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Coupled unsteady actuator disc and linear theory of an

oscillating foil propulsor: outline of equations

This document outlines the full set of equations used to couple cycle-averaged actuator
disc theory to Garrick’s function, following the method presented in the paper ”Coupled
unsteady actuator disc and linear theory of an oscillating foil propulsor” [1] by the authors
of this document. The full outline and derivation of Garrick’s theory for foils in pitch and
heave, and with trailing edge flap actuation, can be found in Garrick’s paper [2]. Below we
use only the expression pertaining to an aerofoil in combined heave and pitch. Only the final
equations are presented; for the derivations, validation and control volumes used, the reader
is referred to the original paper.

List of variables

The input variables to be specified are as follows:

b Aerofoil half-chord, m

U∞ Farfield freestream velocity, m/s

ω Pitch and/or heave oscillation frequency, rad/s

h0 Heave amplitude, m

α0 Pitch amplitude, rad

a Distance to centre of pitch from the mid-chord, non-dimensionalised by b

ψ Phase angle between the heaving and pitching motion, rad

ρ Fluid density, kg/m3

A Maximum peak-to peak amplitude of motion, m

The model outputs are as follows:

Fx Cycle-averaged aerofoil thrust, N

CTg = 2Fx

ρU2
∞A Actuator disc (global) thrust coefficient

CT = Fx

ρU2
∞b

Foil thrust coefficient

W f Cycle-averaged foil input power, W

CPg =
2W f

ρU3
∞A Actuator disc (global) power coefficient

CP =
W f

ρU3
∞b

Foil power coefficient

ηg = U∞Fx

W f
=

CTg

CPg
= CT

CP
Global propulsive efficiency
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Additional key variables used in the control volume analysis are defined as follows:

α2 =
Ufoil

U∞
Flow acceleration parameter at the foil

α4 = Uexit

U∞
Flow acceleration parameter at the control volume exit plane

kg = ωb
U∞

Global reduced frequency

kf = ωb
α2U∞

Reduced frequency at the foil

ke = ωb
α4U∞

Reduced frequency at the control volume exit plane

Garrick theory for foils in combined pitch and heave

Aerofoil forces

Cycle-averaged thrust and power are given by Garrick as:

Fx = πρbω2
[
A1h

2
0 + A2α

2
0 + 2A4α0h0

]
(1)

W f = πρb2
ω3

kf

(
B1h

2
0 +B2α

2
0 + 2B4α0h0

)
(2)

The variables A1, A2, A4, B1, B2 and B4 are given as follows:

A1 = B1 − C1 (3)

A2 = B2 − C2 (4)

A4 = B4 − C4 (5)

B1 = F (6)

B2 = b2
{
1

2

(
1

2
− a

)
−
(
1

2
+ a

)[
F

(
1

2
− a

)
+
G

kf

]}
(7)

B4 =
b

2

[(
1

2
− 2aF +

G

kf

)
cos(ψ)−

(
F

kf
−G

)
sin(ψ)

]
(8)

The variables C1, C2 and C4 are:

C1 =
2

πkfD
(9)

C2 =
2b2

πkfD

[
1

k2f
+

(
1

2
− a

)2
]

(10)

C4 =
2b

πkfD

[
− 1

kf
sin(ψ) +

(
1

2
− a

)
cos(ψ)

]
(11)
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The above expressions are functions of variables F and G, respectively the real and
imaginary parts of the Theodorsen function [3]:

F + iG =
H

(2)
1 (kf )

H
(2)
1 (kf ) + iH

(2)
0 (kf )

. (12)

H(2) is the Hankel function of the second kind, defined as:

H(2)
v (kf ) = Jv(kf )− iYv(kf ) (13)

where Jv and Yv are the Bessel functions of the first and second kinds respectively, with v
denoting their order (v = 0 or 1 in this case), taking the foil reduced frequency kf as the
argument. Finally, the variable D is given by:

D = [J1(kf ) + Y0(kf )]
2 + [Y1(kf )− J0(kf )]

2 (14)

Wake circulation

For the control volume analysis below we require expressions for the wake circulation γ(x, t)
at time t and streamwise location x, at a location far downstream of the aerofoil on the
control volume exit face. It is given by Garrick, based on Theodorsen, as:

γ(x, t) = A0cos(ke
x

b
) +B0sin(ke

x

b
) (15)

A0 = 4 [ζ1sin(ωt)− ζ2cos(ωt)] (16)

B0 = 4 [ζ1cos(ωt) + ζ2sin(ωt)] (17)

Note that while the circulation is used in the derivation of the final cycle-averaged control
volume equations, in the final equations below only the A0 term is required, in the time-
averaged and squared form A2

0. This is given by:

A2
0 = 8

[
ζ21 + ζ22

]
(18)

The variables ζ1 and ζ2 are functions of the aerofoil kinematics:

ζ1 = (BK − AJ) (19)

ζ2 = (AK +BJ) (20)

J =
J1(kf ) + Y0(kf )

D
(21)

K =
Y1(kf )− J0(kf )

D
(22)

A = α2U∞α0cos(ψ)− b

(
1

2
− a

)
α0ωsin(ψ) (23)

B = α2U∞α0sin(ψ) + h0ω + b

(
1

2
− a

)
α0ωcos(ψ) (24)

Note that in all the above expressions the phase of the heave motion relative to time t = 0
is assumed to be ψheave = 0.
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Figure 1: Key variables evaluated for h0 = 0.2, α0 = 0.1878, ψ = 90◦, b = 0.5 and a = −0.5
over the range 0 ≤ kg ≤ 7, for α2 = α4 = 1 and U∞ = 1. a) Variables required to evaluate
thrust in Equation 1. b) Variables required to evaluate power in Equation 2. c) Kinematic
terms required to evaluate ηam in Equation 28. d) The Theodorsen function (Equation 12).

Local flow acceleration

In Garrick theory the local flow acceleration induced by the aerofoil thrust is not accounted
for, meaning that α2 = α4 = 1 and kf = ke = kg in all the above expressions in the original
paper. For the present work, note that expressions relating to wake circulation amplitude
above use kf , since the circulation strength is determined by flow conditions at the foil.
In expressions relating to wake vortex location, ke is used since the point of interest is the
control volume exit face far downstream, where the vortex spacing is determined by the local
velocity α4U∞.
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Cycle-averaged control volume analysis

Governing equations

The governing equations for the cycle-averaged unsteady actuator disc analysis are derived
in the paper as:

CTg = 2α2 (α4 − 1) (25)

CTg = ηl
[
α2
4ηam − 1

]
. (26)

Equation 25 is equivalent to the steady-flow actuator disc theory result, while Equation 26
differs through the terms ηl and ηam, respectively defined as:

ηl =
α2U∞Fx

W f

(27)

ηam = 1 +
1

2α2kg

A2
0b

U2
∞A

. (28)

Both expressions are analytically derived in the published paper. The steady actuator disc
equations for a propulsor are recovered when setting ηl = ηam = 1. The actuator disc area A
is calculated from the foil kinematics as the swept area of the foil during one motion cycle.

Solving the actuator disc equations

Equations 1, 2, 25, 26, 27 and 28 represent a system of 6 equations with 6 unknowns: α2,
α4, Fx, W f , ηl and ηam. Due to the complex interdependency of the variables, the system
of equations is solved iteratively, taking as initial guess the result obtained analytically by
the original Garrick function by setting α2 = α4 = 1. In the published paper the MATLAB
function fsolve is used for the iterative solution, until convergence of all variables.

Note that the steady-flow actuator disc system of equations, recovered by setting ηl =
ηam = 1, is robust and converges within a few iteration steps. However, the unsteady
actuator disc system derived above does not converge easily, and is especially difficult to
converge near Fx = 0. Simple iterative methods were not able to converge the cycle-averaged
equations, but the fsolve function in MATLAB was successful. Improved convergence was
achieved by first solving the steady actuator disc equations, using the cycle-averaged thrust
from Equation 1, and then using this as the starting guess for the iterative solution of the
unsteady actuator disc equations.
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