
Source Detection and Tracking for Underwater
Distributed Acoustic Sensing

Konstantinos Theofilos Drylerakis∗, Mohammad Belal†, Rafael Mestre∗, Timothy J. Norman∗, Christine Evers∗
School of Electronics and Computer Science, University of Southampton, Southampton, UK∗

Ocean BioGeosciences, National Oceanography Centre, Southampton, UK†

Dept. of Mathematical Sciences, University of Liverpool, Liverpool, UK†

Dept. of Physics, University of Southampton, Southampton, UK†

{ktd1g20, r.mestre, t.j.norman, c.evers}@soton.ac.uk∗, mob@noc.ac.uk†

Abstract—Distributed Optical Fiber Sensing (DOFS) trans-
forms conventional fiber optic cables into an extensive network
of continuous sensors. It achieves this by exploiting the spectral,
polarization and/or phase sensitivity of the propagating light to
measurands of temperature, strain, pressure, vibrations etc. To
harness the novel capabilities of optical fibers to remotely capture,
process and coherently analyze ambient vibration (e.g., acoustic)
fields, it is crucial to address the challenges of the diversity of
noise introduced in DOFS measurements, in particular, within the
under-explored submarine environment. This research introduces
a comprehensive workflow for the detection of active (uncon-
trolled) acoustic sources, comprised of successive denoising steps
that deal with the distinctive properties of such environments.
Leveraging the spatio-temporal density of DOFS measurements,
we develop a method based on data covariances for the automatic
extraction of features in an unsupervised manner, together with
additional features introduced to distinguish active source signals
from noise. Consequently, this work takes the denoising of
underwater DOFS data one step further through the application
of a tracking algorithm on real, novel submarine DOFS data,
laying the foundation for broader applications of DOFS data
analysis in marine environmental sensing and monitoring.

Index Terms—distributed acoustic sensing, machine learning

I. INTRODUCTION

Dynamic (up to several kHz) differential strain sensing via
Distributed Optical Fiber Sensing (DOFS), more commonly
referred to as Distributed Acoustic Sensing (DAS), utilizes
fiber optic cables to detect vibrations. In that, pulses of
coherent light interact with imperfections in the glass, called
scattering points, which move in accordance with external
perturbations, e.g., acoustic vibrations. This movement alters
the phase of backscattered light, which allows for differen-
tial optical phase change evaluation between spatially sepa-
rated sections along the fiber optic cable. This enables real-
time monitoring of environmental changes with dense spatio-
temporal insights. DAS can simultaneously track characteristic
event frequencies, e.g., marine-vessel motion, cetacean activ-
ity, seismic etc. Consequently, spatial, temporal, and, hence,
spectral, diversity across acoustic sources can be leveraged
to perform a variety of tasks, e.g., sound event detection,
classification, source localization, tracking etc. [1].
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State-of-the-art systems based on this approach, i.e., DAS,
use data-driven machine learning (ML) algorithms either par-
tially, e.g., as the final step of data clustering based on features
extracted with more traditional signal processing techniques
[2], or in an end-to-end manner, e.g., for self-supervised deep
learning-based denoising of fiber data [3]. While classical ML
models have been considered, e.g., support vector machines
for train tracking [4], the majority of ML-based approaches
for DAS are based on neural networks (NNs). The main
advantage of NNs is the automatic feature extraction during
the training stage, in comparison to the hand-crafted features
required for classical ML models, making them more adaptive
when moving to other sites or DAS systems [5]. A variety of
NN-based approaches can be found in DAS literature, such as
feature extraction via transfer learning [6], [7], [8], emulating
signal processing workflows with NNs [9], classification based
on supervised learning using labelled datasets [10], [11], as
well as approaches for latent space exploratory data analysis or
the simulation of DAS settings through unsupervised learning
and generative modelling [5], [11].

However, these approaches depend on large, manually-
annotated DAS datasets, or assumptions regarding the proper-
ties of noise, while little work has been done towards exploring
the features extracted in the process. Additionally, the focus is
primarily on detection or denoising tasks, with [4] comprising
the only end-to-end framework for active source detection
and tracking using DAS. Related work regarding DAS-based
trajectory extraction can be found in [12] and [13]. The work in
[12] relies on the Hough transform of z-score values extracted
from DAS data, to detect road vehicles and extract trajectories
based on the detection results. The work in [13] developed
a new enhanced fiber optic acoustic sensor for DAS, which,
combined with the technique of steered-response power phase
transform, enables the detection and localization of drones.
Preliminary evaluation of the capabilities of DAS for marine
traffic detection and localization can also be found in [14] and
[15]. However, extracting smooth trajectories from vessel track
estimates using DAS data, remains to be examined.

To address these gaps, this work proposes a framework
for decomposing DAS data, based on features extracted by
leveraging only their covariances. The approach is based on the
unsupervised dimensionality reduction technique of principal
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component analysis (PCA) [16]. Furthermore, two features are
defined that allow to identify appropriate subsets of principal
components (PCs) that correspond to active sources, which
enables the selective denoising of such datasets and, as a result,
facilitates their use in tracking applications.

The proposed PCA-based method is applied to real, novel
marine DAS data, and, with the aid of a tracking algorithm,
the results demonstrate the capability of DAS systems to be
utilized in real-time tracking of active sources. Furthermore,
a feature-level comparison to the baseline method for DAS-
based train tracking developed in [4], exhibits the effect
that assumptions regarding noise can have on performance
and, combined with feature visualization, demonstrates the
advantages of the proposed approach.

II. BACKGROUND AND DATA ACQUISITION

Dynamic-DOFS (e.g., DAS) applied from an end of a
conventional optical fiber within a cable (e.g., seafloor), en-
ables monitoring range of several (100-150) kilometers with
a high spatial resolution (few meters) [1], [3]. This results in
dense spatio-temporal datasets that can be regarded as m× n
matrices. Each of the m rows corresponds to measurements
along time for a specific location on the cable, also referred
to as a channel, while each of the n columns corresponds to
measurements along all such channels, collectively represent-
ing the entire cable at a specific timestamp.

Whilst noise from interrogation-instrument and Fresnel re-
flections due to prevalent use of flat optical connectors in
legacy seafloor cable systems can be mitigated to an extent,
noise contributions from nonlinear and non stationary ambient
marine environment poses a formidable challenge. Especially,
when attempting to disentangle dynamic signals of interest.
Consequently, to date, only limited attempts have been made
to tackle such datasets for the said interest [1], [14], [15].

The data used in this work were obtained using a DOFS sys-
tem based upon differential change in backscattered Rayleigh
phase (dΦ-DVS) [17], bespoke developed as part of the
National Oceanography Centre (NOC) intelligent marine fiber
sensing research program. The data were acquired from the
shore end of a 5, 650 m offshore seafloor cable during field
trials conducted by the NOC in November 2021, at the
SmartBay cabled observatory, Galway Bay (Ireland). Besides
monitoring the infrastructure, several experiments during the
field campaign were carried out to evaluate the system’s ability
to intelligently identify and track anthropogenic activity, e.g.,
surface marine vessel movements. Consequently, these move-
ments were orchestrated in various orientations relative to the
cable, e.g., constant speed trajectory as much parallel to the
cable as possible. An illustrative example is presented in Fig.
1.

We focused on a 30 Hz eigenfrequency associated with the
vessel motion. Spatial sampling density was set to 1.275 m,
with 200 Hz of sampling frequency, which resulted in a DOFS
array with 4428 channels. Only a subset of the data is used to
test the proposed framework, i.e., over channels 1801 to 4300
(∼ 3, 200 m).

Fig. 1: Trajectory of a vessel moving parallel to the DAS cable.
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Fig. 2: Block diagram of the proposed framework.

III. PROPOSED METHODOLOGY

The stages of the proposed approach are summarized in Fig.
2. The rest of this section describes each stage in further detail.

A. Filtering

Using low, high, and band-pass Butterworth filters, several
filtered versions of the DOFS data are generated based on
uniformly spaced frequency bands. This filtering stage acts
as a preprocessing step, following the standard practice in
DOFS literature, and allows to focus on specific frequencies
of interest. Any a priori knowledge regarding the acoustic
sources can be used to determine the spacings between the
frequency bands accordingly. While optional, in practice, this
step can help isolate different types of noise that would
otherwise overlap in the unfiltered data, and in turn affect the
performance of PCA in the next step.

B. Data Decomposition

We propose to utilize PCA to decompose a DOFS dataset
into a set of PCs such that each represents a group of acoustic
sources that is statistically uncorrelated to any other such
group. It involves transforming a dataset into a new coordinate
system in such a way that the first axis, the first PC, captures
the maximum variance in the data. Subsequent axes (PCs)
capture decreasing amounts of variance in the data. PCA uses
the eigendecomposition of the data covariance matrix to find
a set of uncorrelated variables which are linear combinations
of the original ones [16].

For a DOFS m×n data matrix, D, of n temporal recordings
made by m channels, the samples used for PCA are spatio-
temporal areas of D of configurable size r × c, that are
extracted using a non-overlapping sliding window approach
across both the temporal and spatial directions of D. For
simplicity, throughout this work it is assumed that such a
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sliding window fits the relevant DOFS data matrix perfectly,
e.g., no padding or cropping is needed for D. Flattening each
r× c spatio-temporal sample into a vector of r · c entries, the
DOFS m × n data matrix, D, can be mapped to a reshaped
(m · n)/(r · c) × r · c centered data matrix, D̂, which is
transformed via PCA into D̂PCA, where D̂PCA = D̂ × L̂,
with L̂ denoting the r ·c×r ·c matrix of maximum rank equal
to min((m · n)/(r · c), r · c) that contains in its columns the
eigenvectors of the covariance matrix of D̂. The columns of
D̂PCA are the PCs, the entries of which are called the PC
scores, while the entries of each corresponding eigenvector in
L̂ are called the PC loadings.

C. Dimensionality Reduction via Component Selection

While PCA can be used to decompose DOFS data into un-
correlated components, no information is provided regarding
which components correspond to acoustic sources of interest.
Therefore, this step identifies and maintains only the PCs that
capture the presence of certain events in the DOFS dataset. In
order to identify PCs that correspond to structured, coherent
signals with a locally dense energy distribution, we propose to
leverage two information theoretic measures, namely the Pear-
son correlation coefficient (PCC) and the Shannon entropy.

PCC is used to characterize the spatio-temporal correlations
among the recordings of neighbouring DOFS channels. Given
the size of the r× c sliding window used in section III-B, the
eigenvector of r · c loadings returned for a PC, v, of the PCA
can be reshaped into an r×c matrix L(v), so as to coherently
visualize the space-time expression of events. Then the feature,
a(L(v)), of the average channel-wise PCC is defined as:

a(L(v)) =

∑r−1
i=1

∑r
j=i+1 PCC(Li, Lj)

C(r, 2)
(1)

where PCC(Li, Lj) is the PCC between the i-th and j-th
rows of matrix L(v), and C(r, 2) is the number of all possible
pairs formed by the rows of L(v). The assumption is that
PCs that correspond to structured signals, are expected to have
high values of a due to the spatial density of DOFS systems.
On the contrary, PCs that correspond to spatio-temporally
uncorrelated noise signals should have values of a closer to 0.

Entropy is used to examine whether a PC, when viewed as a
spatial signal, has most of its energy concentrated at a certain
location. Given the size of the r × c sliding window used in
III-B and a PC, v, of the PCA of the m×n DOFS data matrix,
D, the spatial entropy of v can be computed using:

se(v) = −
m/r∑
i=1

pi · logm/r(pi) , pi =

∑n/c
j=1 v

2
ij∑m/r

i=1

∑n/c
j=1 v

2
ij

(2)

where vij, i ∈ {1, . . . ,m/r}, j ∈ {1, . . . , n/c} is the relevant
PC score on v. The assumption is that PCs with low values of
se will correspond to sources of limited spatial range in terms
of the DOFS cable response, e.g., a vessel, and comprise more
interesting targets in tracking scenarios (Fig. 3).

By selecting appropriate thresholds for these two features,
the set of PCs of the PCA step in section III-B can be
reduced to comprise only PCs of interest. Ultimately, this
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Fig. 3: The sparsity of energy across space during short periods
can be measured via entropy, and help identify PCs of interest.

stage achieves the simultaneous denoising and dimensionality
reduction of the input DOFS dataset. For a as defined in
(1), theoretical limits can be drawn for the relevant threshold
value based on a model for signal propagation. Such a limit
prevents biases towards certain frequencies and is respected
throughout this work, however, any deeper discussion exceeds
the intended scope here. For se as defined in (2), the threshold
choice depends on the acoustic source in question, and is an
open problem for the proposed approach. For the purpose of
this work, this threshold is selected experimentally.

D. Clustering

At this stage, the k-means [18] algorithm is used to cluster
the dimensionally reduced DOFS data into 2 clusters, i.e., one
for noise and one for active source signals. Given a set S ̸= ∅
of PCs returned by the previous stage in section III-C, a spatio-
temporal sample d from III-B is clustered based on its total
energy e(d) in the principal subspace defined by S as:

e(d) =
∑
v∈S

dv
2 (3)

where dv is the score of d on PC v. The idea behind the use
of e(d) for clustering is based on the fact that PCA, resulting
in a rotation of the original coordinate system, preserves
the Euclidean norm of the data upon transforming them.
Therefore, e(d) corresponds to the total energy in d of an
activity that is represented by the relevant PC scores in the
principal subspace defined by S. The noise cluster can then
be selected to be the one with the lower centroid value.

E. Tracking

A Gaussian mixture probability hypothesis density (GM-
PHD) filter [19] tracking algorithm completes the proposed
framework, applied on the clustered data of III-D with the
aid of a dynamical model of movement for the potential
targets. Each single-target state consists of the projection of
its position on the cable, and its velocity with respect to the
cable’s geometry. At each time step, the noisy measurements
of the projection of positions of potential targets on the cable
are obtained from the respective column of the binary matrix
from III-D, using the row indices of this column’s entries that
belong to the cluster of active source signals.



IV. EXPERIMENTAL SETUP

The DOFS NOC data described in Section II are filtered
into 5 bands, using 10th order Butterworth filters. Band 1
corresponds to a 20 Hz low-pass filter; bands 2, 3, and 4,
correspond to band-pass filters between 20-40 Hz, 40-60 Hz,
and 60-80 Hz respectively; while band 5 corresponds to an
80 Hz high-pass filter. The sliding window used for PCA
as described in III-B is chosen to cover 4 channels and 50
timesteps. The minimum value of a(L(v)) in (1) is set to
0.5, while the maximum value for the spatial entropy, se(v),
in (2) is set to 0.88. The data are processed in an online
manner, where each input covers a 1 s period. For the GM-
PHD filter, the surveillance region is set to the cable segment
corresponding to channels 1801-4300 (see sect. II). Each target
has a survival probability of 0.95 (selected empirically) and
follows a linear Gaussian dynamical model [19]:

Fk =

[
1 ∆
0 1

]
, Qk = σ2

v

[
∆4/4 ∆3/2
∆3/2 ∆2

]
(4)

as well as Hk =
[
1 0

]
and Rk = σ2

ϵ , where ∆ = 0.25 s is the
sampling period (equivalently, the sampling rate is now 4 Hz,
reduced from 200 Hz originally, due to the ×50 dimensionality
reduction along the temporal direction), σv = 10 m/s2 is the
standard deviation of the process noise and σϵ = 20 m is the
standard deviation of the measurement noise. Up to 2 targets
are born uniformly over the surveillance region with direction
either towards the shore or towards the cable end, and parallel
to the cable’s geometry. No spawning model is implemented.
The probability of detection is set to 0.5 with 10−3 clutter
returns, uniformly distributed along the surveillance region.

V. RESULTS

A. Performance Evaluation

Fig. 4 shows the performance of the proposed framework for
a band 2 (20-40 Hz) subset of the NOC data during which the
vessel completes two traversals along the cable. The relevant
metrics with respect to the ground truth data are evaluated
in Table I. For the rest of the bands, the outputs exhibit
either sparse clutter or correspond to attenuated versions of the
signal in band 2 due to unavoidable frequency leakage of the
Butterworth filters. It is important to note that the GM-PHD
filter output can be tailored according to the desired trade-
off between accuracy and recall for the relevant application.
This work emphasizes on accuracy, so as to estimate the
vessel track as best as possible, and therefore the GM-PHD
filter results of Fig. 4 and Table I correspond to accurate
detections. Nevertheless, such results are only indicative of the
DAS system’s capabilities, due to possible inaccuracies in the
relevant ground truth stemming from the inherent limitation
in underwater environments of reliably estimating parameters
such as the speed of sound in water, the cable location etc.

B. Baseline Comparison

As the classifier in [4] is trained using signals measured
along terrestrial train tracks, it is unlikely to generalize to data

Fig. 4: Output of the proposed framework for the band 2 (20-
40 Hz) NOC data, containing the tracks of the vessel trajectory.

TABLE I: Performance metrics for the results of Fig. 4.

Recall (%) Error (m) Error standard deviation (m)

45 39 31.7

acquired in underwater environments. Moreover, the classifier
cannot be re-trained using the NOC data due to the inherent
uncertainty affecting labels in underwater environments. As
such, a direct comparison of our approach and [4] is not
possible. Nevertheless, a feature-level comparison and data-
related observations can be made for the early stages of the
two approaches that are both based on PCA. Contrary to
the data used in [4], the signal of interest is not the main
source of energy in the NOC data. Upon further analysis, it
was found that signals in the low frequencies up to 20 Hz
were the most dominant, leading to uninformative features
extracted by the method in [4] due to assuming that the
signal of interest should correspond to the first two PCs.
This becomes evident via measuring the uniformity of energy
concentration across the cable for the two approaches via the
spatial entropy defined in (2), for the visualizations in Fig.
3 and Fig 5. Such a comparison then demonstrates the effect
that certain assumptions regarding the intensity of the signal of
interest can have on performance. It must be noted that, ideally,
a data decomposition technique should be able to separate
the different sources without any pre-filtering, something that
could not be achieved by PCA in this work for all data regions.
Therefore, future work will investigate alternative and possibly
non-linear models to enhance performance.

C. Feature Visualization

Fig. 6 provides an illustrative example of PC loadings for
a PC capturing a vessel. These loadings are the weights with
which the 4×50 spatio-temporal DOFS samples are multiplied,
based on the Frobenius inner product, to compute their value
on the relevant feature (here corresponding to vessel presence).
The frequency of the sinusoidal waves across the 4 channels in
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Fig. 5: Output of the PCA step in [4] for the data of Fig. 3.
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Fig. 6: Example of a set of PC loadings (L(v) in section III-C)
for the band 2 NOC data of Fig. 4 visualized in the original
DOFS data space, capturing a frequency around 30 Hz.

Fig. 6 is estimated to be around 30 Hz, confirming that phase
oscillations in the data caused by the source (active around
30 Hz) are captured by features computed as detailed above.

VI. CONCLUSION

DOFS transforms conventional fiber optic cables into ex-
tensive arrays of acoustic sensors, allowing continuous and
remote monitoring with dense spatio-temporal attributes. How-
ever, to fully exploit its potential, advanced data processing
workflows are necessary, especially in challenging submarine
environments. This work proposed a novel and comprehensive
framework for analyzing marine DOFS data, employing PCA
and two features in the PC space for tracking applications.
Through successive filtering steps, the approach effectively
denoised marine DOFS data, enabling their utilization in track-
ing scenarios with the GM-PHD filter tracking algorithm. The
framework’s blind denoising and unsupervised data processing
capabilities, advance underwater DOFS data analysis, helping
tackle new challenges in underwater real-time monitoring.
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