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Abstract—Cyber-physical systems and their smart components have a pervasive presence in all our daily activities. Unfortunately,
identifying the potential threats and issues in these systems and selecting enough protection is challenging given that such
environments combine human, physical and cyber aspects to the system design and implementation. Current threat models and
analysis do not take into consideration all three aspects of the analyzed system, how they can introduce new vulnerabilities or
protection measures to each other. In this work, we introduce a novel threat model for cyber-physical systems that combine the cyber,
physical, and human aspects. Our model represents the system’s components relations and security properties by taking into
consideration these three aspects. We propose together with the threat model also a threat analysis method that allows understanding
the security state of the system’s components. The threat model and the threat analysis have been implemented into an automatic tool,
called TAMELESS, that automatically analyzes the threats of the system, verifies its security properties, and generates a graphical
representation, useful for security administrators to identify the proper prevention/mitigation solutions. We show and prove the use of
our threat model and analysis with three cases studies from different sectors.
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1 INTRODUCTION

Nowadays, novel paradigms and technologies such as the
Internet of Things (IoT) and Edge Computing, pervade all
aspects of the physical world [1]. Cyber-physical systems are
ubiquitously present in our everyday life, their devices and
environments are “intelligent”, interconnected, dynamic,
and flexible. We can summarize simply as “smart”.

The opportunities derived by these smart systems come
with their own security challenges. Determining the poten-
tial threats in these smart systems and providing an adequate
amount of protection is more challenging than in traditional
computer systems for a variety of reasons that include low
computational power, inadequate software quality but also
more importantly the fact that such environments combine
human, physical and digital (cyber) aspects to the system
design and implementation. In these scenarios, the attack
surface is broader and extends beyond the realm of the
”cyber” domain to the physical and human aspects of the
system.

As shown in [2], cyber and physical attacks evolve as
fast as the deployment of smart systems and are outpacing
efforts to stop them. Such systems are deployed in a physical
environment, and in addition to being reachable through
their interconnections, they are also physically available to
an attacker that can, for example, connect to the hardware
interfaces of the device. Finally, these devices interact in
several ways with human users. Thus, systems comprising
of IoT devices are vulnerable to attacks that exploit their
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physical, human, and cyber vulnerabilities, as well as to at-
tacks that combine these exploits in any order. For instance,
unauthorised physical access to a wind turbine allows an
attacker to generate a cyber-attack on the wind farm control
network [3]. Whilst a number of methodologies perform
threat modelling for cyber-attacks [4], [5], [6], [7], [8], [9],
they usually do not take into account attacks on the physical
or human aspects of the system and cannot represent the
propagation of attacks across the cyber-physical, human-
physical, or human-cyber interfaces.

Current threat models and analysis mainly take into
consideration only one component between the human,
cyber or physical aspects of the analysed system (e.g., [4],
[5], [6], [7]), or, occasionally, two of them e.g., the human
and cyber aspects in [8], [9]. There is a lack of analyses that
take into consideration all three components and how they
can introduce new vulnerabilities or protection measures to
each other, as well as their interactions. Furthermore, there
is a need to develop efficient preventive and mitigative
actions that use holistic analysis of the threats and for the
construction of threat models for systems that include all
three aspects, human, physical, and cyber.

This work aims to take the first steps towards a method-
ology for performing exhaustive threat analysis, taking into
consideration cyber, physical, and human aspects, as well
as the relations between them. Specifically, we will use the
term “hybrid systems” to emphasise that we refer to systems
in which we take into account their human, physical and
cyber perspectives and “hybrid attacks” to refer to multi-
step attacks that can combine attack steps exploiting hu-
man, physical, or cyber vulnerabilities in combination. The
security analysis of such systems cannot be done from one
perspective alone but must consider the physical context
of the system, its cyber resources and connections, and the
humans that use or operate it [10].

Threat models for hybrid systems must be able to repre-
sent attack scenarios that exploit the interplay between the
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human, physical, and cyber aspects of the system. For ex-
ample, attacks such as those conducted on ATM machines,
e.g., jackpot, skimmer, shimmer, cash-out attacks [11], [12],
[13], [14]. The “jackpot” attack, in particular, exploits the
vulnerability of the physical components and by cutting a
small hole next to the PIN pad an attacker can insert a cable
connected to a laptop and command the ATM to dispense
all the money. Other attacks exploit human vulnerabilities,
e.g., by bribing employees to sell customer data or providing
sufficient information to conduct successful phishing attacks
on the clients.

Hybrid attacks are not specific to the financial sector but
also affect other sectors. For example, in the energy sector,
researchers have shown that with little effort an attacker
can compromise a whole windmill farm network starting by
simply breaking a physical lock [3], [15]. Further steps of this
attack exploit cyber vulnerabilities such as easy access, lack
of encryption in communications, poor default passwords,
and insecure remote management interfaces.

The physical security of a system, its cybersecurity, and
human security are traditionally dealt separately and by
different people/teams inside an organization. In hybrid
systems the cyber, physical, and human aspects can all be
leveraged in combination as part of the same attack. They
typically also complement each other and must be leveraged
together to mitigate and respond to threats. For example,
human or digital surveillance can be used to monitor a
physical space.

Yet at the moment, there is no notation and no frame-
work to be able to represent threats that propagate across the
physical, human, and digital aspects of a system, or how to
use them in combination. It is not sufficient for such a frame-
work to just combine the different aspects/components of
the system, it must also represent the relationships between
them, their inter-dependencies and the compositional nature
of systems.

The main aim of our work is to design a threat mod-
elling approach that takes into account the human, cy-
ber, and physical aspects of hybrid systems, their inter-
dependencies, and that can analyse their weaknesses and
help reason about remediation. We propose the first threat
model that permits to describe and derive the security state
of smart systems’ entities, their relations, and properties.
The model permits to describe and analyse the system as
part of its physical and human environment rather than in
isolation from it. The main contributions of this work are as
follows:

• We propose a novel hybrid threat model that can repre-
sent the relations and security properties of the system’s
components by taking into consideration their cyber,
physical, and human aspects.

• We introduce a threat analysis method equipped with
a set of derivation rules that permit to understand the
properties of the system’s components and the overall
security state.

• We provide a tool1 that represents the security proper-
ties and relations of the system’s components. This tool
automatically analyzes the threats of the system and

1. https://github.com/FulvioValenza/TAMELESS
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Fig. 1. The main components of a hybrid system threat model

can automatically generate a graphical representation
of it.

The paper is structured as follows. In Section 2, we
introduce the main motivation for this work by means of a
case study from smart buildings and provide an overview of
the proposed solution together with some practical consid-
erations. In Section 3, we introduce our novel threat model
with its components, relations, and properties. In Section 4,
we present the rules that permit to gather the facts behind
the attack graphs, evaluated during the threat analysis of
the system. In Section 5, we present the application of our
threat model in three different case studies taken from the
smart building scenario and a Wind Farm scenario. Finally,
in Section 6, we discuss the related work, and in Section 7
we draw the main conclusions and discuss directions for
future work.

2 PROBLEM STATEMENT AND APPROACH

Our main goal is to identify and construct a threat model
for hybrid threats to cyber-physical systems that combine
cyber, physical, and human aspects and can be attacked on
each one of these aspects or in combination.

As previously introduced, a hybrid system is considered
a system that is composed of one or various components of
different aspects/nature, e.g., a component is a physical one,
while another is human and other components are cyber.
Some components can have more than one nature, and we
will explicitly identify their nature during the threat anal-
ysis. Therefore, to represent hybrid threats it is necessary
to be able to represent the relations between the different
aspects of the system: the physical, cyber, and human. Of
particular importance are how each one of these aspects can
introduce a threat to the other, i.e., does compromising one
aspect compromise the other? and how they can protect each
other, i.e., can one aspect help to protect the other?. Broadly,
these relations can be represented, as shown in Figure 1,
where different components of various nature can protect
or introduce/spread vulnerabilities to other components of
the system, also of different nature.

A vulnerable physical aspect of a component can
threaten the security of a cyber component of the hybrid
system. For example, having physical access to a room,
where it is possible to connect (unauthenticated) to the
wired network, would enable the attacker to compromise
the software/network components of the system. Similarly,
having physical access to a sensor can enable an attacker
to perturb what the sensor is measuring. Furthermore,
compromising the human aspects of a system can also
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compromise its security, e.g., deceiving the user to reveal
access details or stealing access keys (both are well known
examples). With the increased use of actuators that can affect
the physical aspects, compromising the cyber aspects of a
system also enables a physical compromise. An obvious
example is to compromise a digital lock, or the control
system, to open the door to a protected area of a building.

These components can also protect each other. A human
can inspect and monitor the physical security, e.g., of an
area, a smart building, or a device. A physically secure
enclosure can protect both human and digital components -
this is why computers or servers are often stored in a secure
location. Finally, we increasingly use the digital (cyber)
capability to monitor the security of both physical spaces,
and the behaviour of humans, e.g., to protect from insider
threats.

Our model allows to represent these relations between
the human, physical and digital components of the system
and to reason about them. In particular, it allows to reason
about the propagation of attacks across the different parts of
the system and to formulate protective and preventive mea-
sures to increase robustness to attacks. Protecting a system
can thus be formulated as the combination of human, cyber,
and physical interventions whose relative balance depends
on the system and the context of use.

We illustrate our model and our approach through an
example that we will use throughout the remainder of this
paper. We consider the case of a smart building that may
be subject to attacks combining physical attack steps (such
as breaking a door, a window, or picking a lock), cyber-
attack steps (compromising the network, digital locks, or
the Building Management System) and human attack steps
(such as stealing a pass, or losing a key). Our smart building
comprises three different locations: the hall, the office area
and the rooftop, as shown in Figure 2. The building is
equipped with IoT devices and sensors, like smart cameras,
temperature sensors etc.. There is a monitoring system on
the hall (entrance) where the camera images are controlled
by a human (guard) to prevent unauthorised access to the
building. Moreover, part of the rooms on the office floor
have locks on their doors to prevent unauthorised access.
Although this example provides only a small scale illustra-
tion of our model and method, scalability aspects to larger
systems are considered in Section 2.2 and 6.

2.1 Scenario

To illustrate our approach we consider a scenario shown
in Figure 3, which is part of the office floor shown in
Figure 2. We are concerned, in particular, about unauthorized
access to a safe box, denoted by sbox and located in a
particular room on the office floor. The safe box is used
by the employees to store cash, company check books and
confidential documents. The safe box is physically protected
through a digital lock requiring an access code (Password).
This Password is set by the employee physically working
in that room. Physical security measures protect the room
where the safe box is located: the room can only be accessed
through a locked door. The key to open the door (is based on
an RFID card) and provided solely to authorised employees
(including the employee working in that room). Thus, to

Fig. 2. Example of the smart building used in our case study

access the safe box an attacker needs to both access the room
and to know the Password required to open the safe. For the
purpose of keeping the example simple, we assume that a
physical attack on the safe box is not practical.

For the sake of the example let us assume that the
password for the safebox is stored in the employee on
duty machine. Therefore, access to the employee’s computer
(e.g., through phishing) will eventually lead to finding the
password. The RFID cards required to open the door can
be read and cloned at a moderate distance (e.g., several feet
away), leading to the possibility for an attacker to create a
duplicate key.

Our model permits us to represent the relations between
the human, physical, and cyber aspects of this system. How
human vulnerabilities (e.g., phishing or bribery) can lead to
threats to the cyber or physical aspects of the system. How
cyber vulnerabilities can lead to threats to the physical envi-
ronment. But also how the different elements of the system
relate to each other, for example containment relations (e.g.,
the safe is in the room) and how they relate to each other
(e.g., access to the room is via a digital lock). We can also
represent how the different aspects of the system can help
to protect each other (e.g., a physical space can be monitored
by sensors or by security patrols).

In the introduced scenario, access to the content of the
safe requires: exploiting human vulnerabilities (e.g., with
a phishing attack) to lead to a compromise of the digital
environment, which enables exploiting further digital vul-
nerabilities to access the employee’s machine to obtain the
password. An attack would also require cloning the RFID
card and using this to access the room where the safe is
located, before using the password to open the safe. The
scenario was only conceived to illustrate how the different
relations can be represented in our model and how the
model can be analysed for threats across the different as-
pects of the system. However, many modern systems exhibit
similar characteristics.

To create a comprehensive threat model, our approach
allows to represent the properties of the system’s compo-
nents. This includes security properties such as vulnerability
or detectability as well as functional properties such as
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Fig. 3. A threat model for the unauthorised safe box access

device malfunction or recoverability of a system component.

2.2 TAMELESS
We propose a threat analysis model that can derive the cur-
rent security state of the system and its components, given
as input information about the system’s components and
their security properties. We have implemented the model
and threat analysis as an automated tool called Threat &
Attack ModEL Smart System (TAMELESS) that is made
available with this paper2, and which relies on an XSB
Prolog interpreter3.

The input for TAMELESS comprises of the specification
of the analysed system (i.e., the system’s components and
threats), the relations between the components, as well as
between the components and the threats and the various
(security) assumptions. The user (e.g., a security adminis-
trator) can then perform the threat analysis by querying
TAMELESS to display all the security properties of the
system’s components. This allows to determine whether the
system’s components expected states differ from the derived
ones (i.e., a consistency check). This aspect is important
because each smart system has distinct features and is
different from others. In some systems, it is fundamental
that each element is not compromised, while in others that
each element works properly, or is important to know if it is
possible to detect an attack, restore or fix the system’s status.
Our solution allows the users to have a comprehensive view
of the security of their system and its risks across the human,
physical, and cyber aspects. The complexity of the system,
the propagation of threats across different relationships be-
tween components, and the number of different possibilities
and their combinations make it impossible to conduct this
analysis manually for any system of a reasonable size (i.e.,
beyond toy examples).

TAMELESS provides a graphical representation of the
attack propagation that allows the user to add protection
and monitor components in order to change the undersigned
security proprieties. The user can run the tool again together
with the updated information (i.e., the derived initial model
plus the newly added protection and monitor components),
and TAMELESS shows the derived threat model. This
iteration can be repeated until the user is satisfied with the
threat model of the constructed system. With this iterative
process, the administrator is able to determine the effective-
ness of the selected protective/preventive measures.

2. https://github.com/FulvioValenza/TAMELESS
3. A dialect of Prolog developed by the Stony Brook University [16]

(http://xsb.sourceforge.net/index.html).

Moreover, TAMELESS can also help the system admin-
istrator to consider also the economical aspects of ensuring
the security of the system. For example, if the administrator
defines a cost associated to each protection solution, then
they can choose, in a simple way, which solutions are more
“secure” and efficient with respect to others, by taking into
consideration also the costs related to such solutions. The
administrator can change a protection/monitor component
(human, cyber, or physical) with another one that costs
less but that maintains the same security properties for the
system. For example, the administrator can now choose
between a security guard or a security camera for the
surveillance of a physical space.

One of the main current limitations of our threat analysis
is that it is a static analysis: in case the relations or properties
of the system change, then the analysis needs to run again
with the updated system. Another limitation that we plan to
fill in future works, deals with the relations and derivation
rules. For this version of the threat model, we assumed
the relations and derivation rules to always be true, but
in the real world, this is not always the case, as a relation
or a protection might hold with a certain probability or
certainty. Furthermore, in the current threat model, we do
not consider the time. The temporal aspect is crucial in
modelling the resilience aspects of each entity. Indeed each
entity has different levels of resilience from different threats
and each attack path requires a different amount of time to
be performed.

In summary, the threat model we constructed is generic
and can be used to analyse the threats of various hybrid sys-
tems, e.g., smart buildings, industrial control systems, smart
windmill farms, ATM machines, credit cards, smart homes.
Once the system components are provided to TAMELESS
together with their properties and relations, it can automat-
ically analyse them, and through a graphical representation
it provides the possible threats of the analysed system. Fur-
thermore, our threat model helps the system administrator
to identify the most appropriate countermeasures for the
found threats, as TAMELESS provides a set of possible
entities that can be used to prevent or mitigate the threat.
The provided entities could be entities that: protect, monitor,
detect, restore, repair, or replicate.

3 HYBRID THREAT MODEL

In this section, we introduce the proposed threat model that
comprises the security properties of the entities of a hybrid
system, the relations that the system’s components have
with various threats, and the different relations between the
system components themselves.

By representing the system’s components, their nature,
their security properties, and the various relations the threat
model permits to identify new vulnerabilities and reason
about the necessary mitigation actions including identifying
which entities can be used to protect others or what relations
can be created or removed to protect the system. Briefly,
the security properties represent how the security state of
the components can change4. While, the relations represent
how the system components and aspects are related to each

4. We use the term property instead of state, as it represents the ability
to change state, not the state itself.
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other given the components’ nature (human, physical, and
cyber). It is important to distinguish the types of relations
as they represent how a threat can be spread or stopped in
the system.

3.1 System’s Components

Our threat model comprises of various entities that can be
human, cyber, or physical.

Definition 1. An entity is a system or a component of a
system that can be of a cyber, physical, or human nature5.
We denote with E = {A,B,C, · · · } the set of all entities
of our system.

A threat model represents and distinguishes between the
various threats defined as below.

Definition 2. A threat is one or a sequence of actions
that directly or indirectly changes a property that can
alter the security state of an entity. We denote with
T = {T, T1, T2, · · · } the set of all threats.

We denote with F the set of all formulas in our system. The
set comprises of all formulas that can be expressed by the
grammar below:

φ ::= true | false | φ ∧ φ | φ ∨ φ | φ→ φ |
p(A) | ¬p(A) | r(A,A) | r ′(A,A,A)

where φ ∈ F , A ∈ E , p ∈ P and r , r ′ ∈ R. P denotes
the set of all security properties and R denotes the set of all
relations. The connectors ∧,∨,→, (, ) and ¬ are the standard
ones. This language permits to define a set of rules to derive
the different properties of the considered entities.

3.2 Security Properties of the Entities

The properties of the entities can either explicitly be as-
sumed to be true or can be derived to be true by apply-
ing the rules. We distinguish between basic properties and
auxiliary properties. The former describe primary security
knowledge about the system’s components, while the latter
describe the states of an entity, when it is already compro-
mised or malfunctioning due to a threat.

3.2.1 Basic Properties
We denote with PB the set of all basic properties, where:

PB = {Comp,Malfun,Vul}.

Compromised Comp(A, T ): entity A has been compro-
mised by threat T ;

Malfunctioned Malfun(A): entity A is malfunctioning and
one or more of its functionalities are not working as
expected, e.g., a server expected to be running is down;

Vulnerable Vul(A, T ): A has a known vulnerability which
makes it vulnerable to threat T .

For simplicity we write Comp(A) when there exists at least
one threat T for which A is compromised (Comp(A, T )),
and ¬Comp(A) when no such threat T ∈ T exists.

5. In some cases, the same entity might have more than one nature.
We will distinguish the various natures of the entity and deal with them
separately.

3.2.2 Auxiliary Properties
We denote by PA the set of all auxiliary properties of our
system.

PA = {Det,Rest,Fix}.

Detected Det(A, T ): describes that it has been detected that
entity A has been compromised by threat T , e.g., a
physical or digital unauthorised access has been de-
tected.

Restored Rest(A): describes that Control over A is restored,
usually after A has been compromised, e.g., a room has
been secured again, or the system has been cleansed,
patched and restored.

Fixed Fix(A): describes that the functionality ofA is repaired,
usually after A malfunctioned (Malfun), e.g., the lock of
a door is repaired, or the antivirus has been updated.

We distinguish between the Rest and Fix properties to
differentiate between the security and functional properties
of a system. Rest is applied after an entity has been com-
promised (Comp) and a malicious user had control over
the entity. Fix concerns the functionality of an entity, and is
applied when an entity was malfunctioning (Malfun). Thus,
an entity can be restored but still malfunction or fixed but
still compromised.

3.2.3 Assumed and derived properties
We distinguish between assumed or derived properties of an
entity. Assumed, properties (prefixed with α) are part of the
security assumptions for the system, denote initial knowl-
edge and need to be explicitly declared. Derived properties
(prefixed κ) are obtained by applying the derivation rules to
the known properties. The set of assumed properties is:

Pα = {αComp, αMalfun, αVul}.

Derived properties indicate security properties that may/can
become true (κ), as a malicious user exploits vulnerabilities.
The set of all derived properties is:

Pκ = {κComp, κMalfun, κVul, κDet, κRest, κFix}.

3.3 Relations
The entities of our hybrid system have different relations be-
tween each other as well as different relations to the threats.
For simplicity, we consider binary and ternary relations; further
relation types can easily be added if needed.

3.3.1 Relations between entities
We start by introducing the relations that hold among the
entities of the system. R represents the set of all relations. These
include structural relations (containment, interconnection) as
well monitoring and control relations influencing the way in
which entities can respond to threats.

{Contain,Control,Connect,Depend,Check,Replicate} ∈ R

Contain Contain(A,B): means that A contains B, and repre-
sents how the system is composed, e.g., a room contains
a server, or a server A contains data B. This permits to
represent the structure of the system, and from it how the
attack could propagate.

Control Control(A,B): means that entity A controls entity B,
e.g., a person controls the use of their identification badge,
or a controller controls the sensors.
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Connect Connect(A,B,C): means that A connects B to C, e.g.,
the door connects the room with the hall, or network A
connects server B with server C. The Connect relation is
unidirectional and allows to identify how an attack can
spread laterally or how such spread can be prevented, e.g.,
by removing the connection.

Depend Depend(A,B): the functionality of A depends on the
functionality provided by B. For example, the air con-
ditioning depends on its outside fan, or the web server
depends on the data base. The depend relation is used for
example when identifying the spread of the vulnerabilities
or the protective measures.

Check Check(A,B): means A checks that B is functioning
normally and thus detects malfunctions.

Replicate Replicate(A,B): A is a replica of B. The availability
of a replica makes it possible to fix an entity.

3.3.2 Relations between entities and threats
In the previous section, we presented the relations between
the entities of the system where threats can propagate. In
this section, we introduce the relations between the entities
and their threats. These relations permit to represent which
entities are vulnerable to a particular threat, identify which
other entities are vulnerable or how entities can protect each
other. The set of relations is presented below.

{Protect,Monitor, Spread,PotentiallyVul} ∈ R

Protect Protect(A,B, T ): A protects B from threat T , e.g., a
lock protects the door from unauthorised access, or fire-
walls protect systems from unauthorised traffic. Protect
means that entity A is able to protect entity B from a threat
T . If an entity is vulnerable and not protected, then it can
be compromised.

Monitor Monitor(A,B, T ): A monitors B from threat T , e.g.,
an intrusion detection system monitors the system against
cyber-attacks, or a camera monitors the room against
thieves. This expresses that attacks can be detected, even if
they may not be prevented. Thus, if T can compromise B,
then Monitor(A,B, T ) describes that A can detect that B is
compromised by T . Note that if A monitors B from threat
T , this does not mean that A protects B from T . Although
both the Check and Monitor relations monitor the target
system, Check refers to the functionality of the systems,
whereas Monitor refers to its security.

Spread Spread(A, T ): A can propagate threat T , e.g., a phish-
ing email can be used to spread a malware, or an IoT
device can enable an attack to spread to other devices or
to the controller. This property connects a device with the
threats it can propagate.

Potentially Vulnerable PotentiallyVul(A, T ): A can become
vulnerable to threat T , e.g., a user can be vulnerable to
phishing. This property is used to model that an entity
can become vulnerable to threat T in certain circumstances,
e.g., when it malfunctions.

3.4 High-level properties
Having defined the properties and the relationships among
entities and threats, we can now define some high-level prop-
erties (PH ) that can be expressed in terms of lower level
primitives. The use of these high-level properties enables a user
to understand much more easily the security state of the system,
e.g., if an entity is defended or monitored from a threat. They
also permit to represent the overall state of an entity including
its components, dependabilities, and connections. We introduce
below the definitions of these high-level properties; Table 1
gives their formal definitions.

PH = {Val,Def, Safe,Mon,Check,Rep}.

Valid Val(A): A is valid when it has not been compromised
and is not malfunctioning. An entity is not valid when it
has either been compromised or it is malfunctioning.

Defended Def(A, T ): A is defended from threat T when an
entity B exists that protects A from T and B is valid. On
the contrary, an entity is not defended from T when no such
B exists, or it exists but is not valid.

Safe Safe(A, T ): A is safe with respect to T when A is not
vulnerable to T or can be defended from T . A is not safe
from T when it is vulnerable and not defendable from T .

Monitored Mon(A, T ): A is monitored for threat T , when an
entity B that monitors A with respect to threat T exists
and is valid. Entity A is not monitored when no such entity
B exists, or it exists but is not valid.

Checked Check(A): A is checked, when an entity B checks the
functionality of A and B is valid. Entity A is not checked
when no such entity B exists, or it exists but is not valid.

Replicated Rep(A): A is replicated, when at least one entity
B that replicates A exists and B is valid. Entity A is not
replicated when no such B exists that replicates A, or it
exists but is not valid.

4 THREAT ANALYSIS
In this section, we first introduce the derivation rules used
for our threat analysis. These rules apply to the relations and
properties initially known to derive the new security properties
that reflect the state of the system and can be used to protect it
better. Through the derivation rules, we deduce which entities
can become vulnerable, compromised, and/or malfunction. We
can also identify if existing mechanisms can detect when an
entity is compromised and whether it is possible to restore it.

We then describe how the derived security properties, help
to construct the attack graph for our system, which graphically
represents the results of the threat analysis and the attack paths
through the system.

4.1 Derivation Rules
Beyond a basic number of derivation rules, which we describe
first, there are also other derivation rules for each of the security
properties of the entities. These derivation rules can derive
when an entity is compromised, malfunctioning, vulnerable,
restorable, and fixed.

4.1.1 Basic derivation rules
Basic derivation rules state that if a property is assumed
true, then naturally it can be derived to be true (Rules 1-3).
Furthermore, these rules represent the transitivity of relations
such as Replicate and Depend. Note that Contain(A,B) and
Control(A,B) are not necessarily transitive when applied to
the human, cyber, and physical aspects of the system.

αComp(A, T ) → κComp(A, T )

αVul(A, T ) → κVul(A, T )

αMalfun(A) → κMalfun(A)

Replicate(A,B) ∧ Replicate(B,C) → Replicate(A,C)

Depend(A,B) ∧ Depend(B,C) → Depend(A,C)

(1)
(2)
(3)
(4)
(5)

4.1.2 Derivation rules for compromised
We now introduce the derivation rules to reason about how
threats can compromise different entities and propagate across
the system.

Rule 6: A can be compromised by threat T when A is
not safe from T and an entity B, which controls A, can be
compromised and spread threat T .

Control(B,A) ∧ κComp(B) ∧ Spread(B, T )∧
¬Safe(A, T ) → κComp(A, T ) (6)
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Val(A) := ¬Comp(A) ∧ ¬Malfun(A) ¬Val(A) := Comp(A) ∨ Malfun(A)

Def(A, T ) := ∃B. Protect(B,A, T ) ∧ Val(B) ¬Def(A, T ) := @B. Protect(B,A, T ) ∨ (∀B.Protect(B,A, T ) ∧ ¬Val(B))

Safe(A, T ) := ¬Vul(A, T ) ∨ Def(A, T ) ¬Safe(A, T ) := Vul(A, T ) ∧ ¬Def(A, T )

Mon(A, T ) := ∃B. Monitor(B,A, T ) ∧ Val(B) ¬Mon(A, T ) := @B. Monitor(B,A, T ) ∨ (∀B Monitor(B,A, T ) ∧ ¬Val(B))

Check(A) := ∃B. Check(B,A) ∧ Val(B) ¬Check(A) := @B. Check(B,A) ∨ (∀B Check(B,A) ∧ ¬Val(B))

Rep(A) := ∃B. Replicate(B,A) ∧ Val(B) ¬Rep(A) := @B. Replicate(B,A) ∨ (∀B. Replicate(B,A) ∧ ¬Val(B))

TABLE 1
High-level properties definitions

Rule 7: A can be compromised by threat T when A is not
safe from T , and A is connected to B through C, B can be
compromised and spreads T , and either C can be compromised
or C is not protected against T .

Connect(C,B,A) ∧ κComp(B) ∧ Spread(B, T )

∧¬Safe(A, T ) ∧ (κComp(C) ∨ ¬Def(C, T ))

→ κComp(A, T )

(7)

Rule 8: A can be compromised by threat T when A is not safe
from T , and either A contains B or is contained in B, and B
can be compromised and spread T .

(Contain(B,A) ∨ Contain(A,B)) ∧ κComp(B)

∧Spread(B, T ) ∧ ¬Safe(A, T ) → κComp(A, T ) (8)

Example 1. We illustrate the application of the above rules
using the scenario introduced in Section 2.1. In this scenario,
an employee (E) controls their PC, where the password to
open the safe is stored. The employee can access emails
(including phishing emails phishEm) on a server (server)
that connects the employee with the emails.

Control(E, PC) Contain(PC,D)
Connect(PhishAttack,E, PhishEmail)

The employee is assumed vulnerable to phishing attacks,
denoted by phishAt and the PC is assumed vulnerable
to malware. The password (Pw) is assumed vulnerable to
being stolen, denoted by stealInfo. There are no protective
measures P in place, against these threats.

αVul(E, phishAt) @P. Protect(P,E, phishAt)
αVul(PC,malware) @P. Protect(P, PC,malware)
αVul(Pw, stealInfo) @P. Protect(P,Pw, stealInfo)

Furthermore, we know that: the phishing attack (phishAt)
can be spread via the phishing emails; the employee can
accidentally spread the malware code; the PC spread the
steal information threat, as once you have access to the PC,
you can get access to the stored information in it.

Spread(phishEm, phishAt) Spread(E,malware)
Spread(PC, stealInfo)

Using the high-level properties, we can derive that the
employee (E), the PC, and password are not defended and
not safe, while the server is not defended (see below).

¬Def(Pw, stealInfo) = @P. Protect(P,Pw, stealInfo)
¬Def(PC,malware) = @P. Protect(P, PC,malware)
¬Def(E,phishAt) = @P. Protect(P,E, phishAt)
¬Def(server,phishAt) = @P. Protect(P, server, phishAt)
¬Safe(Pw, stealInfo) = αVul(Pw, stealInfo)∧

¬Def(Pw, stealInfo)
¬Safe(PC,malware) = αVul(PC,malware)∧

¬Def(PC,malware)
¬Safe(E, phishAt) = αVul(E, phishAt) ∧ ¬Def(E, phishAt)

Using Rule 7 in conjunction with the above, we can derive
that the employee can be compromised by a phishing attack.

Connect(server, phishEm,E) ∧ κComp(phishEm)∧
Spread(phishEm, phishAt) ∧ ¬Safe(E, phishAt)∧

¬Def(server,phishAt) → κComp(E, phishAt)

Using Rule 6, we can then derive that the employee’s PC
can also be compromised.

Control(E, PC) ∧ κComp(E) ∧ Spread(E,malware)∧
¬Safe(PC,malware) → κComp(PC,malware)

Finally, using Rule 8 we can derive that the password can
be compromised.

Contain(PC,Pw) ∧ κComp(PC) ∧ Spread(PC, stealInfo)

∧¬Safe(Pw, stealInfo) → κComp(Pw, stealInfo)

Thus, based on the given information we can derive that the
employee’s password can be compromised by exploiting
both the human and the cyber vulnerabilities of the system.

4.1.3 Derivation rules for malfunctioned

Rule 9 specifies that an entity A, when compromised by threat
T , can malfunction. Rule 10 specifies that when A depends on
entity B and B malfunctions, then A can also malfunction.

κComp(A, T ) → κMalfun(A)

Depend(A,B) ∧ κMalfun(B) → κMalfun(A)

(9)
(10)

Example 2. Let us assume a physical web server (physical
entity) that hosts a website (cyber entity). The functionality
of the website strictly depends on the functionality of its
web server: Depend(website, server).
If the server can be physically compromised for a threat T ,
then we can derive that it can malfunction by using Rule 9,
as shown below.

κComp(server, T ) → κMalfun(server)

Given the dependency between the website and its server,
we can derive that the website can also malfunction by
applying Rule 10.

Depend(website, server) ∧ κMalfun(server)

→ κMalfun(website)
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4.1.4 Derivation rule for vulnerabilities
When A malfunctions, and A can be vulnerable to threat T ,
then A can become vulnerable to T , Rule 11.

κMalfun(A) ∧ PotentiallyVul(A, T ) → κVul(A, T ) (11)

Example 3. For example, a broken lock can become vulnerable
to being open by unauthorised users.

κMalfun(lock) ∧ PotentiallyVul(lock, breakOpen)

→ κVul(lock, breakOpen)

4.1.5 Derivation rule for detecting threats
Rule 12 states that when A can be compromised by threat T
and A is monitored for threat T , then T can be detected for A.

κComp(A, T ) ∧ Mon(A, T ) → κDet(A, T ) (12)

Example 4. For example, if a system is monitored for intrusions
(e.g., with an IDS), then the intrusions can be detected.

κComp(system, intrusion) ∧ Mon(system, intrusion)

→ κDet(system, intrusion)

4.1.6 Derivation rule for restoring services
Rule 13 states that when threat T can be detected for A and A
has been replicated, then A can be restored.

κDet(A, T ) ∧ Rep(A) → κRest(A) (13)

Example 5. Restoring a system from backup stands as an
immediate example.

κDet(system, intrusion) ∧ Rep(system) → κRest(system)

4.1.7 Derivation rule for fixed
Rule 14 states that when A can malfunction and is checked (i.e.,
its malfunction can be detected) then A can be fixed.

κMalfun(A) ∧ Check(A) → κFix(A) (14)

Example 6. For example, if the air conditioning (AC) malfunc-
tions, and it is detected, then the AC can be fixed.

κMalfun(AC) ∧ Check(AC) → κFix(AC)

4.2 Application of the threat analysis

The derivation rules introduced above are used automatically,
given certain inputs to derive new (security) properties for
the system’s entities. It can also identify possible entities that
will protect or monitor other entities, or how the threat will
propagate in the system from one entity to the other.

Given the initial relations and properties of the entities,
the threat analysis will derive new security properties, which
together with answers to other queries will be used to output
the threat analysis model. We also provide a graphical repre-
sentation for this in the form of an attack graph.

4.2.1 Attack graphs
The derivation rules allow us to compute the basic and aux-
iliary properties (i.e., can be compromised, malfunction, vul-
nerable, detected, restored, and fixed). This also enables us
to construct an attack graph [17] for a target in our system
and its properties that we want to verify. For example, we
can build the attack graph to compromise a web server or to
a door malfunction. This graph offers a graphical and simple
representation of the result of the threat analysis.

Attack graphs are a powerful tool for security assessment by
analysing network vulnerabilities and the paths attackers can
use to compromise system resources. Attack graphs permit a
priori analysis of the possible avenues an attacker can exploit to
compromise the system. Thus, they can be used to focus on the
most-effective threats and produce a better countermeasures
selection [18], which is also known as static analysis.

We show in Figure 4 part of a generated attack graph,
where we also show the relations amongst the derivation rules.
Specifically, in Figure 4, the nodes are assumed and derived
properties of the entities, the dashed links are the relationships
among entities, while the solid red links are the connections
created by the triggered derivation rules. In the next section,
we show the attack graphs of two different case studies taken
from a smart building described in Section 2.1.

5 CASE STUDY EVALUATION
In this section, we apply our model to two use cases taken from
the smart building scenario introduced in Section 2.1 and one
use case from a critical infrastructure system. Given the space
constraints, we describe in detail the first scenario and provide
only the significant steps for the remaining two. Our threat
model is able to analyse the given information automatically.
It provides the users with the derived security properties as
well as a graphical representation of the security properties and
relations of the entities composing the system, in the form of an
attack graph.

5.1 Unauthorized Safe Box Access
We continue with the Safe box example introduced in Sec-
tion 2.1 and Example 1. Using our model, we will show how
the attacker can access the safe box and all the steps leading
to the successful attack. We will explain in detail how the
security properties of the various entities change. This detailed
analysis is performed by our model automatically and the result
is provided as a list of answers to the users’ queries and a
graphical representation, see Figure 5.

The contents of a safe box are protected through a combi-
nation that requires a password. The safe box is located in a
room that can be accessed through a door, which can be open
only with an RFID card. Using the results of Example 1, we
know that the password can be compromised as it can be stolen
through a phishing attack: κComp(Pw, stealInfo). However, the
attacker Att, still needs to physically access the safe to use the
password and the room is protected from unauthorised access
by the door lock, denoted by lock.

We also know that the door lock can also be compromised,
by following the steps shown in the attack graph generated by
our threat model, presented in Figure 5. Specifically, the door
lock is controlled by its RFID card (denoted as key) and is vul-
nerable to unauthorised users controlling the card or making a
copy of it (unAuthUser). Moreover, no other protection measure
is in place to defend the door lock such as a human guard. Thus,
the door lock is not safe from being opened by an unauthorised
user. We provide below the relations and security properties for
these entities.
Control(key, lock), αVul(lock,unAuthUser),
@P. Protect(P, lock, unAuthUser), ¬Def(lock, unAuthUser),
¬Safe(lock, unAuthUser)
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Fig. 5. Attack Graph for the Safe Box Scenario

The RFID card is assumed to be vulnerable to the threat
of being physically copied (denoted as copy), and there are no
protection measures in place that prevent the card from being
copied. Therefore, using the high-level property definition for
Safe, we can state that the RFID card is not safe with respect to
the threat of being copied (copy). Any user can open the door,
using the card, thus, if the card is compromised, then it can
spread the unAuthUser threat.

Vul(key, copy), ¬Def(key, copy), ¬Safe(key, copy),
Spread(key, unAuthUser)

We assume that the Att has malicious purposes, thus, can
be considered compromised, (κComp(Att)), and they have
information about the RFID card (e.g., who is the employee
that has the card6). The CardInfo connects the attacker to the
RFID card. Furthermore, once the attacker has this information,
we can consider the card information to be compromised
(κComp(CardInfo)). Together with the high-level property
about the RFID card described above (the RFID card is not safe
to the copy attack) and that the attacker can spread the copy
attack, we can derive (using Rule 7) that the RFID card can be

6. This information is useful for the attacker to then copy the RFID
card even by staying at a distance from the employee and the card.

compromised by the copy card threat, see below.

Connect(CardInfo,Att, key) ∧ κComp(Att)∧
Spread(Att, copy) ∧ ¬Safe(key, copy)∧

κComp(CardInfo) → κComp(key, copy)

Using the information above that the card can be compro-
mised (i.e., copied) we can derive using Rule 6 that the door
lock can be compromised by copying the card. In detail, we
know that the lock is controlled by the RFID card and is not
safe to unAuthUser threat and that the RFID card can spread
this threat. Together with the derived information that the card
can be compromised, we can derive that the lock can also be
compromised, see below.

Control(key, lock) ∧ κComp(key, copy)∧
Spread(key, unAuthUser) ∧ ¬Safe(lock, unAuthUser)

→ κComp(lock, unAuthUser)

If the lock is compromised, it is no longer valid (see high-level
property definitions) and the room that the door leads to is no
longer defended from unauthorized access (unauth A), as the
only protection in place is no longer valid.

¬Val(lock), Protect(lock, room, unauth A),
¬Def(room, unauth A)

From Example 1, we know that the password (Pw) can be
compromised as it can be stolen through a phishing attack:
κComp(Pw, stealInfo). Thus, we can define the Pw to not be
valid (¬Val(Pw)), following the high-level property definition.

¬Val(Pw) = Comp(Pw)

As the Pw was protecting the sbox from unauthorised accesses
but is not valid any more, and there is no other way to protect
the safe box, then we can define that it is not defendable.

¬Def(sbox, unauth A) = Protect(Pw, sbox, unauth A)
∧¬Val(Pw)

Following the definition of ¬Safe we can state that sbox is not
safe any more, see below.

¬Safe(sbox, unauth A) = Vul(sbox, unauth A)
∧¬Def(sbox, unauth A)

We know that the room connects the attacker to the safe box and
that the attacker can spread the unauthorised access. Further-
more, we derived that the safe box is not safe to unauthorised
access and the room is not defendable. We can derive from the
information above by applying Rule 7 that the safe box can be
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compromised through an authorised access, as the attacker can
physically access the room7, by compromising its protection
measures, and they can insert the password of the safe box.

Connect(room,Att, sbox) ∧ κComp(Att)∧
Spread(Att,unauth A) ∧ ¬Safe(sbox, unauth A)∧

¬Def(room, unauth A) → κComp(sbox, unauth A)

To summarise, in order to compromise the safe box, the
attacker needs to exploit the vulnerabilities of the human com-
ponent of the system, i.e., the employee’s vulnerability to
phishing attacks, the vulnerabilities of the cyber component,
i.e., the employee’s PC, and the vulnerabilities of the physical
component, i.e., the RFID card of the door lock.

As shown in this example, thanks to the use of our threat
analysis the security administrator is able to understand which
part of their system can be compromised. Moreover, due to
the representation of the attack graph, the administrator is able
to choose the best place where to put in place a new security
mechanism (i.e., protection and/or monitor component) to
interrupt the attack propagation or to prevent the occurrence of
the attack. For example, it is possible to avoid the compromise
of the safe box in several ways: (i) by installing an anti-phishing
system on the email server; (ii) using a door lock where entry
cards cannot be copied; (iii) add a guard in the room or (iv)
adding a camera in the room. Clearly each solution has its
advantages and disadvantages. However, through TAMELESS,
the administrator has a holistic view on how to provide the
security of a system, and they can consider each solution based
on effectiveness, logistic, economical, and ethical aspects.

5.2 Compromise a Web Server
In this section, we discuss a second scenario where the attacker
needs to exploit the vulnerabilities of different components of
our smart building to compromise a particular entity.

Air

servers

fanbox Internet

Fig. 6. A threat model for compromising a Web Server

The case study takes place in two different rooms, as shown
in Figure 6. We consider a web server, denoted by server, lo-
cated in one of the rooms, which is protected from unauthorised
access, denoted by unauth A, through biometric authentica-
tion, bioMAuth. An air conditioning unit, denoted by AC, is
located in the same room. The server functionality depends on
the functionality of the AC, because if the AC is not working,
then the server overheats and shuts down or can be damaged.
The server hosts a particular website, and is protected against
cyber-attacks on the website (Safe(server, cyberAttack)). The
functionality of the website depends on the functionality of
the web server. The server is connected to the internet. The
functionality of the AC depends on the functionality of its fan-
box, denoted by fan, located on the terrace of the building. We
introduce below the main properties of this scenario.

7. For simplicity, we ignore that the attacker needs to physically get
to the room, e.g., by entering the building.

Contain(server,website), Depend(website, server),

Contain(room, server), Contain(room,AC),

Depend(AC, fan), Depend(server,AC),

Connect(path,Att, fan), Connect(path2,Att, room),

αVul(fan,PhysAtt), αVul(AC,PhysAtt), αComp(Att),

αVul(server, cyberAttack), αVul(website, cyberAttack),

Spread(Att,PhysAtt), Protect(bioMAuth, room, unauth A),

Safe(server, cyberAttack), Safe(bioMAuth, falsification)

A malicious attacker is not able to compromise the website
or the web server using a cyber-attack, e.g, DoS, or malware,
or by compromising cyber components related to them, as there
are protection measures in place that are assumed not vulner-
able. The attacker is also not able to compromise any human
component, as the access to the room is restricted to a small
group of trusted people. Furthermore, the attacker is also not
able to access the server room, thus, they cannot compromise
the server physically or take physical control over it.

Let us now analyse the given properties and relations for
this case study. The AC unit is driven by an external fan-box.
As this is placed outside, the box is vulnerable to physical attacks.
Therefore, we can derive that it is not defendable and not safe
with respect to physical attacks.

¬Def(fan,PhysAtt), ¬Safe(fan,PhysAtt), ¬Def(path,PhysAtt)

This is automatically derived by Rule 7 as shown below.

Connect(path,Att, fan) ∧ κComp(Att) ∧ ¬Safe(fan,PhysAtt)

∧Spread(Att,PhysAtt) ∧ ¬Def(path,PhysAtt)

→ κComp(fan,PhysAtt)

We can derive that the fan-box can malfunction given that it
can be compromised, using rule 9, which states that if an entity
is compromised, then it can malfunction.

κComp(fan,PhysAtt) → κMalfun(fan)

As the functionality of the AC depends on the functionality of
its fan-box, we can then derive that if the fan-box malfunctions
the AC can also malfunction, using rule 10.

κMalfun(fan) ∧ Depend(AC, fan) → κMalfun(AC)

As the functionality of the server depends on the AC, we
can further derive that the server can malfunction if the air
conditioning malfunctions using rule 10.

κMalfun(AC) ∧ Depend(server,AC) → κMalfun(server)

As the functionality of the website depends on its server, we
can derive that the website can malfunction, as shown also in
Example 2.

κMalfun(server) ∧ Depend(website, server)

→ κMalfun(website)

Thus, in this case, the attacker can compromise the functionality
of a digital component of the system (the website) by perform-
ing a physical attack on a physical component, that at first sight is
not directly connected with the website. In particular, as shown
in the attack graph (Figure 7), the attacker does not need to
physically access the server room but can create a cascading
malfunction between the different components leveraging the
fact that they depend on each other. This use case shows the
user that there is no need to add more protection to the room,
the server, or the employee, but better physical security to the
space outside e.g., the terrace and the fan-box.
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Fig. 7. Attack Graph for the Web Server Scenario

5.3 Attack on a Wind Farm
We now show a representation in our model of an attack on
a wind farm, first presented and realised in [3], [15]. In this
case, the attacker is able to physically access the wind turbine
by physically breaking the lock on the wind turbine door. Once
the attacker accesses the wind turbine, they place a Rasberry Pi
into the network switch, thus, enabling remote digital access.
The network switch is connected through the network with the
Wind Farm Control Network (WFCN). Thus, the device newly
plugged in can now access the WFCN that has no protection
measures on the inside network. Several attacks can now occur,
e.g., implanting malware in the WFCN, obtaining information,
network configuration, protocols, as well as, the disruption of
the Wind Farm operation (that brings economical losses) and
damage to key physical components given the architecture of
the Wind Turbine and the Wind Farm.

In our model, it is possible to see that the Wind Turbine
(WT ) is potentially vulnerable to physical unauthorised access
(unauth A) as it is protected against this attack by a lock, which
is vulnerable to be physically broken (physBreak). Given that
the lock is not protected against this type of attack we can state
that it is not defended and not safe against this attack.

αVul(WT, unauth A), Protect(lock,WT, unauth A),
¬Def(lock, physBreak)

Given the above information, we can derive that the lock is
compromised by the attacker (Att) through a physical attack.
As the attacker can now physically get to the Wind Turbine,
which is usually located in remote areas and with no surveil-
lance and thus not defended.

Connect(path,Att, lock) ∧ αComp(Att)∧
Spread(Att,physBreak) ∧ ¬Safe(lock, physBreak)∧
¬Def(path, physBreak) → Comp(lock,physBreak)

Once the lock has been compromised, the attacker can
physically access the Wind Turbine.

Connect(lock,Att,WT) ∧ Comp(Att)∧
Spread(Att,unauth A) ∧ Comp(lock) ∧ ¬Safe(WT, unauth A)

→ Comp(WT, unauth A)

Subsequently, the attacker by having physical access, can con-
nect the malicious Rasberry Pi in the network switch located
inside the Wind Tower.

Contain(WT, switch) ∧ κComp(WT) ∧ ¬Safe(switch, unauth A)

∧Spread(WT, unauth A) → Comp(switch, unauth A)

The Rasberry Pi can then attack the Wind Farm Control Net-
work e.g., through a malware program (Mal)8.

Connect(network, switch,WFCN) ∧ κComp(switch)∧
Spread(switch,malware) ∧ ¬Safe(WFCN,Mal)∧

¬Def(network,malware) → Comp(WFCN,malware)

An analysis of this example also shows the possible miti-
gations that can be deployed including: (i) putting a physical
guard or a camera to monitor the entrance to the wind turbines;
(ii) improving the quality of the lock; (iii) protecting the internal
network from internal attacks e.g., using a 0-trust strategy.

6 RELATED WORK
The work presented here relates to a number of different
research studies ranging from threat modelling and analysis,
to formal specifications of smart systems. Specifically, we focus
on the closest related approaches that seek to analyse the
security proprieties in cyber-physical and smart systems and
the existing studies that focus on attack graph generation from
threat modelling and analysis.

Generally, a significant amount of effort has been devoted in
the literature to the development of threat models and analysis.
A recent survey of existing threat models and threat analysis
for other application domains is provided in [19].

6.1 Threat analysis of cyber-physical systems
In recent years, threat analysis for cyber-physical and smart
systems is becoming a popular topic in cybersecurity. Some of
the most promising results are shown in [9], [20], [21], [22],
where the authors present novel threat models but none of
these studies models together the system’s cyber, physical and
human aspects together.

Tsigkanos et al. [20], [21] described an approach for topology
aware adaptive security for cyber-physical systems, focusing on
the interplay between cyber and physical spaces characterising
the operational environment. Even though this work shares
some ideas with our paper, their goal is different: they aim
to identify potential violations of security requirements (specu-
lative threat analysis), whilst we aim to identify the untrusted
elements of our system.

Lemaire et al. [9] presented a tool that automates in a formal
way the threat analysis of ICS (Industrial Control Systems).
Using a knowledge-based system, the tool extracts vulnera-
bilities both at the component and system level. When the
vulnerabilities are extracted, the security administrators can
adapt the system to mitigate or remove them.

Oladimeji et al. [22] proposed a goal-oriented approach
for analysing cyber threats. The approach provides support
for guiding the threat analysis process using the notions of
negative soft goals for detecting cyber threats and identifying
solutions for threat mitigation.

Akella et al. [23] defined a formal method to detect threats in
confidential communications. The proposed approach detects
threats by analysing the interactions between physical systems
with the cyber components. Sensitive information about a phys-
ical component can be inferred through behaviour observation
about the related cyber components.

Finally, in [6] the authors constructed a model for threat
analysis on Virtualized Systems called FATHoM. We took in-
spiration from this work’s formal description of the system
components relations and security properties. In our work we
extend, change and enrich this model, by adding more types of
relationships, security proprieties, derivation rules and defining

8. The network and the other components might be protected from
external malware from outside components, but the internal network is
considered trusted and thus, no protective measures are in place.
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an attack graph representation, in order to properly model
and detect hybrid threats in smart systems. In particular, our
framework represents entities that can be of cyber, physical,
or human nature, while FATHoM is constructed to analyse the
threat models for Virtualized (Cloud) Systems. Given the triple
nature of our cyber-physical and smart systems, we include
properties and relations that cannot hold in Virtualized Sys-
tems. Furthermore, our model represents also the functionality
property of the system’s entities.

6.2 Threat Detection via Attack Graphs
Several studies [5], [8], [24], [25], [26], [27] have investigated the
generation of attack graphs from the threat model and analysis
of the system. These studies use the generated attack graphs to
detect and show threats relations and possible mitigations, in a
graphical representation. To the best of our knowledge, we list
and present below the more relevant studies.

MulVAL (Multihost, multistage Vulnerability Analysis) is
a framework for modelling and analyzing the interaction of
software bugs with system and network configurations. As
it uses First Order Logic, it is able to automatically infer
system vulnerability and derives the attack graphs with the
probability that an adversary could successfully conduct an
attack. MulVAL’s language and infer system was extended
in several works and by several research groups. The most
significant improvements are reported in [28], [29]. In this work
we use MulVAL for the automatic graph generation provided
the inputs from our hybrid threat model.

In [8], the authors proposed an attack graph generation tool
that builds upon MulVAL. In their representation, a node in the
graph is a logical statement, i.e., representing some aspect and
propriety of the network. While, the edges of the graph, specify
the causality relations between network configurations and an
attacker’s potential privileges. The attack graph, in this way,
illustrates snapshots of attack steps and causes of the attacks
(“how and why the attack can happen”).

In [24], the authors presented methodologies that starting
from the information of the MulVAL model are able to: (i)
automatically identify portions of an attack graph that do not
help a user to understand the core security problems and so can
be trimmed, and (ii) automatically group similar attack steps as
virtual nodes in a model of the network topology, to increase
the understandability of the data.

In [25], the authors proposed a static analysis approach
where attack trees are automatically inferred from a process
algebraic specification. In their algebraic specification, they
identify an attack as a set of channels that an adversary has
to know in order to attain a given location in the system.

In [26] was presented P2CySeMoL (Predictive, Probabilistic
Cyber Security Modelling Language), an attack graph tool
that can be used to estimate the likelihood that professional
penetration testers are able to accomplish different attacks on
enterprise architectures within time(s) designated by a user.
The proposed tool automatically generates attack graphs by Cy-
SeMoL specification. P2CySeMoL as well as CySeMol combine
attack graphs and system models through the use of a language
that is not flexible. In order to introduce flexibility, the Meta
Attack Language (MAL) was introduced in [30] that is a domain
specific language for probabilistic threat modelling and attack
simulations. Starting from the MAL language, powerLang [31]
was proposed to create and evaluate a MAL-based domain-
specific languages for the representation and simulation of
cyber-attacks for the power domain (i.e., power grids, energy
providers, and other critical infrastructure).

Finally, in [27] the attack graphs are generated using an
ontology and SWIRL (Semantic Web Rule Language) rules to
express cause-consequence relationships of all known attack
scenarios.

The main difference between the existing approaches with
our work is that these studies do not consider simultaneously

the physical, cyber, and human aspects. Moreover, in the ap-
proaches proposed by Mulval, P2CySeML and MAL a user or
an item has only a static role. Furthermore, no relationships
between the system’s components are considered, as well as
aspects like monitoring. Except for the works based on MulVAL
no logical inference is applied to the attack graph analysis.

7 CONCLUSION

In this work, we propose a novel hybrid threat model and
analysis that permits us to describe and derive the security
state of smart systems. Our approach includes in its reasoning
the cyber, physical, and human aspects as well as relations
between them and the relationships between the architectural
components of the system. To the best of our knowledge, this
is the first threat model that describes and analyses threats for
smart hybrid systems, where the system’s components can be
of cyber, physical, and/or human nature.

The novel threat model introduced is able to represent the
various relations between the components of the system, their
security properties, and their relations with the possible threats.
We analyse the different aspects and properties of the system’s
components that are not simply considered as possible sources
of threat, but also considering their defensive and preventive
capabilities. An important aspect is the analysis of the human
aspects of some components both in terms of their vulnerabili-
ties but also in their role of protecting the physical and digital
aspects of the system.

Our model and analysis are implemented in a Prolog based
tool called TAMELESS. We tested TAMELESS in several sce-
narios of which two smart systems and a critical infrastructure
attack example were presented in this paper. We provided in
detail the threat analysis steps performed by our threat model
for one of the scenarios and an overview for the other two. Our
tool automatically generates attack graphs that can be used by
the security analyst/system administrator to understand the
current state of the system and its components. In particular,
the threats and vulnerabilities of the system and system’s
components are identified. The result of the tool can be used
also to identify the most-effective countermeasures, as the user
given the current state of the system can decide to make some
appropriate changes to it. Before making the changes in the real
system, the user can simulate the state of the system with the
changes using TAMELESS and decide if they are appropriate
or not.

An interesting direction for future work is the automatic ex-
traction of the relations and security properties of the system’s
components. While in this work, we provided them to the threat
model, many could be extracted automatically from system
designs, physical plans, Building Information Models etc.. We
see the smart building scenario as a good starting point, as the
increased use of Building Information Modelling readily makes
available not only the physical plans of the building but also
its interconnections with the digital aspects of the system and
the building management systems. Industrial systems such as
in Industry 4.0 or industrial processes are also good candidates
where the design documents include much of the information
needed to automatically extract the model.

The relations, security properties, and rules used by our
threat model are static. In the future, we also aim to investigate
how such techniques can be applied in dynamic systems where
new components can join or leave the system. Finally, we aim to
enrich the expressivity and reasoning capabilities of our model
by adding time constraints and probabilistic assumptions on
the relations and rules, in order to model more complex sys-
tems, such as resilient components or devices able to auto-
repair.
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