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1  |  INTRODUC TION

The Arctic region is experiencing rapid change due to climatic forc-
ing (Burrows et al., 2011; Meredith et al., 2022), resulting in signif-
icant transformations in offshore (Horvat et  al.,  2017), terrestrial 
(Swanson, 2021) and coastal environments (Ogorodov et al., 2020). 

The combination of changes in the type, extent and thickness of ice 
cover (Meier et al., 2014; Pizzolato et al., 2016), retreating glaciers 
(Vincent et  al.,  2001), meltwater input (Statham et  al.,  2008) and 
water mass dynamics (Fossheim et al., 2015), coupled with warm-
ing and ocean acidification (Lam et al., 2016) is modifying short- to 
medium-term opportunities for the exploitation of abiotic and biotic 
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Abstract
Multiple expressions of climate change, in particular warming-induced reductions in 
the type, extent and thickness of sea ice, are opening access and providing new vi-
able development opportunities in high-latitude regions. Coastal margins are facing 
these challenges, but the vulnerability of species and ecosystems to the effects of fuel 
contamination associated with increased maritime traffic is largely unknown. Here, 
we show that low concentrations of the water-accommodated fraction of marine fuel 
oil, representative of a dilute fuel oil spill, can alter functionally important aspects 
of the behaviour of sediment-dwelling invertebrates. We find that the response to 
contamination is species specific, but that the range in response among individuals is 
modified by increasing fuel concentrations. Our study provides evidence that species 
responses to novel and/or unprecedented levels of anthropogenic activity associated 
with the opening up of high-latitude regions can have substantive ecological effects, 
even when human impacts are at, or below, commonly accepted safe thresholds. 
These secondary responses are often overlooked in broad-scale environmental as-
sessments and marine planning yet, critically, they may act as an early warning signal 
for impending and more pronounced ecological transitions.
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resources, causing an uplift in transport, trade, tourism and other 
ship-based activity across the Arctic region (Bartsch et  al.,  2021; 
Dawson et al., 2018; Eguiluz et al., 2016; Pizzolato et al., 2016). In 
addition, melting and decreasing marine and terrestrial nearshore ice 
and snow also disrupts traditional transportation routes and meth-
ods (e.g. sea ice pathways and sled dogs), resulting in the need for 
either longer routes or the increased reliance on motorised boats 
to make long or otherwise inaccessible journeys (Steiro et al., 2020). 
Such activity brings an increased risk of both acute and chronic ma-
rine contamination from deliberate and accidental releases of fuel 
oils (PAME, 2020) to a seafloor that hosts a diverse (>4600 inverte-
brate species, Piepenburg et al., 2010) and productive benthic eco-
system (Kędra et al., 2015; Sørensen et al., 2015). Previous infamous 
oil spills have led to prolonged, catastrophic impacts on marine and 
coastal systems (Joye, 2015). Even short-lived, smaller spills can lead 
to immediate toxicity responses in exposed marine biota and de-
clines in abundance (Brussaard et al., 2016) with likely disruptions in 
ecosystem productivity if recurrent (Brussaard et al., 2016; Ortmann 
et al., 2012).

Airborne contaminant bioaccumulation in high-latitude ecosys-
tems has long been recognised (Alexander,  1995) and, given that 
the physical characteristics of Arctic marine habitats render them 
at greater risk of petroleum contamination (Short & Murray, 2011), 
accidental fuel spills have received considerable scientific attention 
(Helle et al., 2020). Cold temperatures exert a pronounced influence 
on hydrocarbon behaviour in seawater, altering compound compo-
sition and concentrations by affecting fuel partitioning and dimin-
ishing evaporation and degradation rates (Payne et al., 1991; Siron 
et al., 1993). The presence of ice can also adjust spill dynamics by 
suppressing wave action, prolonging exposure periods and curbing 
the spread and dispersion of a spill (Fingas & Hollebone, 2003). As 
near-shore habitats remain covered by sea ice for much of the year 
and can receive runoff from contaminated shoreline sites (Chapman 
& Riddle, 2003), they are particularly vulnerable to the effects of 
contamination. Exposure to sublethal concentrations of the water 
accommodated fraction (WAF) of fuel can affect the behaviour 
(Brown et al., 2017; Culbertson et al., 2008) and metabolism (Sardi 
et al., 2017) of invertebrate species, the effects of which can trans-
fer across generations (Lee et al., 2013), while changes in community 
composition have been observed following exposure to median le-
thal concentration (LC50) values (Payne et al., 2014).

Despite extensive ecological monitoring programs existing across 
intertidal, offshore and deep-sea habitats (Blicher & Arboe, 2021; 
Sejr et al., 2021; Thyrring et al., 2021), the functional consequences 
of contaminant-driven adjustments to species behaviour and alter-
ations in biodiversity for community resilience (Peterson et al., 2003) 
and ecosystem functioning (Ferrando et al., 2015) are not well con-
strained. Here, we establish whether exposure to the WAF of marine 
fuel oil affects the behaviour of three common, but functionally con-
trasting, sediment-dwelling invertebrates (the bivalves Astarte cren-
ata and Macoma calcarea and the polychaete Cistenides hyperborea) 
from the fjordic regions of Greenland. Our a priori expectation was 
that sediment particle reworking activity—an important mediator of 

benthic biogeochemical processes and other sediment properties—
would broadly reflect interspecific differences in lifestyle traits, but 
that subtle aspects of reworking behaviour would be modified by 
the presence of marine fuel oil. Our motivation was to highlight the 
potential that additional pressures associated with increased human 
activity may have in high-latitude regions that are already undergo-
ing substantive transformation.

2  |  MATERIAL S AND METHODS

2.1  |  Sediment and invertebrate collection

Sediment [mean ± SE, n = 4: D50 = 150.25 ± 23.16 μm (D10–
D90, 21.8 ± 2.91–418.5 ± 16.56 μm); organic matter con-
tent = 0.30 ± 0.07%] and individuals of the bivalves Astarte crenata 
and Macoma calcarea, and the polychaete Cistenides hyperborea, 
were collected from the inner Kobbefjord (64°08.364′ N, 51°23.621′ 
W; 12 m water depth) using a van Veen grab (0.1 m2) deployed from 
the r.v Age V Jensen II. Sediment was sieved (1 mm mesh) in a sea-
water bath to remove any macrofauna and allowed to settle to re-
tain the fine fraction (<63 μm). Sediment particle size frequency 
distributions (see Figure  S1) were determined optically using a 
Malvern Mastersizer 3000 LASER diffraction sizer at the School of 
Geography and Environmental Science, University of Southampton. 
Briefly, samples were broken down from aggregates using a surface 
active cleaning agent (Decon™) and a rubber pestle and suspended 
in distilled water during analysis. Between samples, the instrument 
was cleaned using pre-programmed standard settings of three rinses 
using tap and then distilled water. These data were used to resolve 
mean particle size, sorting, skewness and kurtosis (Folk,  1974) 
using GRADISTAT v9.1 (Blott & Pye, 2001; see Table S1). Loss on 
ignition was used to estimate sediment organic matter content (%; 
Lamb, 2005). Here, the weight of clean and labelled crucibles was 
recorded using a Mettler Toledo Analytical Balance (±0.0001 g) 
prior to the weighing of each wet sediment sample. The crucibles 
were overnight dried at 105°C using a Gallenkamp Hotbox Oven 
(Size one), then heated to 550°C for 2 h and to 950°C in a Carbolite 
Muffle Furnace.

2.2  |  Experimental design and set-up

We experimentally assess whether three numerically dominant 
and functionally important benthic invertebrate species (the bi-
valves Astarte crenata and Macoma calcarea and the polychaete 
Cistenides hyperborea), from inner Kobbefjord, Greenland, respond 
to low concentrations of the WAF (or soluble) of marine fuel oil 
typically generated by wind and/or current turbulent mixing 
(Lewis et al., 2008). We placed these species in transparent square 
glass aquaria (internal dimensions, LWH; 11.0 × 11.0 × 23.5 cm) 
that were each filled with ~11 cm (1.331 L) sieved sediment and 
overlain with ~9 cm (1.08 L) of seawater (salinity, 33 at 12 m 
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depth; Sørensen et  al.,  2015) and maintained in a temperature-
controlled water bath (5 ± 1°C, following Solan et  al.,  2020, 
see Figure  S2) in the dark. We set the abundance and biomass 
(mean ± SE) of species within each aquarium to levels indicative 
of those found in inner Kobbefjord: Astarte crenata, three ind. and 
11.61 ± 0.31 g aquarium−1 (= 248 ind./959 g m−2); Macoma calcarea, 
four ind. and 7.51 ± 0.48 g aquarium−1 (= 331 ind./621 g m−2) and 
Cistenides hyperborea, six ind. and 3.09 ± 0.14 g aquarium−1 (= 496 
ind./255 g m−2); see Figure S3. Our experimental design required a 
total of 36 aquaria (3 species × 3 marine fuel oil concentrations × 4 
replicates). Each aquarium was continually aerated and maintained 
for 7 days.

2.3  |  Introduction of marine fuel

Marine fuel oil was sourced directly from a local marine supplier 
in Nuuk, Greenland. A low-energy water-accommodated frac-
tion (LE-WAF) was prepared following established guidelines from 
the Chemical Response to Oil Spills: Ecological Research Forum 
(CROSERF), using a modified method from that previously de-
scribed, in closed vessels (Faksness & Altin, 2017). Specifically, an 
oil-to-water ratio of 1:40 was used, with a reduced contact time of 
2 h (due to laboratory and experimental constraints). At this contact 
ratio, the system is assumed to be ‘saturated’ and therefore repre-
sents a conservative estimate of concentrations introduced by ves-
sel traffic (Faksness & Altin, 2017). Using LE-WAF is preferential to 
introducing fuel oil directly as it avoids the generation of oil droplets, 
which may lead to dosing variability between treatments and en-
hanced exposure through organism adherence (Hansen et al., 2021). 
Following preparation, the WAF of the oil was removed and used for 

dose treatments. Each species was maintained in one of the three 
marine fuel oil concentrations (n = 4 replicates species−1 fuel concen-
tration−1): 0% (control), 0.1% and 0.5% marine fuel oil (i.e. 1 mL and 
5 mL L−1 seawater; WAF, Table  1). These concentrations are at the 
lower end of dosing rates observed to generate sub-lethal, devel-
opmental or reproductive effects in a range of marine organisms, 
including polychaetes (e.g. Lewis et al., 2008; Pereira et al., 2018), 
and are designed to simulate organism exposure to the WAF (or 
soluble) generated by turbulent mixing by winds and currents (Lewis 
et al., 2008). A water sample was taken from the WAF immediately 
before dosing to determine WAF composition and hydrocarbon con-
centration. The sample was sealed using parafilm, stored in darkness 
during transport and analysed for total petroleum hydrocarbons 
(aliphatic and aromatic fractions) via gas chromatography of solvent 
extracts (FID) and total and individual PAHs via gas chromatogra-
phy linked mass spectrometry (GC–MS) at an accredited commercial 
laboratory.

2.4  |  Quantification of bioturbation behaviour

Faunal reworking of sediment particles (bioturbation) was esti-
mated using non-invasive sediment profile imaging (f-SPI) (Solan 
et  al.,  2004) of the redistribution of a fluorescent dyed parti-
cle tracer, imaged under ultraviolet (UV) light [50 g aquarium−1, 
green colour; particle size, D50 = 301 μm (D10–D90, 206–438 μm); 
Glass Pebbles Ltd, UK] after 7 days. Images (94 μm pixel−1 resolu-
tion) were taken of all four aquarium sides using a digital camera 
(CANON 400D) in a UV-illuminated dark box and stitched together 
in Adobe Photoshop CS6 (version 13.0 x64). The vertical distribu-
tion of luminophores was determined from the stitched images 

TA B L E  1 Summary of hydrocarbon dosing concentrations.

Component
Concentration in undiluted LE-
WAF (mg L−1)

Concentration in 0.1% dosing 
experiments (mg L−1)

Concentration in 0.5% dosing 
experiments (mg L−1)

Total PAHs <0.1 <0.1 <0.1

Total TPH (C10–C40) 21.1 0.021 0.106

TPH Aliphatic (C8–C10) 1.43 0.001 0.007

TPH Aliphatic (C10–C12) 2.84 0.003 0.014

TPH Aliphatic (C12–C16) 0.10 0.0001 0.001

TPH Aliphatic (C16–C21) 3.01 0.003 0.015

TPH Aliphatic (C21–C40) 3.79 0.004 0.019

TPH Aromatic (C8–C10) 0.35 0.0004 0.002

TPH Aromatic (C10–C12) <0.1 <0.0001 <0.001

TPH Aromatic (C12-C16) 5.64 0.006 0.028

TPH Aromatic (C16–C21) <0.1 <0.0001 <0.001

TPH Aromatic (C21–C40) 5.74 0.006 0.029

Note: Concentrations reported as ‘less than’ are below method detection limits. Individual PAHs (Acenaphthylene, Acenaphthene, Anthracene, 
Benzo(a)pyrene, Benzo(g,h,i)perylene, Benz(a)anthracene, Benzo(k)fluoranthene, Benzo(b)fluoranthene, Chrysene, Dibenzo(a, h)anthracene, 
Fluorene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Napthalene, Phenanthrene and Pyrene) were also analysed and were below detection limits 
(0.01 mg L−1) in all fractions. TPH = total petroleum hydrocarbons, including split by aliphatic and aromatic fractions and carbon chain length.
Abbreviation: LE-WAF, Low energy Water-Accommodated Fraction.
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(see Figures  S4 and S5) using a custom-made, semi-automated 
macro that runs within ImageJ (v. 1.47), a Java-based public do-
main program (Schneider et al., 2012). From these data, the mean 
(f-SPILmean, time-dependent indication of mixing), median (f-SPILmed, 
typical short-term depth of mixing), and maximum (f-SPILmax, maxi-
mum extent of mixing over the long-term) mixed depth of particle 
redistribution were calculated. In addition, the maximum verti-
cal deviation of the sediment–water interface (surface boundary 
roughness, SBR) provided an indication of surficial activity (Hale 
et al., 2014).

2.5  |  Statistical analysis

Analysis of variance (ANOVA) models were developed for each de-
pendent variable (SBR, f-SPILmean, 

f-SPILmedian, 
f-SPILmax) to determine the 

effects of the marine fuel oil concentration (three levels: 0%, 0.1% 
and 0.5%, WAF; replication, n = 4 species−1). As our focus was to de-
termine species-specific responses to marine fuel oil at indicative 
natural densities, we used an independent model for each species 
to avoid the confounding effects caused by differences in species 
abundance and biomass. Model assumptions were visually assessed 
using standardised residuals vs fitted value plots, Q–Q plots and 
Cook's distance (Zuur et al., 2010). Where there was a violation of 
homogeneity of variance, we used a varIdent variance–covariance 
structure and generalised least squares (GLS) estimation (Pinheiro 
& Bates, 2000; West et al., 2014) to allow residual spread to vary 
among groups. We determined the optimal fixed effects structure 
using backward selection informed by Akaike information criteria 
(AIC) and inspection of model residual patterns. For the GLS analy-
sis, we determined the optimal variance–covariance structure using 
restricted maximum-likelihood (REML) estimation by comparing the 
initial ANOVA model without variance structure to equivalent GLS 
models incorporating specific variance terms. These models were 
compared against the initial ANOVA model using AIC informed by 
visualisation of model residuals. We determined the optimal fixed 
structure of the most suitable model by applying backward selection 
using the likelihood ratio test with maximum-likelihood (ML) estima-
tion (West et al., 2014; Zuur et al., 2010). Details of initial and mini-
mal adequate models (Models S1–S12), as well as model coefficient 
tables, are provided in the Supporting Information.

3  |  RESULTS

The activities of all three species used in our study resulted in the 
vertical mixing of luminophore tracers, with subtle differences in 
the form of the profile (Figure S5) reflecting differences in species 
behaviour. Surface boundary roughness ranged from 0.48 cm (0% 
marine fuel oil) to 1.21 cm (0% marine fuel oil) in Astarte crenata, 
from 0.48 cm (0% marine fuel oil) to 1.24 cm (0.5% marine fuel oil) in 
Macoma calcarea and from 0.39 cm (0.1% marine fuel oil) to 1.03 cm 
(0% marine fuel oil) in Cistenides hyperborea. Similarly, the range of 

the mean [f-SPILmean: A. crenata, from 0.32 cm (0% marine fuel oil) to 
0.47 cm (0.1% marine fuel oil); M. calcarea, from 0.35 cm (0.1% ma-
rine fuel oil) to 0.68 cm (0% marine fuel oil) and C. hyperborea, from 
0.35 cm (0.1% marine fuel oil) to 0.51 cm (0.5% marine fuel oil)], me-
dian [f-SPILmed: A. crenata, from 0.31 cm (0% marine fuel oil) to 0.40 cm 
(0.1% marine fuel oil); M. calcarea, from 0.28 cm (0.5% marine fuel 
oil) to 0.44 cm (0.5% marine fuel oil) and C. hyperborea, from 0.33 cm 
(0.1% marine fuel oil) to 0.43 cm (0.5% marine fuel oil)] and maximum 
[f-SPILmax: A. crenata, from 0.50 cm (0% marine fuel oil) to 1.33 cm 
(0.5% marine fuel oil); M. calcarea, from 0.66 cm (0.1% marine fuel 
oil) to 3.90 cm (0% marine fuel oil) and C. hyperborea, from 0.57 cm 
(0.5% marine fuel oil) to 1.13 cm (0.1% marine fuel oil)] depths of 
mixing varied across marine fuel oil concentrations.

Analysis of total biomass across marine fuel oil concentration 
treatments confirmed no differences in biomass for each species 
(A. crenata: F2,9 = 0.271, p = .765; M. calcarea, F2,9 = 0.850, p = .463; 
C. hyperborea, F2,9 = 0.860, p = .455), negating the need to include 
biomass as a random effect in our statistical models.

In aquaria containing A. crenatta, SBR and median mixing depth 
(f-SPILmed) were unaffected by marine fuel oil (intercept-only mod-
els: SBR, L ratio = 1.300, df = 2, p = .523; f-SPILmed, L ratio = 4.636, 
df = 2, p = .096), while mean mixing depth became notably shallower 
(f-SPILmean, L ratio = 9.430, df = 2, p < .01) and maximum mixing depth, 
although marginally, showed evidence of a deepening (f-SPILmax, L 
ratio = 5.770, df = 2, p = .056; Figure 1). Closer examination of model 
coefficients revealed a difference in f-SPILmean between marine fuel 
oil concentrations of 0% and 0.1% (coefficient ± SE: 0.068 ± 0.025, 
t = 2.670, p < .05) and 0% and 0.5% (coefficient ± SE: 0.055 ± 0.012, 
t = 4.396, p < .01) but not between 0.1% and 0.5% (coefficient ± SE: 
−0.013 ± 0.024, t = 0.548, p = .597). Specifically, f-SPILmean increased 
from (mean ± SE) 0.35 ± 0.01 cm in the absence of marine fuel oil to 
0.42 ± 0.02 and 0.40 ± 0.01 cm at concentrations of 0.1% and 0.5%, 
respectively. The maximum mixing depth (mean ± SE) increased from 
0.58 ± 0.04 cm in the absence of marine fuel oil to 0.81 ± 0.16 cm 
under 0.1% and 0.93 ± 0.16 cm under 0.5% of marine fuel oil. Model 
coefficients for f-SPILmax demonstrated no difference between 
marine fuel oil concentrations of 0% and 0.1% (coefficient ± SE: 
0.221 ± 0.162, t = 1.368, p = .205) or between 0.1% and 0.5% (coef-
ficient ± SE: 0.127 ± 0.218, t = 0.583, p = .574), but there was some 
weak evidence for a deepening of f-SPILmax between 0% and 0.5% 
(coefficient ± SE: 0.349 ± 0.159, t = 2.195, p = .056).

For aquaria containing C. hyperborea, SBR, median mixing 
depth and maximum mixing depth were independent of marine 
fuel oil (intercept-only models: SBR, L ratio = 0.222, df = 2, p = .895; 
f-SPILmedian, L ratio = 4.039, df = 2, p = .133; f-SPILmax, L ratio = 0.540, 
df = 2, p = .763). However, there was some weak evidence that the 
mean mixing depth extends deeper in the presence of marine fuel 
oil (f-SPILmean, L ratio = 5.433, df = 2, p = .067; Figure  2). This obser-
vation is driven by a deepening of f-SPILmean between 0.1% and 0.5% 
of marine fuel oil (coefficient ± SE, 0.067 ± 0.029, t = 2.364, p < .05), 
but we found no difference in f-SPILmean between 0% and 0.1% (co-
efficient ± SE, −0.026 ± 0.017, t = 1.524, p = .162) or 0% and 0.5% 
(coefficient ± SE, 0.040 ± 0.025, t = 1.599, p = .144) of marine fuel oil. 
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    |  5 of 11WILLIAMS et al.

Specifically, f-SPILmean was 0.41 ± 0.01 cm in the absence of marine 
fuel oil, 0.38 ± 0.02 cm under 0.1% and 0.45 ± 0.02 cm under 0.5% 
marine fuel oil.

In contrast to A. crenata and C. hyperborea, we found no evidence 
that the bioturbation behaviour of M. calcarea is affected by the ap-
plied concentrations of marine fuel oil (intercept-only models: SBR, L 

F I G U R E  1 Summary of the 
bioturbation behaviour of the bivalve, 
Astarte crenata, in the presence of 
different concentrations of the water-
accommodated fraction of marine fuel 
oil on (mean ± SE) (a) surface boundary 
roughness (cm) and the depth of (b) 
f-SPILmean (cm), (c) f-SPILmed (cm), (d) f-SPILmax 
(cm). In panels (b–d), horizontal dashed 
lines represent the position of the 
sediment–water interface. Sediment 
profile images and associated luminophore 
distribution profiles are presented in 
Supporting Information, Figure S5. LE-
WAF concentrations for different fuel oil 
hydrocarbon components are shown in 
Table 1.

F I G U R E  2 Summary of the 
bioturbation behaviour of the polychaete, 
Cistenides hyperborea, in the presence of 
different concentrations of the water-
accommodated fraction of marine fuel 
oil on (mean ± SE) (a) surface boundary 
roughness (cm) and the depth of (b) 
f-SPILmean (cm), (c) f-SPILmed (cm), (d) f-SPILmax 
(cm). In panels (b–d), horizontal dashed 
lines represent the position of the 
sediment–water interface. Sediment 
profile images and associated luminophore 
distribution profiles are presented in 
Supporting Information, Figure S5. LE-
WAF concentrations for different fuel oil 
hydrocarbon components are shown in 
Table 1.
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ratio = 1.022, df = 2, p = .600; f-SPILmean, L ratio = 1.082, df = 2, p = .582; 
f-SPILmedian, L ratio = 0.142, df = 2, p = .931; f-SPILmax, L ratio = 0.093, 
df = 2, p = .955; Figure 3). However, absolute values of SBR and me-
dian mixing depth (mean ± SE) did show a directional trend, increas-
ing from 0.77 ± 0.13 cm and 0.35 ± 0.01 cm in the absence of marine 
fuel oil to 0.97 ± 0.20 cm and 0.36 ± 0.05 cm under 0.5% marine fuel 
oil, respectively.

4  |  DISCUSSION

Our findings demonstrate that the accumulation of the WAF of ma-
rine fuel oil can lead to shifts in functionally important aspects of 
sediment-dwelling invertebrate behaviour, although these effects 
are species-specific and are not necessarily linear as contamina-
tion concentrations increase. Such changes in behaviour—here 
burying deeper, indicative of classic avoidance behaviour (Maire 
et al., 2010)—are known to influence the fate of sediment-associated 
pollutants (Tian et al., 2019; Tong et al., 2019) and can be sufficient to 
change the functional role of the species (Wohlgemuth et al., 2017). 
Burying deeper to avoid contamination in the surficial layers can 
enhance particle mixing but can have negative consequences for 
the growth and survival of individuals over an extended period of 
time (de Goeij & Luttikhuizen, 1998). Conversely, altered surficial 
reworking activity, as observed here, can either confine sediment-
associated contaminants to the sediment surface or stimulate both 
downward and outward contaminant transfer (Gilbert et al., 1994), 

while the presence of the contaminant can directly disrupt impor-
tant microbial-mediated pathways (e.g. biogeochemical cycling, 
Gilbert et al., 1997).

An important aspect of our findings is that not all species changed 
behaviour in response to the presence of marine fuel oil, perhaps 
reflecting differences in vulnerability or thresholds. However, 
while these results are consistent with the findings elsewhere on 
contamination (Dorgan et  al.,  2020; O'Brien & Keough, 2014), we 
obtained contrasting responses for two similarly sized bivalves that 
ordinarily adopt very similar functional roles. Though identifying 
the mechanistic basis for this difference is beyond the scope of the 
present study, having species that respond differently to the same 
pressure could be viewed as being ecologically advantageous, as 
it increases the capacity of a system to recover following chronic 
disturbance events (Duffy,  2009), especially amongst organisms 
that coexist (Pages-Escola et al., 2018) or, as in this case, perform 
overlapping functional roles. Moreover, communities with diverse 
response capacities have higher probabilities of including organisms 
that persist under specific environmental conditions and function-
ally compensate following species loss (Bernhardt & Leslie, 2013; 
Thomsen et al., 2017, 2019), minimising the impact on linked eco-
system services when environmental conditions fluctuate over time 
(Truchy et al., 2015). Although the effects of the conservative con-
tamination event simulated here were relatively subtle, we did note a 
change in intra-specific variation of sediment reworking activity akin 
to other studies on responses to pressures in high-latitude marine 
invertebrates (Williams et al., 2024). Intra-specific variation in trait 

F I G U R E  3 Summary of the 
bioturbation behaviour of the bivalve, 
Macoma calcarea, in the presence of 
different concentrations of the water-
accommodated fraction of marine fuel 
oil on (mean ± SE) (a) surface boundary 
roughness (cm) and the depth of (b) 
f-SPILmean (cm), (c) f-SPILmed (cm), (d) f-SPILmax 
(cm). In panels (b–d), horizontal dashed 
lines represent the position of the 
sediment–water interface. Sediment 
profile images and associated luminophore 
distribution profiles are presented in 
Supporting Information, Figure S5. LE-
WAF concentrations for different fuel oil 
hydrocarbon components are shown in 
Table 1.
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expression plays a pivotal role in population maintenance (Bolnick 
et  al.,  2011; Dingemanse & Wolf,  2013), adaptation to dynamic 
environmental conditions (Henn et al., 2018; Sanders et  al., 2024) 
and contributes to the stability of ecosystem functioning (Wright 
et  al.,  2016). Consequently, alterations in this variability bear sig-
nificant implications for broader ecological processes, potentially 
influencing species interactions, community dynamics and overall 
ecosystem resilience (Des Roches et al., 2018; McEntire et al., 2022).

Our study provides evidence that species responses to novel 
and/or unprecedented levels of anthropogenic activity associ-
ated with the opening up of high-latitude regions can have sub-
stantive ecological effects, even when the source of perturbation 
is below acute toxicity thresholds. Investment in the Arctic is ex-
pected to be in the order of billions of dollars over the next decade 
(Kudryashova et al., 2019) as nations not only take advantage of eco-
nomic opportunities presented by the rapid opening up of the region 
(O'Garra, 2017) but also prepare for the challenges associated with 
its governance (Ebinger & Zambetakis, 2009). In Greenland, where 
this study is grounded, opportunistic resource exploration following 
the convergence of climate warming and glacial retreat has strong 
indigenous backing (Bendixen et al., 2022) but concerns persist re-
garding the sustainability of such decisions (Hanaček et  al., 2022) 
and the possible negative feedback of expanded infrastructure on 
the climate (Masson-Delmotte et  al.,  2012) and local ecosystems 
(Bendixen et al., 2019), the latter of which is already affected by re-
gional climate change (Gross, 2018). Though we find mixed results in 
the responses of benthic biodiversity to low marine fuel oil contam-
ination, it is important to note that the responses observed here are 
at contaminant concentrations below the threshold of current envi-
ronmental risk assessments (Faksness & Altin, 2017) and at the lower 
end of previously observed effects (Pereira et  al.,  2018). Hence, 
these observations may act as an early warning for impending and 
more pronounced ecological transitions. As contaminants accumu-
late, either directly from spillages associated with shipping activity 
or resuspension via dredging (Hedge et  al.,  2009), it follows that 
there will likely be more pronounced species responses, including 
demographic or functional transitions where lethal concentrations 
are reached (O'Brien & Keough, 2014), or more complex ecological 
outcomes when contaminants co-occur and lead to non-additive 
responses (Millward et al., 2004). Identifying general response pat-
terns to sub-lethal contamination in the Arctic environment is critical 
for reliable assessments of ecosystem health (Eldridge et al., 2022) 
and demands effective management of the expansion of human ac-
tivity within the context of biodiversity and climate change within 
the region (Wu et al., 2017).
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Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
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