The University of Southampton
University of Southampton Institutional Repository

Decoding dark matter at future e+e- colliders

Decoding dark matter at future e+e- colliders
Decoding dark matter at future e+e- colliders
We explore the potential of the
2470-0010
Belyaev, Alexander
6bdb9638-5ff9-4b65-a8f2-34bae3ac34b3
Freegard, Arran
10115e3a-0e9b-4a37-8f15-52f4354dc1f4
Ginzburg, Ilya F.
94f427c1-c716-42ad-a917-3ce3b47c2f2c
Locke, Daniel
0ee9aab4-c37d-4ea9-8971-9b53b05d129e
Pukhov, Alexander
1ebba234-752f-4148-9b9e-400d14d875f5
Belyaev, Alexander
6bdb9638-5ff9-4b65-a8f2-34bae3ac34b3
Freegard, Arran
10115e3a-0e9b-4a37-8f15-52f4354dc1f4
Ginzburg, Ilya F.
94f427c1-c716-42ad-a917-3ce3b47c2f2c
Locke, Daniel
0ee9aab4-c37d-4ea9-8971-9b53b05d129e
Pukhov, Alexander
1ebba234-752f-4148-9b9e-400d14d875f5

Belyaev, Alexander, Freegard, Arran, Ginzburg, Ilya F., Locke, Daniel and Pukhov, Alexander (2022) Decoding dark matter at future e+e- colliders. Phys. Rev. D, 106 (1), [015016]. (doi:10.1103/PhysRevD.106.015016).

Record type: Article

Abstract

We explore the potential of the

Text
PhysRevD.106.015016 - Version of Record
Available under License Creative Commons Attribution.
Download (1MB)

More information

Accepted/In Press date: 23 June 2022
Published date: 19 July 2022

Identifiers

Local EPrints ID: 491850
URI: http://eprints.soton.ac.uk/id/eprint/491850
ISSN: 2470-0010
PURE UUID: be2a2111-dad2-474f-8152-27b912c7a6d3
ORCID for Alexander Belyaev: ORCID iD orcid.org/0000-0002-1733-4408

Catalogue record

Date deposited: 04 Jul 2024 17:11
Last modified: 12 Jul 2024 01:45

Export record

Altmetrics

Contributors

Author: Arran Freegard
Author: Ilya F. Ginzburg
Author: Daniel Locke
Author: Alexander Pukhov

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×