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Abstract1

Advances in digital technologies have allowed for the2

development of complex active noise and vibration3

control solutions that have been utilised in a wide4

range of applications. Such control systems are com-5

monly designed using linear filters, which cannot fully6

capture the dynamics of nonlinear systems. To over-7

come such issues, it has been shown that replacing8

linear controllers with Neural Networks (NNs) can9

improve control performance in the presence of non-10

linearities. Many real systems are subject to non-11

stationary disturbances where the magnitude of the12

system excitation time dependent. However, within13

the literature, the performance of single NN con-14

trollers across different excitation levels has not been15

thoroughly explored. In this paper, a method of train-16

ing Multilayer Perceptrons (MLPs) for single-input-17

single-output (SISO) feedforward acoustic noise con-18

trol is presented. In a simple time-discrete simulation,19

the performance of the trained NNs is investigated for20

different excitation levels. The effects of the proper-21

ties of the training data and NN controller on gener-22

alised performance are explored. It is demonstrated23

that the generalised control performance of the MLP24

controllers falls as the range of magnitudes included25

in the training data is increased, and that this perfor-26

mance can be recovered by increasing the number of27

hidden nodes within the controller.28

1 Introduction29

Unwanted noise and vibration can be problematic in30

both engineering systems and in public and private31

spaces. Passive control solutions are capable of effec-32

tively reducing high frequency components of noise33

and vibration but are typically large and/or heavy34

for low frequency control, possibly exceeding the de-35

sign constraints of a given application. Active control36

solutions, by contrast, are capable of effective control37

at low frequencies, and are typically lightweight and38

compact. Historically, feedforward active noise and39

vibration control systems have been implemented us-40

ing linear control filters and linear plant models, com-41

monly using the FxLMS algorithm. However, it is well42

understood that nonlinearities present in either the 43

plant or primary path of the control system can have 44

a significant impact on control performance [1], [2], 45

[3], [4]. Many approaches have been proposed to over- 46

come this limitation, including polynomial, cross-term 47

or trigonometric expansion of the reference signal [5], 48

[6], genetic algorithms [7] and fuzzy logic-based meth- 49

ods [8]. A further common approach, which has been 50

applied to active control over the past few decades, 51

is the application of machine learning methods. NNs 52

in particular are known to possess the property of 53

being ‘universal approximators’ [9] and are therefore 54

an attractive black-box method for the modelling and 55

control of unknown or uncertain nonlinear systems. 56

The similarities in structure between NNs and lin- 57

ear filters provides good motivation for their use in 58

both system modelling and feedforward controller de- 59

sign. Many different uses of NNs have been studied, 60

including system modelling [4], [10], [11], [12], [13], 61

feedforward controller design [4], [10], [14], inverse 62

modelling [15], signal prediction and feedback control 63

[16], [17], [18], [19], [20], linear filter selection [21], 64

adaptive parameter estimation for linear controllers 65

[20], [22], frequency-domain control [23], multichan- 66

nel controller design [24], and signal classification [25]. 67

In previous work utilising NNs as feedforward con- 68

trollers, however, the ability for the controller or plant 69

model NNs to generalise across a range of excitation 70

levels of the studied system has not been thoroughly 71

explored. This is clearly a desirable quality in any 72

real implementations of such a control system where 73

the properties of the excitation, and therefore the ef- 74

fect of the system nonlinearity, may change over time. 75

In this paper, a simulation of a simple noise control 76

system implementing a time-domain MLP controller 77

is studied. Section 2 defines the simulated system, 78

system parameters and simulation method. Section 3 79

explains the controller training methodology. Section 80

4 presents simulated results in the time and frequency 81

domains. Finally, Section 5 discuss conclusions and 82

presents possible future research directions. 83
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2 Problem definition84

2.1 Simulated System85

The considered system consists of two acoustic86

sources. The primary source, which generates the87

acoustic disturbance, is modelled as a damped Duffing88

oscillator, assumed to radiate as a monopole acoustic89

source. The secondary acoustic source, which gener-90

ates the cancelling acoustic signal, is modelled as a91

simple harmonic oscillator, also assumed to radiate92

as a monopole source. Figure 1 presents a diagram of93

the simulated system.94

The displacement of the Duffing oscillator, ya(t), is95

caused by the motion of the floor to which it is cou-96

pled. The displacement, x(t), of this floor is also taken97

to be the reference signal passed to the feedforward98

controller. The displacement, yb(t), of the mass, mb,99

is caused by the control force, Fc(t), produced by the100

controller.101

The equations of motion for the total system are102

maÿa(t) + kap(t) + kNL
a p3(t) + caṗ(t) = 0 (1)

103

mbÿb(t) + kbyb(t) + cbẏb(t) + Fc(t) = 0 (2)

where p(t) = ya(t)− x(t) and the remaining variables 104

are defined in Figure 1 and their values are provided 105

in Table 1. These parameter values were selected 106

such that the two oscillators have unity mass, but 107

distinct resonance frequencies of 60 Hz and 80 Hz. 108

The damping coefficients ca and cb were selected such 109

that each oscillator is subject to 20% of critical damp- 110

ing, and the oscillators are therefore not significantly 111

underdamped or overdamped. Assuming for simplic- 112

ity that the error sensor is equidistant from the two 113

point monopole sources and that the constant ampli- 114

tude scaling factors are equal both cases such that 115

they can be neglected, the error signal is defined as 116

e(t) = ya(t− δa) + yb(t− δb) (3)

where δa and δb are the acoustic delays, in time, be- 117

tween the primary and secondary sources and the er- 118

ror microphone, respectively. In all cases, the signal 119

x[n] is Gaussian white noise band-limited to the fre- 120

quency range [0, 250] Hz. The motion of the sources 121

is simulated in the time domain using a 4th order 122

Runge-Kutta method at a sample rate of fs = 2 kHz. 123

Figure 1: Diagram of the simulated system, consisting of a nonlinear primary acoustic source, and a linear
control source. System parameter values are given in Table 1.

.

Table 1: Simulated system parameter values.
Parameter Symbol Value
Primary oscillator mass ma 1 kg
Secondary oscillator mass mb 1 kg
Primary oscillator linear stiffness ka 1.42× 105 Nm−1

Primary oscillator cubic stiffness kNL
a 1.42× 1014 Nm−3

Secondary oscillator stiffness kb 2.53× 105 Nm−1

Primary oscillator damping ca 151 Nsm−1

Secondary oscillator damping cb 201 Nsm−1
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3 Controller design, training124

and testing125

3.1 Controller architecture126

A diagram of the NN architecture used to train the127

controller is presented in Figure 2. Similarly to the128

case of a linear controller, the NN controller and plant129

model each take as input a tapped delay line of the130

sampled reference signal, x[n], and sampled control131

signal, u[n], respectively. The plant model output,132

ŷ[n], is linearly summed with the disturbance sig-133

nal, d[n], to generate the error signal estimate, ê[n],134

which is used to update the weights and biases of the135

controller NN via backpropagation through the full136

network consisting of both the controller and plant137

model. Given a tapped delay line of length L of the138

reference signal, x[n], given by139

x[n] =


x[n]

x[n− 1]
...

x[n− L+ 1]

 (4)

the control signal, u[n], can be generated by passing140

x[n] through the controller NN. If the NN architecture141

is that of an MLP with a single hidden layer, then the142

output of the NN is given by143

u[n] =
∑
i

wo
i hi + bo (5)

where wo
i are the output weights of the NN, bo is the144

NN output bias, and hi are the NN hidden layer node145

values, given by146

hi = σ([Wx[n]]i + bhi ) (6)

where W is a matrix of weights between the input147

layer and hidden layer, [Wx[n]]i is the ith element148

of the vector Wx[n], σ(·) is the nonlinear activation149

function applied to the controller hidden layer, and bhi150

is the bias of the ith hidden layer node. In total,151

u[n] =
∑
i

wo
i σ([Wx[n]]i + bhi ) + bo (7)

However, a full tapped delay line u[n] is required to152

infer the output of the plant model, ŷ[n], and there-153

fore the error estimate, ê[n]. It is therefore necessary154

to generate control signal values u[n−1], u[n−2], . . . ,155

u[n−I+1] for a tapped delay line of length I. A pre-156

viously presented solution to this problem [26] is to157

train the model using the training data sequentially,158

storing the values of the control signal in memory, and159

calling upon them when evaluating the output of the160

plant model at each timestep during the updating of161

the controller weights and biases. However, a result162

of this approach is that the error estimate, ê[n], will163

not accurately reflect the control performance of the 164

current iteration of the controller. The control signal 165

tapped delay line is calculated from the outputs of the 166

current and previous L−1 iterations of the controller, 167

and therefore so is the error estimate. This could 168

plausibly lead to stability and performance issues in 169

the training of the controller NN. Perhaps more im- 170

portantly, this sequential approach will face the issue 171

of catastrophic interference [27], meaning it is unsuit- 172

able for training networks without compromising gen- 173

eralised control performance. As illustrated in Figure 174

2, an alternative approach is proposed here where all 175

required previous controller outputs, u[n−k], are gen- 176

erated using the current iteration of the controller. In 177

general, 178

u[n− k] =
∑
i

wo
i σ([Wx[n− k]]i + bhi ) + bo (8)

where all weights and biases in equation 8 are those 179

of the current iteration of the controller during train- 180

ing. Irrespective of whether the values of u[n − k] 181

are called from memory or generated from the cur- 182

rent iteration of the controller, standard backpropa- 183

gation techniques can be used to update the weights 184

and biases of the controller to minimise a given cost 185

function of ê[n]. The approach presented in Figure 2 186

is clearly more computationally intensive than simply 187

storing u[n] in memory. It should be noted, however, 188

that computing u[n] is only required during the con- 189

troller training. The controller NN is assumed here to 190

be fixed during operation and so, for a NN controller 191

with the same number of hidden nodes, the computa- 192

tional cost to produce u[n] from x[n] in operation is 193

independent of the training method. 194

3.2 Controller training 195

The controllers were trained to minimise the Mean 196

Squared Error (MSE) signal, defined as 197

J = ê2[n] (9)

where the average is calculated over the samples in 198

the training batch. The backpropagation used the 199

Adam algorithm [28] with parameters α = 3 × 10−5, 200

β1 = 0.9, β2 = 0.99, and ϵ = 10−7. These parameters 201

were selected through trial and error with a view to 202

reaching a trade-off between controller performance 203

and training speed. 204

In all cases, the plant model used for controller 205

training was an FIR filter (equivalent to an MLP with 206

no hidden layer) with 140 taps, which was capable of 207

achieving high levels of modelling accuracy due to the 208

linear nature of the simulated plant response. 209

3.3 Training data 210

For each instance of network training, two sets of 900 s 211

of simulated data are generated. The first set is used 212
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Figure 2: Block diagram of the controller training method, assuming an FIR plant model of order 2.

for training, and the second set is used as a validation213

set to assess model overfitting. Each dataset con-214

sists of the reference signal, x[n], and the resultant215

displacement of the primary source, ya[n]. In each216

900 s simulation, the magnitude of the reference sig-217

nal, x[n], is increased linearly in time from the lower218

to the upper bound of the the training range. The219

training data is split into mini-batches of size 128,220

selected randomly from the data. In each iteration221

of the training, 1000 such mini-batches are employed.222

The full set of training data are therefore not used in223

each iteration. This is due to a training bias which is224

implemented to optimise network training for gener-225

alised performance, explained below. All networks are226

trained over 500 iterations. All signals used to gener-227

ate training and validation data are first normalized228

to have a standard deviation of 1 to facilitate quick229

and stable training of the NNs. As expected, using230

small amounts of training data was observed to re-231

sult in model overfitting, reducing the performance of232

the controllers and obscuring the underlying limits on233

controller performance. The relatively large amount234

of training data used was therefore chosen to mini-235

mize the effect of overfitting during network training,236

and therefore no regularization was applied to the net-237

works.238

During testing, it was initially observed that MLP239

controllers trained using data with equal weighting 240

across all magnitudes of the reference signal produced 241

MSE attenuation that was approximately equal across 242

much of the training range. As shall be noted in Sec- 243

tion 4, the maximum performance of the MLP con- 244

trollers at each magnitude of the reference signal is 245

not equal. As a result, training an MLP as a con- 246

troller across a range of reference signal magnitudes 247

results in control performance close to the maximum 248

for the largest training magnitudes, but underperfor- 249

mance relative to the maximum at the lowest training 250

magnitudes. To counteract this, the random selection 251

of the training samples was weighted based on the 252

magnitude of the reference signal. That is, for a set of 253

N training examples with reference signal magnitudes 254

xmag in the range a < xmag < b, the probability of 255

training example q being included in a training batch 256

is given (up to a normalizing factor) by 257

P (q) ∝ 10−γ(xmag−a) (10)

where γ is a factor controlling the training bias. The 258

inclusion of this training bias affects the resultant per- 259

formance of the MLP controllers across the training 260

range. Appropriate selection of γ for a given train- 261

ing range results in generalised control performance 262

that approaches the maximum MLP controller per- 263

formance across the training range. This effect is il- 264
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lustrated in Section 4.2.265

3.4 Testing266

During the controller testing phase, the controller net-267

work is extracted and used to generate the control268

signal u[n] in a new simulation. At each timestep,269

the controller is input with a tapped delay line of270

the reference signal, x[n] = [x[n], ..., x[n − L + 1]],271

generating a control signal sample, u[n]. The testing272

is undertaken across a range of magnitudes of x[n].273

However, this magnitude is kept constant within each274

testing simulation. Each testing simulation is under-275

taken over 60 s, and control performance is defined276

as MSE attenuation, measured in dB relative to the277

sampled disturbance signal, d[n].278

4 Results279

4.1 Maximum control performance280

To first establish an upper limit on the generalised281

control performance of the MLP controllers across a282

range of magnitudes of x[n], a set of 90 networks with283

100 hidden nodes were trained at 30 equally spaced284

magnitudes of x[n] from 10−9 to 10−5 m with three285

controllers trained at each level to obtain an average286

of the control performance. Controller weights and287

biases were initialized with a random Gaussian dis-288

tribution with zero mean and a standard deviation289

of 0.05. The performance of these controllers is pre-290

sented in Figure 3. Also presented is the performance291

of FIR filter-based controllers trained using the same292

Adam algorithm, and the control performance of FIR293

controllers trained in-simulation using the FxLMS al- 294

gorithm. 295

At very low magnitudes of the reference signal, both 296

the FIR and MLP controllers achieve a similar level of 297

performance of between approximately 55 and 60 dB. 298

At the lowest magnitudes, the FIR controller outper- 299

forms the MLP controller slightly. However, as the 300

magnitude of x[n] increases and the degree of nonlin- 301

earity stimulated in the primary path increases, the 302

MLP controller demonstrates a clear control advan- 303

tage compared to the linear controller of up to 20 304

dB. At the highest levels of nonlinearity, the perfor- 305

mance of both controller architectures falls. However, 306

the MLP controller still achieves some control advan- 307

tage of approximately 5 dB. Interestingly, the perfor- 308

mance of the linear controller shows a standard devi- 309

ation of 2.6 dB at the lowest magnitude of x[n] tested. 310

This is unexpected, and is absent in the results of the 311

FxLMS-trained controller. It is reasonable to assume, 312

therefore, that this variance is a result of the Adam 313

algorithm used to train the FIR controllers. 314

Figure 4 presents Power Spectral Density (PSD) es- 315

timates of the disturbance and error signals at a range 316

of values of xmag for the FIR and MLP controllers. 317

As observed in Figure 3, at the lowest value of xmag, 318

the FIR controller slightly outperforms the MLP con- 319

troller. However, as xmag increases, the MLP con- 320

troller outperforms the FIR controller. Notably, the 321

MLP controller outperforms the FIR controller across 322

all frequencies present in the reference signal. 323

4.2 Effect of training bias γ 324

As explained in Section 3.3, the training of the MLP 325

controllers for control across a range of xmag is influ- 326

Figure 3: Average control performance of the MLP controller, and an FIR controller trained using the Adam
algorithm and FxLMS. Averaging is undertaken over 5 instances of a trained controller. Solid lines represent
the mean control performance. Shaded regions present 2 standard deviations of control performance around the
mean.
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Figure 4: Frequency-domain errors corresponding to the MLP and FIR filter-based controllers over a range of
reference signal magnitudes xmag, averaged over 5 instances of controller training. Black: Disturbance; Blue:
FIR controller error; Red: MLP controller error. All signals used to calculate PSD estimates are normalised
with respect to the RMS of the disturbance signal.

enced by a training bias which is fully defined by a327

parameter γ. In effect, this parameter controls the328

slope of the generalised performance curve within the329

training region for a given controller. As the gener-330

alised performance of the controllers is limited to a331

maximum at each magnitude of x[n], the tuning of γ332

allows for generalised performance to be maximised333

across the training region. Figure 5 presents the con-334

trol performance of 3 MLP controllers trained with335

different values of the parameter γ. In each case, the336

controller contains a hidden layer of 100 nodes, and337

the training range is shown by the red shaded region.338

As observed in Section 4.1, the control performance339

of MLP networks is subject to variance. Therefore, to340

produce smooth generalised performance curves that341

illustrate the effect of γ more clearly, the training data342

used for each network was identical, and the refer-343

ence signal used in each testing simulation was iden-344

tical across tests, but scaled to the appropriate mag-345

nitude. As expected, the effect of increasing γ is to346

change the slope of the generalised performance curve347

within the training region. We can observe that, for348

γ = 1.2 × 106, the generalised network performance349

is close to the maximum at the bottom of the train-350

ing range, but falls away from the maximum near the 351

top. We see the opposite effect for the network trained 352

with γ = 0. For γ = 6 × 105, the generalised perfor- 353

mance of the controller relative to the maximum is 354

approximately constant within the training range. 355

4.3 Effect of training range 356

For a fixed number of hidden nodes in the MLP con- 357

troller, the effect of increasing the range of xmag 358

over which the controller is trained is investigated. 359

Figure 6 presents the control performance of 4 net- 360

works with increasing training widths. The first net- 361

work, trained at xmag = 5 × 10−5 m, achieves con- 362

trol performance equal to the defined maximum at 363

the trained magnitude, as expected. It also demon- 364

strates some generalised performance capacity, with 365

performance relative to the maximum curve drop- 366

ping by approximately 3 dB within the range of 367

xmag ∈ [4× 10−6, 6× 10−6]. Increasing the range of 368

the training to [4 × 10−6, 6 × 10−6] slightly improves 369

the control performance at the edges of this range at 370

very little cost to performance at the centre of the 371

range. Further increasing the training range contin- 372
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Figure 5: Performance of 3 MLP controllers trained with varying values of the training bias parameter γ. The
red highlighted region represents the range of magnitudes of x[n] over which the controllers were trained.

Figure 6: MSE attenuation of 4 MLP controllers trained with reference signal magnitude within the highlighted
range. Each plot presents the averaged performance of 3 controller instances trained within the presented range.

ues to reduce the performance of the controller at373

the centre of the range whilst improving generalisabil-374

ity. This is expected, as increasing the range of the375

magnitude of the training data increases the range of376

nonlinear behaviour exhibited by the training data.377

We should therefore expect that keeping the number 378

of hidden nodes in the networks fixed, but increas- 379

ing the training range, should reduce the peak per- 380

formance of the controller relative to the maximum 381

curve as the controller network becomes increasingly 382
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under-powered to perform the required generalisation383

task.384

4.4 Effect of network size385

The ability of NNs to generate nonlinear mappings386

from input to output is derived from the nonlinear387

activation functions applied to the nodes of the hid-388

den layer(s). It is natural, therefore, to assume that389

increasing the number of nodes in the hidden layer of390

the MLP controller will increase its generalised con-391

trol performance across a range of reference signal392

magnitudes. Figure 7 shows the generalised control393

performance of 5 MLP controllers with a range of394

hidden nodes from 12 to 200. At each magnitude395

of x[n] and number of hidden nodes, 3 controllers396

were trained and the performance averaged over the 3397

controllers. Across the training range, the controller398

with 12 hidden nodes achieves a performance approx-399

imately 7 dB below the defined maximum MLP per-400

formance. Increasing the number of hidden nodes to401

25 increases the performance of the controller relative402

to the maximum by approximately 2 dB. However,403

this approximately doubles the number of parameters404

to be learned within the network, and approximately405

doubles the number of operations required to infer406

the output of the network. Further doubling of the407

number of hidden nodes in the MLP controllers fur-408

ther increases the generalised control performance of409

the controllers. However, this increase becomes in-410

creasingly small as the performance of the networks411

approach the maximum. Noting that the controller412

containing 12 hidden nodes generates a control per-413

formance advantage over the linear controllers of up 414

to 10 dB, the computational cost of increasing the 415

number of hidden nodes from 12 to 200 to gain an 416

additional 8 dB in control performance is consider- 417

able. In practical applications, the additional compu- 418

tational cost of both training and inferring the out- 419

puts of these networks may be prohibitive to their 420

implementation for excessively large networks. How- 421

ever, it should be noted that increasing the number of 422

hidden nodes in the MLP controller does recover the 423

control performance lost by increasing the controller 424

training width. 425

5 Conclusions 426

In this paper, a method of training MLP NNs for 427

use as time-domain controllers for feedforward ac- 428

tive noise control has been presented. For the sim- 429

ple case presented, the maximum achievable perfor- 430

mance of linear and MLP controllers has been esti- 431

mated, demonstrating that the control performance 432

of both the linear and MLP controllers falls as the 433

degree of nonlinearity in the system primary path in- 434

creases. The ability of MLP controllers to achieve gen- 435

eralised performance across a range of system stimu- 436

lation magnitudes has been investigated, and a train- 437

ing bias parameter γ has been introduced to balance 438

the control performance across the training range. 439

The effect of varying this parameter has been pre- 440

sented, demonstrating that, for a fixed number of hid- 441

den nodes in the controller, the parameter can con- 442

trol the relation between generalised controller per- 443

Figure 7: Generalised control performance of MLP controllers trained with varying numbers of nodes in the
hidden layer, trained within the highlighted range. Each curve represents the average performance of 3 trained
controller instances.
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formance and reference signal magnitude. Increasing444

the controller training range has been shown to reduce445

controller performance over the same range. However,446

it has also been demonstrated that this performance447

may be recovered by increasing the number of hidden448

nodes in the MLP controller.449

Additional contributions which would extend this450

work in the future could include the study of an451

extended set of NN architectures, a wider study of452

the NN hyperparameters, the study of a wider range453

of types of nonlinear behaviour, comparison of con-454

troller performance to other common nonlinear con-455

trol strategies, as well as experimental validation of456

the results under similar nonlinear conditions.457
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