
Energy Economics 129 (2024) 107152

A
0
n

Contents lists available at ScienceDirect

Energy Economics

journal homepage: www.elsevier.com/locate/eneeco

Oil price dynamics in times of uncertainty: Revisiting the role of demand and
supply shocks✩

Abhishek Kumar a, Sushanta Mallick b,∗

a University of Southampton, Southampton, UK
b Queen Mary University of London, London, UK

A R T I C L E I N F O

JEL classification:
E31
F14
F31

Keywords:
Oil prices
Demand shocks
Oil supply shocks
Transition
Elasticity restriction

A B S T R A C T

Drivers of real oil prices have been explored extensively in the literature with little consensus. Using a new
identification scheme based on forecast error variance, we identify oil-specific demand, demand, and oil supply
shocks that maximize the sum of forecast error variance of three variables explained by their respective shocks.
The estimation, with the sample period until 2007, suggests that the three identified shocks have similar effects
as in the early literature, with oil-specific demand shocks playing a prominent role. However, in the post-crisis
period supply shocks have emerged as a source of short-run increases in oil prices, and demand shocks do not
have a long-run effect on prices, unlike in the pre-crisis period. By further including risk in the model, we
show that the importance of supply shock in driving oil prices in the short run is not driven by global risk.
These estimates overwhelmingly suggest zero short-run supply elasticity - a matter of debate in the recent
literature. Aside from oil-specific demand shocks, six episodes (including COVID-19) and a time-varying VAR
with stochastic volatility identified based on forecast error variance suggest that other shocks, in particular
supply shocks, have also played a significant role in driving oil prices in different episodes which cannot be
ignored while evaluating the oil price dynamics.
1. Introduction

Oil is an important input in production and essential for the trans-
portation activities on the planet; hence movements in oil prices have
attracted the attention of economists for a long time. In light of the
recent global uncertainty driven by the pandemic and higher geopo-
litical risks, this paper aims to uncover the role of oil demand and
supply shocks in explaining the variation in oil prices in times of
different uncertainties. The existing literature suggests that oil specific
demand shock has a prominent role in explaining variation in oil prices.
Moreover, in recent years alternative sources of energy have become
available which can be substituted for oil especially if oil prices rise
significantly. There is also a push towards reducing oil consumption
in order to reduce carbon emission. Hence, we analyse whether there
is any change in the relative role of oil demand and supply shocks
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1 Oil prices have been extensively used to estimate its economic consequences, i.e., its effects on output, employment, inflation and stock prices. Creti et al.
(2014) argue that the interdependence between oil and stock prices is higher in oil exporting countries compared to oil importing countries.

in explaining the variation in oil prices given the emphasis on de-
carbonization driven by concerns related to climate change in recent
times.

The existing literature on oil prices can be summarized into three
broad themes. The first strand of research is based on exogenous
oil prices which argues that exogenous supply shocks are important
drivers of oil price shock - Shapiro and Watson (1988), Rotemberg and
Woodford (1996), Blanchard and Gali (2007).1 These studies typically
have oil prices as the first variable in the recursive structure.

The second line of this research in the literature argues that the
sources of price change matter and all price changes are not alike. Oil
price changes could be driven by oil supply, oil demand and aggregate
demand in the economy. Bjornland (2000) identifies demand, supply
and oil price shocks using short and long run restriction in a SVAR
model and suggests that oil price shock is contractionary in the US,
the UK and Germany but not in Norway. Kilian (2009) identifies three
vailable online 10 November 2023
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shocks using three variables with recursive ordering. These variables
are global oil production, a global index for economic activity and real
oil prices. Since oil prices can rise due to general increase in the price
level that is not related to oil market, the use of real oil prices is more
appropriate to identify shocks driving oil prices. The real oil price is
similar to relative price of oil but not exactly the same. The relative
price of oil is obtained by price of oil relative to other prices excluding
oil prices, whereas real price of oil is obtained by price of oil relative
to general price level that includes oil price as well. The three shocks
identified in Kilian (2009) are oil supply shock, demand shock and oil
specific demand shock.

Kilian (2009) argues that the demand shock and oil specific demand
shock explain a large part of the variation in oil prices and that is true
for oil price increases of the 1970s as well. Kilian (2009) finds little
role for supply shocks unlike Hamilton (2003, 2009). Hamilton (2009)
argues that earlier episodes of oil price increase were different from the
oil price increase during 2007–2008 which was predominantly driven
by demand shocks. In spite of this, the response of the economy during
this period because of higher oil prices was similar as earlier periods.
Lippi and Nobili (2012) use an open economy model and argue that
global supply shocks explain much larger proportion of variation in
oil prices compared to oil supply shocks. Peersman and Van Robays
(2012) identify three shocks similar to Kilian (2009) across a set of
industrialized countries and argue that all countries irrespective of
their oil dependence experience a transitory decline in output due to
demand and oil-specific demand shock. However, there is heterogeneity
in their response due to oil supply shocks and countries importing oil
experience a permanent decline in output due to this shock, unlike
oil exporting countries. Cashin et al. (2014) also argue that the ef-
fect of the oil price shock depends upon the source and also the oil
endowment/production in the country.

The period of heightened uncertainty which one can otherwise think
of as an adverse supply shock can actually increase prices due to
precautionary and speculative demand for oil, not for immediate use
but as inventory due to expected supply disruptions in the future. Kilian
and Murphy (2014) bring oil-specific speculative demand shock into
the three-variable model to capture this speculative oil demand shock
as distinct shock. The augmented model consists of demand, oil supply,
oil-specific demand and oil-specific speculative demand shocks. They
argue that the oil price run during 2007–08 was not driven by shortage
in supply and speculative demand for oil. Kilian and Murphy (2014)
further argue that supply shocks such as the Iranian revolution affected
oil prices not because they led to a decline in global production but
because it increased the precautionary/speculative demand for oil.

Aastveit et al. (2015) using a factor augmented vector auto re-
gression (FAVAR) model argue that demand from emerging economies
especially Asian economies is twice as important as demand from
developed economies in explaining oil price fluctuations. Stock and
Watson (2016) use a structural dynamic factor model and suggest that
oil supply shocks explain a relatively small proportion of variation in oil
prices and macroeconomic variables like output in the US that is similar
to the findings in Kilian (2009). Baumeister and Hamilton (2019)
suggest that exclusion restrictions used in traditional oil market SVAR
literature can be thought of as a strong prior belief in the Bayesian
tradition. They estimate a Bayesian SVAR model and argue that oil
supply shocks explain much larger share of variation in oil prices than
suggested by SVAR models estimated using exclusion restriction in
frequentist tradition. Kanzig (2021) identifies an oil supply shock using
high-frequency data and OPEC announcements and suggests that the
shock has a significant effect on the US economy. This shock behaves as
a traditional supply shock that decreases output and increases inflation.

The third line of research is related to the short-run oil supply curve
- Kilian and Murphy (2012, 2014). Both macro and micro data have
been used to estimate the short-run oil supply curve. The recursive
identification of Kilian (2009) implies a zero short-run price elasticity
2

of supply or a vertical short-run supply curve for oil. The main results f
of Kilian (2009) remain valid with an upward sloping curve in Kilian
and Murphy (2012, 2014), albeit a very low value for the slope. Caldara
et al. (2019) argue that supply elasticity is crucial in determining the
short run share of supply shocks in forecast error variance (FEV) of
oil prices. Caldara et al. (2019) and Baumeister and Hamilton (2019)’s
estimate of the price elasticity of supply is significantly higher than
Kilian and Murphy (2012, 2014) and this increases the share of supply
shocks significantly at the expense of demand and oil specific demand
shocks. Baumeister and Hamilton (2019) obtain a value for supply
elasticity close to 0.1.

Apart from these macro studies, there are also studies based on
micro data to estimate the short run oil supply curve. Results obtained
in Anderson et al. (2018) indicate a zero short run elasticity and
according to them prices affect production through discoveries and
starting production from new oil wells. The production from existing
oil wells does not respond to prices. This is because production from a
oil well depends upon the oil pressure and not on the prices once the
well is operational. Bjornland et al. (2021) and Aastveit et al. (2022)
use data from Shale producers from the US and estimate a higher short
run elasticity of oil supply.

Overall, there is still no consensus about the short run oil supply
curve and there are conflicting evidences from both macro and micro
data based studies. The difference in results in Anderson et al. (2018)
and Bjornland et al. (2021) and Aastveit et al. (2022) could also be
driven by different types of oil wells being considered in these papers.
Anderson et al. (2018) consider traditional oil wells whereas Bjornland
et al. (2021) and Aastveit et al. (2022) consider Shale oil wells and the
Shale oil is likely to be more price sensitive.2 This is because the Shale
oil drilling is more labour intensive which makes it costly but also gives
more flexibility in production compared to traditional oil wells.

As argued above, the value of supply elasticity has been a matter
of debate and it is important for the contribution of different shocks in
driving oil prices. Apart from this, there are some recent developments
in oil price which warrant an investigation of shocks driving oil prices.
Oil futures fell into negative territory for the first time in history on
20th April 2020.3 The oil prices fell to record low (relative to the
last two decades) during COVID-19 pandemic in April 2020 and then
increased very rapidly at the end of 2020. It is unclear whether these
were driven by demand shock or supply shock (Fig. 1).

In this paper we make three contributions to the existing literature
on oil prices. First, we implement an identification based on the share
in forecast error variance. Kurmann and Otrok (2013) identify the term
premium shock using a similar method. We identify multiple orthogo-
nal shocks based on the share in forecast error variance and that is
similar to the approach in Carriero and Volpicella (2022). Carriero and
Volpicella (2022) show the existence and uniqueness of the identified
shock using this method. Forecast error variance based identification
does not require any zero restrictions and is useful when it is difficult
to justify zero restrictions as in Kilian (2009). Further, the proposed
identification does not suffer from serious issues with sign restrictions
as in Kilian and Murphy (2012, 2014). The identification using sign
restriction method is implemented using accept and reject algorithm.
Draws satisfying the assumed sign restrictions are kept whereas other
draws are discarded. If a large number of draws are discarded, then
this casts doubt on the assumed sign restrictions being used for iden-
tification. The identification based on forecast error variance allows
to estimate the short-run supply elasticity of oil. Hence, the results
obtained in the paper will help us to precisely understand the role of
demand and supply shocks in explaining oil price movements as argued
by Caldara et al. (2019).

2 https://www.bloomberg.com/news/articles/2022-02-19/how-
ebounding-oil-is-making-u-s-shale-more-viable-quicktake

3 https://www.cnbc.com/2020/04/20/oil-markets-us-crude-futures-in-
ocus-as-coronavirus-dents-demand.html

https://www.bloomberg.com/news/articles/2022-02-19/how-rebounding-oil-is-making-u-s-shale-more-viable-quicktake
https://www.bloomberg.com/news/articles/2022-02-19/how-rebounding-oil-is-making-u-s-shale-more-viable-quicktake
https://www.cnbc.com/2020/04/20/oil-markets-us-crude-futures-in-focus-as-coronavirus-dents-demand.html
https://www.cnbc.com/2020/04/20/oil-markets-us-crude-futures-in-focus-as-coronavirus-dents-demand.html
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Fig. 1. Oil Price (WTI).
Second, we augment the baseline model of Kilian (2009) with the
geopolitical risk from Caldara and Iacoviello (2022). Adverse supply
shocks can emerge from geopolitical (or exogenous) sources or en-
dogenously due to the output decisions of oil producers to counter
unexpected market imbalances by adjusting supplies. Flow demand
can be affected by the movement in global business cycle which is
influenced by geopolitical risk. Stock (precautionary) demand shocks
could arise due to speculative reasons, reflecting the forward-looking
behaviour of market participants, as well as shifts in precautionary de-
mand due to geopolitical risk. Hence, demand, precautionary demand
and supply seem to be mis-specified in Kilian (2009). We argue that
geopolitical risk is one of the important variables influencing demand,
precautionary demand and supply of oil, and hence we augment the
model with geopolitical risk and obtain robust estimates for the short-
run supply elasticity of oil. Third, in this paper we investigate the
sharp decline and rise in oil prices during the COVID-19 pandemic
apart from other episodes documented in the literature and estimate
the contributions of demand and supply shocks in causing these sharp
movements in oil prices.

Results obtained in this paper confirm that the demand shocks
are significant drivers of oil prices. Results suggest that the short run
supply elasticity is indeed zero; however, our results from the post-
crisis sample provide evidence of a transition in the role of supply shock
in the medium-run. The supply shocks have much higher effect on oil
prices in the short run, and the impact of demand shocks does not last
long, unlike the pre-crisis period. The change in the response of oil price
due to demand shock appears to be driven by higher substitutability
of crude oil with other forms of oil such as shale oil, as the price
of crude oil increases. It can also be driven by higher substitutability
of oil with unconventional energy at higher prices. Furthermore, we
have estimated a TVP-VAR model with stochastic volatility where we
have identified the shocks using the forecast error variance (FEV)
method. The response of production and prices due to supply shocks
and the share of demand and supply shocks in forecast error variance
of the prices at three different time points (April 2000, April 2009 and
January 2020) also demonstrate the transition evident from the split
sample estimation. Results also suggest that the decline in oil price
during January 2020 to April 2020 was driven by oil specific demand,
and demand shock, and the contribution of demand shock is more than
15%. Uncertainty shock also played significant role in driving real oil
3

price down. The increase in price during the pandemic was led by
oil-specific demand and demand shocks.

The rest of the paper is structured as follows. Section 2 explains
the methodology and gives a brief overview of the data being used
in this paper. In Section 3, we discuss the main results of the paper.
In Section 4, we present the results from TVP-VAR with stochastic
volatility where the shocks have been identified by maximizing the
sum of the share of shocks in forecast error variance of the respective
variables. This is followed by concluding remarks in the last section.

2. Methodology and data

2.1. Methodology

A general structural vector autoregression model is given by

𝐴0𝑦𝑡 = 𝑎 +
𝑝
∑

𝑗=1
𝐴𝑗𝑦𝑡−𝑗 + 𝜖𝑡

The reduced form model is given by

𝑦𝑡 = 𝑏 +
𝑝
∑

𝑗=1
𝐵𝑗𝑦𝑡−𝑗 + 𝑢𝑡

Where 𝑏 = 𝐴−1
0 𝑎, 𝐵𝑗 = 𝐴−1

0 𝐴𝑗 and 𝑢𝑡 = 𝐴−1
0 𝜖𝑡. The covariance matrix of

the reduced form shocks 𝐸(𝑢𝑡, 𝑢′𝑡) =
∑

=
(

𝐴−1
0
) (

𝐴−1
0
)′ is known.We

assume that structural shocks have unit variance. We can write the
impulse response matrix at horizon ℎ as given by:

𝐼𝑅ℎ = 𝐶(ℎ)𝐴−1
0

Where 𝐶(ℎ) is the ℎ𝑡ℎ element in the expansion if
[

𝐼𝑛 −
∑𝑝

𝑗=1 𝐵𝑗𝐿𝑗
]−1

.
The element in row (𝑖) and column (𝑗) denotes the response of 𝑖th
variable due to shock associated with 𝑗th variable. The matrix 𝐴−1

0 is
unknown and needs to be estimated to calculate the structural impulse
response 𝐼𝑅ℎ. The reduced form covariance matrix is known and one
can do Cholesky decomposition of the same as given by:
∑

= 𝑃𝑃 ′

and that implies 𝐴−1
0 = 𝑃 . But as shown by Uhlig (2004), the matrix 𝑃

obtained by Cholesky decomposition is not the only matrix that satisfies
the above decomposition as we can write:
∑

= 𝑃𝑄𝑄′𝑃 ′
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For any orthonormal matrix 𝑄 (𝑄𝑄′ = 𝐼). This gives us 𝐴−1
0 = 𝑃𝑄 and

hence the structural impulse response can be written as

𝐼𝑅ℎ = 𝐶(ℎ)𝑃𝑄

The response of the 𝑖th variable due to a shock associated with 𝑗th
variable is

𝐼𝑅ℎ(𝑖, 𝑗) = 𝑒′𝑖𝐶(ℎ)𝑃𝑄𝑒𝑗 = 𝑒′𝑖𝐶(ℎ)𝑃𝑞𝑗 = 𝑐′𝑖ℎ𝑞𝑗

Where 𝑞𝑗 is 𝑗th column of 𝑄 and 𝑐′𝑖ℎ is 𝑖th row of 𝐶(ℎ)𝑃 . The impor-
tant point is that 𝑄 = 𝐼𝑛 gives the identification based on Cholesky
decomposition, and the additional identification such as based on sign
restrictions can be achieved by imposing restrictions on 𝑄. Kilian
(2009) used 𝑄 = 𝐼𝑛 to identify the shock. But there are some obvious
limitations to this. The important point is the zero restrictions implied
by Kilian (2009) in a three-variable system effectively puts the price
elasticity of supply to be zero. The three variable system of Kilian
consists of [𝛥𝑃𝑟𝑜𝑑, 𝐸𝐴,𝑅𝑃 ] where 𝛥𝑃𝑟𝑜𝑑 is % change in oil production,
𝐸𝐴 is the measure of global economic activity and 𝑅𝑃 is the relative
price of oil.

In this system, the price elasticity of supply is 𝑎13∕𝑎33 where 𝑎𝑖𝑗 are
the element in the 𝑖th row and 𝑗th column of 𝐴. 𝑎13 is the % change
in production and 𝑎33 gives % change in oil price due to the shock
associate with relative price of oil and hence represent elasticity of
supply. But 𝑎13 is assumed to be zero in Kilian (2009) and hence the
price elasticity of supply is zero. Kilian and Murphy (2012), Baumeister
and Hamilton (2019) and Caldara et al. (2019) attempt to estimate this
elasticity using different methods. Kilian and Murphy (2012) use sign
restrictions, Baumeister and Hamilton (2019) use Bayesian estimation
and Caldara et al. (2019) use external variables to estimate the price
elasticity of supply.

We identify multiple shocks based on their share in forecast error
variance decomposition. This method is purely agnostic and driven by
data. We put very minimal restrictions on identification. Unlike the
Bayesian approach of Baumeister and Hamilton (2019), our method
is not subject to issues with prior and hyper-parameters, which often
make Bayesian inference problematic. The forecast error variance of
the 𝑖th variable due to a shock associated with 𝑗th variable at horizon
ℎ is given by
ℎ=ℎ
∑

ℎ=0
𝐼𝑅ℎ(𝑖, 𝑗)𝐼𝑅ℎ(𝑖, 𝑗)′ =

ℎ=ℎ
∑

ℎ=0
𝑞′𝑗𝑐𝑖ℎ𝑐

′
𝑖ℎ𝑞𝑗 = 𝑞′𝑗

(ℎ=ℎ
∑

ℎ=0
𝑐𝑖ℎ𝑐

′
𝑖ℎ

)

𝑞𝑗

The forecast error variance of the 𝑖th variable due to all shocks is given
by ∑ℎ=ℎ

ℎ=0 𝑐
′
𝑖ℎ𝑐𝑖ℎ. Hence the share of 𝑗th variable in the forecast error

variance of 𝑖th variable is given by

𝐹𝐸𝑉 (𝑖, 𝑗, ℎ) =
𝑞′𝑗

(

∑ℎ=ℎ
ℎ=0 𝑐𝑖ℎ𝑐

′
𝑖ℎ

)

𝑞𝑗
∑ℎ=ℎ

ℎ=0 𝑐
′
𝑖ℎ𝑐𝑖ℎ

e define

𝐸𝑉 (𝑖, ℎ) =

(

∑ℎ=ℎ
ℎ=0 𝑐𝑖ℎ𝑐

′
𝑖ℎ

)

∑ℎ=ℎ
ℎ=0 𝑐

′
𝑖ℎ𝑐𝑖ℎ

e identify multiple columns (all columns as well) of 𝑄 using the
ollowing optimization problem

∗
1,𝑘 = argmax

𝑄1∶𝑘

𝑘
∑

𝑖=1
𝑞′𝑖𝐹𝐸𝑉 (𝑖, ℎ)𝑞𝑖

ubject to
′
𝑗𝐹𝐸𝑉 (𝑗, ℎ)𝑞𝑗 ≥ 𝑞′𝑗𝐹𝐸𝑉 (𝑖, ℎ)𝑞𝑗 for 𝑗 = 1,… , 𝑘,∀𝑖 ∈ 𝐼−𝑗

𝑄′
1∶𝑘𝑄1∶𝑘 = 𝐼𝑛

his effectively implies that we maximize the sum of the share of each
hock in the forecast error variance of the respective variables. We put
ery reasonable restrictions. These constraints imply that each shock
4

explains a higher forecast error variance of the variable associated
with it, compared to the other variables. For example, the first shock
explains a higher share of the forecast error variance of the first
variable than its share in the forecast error variance of the second and
third variables. The same is true for the remaining shocks. Using the
fact ∑𝑘

𝑖=1 𝑞
′
𝑖𝐹𝐸𝑉 (𝑖, ℎ)𝑞𝑖 =

∑𝑘
𝑖=1 𝑡𝑟𝑎𝑐𝑒(𝑞

′
𝑖𝐹𝐸𝑉 (𝑖, ℎ)𝑞𝑖), we write the above

roblem as a minimization problem

∗
1,𝑘 = arg min

𝑄1∶𝑘
−

𝑘
∑

𝑖=1
𝑡𝑟𝑎𝑐𝑒(𝑞′𝑖𝐹𝐸𝑉 (𝑖, ℎ)𝑞𝑖)

ubject to
′
𝑗𝐹𝐸𝑉 (𝑖, ℎ)𝑞𝑗 ≤ 𝑞′𝑗𝐹𝐸𝑉 (𝑗, ℎ)𝑞𝑗 for 𝑗 = 1,… , 𝑘,∀𝑖 ∈ 𝐼−𝑗

′
1∶𝑘𝑄1∶𝑘 = 𝐼𝑛

e solve the above problem using the fmincon function in Matlab with
onlinear constraints. We do not face any situation of the constraints
ot being satisfied.

The reduced form shocks 𝑢𝑡 and the structural shocks 𝜖𝑡 are related
s

𝑡 = 𝐴−1
0 𝜖𝑡

hich we can write as:

𝑡 =
⎡

⎢

⎢

⎣

𝑎11 0 0
𝑎21 𝑎22 0
𝑎31 𝑎32 𝑎33

⎤

⎥

⎥

⎦

𝜖𝑡

We assume recursive structure because Cholesky decomposition implies
recursive relationship among the variables. Since we use % change in
production and log of real oil prices, we can interpret 𝑎13∕𝑎33 as the
impact elasticity of the supply of oil with respect to the real price of
oil. 𝑎13 and 𝑎33 are the impact responses of supply and real oil prices
due to oil specific demand shock, helping identify the supply curve.
This is very similar to the classic identification of demand and supply
where the supply curve is identified using changes in demand curve.
The elasticity is zero in Kilian (2009) because 𝑎13 = 0 (zero restriction)
as assumed in Cholesky decomposition of the covariance matrix of the
reduced form shock. Non-zero restriction is essential for estimating
supply elasticity, and based on sign restrictions, Kilian and Murphy
(2012) consider an upper bound of 0.0258. Identification scheme used
in this paper implies

𝐴−1
0 = 𝑃𝑄

where 𝑃 is the Cholesky decomposition of reduced form covariance
matrix. 𝑄 is the orthogonal matrix estimated using the optimization
explained above, 𝐴−1

0 contains coefficients of contemporaneous rela-
tionship between reduced form and structural shocks. Hence 𝑢𝑡 = 𝐴−1

0 𝜖𝑡
can be written as:

𝑢𝑡 =
⎡

⎢

⎢

⎣

𝑝11 0 0
𝑝21 𝑝22 0
𝑝31 𝑝32 𝑝33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞11 𝑞12 𝑞13
𝑞21 𝑞22 𝑞23
𝑞31 𝑞32 𝑞33

⎤

⎥

⎥

⎦

𝜖𝑡

Now the impact response of supply due to oil specific demand shock
is given by the product of first row of 𝑃 and third column of 𝑄.
Similarly the impact response of oil price due to oil specific demand
shock is given by the product of third row of 𝑃 and third column of 𝑄.
Hence the elasticity is given by

Supply Elasticity =

[

𝑝11 0 0
]

⎡

⎢

⎢

⎣

𝑞13
𝑞23
𝑞33

⎤

⎥

⎥

⎦

[

𝑝31 𝑝32 𝑝33
]

⎡

⎢

⎢

⎣

𝑞13
𝑞23
𝑞33

⎤

⎥

⎥

⎦

≥ 0

We restrict the elasticity to be positive to ensure that we obtain an
economically meaningful supply curve.



Energy Economics 129 (2024) 107152A. Kumar and S. Mallick
Fig. 2. Variables being used in the paper. Oil production is in million barrels/day.
2.2. Data

We obtain Global oil production (million barrels/day) from En-
ergy Information Administration (EIA). We specifically use the series
INTL.57-1-WORL-TBPD.M. The crude oil price used in this paper is the
West Texas Intermediate (WTI) price available at the St. Louis Federal
reserve website. We deflate the oil price using the consumer price
index (CPIAUCSL series from the St. Louis Federal reserve website at
base 1982-84 = 100) to obtain real oil price. There are benefits of
working with real price. The demand shock and other supply shocks
can increase nominal prices of oil because of their effect on consumer
inflation. Hence, the relative price movement is pure movement in oil
prices which is not driven by movements in overall inflation. Economic
conditions index is the updated data, obtained from Dallas Fed. The
economic activity index used in Kilian (2009) has a coding error and
the updated data has fixed that error. Uncertainty data used in this
paper is historical geopolitical risk from Caldara and Iacoviello (2022).4
Fig. 2 gives the data series used in this paper. The time period covered
is between January 1973 to December 2021. Appendix A gives the link
of the data sources used in this paper.

3. Results and analysis

3.1. Three variable models

We use two types of identification scheme in this paper. The first
one is using the Cholesky decomposition as in Kilian (2009) and the

4 Ftiti and Jawadi (2019) estimate several measures of oil price volatility
which could be considered as a measure of oil price uncertainty but not
uncertainty in general. Ftiti and Hadhri (2019) and Kumar et al. (2023) use
economic policy uncertainty and equity and bond market volatility as measures
of uncertainty. We use geopolitical risk as we believe that these are true risks
which should affect the oil market. Also, these measures of uncertainties are
correlated with each other and hence the results should not vary a lot based
on the use of these uncertainties. Also, the focus in this paper is not on the
uncertainty itself, and uncertainty is more like a control variable in the absence
of which we may have uncertainty being absorbed by demand or supply shocks
or both, Kumar et al. (2021).
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second one is based on share in forecast error variance decomposi-
tion explained in the previous section. Also, we do three sub-sample
estimates for each of these two methods. The first one is using the
data from 1973–2007 which allows us to compare the results in Kilian
(2009). The second sample period is for the time period 1973–2021 and
the third sample is for the time period 2008–2021. We use twenty four
lags in first two sub-samples and 6 lags in the case of third sub-sample
because of small sample size.

Fig. 3 gives the impulse responses from the first sub-sample. These
are responses due to one standard deviation shock. We use production
growth in the estimation and accumulate the response of production
growth and plot it. The supply shock decreases production by 1.5%
on impact and the production is lower by almost 0.5% even after 20
months.

This suggests that the supply shock adversely affects production
even in the medium run. As expected, the supply shock does not have
any effect on the global economic activity and its effect on the price
level is short-lived and the maximum increase in real price due to the
supply shock is almost 1%. The impact response of production due to
the demand shock is zero, and up to five months, the production does
not change. After five months, production increases but the maximum
increase in production is less than 0.5%.

The delayed response of production due to the demand shock also
indicates that it is difficult to change production from existing oil fields
due to exogenous shocks to prices. Demand shock has a permanent
effect on economic activity as expected. Also the demand shock has
a persistent effect on oil prices and the oil price increases by almost
5% by 20th month of the demand shock. Oil specific demand shock
does not affect production, and increases economic activity. It also has
an impact response on relative price, with magnitudes higher than 7%
but unlike the demand shock this effect decreases with time. There is
not much difference in the response of model variables from these two
identification schemes. FEV based identification suggests slightly lower
response of prices due to demand shock and higher response of activity
due to oil-specific demand shock. Hence we can say that zero restriction
based identification scheme in Kilian (2009) attributes slightly higher
role for demand shocks in explaining oil prices.
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Fig. 3. Blue and red lines are responses due to shocks identified using FEV method and Cholesky decomposition respectively. The shaded area is a 68% confidence band for
the responses identified using Cholesky decomposition. Sample 1973–2007. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Blue and red lines are responses due to shocks identified using FEV method and Cholesky decomposition respectively. The shaded area is a 68% confidence band for
the responses identified using Cholesky decomposition. Sample 1973–2021. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 5. Blue and red lines are responses due to shocks identified using FEV method and Cholesky decomposition respectively. The shaded area is a 68% confidence band for
the responses identified using Cholesky decomposition. Sample 2008–2021. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
Fig. 4 gives the impulse responses from the second sub-sample.
Extending the sample to post crisis period brings some noticeable
differences. We find more persistent response of supply shock on prices
unlike the pre-crisis period. Also we find that the impact of demand
shock on prices does not keep increasing and stabilize at a level lower
than in the pre-crisis period. These two together imply that medium run
price movement contains significantly higher contribution of supply
shock than the demand shock compared to the pre-crisis period. We
also find that the impact response of real price due to oil specific
demand shock is higher in the full sample compared to the pre-crisis
sample.

Fig. 5 gives the impulse responses from the post-crisis sample. It
is important to clarify that the post-crisis sample is estimated with a
smaller lag length of six compared to twenty four lag length used in
previous two estimations reported above. Hence, there is possibility of
lower persistence in results that could be driven by lag length selection.
But we believe that six lag length is not small and should not be
driving significant differences. We find that the impact response of
production due to supply shock is lower than 1.5% reported earlier.
We also find that the impact response of price due to supply shock is
much higher than the demand shock and if we just compare supply and
demand then the supply shock turns out to be the dominant driver of
oil price in the short run. Comparing two identification methods, we
find that the response of prices due to supply shock is slightly lower
from identification based on forecast error variance.

Interestingly we also find that the response of price due to supply
shock persists slightly longer than the demand shock, and the demand
shock does not have permanent effect on prices unlike reported earlier.
These responses suggest significant changes in the factors influencing
real oil price in the short and medium run in the post crisis period.
Also, the impact response of price due to oil specific demand shock is
highest in the post crisis period, and the response of economic activity
due to oil specific demand shock vanishes quickly.
7

As explained above the short run elasticity of oil supply is the ratio
of impact response of production and real price due to oil specific
demand shock. In the case of Cholesky decomposition, the elasticity is
zero by design as the impact response of production due to oil specific
demand shock is zero. In the identification based on forecast error
variance method it is not zero but constrained to be greater than equal
to zero. As we can see from figures 4, 5 and 6, in all these cases, the
impact response of production due to oil specific demand shock is zero
and hence the short run supply elasticity is zero. These results suggest
that the identification scheme based on Cholesky decomposition used
in Kilian (2009) is not rejected by the data as even if we do not restrict
the short run supply elasticity to be zero and estimate it, we still obtain
a zero value.

Fig. 6 gives the forecast error variance decomposition from the
first sub-sample. More than 80% of the variation in production in the
medium run is explained by the supply shock and both demand and
oil-specific demand shocks explain less than 10% of the variation in the
production in the medium run. The supply shock explains .02% of the
variation in price in the medium-run, demand shock explains 20% and
the remaining is explained by the oil-specific demand shock. Comparing
two methods, we find that forecast error variance based identification
suggests slightly higher role for oil-specific demand shock in explaining
prices at the cost of demand and supply shocks.

Fig. 7 gives the forecast error variance decomposition from the
second sub-sample. The noticeable difference arises in the share of sup-
ply shock in explaining the variation in real oil price which increased
to 5%. Similar to the pre-crisis period, we find that forecast error
variance method suggests higher share for oil-specific demand shock
in explaining prices at the cost of demand and supply shocks. But both
Cholesky decomposition and forecast error variance method suggest
that the share of supply shocks in explaining the variation in price
has doubled relative to the pre-crisis value. Fig. 8 gives the forecast
error variance decomposition from the post-crisis sample. In post crisis
sample, the supply shock explains more than 20% of the variation in
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Fig. 6. Blue and red lines are share of shocks identified using FEV method and Cholesky decomposition respectively in forecast error variance of variables. The shaded area is
a 68% confidence band for the responses identified using Cholesky decomposition. Sample 1973–2007. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. Blue and red lines are share of shocks identified using FEV method and Cholesky decomposition respectively in forecast error variance of variables. The shaded area is
a 68% confidence band for the responses identified using Cholesky decomposition. Sample: 1973–2021. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 8. Blue and red lines are share of shocks identified using FEV method and Cholesky decomposition respectively in forecast error variance of variables. The shaded area is
a 68% confidence band for the responses identified using Cholesky decomposition. Sample 2008–2021. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
oil prices in the beginning which stabilizes at 10% in the medium term.
This is more than 4 times the share of supply shock in pre-crisis sample
which is a significant increase.

3.2. Extended models

As argued before, geopolitical risk is an important variable influenc-
ing all the three variables in the baseline model used in the previous
section. Hence we augment the model with the geopolitical risk and
estimate three sub-sample models. Fig. 9 gives the impulse response
from the first sub-sample.

Risk/uncertainty shock plays a significant role in driving produc-
tion, activity and prices. Uncertainty shock decreases production on
impact, which becomes insignificant quickly and becomes negative and
insignificant again. Uncertainty shock also increased economic activity
in the medium run. The identification based on forecast error variance
method gives a negative impact response of activity due to uncertainty
shock and the response of activity is always lower than the one given
by Cholesky decomposition. This is in line with the finding in the
literature that uncertainty shock is contractionary (Kumar et al., 2021)
which is quite prominent in the post-crisis sample. Interestingly, this
uncertainty shock increases price level by almost 2% in the medium
run. The supply shock does not affect uncertainty which is expected.
The response of activity due to supply shock is as before but now the
supply shock does not increase prices as found in the model without
uncertainty shock. The demand and oil-specific demand shocks do not
affect uncertainty and the responses of other variables due to these
two shocks are similar to the one reported before from model without
uncertainty shock.

Fig. 10 gives the impulse responses from the second sub-sample.
The effect of uncertainty shock on production in the medium run is
now more pronounced. Its effect on activity is subdued and it decreases
price significantly on impact and the increase in price in the medium
run is not significant unlike in the pre-crisis sample. The response due
9

to other shocks remains similar except that the response of production
due to oil specific demand shock identified using FEV method is almost
zero. Fig. 11 gives the impulse response from the post-crisis sample. The
effect of uncertainty shock on economic activity in the medium-run is
now more pronounced and it decreases activity significantly and does
not increase in the medium-run unlike the pre-crisis period.

The uncertainty shock does not affect production, but decreases
the real price significantly. The maximum decline in price due to
uncertainty shock is almost 4% and even in the medium run, real prices
are lower by almost 2%. Its effect on activity is subdued and it decreases
price significantly on impact and the increase in price in the medium
run is not significant unlike in the pre-crisis sample. The response due
to other shocks remains similar except that the response of production
due to oil specific demand shock identified using FEV method is almost
zero.

Fig. B.1 in appendix gives the forecast error variance decomposition
from the first sub-sample. The role of supply shock in explaining the
variation in production is reduced. Uncertainty shock explains around
10% of the variation in production and oil-specific demand shock
identified using forecast error variance method explains around 15%.
Uncertainty shock also explains more than 5% of the variation in
price in the medium-run. Fig. B.2 in appendix gives the forecast error
variance decomposition from the second sub-sample. Uncertainty shock
explains around 10% of the variation in production but less variation
in prices compared to the pre-crisis period (Fig. B.1). Fig. B.3 in the
appendix gives the forecast error variance decomposition from the
post-crisis sample. Uncertainty shock explains more than 10% of the
variation in production and prices (Fig. B.1).

Effectively in the post crisis period, the importance of uncertainty
shock in explaining prices increases significantly. In the medium-run,
all the other three shocks explain around 10% of the variation in prices
and the remaining 70% of the price variation is explained by oil-specific
demand shock. Since there is not much change in the contribution of
demand and supply shocks reported in Fig. 8 (without uncertainty),
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Fig. 9. Blue and red lines are responses due to shocks identified using FEV method and Cholesky decomposition respectively. The shaded area is a 68% confidence band for
the responses identified using Cholesky decomposition. Sample 1973–2007. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Blue and red lines are responses due to shocks identified using FEV method and Cholesky decomposition respectively. The shaded area is a 68% confidence band for
the responses identified using Cholesky decomposition. Sample 1973–2021. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 11. Blue and red lines are responses due to shocks identified using FEV method and Cholesky decomposition respectively. The shaded area is a 68% confidence band for
the responses identified using Cholesky decomposition. Sample 1973–2007. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
we can say that in the absence of uncertainty, a higher proportion of
variation in prices is attributed to the oil-specific demand shock. Also, it
makes sense as it is expected that oil-specific demand shock will capture
the role of uncertainty shock in absence of the uncertainty shock in the
model.

3.3. Major episodes: Historical decomposition

The reduced form vector auto-regression model is given by:

𝑦𝑡 = 𝑏 +
𝑝
∑

𝑗=1
𝐵𝑗𝑦𝑡−𝑗 + 𝑢𝑡

where 𝑢𝑡 = 𝐴−1
0 𝜖𝑡

The moving average representation is given by

𝑦𝑡 = 𝐶(ℎ)𝑢𝑡

which can be written in terms of structural shock as:

𝑦𝑡 = 𝐶(ℎ)𝐴−1
0 𝜖𝑡

Hence we can write

𝑦𝑡 =
𝑡−1
∑

𝑠=0
𝐶(𝑠)𝐴−1

0 𝜖𝑡−𝑠 +
∞
∑

𝑠=𝑡
𝐶(𝑠)𝐴−1

0 𝜖𝑡−𝑠

where 𝐶𝑠 is the corresponding matrix from the moving average repre-
sentation

𝑦𝑡 ∼
𝑡−1
∑

𝑠=0
𝐶(𝑠)𝐴−1

0 𝜖𝑡−𝑠

Based on the identification scheme used in this paper:

𝑦𝑡 ∼
𝑡−1
∑

𝐶(𝑠)𝑃𝑄𝜖𝑡−𝑠
11

𝑠=0
We know 𝑃 from the Cholesky decomposition and 𝑄 is obtained from
the optimization explained above. Write the above expression as

𝑦𝑡 ∼
𝑡−1
∑

𝑠=0
𝐻𝑠𝜖𝑡−𝑠

Then the third row contains the contribution of different shocks in
prices. The value of 𝑦𝑡 obtained from 𝑦 should be compared with the
demeaned 𝑦𝑡 in the data as we have an intercept in the VAR model.
Since we discard observation before time 0, the actual value and the
value obtained from above may not coincide and we should discard
some observations to eliminate the effect of left-out shocks. Appendix C
at the end (Figs. C.1–C.6) reports the share of each shock in driving
change in 𝑦 up to each point in the sample. These may not add up
to actual value due to residual error but we ignore that. Further, we
can calculate the value of difference between 𝑦𝑡+ℎ and 𝑦𝑡 using the
above. This is the total change in 𝑦 during the time period ℎ caused
by the three shocks. We also know the contribution of each shock
in this total change in 𝑦 and hence we can calculate the share of
each shock in driving change in 𝑦 during time period ℎ. In case of
increase in real price, the difference between 𝑦𝑡+ℎ and 𝑦𝑡 is positive
and the shocks which are having positive contribution are causing
the price to rise and shocks having negative contribution is pushing
price down. We consider six major episodes. Most of these episodes
except recent ones have been explored extensively in the literature,
see, Kilian (2009); Hamilton (2013); Caldara et al. (2019); Antolin-
Diaz and Rubio-Ramirez (2018). Since, we use bootstrap to estimate
the confidence band, we create the 68% confidence band around the
share of individual shocks as well. All the historical decomposition in
the paper are based on shocks identified using forecast error variance
based identification explained in the methodology section.

The first episode is the time period during the Iranian revolution.
The time period does not include Iraq’s invasion of Iran in September
1980. The real oil price was doubled during the one year time period.
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Fig. 12. Increase in real oil price during Iranian revolution (April 1979–April 1980) and contribution of different shocks in driving oil price during this time period. GPR is
geopolitical risk from Caldara and Iacoviello (2022). These shocks are identified using forecast error variance method.
We find that almost 7̃0% of this was driven by oil-specific demand
shock and remaining 30% was shared equally by supply and demand
shocks (Fig. 12). Once we bring uncertainty into the model, the con-
tribution of oil-specific demand shock increases slightly whereas the
contribution of supply shock decreases. This brings us to the point
mentioned in the introduction that uncertainty shocks are not only
likely to influence precautionary demand but also important for the
correct identification of supply shock as well.

The second episode is the time period during the infamous gulf
war of 1990s. Again the real oil price was almost doubled during
the six month time period. We find that almost 85% of this was
driven by oil-specific demand shock and remaining 15% was due to
supply shock. The demand shock had no role in driving price during
this time period (Fig. 13). Once we bring uncertainty into the model,
the contribution of all other shocks excluding uncertainty decreases,
although the contribution of uncertainty shock is not significant.

The third episode is the surge in oil prices during the great financial
crisis. Again the real oil price was almost doubled during June 2007–
June 2008. We find that almost 75% of this was driven by oil-specific
demand shock and remaining 25% was due to demand shock (Fig. 14).
Supply shock has no significant role in driving price during this time
period. But once we bring uncertainty into the model, the supply shock
is significant and negative. This implies that supply was favourable
during this time period and in the absence of favourable supply, price
would have increased even more.

The fourth episode is of decline in oil price which was very sharp
during the global financial crisis. This was predominantly driven by
oil-specific demand shock contributing 80% and demand shock con-
tributing 20% (Fig. 15). Even the inclusion of uncertainty does not
change the contribution of oil-specific demand shock and demand
shock. We can say that the uncertainty and supply shocks played no
role in the decline in real oil price during the great financial crisis.

Next we move to the sharp decline and fall in price during the
COVID-19 pandemic. With the start of the pandemic, the real prices
12
of oil declined sharply and within a matter of just four months during
January 2020 to April 2020, it became one fourth. We find that this
decline was predominantly driven by oil-specific demand shock with
80% contribution and remaining 20% contribution of demand shock,
Fig. 16. But uncertainty too played some minor role. Including uncer-
tainty in the model decreases the contribution of oil-specific demand
shock at the expense of uncertainty shock. The supply shock played
negligible role in driving down price during the COVID-19 pandemic.
The contribution of both demand and uncertainty shock makes sense
because the COVID-19 pandemic brought unprecedented uncertainty
and very sharp decline in global economic activity.

The final episode is the most recent surge in real oil prices. The
real oil prices became almost doubled during the period October 2020
to October 2021 (Fig. 17). We find that this was primarily driven by
oil-specific demand shocks. The supply shock was again favourable
and almost countered the upward pressure on prices caused by the
demand shock although the contribution of supply shock is not signifi-
cant whereas the contribution of demand shock is significant. Bringing
uncertainty does not change the contribution of shocks significantly
but slightly increases the magnitude of demand shock and decreases
the magnitude of supply shock. Although these results suggest that the
oil specific demand shock has been the predominant drivers of real
oil prices as argued by Kilian (2009), these results suggest that other
shocks have also played significant role in different episodes. Out of the
six episodes considered, in only two episodes (Iranian revolution and
gulf war) supply shocks caused significant increase in oil price. Demand
shock played significant role in four episodes i.e. Iranian revolution and
COVID-19, surge and decline during global financial crisis and decline
during the COVID-19 pandemic. Although uncertainty shock played
significant role in driving down the price during COVID-19 pandemic
only, it has been found to be influencing the contribution of other

shocks in different episodes considered in this paper.



Energy Economics 129 (2024) 107152

13

A. Kumar and S. Mallick

Fig. 13. Increase in real oil price during gulf war (June 1990–October 1990) and contribution of different shocks in driving oil price during this time period. GPR is geopolitical
risk from Caldara and Iacoviello (2022). These shocks are identified using forecast error variance method.

Fig. 14. Increase in real oil price during global financial crisis (June 2007–June 2008) and contribution of different shocks in driving oil price during this time period. GPR is
geopolitical risk from Caldara and Iacoviello (2022). These shocks are identified using forecast error variance method.
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Fig. 15. Decline in real oil price during global financial crisis (July 2008–December 2008) and contribution of different shocks in driving oil price during this time period. GPR
is geopolitical risk from Caldara and Iacoviello (2022). These shocks are identified using forecast error variance method.

Fig. 16. Decline in real oil price during COVID-19 pandemic (January 2020–April 2020) and contribution of different shocks in driving oil price during this time period. GPR is
geopolitical risk from Caldara and Iacoviello (2022). These shocks are identified using forecast error variance method.
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Fig. 17. Increase in real oil price during COVID-19 pandemic (November 2020–October 2021) and contribution of different shocks in driving oil price during this time period.
GPR is geopolitical risk from Caldara and Iacoviello (2022). These shocks are identified using forecast error variance method.
Fig. 18. Red, blue, and black lines are responses due to shocks identified from TVP-VAR using the FEV method for the months of April 2000, April 2009 and January 2020. The
shaded area is a 68% confidence band for the month of April 2000. Responses given by black lines suggest the increasing influence of supply shocks in determining prices in
recent times. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
4. Evidence from time-varying parameter VAR

The results presented in the previous section clearly demonstrate
an increasing role of supply shocks in determining oil price in the
15
recent sample. To further substantiate this point, we estimate a time-
varying parameter vector auto-regression (TVP-VAR) model. The model
is based on Primiceri (2005). The observables 𝑦𝑡 are assumed to follow a
vector autoregression with time-varying coefficients and a time-varying
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Fig. 19. Red, blue, and black lines are the share of shocks identified from TVP-VAR identified using the FEV method in forecast error variance of variables at these months: April
2000, April 2009 and January 2020. The shaded area is a 68% confidence band for the month of April 2000. Responses given by black lines suggest the increasing influence of
supply shocks in determining prices in recent times. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. B.1. Blue and red lines are share of shocks identified using FEV method and Cholesky decomposition respectively in forecast error variance of variables. The shaded area
is a 68% confidence band for the responses identified using Cholesky decomposition. Sample 1973–2007. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
covariance matrix for the innovations. The model is given by:

𝐴0,𝑡𝑦𝑡 = 𝑎𝑡 +
𝑝
∑

𝑗=1
𝐴𝑗,𝑡𝑦𝑡−𝑗 + 𝛴𝑡𝜖𝑡

𝐸(𝜖𝑡𝜖′𝑡 ) = 𝐼

where 𝐴0,𝑡 is the low triangular matrix which in the case of 3 variable
VAR is given by:

𝐴0,𝑡 =
⎡

⎢

⎢

1 0 0
𝛼2,1,𝑡 1 0

⎤

⎥

⎥
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⎣ 𝛼3,1,𝑡 𝛼3,2,𝑡 1 ⎦
and 𝛴𝑡 is the diagonal triangular matrix which in the case of 3 variable
VAR is given by:

𝛴𝑡 =
⎡

⎢

⎢

⎣

𝜎1,𝑡 0 0
0 𝜎2,𝑡 0
0 0 𝜎3,𝑡

⎤

⎥

⎥

⎦

We assume diagonal elements of 𝐴0,𝑡 as 1 and 𝛴𝑡 as a diagonal matrix
without loss of generality. The reduced form for the same is given by:

𝑦𝑡 = 𝐴−1
0,𝑡 𝑎𝑡 +

𝑝
∑

𝑗=1
𝐴−1
0,𝑡𝐴𝑗,𝑡𝑦𝑡−𝑗 + 𝐴−1

0,𝑡𝛴𝑡𝜖𝑡

Which can be further written as:

𝑦𝑡 = 𝑏𝑡 +
𝑝
∑

𝐵𝑗,𝑡𝑦𝑡−𝑗 + 𝑢𝑡

𝑗=1
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Fig. B.2. Blue and red lines are share of shocks identified using FEV method and Cholesky decomposition respectively in forecast error variance of variables. The shaded area
is a 68% confidence band for the responses identified using Cholesky decomposition. Sample 1973–2021. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Fig. B.3. Blue and red lines are share of shocks identified using FEV method and Cholesky decomposition respectively in forecast error variance of variables. The shaded area
is a 68% confidence band for the responses identified using Cholesky decomposition. Sample 1973–2007. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Where 𝑏𝑡 is a 𝑛× 1 vector of time-varying constant terms and 𝐵𝑗,𝑡 is
𝑛 × 𝑛 matrix containing time-varying coefficient. We have

𝑢𝑡 = 𝐴−1
0,𝑡𝛴𝑡𝜖𝑡

𝐸(𝑢𝑡𝑢′𝑡) = 𝐸(𝐴−1
0,𝑡𝛴𝑡𝜖𝑡

(

𝐴−1
0,𝑡𝛴𝑡𝜖𝑡

)′
)

𝛺 = 𝐴−1𝛴 𝛴′(𝐴′ )−1
17

𝑡 0,𝑡 𝑡 𝑡 0,𝑡
The above structural model can be written as:

𝑦𝑡 = 𝑋′
𝑡𝐵𝑡 + 𝐴−1

0,𝑡𝛴𝑡𝜖𝑡

Where

𝑋′ = 𝐼 ⊗ [1 𝑦′ 𝑦′ 𝑦′ ]
𝑡 𝑛 𝑡 𝑡−1 𝑡−𝑝
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Fig. C.1. Historical Decomposition based on FEV method. The shaded area is a 68% confidence band. Sample 1973–2007.
Fig. C.2. Historical Decomposition based on FEV method. The shaded area is a 68% confidence band. Sample 1973–2021.
And stacking all the coefficients gives:

𝐵𝑡 = 𝑣𝑒𝑐
[

𝑏𝑡 𝐵1,𝑡 𝐵2,𝑡 𝐵𝑝,𝑡
]

The non-zero and non-one elements of 𝐴𝑡 ∶

𝛼𝑡 = [𝛼2,1,𝑡 𝛼3,1,𝑡 𝛼3,2,𝑡]′

The non-zero elements of 𝛴𝑡 ∶

𝜎𝑡 = [𝜎1,𝑡 𝜎2,𝑡 𝜎3,𝑡]′

The dynamics of the time-varying parameters are specified as:

𝐵𝑡 = 𝐵𝑡−1 + 𝜂𝑡

𝛼𝑡 = 𝛼𝑡−1 + 𝜉𝑡

𝑙𝑜𝑔𝜎 = 𝑙𝑜𝑔𝜎 + 𝜗
18

𝑡 𝑡−1 𝑡
all the innovations are assumed to be jointly normally distributed with

𝑉 = 𝐸

⎡

⎢

⎢

⎢

⎢

⎣

𝜖𝑡
𝜂𝑡
𝜉𝑡
𝜗𝑡

⎤

⎥

⎥

⎥

⎥

⎦

[

𝜖𝑡 𝜂𝑡 𝜉𝑡 𝜗𝑡
]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐼3 0 0 0
0 𝑄 0 0
0 0 𝑆 0
0 0 0 𝑊

⎤

⎥

⎥

⎥

⎥

⎦

so that the standard deviations in 𝜎𝑡 evolve as independent geometric
random walks. Following Primiceri (2005), it will be assumed that 𝑆
is block-diagonal, with one non-zero element in the first column of the
first row and three distinct non-zero elements in the second and third
columns of the second and third rows. We estimate the three variable
model with 12 lags and the extended model including uncertainty with
6 lags. We use less number of lags, as with 24 lags the Gibbs-sampler
finds it difficult to make draws for large number of parameters based
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Fig. C.3. Historical Decomposition based on FEV method. The shaded area is a 68% confidence band. Sample 2008–2021.
Fig. C.4. Historical Decomposition based on FEV method. The shaded area is a 68% confidence band. Sample 1973–2007.
on hyper-parameters in Primiceri (2005).5 We use a training sample of
15 years i.e. 180 observations to set the priors for the TVP-VAR. Once
we have the parameters and variance covariance matrix for each point
of time, we implement the forecast error variance based identification
to identify the structural shock at each point of time as explained in
the previous section.

The split sample estimation (pre and post-crisis) being done in
the previous section showed the increasing role of supply shocks in
determining prices in recent times. To substantiate this further, we
have estimated the TVP-VAR and have identified the shocks using the
forecast error variance (FEV) method. To the best of our knowledge,
this is the first paper to use FEV-based identification in a TVP-VAR with
stochastic volatility.

5 The TVP-VAR model with stochastic volatility is estimated using the Mat-
lab codes available at https://sites.google.com/site/dimitriskorobilis/matlab/
code-for-vars?authuser=0
19
Fig. 18 gives the responses at three points in time (April 2000,
April 2009 and January 2020) from three variable TVP-VAR. As we
can see from the figure, the reduction in supply due to adverse supply
shock has been increasing over time and also the response of prices
due to adverse supply shock has been increasing over time. Fig. 19
gives the share of these shocks in the FEV of the model variables
and this also clearly demonstrates the transition. In recent times the
share of supply shocks in the FEV of prices has increased whereas the
share of demand shock in the FEV of prices has decreased. Fig. D.1
in appendix gives the responses at three points in time (April 2000,
April 2009 and January 2020) from four variable TVP-VAR. As we
can see from the figure, the reduction in supply due to adverse supply
shock has increased in recent times and also the response of prices
due to adverse supply shock has been increasing over time. Both three
and four variable VARs suggest that the response of prices due to
supply shocks has been more persistent in recent times, and the supply
shocks keep prices higher in the medium run. Also, both the three and
four variables VAR suggest the diminished share of demand shocks in

https://sites.google.com/site/dimitriskorobilis/matlab/code-for-vars?authuser=0
https://sites.google.com/site/dimitriskorobilis/matlab/code-for-vars?authuser=0


Energy Economics 129 (2024) 107152A. Kumar and S. Mallick
Fig. C.5. Historical Decomposition based on FEV method. The shaded area is a 68% confidence band. Sample 1973–2021.
Fig. C.6. Historical Decomposition based on FEV method. The shaded area is a 68% confidence band. Sample 2008–2021.
forecast error variance of prices (Fig. D.2 in appendix). These results
give overwhelming evidence in support of the split sample evidence
presented in the previous section which demonstrates a transition in oil
price dynamics with an increasing role of supply shocks at the expense
of demand shocks.

5. Concluding remarks

Understanding the drivers of oil prices is important for business
cycle stabilization and other macroeconomic policies. The short run
supply elasticity of oil is important for determining the contribution
of different shocks in driving the oil prices and has been a matter of
debate. We address these methodological issues using a new identifica-
tion scheme which does not restrict the short run supply elasticity to
be zero unlike Cholesky decomposition. The identification obtained in
this paper using share in forecast error variance is also minimal, non-
controversial and better than accept and reject algorithm used in sign
restriction based identification as argued before.
20
We estimate the contribution of four shocks – supply, demand,
precautionary demand and geopolitical risk – in driving oil prices.
Results suggest that precautionary demand and demand shocks are
predominant in driving oil prices but the effect of demand shock on
oil prices is not long-lasting in the recent periods unlike before global
financial crisis. This is likely to be driven by higher substitutability
between crude oil and other forms of energy such as Shale oil and
sources of unconventional energy at higher prices. The results obtained
in the paper confirm that short run supply elasticity is indeed zero as
assumed in Kilian (2009). This makes sense as the oil production from
existing oil wells are determined by the pressure in oil wells and do
not respond to price movements as argued by Anderson et al. (2018).
This does not mean that the price elasticity of oil supply is zero in the
medium-term too.

In the post-crisis sample, the effect of demand shock on oil prices
is less prominent, unlike the pre-crisis sample, where the effect was
increasing over time. This is reflecting the recent shift towards other
sources of energy (shale oil or renewable sources of energy). Further,
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Fig. D.1. Red, blue, and black lines are responses due to shocks identified from TVP-VAR using the FEV method for the months of April 2000, April 2009 and January 2020.
The shaded area is a 68% confidence band for the month of April 2000. Responses given by black lines suggest the increasing influence of supply shocks in determining prices in
recent times. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. D.2. Red, blue, and black lines are the share of shocks identified from TVP-VAR identified using the FEV method in forecast error variance of variables at the following
months: April 2000, April 2009 and January 2020. The shaded area is a 68% confidence band for the month of April 2000. Responses given by black lines suggest the increasing
influence of supply shocks in determining prices in recent times. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
the results suggest that the response of oil prices due to supply shocks
is significantly higher in the recent sample, and supply shocks explain
significantly higher fraction of variance of oil prices, unlike the pre-
crisis sample. These results indicate a transition in the determination of
oil prices where supply shocks have a relatively significant role, unlike
in the pre-crisis sample period. To substantiate the results from split
sample estimation, we have estimated a TVP-VAR and have identified
the shocks using the forecast error variance method. The response of
production and prices due to supply shocks and the share of demand
and supply shocks in forecast error variance of the prices at three points
in time (April 2000, April 2009 and January 2020) also demonstrate
the transition evident in the split sample estimation.

Understanding the sharp movement in oil prices during the COVID-
19 pandemic is another objective of this paper and the result suggests
21
that the sharp decline in oil prices during January 2020 to April
2020 was driven by oil specific demand and demand shock, and the
contribution of demand shock is 20%. Uncertainty shocks also played
some role in the decline in prices during the beginning of the pandemic.
The contribution of demand and uncertainty shocks in the decline in
oil prices makes sense, as we know that COVID-19 pandemic brought
unprecedented uncertainty and led to complete collapse of global eco-
nomic activity due to widespread lock-downs. The subsequent increase
in oil prices during (2020–21) was primarily driven by oil specific de-
mand and demand shocks. Although it is true that oil-specific demand
shocks are predominant drivers of real oil-prices as argued by Kilian
(2009), six episodes considered in this paper suggest that other shocks,
namely supply shocks, have also played significant roles in driving oil
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prices in different episodes which cannot be ignored while evaluating
the oil price dynamics.
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ppendix A. Data sources

Oil Production https://www.eia.gov/international/data/world/pet
oleum-and-other-liquids/monthly-petroleum-and-other-liquids-produc
ion?pd=

Price https://fred.stlouisfed.org/series/CPIAUCSL
WTI https://fred.stlouisfed.org/series/WTISPLC
Economic Condition Index https://www.dallasfed.org/research/igr

a
Uncertainty Data https://www.matteoiacoviello.com/gpr.htm

ppendix B. FEVD from four variable models

See Figs. B.1–B.3.

ppendix C. Historical decomposition

See Figs. C.1–C.6.

ppendix D. Results of TVP-VAR from four variable models

See Figs. D.1 and D.2.
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