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Abstract

We conduct a comprehensive analysis of two data assimilation methods: the first
utilizes the discrete adjoint approach with a correction applied to the production
term of the turbulence transport equation, preserving the Boussinesq approxi-
mation. The second is a state observer method that implements a correction in
the momentum equations alongside a turbulence model, both applied to fluid
dynamics simulations. We investigate the impact of varying computational mesh
resolutions and experimental data resolutions on the performance of these meth-
ods within the context of a periodic hill test case. Our findings reveal the distinct
strengths and limitations of both methods, which successfully assimilate data to
improve the accuracy of a RANS simulation. The performance of the variational
model correction method is independent of input data and computational mesh
resolutions. The state observer method, on the other hand, is sensitive to the
resolution of the input data and CFD mesh.

Keywords: Data assimilation, Separated flow, Turbulence modelling, State observer,
Variational method, Discrete adjoint
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1 Introduction

Data assimilation in fluid dynamics is used to refine models, quantify uncertainty,
optimize experiments, and minimize error propagation. It ensures that numerical
simulations and predictions align with real-world observations, thereby alleviating
experimental shortcomings such as incomplete or noisy data and computational short-
comings such as incorrect boundary conditions or modelling assumptions. With the
use of particle image velocimetry (PIV), improved assimilation methods became more
applicable to fluid mechanics. Data assimilation (DA) was first introduced within mete-
orology [1, 2], where real-world observations were used to improve the understanding
and predictive capabilities of meteorological simulations. There are three groups of DA
methods: variational methods [3–11], sequential methods also known as Kalman filter-
ing [12–17] and state observer methods [18–25]. An in-depth comparison of variational
methods and sequential methods is shown by Mons et al. [5] and an understanding of
the application of sequential and state observer methods is given by Hayase [26].

To overcome the Reynolds closure problem turbulence models are employed. These
turbulence models are inherently incorrect but provide a good estimate of the physics
of particular flows. There are three data assimilation methods for improving the pre-
dictions of fluid problems to overcome the Reynolds closure problem. The first involves
determining the unknown Reynolds stresses directly from measurement data, shown
by Kellaris et al. [27]. The second method implements and directly corrects a turbu-
lence model by means of tuning a field or constant within the model, and the final
method implements but indirectly corrects a turbulence model by means of an addi-
tional term within the governing equations. Work by Franceschini et al. [8] compared
the final two approaches utilising a variational data assimilation approach.

The variational method (also known as 3D/4D Var) modifies uncertain parameters
in the numerical model by minimizing the discrepancy between the output of such a
model and experimental measurements. The discrepancy is formulated as a cost func-
tion and gradient-based optimization methods are used to find the minimum. Foures
et al. [6] successfully used the variational method to optimise unknown Reynolds
stress gradients in the Reynolds-Averaged Navier–Stokes (RANS) equations for a flow
past a circular cylinder at Reynolds number Re = 150. Direct numerical simulation
(DNS) data with varying resolutions were used as reference measurements. Satisfac-
tory reconstruction of mean velocity was achieved. Symon et al. [7] applied a similar
methodology to an idealized airfoil at Rec = 13, 500, using planar PIV data as input
measurements. Varying the input data resolution affected mean-velocity reconstruc-
tion, but its impact on other quantities like skin friction (Cf ) and pressure coefficient
(Cp) was not investigated.

Franceschini et al. [8] extended the methodology of Foures et al. [6] by assimilat-
ing reference data into the RANS equations closed with the Spalart-Allmaras (SA)
turbulence model [28]. This allowed the authors to perform DA more efficiently for
a backward-facing step at Re = 28275 since Symon et al. [7] faced difficulties with
the well-posedness of the steady Navier-Stokes equations at high Reynolds numbers.
Franceschini et al. [8] compared two approaches that involved tuning a source term
either in the momentum equations or the turbulence equation. The momentum source
term significantly improved reconstruction when full-field input data was available,
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while improvement in reconstruction observed with a correction term applied to the
turbulence transport equation was less accurate but relatively insensitive to input data
resolution. Franceschini et al. [8] also examined skin-friction (Cf ) and pressure coef-
ficient (Cp) along the bottom wall, with the momentum correction showing superior
performance over the turbulence transport correction. Cato et al. [9] reached a similar
conclusion after a comprehensive comparison of six different correction terms across
three flow configurations.

The studies by Foures et al. [6], Symon et al. [7], and Franceschini et al. [8] utilized a
continuous adjoint method for DA which involves linearizing and discretizing the PDE
while reusing the primal solver. In contrast, the discrete approach, as demonstrated by
Kenway et al. [29], formulates adjoint equations post-discretization, achieving potential
machine precision gradient calculation accuracy. Several studies provide a good com-
parison between these methods [30–32]. Brenner et al. [10] applied a discrete adjoint
method to correct the eddy viscosity field in RANS simulations using a k−ϵ turbulence
model. They used a frozen eddy viscosity approach and optimized a spatially varying
scalar multiplier. This approach is constrained by the Boussinesq approximation and
requires regularization to promote a smooth parameter field and Cf . However, the
gradient accuracy remains a challenge. Recently, Brenner et al. [33] extended the work
in Ref. [10] by improving the accuracy of their algorithm and including a momentum
source term correction. A promising outcome was that the accuracy of mean-velocity
reconstruction was unaffected when coarse input data was considered.

A more recent tool that employs the discrete adjoint method but has been shown
to produce high-accuracy gradients is DAFoam [34, 35]. In addition to being open
source, it seamlessly integrates primal solvers from OpenFOAM with the discrete
adjoint method and an optimizer framework, ideal for variational DA. However, it is
worth noting that DAFoam lacks a projection and smoothing operation as described
in [6, 7]. This absence may pose challenges when working with experimental data that
has a different resolution compared to the computational mesh.

A DA method that circumvents the complexity of the variational method is the
state observer method. Initially developed by Luenberger [36], the state observer
method was first implemented into the world of fluids by Hayase [18] and utilises con-
trol theory to modify part of a system such that it converges to a known optimal
state. The modification to the initial system or equations is generally the addition of
a forcing term that is proportional to the error between the result of the system and
the optimal state. This forcing term can be considered as a feedback loop pushing the
system towards the optimal state. The implementation of the state observer method
by Nisugi, Hayase and Yamagata [19–21] for the flow around a cylinder found that the
most improved locations were downstream of the cylinder and that very close to the
cylinder surface the error was largest. When modifying the computational domain it
was shown that a feedback term reduces the error even when using a coarse compu-
tational grid and it is observed that at higher feedback rates and higher experimental
spatial resolution, the reduction in error increases. However, even though the results
were validated with pressure measurements, there was no indication of the pressure
field or surface pressures obtained.

3



The state observer method can be considered as a proportional-integral-differential
control, where only the proportional component is utilized. Imagawa and Hayase [22]
use an additional forcing term in the discretized Navier-Stokes (NS) equation, while
Zauner et al. [23] incorporate an additional “nudging” term in the momentum part
of the unsteady Reynolds-Averaged Navier–Stokes (URANS) and Saredi et al. [24]
introduce a proportional-integral forcing term to the momentum part of the RANS
equations. In each case, these terms are proportional to the discrepancy in the optimal
state and the current computation. Both studies found that increasing the feedback
gain improved convergence time up to a limit where the system was then destabilised
and the error would increase. Similar to previous studies, higher spatial resolution
leads to greater improvements in the assimilated velocity. Nevertheless, these studies
were focused on the velocity fields, whereas the pressure of the surface as well as the
surrounding field were not evaluated. This research seeks to address this limitation
and improve the consideration of “reconstructed” variables, such as pressure, in state
observer methods.

From the above discussion, there is a clear need for a robust DA methodology
capable of operating on steady-state cases. We introduce a new discrete adjoint DA
algorithm that is entirely implemented in OpenFOAM. This new variational algorithm
also introduces a way to handle sparse data where grid conformity is ensured either
by interpolation or by using a projection operator. We compare the performance of
this new DA technique to a simpler state observer approach. There is a particular
interest in the sensitivity of the velocity field reconstruction to the input data, which
will be averaged to mimic experimental data, and the computational mesh which other
studies typically keep fixed. The two methods are also compared with respect to the
reconstructed variables, which are less often considered, such as surface pressure, skin
friction coefficient and Reynolds stress gradients.

In the following sections, we present a comprehensive examination of the two
aforementioned DA methods. Section 2 outlines the mathematical frameworks and
implementation details of these methods, shedding light on the core principles that
underpin their performance. Section 3 describes the periodic hill test case, input data
and baseline computations. Section 4 focuses on resolution effects for the assimilated
velocity field while Section 5 investigates the reconstructed variables in greater detail.
Finally, section 6 concludes our findings, offering practical implications for researchers
in the field.

2 Data assimilation methods

Within this section, a comprehensive explanation of the DA techniques employed to
improve the periodic hill test case are discussed. In Section 2.1 we present the RANS
equations for an incompressible fluid, in Section 2.2 we describe the variational method
where a modification to the production term of the eddy viscosity is made and in
Section 2.3 we describe the state observer method which utilizes a forcing term in the
momentum equations independent of the turbulence model.
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2.1 Reynolds-Averaged Navier–Stokes

The RANS equations for an incompressible fluid are given by,

∂Ui

∂xi
= 0, (1)

Uj
∂Ui

∂xj
= −1

ρ

∂P ∗

∂xi
+

∂

∂xj

(
ν
∂Ui

∂xj

)
− ∂τij
∂xj

, (2)

where Ui and P ∗ are the mean velocity components and pressure respectively, ρ is
the density of the fluid, ν is the kinematic viscosity, τij is the Reynolds stress tensor

and xi, the spatial co-ordinates. The Reynolds stress tensor τij = u′iu
′
j is the averaged

outer product of the fluctuating velocity components that presents the problem of
closure. To model this term, the mean flow components are used within the Boussinesq
hypothesis alongside the SA turbulence model.

2.2 Variational method

Within this section we introduce a data assimilation algorithm that employs a varia-
tional approach to directly modify the production term of the SA turbulence model,
which is hereafter referred to as the variational method. The algorithm uses the Field
Inversion and Machine Learning (FIML) framework devised by Singh et al. [37]. The
production term of the SA turbulence model is augmented with a spatially varying
scalar field β(x, y) and is given by,

Dν̃

Dt
= β(x, y)P (ν̃,w) + T (ν̃,w)−D(ν̃,w), (3)

where w is the vector of state variables such as mean velocity, pressure and momentum
flux and P , T and D are the production, transport and dissipation terms, respectively.
The objective function, representing a discrepancy between the velocity fields of the
high-fidelity data and RANS simulation using the SA model, is given by

f(u, β) =
1

2
∥Q(u, β)− Q̃∥2Q. (4)

where Q̃ is a set of high-accuracy measurements such as experimental data or data
extracted from DNS. Operator Q(.) extracts the computational data in such a way
that Q(u) ∈ Q is a projection of the computational mean velocity to the measurement
space Q. ∥ · ∥Q is the generic norm in the measurement space.

Variational DA is now formulated as an optimization problem where the goal is to
minimize an objective function subject to some constraints. This is mathematically
written as

min
w∈Rnw ,β∈Rnβ

f(w, β), (5)
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s.t. R(w, β) = 0, (6)

βL ≤ β ≤ βU , (7)

where nβ is the size of the design vector, nw is the size of the state vector, R is the
governing equations that serve as constraints and βL and βU denote the lower and
upper bounds, respectively, for the design variable. For our test case, R represents
the residual function of the NS equations. Equation 5 is a non-linear, constrained
minimization problem with equality and bound constraints and can be solved using
popular gradient-based techniques.

Gradient-based optimization techniques require the total derivative of the objective
function with respect to the design variable (hereafter referred to as sensitivity). An
efficient way to compute the sensitivity is by employing an adjoint method, which
ensures that the computational cost remains independent of the number of design
variables [38]. We use the discrete adjoint method in this study for computing the
sensitivities. If f and R are a univariate representation of the objective and residual
functions, respectively, the sensitivity can be computed using

df

dβ
=
∂f

∂β
− ψT ∂R

∂β
, (8)

where ψT is the transpose of the adjoint vector. The detailed derivation can be found
in [29]. DAFoam is used to obtain the sensitivity. DAFoam’s source code is enriched
with AD-forward (ADF) and AD-reverse (ADR) implementations using CoDiPack
[39], enabling machine-precision gradient accuracy [29].

Once the sensitivity is obtained, the optimization is carried out by using an inte-
rior point (also called a barrier) method with a backtracking line-search filter to
solve the constrained minimization problem defined in Equation 5. The interior-point
method solves a sequence of barrier problems [40]. The original problem is reformu-
lated by combining the objective function and the bound constraints along with a
barrier parameter into what is called the barrier objective function. We use the interior
point method implemented in IPOPT [41]. It has provisions for second-order correc-
tion and feasibility restoration. Convergence is determined based on the satisfaction
of the Karush-Kuhn-Tucker (KKT) condition up to a user specified tolerance. Most
importantly, it is free and open source.

We use a cell-volume weighted averaging operator Q to project the computational
mean velocity data onto the synthetic PIV grid. This is done to ensure that the dis-
crepancy field is calculated on the synthetic PIV grid. However, the adjoint solution is
forced on the computational grid which necessitates the requirement of a smoothing
operator Q̂ to transfer the computed discrepancy field to the computational grid. The
experimental and computational data are stored on topologically different meshes and
cell-cell intersections are taken into consideration during the projection and smooth-
ing operations. We implement the projection and smoothing operations in DAFoam
with the help of the OpenFOAM function interVol() that obtains the intersection
volume between two cells of different meshes. We also implement a custom objective
function that works in conjunction with the projection and smoothing operations. This
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implementation was possible only because of the open-source and modular nature of
DAFoam and the details can be found in Appendix A.

2.3 State observer method

Within this section we introduce a data assimilation algorithm that employs a state
observer methodology to directly modify an additional term in the RANS momen-
tum equations (independent from turbulence model), which is hereafter referred to as
the state observer method. The state observer method introduces a forcing term into
Equation 2 denoted as Fi. For each iteration of the state observer method, the mod-
ified RANS equations are solved within OpenFOAM employing the SA turbulence
model. The calculation of the forcing term, as expressed in Equation 9, is determined
by summing the product of a proportional gain Kp and the difference between the
projected velocity computed in the previous time step Q(un−1

i ) and the target velocity
Ui to the forcing term from the previous time step Fn−1

i

Fn
i = Fn−1

i +Kp[Q(un−1
i )− Ui]. (9)

The method for computing the forcing term draws from a concept in control theory
known as proportional control. However, a subtle adjustment is incorporated with
the inclusion of the forcing term of the previous iteration Fn−1

i to ensure that the
calculated forcing term builds from the previous computational result, as shown by
Saredi et al. [24]. To ensure the measurement data remains as accurate as possible,
the computational flow variables are projected onto the measurement domain given
by the operator Q(.). For all cases when moving from the computational domain to
the measurement domain, the data is being down-sampled. Therefore, an interpolant
is constructed by triangulating the input data with a Delaunay triangulation, and on
each triangle performing linear barycentric interpolation with the use of the function
griddata from the python library scipy.

It has been demonstrated in literature that the proportionality constant plays a
crucial role in achieving both computational efficiency and solution accuracy. Increas-
ing the value of Kp leads to faster convergence with lower error in the solution.
However, when Kp becomes excessively large, the forcing term modifies the momen-
tum equation too aggressively, causing the solution to become unstable. A preliminary
investigation revealed that a gain of Kp = 10−4 achieves the highest level of accuracy
with the fewest iterations. More details can be found in Appendix B.

The forcing term is computed on the measurement domain, but it needs to be
projected back onto the computational domain. From a preliminary investigation into
different interpolation methods, it is found that a method which guarantees that the
interpolated forcing term is continuously differentiable at all locations provides a more
accurate assimilation. A continuous interpolation approach is more beneficial as it
provides a regularisation to the forcing not included in the state observer method.
Hence, a trivariate Clough-Tocher interpolation method [42] is implemented whereby
the interpolant is constructed by triangulating the input data with a Delaunay trian-
gulation and constructing a piecewise cubic interpolating Bezier polynomial on each
triangle using the cubic argument in scipy’s function griddata. To ensure forcing

7



does not occur in regions where data is unavailable, a value of zero is assigned to any
points located outside of the measurement domain. To implement the forcing term
within the momentum equation the function vectorCodedSource is included within
OpenFOAM’s fvoptions dictionary. It must be noted that the implementation of the
momentum source term within OpenFOAM is as an absolute variable, hence is divided
by the volume of the cell. Therefore within vectorCodedSource the forcing term is
pre-multiplied by the cell volume.

A key point that needs emphasizing here is the difference in the nature of cor-
rections applied by the variational and state observer methods. The state observer
method applies a forcing to the momentum equation as opposed to the variational
method where the forcing is applied in the turbulence transport equation. Being within
the confines of the Boussinesq approximation limits the flexibility of the variational
method as was also reported in Franceschini et al. [8]. The state observer method
escapes the confines of the Boussinesq approximation and is therefore more flexible.

3 Description of test case

This section describes the flow over a periodic hill which serves as a test case for the
data assimilation methods. In Section 3.1 the details of the periodic hill geometry are
explained. In Section 3.2 the generation of synthetic input data is described and in
Section 3.3 the CFD domain and solution procedures are explained.

3.1 Periodic hill flow details

The canonical periodic hill is a good test case since it contains flow physics that
most turbulence models struggle to capture accurately. These include flow separation,
re-circulation, and re-attachment. As seen in Figure 1, the geometry consists of a
channel with a flat top wall and periodic hill of height H separated by a valley on the
bottom wall. The hill normalised length and height of the channel is Lx/H = 9 and
Ly/H = 3.035, respectively.

3.2 Synthetic PIV

To test the DA methods on input data that is representative of PIV per-
formed in the water tunnel, we generate synthetic PIV fields from a pub-
licly available DNS database of parameterized periodic hill geometry, found in
the work by Xiao et al. [43], available from the following GitHub repository
https://github.com/xiaoh/para-database-for-PIML.git. The DNS database was
generated for the purpose of development and validation of data-driven models. Using
this database three PIV experiments are created such that three different vector res-
olutions of synthetic PIV fields are computed. The hypothetical experimental setup
ensures that the Reynolds number is consistent with the DNS data set at Re = 5, 600.
The experimental setup was designed to be operated within a closed channel of water
at 0.112ms−1 with a test section of length, height and hill height of 0.45m, 0.15m and
0.05m, respectively. Table 1 presents the outcomes of utilizing three different cameras
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flow direction

recirculation

9H

H

x
Fig. 1: Graphical description of the periodic hill case parameterized by H with inlet
( ), outlet ( ) and walls, top and bottom ( ) shown. The flow direction and
re-circulation zone have also been depicted.

(available on the market) with various lenses and distances, resulting in three distinct
image resolutions.

Table 1: Hypothetical experimental PIV parameters.

Name Unit 4 MP Case 8 MP Case 16 MP Case

Pix Density pix/mm−1 5.05 7.25 10.24
No. Vectors - 1572 3304 6542
Interrogation Window m 6.34× 10−3H 4.41× 10−3H 3.13× 10−3H

To generate the synthetic PIV vector fields the DNS data set is formatted as a
271, 262 point unstructured mesh, which is naturally interpolated onto the structured
2272× 1704, 3264× 2448 and 4608× 3456 pixel meshes of each theoretical camera (to
represent pseudo-particles). Pixel locations above and below the experimental set-up
were padded with zeros, mimicking a particle image. Locations up and downstream
of the experimental set-up were replaced by opposite up or downstream points, to
represent a cyclic boundary. A moving average with a window size of 32×32 is utilized
to simulate a standard cross-correlation window employed in PIV processing. Figure
2 shows the resulting synthetic PIV vector fields. A significant difference in resolution
is observed between each generated data set.

3.3 Baseline computations

DA is performed on three distinct computational meshes. Each mesh is characterized
by a progressively increasing mesh density achieved by augmenting the number of grid
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Fig. 2: Streamwise and wall-normal velocity components for PIV fields with 4MP,
8MP, and 16MP camera resolutions.

points in both the streamwise and wall-normal directions. The coarsest computational
mesh is chosen such that it contains more cells than that of the highest resolution
experimental case. Figure 3a shows the initial coarse mesh configuration which consists
of a total of 7200 computational cells, distributed with 120 cells in the streamwise
direction and 60 cells in the wall-normal direction, respectively. Subsequently, this
coarse mesh is refined as shown in Figure 3b, wherein the number of grid points in the
streamwise and wall-normal directions is increased to 160 and 100 cells, respectively.
This refinement results in a mesh containing 16000 computational cells. The highest
level of mesh density is achieved in the final computational mesh shown in Figure 3c,
which features 21600 cells distributed with 180 cells in the streamwise direction and
120 cells in the wall-normal direction. It is noteworthy that this progression entails a
doubling and tripling of the mesh density relative to the initial coarse computational
mesh. It is ensured that y+ < 1 along the top and bottom walls through stretching
applied with decreasing cell volumes as the walls are approached. By employing these
three distinct mesh configurations, we were able to systematically investigate and
analyze the impact of mesh density on our simulations.

The SA model is used as the baseline which will be improved by utilizing the state-
observer and variational methods. The simulations are performed on the open-source
finite-volume method (FVM) package OpenFOAM [44]. To solve the RANS equations
the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) [45] is employed
using OpenFOAM’s inbuilt simpleFOAM solver. The gradients are calculated using a
second-order accurate central differencing scheme. The velocity term is discretized
using a second-order upwind method, while all other flow variables are discretized
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(a) (b)

(c)

Fig. 3: Computational meshes with (a) 7200 (b) 16000 and (c) 21600 cells

using a first-order upwind method. Each matrix equation is solved using the Gauss-
Seidel method. Convergence is determined based on a tolerance of 10−6 for the residual
of pressure and velocity components.

The Reynolds number for this investigation is defined based onH and bulk velocity
UB on the inlet face given by,

UB =
1

2.035H

∫ 3.035H

H

ux(y)dy, (10)

where ux(y) is the wall-normal velocity profile of the streamwise mean velocity. The
bulk velocity is maintained by adding a pressure gradient as a body force to the
momentum equation. The natural direction of the flow is designated to be along the
positive streamwise direction with the left edge serving as the inlet and the right
edge serving as an outlet. The presence of curvature at the inlet results in an adverse
pressure gradient that causes flow separation at ≈ 0.17H and reattachment on the
bottom wall at x/H = 5.0 [46]. The simulations are performed at a bulk Reynolds
number of ReB = 5600 which is set by fixing H = 1m, ν = 5× 10−6m2s−1 and UB =
0.028ms−1. The inlet and outlet boundaries are periodic in nature, with no-slip top and
bottom walls. The front and back faces of the domain are designated with a Neumann
boundary for all variables and a no flow condition for velocity (designated as symmetry
boundary condition in OpenFOAM) essentially treating the case as two-dimensional.

4 Velocity field assimilation

In this section, the variational and state observer methods are applied to a periodic hill
test case. Our investigation encompasses a range of computational mesh and experi-
mental resolutions, shedding light on the behavior and performance of these methods
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under varying conditions. Through an examination of velocity contours shown in
Figure 4 & 5, reattachment locations displayed in Table 2, streamwise velocity con-
tours shown in Figure 6 and an L1 error norm, we provide valuable insights into the
strengths and limitations of each approach.

Examples of both variational and state observer methods are presented in Figure
4 along with the initial RANS solution for the periodic hill case utilizing the SA tur-
bulence model. This corresponds to setting the scalar field β = 1 in the variational
method and Fi = 0 in the state observer method. The DNS solution of the same peri-
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Fig. 4: Comparison of streamwise mean velocity scaled by bulk velocity UB between
DNS, SA baseline, data assimilated variational and data assimilated state observer
methods for the highest resolution of computational mesh and input data (21600 cells
and 6542 vectors).

odic hill case is also presented. Both methods exhibit improvements when compared
to the baseline, shown by the contours within the freestream. Notably, the recircu-
lation region aligns more closely with that of the DNS, as indicated by the dividing
streamline.

It must be noted that both the variational and state observer methods exhibit a
relatively low sensitivity to variations in the experimental resolution when comparing
the velocity contours of the freestream. This suggests that both approaches are robust
to variations in the input data resolution, which can be a critical factor in practical
applications. Consequently, Figure 5 only displays variations in the computational
mesh resolution.

The improvement in mean-velocity prediction for the variational method depends
on the objective function field. The magnitude of the objective function is higher at
the point of separation on the windward hill, along the bottom and top walls being
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Fig. 5: Contours of streamwise and wall-normal velocity of variational and state
observer method (dashed lines) compared with DNS (solid lines) for 7200 and 21600
computational cells, for the highest resolution of input data (6542 vectors).

skewed more towards the leeward hill. On the other hand, the state observer method
demonstrates superior agreement with experimental data compared to the variational
method. Specifically, the state observer method exhibits velocity contours that closely
match the experimental values in the freestream region.

The variational method exhibits independence from computational mesh resolu-
tion. The variational method falls short at predicting the shear layer and freestream.
In contrast, when increasing the mesh resolution, an improvement in the accuracy
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Table 2: Reattachment locations for the state observer method, variational method
and DNS for variations in computational and experimental resolution.

Experimental resolution Variational [L/h] State observer [L/h] DNS [L/h]

Coarse Medium Fine Coarse Medium Fine -
Coarse 5.03 5.10 5.15 4.39 4.35 4.21 5.03
Medium 5.15 5.33 5.23 4.27 4.29 4.39 5.04
Fine 5.01 5.19 5.01 4.37 4.36 4.33 5.04

of the streamwise velocity component for the state observer method is observed. In
particular, the recirculation region aligns more closely with the experimental data.
However, it must be noted that outside of the recirculation region, the accuracy of the
wall-normal velocity component appears to decrease with increasing mesh resolution.

When examining the reattachment point, shown in Table 2, the variational and
state observer methods exhibit notable independence from both mesh and experimen-
tal resolution. The variational method consistently predicts the reattachment point
within a range of (±0.3)H. In contrast, the state observer method deviates from
the actual reattachment point by (1 ± 0.4)H. This stark difference suggests that the
variational method is able to predict the boundary layer physics more accurately.

0
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y
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4MP

16MP

DNS baseline state observervariational

0 2 4 6 8 10

Fig. 6: Streamwise velocity profile comparison of the lowest and highest input data
resolution for a mesh of size 21600 cells.

To clearly understand the discrepancies of the variational method in the freestream
and the state observer method at the boundary, the streamwise velocity profiles at
nine evenly spaced streamwise locations are investigated. In Figure 6, we present
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velocity profiles computed at the finest mesh resolution for both the finest and coarsest
experimental resolutions. This analysis aims to explore how changes in experimental
data can affect the predicted velocity.

Within the streamwise profiles shown in Figure 6, similar to the velocity contours,
we observe that the variational method presents a notable discrepancy in the recir-
culation region. This is most noticeable within the shear layer where the velocity is
under-predicted and could be a result of an incorrect separation prediction. On the
other hand, the state observer method almost perfectly matches with the stream-
wise velocity profiles of the DNS within the freestream. Both methods produce vast
improvements when compared to the baseline prediction within all regions of the fluid
domain.

The velocity profile serves as a valuable tool for identifying and amplifying dis-
crepancies in velocity, especially within the near-wall region. The variational method
consistently captures boundary layer physics across different experimental resolutions,
with very minor improvements as experimental resolution increases. This consistency
suggests that the variational method is less influenced by variations in experimental
data as a result of a global forcing through the β field. Consequently, the forcing at
the wall remains independent of surrounding experimental information.

In contrast, the state observer method’s limitations near the wall align with the
earlier observations with regard to the inaccuracy of predicting the reattachment loca-
tion, revealing challenges in capturing the boundary layer physics. Contrary to prior
assumptions, there is a notable improvement in the state observer method’s perfor-
mance near the wall with increasing experimental resolution. This improvement is
attributed to the availability of data closer to the wall.

The state observer method sets extrapolated forcing locations to zero when data is
limited, as is the case with a coarse experimental mesh. In such scenarios, a significant
number of computational points near the wall receive zero forcing. However, when
using a finer experimental mesh that includes more detailed information closer to
the wall, the number of computational cells with zero forcing decreases, resulting
in improved predictions. As shown in Figure 2, the coarsest experimental resolution
reveals areas without data at the wall of the periodic hill. In these areas, points within
the computational mesh are assigned zero forcing.

We present the comparison of the L1 error of the streamwise and wall-normal
velocities scaled by the bulk velocity UB between the variational and state observer
methods for different computational and experimental data resolutions. The L1 norm,
presented in Equation 11, is selected for comparison due to its resistance to outliers,
making it a better indicator of overall error reduction in the domain. The comparisons
are made with the DNS data as the reference. All the assimilated fields and the DNS
data are interpolated onto the grid of 4MP resolution. This is accomplished using,

L1 =
|Q(ux)−Q(Ux)|+ |Q(uy)−Q(Uy)|

UB
, (11)

where linear interpolation is used as Q(.) to transfer data from the computational
mesh to the experimental grid. This information is visualized in Figure 7 using a block
format for both the variational and state observer methods.
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At all levels of experimental and computational resolutions, the state observer
method consistently exhibits a more substantial reduction in error between DNS and
the final computation when compared to the variational method. Notably, the largest
L1 error value for the state observer method is approximately 30% lower than that of
the variational method. This finding aligns with the results reported by Franceschini
and Cato [8, 9], where they observed that corrections in the beta field led to relatively
smaller reductions in the L1 error compared to corrections in the momentum equation.

There is a decrease in the L1 error for the variational method with increasing
computational mesh resolution for the coarsest experimental data resolution case.
This is expected since the variational method has the ability to regularize the input
data owing to the global nature of corrections when modifying the forcing term. This
inherent regularization allows the effect of computational mesh refinement to manifest
a reduction in the error of assimilated quantities. The differences in the error between
the computational grids reduce with increasing experimental data resolution. For the
16MP case, the L1 norms are identical. It can also be observed that for the variational
method, the L1 norms of all the cases lie within 10% of a base value of 0.039 suggesting
a less pronounced influence of experimental and computational grid resolution for the
assimilated quantities.

Fig. 7: L1 error of streamwise and wall-normal velocity scaled by UB between DNS
and (left) variational (right) state observer for each experimental and computational
resolution. The colors represent the variation of the error from the mean in each
method, such that blue is a reduction and red is an increase in L1 error.

On the contrary, the state observer method exhibits an opposing trend: there is a
consistent increase in L1 error as the computational mesh becomes finer, regardless
of the experimental data resolution. Finer computational meshes create a greater dis-
parity between the number of input data and mesh points. Dealing with this disparity
requires the state observer method to distribute input data among a larger number of
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computational mesh points. Conversely, reducing this disparity provides a straightfor-
ward one-to-one mapping between input data points and corresponding computational
mesh points. This is evident in Figure 7, where the smallest L1 error occurs with a
16MP data set (consisting of 6542 points as shown in Table 1) and a computational
mesh resolution of 7200. It is clear that having nearly identical numbers of input data
and computational mesh points benefits the state observer method.

Since we are using DNS data without the addition of noise or uncertainties, it is
theoretically possible to continue improving the L1 norm at the expense of a large
number of primal solver iterations. In a real experiment, there will be sources of uncer-
tainty such as in the recirculation region due to the lack of seeding. Such errors would
not permit reducing the discrepancy between the reference and computational fields
beyond a certain point. In such cases, a higher value of L1 norm would be more desir-
able therefore reducing the computational cost. A description of the computational
cost of the two methods is presented with the use of primal solver calls in Appendix C.

5 Reconstructed variables

Upon examination of the velocity, it becomes evident that discrepancies between the
two methods, particularly in proximity to the wall, require further analysis. The varia-
tional method demonstrates accurate performance on the wall, while the state observer
method exhibits shortcomings that warrant further investigation. In this section the
skin-friction coefficient and wall pressure gradient shown in Figure 8 and the curl of
the forcing term shown in Figure 9 are discussed for both the variational and state
observer methods. Since both methods utilize the velocity field as a control param-
eter in different ways, these quantities are labelled “reconstructed” variables that
remain indirectly influenced by the DA procedure. The skin-friction coefficient and
wall pressure gradient reference data of Krank et al. [46] is used and can be found in
https://mediatum.ub.tum.de/1415670.

For the variational method, the skin friction coefficient aligns well with the DNS
result, with the exception of the separation point and the peak Cf location. In these
specific regions, disparities emerge, suggesting that the method faces challenges in
accurately predicting skin friction behavior under certain flow conditions. However, an
overall improvement over the baseline case is observed when the variational method is
used. In contrast, the state observer method consistently overshoots the expected val-
ues along the bottom wall, alongside clear discrepancies or “distortions” corresponding
to geometric changes within the flow field. Hence it is observed that the state observer
method performs just as poorly as the baseline for most of the wall as a result of zero
forcing in these locations. These features closely resemble the Cf profile obtained by
Brenner et al. [10] in their reconstruction without the use of regularisation.

In Figure 8 at x = 8.5H, the region associated with the peak Cf , the variational
method demonstrates an improvement as mesh resolution and experimental resolution
increase. For the state observer method, a similar trend is observed, with improvements
in predicting the peak Cf corresponding to finer experimental and computational
resolutions. The variational method exhibits a peculiar behavior at the separation
location where x = 0.5H. A sharp dip in the Cf is observed that gets worse with
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along the bottom wall for an input data resolution of 4MP (solid lines) and 16MP
(dashed lines) comparing the variational and state observer methods for 7200 and
21600 computational cells. Shown in the inset, is a zoomed-in view of the region
between x/H = 4 and x/H = 6. The Cf is scaled and translated.

increasing mesh resolution. This dip is observed in literature by Cato et al. [9] and can
be explained by a small, yet strong secondary recirculation region just downstream
of the separation location. The presence of this secondary recirculation region at the
separation point is identified as a key contributing factor to the variational method’s
discrepancies within shear layer predictions in earlier observations. It is interesting to
see a better agreement between DNS reference data (especially in the region x/H = 4
to x/H = 7) and our Cf prediction obtained using the variational method compared
to the one reported in Cato et al. [9].

Notably, the variational method exhibits independence from both mesh and exper-
imental resolutions, aside from deviations in the peak Cf and separation point regions.
Conversely, the state observer method displays notable “distortions” in its skin fric-
tion coefficient plots when encountering geometry changes, such as transitioning up
or down the hill. These “distortions” stem from the influence of experimental res-
olution on the method’s predictions, which appear to result from forcing effects at
the wall. Similar to the explanation of the erroneous velocity profile at the wall, the
state observer method enforces zero forcing within regions outside of the experimental
domain. Consequently, there are sharp and irregular gradients in the forcing close to
the wall hence why “distortions” are observed in the Cf . As expected these “distor-
tions” become less pronounced with greater experimental resolution and in locations
where geometric changes are absent.

18



Similar to the observations regarding Cf , the variational method exhibits an
impressive alignment with the DNS results for the pressure gradient, with notable
exceptions at the separation point and a slight underprediction of the gradient at
x = 8.5H. These deviations suggest that the pressure is influenced by similar chal-
lenges as that faced by the velocity in accurately predicting specific flow conditions.
Similarly, the state observer method accurately predicts Cf values on the flat region of
the hill and correctly predicts the gradient at x = 8.5H, though with a notable over-
prediction at x = 9H. When observing the inset of Figure 8, the state observer method
appears to be in better agreement with the results of the DNS. The pressure gradient
of the variational method seems to decrease along the wall at a larger rate than that
of the DNS and state observer method. Similar to what was observed in the Cf plots,
the state observer method shows fluctuations in pressure gradient predictions, mainly
in areas with varying geometry.

Aside from the discrepancies at the separation location and peak pressure gradi-
ent, Figure 8 shows the variational method displays remarkable independence from
both experimental and mesh resolutions, consistent with earlier observations. In con-
trast, the state observer method demonstrates an improvement with mesh resolution.
Additionally, the presence of “distortions” in the state observer methods prediction of
pressure gradient appears to diminish with increasing experimental resolution, echoing
the previous discussions. These trends align with the influence of experimental resolu-
tion on the state observer method’s predictions, particularly in regions with changing
geometry. To explain why particular methods are producing the results discussed ear-
lier, we focus on the forcing term (which is the divergence of the Reynolds stress
tensor), particularly examining the curl of this term, shown in Figure 9. By taking
the curl of the forcing, we remove the contribution of the potential forcing which is
absorbed into the pressure and cannot be separated [6]. This allows for a much more
accurate comparison with DNS. The magnitude and shape of the curl of the forcing
term provide valuable insights into the behavior of both DA methods. It should be
noted that the forcing in the case of the variational method is only from the turbulence
model. In contrast, the forcing in the case of the state observer method encompasses
both the isotropic forcing (obtained from the turbulence model) and the forcing that
is added to the momentum equation.

For the variational method, the curl of the forcing term is observed to become
smoother as mesh resolution increases. Figure 9 illustrates that the magnitude and
shape of the forcing remain consistent across all experimental and mesh resolutions.
This consistency aligns with the earlier observations, where the variational method
demonstrated independence from both experimental and mesh resolutions within the
freestream. In contrast, for the state observer method, the curl of the forcing term
is observed to match more closely with the results of the DNS as mesh resolution
increases, extending the influence of the forcing further into the freestream. This obser-
vation provides insights into why previous results showed an enhancement in the state
observer method’s performance within the freestream region with increasing mesh
resolution.

Figure 9, for the lowest input data resolution of the state observer method, shows
pockets of substantial forcing close to the wall in regions with geometric changes. These
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pockets of large forcing appear to reduce as experimental resolution is improved. The
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presence of pockets of significant forcing offers a crucial link to the previous discussion
and signify a localized and pronounced influence on the momentum within the flow. As
stated previously, where experimental data is limited, especially for changes in geom-
etry, forcing is set to zero thereby producing large gradients between computational
cells. These large gradients are visible by the significant forcing pockets, which gradu-
ally reduce with greater experimental resolution. These findings align with the earlier
discussions concerning the state observer method’s performance, where improvements
in experimental resolution led to reduced “distortions” in skin friction coefficients and
pressure gradients, thereby achieving better agreement with the DNS results. There-
fore, the presence of these forcing pockets provide a key rationale for the state observer
method’s performance and emphasizes the significance of experimental data quality
in achieving accurate results.

In contrast, aside from the separation location, the variational method consistently
exhibits no forcing on the boundary, regardless of the experimental or computational
resolution. Unlike the state observer method, there is no forcing on the leeward hill
which might explain the discrepancies in the skin-friction coefficient and pressure
gradient peaks observed earlier. This significant difference in forcing behavior at the
boundary between the variational and state observer methods plays a crucial role in
explaining the robust wall statistics observed in the variational method, which remain
consistent across various cases, as opposed to the dependence of the state observer
method on experimental resolution. The forcing observed at the separation location
for all the variational cases shows small pockets of large forcing. This observation
provides an explanation for the discrepancy in the Cf and pressure gradient plots. It is
suggested that this discrepancy convects downstream thereby mispredicting the shear
layer of the flow, hence why the freestream struggled to improve within this region.

6 Conclusion

We present a new implementation of a variational DA algorithm developed previously
[6] that employs a discrete adjoint method with a direct correction to the turbulence
transport equation and a state observer method with a correction in the momentum
equations independent of the turbulence model. The two methods are applied to a
periodic hill test case under varying conditions of computational and experimental
mesh resolutions. Our findings reveal that both the variational and state observer
methods exhibit distinct strengths and limitations. The variational model correc-
tion method, aside from the separation location, is robust and consistent at the wall
across various cases, thanks to its minimal boundary-forcing behavior. In contrast,
the model-independent state observer method demonstrates a particular sensitivity to
experimental resolution in regions with geometric changes, which manifests as poor
velocity profiles and localized “distortions” in the skin friction coefficient and pressure
gradient.

Furthermore, the study highlights the importance of mesh resolution in shaping
the performance of these DA methods. The model-dependant variational method is
less accurate in the freestream, especially within the shear layer. It is relatively inde-
pendent of mesh and experimental resolution, except for specific locations such as the
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separation point. Within experimental campaigns, ensuring high-resolution velocity
data can be expensive and time-consuming. Hence, with limited experimental resolu-
tion, the variational method with a correction in the turbulence transport equation
will be able to provide improved wall statistics. The state observer method with a
correction in the governing equations exhibits improvements in the freestream region
with increasing mesh resolution, independent of experimental resolution, and improve-
ments in the near wall region with increasing experimental resolution. Therefore, with
limited experimental resolution in the freestream, the state observer method with a
correction in the momentum equations will give improved results for those freestream
locations.

While we considered input data resolution, it was still synthetically generated to
simulate an experimental scenario. The results provide insights into the requirements
for an experimental setup that can achieve optimal reconstruction while minimizing
costs. As a future expansion of this research, we plan to test our algorithms with real
experimental data obtained from PIV. Furthermore, we aim to apply our methods to
practical flow scenarios that involve higher Reynolds numbers and more complex flow
physics. Utilizing real PIV data and extending our work to higher Reynolds numbers
will undoubtedly present their own set of challenges, which we are eager to explore in
a future study.
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Appendix A Projection and smoothing

The details of the projection and smoothing procedure are presented here in a lot
more detail. Consider a 3D uniform, structured grid of size N with one cell in the
spanwise direction that has the synthetic PIV data stored at the cell centroids. When
an unstructured computational mesh (like the ones shown in Figure 3) of size M is
superimposed on it, there are intersections created between the two grids. This can
be seen in Figure A1 where a part of the computational mesh at the hill located close
to the inlet is shown superimposed on a structured uniform grid.

Using these intersections, for every synthetic PIV grid cell, we compute the inter-
section volume Vij of the i

th computational mesh cell associated with the jth synthetic
PIV grid cell. Figure A1 has one such grid cell zoomed in displaying the computa-
tional mesh cells that intersect it. The state variable (in this case, velocity) stored at
the cell centroids of these intersected cells is then weighted by Vij and scaled by the
volume of the synthetic PIV grid cell (which is constant for every cell in the domain),

ûj =

M∑
i=1

uiVij

VEj

, (A1)

where ûj is the cell-volume weighted averaged velocity at the jth synthetic PIV grid
cell and VEj

is the cell volume of the synthetic PIV grid. This velocity is used in
the computation of the objective function given by Equation 4. Once the objective
function is computed, it should be transferred to the computational mesh. Let f̂ be
the objective function computed on the synthetic PIV grid. We use the operator Q̂(f̂)
to obtain f that lies on the computational mesh (as denoted by Equation 4). This
involves a smoothing operation of weighting the objective function of a given grid cell
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Fig. A1: Overlap of synthetic PIV grid ( ) and computational mesh ( ). A single
grid cell of the synthetic PIV domain is highlighted ( ) and zoomed in to show the
intersection at a cell level.

with volume fractions and distributing it to those computational cells that intersect
with it. The volume fraction is given by

Wij =
Vij

VCi

, (A2)

where Wij is the volume fraction resulting from the intersection of the ith computa-
tional mesh cell with the jth grid cell and VCi is the volume of the ith computational
mesh cell. The smoothed objective function is now given by

fi =

N∑
j=1

Wij f̂j (A3)

The smooth objective function can now be used to calculate the sensitivity.
The intersections are created at the start of the computation, which is performed

only once since this is geometry-dependent (which does not change throughout the
course of the optimization process). The calculation of cell-volume weighted averaged
velocity and smoothed objective function is done using a newly implemented objective
function model. This allows the usage of two separate and independent meshes - one
for storing computational data and the other for experimental data.

Appendix B Determining Kp for the SO method

A preliminary investigation into the proportionality constantKp, as depicted in Figure
B2, compared the state observer method using the coarsest computational mesh and
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measurement data, utilizing the L1 norm for evaluation.

L1 =
|Q(uni )− Ui|

Ub
. (B4)

The L1 norm, presented in Equation B4, is selected for comparison due to its resistance
to outliers, making it a better indicator of overall error reduction in the domain. The
preliminary investigation revealed that a gain of Kp = 10−4 achieves the highest level
of accuracy with the fewest iterations of changes in Fi. It must be noted that as
Kp increases, the number of SIMPLE iterations necessary for convergence increases
between each iterative change in Fi. For example, between Kp = 10−7 and Kp = 10−4

the number of SIMPLE iterations doubles. For Kp > 10−4, the state observer method
diverges, aligning with findings in existing literature. Consequently, a value of Kp =
10−4 is employed for all computations throughout the investigation.
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Fig. B2: The L1 error achieved against number of iterations for varying Kp.
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Appendix C Cost and primal solver calls

The computational cost of the two methods is presented as the number of iterations of
the primal solver (OpenFOAM). We choose this metric since it allows a fair comparison
between the two DA methods given that they differ in the way corrections are applied.
The baseline cases converged in an average of 800 primal solver iterations. Figure C3
shows the dependence of the L1 norm on the number of primal solver iterations. Here
we are interested in exploring the accuracy of reconstruction (measured using the L1

norm) as a function of the computational cost (measured using the number of primal
solver iterations). The results are shown for the two extreme cases - lowest input data
resolution (4MP) with smallest mesh size (7200 cells) and highest input data resolution
(16MP) with largest mesh size (21600 cells). The L1 norm is seen to drop to almost
50% in O(105) primal solver iterations. This corresponds to the methods correcting the
large-scale features in the flow that contribute the most towards the L1 norm. Beyond
this point, the variational method is unable to make any significant improvements to
the L1 norm which can be attributed to the choice of the model correction that is
employed. On the other hand, the state observer method can continue improving the
reconstruction, albeit more gradually.
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