we give a proof for the existence of the first and second unconditional moments,
described in Proposition 2, completed by the logical implications that render the associated Diagrams
commutative.
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Proof of Proposition 2. The explicit form for the first unconditional moment of yt in eq. (18a) has
already been proven in Lemma B1(ii). Moreover the unconditional variance of yt is shown in Proposition
B1(iii). The expressions of the two unconditional moments imply the existence of the following limits
lims→−∞ ξ(t, s)φ(s) = 0 and lims→−∞ ξ2q (t, s)σ

2(s) = 0, respectively, which, in turn, are necessary
conditions for the existence of these moments. Finally, in order to show that the associated Diagrams
commute, it remains to verify the following implications:

lim
s→−∞

ξ(t, s)φ(s) = 0

=⇒
t∑

r=−∞
|ξ(t, r)| < ∞ =⇒ lim

s→−∞
ξ(t, s) = 0 for all t ∈ Z.

=⇒
lim

s→−∞
ξ2q (t, s)σ

2(s) = 0

(B.7)

The first implication in the diagram (B.7) is well known. As the product of a null sequence (ξ(t, s))s
times a bounded sequence φ(s) is also a null sequence, the upper branch implication in diagram (B.7)
follows. As θl(t) are bounded, it follows that |ξq(t, r)| ≤ Θ

∑q
l=0 |ξ(t, r + l)|, for some Θ ∈ R≥0 (see eq.

(F.2) in online Appendix F2.1). Therefore the following implications hold:

lim
s→−∞

ξ(t, s) = 0 =⇒ lim
s→−∞

ξ2q (t, s) = 0 =⇒ lim
s→−∞

Mξ2q (t, s) = 0 for all t ∈ Z,

where M is an upper bound of σ2(t). It follows from the squeeze Theorem that:

0 ≤ lim
s→−∞

ξ2q (t, s)σ
2(s) ≤ lim

s→−∞
Mξ2q (t, s) = 0.

The latter establishes the lower branch implication in diagram (B.7) and the proof is complete.

B.3 Autocovariance Function

We recall the following result. The inner product of X,Y ∈ L2 is

⟨X,Y ⟩ = E(X Y ) = Cov(X,Y )− E(X)E(Y ).

Under the conditions of Theorem 3, yt = E(yt)+zt is the second order solution process of eq. (1). Taking
into account that E(yt) has no impact upon variances and covariances, it follows from E(zt)E(zt−ℓ) = 0
that the autocovariance function of yt can be rewritten as:

γt(ℓ) = Cov(yt, yt−ℓ) = Cov(zt, zt−ℓ) = E(ztzt−ℓ).

Proof of Proposition 3. As
∑t

j=−∞ |ξq(t, j)| < ∞, it follows that zt and zt−ℓ exist in L2.

First step: The uncorrelatedness of εt implies E(εjεr) = 0, whenever −∞ < r ≤ t− ℓ and j ≥ t− ℓ+ 1,
since j ̸= r. Thereby:

E
(
zt−ℓ

t∑
j=t−ℓ+1

ξq(t, j)εj

)
=

t−ℓ∑
r=−∞

t∑
j=t−ℓ+1

ξq(t− ℓ, r)ξq(t, j)E(εjεr) = 0. (B.8)
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Second step: The following chain of equalities holds:

E
( t−ℓ∑

j=−∞
ξq(t, j)εj zt−ℓ

)
= E

( t−ℓ∑
j=−∞

t−ℓ∑
r=−∞

ξq(t, j)ξq(t− ℓ, r)(εj εr)

)

(switch twice expectation with infinite summation) =

t−ℓ∑
j=−∞

t−ℓ∑
r=−∞

ξq(t, j)ξq(t− ℓ, r)E(εj εr)

(uncorrelatedness) =

t−ℓ∑
r=−∞

ξq(t, r)ξq(t− ℓ, r)E(ε2r)

(model assumption) =

t−ℓ∑
r=−∞

ξq(t, r)ξq(t− ℓ, r)σ2(r).

(B.9)

Third step: The formula in eq. (22) is a result of the following chain of equalities:

γt(ℓ) = E(zt zt−ℓ) = E
( t∑

j=−∞
ξq(t, j)εj zt−ℓ

)

(spliting summation) = E

( t−ℓ∑
j=−∞

ξq(t, j)εj +

t∑
j=t−ℓ+1

ξq(t, j)εj

)
zt−ℓ



(distributive law) = E
( t−ℓ∑

j=−∞
ξq(t, j)εj zt−ℓ +

t∑
j=t−ℓ+1

ξq(t, j)εj zt−ℓ

)

(by eq. (B.8)) = E
( t−ℓ∑

j=−∞
ξq(t, j)εj zt−ℓ

)

(by eq. (B.9)) =

t−ℓ∑
r=−∞

ξq(t, r)ξq(t− ℓ, r)σ2(r).

Let Ct =
∑t

r=−∞ |ξq(t, r)|. Since Ct < ∞ for all t, we have:

|γt(ℓ)| ≤
t−ℓ∑

r=−∞
|ξq(t, r)ξq(t− ℓ, r)|σ2(r) ≤ M

t−ℓ∑
r=−∞

|ξq(t, r)||ξq(t− ℓ, r)|

≤ M

t∑
j=−∞

|ξq(t, j)|
t−ℓ∑

r=−∞
|ξq(t− ℓ, r)| ≤ MCtCt−l < ∞.

Thus γt(ℓ) exists in R.
Finally, for each fixed t, on account of limℓ→∞ Ct−ℓ = limℓ→∞

∑t−ℓ
r=−∞ |ξq(t − ℓ, r)| = 0, we have:

limℓ→∞ |γt(ℓ)| ≤ limℓ→∞ MCtCt−l = 0 for all t ∈ Z. This completes the proof of Proposition 3.

C Stochastic Coefficients

The proofs of Propositions 5, 6 and Theorem 5 are omitted, as they are similar to those presented for
the deterministically varying coefficient case.
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Proof of Theorem 6. The two summability conditions in (29) must hold for all integers t. Since all
the AR coefficients are strictly stationary, the principal determinant is strictly stationary, and, therefore,
the left hand-sides of the two aforementioned conditions do not change when we subtract (t − r) from
each index (see also Andĕl, 1991).

SUPPLEMENTARY MATERIAL

Karanasos, M., Paraskevopoulos, A. G., Magdalinos, T., and Canepa, A. (2023): Supplement to “A
unified theory for ARMA models with varying coefficients: One solution fits all,” Econometric Theory
Supplementary Material. To view, please visit:[[ ]]
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