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ABSTRACT: The search for a Dark Matter particle is the new grail and hard-sought nirvana
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Dark Matter models, abbreviated as MCDMs, that are defined by one Dark Matter weak
multiplet with up to one mediator multiplet. This classification provides the missing link
between experiments and top-down models. Consistency is achieved by imposing renor-
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tions to direct detection, including the relevant effect of (small) mass splits in the Dark
multiplet. Our work highlights the presence of unexplored viable models, and paves the
way for the ultimate systematic hunt for the Dark Matter particle.
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1 Introduction

Dark Matter (DM) exploration is becoming an increasingly appealing subject at present [1],
particularly when the Large Hadron Collider (LHC) experiments like ATLAS and CMS, as
well as other non-collider experiments, do not indicate any clear signal Beyond the Stan-
dard Model (BSM). The evidence for DM provides, arguably, the strongest experimental
indication of BSM physics. Thanks to the great advances in precision cosmology and as-
trophysics, it is well-established from several independent observations the presence of a
source of mass in the Universe, not accounted for in the Standard Model (SM). The obser-
vations include galactic rotation curves, cosmic microwave background fits of WMAP [2]
and PLANCK [3] data, gravitational lensing, large scale structure formation in the Uni-
verse, as well as the existence of so-called bullet clusters. All of this data points towards the
presence of BSM matter, roughly 5 times more abundant than ordinary baryonic matter [4]
in the present day Universe.

While evidence for the presence of DM in the Universe has become more convincing,
our knowledge of its nature remains veiled; there are many particle candidates, however no
experiment so far was able to probe their properties. The mass of DM candidates covers
a vast range, from sub-eV (axion-like) to astrophysical masses (primordial black holes).
Here we will be interested in masses in the GeV—TeV range, so that the DM particles can
be probed at colliders like the LHC by measuring their production in particle collisions,
at direct detection underground experiments [5-7] that are sensitive to elastic scattering
of the DM particles in the local galactic halo off target nuclei, and finally at indirect
detection experiments that measure the products from DM annihilation and/or decay in
the Universe constituting positron, gamma-ray and anti-proton fluxes. The fact that such
DM candidates can be probed by a large array of experiments, of different nature, made
the interest in DM rapidly increase in the particle physics community, especially after the
discovery of the Higgs boson at the LHC.

One of the most important issues behind DM searches is related to how to combine
the results of experimental searches, so different in nature, in a consistent and yet model-
independent and general way. Starting from ref. [8], an Effective Field Theory (EFT)
approach has been adopted in collider and direct detection searches. Since then, the level
of sophistication in DM exploration at the LHC and in direct detection has been constantly
increasing. Although many ATLAS and CMS papers have been using EFTs in Run 1 data
analysis and interpretation [9-14], the limitations of this approach soon became clear. In
EFTs, contact interactions are used to model the couplings of the DM candidate to ordinary
matter: this approximation works well in direct detection, where the energy of the collision
is very low, corresponding to the velocities of the Earth and of Dark particles in the local
halo, while it fails at energy scales close to or above the mass of the mediator generating the
effective contact interactions. Eventually, this invalidates the comparison between direct
detection results and the LHC searches at ATLAS and CMS.

At the next step beyond EFTs, the exploration of collider DM phenomenology adopted
simplified models, where the Dark sector is characterised by the DM candidate and a me-
diator that makes the connection with the SM particles [15-29]. Some of these models



have been used in recent ATLAS and CMS experimental interpretations of Run 1 [30-34]
and Run 2 [35—40] LHC data. In simplified models, the mass of the mediator and, poten-
tially, its width are non-trivial parameters of the model. However, one remains agnostic
about the theory behind the Dark sector and tries to parametrise the interactions in the
simplest terms: this often leads to writing interactions which are not invariant under the
full SM gauge symmetry but only under the unbroken colour SU(3) and electromagnetic
U(1). Nevertheless, one still needs to know if it is possible to construct viable models that
lead to a given simplified scenario, consistent with the full symmetries of the SM [41, 42].
The latter point is particularly important at the LHC, a machine which is probing energies
well above the electroweak (EW) symmetry breaking scale, so that for many events the full
weak SU(2)xU(1) is a good symmetry. For instance, if a mediator or DM candidate comes
in a multiplet of the weak Isospin SU(2), its charged partners may play an important role
in the LHC phenomenology often being more important than the neutral state itself. This
is the case for charginos in supersymmetry. In addition, simplified models often violate
gauge invariance at high scales [41], which is a crucial principle for building a consistent
BSM model that incorporates the SM together with new physics. For example, considering
simplified models with a new heavy gauge vector boson mediating DM interactions, one
should also introduce a mechanism responsible for generating the mediator mass and en-
suring gauge invariance for the model [41]. Eventually, this necessarily requires introducing
an additional sector into the model that may affect the DM phenomenology [41, 43].

These drawbacks strongly indicate the next step in the evolution of the DM inves-
tigation, based on building Minimal Consistent Dark Matter (MCDM) models. MCDM
models can be still understood as toy models that, however, take in full account the con-
sistency with the symmetries of the SM. In our approach, MCDM models consists of one
DM multiplet and at most one mediator multiplet, which generalises previously suggested
Minimal Dark Matter approaches with just one DM multiplet [44].

Furthermore, a particular MCDM model can be easily incorporated into a bigger, more
complete and fundamental, BSM model and be explored via complementary constraints
from collider and direct/indirect DM search experiments as well as relic density constraints.
The exploration of complementarity of the collider and non-collider constraints within the
complete models such as MCDM ones is very appealing especially now as we have a large
amount of data from the LHC. Combining searches may shed light on the BSM physics in
the form of DM, which can be near the corner of the combined collider and non-collider
limits. Another attractive feature of the MCDM approach is the minimal but self-consistent
parameter space that can be potentially mapped to the parameter space of known (and
completely new) BSM models.

Many implementations of MCDM models have been studied in the literature [19-
21, 27, 44-46], however there has been no attempt on their systematic classification yet.
This is precisely the aim of the present work. In this study we shall:

a) perform a complete classification of MCDM models, with at most one mediator and
including only renormalisable interactions (with some notable exceptions);

b) present the main features for each class of MCDMs constructed using the main build-
ing principles we state below.



We believe that this classification, and the MCDM approach in general, will create a
solid framework for the consistent exploration of DM models at collider and non-collider
experiments for the complementary probe of Dark sectors.

The paper is organised as follows: after articulating the main principles behind the
MCDM approach in section 2, we summarise the main properties of models with only a
DM candidate in section 3. Here we also present a detailed calculation of the one-loop cross
section for direct detection, which includes for the first time the mass split between com-
ponents of the DM electroweak multiplet. In section 4 we classify and characterise models
with a single mediator. Finally, in section 5 we study in detail a new model that emerges
from the classification, featuring a Dirac fermionic DM candidate and a CP-odd scalar
mediator. In some regions of the parameter space, the scalar mediator can be accidentally
stable and contribute to the relic density. We offer our conclusions and outlook in section 6.

2 Classification of MCDM models

The building blocks we use to construct MCDM models are vector-like multiplets defined
in terms of their spin and electroweak quantum numbers. We will only consider spin-0 (.5),
spin-1/2 (F for Dirac and M for Majorana'), and spin-1 (V). For models with higher spin,
we refer the reader, for instance, to refs. [47-50]. The electroweak quantum numbers will
be encoded in the weak Isospin, I, and the hypercharge, Y, of the multiplet. Furthermore,
we will denote with a tilde the multiplets that belong to the Dark sector, i.e. they cannot
decay into purely SM final states. The multiplets we consider, therefore, read:

St FL, ML, W, s, R, ML, W

As some mediator multiplets may carry QCD quantum numbers, we will use a superscript
¢ to label this feature.

To construct consistent minimal models, we follow these main building principles:

A) We add one Dark multiplet (including the singlet case) and all its renormalisable
interactions to SM fields, excluding the ones that trigger the decays of the multiplet,
which is therefore stable by construction. The models will automatically include a
Dark symmetry, being Zg or U(1) depending on the multiplet. The weak Isospin and
hypercharge are constrained by the need for a neutral component, therefore we will
have the following two cases:

- for integer isospin I =n,n € N, then Y =0,1...n;
- for semi-integer isospin I = (2n+1)/2, n € N, then Y =1/2,3/2...(2n+1)/2.

Note that the case of negative hypercharge can be obtained by considering the charge
conjugate field, thus the sign of Y is effectively redundant, and we will consider Y > 0.

'Here, we call ‘Majorana’ a multiplet with zero U(1) charges and in a real representation of the non-
abelian gauge symmetries, SU(2), such that ¢ = .



B) We consider models where only one Dark multiplet is present, and mediators are SM
fields.> While our principle is to be limited to renormalisable interactions, under the
assumption that higher order ones are suppressed by a large enough scale to make
them irrelevant for the DM properties, in some cases we will consider dimension-5
operators.

C) In additional to point B), we consider adding just one mediator multiplet, char-
acterised by the respective weak Isospin, I’, and hypercharge, Y’. The mediator
multiplet can be odd or even with respect to the Dark symmetry, and its quantum
numbers are limited to cases where renormalisable couplings to the Dark multiplet
and to the SM are allowed. This leaves open the possibility of multiplets carrying
QCD charges, which we label with a superscript ¢. The mediators are labeled as
following:

U

— S, FL, ME" and V35 for even mediator multiplets;

- gf/,(c), IE}I,,(C), Mé ©) and \7}{,(6) for odd mediator multiplets.
The odd mediator multiplets can also contain a DM candidate if a neutral component
is present.

D) We consider all renormalisable interactions allowed by the symmetries of quantum
field theory. Our basic assumption for MCDM models is that higher-order operators
are suppressed by a scale high enough that the LHC is unable to resolve the physics
generating the operators. The effect on the DM properties is also considered negligible
(except for dim-5 operators generating mass splits).

E) We ensure cancellation of triangle anomalies, so that the MCDM models entails
consistent gauge symmetries.

With the notations above, following the precepts A) to E), we can classify all MCDM
models with up to one mediator multiplet using a 2-dimensional grid in Spin(DM)-
Spin(mediator) space, as presented in table 1. Each specific DM model is denoted by
a one- or two-symbol notation, indicating the DM multiplet first, followed by the mediator
multiplet. In general, the interactions of the DM candidate to the SM are mediated by
SM particles (e.g. by the EW gauge bosons and the Higgs) and other components of the
DM multiplet, besides the components of the mediator multiplet. Hence, highly non-trivial
interference effects can arise. Furthermore, some couplings entail flavour structure, which
need care as they may incur very strong bounds. Eventually, the case with no mediator

*Note that this model building approach has been used in [44] to construct models of so-called Minimal
Dark Matter, so some of the results we present here can be found in this reference. However, our approach
has some differences: in ref. [44], the symmetry making the DM candidate stable or long lived emerged at
low energy, at the level of renormalisable interactions, while decays could be induced by higher dimensional
couplings to the Higgs multiplets. In our case, we assume that a parity or global U(1) symmetry is also
respected by higher dimensional operators. Henceforth, we do not take into account any constrains on the
isospin of the multiple.



Spin of

Dark
Matter 0 1/2 1

Spin of
Mediator
no mediator 5{/ ﬁ’é 173£

spin 0 even mediator 5{/511, F{;SOI ‘7§£SI,,
spin 0 odd mediator 5’{/51/, FLSL, ﬁ’{,gjlf Y~/§£§{/,/
spin 1/2 even mediator — (via dim-6 operators) —

spin 1 : oI I’ QI pl'c ] pl+1/2 vIipl  yIple
pin 1/2 odd mediator | Sy Fy, Sy Fy) Fy By s Vy Fy, Vi Fy)
spin 1 even mediator g{,Vo ' F}I,VO ' ng{i
spin 1 odd mediator SLVE RV FLVEe ViV

Table 1. Classification of MCDM models in Spin(DM)-Spin(mediator) space. When possible, the

Dirac fermion can be replaced by a Majorana one, F' — M.

multiplet is denoted by just one symbol labelling the DM multiplet. In this case the role

of mediators can only be played by SM particles and members of the DM multiplet.

In the remainder of this paper, we will focus on spin-1/2 DM multiplets, leaving the
other two cases for a future publication.

3 Case of one DM multiplet: 13‘1’; and M({ models

Models where the DM belongs to a single EW multiplet, while no other light states are
present, have been studied in great detail, starting from the seminal paper in ref. [44].
In this section we briefly review the main properties of these minimal models, and add a

detailed discussion of the following novel aspects:




i) We provide an improved formula for the mass split induced by EW loops, which is
numerically more stable than the one given in ref. [44].

ii) We discuss in great detail the effect of couplings to the Higgs boson arising as
dimension-5 operators. While going beyond renormalisability principles, they are
generated by integrating out a single mediator (thus, they can be considered as a
limiting case from some of the models discussed in section 4). Furthermore, a class
of these operators have special phenomenological relevance as they help salvage some
of the minimal models with non-zero hypercharge.

iii) We provide a detailed and up-to date discussion of direct detection bounds at one-
loop level. We include for the first time the effect of mass splits within the DM
multiplet, and show their relevance.

iv) We discuss the impact of nuclear uncertainties and of the variation of the gluon
contribution due to the mass splits. Both generate comparable uncertainties in the
total spin-independent cross sections, which emerge as an uncertainty in the DM
mass limits of hundreds of GeVs.

This section also serves to fix the notation we will adopt in the rest of the paper. When
writing Lagrangians and interactions we will consistently use ¥ = ¥y + Uy for Dirac DM
multiplet, with Up = \IJ(LJ for the Majorana case (where ¢ indicates the charge conjugate
field), 1" for the components of a Dirac multiplet and x* for the components of a Majorana
multiplet. Furthermore, we only consider Y > 0, as the case of negative hypercharge is
straightforwardly analogous to the corresponding positive value case. We will use Mpjs to
denote the mass of the neutral component that serves as DM candidate.

In the “stand alone” case, only gauge interactions of the EW gauge bosons, W, Z and
photon, are allowed at renormalisable level. This simple class of models has well established
properties [44], which we list below:

- A gauge coupling g ., 18 always present for Dirac multiplets with ¥ # 0, which are
thus excluded by direct detection even for under-abundant points (for Mpyr < myz/2
the invisible width of the Z also excludes the model). On the contrary, when Y = 0,
the coupling 9200 always vanishes.

- Due to the absence of couplings to the Higgs field, the mass split between the neutral
and charged components of the DM multiplet are generated by EW loop corrections
and are always small (below a few hundred MeVs, with the precise values depending
on the hypercharge of the multiplets). This leads to long lived particles, especially
at high mass. The lightest component is not always guaranteed to be neutral: this
only occurs for multiplets with ¥ = 0 and maximal hypercharge, Y = I.

- For Y > 1 and isospin I # Y (hence, I > 2), the mass range with the neutral
component being the lightest is excluded by the Z width. Hence, these multiplets in
isolation cannot provide a DM candidate.



- For Y = 1/2 and I > 3/2, the lightest component is neutral for Mpy; < 570 GeV.
Above this threshold, the charge —1 state becomes the lightest in absence of Higgs
couplings.

- For Y = 1/2, a dim-5 operator with the Higgs boson generates a mass that splits
the neutral component in two Majorana mass eigenstates (pseudo-Dirac case). This
salvages the models from exclusion via the Z interactions.

- Taking into account loop-induced mass splits, the loop-induced cross sections ensures
that current and future direct detection experiments can probe multiplets with 1 > 1,
where I > 2 can be completely ruled out, while the case of a doublet I = 1/2 is always
below detection. Uncertainties in the nuclear form factors and mass splits for the
gluon contribution generate uncertainties of hundreds of GeV in the DM mass limit.

We should finally note that, for DM multiplets with {/,Y} = {0,0}, {1/2,1/2}, {1,0} and
{1,1}, a linear Yukawa coupling with the SM leptons is allowed by gauge symmetries, while
larger isospin multiplets are automatically protected at renormalisable level. However,
higher order couplings involving the Higgs can always generate decays of the DM multiplets,
and it has been the main motivation of ref. [44] to find multiplets that are long-lived enough
to be Cosmologically stable, thus pointing towards multiplets with I = 2. In this work we
will be more pragmatic and allow for any multiplet by forbidding implicitly all operators
that could mediate the decays of the DM candidate. The origin of such a symmetry
is to be searched in the more complete model containing the DM multiplet. Moreover,
as the MCDM models are to be considered effective low energy descriptions of the DM
phenomenology, we do not consider the upper limit on the isospin value coming from the
absence of Landau poles in the renormalisation group running of the EW gauge couplings
below the Planck mass.

After reviewing the properties of Dirac and Majorana multiplets in section 3.1 and 3.2
respectively, in section 3.3 we study in detail the effect of dim-5 couplings to the Higgs
field. In section 3.4 we provide novel detailed results on one-loop cross sections for direct
detection, including for the first time the mass split in the multiplet, and present current
exclusion limits and future projections. We also show that, due to delicate cancellations
among various amplitudes, both the mass split and nuclear uncertainties have sizeable
impact on the cross sections and on the DM mass limits.

3.1 Dirac multiplets (FL)

In the case of Dirac multiplets, i.e. when both chiralities are present, the lowest order
Lagrangian, to be added to the SM one, reads

ALpirac = 19D,V — mpUV (3.1)

where the covariant derivative includes the EW gauge bosons. It is invariant under a global
U(1)pm symmetry, thus an asymmetric contribution to the relic abundance may be present
if the complete model preserves this symmetry.



Except for the singlet case FD. the multiplet contains charged states:
Pt
1/}—4-
U= 9o |, with n=I+Y, and m=1-Y. (3.2)
-

(G

The Dirac mass term in eq. (3.1) gives equal mass to all components of the multiplet. This
degeneracy can only be lifted by radiative corrections due to the EW gauge bosons. This
contribution has been first computed in ref. [44], and can be written as

(@2 = Q) (frew) = &y fr(az) — sty fr(a,))
+2Y(Q - Q) (fr(az) — frlaw)))| . (3.3)

amp
2
4w sy,

MQ —MQ/ —

where fr(x) is a loop function and zy = my /mp. This expression explicitly shows that
the mass differences vanish in the limit of equal masses for W, Z and photon. For the loop
function, we found an alternative form that is numerically more stable than the one given
in ref. [44] (see appendix A for more details). The result, which is exact, reads

2_2 Va2 —4
fF(l‘):g 2m3lnx—2l‘—\/x2—4(m2+2)lnx —1—233 ’ ] . (3.4)

This function has been defined in such a way that fr(z,) = fr(0) = 0. It is instructive to
study how the mass split looks in the limit of DM mass small and large compared to the
W and Z masses. For light DM, Mpyr = mp < my, the leading contribution reads

3o, o 2 my 1
Mg — MQ”mD<<mW ~ %(Q - Q" )mp (log mp T (3.5)
This mass split tends to zero for vanishing DM mass and is proportional to the difference
in squared charges, as an indication that it is dominated by the photon exchange. Further-
more, in this limit the lightest component of the multiplet is always the neural one. In the
opposite limit, mp > myy, the leading term in the expansion reads
amy 2, , 2Y(Q - Q)
(@ -Q7)+ ——7~|. (3.6)

Mo — Mo N ——
Q Q |mD>>mW 2(1 +CW) cw

For Y = 0, the charged states are always heavier than the neutral one as the surviving term
is proportional to the difference of squared charges. On the contrary, for Y # 0 the second
term, which depends on the sign of the charges (we chose Y > 0 without loss of generality),
does not guarantee that the @) = 0 state is always the lightest one. In particular, the state
@ = —1 is always lighter than the Q = 0 one in this limit, for any value of Y # 0 and
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Figure 1. Left: maximum value of mp above which the lightest component has charge Q = —1 for

various values of Y. The horizontal line indicates myz/2, below which decays of the Z exclude the
model. Right: spectrum for a generic multiplet with Y = 1/2, with mp < 570 GeV. The vertical
line shows mp = myz/2, below which the model is excluded by the Z decays.

of the isospin of the multiplet. Thus, there exists an upper limit on mp, above which the
lightest state in the multiplet is charged, and this value is determined by the () = —1 state.
The values of the mass upper bounds for various Y are shown in the left panel of figure 1:
the highest value is achieved for Y = 1/2 which gives m}®* ~ 570 GeV (we recall that for
Y = 0 there is no limit), while for Y = 1 we find m5** ~ 42 GeV, which is already below
mz/2. Hence, multiplets with Y > 1 are excluded by the Z-width measurement in the
region where the lightest state is neutral, as long as a ( = —1 state exists in the multiplet.
In fact, this upper limit is removed for multiplets with maximal hypercharge, ¥ = I, for
which only states with positive charge are present. In the right panel of figure 1 we show
the mass splits for various charges and for Y = 1/2 as a function of the DM mass, i.e. the
mass of the neutral component. This shows that the () = —1 state is always the lightest
above the neutral one for mp < 570 GeV, with a mass split always smaller than 100 MeV.

The analysis of the loop induced mass split, therefore, shows that only 4 classes of

models are potentially interesting:
a) the singlet Fy;

b) multiplets with maximal hypercharge FII , including the doublet Fll //22 ;

c¢) multiplets 15’1[/2 (I semi-integer with Y = 1/2), with mp < 570 GeV for I > 3/2;
d) multiplets F{ (I non-zero integer with ¥ = 0).

As already mentioned, all models with Y # 0, i.e. b) and c), are excluded by direct detection
via the Z exchange. As we will see, however, a dim-5 couplings to the Higgs can salvage
the models with Y = 1/2 (see section 3.3.2).

3.1.1 Pseudo-Dirac multiplets

For completeness, we recall that Dirac multiplets with Y = 0 can be split in two Majorana
multiplets M({ . This can be effectively described by the addition of a new mass term to

~10 -



the Lagrangian in eq. (3.1):
= - 1 -
ALy Dirac = 10D ¥ = mpU¥ — (6m OC® +he.). (3.7)

Without loss of generality, we consider dm to be real and positive.®> The Lagrangian above
effectively describes two Majorana multiplets (see section 3.2) with masses

MLQ = mp +om. (38)

We highlighted the mass term dm as it breaks the U(1)py to a Zgy, hence it may be a small
perturbation depending on how this breaking is implemented in the UV completion of the
model. Note also that this term is not generated radiatively as long as it is not generated
by the complete model. Hence, it may be natural to have a small mass split between the
two Majorana multiplets, which leads to a model with two DM candidates, with the relic
density dominated by the lighter one for large mass split. We recall that in all pseudo-Dirac
models the lightest component is guaranteed to be neutral.

3.2 Majorana multiplets (M{)

In the case of a Majorana multiplet, Mg , the Lagrangian to be added to the SM one reads:

1= 1 -
ALMajorana = ZE‘IWMD;L‘I’ —gmu (AU (3.9)
where ¢ = ¥ and the multiplet can be written in terms of a Weyl spinor ¥ = (%) with
X
components
X"
v
X = X0 , with n=1, (3.10)
(x")°
(XTL+)C

so that the Majorana DM candidate xq is accompanied by n = I Dirac charged partners.
The phenomenology of this multiplet is in large part the same as for a FOI Dirac multiplet,
in particular the mass split between the various components is given by the same formula
given by egs. (3.3) and (3.4). Hence, the lightest component is always the neutral one.

3In principle ém can be complex, however the phase can always be removed by a redefinition of ¥. A
physical phase appears in couplings of ¥ that are not invariant under the phase redefinition.

- 11 -



3.3 Mass split from dim-5 Higgs couplings

In this section we consider minimal couplings to the Higgs field, which can arise at the
level of dim-5 operators. While being suppressed by a UV scale, they are relevant because
they can induce a mass split between the components of the DM multiplet, potentially
competitive with the EW loops, and change drastically the phenomenology of the multiplet.
Hence, while they are not renormalisable couplings, we will consider them here as minimal
extensions of the single multiplet models. Furthermore, as we shall see in section 4, they
arise by integrating out a heavier fermion or scalar mediator.

3.3.1 Basic case for Dirac and Majorana multiplets

The Brout-Englert-Higgs doublet ¢, which has I = 1/2 and Y = 1/2, can only couple
to the DM multiplet via higher dimensional operators. The lowest order operators have

mass-dimension 5 (dim-5) and read:

ALgims D — ¢HT1/2¢H T ¢H¢H o, (3.11)

where T} are the three SU(2), generators for the multiplet with isospin I, and A is a new
scale that we assume being beyond the LHC reach to resolve. For Majorana multiplets,
however, the first term is absent as it vanishes identically. The second term generates a com-
mon mass contribution for all components, thus it simply shifts the mass of the multiplet

02 2
mD—mD+/<2A, m’M:mM+/~i'v—, (3.12)
and generates a coupling to the Higgs, ——h UV, that contributes to direct detection,
where v = 246 GeV.

The first one, instead, induces a mass split among the various components, thus it may
affect the conclusions about the spectrum of Dirac multiplets we reached in the previous
section. We recall that the form of the SU(2) generators for a generic isospin [ is

I o ... ... 0 Ocp 0 ... 0
0o7/—-1... ... 0 00 c ... 0
S . 1. .. : _
TP=1: + - S T;L:ﬁ SRR |, Ty = (1), (3.13)
-I+10 0 cor
o 0o ... 0 -I 00...0 O
with
c,=\kQRI+1—k), k=1,...2I, and cor41-k = k- (3.14)

Once the Higgs field develops its VEV, the only non-vanishing component is

1

1 *
¢THT13/2¢H = —5¥0v0 = _Z(” +h)?, (3.15)
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which couples to UTFW. The resulting term in the Lagrangian reads (C.f. eq. (3.2) for a
characterisation of the components)

h\? /. - -
Ly=—pp (1 * ) (1 @yt 4 (1= 1) gD+ (3.16)
v
=Y Yoo — - — I &m_ﬂfm_) ; (3.17)
where up = —’Z—f and we have used the relation 7% = —Y for the neutral component. In

terms of mass splitting, these couplings can be expressed as

Mg — Mgy |0 = #0(Q — Q') (3.18)
Together with the EW loops in eq. (3.3), the master formula for the mass splits reads:
Mg — Mpys = omigly Q%+ (2Y dmixy +up) Q. (3.19)

where loop coeflicients 6m](§2N can be read off eq. (3.3). The asymptotic values for large

multiplet masses read

166 M
lim omiyy =166 MeV and  lim _dmizy = M6 MV _ jggmev.  (3.20)
mp—o0

mp—00 cw

Eq. (3.19) shows that for too large |up|, either the @ =1 or @ = —1 state becomes lighter
than the neutral one. The model, therefore, features a feasible DM candidate only if

75m1(51\3v -2Y 5m](52\),v < pup < 5m](31\),v —-2Y 5m1(52\3v, (3.21)
or 1p > —5mg\),v —(2Y) 5m](52\)N for Y =1. '
The condition for maximal hypercharge stems from the fact that the () = —1 state is absent.

The allowed ranges of up as a function of mp are shown in figure 2 for various values of
integer and semi-integer Y, where the upper limit should be removed for multiplets with
maximal hypercharge. Hence, up allows to salvage multiplets with Y > 1/2. It remains
the issue of exclusion by direct detection via the Z coupling: to elude it, one needs to
generate a mass split in the neutral state that we discuss in the next subsection.

To connect the feasible values of pup with the scale at which this interaction is gener-
ated, it is useful to compare it with the asymptotic value of the EW loops:

A
K

This corresponds to the range of up allowed asymptotically in the Y = 0 case, and gives
a reference for the scale of new physics A.

3.3.2 Dirac multiplets with Majorana coupling: case Y = 1/2

Models with Y # 0 are excluded by direct detection via the Z coupling. It is well known
that this bound can be avoided if the neutral state is split into two Majorana mass eigen-
states via a coupling to the Higgs field. For Y = 1/2, this occurs at dim-5 level via the

operator:

1k -
ALgim-5 = _iTM a1y )o0H T + hec. (3.23)
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Figure 2. The feasible region in the mp—up parameter space, where the lightest state is neutral,
lies within the two lines, where the upper one comes from the () = —1 state and the lower one from
@ = 1. For multiplets with maximal hypercharge, Y = I, the region above the upper line is also
allowed. The yellow shaded region is excluded by Z decays into the DM multiplet components.
The vertical line in the right hand plot shows the mp < 570 GeV limit for Y = 1/2 and pup = 0.

The operator above is similar in nature to the Weinberg operator in the SM [51] that gives
a Majorana mass to the left-handed neutrinos. Note also that it preserves a Zgo symmetry
on the DM candidate, but breaks the U(1)py. Its most important effect is to split the
neutral Dirac state into two Majorana mass states: the Z boson can only couple the two
states to each other, without any diagonal couplings. As long as the heavier Majorana state
is not Cosmologically stable, the DM candidate is the lightest one and elastic scattering off
nuclei mediated by the Z is absent. The price to pay is a new coupling to the Higgs boson,
which also contributes to direct detection. As a fist step, we need to determine what is the
effect of the new coupling kj; on the mass ordering inside the multiplet.
In the operator (3.23), the only non-vanishing component of the Higgs current is

1 1
T+ P S
¢H 1/2¢H \/5()00 2\/§

(v+h)?, (3.24)

which couples to ‘ifo UC. The resulting Lagrangian for a generic semi-integer isospin I
reads

1 N2, o i (e k) —
Bldins = 5 (”J R (e AN (L
oot e (W0 o T (T
+er D= (O IH) fhe, (3.25)

where uy = ”ﬁ‘f—/{}z, and we recall that the neutral state corresponds to k =n =1+ 1/2.
All states receive a mass correction except the one with the largest electric charge, ¥"*.
For the neutral state, the mass matrix can be written in a Majorana form as follows:

mh —1/2up  Cry1jom (40)¢

- o (3.26)
crejpim i —1/2up (0

_ % ((1/‘]0)0 1,50)
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Figure 3. Feasible range for Y = 1/2, I = 3/2 (Left) and I = 5/2 (Right) in the presence of a
Majorana dim-5 coupling. The lines from solid to dotted correspond to puy; = 0, 0.1, 0.2, 0.3 GeV.
The region with a lightest neutral component lies between the two lines. The yellow shaded region
is excluded by the Z decays into the multiplet components.

where m% includes the one-loop EW corrections. The Majorana mass eigenvalues are

1

B 1
My 1/ = M — ghp Ecrpip lpml,  crpp=I+5. (3.27)

Note that ¢y, /7 is the largest coefficient in the TIJr generator and the lightest state always
receives a negative contribution to its mass, independently on the sign of xjs. Henceforth,
this operator always tends to make one neutral state lighter. For a doublet, I = 1/2, the
charged state does not receive a mass correction from kjs, hence the mass split between
the charged state and the lightest neutral one can be written as

M+_M011’F11//22 :5mg\3v+5m(E2\2v+uD+ lar] - (3.28)
This shows that the presence of a non-zero uy; always enlarges the parameter space where
the lightest state is neutral, in particular allowing for larger negative values of up compared
to the case with py = 0.
For larger values of the isospin, I > 1/2, we need to study the correction to the masses
of the charged states, whose mass matrix can be written as

~ (n—k)+ n—k)+
_L (Jj(n—k)-i- (qg(n—k)—)c) mp I =k)up _— CritM VA
2 CriM mpy = (I—k+1Dpp ) \(p=H7)¢
(3.29)
where m(g"“)i include the one-loop EW corrections. Using the parametrisation adopted in

the previous subsection, the mass eigenstates for charge () = (n—k) states can be written as

1

210 =V Q2up + o2+ Rud, . (3.30)

MQ,I/Q = ’ﬁLOD + QQ(STTLS\)N —

The state that receives the potentially largest negative contribution to the mass has charge

Q — 1, for which Ccr — 01_1/2 — CI+3/2 = \/(I+ %) (I— %) and the mass difference
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between the lighter charged and neutral states reads

3

1 1
My 1 — Moy = dmigy + <I + 2) | — \/(MD + Sy )? + <I + 2) (I - 2> 1 - (3.31)

The lightest state remains the neutral one as long as

— 5m1(32\2v ~VX <pp< —(5m1(E2\3V +VX, X = (5m](31\2v)2 + 3+ ] (5m](31\3v (1+2I).

(3.32)
This region in the mp—up parameter space is represented in figure 3 for I = 3/2 (Left)
and I = 5/2 (Right), where the curves from solid to dashed correspond to increasing g
from 0 to 300 MeV. This plot shows that a non-zero uy; always enlarges the allowed band.
The same trend occurs for larger isospin values. To have a feeling of the scale involved
in the generation of s, as a reference the minimal value of s above which the neutral
state is always the lightest for up = 0 and I = 3/2 is:

|| > 11.5 MeV & |HJJX\/1\ < 1300 TeV . (3.33)

A similar splitting can be obtained also for multiplets with hypercharge larger than

1/2, at the price of higher dimensionality of the operator. For any given semi-integer

Y = N+1/2, the operator contains 2N additional ¢z fields, hence having a mass dimension

of dim = 5+ 2N = 4+ 2Y. The main issue with this case is that a sizeable uj; would
require a relatively low new physics scale:

L

2 Y+1/2 2Y +1 2Y
lun| = =M (2 S 115 MV A< k27 v (3.34)
HNT=9aey | 2 ' M\ oves(115 MeV) )

For Y = 3/2, this implies A < /ﬁ}\f’ 3.4TeV, while for Y = 5/2 we have A < /1]1\45 1.0 TeV.

Hence, the scale generating these operators is required to be within the range of colliders
like the LHC in order for the operator to have sizeable effects.
As an example of how the dim-5 operator in eq. (3.23) is constrained by relic density

and DM direct detection experiments, we show in figure 4 the exclusion regions for a doublet
~1/2
ry /2
given by AMy = 2|pups| between the two Majorana mass states, and AM; = |upr|+ the EW

model in the (upr, Mpar) plane. We set up = 0, and recall that the mass splits are

loops. The blue shaded region is excluded by relic density over-abundance while the dark
pink region is excluded by current direct detection limits from PandaX-4T [6]. The light
pink region presents the projected region that future DM direct detection searches with the
LUX-ZEPLIN (LZ) detector will be able to probe [7]. We can see that DM masses above
1.1 TeV are excluded by complementary relic density and DM direct detection constraints.
For the evaluation of DM observables such as DM relic density and direct detection rates
we have used micrOMEGAs package [52, 53] for all models under study.

For the relic density, increasing |uas| reduces the co-annihilation via the W and Z gauge
bosons, hence requiring a slightly lighter mass, while for py; = 8 GeV the Higgs couplings
start dominating, pushing the DM mass to higher values. However, this region is already
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Figure 4. Exclusion regions for the dim-5 operator in eq. (3.23) in the case of the ﬁ‘ll//; model
in the (uar, Mpas) plane: the blue shaded region is excluded by relic density over-abundance; the
dark pink region is excluded by PandaX-4T [6] DM direct detection searches; the light pink region
presents the region that will be probed by future DM direct detection searches with LZ detector [7].
The narrow green band indicates the allowed region with Qh? = 0.12 that is not accessible to future
direct detection experiments.

excluded by direct detection, as PandaX-4T excludes up; above ~ 2 GeV. The projected
LZ limit will probe pps down to ~ 250 MeV, a region where the mass split from EW loops
becomes relevant. Direct detection due to the EW loops, however, remains too small to be
detected, as we will discuss in the text subsection. The narrow green band indicates the
region with Qh? = 0.12 that will not be accessible to direct detection experiments.

In models where DM is part of an EW multiplet, the annihilation cross section can be
affected substantially by a mechanism that was first discussed by Sommerfeld [54] for inelas-
tic reactions between non-relativistic charged particles. The Sommerfeld effect consists of
an enhancement (suppression) of the annihilation cross section due to an attractive (repul-
sive) effective potential between the incoming particles. In the case of DM, the Sommerfeld
enhancement (or suppression) was initially noted in [55] and then explored further in [56-59]
as well as in numerous papers later. In our case, this effect is relevant when the mass split
between components in the EW multiplet are very small compared to the momenta of the
colliding particles and when the DM multiplet is much heavier than the W and Z bosons. In
such a case, weak interactions effectively become a long-distance force in the non-relativistic
limit. This effect is especially important at low velocities, and therefore should be taken
into account for relic density evaluation and especially for indirect DM detection rates. In
our case, this would affect the results in figure 4 by increasing the annihilation cross sections
and, therefore, reducing the relic density in the low pps region. While the boundaries of the
allowed regions are slightly modified, see ref. [59], the picture does not change qualitatively.
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Figure 5. One-loop diagrams contributing to DM direct detection. If the external quark ¢ is a
heavy flavour, it can be connected to the gluons in the nucleons by closing a second loop.

3.4 Loop-induced direct detection

Loop-induced direct detection cross sections in DM models with a single multiplet have
been explored in several papers [44, 60—62]. In particular, ref. [61] presents complete results
at one-loop (including two-loops for the couplings to gluons via a heavy flavour quark),
in the limit where the DM candidate is a Majorana state from a pseudo-Dirac multiplet.
Furthermore, the masses of the DM multiplet components are considered to be exactly the
same. A cancellation is observed among various amplitudes, leading to a cross section that
is significantly smaller than what could be naively expected.

Motivated by this cancellation, in this section we revisit the one-loop calculation and
extend the results to cases where the DM candidate is a Dirac state and for Majorana
multiplets. We also included the effect of mass splits in the DM multiplet: while the mass
splits are numerically small, these effects can alter the delicate cancellation among the
various terms, hence changing dramatically the final result. Furthermore, we will discuss
the impact of uncertainties in the nucleon form factors and parton density functions, which
can be highly enhanced by the cancellations.

The one-loop diagrams relevant for direct detection are shown in figure 5, where ¢ (Q)
are external (internal) SM quarks. We do not calculate the two-loop diagram resulting
from closing the external quark lines for heavy flavours, instead we employ the results of
Hisano et al. [61]. Furthermore, our calculations are done for spin-independent (SI) cross
sections in the limit of zero external momenta and assuming that internal quark masses

are comparable to the external ones.*

The amplitudes can be parametrised in terms of the following effective Lagrangian [61]:

(1) 2)
. ~ _ 9q = v 9q N/ N M a apv
Legg = fgmgDD qq + Mo Dio"y" D O}, + MJ%MD(ZO“)(z@ )D O}, + faDD Gy,G*"",
(3.35)

4This approximation is not valid for the bottom quark with W bosons in the loops, as the top runs inside
the loop. However, this contribution is already small, suppressed by the nucleon form factors associated
to the bottom. For the external top quark, the mass is fully taken into account in the two-loop coupling
calculation to gluons [61].
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where D is the DM fermion, which may be pseudo-Dirac, Majorana or Dirac, and the
Twist-2 quark current is given by

T 1
O/(.]LZ/ = 5 q <Du71/ + DV'Yu - QQ;WJD) q. (3.36)

The first term in eq. (3.35) proportional to f; is the scalar-scalar (SS) operator, the second
and third proportional to g(gl)’@) are twist-2 operators, and the last one proportional to
fo describes the effectively two-loop coupling to gluons. The coefficients can be explicitly

computed (see appendix B) and give:

o [(n®=(2Y +1)?) (n?—(2Y —1)%) y2
- PR W il .t ' PN PP B el
fq 4m%{|: 16mW K H(w Yy )+ 16mW K H(’w y+)+40%/vmzl{ H(Z yo):|
o2
3272% [(nz—(2Y-|—1)2)I<EwAS(w,yﬂa‘ﬁ§,af)+(n2_(QY—1)2)HwAS(w,y+7a‘ﬁ;,ai)}
2v72
a5y 0 o
o4 3 ZA ) ) ) )
4C%m%’i S(Z Yo, ay, CLA)
o2
95" = 647;3 [(NQ —(2Y +1)*)kwAr (w,y a3, a%) + (n” — (2Y — I)Q)KWATl(w,er,a‘i/,ai)}
w
a2Y?
+464§/7m%’€zAT1(Z7y07a\0/7a?4);

o2
gél) = 64# {(n2 —(2Y + 1)2)nwAT2(w,y,,a‘i,,aj) +(n* —(2Y — 1)2)KMAT2(w,y+,a‘i,,ai)}
w

£ Y Ara(ena o 3.37)
deh m3 " T2(2,Y0,av,04), (3.
where w = m¥,/M3,,, 2 = m%/M3,; and y; = (M; — Mpyr)/Mpp. The couplings of
the W boson are explicitly given for a multiplet with n = 27 + 1 and hypercharge Y. The
vector and axial couplings for the quarks are given by a?/ = %qu — Qqs%/v, a% = —%qu,
a‘i/ = aj = % Diagram C in figure 5 only contributes to the SS operator and gives rise to
the loop function Ay, while diagrams A and B generate the loop functions Ag, Ari, Aps.
Finally the normalisation factors x, and k., depend on the nature of the DM candidate: if
D is pseudo-Dirac (kz, kyw) = (1,1), whereas for Majorana (k,, kyw) = (0,1/2) and for Dirac
(Kzy k) = (4,2).

The mass splits within the DM multiplets are represented by the parameters yg, y+ and
y—, which encode the mass split between the two Majorana mass states (yg = 0 for a Dirac
multiplet, while the whole term vanishes for a Majorana multiplet as Y = 0) and between
the charge Q = £1 states and the DM state, respectively. In the limit of zero mass splits,
i.e. y; — 0, our results reproduce the formulas in [61], which we report below for reference:

a? | (n?— (4Y?2+1)) Y? ady? 9
fq= 4m§{ Sy Kuwgn (W) + WHZQH(Z) + m(% —ay)kzgs(2) ,

a2 2 alY?

gt = 8723( 2 (4Y?% 4 1) kwgri (w) + WET(G‘%‘ +ay)kzgr1(2) |

1% z ‘w

a? 2 ady?

9 = 2 (0 = (Y2 + 1) kugra(w) + — “Z—(ah + af Jragra(2). (3:38)
myy mz ‘w
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As already mentioned, for the coupling to gluons we use the two-loop computation
presented in ref. [61] for vanishing mass splits of the DM multiplet. The contribution can
be expressed in terms of long-distance (LD, dominated by momenta of the order of the
light quark masses) and short-distance (SD, dominated by momenta of the order of the
W/Z bosons or of the DM states) contributions, as follows:

fo= > fali’+ > cofely (3.39)
q=u,d,s,c,b,t Q=c,b,t

where the LD contribution of the light quarks are taken into account in the SS coefficients
fq and NLO corrections in QCD are embedded in the coefficients cg. Explicit results can
be found in ref. [61].

The SI cross section for DM scattering off target nucleon N is expressed as

4 M2 m2
ST DM''N 2

f , 3.40
N T (MDM +mN)2‘ N’ ( )

where

NS bt T @+ a@)el + o) -

8w
L Jralc- (3.41)
q=u,d,s q=u,d,s,c,b s

9

Here, frq are the proton form factors for the quarks, while fr¢ =1—23,_, 4 s frq applies
for gluons (note that charm, bottom and top are considered heavy flavours in this formula,
and associated to the gluon form factor), while ¢(2) and ¢(2) are second moments (evaluated
at u = my) for quarks and anti-quarks respectively.

In the zero mass split case, a strong cancellation has been observed between the con-
tribution of the twist-2 operators (g((ll) and gé,z)) and the gluon (fg) contributions, while
the SS one (f;) tends to be smaller [61]. This result is shown in figure 6, were we plot the
ST cross sections for various cases compared to the current exclusion from PandaX-4T [6]
and the projection from the future LZ [7]. The border of the yellow shaded region labelled
“Neutrino Floor” corresponds to the sensitivityestimate achievable at each DM mass for
a one neutrino event exposure at liquid Xenon detectors [63]. We have digitised data for
the PandaX-4T, LZ and neutrino floor limits, and they are now publicly available on the
PhenoData platform [64-66]. We would like to note that the neutrino floor limit for one
neutrino event can be improved (i.e. lowered) by future experiments with lower energy
threshold [63] potentially by about one order of magnitude. One can see that only multi-
plets with I > 2 can be completely probed by LZ up to masses of 10 TeV. The observed
cancellation, however, is very sensitive to two important effects: the nuclear uncertain-
ties on the form factors and on the second moments, and the mass splits within the DM
multiplet. We will discuss both below, starting from the former.

3.4.1 Impact of uncertainties on nucleon form factors and parton distribution
functions (PDFs)

The proton form factors for light quarks may be calculated [67] in terms of light quark
mass ratios, m,/mg = 0.46 + 0.05 and ms/(m, + mg) = 13.75 + 0.15, and quantities
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Figure 6. The SI DM-proton cross section for a single fermion multiplet, for surviving cases I < 2
for which the neutral component is the lightest. The cases for Dirac multiplet with Y # 0 are not
shown, since they are excluded by direct detection via Z-boson exchange.

associated with nucleonic matrix elements, X5 = 46 & 11 MeV, o, = 35 = 16 MeV and
z = 1.258 £ 0.081. Explicitly, they are given by

2my,

po_ z > My +mgl — 2z ]
My, My + My {14—2 N+ 2m 1+zaS ’
2myg 1 My +mgl — 2 ]
P _ o —
"ol My + Mg {1+z ™ 2m 1+zas ’
mpfﬁ = 0. (3.42)

In order to combine errors from all sources, we use the Monte Carlo approach whereby we
estimate the sampling distribution of the cross section via the generation of points from
the sampling distributions of underlying parameters. For the form factors, we sample from
a multivariate Gaussian defined by the input parameters given above, assuming that errors
are uncorrelated. The distribution of form factor values are computed using egs. (3.42).
The uncertainties on the second moments ¢(2) and ¢(2) derive from the uncertainties
in the parton distribution functions (PDFs). We take into account both the uncertainties in
the PDF fitting procedure, and in the scale variation. In practice, we concurrently sample
from the CTEQI8NLO [68] PDFs, using the Hessian implementation in LHAPDF [69],
before numerically integrating these PDFs to generate the second moment values. We
probe the variation from PDF scale by sampling from a log-normal distribution for the
PDF scale, p, with central value p1 = myz such that the 1o bands fall on u = myz/2 and
p=2myz (i.e logy(p/myz) is normally distributed with mean 0 and standard deviation 1).
The uncertainties propagated on the SI cross section are depicted in figure 7, where,
for each model, the solid line represents the mean and the band signifies the 95% confidence
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Figure 7. Impact of form factor and PDF uncertainties on the SI cross section for various models
with a single DM fermion multiplet. We show results for pseudo-Dirac cases. For Y = 0, Majorana
and Dirac cases can be obtained by a simple scaling of the cross sections by a factor of 1/4 and
4 respectively. We recall that only the pseudo-Dirac case is allowed for Y # 0. Note that the
cancellation at low masses, around 10 GeV, does not appear here because of the sampling used to
construct the curve. We do not investigate it further as it lays within an excluded region.

interval (we show results for pseudo-Dirac case, as the Majorana and Dirac cases can be
obtained by a simple numerical scaling). For comparison, the dashed lines show the results
of ref. [61], where the values used are fr, = 0.023, frq = 0.032, frs = 0.020 and sec-
ond moments (evaluated at u = myz) u(2)((2)) = 0.22(0.034), d(2)(d(2)) = 0.11(0.036),
5(2)(5(2)) = 0.026(0.026), ¢(2)(¢(2)) = 0.019(0.019), b(2)(b(2)) = 0.012(0.012). The differ-
ence is due to the fact that we use a different set of PDFs. To study the effect of scale depen-
dence from the PDFs, we also show in various dotted styles the values of the cross sections
for p = myz/2, mz, 2my respectively, while keeping all the other parameters fixed. The re-
sult shows that the main contribution to the uncertainties originates from the form factors.

For models with I > 1, the uncertainties in the cross section results in a sizeable uncer-
tainty in the bound on the DM mass, which amounts to several hundred GeV. For the dou-
blet, I = 1/2, instead, we observe that a cancellation may occur for Mpys > 450 GeV, hence
making a prediction for the direct detection reach impossible in this mass range. Neverthe-
less, the cross section always remains below the reach of LZ, and will likely escape detection.

3.4.2 Impact of mass splits

As we have shown, the current uncertainties in the nucleon form factors and PDFs produce
relevant uncertainties on the SI cross sections, resulting in variations of several hundred
GeV in the DM mass bound or producing cancellations in the doublet case. Even if these
uncertainties were substantially reduced, the one-loop calculation is sensitive to the mass
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Figure 8. Impact of mass splits on the one-loop cross sections for pseudo-Dirac multiplet. On the
left, we show the contribution of various operators with and without mass splits, and the impact
on the total. The variation is due to a 5% variation in the GG contribution. On the right we show
the total contribution with variation for other multiplets with larger isospin, I > 1.

splits within the DM multiplet, which were not taken into account so far. Here, we extended
the loop computation to take into account mass splits, and we re-evaluate the cancellations
