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Abstract: When samples that each cover part of a population for a certain reference date
become available slowly over time, an estimate of the population size can be obtained
when at least two samples are available. Ideally one uses all the available samples, but
if some samples become available much later one may want to use the samples that are
available earlier, to obtain a preliminary or nowcast estimate. However, a limited number
of samples may no longer lead to asymptotically unbiased estimates, in particularly in case
of two early available samples that suffer from pairwise dependence. In this paper we
propose a multiple system nowcasting model that deals with this issue by combining the
early available samples with samples from a previous reference date and the expectation-
maximisation algorithm. This leads to a nowcast estimate that is asymptotically unbiased
under more relaxed assumptions than the dual-system estimator. The multiple system
nowcasting model is applied to the problem of estimating the number of homeless people
in The Netherlands, which leads to reasonably accurate nowcast estimates.

Keywords: Multiple systems estimation, nowcasting, EM algorithm

1 Introduction

A well-known problem in the production of statistics is that data may become available
gradually, while a statistic for a certain reference date has to be produced before all this
data are available. In such cases, it is common practice to produce a preliminary statistic
that can also be referred to as a nowcast, based on the data that is available at the time of
publication, and update this statistic shortly after the delivery date of the last sample. Dis-
cussions on this topic usually evolve around correcting for response bias that may occur
when the speed of response is related to the statistic itself. For example, when compa-
nies with a quickly growing turnover also respond quickly, a nowcast on turnover growth
might be biased upwards if this relation is ignored.

A statistic for which such a nowcasting method is not available, is a population size
estimate based on samples that each partly observe a population, and where one or more
complete samples are available with delay. This may occur when, for example, samples
are registers or surveys that are maintained or collected periodically throughout a certain
period. Then, some samples might be available early and others later, although they refer
to the same reference date. In such cases it is common practice to simply wait until all
samples have become available before estimation is performed. This raises the question
whether and under what conditions it is possible to produce a preliminary population size
estimate based on the set of samples that are available earlier. The most simple case is
when for the reference date one sample becomes available earlier and a second sample
becomes available later. A slightly more complex case is when for a reference date three
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samples become available sequentially with some time in between, which is the main topic
of this paper.

The models that are involved in the estimation of the size of a partly observed pop-
ulation are known under different names such as capture-recapture, mark and recapture
or multiple-systems estimation (MSE). When the number of samples is two or three, MSE
is usually referred to as dual-system estimation (DSE) or triple-system estimation (TSE),
respectively. The most basic DSE model was proposed by Petersen (1896), and later by
Lincoln (1930). Under a set of assumptions discussed by Wolter (1986), their DSE esti-
mator provides an asymptotically unbiased population size estimate. A DSE assumption
that is often unlikely to hold, is the independence of the two samples. This independence
assumption can be relaxed when three or more samples are available, and therefore, as
discussed by Fienberg (1972), TSE is often recommended.

The case considered in this paper is that a contingency table based on three samples
for the previous reference date, and a contingency table based on one or two samples for
the current reference date is available. The goal is to obtain a maximum likelihood (ML)
population size estimate for the current reference date. The absence of a second and third
or only a third sample for the current reference date could be considered a missing data
problem. A standard method to deal with this issue is the expectation–maximization (EM)
algorithm (see e.g. Dempster, Laird, & Rubin, 1977). The EM algorithm method allows
for statistical inference from incomplete data with ML. In this paper we will discuss un-
der which conditions the EM algorithm can be combined with DSE and TSE to obtain an
asymptotically unbiased preliminary population size estimate, which we will refer to as
nowcast (NC) estimate. This approach of combining the EM algorithm with MSE mod-
els based on incomplete data is not new. For example, Zwane, van der Pal-de Bruin, and
van der Heijden (2004) consider the case that some samples may contain different but over-
lapping populations, and Zwane and van der Heijden (2007) consider the case where some
covariates are missing in some samples. New in this study is that the method is applied to
obtain nowcasts for which both observations and estimates based on fully observed MSE
data become available later. This allows us to compare the nowcasting model estimates
with actual observations and the estimate based on fully observed MSE data in a practical
example.

Next, Section 2 discusses the DSE and TSE model, and how data for two periods can be
combined in one framework. This framework contains incomplete data, therefore Section 3
discusses how the EM algorithm can be used to obtain ML estimates from this framework.
This combination of DSE, TSE and the EM algorithm gives a MSE nowcasting model. Fi-
nally, in Section 4 we will apply this model to obtain nowcasts for the number of homeless
people in The Netherlands, and compare these nowcasts with alternative estimates such
as the standard DSE estimate.
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2 Theory and notation

This section discusses DSE and TSE notation and theory, and shows how DSE and TSE
models can be combined over two periods.

2.1 Dual-system estimation

Imagine a population with size N and a set of two samples A and B that each cover part
of this population. The goal is to use these samples to obtain a population size estimate
denoted as N̂ . When each unit in each sample can be uniquely identified, then for each
unit an inclusion pattern ab can be constructed, with a, b ∈ (1, 0), where a = 1 stands for
’included in sample A’ and a = 0 for ’not included in sample A’, and the same with b for sample
B. The units of each inclusion pattern can be counted and denoted as nab, except when the
inclusion pattern is 00, because these units are unobserved. The sum of all observed units
is denoted as n and so n = n11 + n10 + n01. Finally, when we sum over a or b, we replace
that subscript by a ’+’. Thus, for example, n1+ = n10 + n11 is equal to the size of source A.
It is assumed that nab is a realisation of a random variable with expectation mab and the
aim of DSE is to obtain m̂ab, an estimate of this expectation.

Under a set of assumptions discussed by for example, Wolter (1986), the observed
counts n11, n10 and n01 can be used to estimate N . These assumptions can be summarised
as:

1. The sampling population is equal for sample A and B.

2. Records that correspond to the same unit in sample A and B can be perfectly linked.

3. Inclusion probabilities are homogeneous in sample A or B (see e.g. Seber, 1982).

4. Sample A and B are independent.

Under assumption (1-4), an asymptotically unbiased DSE-estimator for m00 can be written
as

m̂DSE
00 =

n10n01

n11
, (1)

and consequently for N as N̂DSE = n+ m̂DSE
00 = n1+n+1

n11
.

Fienberg (1972) showed that the DSE estimator can also be derived from a log-linear
model for mab, and for our purpose it is important to show how this relates to the inde-
pendence assumption 4. A log-linear model for mab can be written as

logmab = λ+ λA
a + λB

b + λAB
ab , (2)

with λ an intercept term, λA
a and λB

b are the respective inclusion parameters for sample A

and B that are identified by setting λA
0 = λB

0 = 0 and λAB
ab is a parameter for the interaction

between sample A and B. Because m00 is unobserved and the independence assumption
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4 implies that λAB
ab = 0, in practice Eq. (2) represents three equations and three unknowns

that lead to the DSE-estimator in Eq. (1). This also shows that if λAB
ab ̸= 0, then m̂DSE

00 is a
biased estimate for m00. In the next section we will show how TSE may solve this problem
of bias due to pairwise dependence of samples.

2.2 Triple-system estimation

When instead of by two samples, a population is partly observed by three samples A, B
and C, each unit has an inclusion pattern that, instead of ab, can be written as abc, where
c is defined in the same way as a and b. This means that instead of the four inclusion
patterns in DSE there are now eight TSE inclusion patterns 000, 100, 010, 001, 110, 101, 011
and 111, and Eq. (2) can be extended towards

logmabc = µ+ µA
a + µB

b + µC
c + µAB

ab + µAC
ac + µBC

bc + µABC
abc . (3)

Eq. (3) constitutes a system of eight linear equations and eight unknowns, but because
m000 is unknown, it cannot be solved. Therefore it is usually assumed that µABC

abc = 0,
which is similar but more realistic than DSE assumption 4. This assumption gives the
so-called saturated TSE model

saturated: logmabc = µ+ µA
a + µB

b + µC
c + µAB

ab + µAC
ac + µBC

bc , (4)

that in contrast to DSE, also contains pairwise interaction parameters µAB
ab , µAC

ac and µBC
bc .

This model can be further restricted by setting one or more pairwise interaction terms to
zero, which gives seven additional models, i.e.:

two-pair dependence (I): logmabc = µ+ µA
a + µB

b + µC
c + µAC

ac + µBC
bc , (5)

two-pair dependence (II): logmabc = µ+ µA
a + µB

b + µC
c + µAB

ab + µBC
bc , (6)

two-pair dependence (III): logmabc = µ+ µA
a + µB

b + µC
c + µAB

ab + µAC
bc , (7)

one-pair dependence (I): logmabc = µ+ µA
a + µB

b + µC
c + µBC

bc , (8)

one-pair dependence (II): logmabc = µ+ µA
a + µB

b + µC
c + µAC

ac , (9)

one-pair dependence (III): logmabc = µ+ µA
a + µB

b + µC
c + µAB

ab , (10)

independence: logmabc = µ+ µA
a + µB

b + µC
c . (11)

Making the distinction between these restricted models is important when TSE and DSE
over two periods is combined. This will be discussed in the next section. Models with
more than three samples can be developed along the same lines.

2.3 Combining samples over two periods.

We consider a population with size Nt and the samples At, Bt and Ct that each cover parts
of this population for reference date t. Also assume the delivery dates t = t0, t1,a, t1,b, t1,c

where at t0 the samples At0 , Bt0 and Ct0 for reference date t = t0 are available and at
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delivery dates t1,a, t1,b and t1,c the samples At1 , Bt1 and Ct1 for reference date t = t1 become
available, one-by-one, in that order. This means that at both t = t0 and t = t1,c three
samples are available for their corresponding periods t0 and t1. When we write abc, t as
the inclusion pattern for reference date t, a table can be constructed that shows which
observed counts are available at which moment, as in Table 1 below.

Table 1: Combined table at t = t0, t1,a, t1,b and t1,c.

A B C t nabc,t0 nabc,t1,a nabc,t1,b nabc,t1,c

1 1 1 t0 n111,t0 n111,t0 n111,t0 n111,t0

1 1 0 t0 n110,t0 n110,t0 n110,t0 n110,t0

1 0 1 t0 n101,t0 n101,t0 n101,t0 n101,t0

1 0 0 t0 n100,t0 n100,t0 n100,t0 n100,t0

0 1 1 t0 n011,t0 n011,t0 n011,t0 n011,t0

0 1 0 t0 n010,t0 n010,t0 n010,t0 n010,t0

0 0 1 t0 n001,t0 n001,t0 n001,t0 n001,t0

0 0 0 t0 ? ? ? ?
1
1
1
1
0
0

1
1
0
0
1
1

1
0
1
0
1
0

t1
t1
t1
t1
t1
t1

?
?
?
?
?
?

n1++,t1

?
?

n11+,t1

n10+,t1

n01+,t1

n111,t1

n110,t1

n101,t1

n100,t1

n011,t1

n010,t1

0 0 1 t1 ? ? ? n001,t1

0 0 0 t1 ? ? ? ?

Table 1 shows that for t = t0 and t = t1,c all observed counts are available for their
corresponding reference dates, and so for each reference date a TSE-estimate for m000,t, as
discussed in Section 2.2, can be estimated. We write their corresponding TSE models as
Mt0(µt0) and Mt1,c(µt1,c) = Mt1(µt1) with µt as the vector of µt-parameters at reference
date t. At t = t1,a and t = t1,b this is not possible, because at those delivery dates only
one or two samples are available for reference date t1. Table 1 shows that at those mo-
ments only aggregated observed counts are available. Then the question becomes if and
under which assumptions, the old samples At0 , Bt0 and Ct0 , together with these aggre-
gated observed counts, can be used to obtain an asymptotically unbiased estimate for Nt1 .
In general, for each observed count that corresponds to a reference date t, one additional
parameter for that reference date can be estimated. This reasoning allows us to construct
MSE models for the case that samples correspond to different reference dates.

At t = t1,a the additional observed count n1++,t1 becomes available, which simply is
the total sample size of At1 . This can be considered one observed count for reference date
t = t1 and therefore allows a model with one additional parameter for reference date t = t1,
i.e.

Mt1,a(µt1,a) = logmabc,t = Mt0(µt0) + µt1 , (12)
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where Mt0(µt0) is one of the models in Eq. (4 - 11) with t0 attached in each subscript of
each µ-parameter. Note that the parameter µt1 is an additional constant that is added to
µt0 in case of reference date t1, so for m000,t1 , Eq. (12) reduces to the expression m000,t1 =

exp (µt0 + µt1). The remaining parameters in Mt0(µt0) should therefore hold for both ref-
erence dates t0 and t1. The ML estimate for µt0 is assumed to be asymptotically unbiased
if model Mt0(µt0) is true, but whether the ML estimate for µt1 is also asymptotically un-
biased depends on the remaining parameters in Mt0(µt0). If inclusion probabilities in
and pairwise dependencies between sample At, Bt and Ct are independent of t, the ML-
estimators for the remaining parameters are asymptotically unbiased estimators for both
reference dates, and then the ML-estimator for µt1 is also an asymptotically unbiased es-
timator. In that case the ML-estimator for m000,t1 and therefore Nt1 is an asymptotically
unbiased estimator too.

At t = t1,b the additional sample Bt1 becomes available and so at t = t1,b two samples
are available for reference date t = t1. Table 1 shows that this means that three observed
counts, with inclusion patterns abc = 11+, 10+, 01+, are available for this reference date.
This implies that for reference date t = t1 a DSE-estimate can be obtained, but as was
discussed in Section 2.1, this estimate is biased if the independence assumption is violated.
Then the question becomes if the presence of the samples At0 , Bt0 and Ct0 allows for a way
in which the independence assumption can be relaxed. Note that due to the three observed
counts we can extend Mt1,a(µt1,a) in Eq. (12) with two additional parameters for t = t1,
i.e.

Mt1,b(µt1,b) = logmabc,t = Mt0(µt0) + µt1 + µA
a,t1 + µB

b,t1 . (13)

This model gives the same expression exp (µt0 + µt1) for m000,t1 as M(t1,a), but the condi-
tions under which the ML-estimator for the parameter µt1 is an asymptotically unbiased
estimator are more relaxed. Note that the remaining parameters in Mt0(µt0) that should
hold for both periods have reduced with µA

a,t0 and µB
b,t0

, which now, due to the presence
of µA

a,t1 and µB
b,t1

, correspond exclusively to inclusion probabilities for reference date t0.
Therefore, for model Mt1,b(µt1,b) to hold, as compared to model Mt1,a(µt1,a), a reduced
set of remaining parameters in Mt0(µt0) should be independent of t. This implies that in
model Mt1,b(µt1,b) the inclusion probabilities for sample At1 and Bt1 may differ from the
inclusion probabilities for sample At0 and Bt0 .

Finally, it is instructive to compare Eq. (13) with the DSE Eq. (2). When mabc,t = mab,
µt1 = λ, µA

a,t1 = λA
a , µB

b,t1
= λB

b and Mt0(µt0) = λAB
ab , the equations are equivalent. This

implies that for Mt1,b(µt1,b) the DSE independence assumption 4. can be replaced by the
(more relaxed) assumption

4. The pairwise dependence parameter λAB
ab is independent of t.

In other words, the estimate for λAB
ab for the previous reference date can be used as an

estimate for the current reference date, because it is assumed to be stable between both
periods.
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The estimation of the parameters in the models Mt1,a(µt1,a) and Mt1,b(µt1,b) is less
straightforward than the estimation of the parameters in Mt0(µt0) and Mt1(µt1), which
can be estimated directly with ML. How to deal with this problem is discussed in the next
section.

3 Combining DSE and TSE with the EM algorithm

Table 1 from the previous section poses two statistical estimation problems. On top of
the problem of the unobserved counts n000,t0 and n000,t1 , it also poses a so-called mixture
model problem (see e.g. Lindsay, 1995). This problem implies that for (some) variables
only an aggregate over different groups is observed, or one may say that for some groups
the data is incomplete. In this case, at t = t1,a, there is the aggregated observed count
n1++,t1 and at at t = t1,b there are the three aggregated observed counts (n11+,t1 , n10+,t1 , n01+,t1).
n1++,t1 is simply the size of sample At1 , and (n11+,t1 , n10+,t1 , n01+,t1) are the aggregated ob-
served counts over sample Ct1 of the units included in sample At1 and/or Bt1 . A standard
method to deal with incomplete data is the EM algorithm. In this case it allows for the es-
timation of the underlying counts that together add up to the observed aggregated counts,
such as the unobserved n111,t1 and n110,t1 at t = t1,b that add up to the observed n11+,t1 .

The EM algorithm was introduced by Dempster et al. (1977) as a tool to obtain ML-
estimates in case of incomplete data due to unobserved or latent variables. In the prob-
lem discussed in this paper, the EM algorithm can be applied with model Mt1,a(µt1,a) or
Mt1,b(µt1,b) in Eq. (12) and (13). For this case, the outcome of the EM algorithm at t = tt,a

and t = tt,b is shown in Table 2.
To illustrate how the Expectation step (E-step) of the EM algorithm yields completed

data in the columns n̂abc,t1,a and n̂abc,t1,b in Table 2, we discuss this for n̂abc,t1,b . The EM algo-
rithm allows to split-up nab+,t1 into the completed data n̂ab1,t1,b and n̂ab0,t1,b with n̂ab1,t1,b +

n̂ab0,t1,b = nab+,t1 . The EM algorithm starts with an initialisation step that creates an ini-
tial set of completed data by, for example, n̂(0)

ab1,t1,b
= nab+,t1/2 and n̂

(0)
ab0,t1,b

= nab+,t1/2.
Next, in the first maximisation step (M-step) these completed data are assumed regu-
lar observations that, together with nabc,t0 , can be used to estimate the parameters of
the model Mt1,b(µt1,b) in Eq. (13), but here it is also possible to replace Mt0(µt0) with a
more restricted model. The model resulting from this M-step gives, at iteration 0, the fit-
ted values m̂

(0)
abc,t. Next, in the first expectation step (E-step) these fitted values are used

to (again) split-up nab+,t1 , but now as n̂
(1)
ab1,t1,b

= nab+,t1(m̂
(0)
ab1,t1,b

/m̂
(0)
ab+,t1,b

) and n̂
(1)
ab0,t1,b

=

nab+,t1(m̂
(0)
ab0,t1,b

/m̂
(0)
ab+,t1,b

), which gives a new set of completed data that can be used to,
again, estimate the model Mt1,b(µt1,b) in Eq. (13). This iterative procedure repeats itself i
times until n̂(i)

abc,t1,b
converges. The resulting set of stabilised completed data are the n̂abc,t1,b

in Table 2, and they are used to derive maximum likelihood estimates m̂abc,t1,b .
The last M-step provides fitted values m̂abc,t for each cell, including the cells with in-

clusion patterns 001, t1 and 000, t1. We refer to these estimates as m̂NC
abc,t and summing up

over them for t = t1,b gives a fitted value for Nt1 . We refer to this sum as the nowcast
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Table 2: Table with completed data.

A B C t n̂abc,t1,a n̂abc,t1,b

1 1 1 t0 n111,t0 n111,t0

1 1 0 t0 n110,t0 n110,t0

1 0 1 t0 n101,t0 n101,t0

1 0 0 t0 n100,t0 n100,t0

0 1 1 t0 n011,t0 n011,t0

0 1 0 t0 n010,t0 n010,t0

0 0 1 t0 n001,t0 n001,t0

0 0 0 t0 ? ?
1 1 1 t1 n̂111,t1,a n̂111,t1,b

1 1 0 t1 n̂110,t1,a n̂110,t1,b

1 0 1 t1 n̂101,t1,a n̂101,t1,b

1 0 0 t1 n̂100,t1,a n̂100,t1,b

0 1 1 t1 ? n̂011,t1,b

0 1 0 t1 ? n̂010,t1,b

0 0 1 t1 ? ?
0 0 0 t1 ? ?

estimate for Nt1 , i.e.

N̂NC
t1 =

∑
abc∈ABC

m̂NC
abc,t1,b

, (14)

with ABC the set of all inclusion patterns. In the next section we will use this estimator to
obtain nowcasts for the number of homeless people in The Netherlands.

4 Nowcasting the number of homeless people in The Netherlands

In this section we investigate how the MSE nowcasting model performs by using a dataset
that is also used to estimate the number of homeless people in The Netherlands. The
estimation of the number of homeless people in The Netherlands is discussed in detail in
Coumans, Cruyff, van der Heijden, Wolf, and Schmeets (2017). The estimation procedure
is based on three samples that we refer to as sample Ay, By and Cy, where y indicates the
year, and is performed annually. The resulting TSE estimate for the 1st of January of each
year is based on a model selection procedure that leads to a TSE model that also includes
a set of covariates, namely sex, age, region of stay and region of birth. The samples that
are used become available over a year, where the first two samples Ay and By are available
early during the year and the third sample Cy is available somewhere in the third or fourth
quarter of the year. Data is available for each year over the period 2010− 2023, except for
the COVID-19 year 2019. The sample size for each sample in each year is presented in
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Table 3 below.

Table 3: Sample size for each year

Year Sample size Ay Sample size By Sample size Cy

2010 2916 1746 3494
2011 3058 1644 3812
2012 2594 1505 3459
2013 2703 1491 3876
2014 2380 1566 4267
2015 2232 1475 4669
2016 2631 1130 5220
2017 2502 1139 5611
2018 2456 927 5824
2019 NA NA NA
2020 1928 2501 5808
2021 1992 2827 6213
2022 2371 2263 5018
2023 2554 3017 4315

The scheme in which the samples become available implies that at y = yt1,b , for the
years 2011−2018 and 2021−2023, both a DSE estimate and a NC estimate can be obtained.
The fact that a NC estimate, as discussed in Section 2.3 and specified in Eq. (14), requires
samples from two consecutive years means that it cannot be calculated for the years 2010,
2019 and 2020, because in those years data for the previous or next year are missing.

To simplify the interpretability of the results, both the model selection procedure is
skipped by assuming a saturated model and the covariates are ignored by aggregating over
them. Ignoring the covariates simplifies the data to the data described in Table 1 in Section
2.3. Second, skipping the model selection procedure and simply assuming the saturated
model in Eq. (4) for each reference date, allows for a more straightforward comparison
of the resulting estimates, because they cannot differ due to different models selected for
different reference dates.

To further increase the generality of the analysis the order in which the samples become
available is varied. In reality sample Cy is available last, but for analytical purposes this
might as well be assumed to be sample Ay or By. The samples for reference date of year
y that are used in the calculation of an estimate are given as additional information in the
subscript. For example, a NC estimate based on sample Ay−1, By−1, Cy−1, Ay and By but
not Cy, is denoted as N̂NC

ab,y.

4.1 Results

This section presents the nowcasting model results for the homeless data. The results of the
nowcasting model are evaluated in three ways. First, the nowcasting estimates for m001,y

are compared with the actually observed n001,y. Second, the time series of estimates for
µAB
ab,y, µAC

ac,y and µBC
bc,y are presented, which shows whether the nowcasting model assump-
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tion of stability of pairwise-dependencies between two periods is reasonable. Finally, the
nowcasting model estimates for Ny are compared with the TSE model estimates for Ny.

Figure 1 shows the observed (n100,y, n010,y and n001,y) and nowcasting model estimates
for the expected number of homeless people (m̂NC

100,y, m̂
NC
010,y and m̂NC

001,y) in the sample that
is unavailable. Here the recent sample that is unavailable in the nowcasting model is indi-
cated by the position of the ’1’ in the inclusion pattern in the subscript. For example, m̂NC

001,y

is a nowcast that is based on sample Ay and By and not Cy. These nowcasting model esti-
mates are interesting because they can be directly compared with observed values, which
is rare in MSE models, because true population sizes generally remain unknown. A black
dotted line represents a series of observed counts and a grey dotted line with a correspond-
ing pattern represents the corresponding nowcasting model estimates. Figure 1 shows that

Figure 1: Observations and nowcasts of the number of homeless people that are uniquely
observed in the missing sample over the periods 2010-2018 and 2020-2023.

irrespective of the unavailable sample, the nowcasting model estimates m̂NC
100,y, m̂NC

010,y and
m̂NC

001,y follow a similar trend as the observed counts n100, n010 and n001 that are available
later, although for some year/missing sample combinations the difference can be quite
substantial.

A similar figure can be constructed with a time series of TSE estimates (N̂TSE
y ) based on

all samples and the DSE (N̂DSE
bc,y , N̂DSE

ac,y and N̂DSE
ab,y ) and NC (N̂NC

bc,y, N̂NC
ac,y and N̂NC

ab,y) estimates
based on early available samples. The samples that are used in the estimation are indicated
in the subscripts. For example, N̂DSE

ab, and N̂NC
ab, are a DSE and NC estimate based on sample

At1 and Bt1 , while Ct1 is missing. These series are presented in Figure 2 below.
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Figure 2: Estimates of the number of the total number of homeless people in The Nether-
lands over the periods 2010− 2018 and 2020− 2023.

Figure 2 shows that for most years the nowcasting model estimates are much closer
to the TSE estimates than the DSE estimates, which suggest that in this case the nowcast-
ing model assumption of λAB

ab,(y−1) = λAB
ab,y is more reasonable than the DSE assumption

λAB
ab,(y−1) = 0. However, for some years the nowcasting model estimate can be quite bad,

such as N̂NC
ac,y in the years 2021 and 2022.

For many years it is questionable if the nowcasting model estimate is a better estimate
than the TSE estimate of the previous year. In such cases a nowcast has no clear value
added. To look deeper into this issue, Table 4 presents the differences between the TSE
estimates with the lagged TSE estimates and nowcasting model estimates. Table 4 shows
that the proximity of the nowcasting model estimates and the TSE estimate clearly differs
for each sample delivery order. The best results are in the last column N̂NC

ab,y − N̂TSE
y , which

has the lowest mean absolute difference (3.3), which implies that in case of the homeless
data the nowcasting model with sample Cy missing gives the best results. This is a bit
surprising, because Table 3 shows that sample Cy is also the largest sample, which means
that its absence should have on average a larger negative impact on the mean absolute dif-
ference than the absence of the other sources. However, an explanation of this somewhat
paradoxical result can be found in Figure 3, which shows that the interaction coefficient
µ̂AB
ab,y is more stable than µ̂AC

ac,y and µ̂BC
bc,y, and therefore in this example the nowcasting as-

sumption of a stable λAB
ab,y is best met when sample Cy is missing, which seems to outweigh

the sample size argument.
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Table 4: Difference per year (×1000) between the TSE estimate and different estimates for
each year

Year N̂TSE
(y−1) − N̂TSE

y N̂NC
bc,y − N̂TSE

y N̂NC
ac,y − N̂TSE

y N̂NC
ab,y − N̂TSE

y

2011 -6.9 -4.8 -9.9 -5.7
2012 -7.0 15.7 15.6 2.8
2013 4.3 -8.1 -10.7 -2.8
2014 1.8 1.6 -1.6 -8.9
2015 0.9 6.3 -0.2 3.1
2016 -0.8 -4.7 0.9 0.0
2017 6.0 3.5 -2.2 -1.4
2018 4.6 3.2 0.6 -4.7
2021 -8.3 4.6 30.2 7.2
2022 -6.0 -0.7 16.1 -0.6
2023 6.9 -1.8 -6.5 -0.9

Mean absolute difference 4.5 4.7 8.1 3.3

The first column N̂TSE
(y−1)−N̂TSE

y presents the difference between the current TSE and pre-
vious TSE estimate. The mean absolute difference in the last row (4.5) is smaller than two
out of three mean absolute differences of the nowcasting models. This can be explained
by the relative stability and low volatility of the TSE estimates time series. In case of a less
stable or more volatile series, the mean absolute difference will be larger. This implies that
in this example of the number of homeless people in The Netherlands, under a different
sample delivery order it might be preferable to simply use the lagged time series, but in
case of a less stable and more volatile series the nowcasting model may be a better choice.

Finally, to see if the model assumption of stable pairwise-dependencies is reasonable
the TSE estimates µ̂AB

ab,y, µ̂AC
ac,y and µ̂BC

bc,y over the periods 2011 − 2018 and 2021 − 2023 are
presented in Figure 3 below.

Figure 3 clearly shows three separate time series, which indicates that there is at least
some stability in µAB

ab,y, µAC
ac,y and µBC

bc,y over time. However, in some years there can be a
sudden decrease or increase in the time series, for which we have no immediate explana-
tion. These large changes correspond to the larger nowcasting errors shown in Table 4.
Note that in the period 2021 − 2023 the estimate for µAC

ac,y substantially smaller than in its
estimates in the period 2011−2018. This can be explained by the fact that sample By before
2019 is a different sample than sample By after 2019. Before 2019 sample By was a sample
of homeless people who suffered from drug addictions problems and after 2019 sample By

was a sample of homeless people of ex-prisoners who received reintegration support.

5 Discussion

In this paper we propose to combine dual- and triple system estimation over two peri-
ods by means of the expectation-maximisation algorithm to obtain a preliminary estimate,
that we have coined a nowcast estimate. The advantage of this approach is that it allows
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Figure 3: Coefficient estimates of µAB
ab,y, µAC

ac,y and µBC
bc,y over the periods 2011 − 2018 and

2021− 2023.

estimation with two samples, like in DSE, but the independence assumption in DSE is re-
placed by a more relaxed assumption, which is that the pairwise-dependence of the first
two samples is equal to the pairwise-dependence of the first two samples in the previous
period. This assumption is more relaxed, because in DSE the independence assumption
also implies that the pairwise dependence is equal in two periods, because in DSE the
pairwise-dependence should be equal to zero all periods. This last part of the assump-
tion is not necessary for our proposed nowcasting model. To see if the nowcasting model
can be reasonably applied it is therefore advisable, when a sufficiently long time series is
available, to check the stability of the interaction parameter estimates.

We applied the TSE nowcasting model to obtain nowcast estimates for the number of
homeless people in The Netherlands. The model shows reasonable results in the sense that
the nowcast estimates of the expected number of homeless people unique to the missing
sample are quite accurate. Furthermore, the nowcasting model estimates are much more
similar to the final TSE estimates than the DSE estimates, which indicates that in our exam-
ple the assumption of stable pairwise-dependency is more realistic than the assumption of
pairwise-independence. The accuracy of the nowcasting model is also related to the size
of the missing sample. If the largest sample is missing, on average the mean absolute
difference between the nowcast and TSE estimate should increase. However, in our case
a stable pairwise-dependency showed to be of greater importance than the sample size
of the missing sample. Finally, although the TSE nowcasting model provides reasonable
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results for many periods, we should note that some nowcasting model estimates can be
quite inaccurate, for example the nowcasting model estimate N̂NC

ac,y in the years 2021 and
2022, as seen in Figure 2. The reason for this inaccuracy was found in the instability of the
estimated pairwise-interaction between sample Ay and Cy for those years. Also, because
in our example the time series of TSE estimates is reasonably stable, the TSE nowcasting
model does not clearly outperform the lagged time series of TSE estimates. Therefore, in
cases were the time series of TSE estimates is less stable, the nowcasting model presented
in this paper may be more valuable.

References

Coumans, M. A., Cruyff, M., van der Heijden, P. G. M., Wolf, J., & Schmeets, H. (2017). Esti-
mating homelessness in The Netherlands using a capture-recapture approach. Social
Indicators Research, 130(1), 89–212. Retrieved from https://doi.org/10.1007/

s11205-015-1171-7 doi: 10.1007/s11205-015-1171-7
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodolog-
ical), 39(1), 1–38. Retrieved 2024-03-21, from http://www.jstor.org/stable/

2984875

Fienberg, S. E. (1972). The multiple recapture census for closed populations and incom-
plete 2k contingency tables. Biometrika, 59(3), 591–603. Retrieved from https://

doi.org/10.2307/2334810 doi: 10.2307/2334810
Lincoln, F. C. (1930). Calculating waterfowl abundance on the basis of banding returns (Vol. 118).

United States Department of Agriculture. Retrieved from https://doi.org/10

.5962/bhl.title.64010 doi: 10.5962/bhl.title.64010
Lindsay, B. G. (1995). Mixture models: Theory, geometry and applications. NSF-CBMS

Regional Conference Series in Probability and Statistics, 5, i–163. Retrieved 2024-03-22,
from http://www.jstor.org/stable/4153184

Petersen, C. G. J. (1896). The yearly immigration of young plaice into the Limfjord from the
German Sea. Report of the Danish Biological Station, 6, 5–84. Retrieved from https://

archive.org/details/reportofdanishbi06dans/page/n1/mode/2up

Seber, G. A. F. (1982). The estimation of animal abundance and related parameters (Sec-
ond ed.). London: Griffin. Retrieved from https://archive.org/details/

estimationofanim0000sebe/page/n5/mode/2up

Wolter, K. M. (1986). Some coverage error models for census data. Journal of the American
Statistical Association, 81, 338–346. Retrieved from https://doi.org/10.2307/

2289222 doi: 10.2307/2289222
Zwane, E. N., & van der Heijden, P. G. M. (2007). Analysing capture–recapture data

when some variables of heterogeneous catchability are not collected or asked in all
registrations. Statistics in Medicine, 26, 1069–1089. Retrieved from https://doi

.org/10.1002/sim.2577 doi: 10.1002/sim.2577

14

https://doi.org/10.1007/s11205-015-1171-7
https://doi.org/10.1007/s11205-015-1171-7
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
https://doi.org/10.2307/2334810
https://doi.org/10.2307/2334810
https://doi.org/10.5962/bhl.title.64010
https://doi.org/10.5962/bhl.title.64010
http://www.jstor.org/stable/4153184
https://archive.org/details/reportofdanishbi06dans/page/n1/mode/2up
https://archive.org/details/reportofdanishbi06dans/page/n1/mode/2up
https://archive.org/details/estimationofanim0000sebe/page/n5/mode/2up
https://archive.org/details/estimationofanim0000sebe/page/n5/mode/2up
https://doi.org/10.2307/2289222
https://doi.org/10.2307/2289222
https://doi.org/10.1002/sim.2577
https://doi.org/10.1002/sim.2577


Zwane, E. N., van der Pal-de Bruin, K., & van der Heijden, P. G. M. (2004). The multiple-
record systems estimator when registrations refer to different but overlapping pop-
ulations. Statistics in medicine, 23, 2267–81. Retrieved from https://doi.org/

10.1002/sim.1818 doi: 10.1002/sim.1818

15

https://doi.org/10.1002/sim.1818
https://doi.org/10.1002/sim.1818

	Introduction
	Theory and notation
	Dual-system estimation
	Triple-system estimation
	Combining samples over two periods.

	Combining DSE and TSE with the EM algorithm
	Nowcasting the number of homeless people in The Netherlands
	Results

	Discussion

