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Abstract
Vascular structure enhancement is very useful in image processing and computer vision. The enhancement of the presence 
of the structures like tubular networks in given images can improve image-dependent diagnostics and can also facilitate 
tasks like segmentation. The two-dimensional (2D) orientation field transform has been proved to be effective at enhancing 
2D contours and curves in images by means of top-down processing. It, however, has no counterpart in 3D images due to 
the extremely complicated orientation in 3D against 2D. Given the rising demand and interest in handling 3D images, we 
experiment with modularising the concept and generalise the algorithm to 3D curves. In this work, we propose a 3D ori-
entation field transform. It is a vascular structure enhancement algorithm that can cleanly enhance images having very low 
signal-to-noise ratio, and push the limits of 3D image quality that can be enhanced computationally. This work also utilises 
the benefits of modularity and offers several combinative options that each yield moderately better enhancement results in 
different scenarios. In principle, the proposed 3D orientation field transform can naturally tackle any number of dimensions. 
As a special case, it is also ideal for 2D images, owning a simpler methodology compared to the previous 2D orientation 
field transform. The concise structure of the proposed 3D orientation field transform also allows it to be mixed with other 
enhancement algorithms, and as a preliminary filter to other tasks like segmentation and detection. The effectiveness of the 
proposed method is demonstrated with synthetic 3D images and real-world transmission electron microscopy tomograms 
ranging from 2D curve enhancement to, the more important and interesting, 3D ones. Extensive experiments and comparisons 
with existing related methods also demonstrate the excellent performance of the proposed 3D orientation field transform.
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1  Introduction

Vascular structure enhancement is to enhance tubular net-
works in images, which is very useful in for example image 
processing and computer vision. There is a rich literature 
dedicated to its development, e.g. those motivated by the 
need to increase the accuracy and speed of medical diag-
nosis with angiographic images [3, 12, 13, 19, 29, 32, 36, 
47, 56, 63]. Vascular structure enhancement can also be 

used for segmentation through applying simple threshold-
ing. Note that segmentation in, e.g. two-phase case is the 
transformation of a non-binary image into a binary image 
[60], which serves the purpose of exclusively isolating the 
desired information from the given images for further analy-
ses. As computational hardware becomes increasingly cheap 
and powerful, interests in performing vascular structure 
enhancement have risen for three-dimensional (3D) images 
[6, 7, 12, 19, 29, 32, 36, 44, 56]. The main aim of this paper 
is twofold: 1) propose a new and easy-to-use 3D vascular 
structure enhancement transform, which will play a key role 
in subsequent tasks like segmentation; and 2) apply the pro-
posed transform to the extremely challenging transmission 
electron microscopy tomograms [1, 16, 62], which is very 
important in advancing the study of curvilinear sub-cellular 
components (see Fig. 1), notable examples of which are 
cytoskeletons [35, 45] and chromatins [26, 37].

In [50, 51], a 2D orientation field-based method was pro-
posed for vascular enhancement and segmentation. The work 
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elaborated on the idea of an automatic locally orientable line 
filter to selectively enhance lines and curves in an image. By 
using an array of line structural elements to detect orienta-
tions and measure the alignments of each pixel’s neighbour-
hood, vascular structures could be enhanced. This method is 
developed originally for the segmentation of cellular images 
in electron tomography, as the objects of interest in the 2D 
slices of such images are usually in the form of vessels. The 
advantage of this type of method is the capability of seg-
menting structures with a relatively high noise level, as long 
as the segmented objects in question bear the semblance of 
a line or a curve; moreover, it has only one single parameter 
with a clear physical meaning. This method however does 
not work with 3D lines or curves.

The 2D orientation field-based method also relates to a 
class of steerable filters first introduced in [23] and then 
expanded upon by [28]. Like the 2D orientation field 
transform, the steerable filter is a directional filter that can 
detect local orientation; therefore, a ridge detector variant 
has also been adopted for enhancing vascular images [28, 
44]. Unlike the 2D orientation field transform, the steer-
able filter is designed to be generated from a few Gaussian-
derivative-based basis filters. However, the ridge detector 
variant suggested by [28] only filters vessels of a specific 
width and would need adaptation of a multi-scale approach 
(e.g. [52]) in some applications. More detailed recall of the 
related work regarding vascular structure enhancement, edge 
detection and segmentation is deferred in Sect. 3.

The enhancement and segmentation of transmission elec-
tron micrographs pose its own set of challenges, namely 
the low signal-to-noise ratio [62] and the monotonicity 
of information, characterised by a single electromagnetic 
wave source and the difficulty of differential labelling [1]. 
When transmission electron microscopy is combined with 

computational tomography to produce 3D images, it poses 
the additional problem of anisotropic resolution because of 
incomplete frequency information around the z-axis [16]. 
With biological samples comprised mostly of light atoms, 
imaging is achieved by fixing the sample and staining it with 
highly oxidising heavy metallic compounds. Such images 
are typically identifiable with curves denoting strands, 
lighter regions characterising membrane-bound compart-
ments, and ubiquitous dots representing macromolecules, 
see Fig. 1. In comparison with other types of images (e.g. 
medical imaging) in 2D/3D, there have yet to be tried-and-
tested methods for reliable segmentation in electron tomog-
raphy. As a result, it is still a common practice to do manual 
contouring to segment structures of interest [22, 59].

The popular segmentation methods (e.g. the ones men-
tioned in Sect. 3) however suffer from major shortcomings 
for the images that are being tested. For example, contrast 
enhancement, nonlinear anisotropic diffusion and other 
noise-reduction techniques require a relatively sharp con-
trast between objects and the background in order to oper-
ate. Watershed transform does not work with objects with 
a high genus number, which is a characteristic of the test 
images in this paper (see Fig. 2). Wavelet transform and 
active contouring would require labour-intensive fine-tuning 
of ambiguous parameters. Recent developments in segmen-
tation algorithms often rely on the integration of the afore-
mentioned methods. As they are not mutually exclusive, 
mixing them is often a reliable technique at the expense of 
computational power and time.

It is important to enhance the curves in the 2D lamellae in 
plastids (see Fig. 2a, b) and the tubules in 3D liquid crystals 
(see Fig. 2d–g) [38] so that the curve-like structures could 
be identified easily. The tubular architectures of the liquid 
crystals could be seen as scaffolds made of rods or curves in 
3D space, see Fig. 2e. Although the lamellar compartments 
are in fact curved sheets in 3D, their cross sections could 
also be seen as curves in 2D images. In other words, lamel-
lar compartments and tubules could be treated as curves in 
2D and 3D images. With the improving image technology in 
producing 3D images, there is an increasing need for curve 
enhancement methods that target 3D structures like the liq-
uid crystal segmentation problem introduced above, facilitat-
ing for example the segmentation of curve-like structures.

The main contribution of this paper is twofold. Firstly, we 
propose a general 3D vascular enhancement method, which is 
capable of processing images with very low signal-to-noise 
ratio. Different measures in 3D such as the maximum, mean 
and absolute deviation of the line integral and alignment 
integral for individual pixels are defined. Then the 3D ori-
entation field transform is constructed for vascular enhance-
ment purposes. Secondly, we apply the proposed 3D vascular 
enhancement method to enhance and segment the curvilinear 
sub-cellular structures in transmission electron microscopy 

Fig. 1   A 2D cross section of a 3D electron tomogram. The darker 
dots and the lighter tubular regions are macromolecules and mem-
brane-bound compartments, respectively
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tomograms. Extensive experimental results and comparisons 
are implemented including synthetic and real-world 2D and 
3D images to demonstrate the property and effectiveness of 
the proposed method. The proposed 3D orientation field trans-
form possesses a concise structure and hence would also serve 
as an ideal candidate as a preliminary filter. Moreover, it can 
naturally tackle any dimension, with a simpler methodology 
against the previous 2D orientation field transform.

The remainder of the paper is organised as follows. In 
Sect. 2 mathematical preliminaries are introduced. Then 
the related work, including vascular structure enhancement, 
edge detection and segmentation, is presented in Sect. 3. In 
Sect. 4 we propose our 3D orientation field transform. The 
test electron tomogram data are presented in Sect. 5. The 
effectiveness of the proposed method in response to different 
types of 2D and 3D curves in the test data and comparisons 
are detailed in Sect. 6. Finally, we conclude in Sect. 7.

2 � Preliminaries

Given a ∈ ℝ
n , let ℍ = {x ∣ a⊤x ≤ 0,∀x ∈ ℝ

n} be a half of 
the n-dimensional Euclidean space generated by an (n − 1)

-dimensional hyperplane crossing the origin. Let Vn ⊂ ℍ 

be a domain containing all the unit vectors in ℍ with the 
origin as the starting point. Let V̄n denote the discretised 
Vn , with |Vn| number of unit vectors. For example, V̄2 and 
V̄3 denote the sets containing unit vectors in the half of 
the discretised 2D and 3D Euclidean spaces, respectively.

Let I  be an image with domain Ω ⊂ ℝ
n .  Let 

x = (x1,⋯ , xn) ∈ Ω represent individual pixels/voxels of 
the image I. The value of the image I at x is denoted as a 
function I(x) .  The l2-norm of x is denoted by 
‖x‖2 =

�
x2
1
+⋯ + x2

n
 . Although the practical image is 

discrete, for ease of discussion continuous functions and 
the integral will be used, which is also common practice 
in research (e.g. [50, 51]).

Note that every point, e.g. y ∈ ℝ
n also corresponds to a 

unique vector starting from the origin. With abuse of nota-
tion, we also call y a vector. Given vectors y, z ∈ ℝ

n , the 
inner product of vectors y and z is represented as y ⋅ z . The 
angle between y and z can be calculated by arccos(ŷ ⋅ ẑ) , 
where ŷ and ẑ are the unit vectors of y and z , calculated by 
ŷ = y∕‖y‖2 and ẑ = z∕‖z‖2 , respectively.

Fig. 2   Curves to be enhanced in the test images. Panels a and b are 
two types of 2D cross sections of connected lipid membrane-bound 
compartments. Panel c is a mesh of a 3D curve (a binary image) cre-
ated by hard thresholding a 3D synthetic noisy image with Gaussian 

noise. Panel d is a slice of the 3D liquid crystal data shown in (e), and 
panels f and g are slices of other 3D liquid crystal data. Please refer to 
Sects. 5 and 6 and Table 1 for detailed description
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3 � Related work

3.1 � Vascular structure enhancement

We first recall the 2D orientation field transform. It is a top-
down image enhancement method aiming to strengthen curves 
exclusively. As a long string could be approximated by many 
small pieces of overlapping line intervals, theoretically, using 
some sort of line filter of fixed length but of unspecified direc-
tion should be able to isolate curves out specifically.

The first problem, then, is to determine the directions of 
the line filters at individual pixel x . The work in [50] pro-
posed to measure the strength of a line with length � centred at 
x ∈ Ω ⊂ ℝ

2 along direction b̂ ∈ V̄2 by a line integral operator 
R[I] , i.e.

Obviously,

Therefore, the direction of b̂ is restricted in [0,�) , half of the 
plane, to avoid repetitiveness.

Ways to incorporate the directional information in R[I] 
have evolved over the course of several papers [50, 51]. In 
[51], a primary orientation field at point x , F[R](x) , was gen-
erated by taking the maximal line integral R[I] of point x and 
the direction b̂ achieving this maximal integral, i.e.

In other words, F1[R](x) and F2[R](x) are the weight and 
angle of F[R](x) , respectively. The alignment integral oper-
ator G[F] at point x along with direction b̂ reads

(1)R[I](x, b̂) = ∫
𝜀∕2

−𝜀∕2

I(x + sb̂) ds.

(2)R[I](x, b̂) = R[I](x,−b̂).

(3)
F[R](x) ∶=

{
F1[R](x), F2[R](x)

}

=
{
max
b̂∈V̄2

R[I](x, b̂), argmax
b̂∈V̄2

R[I](x, b̂)
}
.

(4)

G[F](x, b̂)

=∫
𝜀∕2

−𝜀∕2

F1[R](x + sb̂)

cos
(
2 arccos(F2[R](x + sb̂) ⋅ b̂)

)
ds

=∫
𝜀∕2

−𝜀∕2

F1[R](x + sb̂)

(
2(cos(arccos(F2[R](x + sb̂) ⋅ b̂)))2 − 1

)
ds

=∫
𝜀∕2

−𝜀∕2

F1[R](x + sb̂)

(
2(F2[R](x + sb̂) ⋅ b̂)2 − 1

)
ds,

which can be used to detect curve-like structures. The more 
out of alignment against b̂ a point on the orientation field is, 
the lower the overall value of the alignment integral would 
be. In principle, a strong alignment should wind along the 
length of a curve while the opposite should be true for 
objects which do not have a clear orientation.

The 2D orientation field transform is completed by taking 
the maximum value of the alignment with respect to b̂ , i.e.

see [51] for more details.
The orientation field defined in Eq. (3) is sensitive to 

non-curve information (e.g. point-like objects) in the given 
image. For example, in Fig. 3, a slice of an electron tomo-
gram is processed with the previously described orienta-
tion field transform (5) with the orientation field defined 
in (3). On the one hand, the curves in the given image are 
successfully amplified. On the other hand, the structures 
around small dots in the given image are not suppressed but 
enhanced as curves. To overcome this issue raised by the 
orientation field defined in (3), a new orientation field, an 
average orientation, was defined in [50]. The average orien-
tation was then used in Eq. (5) to form the 2D orientation 
field transform. We refer the readers to [50] for more details.

There are many other methods devoted to the develop-
ment of vascular structure enhancement, including matched 
filter [47, 63], region-growing [19], Hessian-based filtering 
[13, 17, 21, 29, 41], flux-based [3], a vast variety of model-
fitting approaches [12, 32, 56] and machine learning [32]. 
Among these methods, the multi-scale Hessian filter [21, 41] 
drew lots of attention in recent decades. It is founded on the 
observation that vascular images have a high absolute value 
of second derivatives over the vessels’ diameter, and hence 
could be used to specifically enhance vascular structures 

(5)L[G](x) = max
b̂∈V̄2

G[F](x, b̂),

Fig. 3   Image in Fig. 1 enhanced by the 2D orientation field transform 
with the orientation field defined in Eq. (3)
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with the help of a local scaling filter, e.g. a Gaussian filter 
[29]. Unlike machine learning and some of the matched fil-
ter approaches, the Hessian filter method does not require 
to match with a predetermined set of patterns which might 
limit the methods’ versatility for less popular imaging meth-
ods and subjects. On the other hand, region-growing and 
model-fitting methods are typically stepwise and are hence 
time-consuming. Comparatively, the Hessian filter method is 
developed upon processing local features of an image, which 
makes it parallelisable and versatile to different types of vas-
cular images. The 2D orientation field transform in [50, 51] 
shares the same advantages. However, among the images in 
published literature demonstrating the effectiveness of the 
Hessian filter-based algorithm, the data set used often has 
a much higher signal-to-noise ratio than what is typically 
found in electron tomograms.

3.2 � Edge detection and segmentation

Compared to vascular structure enhancement, edge detection 
algorithms focus on the edges of the structures. Well-known 
edge detection methods include, e.g. the Prewitt [48] and 
Sobel [53] edge detectors that detect strong gradients, the 
Laplacian of Gaussian image operator [43] and the sophis-
ticated Canny edge detector that combines a directional 
edge-thinning algorithm with hysteresis thresholding [11]. 
In particular, the curves selected by the 2D orientation field 
transform are similar, in principle, to the edges selected by 
the directional edge-thinning non-maximum suppression 
which is part of the Canny edge detector. The difference is, 
unlike the one-pixel thick edges selected by the non-maxi-
mum suppression method, the 2D orientation field transform 
is much more generous on the range of widths of the curves 
that are enhanced. It is affected by a user-specified parameter 
which takes a value of about 2 to 3 times the width of the 
curves.

Vascular structure enhancement followed by thresholding 
is one way of conducting segmentation. It is worth men-
tioning that there are many types of segmentation methods 
which are independent of structure enhancement. Prevailing 
existing autosegmentation approaches include: (i) general 
noise-reduction techniques, e.g. contrast enhancement [42, 
46, 49], different variations of wavelet transform [6, 7, 22, 
27, 46, 55, 59], nonlinear anisotropic diffusion, bilateral fil-
tering [4, 20, 22, 59] or block-matching 3D filter (BM3D) 
[15, 18, 46]; and (ii) direct segmentation techniques such 
as thresholding [8–10, 22], morphological operations [22], 
region-based approaches utilising watershed transform [22, 
58, 59] and energy-based approaches in the manner of active 
contour [5, 22, 57, 59]. There are also methods that con-
duct segmentation by addressing noise characteristics [64]. 
Moreover, there lately have been attempts at using machine 
learning algorithms to improve the segmentation quality, e.g. 

[31, 42, 54, 61]. As both electron tomography and machine 
learning are fairly new tools that have developed rapidly in 
the last decade, this would make a new frontier of research.

4 � Proposed 3D orientation field transform

As evidenced in [50], the average operation noticeably 
improved the discrimination of curves from other structures 
compared to [51]. Nevertheless, there is no 3D analogue 
where vectors from exactly half of a Euclidean space could 
be transformed bijectively to cover exactly the entirety of 
Euclidean space. Still, the idea of detecting the directionality 
of a neighbourhood would be inspirational. We propose the 
3D orientation field transform below.

Firstly, the line integral operator R[I] , the orientation 
field

and the orientation field transform L[G] , respectively, 
defined in (1), (3) and (5) are extended from 2D to 3D, i.e. 
for ∀x ∈ Ω ⊂ ℝ

3 and ∀b̂ ∈ V̄3 . Then, to reduce the impact 
of the neighbourhood around the targeted curves, both the 
line integral operator and alignment integral operator are 
combined with a 1D Gaussian filter with standard deviation 
� = �∕4 . This yields

where G[F](x, b̂) is the alignment integral operator given in 
(4) combined with the 1D Gaussian filter, i.e.

Recall that the line integral operator R[I](x, b̂) of the image 
I measures the strength of each line with length � centred at 
x ∈ Ω along direction b̂ ∈ V̄3.

(6)F[R] ∶=
{
F1[R](x), F2[R](x)

}
,

(7)R[I](x, b̂) =
1√
2𝜋𝜎

∫
𝜀∕2

−𝜀∕2

I(x + sb̂) exp
�
−

s2

2𝜎2

�
ds,

(8)F1[R](x) = max
b̂∈V̄3

R[I](x, b̂),

(9)F2[R](x) = argmax
b̂∈V̄3

R[I](x, b̂),

(10)L[G](x) = max
b̂∈V̄3

G[F](x, b̂),

(11)

G[F](x, b̂)

=
1√
2𝜋𝜎

∫
𝜀∕2

−𝜀∕2

F1[R](x + sb̂)

exp
�
−

s2

2𝜎2

��
2(F2[R](x + sb̂) ⋅ b̂)2 − 1

�
ds,
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The orientation transform L[G] equipped with the maxi-
mum of the line integrals F1[R] for 2D can enhance curves 
but suffer from for example point-like objects [50]. There-
fore, it is not enough to use L[G] defined in (10) to directly 
enhance curves in 3D which is much more complicated than 
the case in 2D. The main issue of only using the maximum 
to identify the curve direction is that it disregards the num-
ber of large line integrals running along different directions 
at a point; in other words, the maximum criterion in this 
scenario will mistakenly judge the points, e.g. inside point-
like objects to be on a curve.

It is clear that, in a neighbourhood of a point that shows 
a clear orientation distributed as a ridge or a trench, the 
integral along this direction will be of a fairly higher value 
than the others. On the contrary, in a neighbourhood of a 
point that is centred on a point-like object or covered with 
a homogeneous signal, integrals along one direction should 
have little difference from the others. Hence, measuring the 
magnitude and variability of integrals at a point should be 
indicative of whether its neighbourhood encloses a curve 
or not. Since the mean and absolute deviation (acting as 
low-pass and high-pass filters, respectively) are powerful to 
estimate this kind of variability, to overcome the challenge 
above, the mean and absolute deviation of the set of the line 
integral values {R[I](x, b̂)}b̂∈V̄3 and the set of the alignment 
integral values {G[F](x, b̂)}b̂∈V̄3 will be introduced to design 
our 3D orientation field transform.

Remark 1  Similar to the maximum of the line and alignment 
integrals, the means of the line and alignment integrals may 
also be non-selective to point-like objects. The difference 
between the mean and the maximum is that the mean aver-
ages out the signal along different directions, effectively act-
ing as a low-pass filter.

The mean and the absolute deviation of the set of the line 
integral values {R[I](x, b̂)}b̂∈V̄3 are defined as:

and

respectively. Analogously, the mean and the abso-
lute deviation of the set of the alignment integral values 
{G[F](x, b̂)}b̂∈V̄3 are defined as

and

(12)M[R](x) =
1

|V̄3|
∑

b̂∈V̄3

R[I](x, b̂)

(13)𝛾[R](x) =
1

|V̄3|
∑

b̂∈V̄3

|M[R](x) −R[I](x, b̂)|,

(14)M[G](x) =
1

|V̄3|
∑

b̂∈V̄3

G[F](x, b̂),

 respectively.

Remark 2  Before computing the mean and absolute 
deviation defined in (12)–(15), the values in each set of 
{R[I](x, b̂)}b̂∈V̄3 and {G[F](x, b̂)}b̂∈V̄3 can also be polished 
using some smoothing operators like Gaussian, as there 
might be high-frequency fluctuations across different angles 
caused by a high level of image noise.

Figure 4 demonstrates the characteristics of the line inte-
grals (i.e. Eq. (7)) and alignment integrals (i.e. Eq. (11)), 
which the maximum, mean and absolute deviation measures 
(i.e. (8), (10), (12)–(15)) are built on. Figure 4a shows the 
test image with selected pixels marked as cross-hairs. Each 
disc in Fig. 4b and c corresponds to one pixel and represents 
the distribution of the integrals values in every direction, see 
Fig. 4d and e for two close-up discs. The lighter the line, 
the higher the integral value. Note that the demonstration of 
Fig. 4 is done in 2D for the purpose of better visualisation. 
The scenario in higher dimensions like 3D is in the same 
fashion.

The discs in Fig. 4b and c can disclose which pixels have 
a high maximum, mean and absolute deviation of the line 
and alignment integrals, i.e. the pixels on or off the curve 
structures. For example, in Fig. 4b, discs D4, E8 and H1, 
which show the line integrals of the corresponding three pix-
els on the curve in Fig. 4a, indeed possess high maximum, 
mean or absolute deviation. A similar conclusion can also 
be seen in Fig. 4c. On the whole, pixels on a curve have an 
overall higher maximum, mean and/or absolute deviation 
than those that are off a curve.

For simplicity, let

Finally, our proposed 3D orientation field transform 
L3D[I](x) is constructed by leveraging all the measures—the 
maximum, mean and absolute deviation of the line integral 
and alignment integral—to detect curves in 3D images, i.e.

where f is a function with the six measures as inputs. In this 
work, the forms of f below

(15)𝛾[G](x) =
1

|V̄3|
∑

b̂∈V̄3

|M[G](x) − G[F](x, b̂)|,

W1(x) = F1[R](x), W2(x) = L[G](x),

W3(x) = M[R](x), W4(x) = M[G](x),

W5(x) = �[R](x), W6(x) = �[G](x).

(16)L3D[I](x) = f
(
{Wi(x)}

6
i=1

)
,
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are considered. We leave other choices of f for future 
investigation.

The 3D orientation field transform is summarised in 
Algorithm 1. It is worth remarking that the above proposed 
3D orientation field transform can naturally be extended to 
any other dimensions. It has only one parameter to be set—
the size � of the paths for the integral in Eqs. (7) and (11). 
Motivated by the estimation in [50, 51], the size � is set to be 
∼ 1.5 times the thickness of the widest curve to be enhanced 
in order for all curves to be identified properly as a curve 
rather than a surface.

(17)f
(
{Wi(x)}

6
i=1

)
= Π6

i=1
Wi(x),

(18)f
(
{Wi(x)}

6
i=1

)
= Π6

i=1,i≠4Wi(x),

(19)f
(
{Wi(x)}

6
i=1

)
= Π6

i=1,i≠4,5Wi(x),

(20)f
(
{Wi(x)}

6
i=1

)
= W1(x)W3(x),

Algorithm 1   3D orientation field transform

Finally, we present the time complexity. The line integral 
R[I](x, b̂) and alignment integral G[F](x, b̂) of Eqs. (7) and 
(11) are the most expensive operations. Consequently, for a 
3D image, the time complexity reads O(nb̂𝜀

3lwh), where nb̂ 
is the number of orientations defined by b̂ , � is the length of 
the line/alignment filter, and l,  w,  h are, respectively, the 
length, width and height of the filtered image. As the opera-
tion for each direction b̂ is independent of each other, the 
parallelism technique can be exploited over b̂ for efficiency 
enhancement.

Fig. 4   Demonstration in 2D of the information extracted out of the 
line integral R[I] and alignment integral G[F] . a A binary test image 
peppered with a light layer of Gaussian noise, where the cross-hairs 
mark the selected pixels used in (b), (c); b distributions of line inte-
gral values at each direction for selected pixels in (a); c distributions 

of alignment integral values at each direction for selected pixels in 
(a); and d, e close-up of the disc E8 in (b) and (c). In particular, 
intensity values in (b)–(e) are normalised to the range of [0, 1], where 
white and dark colours depict the lowest and highest integral values, 
respectively
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5 � Test data

Common electron microscopy protocols use heavy metal 
compounds, namely osmium tetroxide, uranyl acetate and 
lead citrate as staining agents that adsorb on macromo-
lecular complexes in the biological sample. As a typical 
cell is made mostly of light atoms, these heavy metal con-
jugates are responsible for deflecting the electrons to gen-
erate image contrast.

The protocol used to create the images here adopted 
high-pressure freezing and freeze-substitution instead 
of conventional chemical fixation for immobilising sub-
cellular structures in a soft solid and embedding them in 
hard resin to prepare cell sections [30]. The advantage of 
using freeze-substitution is that it prevents the distortion 
of intra-cellular architecture during infiltration of chemi-
cal cross-linkers and dehydration for resin embedding that 
the standard chemical fixation protocols involve. Samples 
processed with cryofixation have a lower signal-to-noise 
ratio as chemical fixation at room temperature collapses 
macromolecules to which heavy metal stain concentrates. 
Furthermore, the cytosol and organelle lumen are washed 
away during dehydration, leaving empty backgrounds. As 
a result, sub-cellular structures in the electron micrographs 
used here are not distinguished so much as those in con-
ventional electron micrographs.

All samples used as test images (Fig. 2) in this paper 
were imaged using electron tomography, which is a com-
putational tomography version of transmission electron 
microscopy. Scanning transmission electron microscopy 
was used instead of transmission electron microscopy as 
a sub-process. The former uses a raster scanning method 
while the latter does not. Therefore, the former would 
improve the image resolution. For the computational 
tomography, two series of images were taken for each sam-
ple by sequentially tilting the sample along two orthogonal 
directions with an angular difference of 1.5◦  each up to a 
maximum of ±60◦ . Then the simultaneous iterative recon-
struction technique (SIRT) developed by [24] and adapted 

in IMOD was used to reconstruct the 3D tomograms using 
those images.

The samples were tilted only up to ±60◦ as otherwise, the 
paths of the electrons would become too long for them to 
pass through since electrons are very reactive to any matter. 
Hence, it is a compromise between the sample thickness and 
the maximum imaging angle. However, that would create a 
missing-wedge problem, where reconstructed images were 
blurred along the z-axis, complicating the curve enhance-
ment and segmentation of any 3D structures. A brief data 
description summary is given in Table 1, and more details 
are presented in the Appendix.

6 � Experimental results

To test the performance of the proposed method and make 
comparisons with the existing methods, five real-world 
images shown in Fig. 2a–g and one synthetic mesh of a 3D 
curve among point-like objects shown in Fig. 2c are used 
in experiments. In particular, the one in Fig. 2a is an image 
containing sparse 2D curves; the one in Fig. 2b is an image 
with densely packed and heterogeneously stacked 2D curves 
with varying thickness; and the ones in Fig. 2d–g are 3D 
images of interconnecting 3D curves, which are extremely 
challenging.

To provide more reliable metrics for methods evalu-
ation in terms of segmentation, dice scores are obtained 
by 2|O ∩ P|∕(|O| + |P|) , where O is the foreground of the 
ground truth within the region of interests (Figs. 5 and 6), P 
is the foreground of the segmentation result in the region of 
interests and | ⋅ | is the cardinality operation calculating the 
number of foreground pixels. The most optimal thresholds 
for each filter within the cropped areas of interest were used 
to compute the dice scores, e.g. in Table 2. In particular, for 
the real-world 2D images of Fig. 2a and b, the ground truth 
and regions of interest are manually annotated and presented 
in Fig. 5. The ground truth for Fig. 2d–g is manually anno-
tated and presented in Fig. 6. For the synthetically generated 
3D curve of Fig. 2c, the ground truth is the generated curve 
before the addition of Gaussian noise.

Table 1   Data description

Electron tomogram data Synthetic data

Image sample Fig. 2a Fig. 2b Fig. 2d–e Fig. 2f–g Fig. 2c
# Dimensions 2 3 3
Image characteristics 2D sparse curves 2D dense curves 3D diamond cubic 

liquid crystal
3D aperiodic liquid crystal Synthetic 3D curve

Missing-wedge problem Less pronounced Greatly affected N/A
Image generation parameters Computational tomographic reconstruction with SIRT on two series of images of the 

sample tilted along two orthogonal directions with an angular difference of 1.5◦ each up 
to a maximum of ±60◦

x(t) = sin t , 
y(t) = cos t , 
z(t) = cos 2t
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The proposed 3D orientation field transform is experi-
mented with 2D images shown in Fig. 2a, b first since (i) 
2D image can be regarded as a special case of a 3D image; 
and (ii) it is easier to demonstrate curve enhancement on 2D 
images than 3D ones. After that, the proposed transform will 
be evaluated on the synthetic 3D curve in Fig. 2c and then 
the 3D image with 3D curves shown in Fig. 2d–g.

The ultimate goal of this study is to properly enhance 
curve structures in 3D real-world images with low signal-to-
noise ratios. To highlight the efficacy of the proposed algo-
rithm in the described 3D real-world images (i.e. Fig. 2d–g), 
the performance of the proposed method is compared with 
that of three other representative methods qualitatively and 
quantitatively. The methods compared include the Frangi 
filter (i.e. a popular multi-scale Hessian-based filter) [21, 
34, 41], the contrast limited adaptive histogram equalisa-
tion (CLAHE) (i.e. a contrast enhancement method) [14, 49, 
65] and BM3D (i.e. an algorithm that collates self-similar 
blocks for denoising) [18, 40]. These methods are employed 
because they are popular, open sourced, and have been used 
directly or indirectly in recent studies that perform vascular 
enhancement [17, 42, 46]. Their MATLAB implementations 
[14, 34, 40] are used here.

6.1 � Performance in 2D

The performance of the six measures of the maximum, mean 
and absolute deviation of the line integral R[I] and align-
ment integral G[F] are presented in Figs. 7 and 8. The results 
show that the measures of the maximum and mean of the 
line integral (i.e. Eqs. (8) and (12)) perform similarly, act-
ing as generic low-pass filters with no distinctly selective 
curve enhancement, see a, b in Figs. 7 and 8. Nevertheless, 
the measures of the maximum and mean of the alignment 
integral (i.e. Eqs. (10) and (14)) can both enhance curves 
but perform slightly differently, i.e. the mean of the align-
ment integral achieves results with higher contrast but much 
noisier than that of the maximum, see d–e in Figs. 7 and 
8. In particular, the retained curves using the mean of the 
alignment integral are fragmented unlike the others, see e 
in Figs. 7 and 8. The measures of the absolute deviation of 
the line integral and alignment integral can mostly enhance 
the curves and suppress non-curve structures like the light-
coloured blobs successfully, even though the results of the 
absolute deviation of the line integral are less selective com-
pared to the others, see c and f in Figs. 7 and 8.

The efficacy of combining the above-mentioned six 
transform components through the function in Eq. (16), i.e. 
Algorithm 1 with function f defined in Eqs. (17)–(20), is 
shown in Figs. 9 and 10. We see that the curves are enhanced 
successfully with the background information suppressed 
excellently. Table 2 gives the dice scores of the subsequent 
segmentation results corresponding to the maximum, mean 

Fig. 5   Ground truth of the curve-like features in Fig. 2a and b. Rows 
from top to bottom, respectively, give the original image, the ground 
truth and the regions where the methods’ accuracy is evaluated

Fig. 6   Slices of ground truths of the 3D curve-like features in Fig. 2d, 
f and g. Rows 1 and 2 give the original images and the ground truths, 
respectively
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and absolute deviation of the line integral R[I] and the align-
ment integral G[F] , and the proposed field transform using f 
defined in Eqs. (17), (18), (19) and (20). It indicates that the 
proposed field transform can indeed help to achieve satisfied 

segmentation results even by the simplest hard thresholding 
where the thresholds are selected as a compromise between 
removing the noise and keeping the curves. Note that the tar-
get here is to showcase the power of the proposed orientation 

Table 2   Quantitative results for test images in Fig. 2a (first row), b (second row) and c (third row)

Dice scores of the segmentation results corresponding to the maximum, mean and absolute deviation of the line integral R[I] and the alignment 
integral G[F] , and the proposed field transform using f defined in Eqs. (17), (18), (19) and (20).
Best results are highlighted in bold

F1[R](x) M[R](x) �[R](x) L[G](x) M[G](x) �[G](x) Eq. (17) Eq. (18) Eq. (19) Eq. (20)

Fig. 2a 0.7620 0.7877 0.3462 0.6234 0.4625 0.6450 0.5808 0.6161 0.6977 0.7918
Fig. 2b 0.6165 0.6122 0.3538 0.6433 0.5446 0.6008 0.5950 0.5903 0.6454 0.6314
Fig. 2c 0.5185 0.4780 0.4309 0.6251 0.5031 0.6217 0.6220 0.6303 0.6266 0.5319

Fig. 7   Maximum, mean and absolute deviation of the line integral 
R[I] and alignment integral G[F] on test image in Fig. 2a. Rows from 
top to bottom, respectively, give the maximum, mean and absolute 
deviation of the line integral (first column) and alignment integral 
(second column)

Fig. 8   Maximum, mean and absolute deviation of the line integral 
R[I] and alignment integral G[F] on test image in Fig. 2b. Rows from 
top to bottom, respectively, give the maximum, mean and absolute 
deviation of the line integral (first column) and alignment integral 
(second column)
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Fig. 9   Performance of the proposed orientation field transform on test 
image in Fig. 2a. a, c, e and g results of the proposed orientation field 
transform using f defined in Eqs. (17), (18), (19) and (20); b, d, f and 

h the segmentation results obtained by hard thresholding of (a), (c), 
(e) and (g), respectively

Fig. 10   Performance of the proposed orientation field transform on 
test image in Fig. 2b. a, c, e and g results of the proposed orientation 
field transform using f defined in Eqs. (17), (18), (19) and (20); b, d, 

f and h the segmentation results obtained by hard thresholding of (a), 
(c), (e) and (g), respectively
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field transform for vascular structure enhancement rather 
than achieving the best segmentation accuracy. The seg-
mentation accuracy can obviously be improved further by 
advanced thresholding strategies like hysteresis thresholding 
[2] for example.

6.2 � Performance in 3D

6.2.1 � Synthetic 3D image

In order to display 3D images here, the meshes are computed 
with an adaptation of the marching cubes algorithm [25] 
for MATLAB and are displayed with a built-in MATLAB 
GUI. The extremely dense point-like objects surrounding the 
3D curve make the curve enhancement and detection chal-
lenging. The performance of the measures of the maximum, 
mean and absolute deviation of the line integral R[I] and 
alignment integral G[F] are presented in Fig. 11. It shows 
that all the measures are able to enhance the curves well. 
The segmentation results obtained by hard thresholding of 
the enhanced curves using the proposed transform with dif-
ferent function f are shown in Fig. 12. The dice scores given 
in Table 2 regarding the synthetic 3D image indicate that the 
function in Eq. (18) helps to achieve the best segmentation 
result together with our visual validation.

6.2.2 � Real‑world 3D image

We now test the proposed method on the real-world 3D 
image in Fig. 2d, e. The curve detection in this image is 
extremely challenging since the curve information is even 
barely visually sensible. As mentioned previously, it is an 
image of a lyotropic liquid crystal, whose curves converge 
and diverge in different directions frequently and regularly. 
A vast number of curves meander along different directions 
at close proximity and crams next to each other.

The performance of the measures of the maximum, 
mean and absolute deviation of the line integral R[I] 
and alignment integral G[F] are presented in Fig. 13. It 
shows that the maximum and mean of the line integral 
perform better than other measures in enhancing the 
obscure curves. The close packing of the curves might 

have negated the need to exclusively remove structures 
without a clear orientation. Therefore, it is wise to use 
the function f in Eq. (20) in the proposed transform for 
this test image. The enhanced curves and the subsequent 
segmentation result with hard thresholding for the image 
in Fig. 2d are shown in Fig. 14a, b, which indeed presents 
curve features that are imperceptible in the given image. 
The 3D view of the segmentation results across the entire 
volume of the testing image of the lyotropic liquid crystal 
in Fig. 2d is given in Fig. 15. Note that as the values of 
the integrals decrease for the pixels at the periphery, each 
x-y plane across the z-axis is linearly scaled to have the 
same median value before hard thresholding of the curve-
enhanced result. The lyotropic crystal is triply periodic, 
and thus, it is expected to be ‘seen through’ over several 
layers of periodicity when viewed from several angles, 
with regular interruptions on the viewing plane. A medial 
axis transform (skeletonisation) is performed on the seg-
mented image Fig. 15a with a MATLAB function to better 
show the segmentation quality, see Fig. 15b.

Fig. 11   Maximum, mean and absolute deviation of the line integral R[I] and alignment integral G[F] on the synthetic 3D image in Fig. 2c. Col-
umns from left to right, respectively, give the maximum, mean and absolute deviation of the line integral and alignment integral

Fig. 12   Performance of the proposed orientation field transform on 
the synthetic 3D image in Fig.  2c. a–d represent the segmentations 
of the results of the proposed field transform using f defined in Eqs. 
(17), (18), (19) and (20), respectively
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A greater cropped 3D region of the liquid crystal is 
shown in Fig. 16a, which is known to take on a diamond 
cubic symmetry. As a demonstration, along the viewing 
directions shown in Fig. 16, the lattice viewed at ⟨1 0 0⟩ 
should appear as tessellating squares (Fig. 16e), that 
viewed at ⟨1 1 1⟩ should appear as tessellating triangles 
(Fig. 16f), and that viewed at ⟨1 1 0⟩ should appear as tes-
sellating hexagons (Fig. 16g). The diamond cubic lattice 
is then compared against the result (Fig. 16b–d) obtained 
using the same method as shown in Fig. 15 with a skel-
eton denoising procedure (see Appendix). The results are 
in congruence with the diamond cubic lattice structure, 
proving that the proposed 3D orientation transform is 
sufficient for the curve enhancement and segmentation 
quality we were seeking.

Finally, we compare the performance of different methods 
(i.e. CLAHE, Frangi filter, BM3D and ours) on three real-
world 3D images as shown in Fig. 2d, f and g. The subjects 
of Fig. 2f and g are similar to that of Fig. 2d but they do not 
have the same level of regularity/periodicity over a wide area 
and depth as demonstrated in Fig. 15 and 16. This is because 
they are originated from different conditions, and thus, they 
would not have the same diamond cubic structure as found 
in Fig. 2d. The enhanced curves and segmentation results 
of all the methods compared are shown in Fig. 17. Their 
quantitative results in terms of segmentation accuracy in 
Dice scores are given in Table 3. The parameters used in the 
methods compared are fine-tuned to achieve the best results. 
As demonstrated in Fig. 17 and Table 3, we can see that our 
method performs the best compared to all the other methods.

6.3 � Further discussions

The advantages of the proposed method lie in its simplicity 
in both the choice of parameters (i.e. size � set as 1.5 times 
the widest curve width) and algorithmic design, with Eq. 
(20) being the most consistently performant version of the 

Fig. 13   Maximum, mean and absolute deviation of the line integral 
R[I] and alignment integral G[F] on test image in Fig. 2d. Rows from 
top to bottom, respectively, give the maximum, mean and absolute 
deviation of the line integral (first column) and alignment integral 
(second column)

Fig. 14   Performance of the proposed orientation field transform on 
the image in Fig.  2d. a The result of the proposed orientation field 
transform using f defined in (20); b the segmentation result obtained 
by hard thresholding of (a)

Fig. 15   Performance of the proposed orientation field transform on 
the 3D image in Fig. 2d. a The result of the proposed orientation field 
transform using f defined in (20) (morphological closing is used for a 
better view); b medial axis transform of (a)
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algorithm in all versions. The proposed method also benefits 
from its flexibility of extending it with similar modules when 
experimenting with different types of images, as seen in Eqs. 

(17)–(20), while being performant even in 3D images with 
very low signal-to-noise ratios that other vascular enhance-
ment algorithms are not known to be useful in.

Fig. 16   Performance of the proposed orientation field transform on 
a greater cropped 3D region of the liquid crystal imaged with elec-
tron tomography. a Given image; b–d skeletons of the segmentation 
result following the same method as in Fig. 15 with skeleton denois-

ing viewed at ⟨1 0 0⟩ , ⟨1 1 1⟩ and ⟨1 1 0⟩ , respectively; e–g a cubic 
diamond lattice unit cell rendered with VESTA and viewed at ⟨1 0 0⟩ , 
⟨1 1 1⟩ and ⟨1 1 0⟩ , respectively

Fig. 17   Performance comparison of different methods (i.e. CLAHE, 
Frangi filter, BM3D and ours) for 3D images. Rows 1 to 3 are the 
results on the test images in Fig. 2d, f and g, respectively. Columns 
1–2, 3–4, 5–6 and 7–8 are the results of ours, BM3D [40], CLAHE 

[14] and Frangi filter [34], respectively. In particular, the results in 
the odd columns are the enhanced curves and the results in the even 
columns are the corresponding segmentation results obtained by hard 
thresholding
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The proposed algorithm also suffers from several limita-
tions. The first limitation is the lack of a multi-scale feature. 
As evidenced in Figs. 9, 10 and 14, the proposed algorithm 
is tolerant of a conceivable range of vessel/curve thickness 
given any value for the parameter � . However, the proposed 
algorithm has no contingency for treating ranges of curve 
thickness beyond the permissible limit of the parameter � . 
Future directions of this study can take inspiration from 
the design of, e.g. the Frangi filter, which can combine the 
enhanced results of the same image over different curve 
ranges to achieve a better-filtered image. This would also 
remove the need for the parameter � altogether. A search 
into the tolerance of � to different thicknesses of curves is 
also needed. The second limitation, as discovered in the pro-
cessing of Fig. 2b, is the inability of the algorithm to dif-
ferentiate closely packed curves. Although this is less likely 
a problem in 3D images owing to the extra space from the 
additional dimension, as evidenced in Fig. 2b, the algorithm 
would benefit from improvements in this direction. A more 
analytical study of the orientation of the neighbourhood of 
closely packed lines might provide some new insights into 
this problem.

The proposed algorithm’s synergy with others is also of 
interest. The proposed method was compared with other rep-
resentative methods, but theoretically, these methods com-
pared would not hamper the performance of the orientation 
field transform if they serve as preliminary filters. In recent 
studies that needed to use algorithms for vascular enhance-
ment, segmentation and detection are inclined to be mixed 
and matched for better results [42, 46, 64]. With the current 
interest in automatic detection with machine learning, it is 
also worth studying how to incorporate the orientation field 
transform as part of the preprocessing pipeline to improve, 
e.g. segmentation and detection results.

Before closing this section, it is worth briefly discussing 
the running time and parameters selection of the proposed 
method, see Table 4. Note that the time complexity is 
O(nb̂𝜀

2lw) and O(nb̂𝜀
3lwh) for 2D and 3D images, respec-

tively. For the 2D case, the number of directions nb̂ is pro-
portional to half of the circumference of the circle with � 
as the diameter, i.e. ��∕2 . For the 3D case, it is propor-
tional to half of the surface area of the equivalent sphere, 

i.e. ��2∕2 . When images are filtered with a greater � value, 
the number of directions could potentially be reduced as if 
filtering a downsized image, decreasing the running time 
by several folds.

7 � Conclusion

An orientation field-based 3D orientation field trans-
form was proposed and experimented with for the curve 
enhancement, with segmentation as a by-product. Thor-
ough experiments and comparisons on synthetic and real-
world data (e.g. a liquid crystal) demonstrated that the pro-
posed 3D orientation field transform does enhance curves 
selectively and effectively, even in images having very low 
signal-to-noise ratios that pre-existing image enhancement 
algorithms are not known to be useful on. Its modular 
design also makes it possible for experimentation with 
other types of images to achieve the best results. Although 
this is a top-down processing transform, it involves only 
a few computational steps, and hence would serve as an 
ideal candidate as a preliminary filter. In consequence, the 
combination of the maximum, mean and absolute devia-
tion of line integrals and alignment integrals was found to 
be an effective 3D orientation field transform for extremely 
challenging synthetic and real-world images. Furthermore, 
the proposed method can naturally tackle any number of 
dimensions.

Critical future work may follow the investigation of the 
impact of the single parameter � on the performance of the 
proposed method, the incorporation of multi-scale features 
to the algorithm and the study of delineating closely packed 
curves. The pursuit of finding synergies between the 3D ori-
entation field transform and other different algorithms (e.g. 
for vascular enhancement, segmentation and detection) is of 
great interest. Moreover, it is also worth investigating the use 
of the 3D orientation field transform in improving machine 
learning pipelines and in more applications.

Table 3   Quantitative results comparison of different methods (i.e. 
CLAHE, Frangi filter, BM3D and ours) for 3D test images in Fig. 2d, 
f and g in terms of the segmentation accuracy in Dice scores

Best results are highlighted in bold

Ours CLAHE Frangi BM3D

Fig. 2d 0.5949 0.5529 0.5767 0.5621
Fig. 2f 0.8547 0.5927 0.6274 0.6742
Fig. 2g 0.6401 0.4456 0.5751 0.6137

Table 4   Running time and parameters used of the proposed orienta-
tion field transform on each test image

Image Time (s) � (pixels) No. of 
directions

Image size (pixels)

Fig. 2a 6.0s 31 42 512 × 512

Fig. 2b 55.4s 47 66 1024 × 1024

Fig. 2c 63.8s 11 154 101 × 101 × 101

Fig. 2d, e 388.7s 19 478 100 × 100 × 104

Fig. 2f 1156.4s 23 729 200 × 200 × 40

Fig. 2g 92.7s 11 175 150 × 150 × 70
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Appendix

1: High‑pressure freezing, sample processing 
and microscopy

The samples were prepared as described by [38, 39]. 
Arabidopsis cotyledons were dissected and frozen by an 
HPM100 high-pressure freezer. The samples were then 
freeze-substituted on planchettes at −80 ◦ C for 24 h and 
after that slowly warmed up to room temperature for over 
48 h. The warm samples were transferred to be embed-
ded in 812 resin and polymerized in an oven at 65 ◦ C, 
which was then sliced to 200 nm thick sections with an 
ultramicrotome. In the end, the samples were examined 
with a 200 kV Tecnai F20 intermediate voltage electron 
microscope.

2: Skeleton denoising used in Fig. 16

The medial axis transform on noisy tubules may occasion-
ally produce an artefact of separated nodes that should 
in fact be merged, especially on nodes that have a high 
number of connecting tubules (high degree). Moreover, 
it is the connectivity (topology) between the intersections 
(nodes) of the tubules that are of relevance to the lattice 
structure. Hence, the skeletonised tubules are straightened 
out and some of the nodes are merged for denoising, which 
is done with the following steps: 

	 (i)	 Convert the skeleton into an undirected adjacency 
matrix with node coordinates using the algorithm 
Skel2Graph3D developed by [33].

	 (ii)	 Average the coordinates of nodes that have a neigh-
bouring distance lower than a selected threshold 
value (i.e. 5.4 nm).

	 (iii)	 Repeat step 2 until the coordinates stop changing.
	 (iv)	 Plot straight lines to connect back the nodes using 

Bresenham’s line algorithm with the coordinates data 
and the adjacency matrix. In particular, the undocu-
mented MATLAB adaptation of the Bresenham’s 
line algorithm iptui.intline is modified to 
process the 3D data.
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