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Abstract — Advances in digital technologies have allowed for the development of complex active noise and
vibration control solutions that have been utilised in a wide range of applications. Such control systems are
commonly designed using linear filters, which cannot fully capture the dynamics of nonlinear systems. To over-
come such issues, it has been shown that replacing linear controllers with Neural Networks (NNs) can improve
control performance in the presence of nonlinearities. Many real systems are subject to non-stationary distur-
bances where the magnitude of the system excitation time dependent. However, within the literature, the per-
formance of single NN controllers across different excitation levels has not been thoroughly explored. In this
paper, a method of training Multilayer Perceptrons (MLPs) for single-input-single-output (SISO) feedforward
acoustic noise control is presented. In a simple time-discrete simulation, the performance of the trained NNs is
investigated for different excitation levels. The effects of the properties of the training data and NN controller
on generalised performance are explored. It is demonstrated that the generalised control performance of the
MLP controllers falls as the range of magnitudes included in the training data is increased, and that this per-
formance can be recovered by increasing the number of hidden nodes within the controller.
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1 Introduction

Unwanted noise and vibration can be problematic in
both engineering systems and in public and private spaces.
Passive control solutions are capable of effectively reducing
high frequency components of noise and vibration but are
typically large and/or heavy for low frequency control, pos-
sibly exceeding the design constraints of a given application.
Active control solutions, by contrast, are capable of effec-
tive control at low frequencies, and are typically lightweight
and compact. Historically, feedforward active noise and
vibration control systems have been implemented using lin-
ear control filters and linear plant models, commonly using
the FXLMS algorithm. However, it is well understood that
nonlinearities present in either the plant or primary path of
the control system can have a significant impact on control
performance [1-4]. Many approaches have been proposed to
overcome this limitation, including polynomial, cross-term
or trigonometric expansion of the reference signal [5, 6],
genetic algorithms [7] and fuzzy logic-based methods [§].
A further common approach, which has been applied to
active control over the past few decades, is the application
of machine learning methods. NNs in particular are known
to possess the property of being ‘universal approximators’
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[9] and are therefore an attractive black-box method for
the modelling and control of unknown or uncertain nonlin-
ear systems. The similarities in structure between NNs and
linear filters provides good motivation for their use in both
system modelling and feedforward controller design. Many
different uses of NNs have been studied, including system
modelling [4, 10-13], feedforward controller design [4, 10,
14], inverse modelling [15], signal prediction and feedback
control [16-20], linear filter selection [21], adaptive parame-
ter estimation for linear controllers [20, 22], frequency-
domain control [23], multichannel controller design [24],
and signal classification [25]. In previous work utilising
NNs as feedforward controllers, however, the ability for
the controller or plant model NNs to generalise across a
range of excitation levels of the studied system has not been
thoroughly explored. This is clearly a desirable quality in
any real implementations of such a control system where
the properties of the excitation, and therefore the effect of
the system nonlinearity, may change over time. In this
paper, a simulation of a simple noise control system imple-
menting a time-domain Multilayer Perceptron (MLP) con-
troller is studied. Section 2 defines the simulated system,
system parameters and simulation method. Section 3
explains the controller training methodology. Section 4 pre-
sents simulated results in the time and frequency domains.
Finally, Section 5 discuss conclusions and presents possible
future research directions.
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Figure 1. Diagram of the simulated system, consisting of a nonlinear primary acoustic source, and a linear control source. System

parameter values are given in Table 1.

2 Problem definition
2.1 Simulated System

The considered system consists of two acoustic sources.
The primary source, which generates the acoustic distur-
bance, is modelled as a damped Duffing oscillator, assumed
to radiate as a monopole acoustic source. The secondary
acoustic source, which generates the cancelling acoustic sig-
nal, is modelled as a simple harmonic oscillator, also
assumed to radiate as a monopole source. Figure 1 presents
a diagram of the simulated system.

The displacement of the Duffing oscillator, y,(f), is
caused by the motion of the floor to which it is coupled.
The displacement, z(t), of this floor is also taken to be the
reference signal passed to the feedforward controller. The
displacement, y;(¢), of the mass, my, is caused by the control
force, F,(t), produced by the controller.

The equations of motion for the total system are

maa(t) + kap(t) + K51 P° () + capl(t) = 0 (1)
mps(8) + kpyy (1) + oy (t) + Fe(t) = 0 (2)

where p(t) = y,(t) — z(¢) and the remaining variables are
defined in Figure 1 and their values are provided in
Table 1. These parameter values were selected such that
the two oscillators have unity mass, but distinct reso-
nance frequencies of 60 Hz and 80 Hz. The damping coef-
ficients ¢, and ¢, were selected such that each oscillator is
subject to 20% of critical damping, and the oscillators are
therefore not significantly underdamped or overdamped.
Assuming for simplicity that the error sensor is equidis-
tant from the two point monopole sources and that the
constant amplitude scaling factors are equal both cases
such that they can be neglected, the error signal is defined
as

e(t) = y,(t = 0a) + y, (1 — 6p) (3)

where J, and J, are the acoustic delays, in time, between
the primary and secondary sources and the error micro-
phone, respectively. In all cases, the signal z]n| is Gaussian

Table 1. Simulated system parameter values.

Parameter Symbol Value
Primary oscillator mass mg 1 kg
Secondary oscillator mass mp 1 kg

142 x 10° Nm ™'
1.42 x 10" Nm™3

Primary oscillator linear stiffness &,
Primary oscillator cubic stiffness kg’L

Secondary oscillator stiffness kp 2.53 x 10° Nm™*
Primary oscillator damping Ca 151 Nsm ™"
Secondary oscillator damping Cp 201 Nsm ™ *

white noise band-limited to the frequency range [0, 250]
Hz. The motion of the sources is simulated in the time
domain using a 4th order Runge-Kutta method at a
sample rate of f; = 2 kHz.

3 Controller design, training and testing

3.1 Controller architecture

A diagram of the NN architecture used to train the con-
troller is presented in Figure 2. Similarly to the case of a lin-
ear controller, the NN controller and plant model each take
as input a tapped delay line of the sampled reference signal,
2[n], and sampled control signal, u[n|, respectively. The
plant model output, p[n], is linearly summed with the dis-
turbance signal, d[n], to generate the error signal estimate,
é[n], which is used to update the weights and biases of the
controller NN via backpropagation through the full net-
work consisting of both the controller and plant model.
Given a tapped delay line of length L of the reference signal,
x[n], given by

x[n] = : (4)

x[n—.L—ﬁ—l]

the control signal, u[n], can be generated by passing x[n|
through the controller NN. If the NN architecture is that
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Figure 2. Block diagram of the controller training method, assuming an FIR plant model of order 2.

of an MLP with a single hidden layer, then the output of
the NN is given by

uln] = Z wih; + b° (5)

where w? are the output weights of the NN, b° is the NN
output bias, and h; are the NN hidden layer node values,
given by

i = o(Wxlnll, + 8) (6)

where W is a matrix of weights between the input layer
and hidden layer, [Wx|[n]], is the ith element of the vector
Wx([n], o(-) is the nonlinear activation function applied to
the controller hidden layer, and b" is the bias of the ith
hidden layer node. In total,

) = S Wi (Wl + b)) + 1. (7)

However, a full tapped delay line u[n] is required to infer
the output of the plant model, y[n], and therefore the error
estimate, e[n]. It is therefore necessary to generate control
signal values uln — 1], u[n — 2], ..., u[n — I + 1] for a tapped
delay line of length /. A previously presented solution to
this problem [26] is to train the model using the training
data sequentially, storing the values of the control signal
in memory, and calling upon them when evaluating the out-
put of the plant model at each timestep during the updating
of the controller weights and biases. However, a result of

this approach is that the error estimate, é[n], will not accu-
rately reflect the control performance of the current itera-
tion of the controller. The control signal tapped delay line
is calculated from the outputs of the current and previous
L — 1 iterations of the controller, and therefore so is the
error estimate. This could plausibly lead to stability and
performance issues in the training of the controller NN. Per-
haps more importantly, this sequential approach will face
the issue of catastrophic interference [27], meaning it is
unsuitable for training networks without compromising
generalised control performance. As illustrated in Figure 2,
an alternative approach is proposed here where all required
previous controller outputs, u[n — k|, are generated using
the current iteration of the controller. In general,

uln — k] = ZW;’J([WX[n — k)], + bf’) +b° (8)

where all weights and biases in equation (8) are those of
the current iteration of the controller during training.
Irrespective of whether the values of u[n — k] are called
from memory or generated from the current iteration of
the controller, standard backpropagation techniques can
be used to update the weights and biases of the controller
to minimise a given cost function of e[n]. The approach
presented in Figure 2 is clearly more computationally
intensive than simply storing u[n] in memory. It should
be noted, however, that computing u[n] is only required
during the controller training. The controller NN is
assumed here to be fixed during operation and so, for a
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NN controller with the same number of hidden nodes, the
computational cost to produce u[n] from z[n] in operation
is independent of the training method.

3.2 Controller training

The controllers were trained to minimise the Mean
Squared Error (MSE) signal, defined as

J = e&n] (9)

where the average is calculated over the samples in the
training batch. The backpropagation used the Adam algo-
rithm [28] with parameters o =3 x 107", B, =0.9,
By = 0.99, and € = 10~". These parameters were selected
through trial and error with a view to reaching a trade-
off between controller performance and training speed.

In all cases, the plant model used for controller training
was an FIR filter (equivalent to an MLP with no hidden
layer) with 140 taps, which was capable of achieving high
levels of modelling accuracy due to the linear nature of
the simulated plant response.

3.3 Training data

For each instance of network training, two sets of 900 s
of simulated data are generated. The first set is used for
training, and the second set is used as a validation set to
assess model overfitting. Each dataset consists of the refer-
ence signal, x[n], and the resultant displacement of the pri-
mary source, y,[n]. In each 900 s simulation, the magnitude
of the reference signal, x[n], is increased linearly in time from
the lower to the upper bound of the the training range. The
training data is split into mini-batches of size 128, selected
randomly from the data. In each iteration of the training,
1000 such mini-batches are employed. The full set of train-
ing data are therefore not used in each iteration. This is due
to a training bias which is implemented to optimise network
training for generalised performance, explained below. All
networks are trained over 500 iterations. All signals used
to generate training and validation data are first normalized
to have a standard deviation of 1 to facilitate quick and
stable training of the NNs. As expected, using small
amounts of training data was observed to result in model
overfitting, reducing the performance of the controllers
and obscuring the underlying limits on controller perfor-
mance. The relatively large amount of training data used
was therefore chosen to minimize the effect of overfitting
during network training, and therefore no regularization
was applied to the networks.

During testing, it was initially observed that MLP con-
trollers trained using data with equal weighting across all
magnitudes of the reference signal produced MSE attenua-
tion that was approximately equal across much of the train-
ing range. As shall be noted in Section 4, the maximum
performance of the MLP controllers at each magnitude of
the reference signal is not equal. As a result, training an
MLP as a controller across a range of reference signal mag-
nitudes results in control performance close to the maximum
for the largest training magnitudes, but underperformance

relative to the maximum at the lowest training magnitudes.
To counteract this, the random selection of the training sam-
ples was weighted based on the magnitude of the reference
signal. That is, for a set of N training examples with refer-
ence signal magnitudes x,,,, in the range a < x,,,; < b, the
probability of training example ¢ being included in a train-
ing batch is given (up to a normalizing factor) by

P(g) oc 107 (nes =) (10)

where 7 is a factor controlling the training bias. The inclu-
sion of this training bias affects the resultant performance
of the MLP controllers across the training range. Appro-
priate selection of y for a given training range results in
generalised control performance that approaches the max-
imum MLP controller performance across the training
range. This effect is illustrated in Section 4.2.

3.4 Testing

During the controller testing phase, the controller net-
work is extracted and used to generate the control signal
u[n] in a new simulation. At each timestep, the controller
is input with a tapped delay line of the reference signal,
x[n] = [x[n],...,x[n — L + 1]], generating a control signal
sample, u[n]. The testing is undertaken across a range of
magnitudes of x[n]. However, this magnitude is kept con-
stant within each testing simulation. Each testing simula-
tion is undertaken over 60 s, and control performance is
defined as MSE attenuation, measured in dB relative to
the sampled disturbance signal, d|n].

4 Results

4.1 Maximum control performance

To first establish an upper limit on the generalised con-
trol performance of the MLP controllers across a range of
magnitudes of x[n], a set of 90 networks with 100 hidden
nodes were trained at 30 equally spaced magnitudes of
x[n] from 107 to 10~° m with three controllers trained at
each level to obtain an average of the control performance.
Controller weights and biases were initialized with a ran-
dom Gaussian distribution with zero mean and a standard
deviation of 0.05. The performance of these controllers is
presented in Figure 3. Also presented is the performance
of FIR filter-based controllers trained using the same Adam
algorithm, and the control performance of FIR controllers
trained in-simulation using the FxLMS algorithm.

At very low magnitudes of the reference signal, both the
FIR and MLP controllers achieve a similar level of perfor-
mance of between approximately 55 and 60 dB. At the low-
est magnitudes, the FIR controller outperforms the MLP
controller slightly. However, as the magnitude of x[n]
increases and the degree of nonlinearity stimulated in the
primary path increases, the MLP controller demonstrates
a clear control advantage compared to the linear controller
of up to 20 dB. At the highest levels of nonlinearity, the per-
formance of both controller architectures falls. However, the
MLP controller still achieves some control advantage of
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Figure 3. Average control performance of the MLP controller, and an FIR controller trained using the Adam algorithm and FxLMS.
Averaging is undertaken over 5 instances of a trained controller. Solid lines represent the mean control performance. Shaded regions
present 2 standard deviations of control performance around the mean.

approximately 5 dB. Interestingly, the performance of the
linear controller shows a standard deviation of 2.6 dB at
the lowest magnitude of x[n] tested. This is unexpected,
and is absent in the results of the FxLMS-trained controller.
It is reasonable to assume, therefore, that this variance is a
result of the Adam algorithm used to train the FIR
controllers.

Figure 4 presents Power Spectral Density (PSD)
estimates of the disturbance and error signals at a range
of values of x,,, for the FIR and MLP controllers. As
observed in Figure 3, at the lowest value of x,,,, the FIR
controller slightly outperforms the MLP controller. How-
ever, as X,q increases, the MLP controller outperforms
the FIR controller. Notably, the MLP controller outper-
forms the FIR controller across all frequencies present in
the reference signal.

4.2 Effect of training bias y

As explained in Section 3.3, the training of the MLP
controllers for control across a range of x,,, is influenced
by a training bias which is fully defined by a parameter 7.
In effect, this parameter controls the slope of the generalised
performance curve within the training region for a given
controller. As the generalised performance of the controllers
is limited to a maximum at each magnitude of x[n], the tun-
ing of y allows for generalised performance to be maximised
across the training region. Figure 5 presents the control per-
formance of 3 MLP controllers trained with different values
of the parameter y. In each case, the controller contains a
hidden layer of 100 nodes, and the training range is shown
by the red shaded region. As observed in Section 4.1, the
control performance of MLP networks is subject to vari-
ance. Therefore, to produce smooth generalised perfor-
mance curves that illustrate the effect of y more clearly,
the training data used for each network was identical,
and the reference signal used in each testing simulation
was identical across tests, but scaled to the appropriate

magnitude. As expected, the effect of increasing y is to
change the slope of the generalised performance curve
within the training region. We can observe that, for
7 = 1.2 x 10°, the generalised network performance is close
to the maximum at the bottom of the training range, but
falls away from the maximum near the top. We see the
opposite effect for the network trained with y = 0. For
7 =6 x 10°, the generalised performance of the controller
relative to the maximum is approximately constant within
the training range.

4.3 Effect of training range

For a fixed number of hidden nodes in the MLP con-
troller, the effect of increasing the range of x,,,, over which
the controller is trained is investigated. Figure 6 presents
the control performance of 4 networks with increasing train-
ing widths. The first network, trained at x,,,, = 5 x 107" m,
achieves control performance equal to the defined maxi-
mum at the trained magnitude, as expected. It also demon-
strates some generalised performance capacity, with
performance relative to the maximum curve dropping by
approximately 3 dB within the range of x,,, € [4 x 107°,
6 x 1079).
[4 x 1076 x 1079 slightly improves the control perfor-
mance at the edges of this range at very little cost to perfor-
mance at the centre of the range. Further increasing the
training range continues to reduce the performance of the
controller at the centre of the range whilst improving gener-
alisability. This is expected, as increasing the range of the
magnitude of the training data increases the range of non-
linear behaviour exhibited by the training data. We should
therefore expect that keeping the number of hidden nodes
in the networks fixed, but increasing the training range,
should reduce the peak performance of the controller rela-
tive to the maximum curve as the controller network
becomes increasingly under-powered to perform the
required generalisation task.

Increasing the range of the training to
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Figure 4. Frequency-domain errors corresponding to the MLP and FIR filter-based controllers over a range of reference signal
magnitudes T, averaged over 5 instances of controller training. Black: Disturbance; Blue: FIR controller error; Red: MLP controller
error. All signals used to calculate PSD estimates are normalised with respect to the RMS of the disturbance signal.
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Figure 5. Performance of 3 MLP controllers trained with varying values of the training bias parameter y. The red highlighted region
represents the range of magnitudes of z|n| over which the controllers were trained.

4.4 Effect of network size

The ability of NNs to generate nonlinear mappings from
input to output is derived from the nonlinear activation
functions applied to the nodes of the hidden layer(s). It is
natural, therefore, to assume that increasing the number

of nodes in the hidden layer of the MLP controller will
increase its generalised control performance across a range
of reference signal magnitudes. Figure 7 shows the gener-
alised control performance of 5 MLP controllers with a
range of hidden nodes from 12 to 200. At each magnitude
of x[n] and number of hidden nodes, 3 controllers were
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Figure 7. Generalised control performance of MLP controllers trained with varying numbers of nodes in the hidden layer, trained
within the highlighted range. Each curve represents the average performance of 3 trained controller instances.

trained and the performance averaged over the 3 con-
trollers. Across the training range, the controller with 12
hidden nodes achieves a performance approximately 7 dB
below the defined maximum MLP performance. Increasing
the number of hidden nodes to 25 increases the performance
of the controller relative to the maximum by approximately
2 dB. However, this approximately doubles the number of

parameters to be learned within the network, and approxi-
mately doubles the number of operations required to infer
the output of the network. Further doubling of the number
of hidden nodes in the MLP controllers further increases the
generalised control performance of the controllers. However,
this increase becomes increasingly small as the performance
of the networks approach the maximum. Noting that the
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controller containing 12 hidden nodes generates a control
performance advantage over the linear controllers of up to
10 dB, the computational cost of increasing the number
of hidden nodes from 12 to 200 to gain an additional 8
dB in control performance is considerable. In practical
applications, the additional computational cost of both
training and inferring the outputs of these networks may
be prohibitive to their implementation for excessively large
networks. However, it should be noted that increasing the
number of hidden nodes in the MLP controller does recover
the control performance lost by increasing the controller
training width.

5 Conclusions

In this paper, a method of training MLP NNs for use as
time-domain controllers for feedforward active noise control
has been presented. For the simple case presented, the max-
imum achievable performance of linear and MLP con-
trollers has been estimated, demonstrating that the
control performance of both the linear and MLP controllers
falls as the degree of nonlinearity in the system primary
path increases. The ability of MLP controllers to achieve
generalised performance across a range of system stimula-
tion magnitudes has been investigated, and a training bias
parameter y has been introduced to balance the control per-
formance across the training range. The effect of varying
this parameter has been presented, demonstrating that,
for a fixed number of hidden nodes in the controller, the
parameter can control the relation between generalised con-
troller performance and reference signal magnitude. Increas-
ing the controller training range has been shown to reduce
controller performance over the same range. However, it
has also been demonstrated that this performance may be
recovered by increasing the number of hidden nodes in
the MLP controller.

Additional contributions which would extend this work
in the future could include the study of an extended set of
NN architectures, a wider study of the NN hyperparameters,
the study of a wider range of types of nonlinear behaviour,
comparison of controller performance to other common
nonlinear control strategies, as well as experimental valida-
tion of the results under similar nonlinear conditions.
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