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We study the shadows cast by rotating hairy black holes with two non-trivial time-
periodic scalar fields having a non-flat Gaussian curvature of the target space spanned by
the scalar fields. Such black holes are a viable alternative to the Kerr black hole, having a
much more complicated geodesic structure and resulting shadows. We investigate how a
nontrivial Gauss curvature alters the pictures for different amounts of scalar hair around
the black holes, quantified by a normalized charge. Our results show that for high values
of this charge, close to a boson star limit, chaotic shadows are observed with multiple small
disconnected components for all considered Gaussian curvatures. For moderately large
amounts of scalar hair and corresponding normalized charge, although the shadows still
exhibit chaotic behavior, a dominant shadow component emerges, the size and shape of
which are substantially influenced by the Gaussian curvature. For instance, highly chaotic
shadows for flat target space, start developing a large central shadow region with the in-
crease of the Gauss curvature even for black holes with substantially heavy scalar hair. For
lower values of the normalized charge, the shadows resemble qualitatively the Kerr black
hole while the Gaussian curvature has a small impact on their properties.

I. INTRODUCTION

Very recently the Event Horizon Telescope (EHT) Collaboration has opened up the gate to
new tests of the strong field regime of gravity through observations of black hole shadows. In
2019, the EHT Collaboration captured the image of the central supermassive black hole (SMBH)
in the M87 galaxy [1]. Three years later in 2022, the EHT Collaboration also produced an image
of SgrA∗, the central supermassive black hole in the Milky Way [2]. This success motivated the
proposition of a Next Generation EHT that will be able to take black hole snapshots with a much
higher accuracy. The advance in observations pushed the theoretical development with the idea
of challenging the Kerr hypothesis. Building upon the black hole images obtained by the EHT,
numerous alternative models to the Kerr black hole have been proposed and examined. These
include horizonless compact objects such as, naked singularities and wormholes [3–8], rotating
regular black holes [9, 10], as well as beyond-Kerr black holes arising from modified theories of
gravity [11–17]. While a diverse range of Kerr black hole mimickers exists, certain configurations
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exhibit distinct features in their shadows, leading to multi-connected or highly distorted images.
Regarding this matter, an in-depth analysis of the relativistic deformability of black hole lensing
images can be found in [18, 19]. Examples of such scenarios comprise black holes with scalar or
Proca hair [20–22], black holes in binary systems [23–25], and black holes interacting with external
matter distributions [26–28]. In the present paper, we will consider further examples of scalarized
black holes interacting with multiple scalar fields. These solutions can be classified according to
the Gaussian curvature of the target space spanned by the scalar fields and may manifest diverse
behaviors depending on its value.

Stationary asymptotically flat black hole solutions predicted by vacuum GR are hairless and
completely determined by their mass and angular momentum. This also applies to the case when
the Einstein equations are coupled to a single real scalar field – it is a classical result that the
black hole can not support a single scalar field hair [29–31]. However, the scenario changes when
multiple scalar fields are considered. In the case of a complex time-dependent scalar field, or
equivalently, two real scalar fields forming a flat 2-dimensional manifold (target space), it was
initially discovered that black holes with hair can emerge within the perturbative regime [32–35].
Shortly after that, the self-consistent non-linear solutions were generated numerically [20, 21].
The scalar fields in this scenario do not inherit the stationary and axisymmetric properties of the
spacetime but instead have a harmonic dependence on the t and ϕ coordinates. Even though
the scalar field is time-dependent, the generalized Einstein equations, as well as the spacetime
metric, are stationary. The regularity at the black hole horizon requires, though, synchronizing
the angular velocity at the black hole horizon with the scalar field oscillation frequency. That is
why these solutions were dubbed black holes with synchronized scalar hair.

The black hole solutions discussed in [20, 21] indeed involve two scalar fields whose target
space is flat, as previously mentioned. However, this represents just the simplest choice, and the
geometry of the target space can be substantially more intricate [36–38]. In fact, nonlinear rotating
black hole solutions with synchronized hair, comprising two real scalar fields forming a non-flat
manifold (non-flat target space) that is maximally symmetric, were constructed in [39]. It was
demonstrated that the curvature of the target space can significantly alter the domain of existence
and the properties of the hairy black holes.

Kerr black holes with synchronized scalar hair are ones of the very few astrophysically relevant
candidates that can produce deviations from GR not only for stellar black holes but also for su-
permassive ones (for another interesting very recent example see [40]). This motivated the study
of their shadows that was performed in the case of a flat target space [41, 42]. The purpose of the
present paper is to extend these studies to a non-flat target space, more precisely for a maximally
symmetric space with curvature κ. We will systematically examine the influence of nonzero κ on
the black hole shadow and eventually explore the inverse problem – what the back hole shadow
can tell us about the target space formed by the scalar fields.

The paper is organized as follows. In the next section, we present the scalarized black holes
which we consider, describing their basic properties. In section 3 we outline the theoretical back-
ground necessary for obtaining the shadow images. Then, in section 4 we construct explicitly
the shadows cast by selected solutions with positive, negative, and zero curvature of the target
space. The shadow images are compared and analyzed according to the influence of the normal-
ized charge of the solutions and the Gaussian curvature of the target space. In the last section, we
present our conclusions.
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II. KERR BLACK HOLES WITH SYNCHRONIZED SCALAR HAIR – NON-FLAT TARGET SPACE
GEOMETRY

In the present paper, we focus on multiple dynamical scalar fields φa minimally coupled to
the Einstein gravity. The scalar fields φa can be considered as generalized coordinates on an
abstract N-dimensional Riemmanian space (EN , γab(φ)), the so-called target space. The target
space metric γab(φ) should be positively defined on EN . The general action of the theory is then
given by

S =
1

4πG

∫ √
−g

(
R
4
− 1

2
gµνγab(φ)∂µ φa∂ν φb − V(φ)

)
d4x, (1)

where V(φ) is the scalar field potential. This action can be also interpreted as the vacuum action
of the tensor-multi-scalar-theories of gravity ([36, 37]). Varying it with respect to the spacetime
metric and the scalar fields, we get the following field equations

Rµν = 2γab(φ)∂µ φa∂ν φb + 2V(φ)gµν, (2)

□φa = −γa
bc(φ)gµν∂µ φb∂ν φc + γab(φ)

∂V(φ)

∂φb , (3)

where □ is the d’Alembert operator associated with the spacetime metric and γa
bc(φ) are the

Christoffel symbols with respect to the target space metric.
From now on, we shall focus on two scalar fields (effectively modeling the complex scalar

field originally considered in [20]), possessing maximally symmetric target spaces (E2, γab(φ)). In
this case we have globally defined coordinates, the so-called isothermal coordinates, in which the
target space metric can be written in the conformally flat form

γab(φ) = Ω2(φ)δab. (4)

Here δab is the usual Kronecker Delta and the conformal factor Ω(φ) is given by

Ω2(φ) =
1(

1 + κ
4 ψ2

)2 , (5)

with ψ2 = δab φa φb and κ being the Gaussian curvature of the target space.
For the scalar fields potential V(φ) we assume the simplest standard massive potential given

by

V(ψ) =
1
2

µ2ψ2 (6)

where µ is the scalar field mass.
Since we are interested in rotating black holes, the ansatz for the stationary and axisymmetric

line element is chosen to be

ds2 = −N e2F0 dt2 + e2F1

(
dr2

N + r2dθ2
)
+ e2F2r2 sin2 θ

(
dϕ − ω

r
dt
)2

, (7)

where N = 1− rH
r (rH is the location of the horizon in these coordinates), while F0, F1, F2, and ω are

functions of r and θ only. The interested reader can consult the Appendix of [21] for an isometry
between the line element in eq. (7) and the Kerr line element in Boyer-Lindquist coordinates.
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In the present paper, we will be interested in scalar field endowed black holes. In order to
violate the no-scalar-hair theorems it is not enough to consider multiple scalar fields. Additionally,
one should let the fields be time-dependent [31]. Thus, an ansatz for these fields, which is also
consistent with the circularity of the metric (7), is the following

φ1 = ψ(r, θ) cos(ωst + mϕ), φ2 = ψ(r, θ) sin(ωst + mϕ), (8)

where ωs is a real parameter and m is an integer. One can easily check that although φ1 and φ2

are time-dependent, the resulting field equations (2), (3) are stationary. More details can be found
in [39].

Assuming these forms of the scalar field and metric ansatze, plus the appropriate boundary
conditions that are regularity at the event horizon and the axes, and asymptotic flatness at infinity,
one is able to find stationary black hole solutions with nontrivial scalar hair. It is interesting to
note that the regularity at the horizon leads to the condition

ω|r=rH = − rHωs

m
, (9)

which also ensures that there is no scalar flux into the black hole. Therefore, the angular velocity at
the black hole horizon ΩH = ωH/rH should be equal to ωs. Thus the scalar field is synchronized
with the black hole rotation. Additionally, at infinity

lim
r→∞

ψ ∝
1
r

exp
(
−
√

µ2 − ω2
s r
)

, (10)

thereby bounding ωs via ω2
s ≤ µ2.

The ADM mass and angular momentum can be calculated from by the metric asymptotics

M =
1
2

lim
r→∞

r2∂rF0, J =
1
2

lim
r→∞

r2ω. (11)

They have varying contributions from the black hole bare mass and the hair. To specify the hairi-
ness, the normalized charge q is introduced, defined as q = mQ

J , where Q is the conserved Noether
charge. It is commonly used to characterize Kerr black holes with synchronized scalar hair [20]
and is thus useful also for comparison reasons. Interestingly, the angular momentum of the scalar
field is quantized in terms of the Noether charge Q, i.e, Jψ = mQ, so we simply have q =

Jψ

J . This
quantization is similar to the rotating boson stars [43]. The q ≈ 0 solutions are the limit of scalar
clouds non-backreacting the metric, whereas q ≈ 1 solutions are the boson star limit (potentially
with non-flat target space metric [38, 44]).

In the present paper we will utilize the numerical solutions obtained in [39] for Gaussian curva-
tures κ ∈ {−5, 0, 5} and fixed m = 1. The domains of existence of hairy black holes are presented
in a M − ωs plane in Fig. 1 for different κ. The black line marks the extremal Kerr limit, with
a = M, and thus Kerr black holes exist only below it in the grey-shaded region. The yellow region
is the domain of existence of hairy Kerr black hole solutions having the following boundaries –
the red line is the solitonic (boson star) limit with q = 1 and rH = 0, extremal hairy black holes
are denoted with a green line (again rH = 0 but q ̸= 0), while blue lines are used to depict the
cloud solutions (q = 0) 1. A general trend is that with the decrease of κ the domain of existence of

1 The fact that some of these lines look incomplete is due to numerical difficulties in constructing the solutions that in
general become worse for more negative κ.
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FIG. 1. Tracks for fixed rH in the M − ωs plane, taken from [39] for κ = {0,−5, 5}. The solutions are
obtained by solving a coupled set of partial differential equations found by varying the Einstein-Hilbert
action coupled to two scalar fields. The black line and below holds Kerr solutions, whereas new exotic
solutions are held in the yellow bubble. It is bounded by three classes of solutions, solitonic, extremal
hairy black hole, and cloud solutions, depending on the value of rH and normalized charge q = mQ

J , as
explained in the text. The positions of selected solutions are indicated by red and blue dots, which, for
a given rH and various κ, share the same q. Each configuration is identified by X u

v , where the symbol
X represents the configuration number, superscript u represents κ, and the subscript v denotes rH . The
physical characteristics of these selected solutions are given in Table I of the Appendix.

hairy black holes becomes more deformed. Dashed lines mark sequences of solutions with con-
stant horizon radii while red dots on these lines are the particular black hole solutions we used
for building shadows.

From the point of view of rH, black holes with smaller values of rH have a larger domain of
existence in ωs: They move closer to the pure solitonic (q = 1) and extermal black hole limit,
both of which have a vanishing horizon radius. Tracks denoted with an extremely small value of
rH start and stop at the cloud line. More generally, however, each fixed track of rH starts at the
Minkowski limit with ωs/µ = 1 and stops at the cloud line.
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III. CALCULATING THE BLACK HOLE SHADOW

A. Photon Equations of Motion and Initial Conditions

To generate the black hole’s shadow through backward ray tracing, we numerically integrate
photon geodesics until they either fall into the black hole or intersect the celestial sphere. The
paths of these geodesics are governed by the geodesic equations, which are obtained from Hamil-
ton’s equations:

ẋµ =
∂H
∂pµ

, ṗµ = − ∂H
∂xµ

, (12)

where the overdot implies differentiation with respect to an affine parameter. The Hamiltonian
is defined in terms of the contravariant components of the metric tensor, gµν. Assuming min-
imal coupling between the null particles with 4–momentum pµ components and the spacetime
geometry, it satisfies that

H ≡ 1
2

gµν pµ pν = 0. (13)

Due to stationarity and axisymmetry, H does not depend on t and ϕ, and both pt and pϕ are
conserved quantities of the geodesic motion. Assuming the asymptotically flatness of the space-
time, we can then define the integrals of motion E and L, which are interpreted as the energy and
azimuthal angular momentum of the photon as measured by an asymptotic static observer:

E = −pt = −gtt ṫ − gtϕϕ̇, L = pϕ = gtϕ ṫ + gϕϕϕ̇. (14)

Therefore, by decoupling the variables, we obtain

ṫ =
gϕϕE + gtϕL
g2

tϕ − gtt gϕϕ
, ϕ̇ = −

gtϕE + gttL
g2

tϕ − gtt gϕϕ
. (15)

Taking into account that for the photon motion H = 0 is a conserved quantity along the trajectory,
we can represent the Hamiltonian in the form:

H = p 2
r grr + p 2

θ gθθ + Veff(r, θ) = 0, (16)

where the quantity T ≡ p 2
r grr + p 2

θ gθθ ≥ 0 related to the kinetic energy is positive definite. Here,
the effective potential Veff(r, θ) ≤ 0 is negative definite and reveals the allowed region (r, θ) of the
photon’s motion. It is given by

Veff(r, θ) =
E2gϕϕ + 2ELgtϕ + L2gtt

gttgϕϕ − g2
tϕ

=
E2gtt

(gttgϕϕ − g2
tϕ)

(η − h+)(η − h−), (17)

where η = L/E is the impact parameter. The functions h±(r, θ) are the photon’s effective poten-
tials defined as:

h± =
−gtϕ ±

√
g2

tϕ − gttgϕϕ

gtt
. (18)
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FIG. 2. Geometric representation of the spatial momentum of the photon P⃗ measured in the orthonormal
basis of the observer. The observer’s screen is located at a circumferential distance r̃obs from the black hole,
whose event horizon is represented by a black sphere in the diagram. The photon impact parameters (x, y)
are related to the angles α and β, where α is the angle between P⃗ and its projection in the xz-plane, and β

is the angle between this projection and the optical axis indicated in blue. The observer is oriented in such
a way relative to the black hole that the radial directions coincide, i.e., ê(r) = êz, while the basis vectors that
span the image plane obey the connections ê(θ) = −êy and ê(ϕ) = êx.

The discriminant D = g2
tϕ − gttgϕϕ is positive outside the black hole horizon, while gtt is positive

inside (negative outside) the ergoregion.
To begin ray tracing, we require information about a photon’s initial conditions, namely

t, r, θ, ϕ, E, L, pr and pθ . These are obtained by constructing a local orthonormal basis {ê(t), ê(r), ê(θ),
ê(ϕ)} at the position of the observer, generally placed at (r̃obs = 15M and θobs = π

2 ) throughout
this work. Here r̃ is the circumferential radius of a point at the equatorial plane and is given by:

r̃ =
1

2π

∫ 2π

0
dϕ

√
gϕϕ = r eF2(r), (19)

where r is the coordinate radius. To establish the initial conditions for the photon’s 4-momentum,
we adhere to the formalism discussed in [42, 45]. For convenience, we introduce two angles, α

and β, to parameterize the impact parameters of a photon at the observer’s location, as illustrated
in Fig. 2:

x = −r̃obs tan β, y = r̃obs sin α. (20)

At a chosen observer’s circumferential distance r̃obs(robs), first, we calculate the coordinate po-
sition robs, according to Eq. (19). Positioned at the point (r̃obs, θobs), the observer views a two-
dimensional flat screen, (x, y), passing through the center of the black hole and perpendicular
to the axis between the observer and the origin. In this scenario, the observer aligns radially
with the black hole, meaning that ê(r) = êz, while the basis vectors that span the image plane are
determined by the connections ê(θ) = −êy and ê(ϕ) = êx. Additionally, the magnitude of the 4–
momentum of the photon in the observer’s frame of reference satisfies the Hamiltonian constraint

P2 = −(P (t))2 + (P (r))2 + (P (θ))2 + (P (ϕ))2 = 0. (21)
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Then, the components of the spatial momentum P⃗ in terms of the angles (α, β) are given by,

P (r) = |P⃗ | cos α cos β, P (θ) = |P⃗ | sin α, P (ϕ) = |P⃗ | cos α sin β, (22)

and the photon has P (t) = |P⃗ |. Since |P⃗ | only determines the photon’s frequency and does not
alter the trajectory, it is set to unity, implying that P (t) = 1 as well.

We must now relate the components of the 4-momentum in generally curved coordinates to
the quantities P (t),P (r),P (θ), and P (ϕ). This requires an understanding of how the coordinate
basis {∂t, ∂r, ∂θ , ∂ϕ} appear in the local orthonormal basis. The chosen basis takes the following
form

ê(θ) = Aθ∂θ , ê(ϕ) = Aϕ∂ϕ, ê(t) = ζ∂t + γ∂ϕ, ê(r) = Ar∂r. (23)

Now imposing the conditions ê(r) · ê(r) = 1, ê(θ) · ê(θ) = 1, ê(ϕ) · ê(ϕ) = 1, ê(t) · ê(t) = −1 and
ê(t) · ê(ϕ) = 0, we arrive at

Ar =
1

√
grr

, Aθ =
1

√
gθθ

, Aϕ =
1

√gϕϕ
, γ = −ζ

gtϕ

gϕϕ
, ζ =

√
gϕϕ

g2
tϕ − gttgϕϕ

. (24)

The final form of the four basis vectors describing a Minkowski frame is as follows,

ê(t) = ζ

(
∂t −

gtϕ

gϕϕ
∂ϕ

)
, ê(r) =

1
√

grr
∂r, ê(θ) =

1
√

gθθ
∂θ , ê(ϕ) =

1
√gϕϕ

∂ϕ. (25)

Using this information, we project the components of the 4-momentum into this basis as follows,

P (t) = −êµ

(t)pµ = −
(
ζ pt + γpϕ

)
= ζ

(
E +

gtϕ

gϕϕ
L
)

, (26)

P (r) = êµ

(r)pµ =
1

√
grr

pr, (27)

P (θ) = êµ

(θ)
pµ =

1
√

gθθ
pθ , (28)

P (ϕ) = êµ

(ϕ)
pµ =

1
√gϕϕ

L, (29)

where the identification of the conserved quantities E = −pt and L = pϕ was used wherever they
appear. Given the earlier presentation of the equations of motion, it is more desirable to obtain
starting conditions for E, L, pr and pθ . Explicitly, inverting the above expressions yields,

E =
1 + γ

√gϕϕ sin β cos α

ζ
, pr =

√
grr cos β cos α, (30)

L =
√

gϕϕ sin β cos α, pθ =
√

gθθ sin α. (31)

After positioning the observer on the equatorial plane (θ = π/2) at a circumferential radius
r̃obs = 15M, the angles α and β determine the impact parameters (x, y) and initial momenta using
the local orthonormal basis. With these initial conditions, photons evolve backward in time until
they encounter the celestial sphere, situated at a circumferential distance r̃cel = 30M or they hit the
black hole horizon rH. To interpret the resulting gravitational lensing patterns, we divide the ce-
lestial sphere into four quadrants, each assigned a distinct color based on the angular distribution
between the polar angle θcel and the azimuthal angle ϕcel as demonstrated on Fig. 3. Furthermore,
to visualize the deformation of the characteristic patterns in the images, we introduce a grid of
thin black meridian and parallel lines spaced 10◦ apart in each quadrant.
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FIG. 3. The diagram depicts the celestial sphere with half a quadrant removed, illustrating the optical
elements of the gravitational system. Positioned along the blue optical axis are the observer and the black
hole, the latter represented by a black sphere. The observer’s screen, perpendicular to the optical axis,
intersects with the black hole. A red thick line traces a specific light trajectory, characterized by impact
parameters (x, y), originating from Earth and terminating at a color-specified quadrant of the celestial
sphere. In this geometry, the gravitational lens effect causes the observer to perceive an image I with
the corresponding color on the image plane. This image appears aligned with the tangent line to the light
trajectory at the observer’s position. The celestial sphere is divided into four quadrants, each with a distinct
color designation. In the top hemisphere (0 < θcel < π/2): the green quadrant if 0 < ϕcel < π, and the red
quadrant if π < ϕcel < 2π. In the bottom hemisphere (π/2 < θcel < π): the blue quadrant if 0 < ϕcel < π,
and the yellow quadrant if π < ϕcel < 2π.

B. Light Rings and Ergoregions

In this subsection, we will consider the properties of the light rings and ergoregions for the
chosen configurations shown in Fig. 1. As we will see, some of the studied configurations have
stable light rings that, placed in their ergoregions, become light beam attractors, which can lead
to the appearance of chaotic patterns in the black hole shadows.

The light rings are circular null geodesics considered in the equatorial plane of symmetry,
θ = π/2, that satisfy the conditions pθ = 0 and pr = ṗr = 0, from which it follows that

Veff = 0, ∂rVeff = 0, (32)

at the location of the orbit. Following Eq. (17), these conditions can be reduced to the next system
of two algebraic equations that must be satisfied simultaneously

gϕϕ + 2ηgtϕ + gttη
2 = 0, (33)

∂rgϕϕ + 2η∂rgtϕ + η2∂rgtt = 0. (34)

Solving the first of these equations for the impact parameter η = L/E and substituting in the
second, we obtain the light ring equation, which predicts the existence of a photon circular orbit
with a radius rLR

∂rgϕϕ + 2h±∂rgtϕ + h2
±∂rgtt = 0, (35)



10

where the functions h± are defined via Eq. (18). Moreover, the radial condition for the existence
of stable (unstable) light rings imposes ∂2Veff > 0, (∂2Veff < 0), which is reduced to the restriction

∂2
r gϕϕ + 2h±∂2

r gtϕ + h2
±∂2

r gtt

< 0, if light ring is stable.

> 0, otherwise.
(36)

Besides, taking into account that η = h± on the circular orbit and h+ ̸= h− outside the horizon,
after straightforward calculations, one can show that the conditions for the effective potential (32)
are reduced to an analogical light ring equation

∂rh± = 0. (37)

The solutions to that equation predict stable (unstable) light rings if the radial condition ±∂2
r h± >

0, (±∂2
r h± < 0) is satisfied. Moreover, the normalized timelike Killing vector field at infinity,

denoted as ∂t, becomes null over the surface gtt = 0, defining the ergoregions [46]. In that special
case, in the limit gtt → 0, one of the functions h± diverges, and the other converges to −gϕϕ/2gtϕ.
Generally, outside the ergoregions gtt < 0, while passing within the ergoregions gtt > 0.

Light rings can also be classified in terms of their direction of rotation. Taking into account Eqs.
(15), as well as that Eq. (33) is satisfied on the light ring, one can show that the angular velocity,
Ω = dϕ/dt, of the photons moving on circular orbits is connected to the impact parameter via the
relation

Ω =
1
η

. (38)

Hence, it follows that the light ring’s rotational direction is given by the sign of the impact param-
eter η for a static observer at spatial infinity. In general, the orbital angular frequency of rotating
photons at the light rings is given by

Ω± =
−∂rgtϕ ±

√
∂rg2

tϕ − ∂rgtt∂rgϕϕ

∂rgϕϕ
, (39)

where the above expressions are evaluated at the location of the light ring. In the above equa-
tion Ω+ is the angular frequency of co-rotating photons, and Ω− is the angular frequency of the
counter-rotating photons.

C. Numerical Ray Tracing Methods

To compute the cast shadows of rotating tensor-multiscalar black holes with scalar hair, a pro-
gram code was developed using the Wolfram Language Mathematica. The code uses built-in
interpolation and differential solver routines to integrate the Hamiltonian equations of motion
numerically. For the numerical implementation of the equations, the metric functions F0, F1, F2,
and ω were interpolated using a two-dimensional cubic spline interpolation concerning the vari-
ables r and θ, which was set as the default interpolation procedure in the programming language.
In the Hamiltonian equations, the interpolated functions were substituted into the analytical ex-
pressions for the metric functions and their derivatives concerning r and θ. For the numerical
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solution of the system of differential equations, we utilize time integration methods inherent to
Mathematica, such as the Adams/BDF multi-step method with automatic step size control.

Additional information is required to generate the shadows’ image on the observer’s screen.
This includes the observer’s position, the two-dimensional width of the field of view, the image
resolution, and the radius of the celestial sphere where the rays, scattered by the black hole, will
complete their trajectory.

In this context, without loss of generality, we choose the observer to be located on the equato-
rial plane at a specific circumferential distance from the black hole, such that (tobs, robs, θobs, ϕobs) =

(0, robs(r̃obs), π/2, 0). By selecting the circumferential distance as r̃obs = 15M, we use Eq. (19) to
numerically determine the radial coordinate of the observer, robs. Simultaneously, we set the cir-
cumferential distance r̃cel = 30M as the second boundary condition for any geodesic reaching the
celestial sphere. After performing the ray tracing procedure, we apply an equiangular projection
that directly maps the angles θcel and ϕcel , labeling the photon scattered by the black hole onto the
celestial sphere with the observed angles (β, α) onto the coordinate axes (x, y). To implement the
projection, we establish the desired field of view, which specifies the angles between the optical
axis and the image boundaries. Subsequently, by determining the desired image resolution, cor-
responding to 1024 × 1024 photon trajectories, we found the required step size for uniform grid
formation across the entire field of view.

Increasing the geodesic flux density is crucial to generating a high-resolution image of the
shadow, revealing more precisely the complexity of the chaotic patterns. To significantly diminish
the integration time for the entire field of view, we first take advantage of the reflection symmetry
inherent in the shadow image as perceived by an equatorial observer. This involves integrating
only half of the shadow–specifically, the geodesics either above or below the equatorial plane of
symmetry. Subsequently, exploiting the reflection symmetry of the examined solution enables us
to reconstruct the complete shadow image, filled with its intrinsic colours denoting the geodesics
scattered to different parts of the celestial sphere.

On the other hand, since modern workstations contain multiple computing cores, we utilize
the built-in FinestGrained method to break down the overall computation into the minor possible
subunits, whose evaluations take different amounts of time. Employing this approach facilitates
the optimization of the integration time, a notably time-consuming process for scalarized solu-
tions with stable light rings. The geometry of these solutions contributes to the chaotic behavior
of geodesics near the event horizon. This is illustrated by the shadow image and the heat map
of the time delay function in Fig. 5. This function is defined as the variation of the time required
for a photon geodesic to travel from a particular pixel on the observer’s screen to a correspond-
ing point on the celestial sphere, measured in units of µ−1. The heat map provides valuable
information about the distribution of time-delay function values on the observer’s screen. It is
particularly useful in diagnosing the light ring system since photon trajectories that come close to
the light rings take a significant amount of time to return to spatial infinity. For a more detailed
discussion of the time delay heat map in various scenarios, such as rotating boson stars and hairy
black hole solutions, please refer to [47].
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IV. RESULTS

In this section, we will examine the shadow images for seven groups of selected configurations,
I–VII, all highlighted in Fig. 1. Each configuration is identified by X u

v , where the symbol X
represents the configuration number, superscript u represents the value of the Gaussian curvature
κ, and the subscript v denotes the value of the black hole horizon rH. Each group contains three
configurations for a unique normalized charge, certain black hole horizon, and various Gaussian
curvatures κ ∈ {−5, 0, 5}. Generally, the higher values of κ reduce the chaotic patterns in the
shadows of black holes with different horizons, affecting the radii and rotational direction of the
light rings (LR) and the equatorial radii of the ergoregions (ER). Henceforth, in the paper, we will
utilize the dimensionless compactified radial coordinate R ∈ [0, 1] defined as follows:

R =
R̃

1 + R̃
, with R̃ =

√
r2 − r2

H. (40)

In the following subsection, we explore a particular configuration, VII−5
0.05, which allows us

to observe not only a complex structure of ergoregions and a system of multiple light rings but
also a variety of non-simply connected shadow images, accompanied by the chaotic behavior of
scattered photons.

A. Photon Potential, Ergoregions and Light Rings

In this section, we will focus on a specific configuration distinguished by one of the most in-
tricate shadows. Beyond the appearance of numerous non-simply connected shadows with var-
ious shapes and regions highly saturated with chaotically scattered orbits, there lies a complex
structure of light rings and multiple ergoregions. A notable aspect of this particular solution is
the presence of a stable light ring characterized by torus topology situated within one of the er-
goregions. To explore the mechanisms behind the formation of these unusual shadows, in this
subsection, we will present the contour plots of the h+ and h− photon potentials, the shadow im-
age, and the photon’s time delay heat map for the configuration VII−5

0.05, with Gaussian curvature
κ = −5, a black hole horizon of rH = 0.05 and a normalized charge q ≃ 0.996.

Fig. 4 exhibits the effective potentials h+ and h− for the spacetime configuration VII−5
0.05, and

Table I in the Appendix presents the corresponding physical quantities of the selected solution.
The contour lines of the function h+ reveal a singular behavior of the potential at the boundary
of two detached ergoregions, the first located near the black hole’s event horizon (RH = 0) in
the equatorial domain RER ∈ [0, 0.036]. The second ergoregion extending in the interval RER ∈
[0.154, 0.484], possesses toroidal topology and contains a global minimum corresponding to the
existence of an equatorial stable light ring for RLR ≃ 0.307, rotating in the same direction as the
black hole. The presence of two saddle points reveals the existence of two equatorial unstable
light rings, the first located between the two ergoregions for RLR ≃ 0.070 and the second formed
beyond the ergotorus for RLR ≃ 0.733. Both rings correspond to photons, circling the black hole
in the opposite spinning direction as the black hole.

Fig. 4, bottom panel, exhibits h− contour lines, which demonstrate the existence of a saddle
point, corresponding to an equatorial unstable light ring situated at RLR ≃ 0.041 outside the inner
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FIG. 4. Contour plots of the two effective potentials h+ (left panel) and h− (right panel) for configurations
VII−5

0.01 at Gaussian curvature κ = −5. The configuration contains two disconnected ergoregions pointed
out with red contours on the upper panel, the first among which is located near the horizon. Each of the po-
tentials h+ and h+ possess a saddle point between both ergoregions, allowing two unstable, closely spaced
light rings to form. In the center of the second ergoregion, the potential h+ possesses a local minimum, cor-
responding to a third stable light ring. Beyond the second ergoregion, the function h+ has a second saddle
point, which causes the formation of a fourth outermost unstable light ring. The orange dots indicate the
locations of the four light rings.

ergoregion. The sign of η indicates that the photons in the light ring are circling the black hole in
the same spinning direction as the black hole.

The sign of η, dϕ/dt and gtt as well as the corresponding values of the dimensionless coor-
dinate R, pointing the positions of the light rings and the equatorial domain of existence of the
ergoregions are organized in the following table.

Configuration Fig. Ergoregions RER LR RLR stability η gtt dφ/dt Chaos

VII−5
0.05 5

h− 0.041 unstable + − +

Yes
1 ER [0, 0.036] h+ 0.070 unstable − − −
2 ER [0.154, 0.484] h+ 0.307 stable + + +

h+ 0.733 unstable − − −

A correlation has been observed between the chaotic patterns found in the shadow’s image
and the characteristics of the corresponding geodesic motion [47]. In Fig. 5, on the right, you can
see the black hole shadow alongside the time delay heat function, which is depicted in units of
the reciprocal values of the scalar field mass, µ−1. The photon’s variation in the coordinate time,
t, illustrates the expected sensitivity in mapping between the photon’s coordinates (x, y) in the
image plane and the corresponding arrival point on the celestial sphere or the black hole horizon.
The heat map in this case is very informative, as it reveals a strong correlation between the shape
of the regions with bright pixels with a significant time delay and the chaotic patterns created by
the scattered photons on the shadow image. This direct relationship indicates that some photon
bundle are sensitive to the subset of their impact parameters, in which photons are propagated
near the light rings.
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FIG. 5. Zoom time delay heat map associated with the scattering orbits (right panel) and lensed image
(left panel) for configuration VII−5

0.05, with κ = −5, rH = 0.05, ωs/µ = 0.648538, Mµ = 0.915671 and q =

0.996185. The regions corresponding to shadow points are shown in black. To clarify the interpretation of
the color image, a color legend is presented in Fig. 3, and a grid is introduced to emphasize the deformation
of the images. Detailed physical quantities of the solution are provided in Table I in Appendix A.

This sensitivity arises due to the effective potential h+, which permits the existence of quasi-
bound orbits for specific impact parameters η. Some of these orbits are situated in a pocket with
a narrow throat containing an unstable light ring (LR4), enabling photons to enter the pocket.
Subsequently, the photons traverse the ergotorus, housing the stable light ring (LR3), near which
the orbits undergo multiple radial turning points before leaving the pocket and reaching the ce-
lestial sphere. Since the number of radial turning points depends on the frequency of changes in
the sign of ṗr during the photon’s motion along the light ray’s trajectory, this can be interpreted
as a deviation from Kerr spacetime, where null geodesics possess at most one turning point. All
trajectories of this class, semi-trapped in a pocket, take significantly longer to escape, resulting in
a more significant time delay. These light beams are depicted as bright dots on the time delay heat
map shown in Fig. 5 on the right.

On the contrary, for specific values of the impact parameter η, the analysis of the effective
potential h+ reveals the possible appearance of a second inner throat in the pocket. This configu-
ration allows photons to approach the unstable light ring LR2. Due to the radial instability of this
light ring, for some impact parameters, photons may either retrace their path back into the pocket
or proceed towards the fourth unstable light ring, LR1, located near the inner ergoregion, as the
potential h− shows. Ultimately, these photons may fall into the black hole, especially with small
perturbations in the impact parameter. The configuration of two throats in the effective potential
may give rise to the formation of multiple disconnected shadows resembling black hole shadows
reported in [41].
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B. Black hole shadows and influence of the Gaussian curvature

To illustrate the impact of different Gaussian curvatures on the light ring’s formation, the er-
goregions of the rotating solutions, and the visual features of their shadows in the following fig-
ures, we expose the shadows of the selected configurations, emphasizing the influence of this
parameter on the observed phenomena. We have limited ourselves to the solutions already gen-
erated in [39], which constitute sequences of black holes with fixed horizon radii. That is why the
solutions are grouped with respect to rH while the normalized charge q is also kept as similar in
value as possible in each group.

Given the significant variation in the shape, size, and characteristic pattern of the shadow
within the domain of existence of hairy Kerr black holes, as depicted in Fig. 1, we will perform
a detailed survey of the 18 most interesting cases. The physical characteristics of these cases are
listed in detail in Table I of the Appendix. Our focus will predominantly be on models close to
the limiting red curve in that figure, marking the boson star limit. These cases exhibit the most
peculiar characteristics and the appearance of chaotic regions in the shadow image. Below, the
discussion is grouped according to the horizon radius and normalized charge of the explored
solutions, which, roughly speaking, indicates how far away the black hole solutions are from the
boson star limit.

1. Model I, rH = 0.01, q ≃ 0.999: Black hole image domited by chaotic regions.

To study the impact of the normalized charge, q, on shadow formation, ergoregions, and the
system of light rings, we focus on configurations I κ

0.01, with κ ∈ {−5, 0, 5} (highlighted in Fig. 1).
All these configurations exhibit relatively higher values of the normalized charge, approximately
q ≃ 0.999. The corresponding physical parameters for these configurations are detailed in Table I
in Appendix A.

Similar to the solution VII−5
0.05, the selected configurations feature a system of four light rings,

two ergoregions, and distinct shadow images saturated with multiple chaotic patterns. Among
these light rings, there is always one that remains stable, contributing to the observation of numer-
ous chaotic regions in shadow images. The peculiarity of these configurations lies in their ability
to generate multiple miniature, highly elongated, simply-connected shadows. Furthermore, even
though shadows exist for negative κ, the size of the shadow is marginal, while this size increases
with increasing κ.

The distinctive features of the ergoregions and light rings for the analyzed configurations are
presented in the following table.
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FIG. 6. Examples of shadows which illustrate the transition between shadows for different Gaussian cur-
vatures κ ∈ {−5, 0, 5} and black hole horizon rH = 0.01. The left panel corresponds to configuration I−5

0.01
with κ = −5, ωs/µ = 0.607387, Mµ = 0.890489 and q = 0.999866, the center panel corresponds to con-
figuration I 0

0.01 with κ = 0, ωs/µ = 0.679241, Mµ = 0.881991 and q = 0.999875, while the right panel
corresponds to configuration I 5

0.01 with κ = 5, ωs/µ = 0.731639, Mµ = 0.883209 and q = 0.999733. To clar-
ify the interpretation of the colour components in the images and their deformation, a color legend and a
grid are provided in Fig. 3. Detailed physical quantities of the solution are provided in Table I in Appendix
A.

Configuration Fig. Ergoregions RER LR RLR stability η gtt dφ/dt Chaos

I−5
0.01 6

h− 0.010 unstable + − +

Yes
1 ER [0, 0.004] h+ 0.012 unstable − − −
2 ER [0.045, 0.474] h+ 0.186 stable + + +

h+ 0.727 unstable − − −

I 0
0.01 6

h− 0.010 unstable + − +

Yes
1 ER [0, 0.003] h+ 0.012 unstable − − −
2 ER [0.063, 0.462] h+ 0.196 stable + + +

h+ 0.722 unstable − − −

I 5
0.01 6

h− 0.009 unstable + − +

Yes
1 ER [0, 0.005] h+ 0.013 unstable − − −
2 ER [0.043, 0.445] h+ 0.155 stable + + +

h+ 0.718 unstable − − −

In all three geometries, there exists an inner ergoregion extending from the horizon (RH = 0)
to a distance RER, which slightly depends on the Gaussian curvature. A notable distinction is
observed when the curvature of the target space is zero; the equatorial extension of the inner
ergoregion is minimal, RER ∈ [0, 0.003], in contrast to the extensions, RER ∈ [0, 0.004] and RER ∈
[0, 0.005], for negative and positive curvatures, respectively. No light ring is placed in any of these
inner ergoregions.

All three configurations feature an ergotorus, corresponding to zero Gaussian curvature with
the minor equatorial section, RLR ∈ [0.063, 0.462]. In the other two cases, the ergotorus possesses
a slightly larger width: RER ∈ [0.045, 0.474] for negative curvature and RER ∈ [0.043, 0.445] for
positive curvature. Each ergotorus houses a stable light ring that co-rotates with the black hole,
irrespective of the Gaussian curvature of the target space.
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Regardless of the magnitude of the Gaussian curvature, each configuration has two inner un-
stable light rings located near each other, positioned between the two ergoregions. The innermost
of these rings co-rotates with the black hole, while the second larger ring rotates in the opposite
direction. A distinctive feature is observed in the ergotorus of the solution with zero Gaussian
curvature, where the stable light ring has the largest radius, RLR ≃ 0.196, in contrast to the
smaller-radius stable rings, RLR ≃ 0.155, for positive curvature, and RLR ≃ 0.186, for negative
curvature. Outside the ergotorus is positioned the outermost fourth unstable light ring, which
rotates in the opposite direction to the black hole.

The shadows of the considered solutions are depicted in Fig. 6. Under negative Gaussian cur-
vature, the shadow is densely filled with chaotic patterns that exhibit slight changes in both struc-
ture and location at zero and positive curvature. A significant feature at this nearly extreme value
of the normalized charge in scalar hair black hole configurations is the emergence of multiple
highly elongated shadows. Specifically, under negative Gaussian curvature, the shadow displays
11 distinguishable simply-connected miniature dark regions. This number decreases to 7 shadow
regions at zero and positive curvature. During this transition, four dark regions merge into two
slightly more extensive regions, while two other dark regions disappear. This change results in a
noticeable, albeit small, reduction in chaotic patterns. Furthermore, the increase in curvature con-
vincingly demonstrated an enlargement in the width and overall size of the multiple dark areas
formed, contributing to the entire shadow image.

2. Model II, rH = 0.01, q ≃ 0.997: Shadows with large chaotic regions.

Analyzing the influence of the normalized charge, q, on shadow formation, ergoregions, and
the system of light rings, we move through the M − ωs space, shown in Fig. 1, to the right
while maintaining a constant horizon radius, rH = 0.01. We select configurations II κ

0.01, with
κ ∈ {−5, 0, 5}, all with slightly smaller values of the normalized charge, roughly q ≃ 0.997. The
corresponding physical parameters for these configurations are provided in Table I in Appendix
A.

Each configuration with a different Gaussian curvature has one ergoregion and four light rings.
Among these light rings, there is always one that remains stable, contributing to the observation
of chaotic regions in shadow images. The peculiarity of these configurations is their ability to form
multiple non-simply connected images, which shows significant chaotic behaviour in trajectories
of light orbits near the black hole horizon.

The ergoregion of the II−5
0.01 configuration has the most spacious equatorial cross-section, ex-

tending from the black hole’s event horizon (RH = 0) to RER ≃ 0.410. The outermost light ring
at RLR ≃ 0.674, is unstable and rotates opposite to the black hole. Moving towards the event
horizon, we pass through the ergosurface (gtt = 0) and discover a system of three equatorial light
rings relatively close to the horizon. The outermost of these rings, at RLR ≃ 0.071, is stable and
rotates in the direction of the black hole’s rotation. The next inner ring, at RLR ≃ 0.014, is un-
stable and rotates oppositely to the black hole’s rotation. The innermost light ring, closest to the
horizon, is also unstable, rotates in the direction of the black hole’s rotation, and has a radius cor-
responding to coordinate RLR ≃ 0.009. The positions of the light rings and the equatorial domain
of ergoregion existence, expressed in terms of the dimensionless parameter R, are summarized in
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FIG. 7. Examples of shadows which illustrate the transition between shadows for different Gaussian cur-
vatures κ ∈ {−5, 0, 5} and black hole horizon rH = 0.01. The left panel corresponds to configuration II−5

0.01
with κ = −5, ωs/µ = 0.739809, Mµ = 0.690217 and q = 0.997229, the center panel corresponds to con-
figuration II 0

0.01 with κ = 0, ωs/µ = 0.835272, Mµ = 0.648229 and q = 0.997293, while the right panel
corresponds to configuration II 5

0.01 with κ = 5, ωs/µ = 0.821927, Mµ = 0.742514 and q = 0.997069. To
clarify the interpretation of the colour components in the images and their deformation, a color legend
and a grid are provided in Fig. 3. Detailed physical quantities of the solution are provided in Table I in
Appendix A.

the following table.

Configuration Fig. Ergoregions RER LR RLR stability η gtt dφ/dt Chaos

II−5
0.01 7 1 ER [0, 0.410]

h− 0.009 unstable + + +

Yes
h+ 0.014 unstable − + −
h+ 0.071 stable + + +

h+ 0.674 unstable − − −

II 0
0.01 7 1 ER [0, 0.387]

h− 0.008 unstable + + +

Yes
h+ 0.016 unstable − + −
h+ 0.069 stable + + +

h+ 0.657 unstable − − −

II 5
0.01 7 1 ER [0, 0.397]

h− 0.007 unstable + + +

Yes
h+ 0.020 unstable − + −
h+ 0.063 stable + + +

h+ 0.680 unstable − − −

Referring to Fig. 7, we observe that an increase in the Gaussian curvature results in a noticeable
expansion of the visible area of black hole shadows, maintaining the same normalized charge. For
the most substantial negative value of the Gaussian curvature, k = −5, multiple nested ovals and
non-simply connected images are observed, indicating a significant chaotic behavior in the tra-
jectories of light orbits. As the Gaussian curvature increases to k = 0, chaotic patterns diminish
in size, forming distinguishable multiple-shadow images of the black hole. In the case of the mi-
nor event horizon, rH = 0.01, one reason for the reduction in chaotic patterns within the shadow
images is the shrinking of the radius of stable light rings with increasing Gaussian curvature.
Simultaneously, in the considered configurations, the outermost unstable light rings move away
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from the event horizon, and their radius further expands with the increasing curvature of the tar-
get space. This phenomenon is an essential condition for increasing the capture cross-section of
the black holes, ultimately resulting in the formation of a larger shadow.

3. Model III, rH = 0.05, q ≃ 0.994: Larger size black hole shadows harbouring chaotic regions.

Increasing the size of the event horizon to rH = 0.05, we consider configurations III κ
0.05, with

κ ∈ {−5, 0, 5}, highlighted in Fig. 1. In this scenario, the selected configurations feature a nor-
malized charge of q ≃ 0.994. The physical quantities of these solutions are detailed in Table I in
Appendix A, showcasing variations for different Gaussian curvatures of the target space. As in
configurations I and VII, in configuration III, we observe the appearance of the same structure of
four light rings and two ergoregions. The table below presents the technical characteristics of the
geometric structures under consideration.

Configuration Fig. Ergoregions RER LR RLR stability η gtt dφ/dt Chaos

III−5
0.05 8

h− 0.040 unstable + + +

Yes
1 ER [0, 0.057] h+ 0.073 unstable − − −
2 ER [0.095, 0.476] h+ 0.274 stable + + +

h+ 0.727 unstable − − −

III 0
0.05 8

h− 0.037 unstable + + +

Yes
1 ER [0, 0.047] h+ 0.080 unstable − − −
2 ER [0.157, 0.471] h+ 0.297 stable + + +

h+ 0.739 unstable − − −

III 5
0.05 8

h− 0.036 unstable + + +

Yes
1 ER [0, 0.045] h+ 0.087 unstable − − −
2 ER [0.238, 0.444] h+ 0.333 stable + + +

h+ 0.757 unstable − − −

In configuration III, similar to configurations I and VII, we note the presence of the same struc-
ture, featuring four light rings and two ergoregions. However, in contrast to configurations I and
VII, where both four light rings and two ergoregions coexist, configuration III exhibits a different
arrangement – the innermost unstable ring is located within the inner ergoregion. Transitioning
into the zone between the two ergoregions, a single unstable light ring is found. Similar to solu-
tions I and VII, the ergoregion also hosts a stable light ring. Extending beyond the ergoregion,
we establish the existence of the fourth outermost unstable light ring.

Analyzing the dynamics of the light rings, we observe that, moving from the innermost to the
outermost ring, the first co-rotates with the black hole, while subsequent rings alternate in spin
direction. As a result, the fourth and final light ring counter-rotates with the black hole. When
increasing the Gaussian curvature of the target space, we note a corresponding growth in the
radius of light rings of the same type. Consequently, the system of light rings for positive Gaussian
curvature exhibits the most extensive spatial distribution. At the same time, the equatorial region
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FIG. 8. Examples of shadows which illustrate the transition between shadows for different Gaussian cur-
vatures κ ∈ {−5, 0, 5} and black hole horizon rH = 0.05. The left panel corresponds to configuration III−5

0.05
with κ = −5, ωs/µ = 0.653743, Mµ = 0.886503 and q = 0.994449, the center panel corresponds to con-
figuration III 0

0.05 with κ = 0, ωs/µ = 0.706437, Mµ = 0.908153 and q = 0.994490, while the right panel
corresponds to configuration III 5

0.05 with κ = 5, ωs/µ = 0.702254, Mµ = 1.100262 and q = 0.994709. To
clarify the interpretation of the colour components in the images and their deformation, a color legend
and a grid are provided in Fig. 3. Detailed physical quantities of the solution are provided in Table I in
Appendix A.

of both inner ergoregions and ergotoruses decreases with an increase in the Gaussian curvature
across different configurations.

At these values of the horizon and the normalized charge, we observe a significant change in
the shape and size of the shadow when transitioning from negative to positive Gaussian curva-
ture. At these values of the horizon and the normalized charge, we observe a significant change
in the shape and size of the shadow when transitioning from negative to positive Gaussian cur-
vature. Black hole shadows for configurations III κ

0.05, with κ ∈ {−5, 0, 5} are exposed in Fig.
8. In instances of negative curvature, configuration III−5

0.05 not only features a series of simply-
connected dark regions but simultaneously exhibits chaotic patterns. At zero curvature of the
target space, the individual simply-connected regions merge into a larger shadow that continues
to show signs of randomness. In contrast to these cases, with positive curvature, the image of
the shadow is fully connected, relatively more compact, and exhibits chaoticity of the scattered
photon orbits outside the dark region of the shadow.

4. Model IV, rH = 0.1, q ≃ 0.96: Black hole shadows with decreasing chaotic regions.

Let’s consider the configurations IV κ
0.1, with κ ∈ {−5, 0, 5}, highlighted in Fig. 1, with an event

horizon set at rH = 0.1. In these instances, the normalized charge of the selected solutions varies
around q ≃ 0.96. A notable feature of these configurations is that, for every value of the Gaussian
curvature, a system of four light rings and one ergoregion exists. The positions of the light rings,
the equatorial domain of the existence of the ergoregions, and additional information about their
characteristics are presented in the following table.

The equatorial domain of ergoregion existence is defined from the event horizon (RH = 0)
to a distance RER, which decreases significantly as the Gaussian curvature of the target space
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increases. Therefore, at negative κ = −5, the relatively large width of the ergoregion, RER ∈
[0, 0.439], encloses three of the inner light rings with radii RLR = 0.061, RLR = 0.199, and
RLR = 0.331. The innermost and middle of these rings are unstable, while the third is stable,
and all rotate in the direction of the black hole’s rotation. In contrast, the outermost fourth light
ring is located outside the ergoregion at RLR = 0.724. Moreover, it is unstable and rotates contrary
to the black hole. In the absence of Gaussian curvature, the equatorial domain of the ergoregion
is bounded by RER ∈ [0, 0.147], signifying a shift of the outer boundary towards the event hori-
zon. Additionally, the ergoregion hosts only one unstable light ring at RLR = 0.057, rotating in
the direction of the black hole. Consequently, the other three light rings, situated at RLR = 0.238,
RLR = 0.395, and RLR = 0.742, respectively, remain external to the ergoregion, each exhibiting ret-
rograde rotation concerning the black hole. This pattern persists even in the presence of positive
Gaussian curvature. The ergoregion contracts, narrowing to RER ∈ [0, 0.133], housing only one
unstable light ring at RLR = 0.055, which rotates prograde to the black hole. All remaining light
rings are located outside the ergoregion, with radii corresponding to RLR = 0.251, RLR = 0.501,
and RLR = 0.759, respectively, and exhibit retrograde rotation about the black hole. Generally, the
third light ring from the inside out is consistently stable for any Gaussian curvature. Furthermore,
as the Gaussian curvature increases, the innermost ring moves closer to the black hole, while the
other three move away.

Configuration Fig. Ergoregions RER LR RLR stability η gtt dφ/dt Chaos

IV−5
0.1 9 1 ER [0, 0.439]

h− 0.061 unstable + + +

Yes
h+ 0.199 unstable + + +

h+ 0.331 stable + + +

h+ 0.724 unstable − − −

IV 0
0.1 9 1 ER [0, 0.147]

h− 0.057 unstable + + +

Yes
h+ 0.238 unstable − − −
h+ 0.395 stable − − −
h+ 0.742 unstable − − −

IV 5
0.1 9 1 ER [0, 0.133]

h− 0.055 unstable + + +

Yes
h+ 0.251 unstable − − −
h+ 0.501 stable − − −
h+ 0.759 unstable − − −

While stable light rings persist in the geometry of the considered configurations IV κ
0.1, with

κ ∈ {−5, 0, 5}, for the given value of the normalized charge, chaotic patterns in the shadow im-
ages (as shown in Fig. 9) are notably lacking. One distinctive feature in the formed shadows is the
emergence of tooth-like regions around the polar parts of the shadow contour. With an increase
in Gaussian curvature, these regions gradually diminish, causing the images of the chaotically
scattered orbits to shift from the inner part of the shadow towards its boundary. Accordingly,
the chaotic patterns manifest at positive curvature in a thin, crescent-shaped region outside the
shadow boundary. It is worth noting that the situation with configuration III 5

0.05 is analogous.
This observation emphasizes that solutions with positive Gaussian curvatures result in shadows
with considerably smaller areas and fewer chaotic patterns compared to those with zero or nega-
tive curvature of the target space.
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FIG. 9. Examples of shadows which illustrate the transition between shadows for different Gaussian cur-
vatures κ ∈ {−5, 0, 5} and black hole horizon rH = 0.1. The left panel corresponds to configuration IV−5

0.1
with κ = −5, ωs/µ = 0.713790, Mµ = 0.873847 and q = 0.965279, the center panel corresponds to con-
figuration IV 0

0.1 with κ = 0, ωs/µ = 0.738499, Mµ = 1.00043 and q = 0.964477, while the right panel
corresponds to configuration IV 5

0.1 with κ = 5, ωs/µ = 0.748666, Mµ = 1.16102 and q = 0.968930. To clar-
ify the interpretation of the colour components in the images and their deformation, a color legend and a
grid are provided in Fig. 3. Detailed physical quantities of the solution are provided in Table I in Appendix
A.

5. Model V, rH = 0.2, q ≃ 0.85: Single ergoregion models with deformed quasi-circular shadows.

Last but not least, the table below provides data on the characteristics of the ergoregions and
the light ring system for configurations V κ

0.2, where κ ∈ {−5, 0, 5} (as indicated in Fig. 1). These
configurations correspond to an event horizon of rH = 0.2, and a normalized charge q ≃ 0.845.
Corresponding shadow images are depicted in Fig. 10.

Configuration Fig. Ergoregions RER LR RLR stability η gtt dφ/dt Chaos

V−5
0.2 10 1 ER [0, 0.248]

h− 0.095 unstable + + +
No

h+ 0.471 unstable − − −

V 0
0.2 10 1 ER [0, 0.252]

h− 0.094 unstable + + +
No

h+ 0.478 unstable − − −

V 5
0.2 10 1 ER [0, 0.258]

h− 0.093 unstable + + +
No

h+ 0.488 unstable − − −

The considered configurations stand out from those previously studied in this paper due to
the presence of a single ergoregion. Interestingly, these configurations exhibit a unique feature
– a system with two unstable light rings for all Gaussian curvatures of the target space. This
distinctive characteristic draws comparisons with Kerr’s rotating black hole, known for having
one ergoregion and a system of two counter-rotating unstable light rings.

A notable feature of the examined configurations is that, as the Gaussian curvature increases,
the equatorial domain of the ergoregions negligibly expands from RER ∈ [0, 0.248] for negative κ,
through RER ∈ [0, 0.252] for zero κ, to RER ∈ [0, 0.258] for positive κ. Each region hosts only one
unstable light ring, prograde rotating regarding the black hole’s rotation. Beyond the ergoregions,
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FIG. 10. Examples of shadows which illustrate the transition between shadows for different Gaussian
curvatures κ ∈ {−5, 0, 5} and black hole horizon rH = 0.2. The left panel corresponds to configuration
V−5

0.2 with κ = −5, ωs/µ = 0.883526, Mµ = 0.847374 and q = 0.848888, the center panel corresponds to
configuration V 0

0.2 with κ = 0, ωs/µ = 0.895538, Mµ = 0.878726 and q = 0.850778, while the right panel
corresponds to configuration V 5

0.2 with κ = 5, ωs/µ = 0.907762, Mµ = 0.884665 and q = 0.843196. To
clarify the interpretation of the colour components in the images and their deformation, a color legend
and a grid are provided in Fig. 3. Detailed physical quantities of the solution are provided in Table I in
Appendix A.

each configuration allows for a second, outer unstable light ring retrograde rotating concerning
the black hole.

Interestingly, with an increase in Gaussian curvature, the inner rings move slightly closer to
the horizon, acquiring radii RLR = 0.095, RLR = 0.094, and RLR = 0.093 for negative, zero,
and positive κ, respectively. Simultaneously, the outer rings move away from the black hole as
photons adopt orbits with radii RLR = 0.471, RLR = 0.478, and RLR = 0.488, correspondingly for
negative, zero, and positive κ.

The distinctive behaviour of unstable prograde and retrograde light rings results in a shift in
the equatorial portions of the shadows from west to east with increasing Gaussian curvature. No-
tably, this effect occurs when adjusting the curvature of the target space while keeping a constant
the normalized charge q for each solution. On the contrary, the phenomenon intensifies with an
increase in the frequency ωs/µ, or equivalently, with a rise in the angular velocity of the horizon
as the scalar field is synchronized with the rotation of the black hole. Furthermore, as depicted in
Fig. 10, negative Gaussian curvature of the target space leads to forming a shadow with a larger
area than the case without curvature. Conversely, with positive Gaussian curvature, the shadow
area decreases. The reduction in shadow size appears as an outcome of the proportionally smaller
fraction of the horizon mass to the ADM mass. Nevertheless, despite the varied Gaussian curva-
ture, the shadows maintain a D-like shape, a distinctive feature resembling a rotating Kerr black
hole as observed from the equatorial plane.

6. Model VI, rH = 0.3, q ≃ 0.65: Single ergoregion models with quasi-circular shadows.

Finally, to study the structure of the system of light rings and ergoregions for an event horizon
rH = 0.3, we choose configurations VI κ

0.3, where κ ∈ {−5, 0, 5} (as indicated in Fig. 1). These con-



24

FIG. 11. Examples of shadows which illustrate the transition between shadows for different Gaussian
curvatures κ ∈ {−5, 0, 5} and black hole horizon rH = 0.3. The left panel corresponds to configuration
VI−5

0.3 with κ = −5, ωs/µ = 0.988000, Mµ = 0.319008 and q = 0.646883, the center panel corresponds to
configuration VI 0

0.3 with κ = 0, ωs/µ = 0.988000, Mµ = 0.320010 and q = 0.647791, while the right panel
corresponds to configuration VI 5

0.3 with κ = 5, ωs/µ = 0.988000, Mµ = 0.321013 and q = 0.648605. The
color setup and grid notation are explained in Fig. 3, while detailed physical quantities are listed in Table I
in Appendix A.

figurations are characterized by a normalized charge q ≃ 0.647. The corresponding characteristics
of the light rings are presented in the table below, and shadow images are exposed in Fig. 11.

Configuration Fig. Ergoregions RER LR RLR stability η gtt dφ/dt Chaos

−5.6 11 1 ER [0, 0.1968]
h− 0.1599 unstable + + +

No
h+ 0.4306 unstable − − −

0.6 11 1 ER [0, 0.1972]
h− 0.1598 unstable + + +

No
h+ 0.4310 unstable − − −

5.6 11 1 ER [0, 0.1976]
h− 0.1597 unstable + + +

No
h+ 0.4314 unstable − − −

Similar to solutions V with an event horizon of rH = 0.2, configurations VI also possess a
system of two unstable light rings and one ergoregion for each of the Gaussian curvatures of the
target space κ. The main distinguishing feature here is that the Gaussian curvature has a negligible
effect on the radii of the two light rings and the equatorial domain of the ergoregion. Specifically,
the ergoregions extend from the event horizon and reach distances, RER ∈ [0, 0.1968], RER ∈
[0, 0.1972], and RER ∈ [0, 0.1976], corresponding to negative, zero, and positive κ, respectively.
Additionally, within the ergoregions, a prograde rotating light ring exists. With an increase in the
curvature of the target space, the radii of those light rings decrease insignificantly, estimated as
RLR = 0.1599, RLR = 0.1598, and REL = 0.1597, for negative, zero, and positive κ, respectively.
Moreover, the outer light rings, situated beyond the ergoregions, rotate retrograde relative to the
black hole rotation and expand with increasing Gaussian curvature: RLR = 0.4306, RLR = 0.4310,
and RLR = 0.4314, for negative, zero, and positive κ, respectively. Concurrently, as exposed in
Fig. 11, despite the different Gaussian curvature, the shadows exhibit an O-like shape, and due to
the almost constant fraction of the horizon mass to the ADM mass, their area appears the same to
an observer from the equatorial plane.
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V. CONCLUSION

In this work we consider the shadow cast by rotating hairy black holes coupled to two non-
trivial time-periodic scalar fields. The scalar fields may be viewed as coordinates in a nonphysical
Riemannian space possessing a constant curvature. Thus, the black hole solutions can be divided
into three classes according to the sign of its Gaussian curvature. Each class encompasses a wide
range of solutions with different phenomenology depending on the amount of scalar hair, which
can be measured by a normalized charge q ∈ (1, 0), representing the ratio between the scalar
field Noether charge and the black hole spin. Solutions with high values of the normalized scalar
charge approaching q = 1 possess similar properties as the soliton-like solutions of the Einstein-
scalar field equations representing boson stars. On the other hand, for small q ≈ 0 the back-
reaction of the scalar fields on the spacetime geometry vanishes and the solutions reduce to scalar
clouds. Near this limit, the hairy black holes interact weakly with the scalar fields and resemble
in their properties the Kerr black hole.

In our analysis, we examine the influence of the Gaussian curvature and the normalized charge
q on the properties of the hairy black hole shadow. For that purpose, we consider configurations
with several representative values of q and study the corresponding solutions for positive, nega-
tive and zero curvature of the target space. The shadows of the selected solutions are constructed
numerically using a ray-tracing procedure. We observe the following systematical behavior. The
shadows for extremely high values of the normalized charge (q > 0.997 for the presented mod-
els) exhibit large regions of chaotically scattering geodesics for all considered Gaussian curva-
tures. This leads to the formation of multiple disconnected shadow images. Increasing the Gaus-
sian curvature, the chaotic behavior becomes milder producing more coherent shadow images.
The chaotic behavior further reduces if we consider lower normalized charges. The shadows for
charges in the range q ∼ 0.96 − 0.994 become more compact possessing fewer disconnected com-
ponents and a clearly defined dominant component. Positive Gaussian curvatures lead again to
more regular shadow images compared to negative ones, as well as a larger size of the central dark
region. Conversely, for negative Gaussian curvatures, the shadow size decreases substantially and
the chaotic region dominates. Finally, for values of the normalized charge around q = 0.85 the
chaotic behavior of the scattering geodesics becomes negligible for all the Gaussian curvatures.
For lower q the shadow of the hairy black holes is represented by a single oval component and
resembles qualitatively the Kerr black hole while its size is influenced relatively weakly by the
Gaussian curvature.

The presence of chaotic regions and the shadow shape significantly influence the optical ap-
pearance of accretion disks around hairy black holes. Exploring this problem is ongoing work,
but we can offer some qualitative insights. What matters most when calculating the actual image
produced by a given accretion disk around the black hole is the presence of a central compact
shadow. Having extensive chaotic regions, like those observed very close to the boson star limit
with q approaching 1, would likely not produce significant or any dark region of the image, which
practically contradicts present observations. Thus, models with very large q, or models with hefty
scalar hair, can be excluded by the Event Horizon Telescope observations. Large positive Gaus-
sian curvature can potentially relieve this problem because it increases the size of the central dark
shadow and decreases the chaotic regions close to the boson star limit. In the present paper, we
have considered only moderately high curvatures since the models calculated in [39] were taken
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as a background. It will be interesting to investigate whether this pattern remains with a further
increase in Gaussian curvature and whether one can extend the dark region of the shadow, as
supported by current observations, even close to the boson star limit (q = 1).
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Appendix A: Physical quantities of selected solutions

Below we present in detail the characteristics of the solutions used to produce the black hole
images. They are taken from [39] where sequences of constant horizon radii were constructed for
various Gaussian curvatures κ.

Label ωs/µ Mµ Jµ2 MBHµ JBHµ2 Mψµ Jψµ2 Jψ/J J/M2 JBH/M2
BH

I−5
0.01 0.7398 0.6902 0.4734 0.0056 0.0013 0.6778 0.4721 0.9972 0.9938 42.544

I 0
0.01 0.8353 0.6482 0.4068 0.0049 0.0011 0.6434 0.4057 0.9973 0.9680 46.444

I 5
0.01 0.8219 0.7425 0.5041 0.0049 0.0015 0.7469 0.5026 0.9971 0.9144 60.307

II−5
0.01 0.6074 0.8905 0.7813 0.0039 0.0001 0.8576 0.7812 0.9999 0.9853 6.7133

II 0
0.01 0.6792 0.8820 0.7259 0.0035 0.0001 0.8785 0.7258 0.9999 0.9331 5.8772

II 5
0.01 0.7316 0.8832 0.6890 0.0031 0.0002 0.8984 0.6888 0.9997 0.8833 11.727

III−5
0.05 0.6537 0.8865 0.7567 0.0256 0.0042 0.8244 0.7525 0.9944 0.9629 6.3547

III 0
0.05 0.7064 0.9082 0.8329 0.0252 0.0045 0.9415 0.8283 0.9945 0.8915 7.1310

III 5
0.05 0.7023 1.1003 0.9812 0.0254 0.0052 1.1078 0.9760 0.9947 0.8105 8.0147

IV−5
0.1 0.7138 0.8738 0.7122 0.0780 0.0248 0.7639 0.6875 0.9653 0.9327 4.0651

IV 0
0.1 0.7385 1.0004 0.8535 0.0870 0.0302 0.9134 0.8232 0.9645 0.8528 3.9982

IV 5
0.1 0.7487 1.1610 1.0394 0.0904 0.0322 1.1001 1.0071 0.9689 0.7711 3.9335

V−5
0.2 0.8835 0.8474 0.6478 0.2706 0.0976 0.5709 0.5499 0.8489 0.9022 1.3339

V 0
0.2 0.8955 0.8787 0.6790 0.2796 0.1012 0.5990 0.5776 0.8508 0.8793 1.2946

V 5
0.2 0.9078 0.8847 0.6814 0.2921 0.1065 0.5951 0.5746 0.8432 0.8707 1.2486

VI−5
0.3 0.9880 0.3190 0.1252 0.2373 0.0442 0.0817 0.0810 0.6469 1.2300 0.7848

VI 0
0.3 0.9880 0.3200 0.1260 0.2377 0.0444 0.0823 0.0816 0.6478 1.2304 0.7856

VI 5
0.3 0.9880 0.3210 0.1268 0.2380 0.0446 0.0830 0.0823 0.6486 1.2306 0.7865

VII−5
0.05 0.6485 0.9157 0.8048 0.0243 0.0030 0.8493 0.8017 0.9962 0.9598 5.0973
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TABLE I. Physical quantities of hairy black hole solutions as depicted in Fig. 1, corresponding to different
Gaussian curvatures of the target space, κ = {−5, 0, 5}. Each configuration is identified by X u

v , where the
symbol X represents the configuration number, superscript u represents the value of the Gaussian curvature
κ, and the subscript v denotes the value of the black hole horizon rH . In a single group of solutions the
horizon radii rH is constant and the normalized charge q =

Jψ

J (represented in the 9th column) is adjusted
to be nearly constant.
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