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Abstract
This paper presents statistical shape models of the four fingers of the hand, with an emphasis on anatomic analysis of the 
proximal and distal interphalangeal joints. A multi-body statistical shape modelling pipeline was implemented on an exemplar 
training dataset of computed tomography (CT) scans of 10 right hands (5F:5M, 27–37 years, free from disease or injury) 
imaged at 0.3 mm resolution, segmented, meshed and aligned. Model generated included pose neutralisation to remove 
joint angle variation during imaging. Repositioning was successful; no joint flexion variation was observed in the resulting 
model. The first principal component (PC) of morphological variation represented phalanx size in all fingers. Subsequent 
PCs showed variation in position along the palmar-dorsal axis, and bone breadth: length ratio. Finally, the models were 
interrogated to provide gross measures of bone lengths and joint spaces. These models have been published for open use to 
support wider community efforts in hand biomechanical analysis, providing bony anatomy descriptions whilst preserving 
the security of the underlying imaging data and privacy of the participants. The model describes a small, homogeneous 
population, and assumptions cannot be made about how it represents individuals outside the training dataset. However, it 
supplements anthropometric datasets with additional shape information, and may be useful for investigating factors such 
as joint morphology and design of hand-interfacing devices and products. The model has been shared as an open-source 
repository (https://​github.​com/​abel-​resea​rch/​OpenH​ands), and we encourage the community to use and contribute to it.

Keywords  Principal component analysis · Anatomy modelling · Machine Learning · Proximal interphalangeal joint · Distal 
interphalangeal joint · Anthropometrics · Ergonomics

Introduction

Computational biomechanical modelling is a useful tool for 
surgical planning, clinical assessment, and testing of new 
devices for disease interventions and consumer products. 
Musculoskeletal (MSK) modelling and Finite Element Anal-
ysis (FEA) studies are commonly informed by parameters 
obtained from a variety of sources or are subject-specific. 
However, variability and uncertainty are present in factors 
such as patient geometry, material properties of tissues, 

kinematics and joint loading, and clinical outcomes. There-
fore, to further broaden the interpretation of such studies’ 
outputs, it is possible to combine them with population-
based approaches [1]. Biomechanical models can thus be 
varied systemically to describe individuals representative 
of a population, enabling model outputs to be interpreted 
relative to the trends observed in the wider population. This 
method also allows existing models to be applied to new 
individuals with relatively low expense, which may sup-
port clinical translation [2]. As encouraged by Saxby et al. 
[3], this approach relies on the research community to share 
models and technologies.

Statistical shape modelling (SSM) employs dimensional-
ity reduction methods for characterising variations in factors 
including anatomic shape and tissue composition in a popu-
lation [4]. The total variation in a training dataset is decom-
posed into a compact set of new variables. A statistical shape 
model provides a mean geometry of the training dataset and 
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describes the shape variability as a series of ‘modes’. Some 
researchers size-normalise their data to separate the effects 
of size and shape variation [5, 6]. Population-based analysis 
of bone morphology using SSM may inform the design and 
testing of treatment devices and consumer products, as well 
as fundamental biomechanics studies. These models can be 
descriptive or predictive. Descriptive models [7–9] facilitate 
the study of shape characteristics and enable classification, 
measurement and investigation of any trends, clusters, or 
outliers within the dataset. Predictive models [10–13] can be 
used to study the relationships between shape and clinical or 
functional parameters and to reconstruct complete subject-
specific geometries from incomplete data which is useful for 
informing other types of models.

This method has been employed to characterise the mor-
phology of MSK structures including the mandible, resid-
ual limbs following amputation, and joints in the foot, knee 
and hip [6, 7, 14–16]. Considering the joints of the hand, 
statistical models have focused so far on the thumb, dem-
onstrating morphological variation in the carpometacarpal 
(CMC) joint. Rusli and Kedgley [17] present the impact of 
morphology variation on joint instability across their study 
population, highlighting the significance of these find-
ings in future CMC osteoarthritis studies. Schneider et al. 
[18] focused on characterising the morphological sex and 
age patterns amongst their study population of CMC joint 
bones. For example, they found that a female cohort had 
similarly shaped trapezium and first metacarpal bones as 
men. Although statistical models of the full hand's external 
anatomy have been reported [19], there is no current SSM 
report on the interphalangeal joints found in the thumb or 
those found across the fingers, despite the prevalence of their 
degeneration [20] and scope to improve outcomes of their 
surgical interventions [21]. Few researchers have access to 
the anatomic data required for such analysis, and there is 
cost, inconvenience, and risk associated with CT or MRI 
scanning volunteers. Therefore, this study developed multi-
body statistical shape models of the four fingers of the hand, 
providing models that can be published for open use whilst 
preserving the security of the underlying imaging data, to 
support wider community efforts in hand biomechanical 
analysis.

Materials and Methods

Construction of Statistical Model

Ethical approval was granted for Secondary Data Analysis of 
an existing dataset (ERGO Ref: 61718). The training dataset 
represented ten consenting participants (5F:5M, mean age 
31 years, range 27–37 years), who were free from hand or 
wrist disease or injury and had been recruited for a finger 

motion capture and imaging study (IRAS Ref: 14/LO/1059) 
[22]. Each participant’s right hand was CT scanned (Discov-
ery CT750 HD 128 scanner, GE Healthcare Inc. USA) with 
0.3 mm voxels. Three scans were collected for each partici-
pant with the fingers in full extension, mid-flexion, and near-
full-flexion. The resultant volume images were segmented 
to isolate the bony anatomy and meshed (ScanIP + FE, Syn-
opsys Inc., United States). The resultant triangular surface 
meshes of the proximal phalanges (PP), medial phalanges 
(MP) and distal phalanges (DP) were imported into a MAT-
LAB environment (The MathWorks, Massachusetts, USA). 
The data from the three positional scans were then aligned 
by the PP bones, and moved into a coordinate system [22] in 
which the origin lay at the PP centroid, and the sagittal plane 
was estimated from the movement of the MP bone during 
PIP flexion. The subsequent shape analysis used the meshes 
obtained from the fully extended scan (position 1) dataset, 
and scan positions 2 and 3 were used solely to estimate joint 
flexion axes for pose neutralisation, as described below.

A multi-body SSM pipeline, capable of computing the 
main modes of variation or ‘principal components’ (PCs) 
within the training dataset of three-dimensional surface 
meshes of the phalanges, consisted of three main stages.

To enable geometrical comparison between the training 
datasets, a single reference mesh was mapped to the sur-
face meshes of each phalanx using an Iterative Closest Point 
(ICP) based non-rigid registration algorithm [23], establish-
ing a nodal correspondence. The mesh with a length closest 
to the average of the dataset was selected as the reference 
mesh.

The registration error was calculated by computing the 
Root-Mean-Square-Error (RMSE) of the Euclidean dis-
tances between the target shape and the registered shape 
vertices. Additionally, a linear regression analysis was 
conducted to compare the mesh volumes before and after 
registration.

where xn is the array of Euclidean distances computed using 
a k-nearest neighbour (kNN) search.

To assess how shape and scale variation could be cap-
tured in the statistical shape model with minimal influence 
of pose during scanning, the joint flexion in the “full exten-
sion” scan datasets was corrected (Fig. 1). Two reference 
coordinate systems were estimated to describe the bone posi-
tions relative to the PP and MP (CS1 and CS2, respectively) 
using the principal axes and centroids of the bone surface 
mesh vertices in their surface meshes, as reported previ-
ously [22].

The use of transformation matrices to compute the 
intrinsic sequence of rotations of the mesh vertices around 
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the three different axes, known as a Euler rotation, is com-
monly used in biomechanics to study joint motion. For 
instance, Euler angles between the femoral and patellar 
coordinate systems were used to study the patellofemoral 
motion within a dynamic knee simulation model [24], and 
proximal interphalangeal (PIP) joint angles were extracted 
from an Euler rotation in a cadaveric study [25].

Singular value decomposition on vertex coordinates 
was used to calculate transformation matrices M4×4 , that 
describe the transformation of MP or DP from its position 
as scanned (‘scanner coordinate system’; i.e. Position 1 or 
3) to the new reference coordinate system (CS1 and CS2). 
Euler angles ΨPIP and ΨDIP were used to estimate the PIP 
and distal interphalangeal (DIP) joint flexion-extension 
angles, and were calculated from the rotation matrix, R3×3 , 
extracted from M . These were used to align the joints into 
an approximately “neutral” pose, by rotation about esti-
mated centroids of the PIP and DIP joints.

The PIP joint axis were estimated in CS1 by finding the 
intersection point between the MP bones’ long principal 
axes in the extended and flexed CT scans. This point was 
projected onto a plane through the PP and MP bone cen-
troids in extension and full flexion, to which the joint axis 
was assumed to be perpendicular. The same process was 
then applied to the DP mesh’s principal axes to estimate 
the DIP joint axis in CS2.

Finally, each finger’s pose was neutralised by rotating 
the bone geometry by the angle measured between the 
proximal and distal bones’ principal axes in the “full-
extension” scan.

PCA was applied to reduce the number of dimensions of 
the training dataset into a compact set of new parameters.

The three phalanx mesh files for each dataset were com-
piled into a column vector:

where m represents the total number of nodes in the com-
bined DP, MP and PP baseline meshes, and x, y, and z are 
the vertex coordinates.

A vector describing the mean finger shape was calcu-
lated by:

where i represents each instance in the training dataset, and 
n the total number of instances.

PCA reduces the dimensionality of the training data by 
finding a new set of parameters, the PCs, which can be lin-
early combined to recreate the original 3m parameters that 
describe each instance i of the training data. The 3m-by-
3m sample covariance matrix:

is used to find these PCs. For a dataset where all the parame-
ters describing variation between instances are uncorrelated, 
S will be diagonal. It can be shown that the eigenvectors ( �j ) 
of S can be used with a vector of weighting coefficients ( dj ) 
to reconstruct the training data [26]:

This constitutes a transformation of the original basis 
(3m parameters) into a new, much more compact, basis 
(the c PCs). These PCs are uncorrelated – their covariance 
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Fig. 1   Flow diagram describing the joint pose neutralisation, to 
remove bone location variation generated during imaging. Step 1 
computes the angles and centroids required for neutralisation. Step 2 

involves the pose neutralisation of the PIP and DIP joint in the two 
reference coordinate systems (CS1 and CS2 respectively)
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matrix is diagonal – and ordered by decreasing variance 
(the first PC captures the dimension with the largest vari-
ability in the training data).

Singular value decomposition was performed over the 
analogous eigen analysis to undertake the PCA. The weight-
ing coefficients ( dj ) used to generate new shapes, which 
show each PCs deviation from the mean, represent the 5th 
and 95th percentile range of the training dataset mode score 
and fit within the minimum and maximum mode scores 
bounds for each individual.

Model Evaluation

To select a preferred model to publish open source, four 
statistical shape models were compared, to assess the rela-
tive influences of pose neutralisation and size normalisation, 
upon the resulting anatomic variance characterisation: (1) 
Original pose without scaling effects, (2) Original pose with 
scale effects, (3) Corrected pose without scaling effect, and 
(4) Corrected pose with scale effects.

Mode shapes were visualised by perturbing the mean 
shape from the 5th to 95th percentile range of the training 
dataset (i.e., by ±1.654� ), one PC at a time. To observe 
the potential similarities in variation between fingers, lin-
ear regression analysis was performed to assess the mode 
score correlation. Mode scores for each finger’s PCs were 
compared to the corresponding PC of the index finger. To 
describe the training datasets and resulting model shapes, 
the length of individual bones and the whole finger were 
calculated, along with an estimate for the joint spacing. A 
Shapiro-Wilk test indicated that these measures were nor-
mally distributed for the training shapes (p > 0.05) so para-
metric statistics could be used. The joint space was calcu-
lated using a kNN search with k = 1, to find the Euclidean 
distance from each vertex on the joint’s proximal surface to 
the distal surface, from which the median was calculated.

Four model performance measures are commonly used. 
These include model compactness, accuracy, generalization 
and specificity [27, 28]. This report presents compactness, 
accuracy and generalization test. However, we elected not to 
perform a specificity test because the generation of virtual 
individuals was outside the scope, owing to the relatively 
small training dataset.

Compactness: To observe how much variation is captured 
within the resultant PCs, the compactness was calculated 
and is defined as the cumulative variance of the mth mode 
or PC, used in the shape reconstruction [28]:

Accuracy: The average RMSE was calculated to observe 
the variation in mean shape reconstruction with a limited 
training dataset [27]:

C(PC) =
∑PC

m=0
λm

where x is the mean shape constructed with the complete 
dataset and the reconstructed mean xi′ is a linear combina-
tion of the training datasets.

Generalization: To evaluate the quality of the constructed 
statistical shape model, a Leave-One-Out cross-validation 
test was performed, calculating the average deviation 
between the resultant statistical model’s mean and mode 
extremes (±1.654�) shapes and those reconstructed by 
removing one dataset from the PCA calculation. [27, 29].

where X is the shape constructed with the complete dataset 
from the statistical model and the shape Xi constructed using 
(n-1) training datasets.

Results

Model Evaluation and Selection

The registration error across all fingers was less than 0.4 mm 
for each phalanx mesh, and the registered bone volumes 
were within 3% of the target bone shapes (R2 = 0.95).

Nine principal components (PC1 – PC9) representing the 
main morphological variation were found for the three pha-
langes of the index, middle, ring and little fingers. Observa-
tion of compactness for models with and without size nor-
malisation and pose neutralisation indicated that over 75% 
of shape variability was captured within the first four modes 
and 90% within seven modes for three of the model types 
(Fig. 2). The model constructed with corrected pose and 
normalized scale was less compact with only 59% of shape 
variability captured in the first four modes. The model con-
structed using pose neutralisation and full scaling had the 
combination of high compactness and small error in mean 
shape reconstruction, so all subsequent results (Fig.s 3-7 and 
Tables 1, 2 and 3), are based on using the "Corrected Pose, 
including scale" model.    

The Leave-One-Out test highlighted a minimal deviation 
(<0.2 mm in the mean and < 0.5 mm in the mode shape 
extremes) between the resultant statistical shape model and 
the reconstructed model (Fig. 3).

Description of the Selected Model

The first four PCs across all fingers accounted for over 75% 
of the total variation within the training population, of which 
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over 45% was attributed to the first PC representing phalanx 
size for all fingers (Fig. 4).

A strong correlation was observed (Table 1) between 
PC1 of the index finger and PC1 of the remaining fingers 
(R2 > 0.869). The PC1 mode score correlation agrees with 
the visualization of PC1 for all fingers, whereby size was the 
dominating PC. The R2 values for subsequent mode scores 
were lower (0.01 < R2 < 0.77), indicating that the variation 
described by each mode was not always the same.

Visual inspection of the PCs (Fig. 5) suggests that PC1 
presented variation in bone size, PC2 described positional 
variation of the bones along the palmar-dorsal axis, PC3 

represented variation in ab/ad-duction in the dorsal-palmar 
plane and PC4 indicated variation in bone breadth.

Gross measures were extracted from the mean and 5th-
95th percentile range in shape of PC1 and compared to the 
same measures taken directly from the training datasets 
(‘CT’) to illustrate the model’s ability to represent the popu-
lation’s size range. (Fig.s 6 and 7). This indicates that the 
PCA method was able to extract the size variation within the 
training dataset, predominantly within a single mode (PC1). 

Conversely, though the mean joint space from the statis-
tical shape model was in close agreement with that of the 
training dataset, the variance in this measure was greater 

Fig. 2   Impact on pose neutralisation and normalising scale on result-
ant principal components. Note for normalized shapes (column 1 and 
3): since the proximal phalanx’s centroid lies at [0 0 0], the mean 

(against which dimensions are normalized) has a full scale length of 
one but is represented between approximately − 0.25 and 0.75 along 
the Proximal-Distal axis.



	 T. A. Munyebvu et al.

than that contained within PC1 indicating that it is distrib-
uted across subsequent modes. The training datasets indi-
cated that finger length and joint space were not associated 
(R2 = 0.1 and 0.007 for DIP and PIP, respectively).

Discussion

This study presents a pipeline for generating a statistical 
shape model of the fingers. It has novelty in being trained 
using medical imaging from living participants, free from 
hand or wrist injury, and the process estimates the removal 
of pose variation during imaging, to maximise the observ-
able size and shape variation from a small dataset.

Scale is a common mode of variation and dominates as 
the largest portion of morphological variation amongst a 
population. It is argued to largely contribute to morphologi-
cal variation, i.e. an increase in the size of a structure sug-
gests an increase in the skeletal dimensions such as bone 
shaft, breadth and articulating surface. Whether scale is an 
important PC is at the discretion of the user, however for 
the extraction of gross measures from each PC such as bone 
length and joint space, the pose corrected model with scale 
effects was used for further analysis and publication on the 
open-repository. Bone lengths were extracted to illustrate 
this variation within our training dataset, and these were 
significantly larger than finger lengths reported in previ-
ous studies [30, 31] (i.e. mean index finger length for right 

Fig. 3   Deviation between the mean and mode extreme shapes generated using n = 10 (Full Shape) and the mean and mode extreme shapes (p 
represents minimum shape and m represents maximum shape for PC1 – PC9) generated when one dataset is removed (n = 9, LOO SSM Shape)
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hand [30] were 79.7 mm ± 5.1 mm for male participants 
and 73.6 mm ± 5.0 mm for female participants whereas 
for the training datasets, the mean index finger length for 
right hand was 86.6 mm ± 3.4 mm for male participants and 
79.3 mm ± 2.7 mm for female participants). However, these 
may not be completely comparable measures, as the present 
data are direct bone length measures whereas the cited prior 
data are estimated finger segment lengths based on fingertip 
to finger-palm crease distance and are inclusive of distal 
soft tissue. All considered, our method remains objective 
and repeatable across different fingers and datasets and may 
avoid subjectivity of external measurements.

Whilst sizes are likely to be important for anthropomet-
rics and ergonomics, in other research questions, shape may 
be of more interest. For example, Bruse et al. [5] excluded 
size effects when applying a statistical shape modelling 
framework to extract 3D shape biomarkers of repaired aortic 
coarctation arches. Similarly, Cerveri et al. [16] were solely 
interested in knee joint instability and therefore selected 
non-size-related PCs, such as the height of the femoral and 
tibial shafts, and the curvature of the femoral shaft and in the 
frontal plane. The present study provides researchers with 
the opportunity to study both size- and shape-dominated 
phenomena.

According to Wang and Shi [28], a compact statistical 
model represents the population variance with a small num-
ber of PCs. The number of modes retained in a model is 

often simply determined by selecting those which cover a 
percentage threshold of the total variance (most popularly 
a 95% variance threshold). Limited by the training dataset 
size, we would need to retain all the modes to achieve this. 
This limitation is discussed by Mei et al. [32] who show 
that this retention method is highly dependent on sample 
size, recommending that mode retention should ideally cor-
respond to genuine anatomical variation.

The authors believe that these are the first publicly avail-
able statistical shape models of the fingers’ skeletal anatomy 
generated from living participants. The nearest compara-
ble dataset is that generated by Van Houtte et al. [19] who 
present an articulation-based registration method for three-
dimensional meshes of human hands. SSM was successfully 
applied to 100 human hand shapes and provided an insight 
into the anatomic variation of the lower arm and hand. In 
their study, they mainly present the effectiveness of the pro-
posed registration framework for the design of well-fitting 
products rather than discuss the skeletal variation.

In a wider context, with the varying sizes, positions and 
orientations extracted from the PCA, these statistical shape 
models have application in several areas including the design 
of products that account for diversity in anthropometrics like 
orthopaedic implants and consumer devices, and studies 
looking at how nature of bone/geometry can affect propen-
sity for conditions such as arthritis. Patient perspective is 
increasingly becoming a valued part of this process, and to 
capture this, three members of the public living with a hand 
joint condition were consulted to discuss their perspectives 
on the usability of a computational model of the fingers. 
Whilst the data used to construct the model was collected 
before their involvement, contributors expressed that gen-
erating a model that could be accessed by the wider com-
munity could also be a useful educative tool for members of 

Table 1   R2 and p-value from 
linear regression analysis of 
the PC weights of index finger 
compared to the PC weights 
of the middle, ring and little 
fingers.

* denotes p < 0.05

Finger R2

PC1 Index vs Middle 0.938*
Index vs Ring 0.892*
Index vs Little 0.869*

PC2 Index vs Middle 0.771*
Index vs Ring 0.760*
Index vs Little 0.062

PC3 Index vs Middle 0.373
Index vs Ring 0.106
Index vs Little 0.200

PC4 Index vs Middle 0.429*
Index vs Ring 0.013
Index vs Little 0.064

Table 2   Average index finger bone lengths (in mm) from training dataset and average, 5th and 95th percentile index finger bone lengths (in mm) 
from first principal component statistical shape model-generated shapes

Mean (5th − 95th percentile range) Bone Lengths, mm

DP MP PP Total

Training datasets 17.5 (15.3-19.7) 24.6 (22.7-26.8) 40.9 (37.7-43.9) 83.0 (75.7-90.4)
Statistical Model PC1 17.4 (15.6-19.5) 24.8 (22.0-27.7) 41.2 (37.5-45.0) 83.5 (75.1-92.2)

Table 3   Average finger DIP and PIP joint space (in mm) from first 
principal component SSM-generated shapes

Mean (5th-95th percentile range) 
Joint Space, mm

DIP PIP

Training datasets 2.2 (1.9–2.5) 2.5 (2.3–2.9)
Statistical Model PC1 2.2 (2.1–2.3) 2.5 (2.5–2.6)
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the public and clinicians as well as for researchers. A large 
emphasis was put on the idea that “one size does not fit 
all” and that a potential model should address the variability 
between individuals. In addition, they advocated for such a 
model to be made available for not only the public but for 
practitioners and the wider research community, especially 
for those designing products for the hand. As potential end-
users, the public contributors believe that it is important that 
researchers consider how these products or interventions 

may perform on different hand and finger shapes and sizes. 
Public contributors also suggested that future iterations of a 
statistical model could include a focus on including datasets 
from other pathologies such as osteoarthritic datasets.

This study is limited primarily by a small training dataset 
representing a homogeneous population of young, healthy 
participants, mainly working in tertiary or quaternary sec-
tors. This might represent a portion of the UK population but 
may not describe those who use their hands more heavily, 

Fig. 4   Variance (bar) and cumulative variance (line) captured by all PCs for index (A), middle (B), ring (C) and little (D) finger
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such as those who work in primary and secondary sectors. 
In addition, the exemplar model produced in this study does 
not capture the influences of pathology or surgery upon the 
condition of the soft and hard tissue. These models solely 
focus on the morphology of the phalanx skeletal structure. 
If one were to use these models to study the kinematics and 
kinetics of the hand, more data would be needed, hence why 
they have been made available for contribution and collabo-
ration. The inclusion of additional datasets is non-trivial, 
however, because the phalanges should be aligned neutrally, 
which cannot be guaranteed at the point of imaging. This 
workflow corrected the phalanx alignment using estimation 

of the position and angle of the DIP and PIP joints using 
scans of the participants’ hands in at least two positions, 
which is not a standard clinical imaging protocol. However, 
it may be possible to expand the model’s training dataset 
from single-position CT images by further development of 
functional joint axis estimation using motion capture [33]. 
Further, pose neutralisation only corrected PIP and DIP 
flexion-extension, assuming that abduction-adduction and 
internal-external rotations in the full-extension scans were 
relatively small, and this may be valid because the flexion 
corrections averaged 1.0° and ranged from ± 16° for all 
except one dataset (23°).

Fig. 5   Index Finger PCs: First principal component showing varia-
tion in bone size, the second principal component showing positional 
variation along the Palmar-Dorsal axis, the third principal component 

showing orientation variation and the fourth principal component 
showing variation in bone breadth
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This paper presents a process for generating popula-
tion models of the finger and shares an exemplar dataset 
open source (https://​github.​com/​abel-​resea​rch/​OpenH​ands) 
for community use. The shared model describes a small, 
homogeneous population, and assumptions cannot be made 
about how it represents individuals outside the training data-
set. However, such a model can supplement gross anthro-
pometric datasets with additional shape information, and 
if trained with additional CT images the model may be of 
use for investigating factors such as joint morphology, and 
for the design of hand-interfacing devices and products. We 
encourage the community to use it and to contribute.
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