
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]





UNIVERSITY OF SOUTHAMPTON

Faculty of Social Sciences
School of Mathematical sciences

Essays on Risk Management and Portfolio
Allocation Using Tail Measures

by
Faridah Alruwaili

ORCID: 0009-0001-3881-7724

A thesis for the degree of
Doctor of Philosophy

July 2024





University of Southampton

Abstract

Faculty of Social Sciences
School of Mathematical sciences

Doctor of Philosophy

Essays on Risk Management and Portfolio Allocation Using Tail Measures

by
Faridah Alruwaili

ORCID: 0009-0001-3881-7724

This thesis delves into effective methods for managing risks and decision-making
processes in finance. The research comprises three main chapters, each addressing
critical challenges in time series analysis, portfolio optimization, and risk assessment.

Chapter 2 introduces the Robust Model Averaging Marginal Regressions (RMAMAR)
procedure, a novel approach that combines one-dimensional marginal regression
functions to approximate conditional regression functions robustly. By employing
local linear estimation and robust M-estimators, RMAMAR addresses the curse of
dimensionality and enhances parameter estimation accuracy, particularly in
high-dimensional datasets.

Chapter 3 extends dynamic portfolio choice methodologies under Expected Utility
(EU) frameworks to incorporate investors’ quantile preferences, focusing on specific
quantiles of the returns distribution. Through empirical applications and simulations,
this chapter demonstrates the effectiveness of constructing optimal portfolios under
quantile preferences with multiple conditioning variables, showcasing superior
performance during market crises.

Chapter 4 proposes a new approach to backtesting risk measures by introducing a
univariate score function that combines the marginal/conditional score functions for
forecasting Value-at-Risk (VaR) and Systemic Risk (SR). This method ensures an
equitable and comprehensive assessment of both risk measures, overcoming the
limitations of existing methods that prioritize one measure over the other based on the
equality of VaR across models. Furthermore, Chapter 4 conducts a comparative
analysis of different identification functions for backtesting, including the
one-dimensional function proposed by Banulescu-Radu et al. (2021) and the
two-dimensional function introduced byFissler and Hoga (2023), to evaluate the
potential risk associated with employing identification functions that are not strictly
defined for backtesting purposes.
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Overall, this thesis contributes to advancing risk management and decision-making
methodologies by providing robust and practical strategies.



v

Contents

List of Figures vii

List of Tables xi

Declaration of Authorship xv

Acknowledgements xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline and Contributions of the Thesis . . . . . . . . . . . . . . . . . . . 4

2 Semiparametric Robust Averaging 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 RMAMAR Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 MAMAR Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1.1 Overview of Robust M-estimators . . . . . . . . . . . . . 17
2.2.1.2 Practical Limitations of Local Linear Estimation Proce-

dures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Clarification on the Dimensionality of the Auxiliary Regression . 23

2.2.2.1 Considerations for Omitted Variables and Endogeneity
in RMAMAR . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Analyzing Estimator Behavior: Establishing Uniform Convergence . . . 27
Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Proof of Theorem . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Example 1. Linear Autoregressive Model . . . . . . . . . . . . . . 36
2.4.2 Example 2. Nonlinear Additive Autoregressive Model . . . . . . 38
2.4.3 Example 3. Nonlinear Autoregressive Model with Interactions . 42

2.5 Empirical application: Analysis of North London Daily Rainfall Data . . 48
2.5.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Large Dimensional Optimal Portfolios Under Quantile Preferences 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Methodology for Estimating the Dynamic Quantile Portfolio Choice . . 62

3.2.1 Expected Utility Framework . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 Quantile Utility Framework . . . . . . . . . . . . . . . . . . . . . . 65



vi CONTENTS

Remark 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Remark 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.2.1 Model Averaging in a Quantile Setting . . . . . . . . . . 66
3.3 Out-of-Sample Performance Evaluation . . . . . . . . . . . . . . . . . . . 72

3.3.1 Performance Evaluation Metrics . . . . . . . . . . . . . . . . . . . 74
3.4 Empirical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 Example 1. Small Portfolio Allocation Problem . . . . . . . . . . . 77
3.4.1.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.1.2 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . 78
3.4.1.3 Discussion of the Out-of-Sample Performance analysis . 78

3.4.2 Example 2. Large Portfolio Allocation Problem . . . . . . . . . . . 82
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Simplifying the Complexity: Backtesting of Systemic Risk Measures 101
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Systemic Risk Measures CoVaR and CoES . . . . . . . . . . . . . . . . . . 105
4.3 Backtesting Systemic Risk Measures . . . . . . . . . . . . . . . . . . . . . 107

4.3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.2 Review of Multi-objective Score Function Backtesting . . . . . . 109

4.3.2.1 Definition of Fissler and Hoga (2023) Multi-Objective
Scores and Identification Functions . . . . . . . . . . . . 109

4.3.2.2 Diebold–Mariano tests for multi-objective scores . . . . 111
4.3.3 Alternative Univariate Backtesting Systemic Risk Forecasts . . . 112

4.3.3.1 Comparing Competing Risk Models through Univari-
ate Scoring Function . . . . . . . . . . . . . . . . . . . . . 114

4.3.3.2 Extension of the Proposed Univariate Score function . . 115
4.3.3.3 Comparison of Identification Functions for Backtesting

Systemic Risk Measures . . . . . . . . . . . . . . . . . . . 116
4.3.3.4 Exploring the Elicitability of Our Univariate Score Func-

tion Through Numerical Simulation . . . . . . . . . . . 121
4.4 Numerical Evidence: Monte Carlo Simulation and Empirical Application 125

4.4.1 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . 126
4.4.1.1 Data Generating Process . . . . . . . . . . . . . . . . . . 126
4.4.1.2 Risk Forecasts . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.1.3 Test description . . . . . . . . . . . . . . . . . . . . . . . 130

4.4.2 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.5.1 Sensitivity to Risk Levels . . . . . . . . . . . . . . . . . . . . . . . 143
4.5.2 Limitations and Shortcomings . . . . . . . . . . . . . . . . . . . . 143

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 Conclusions and Future Extension 149

References 153



vii

List of Figures

2.1 Plot of various loss functions: Least Absolute Deviation (LAD), Ordinary
Least Squares (OLS), and Huber Loss with different values of k. . . . . . 19

2.2 Ex1. Boxplot illustrating 100 repetitions of the Mean Squared Predic-
tion Error (MSPE) for linear Autoregressive (AR) models with lag 10,
nonlinear Model Averaging MArginal Regression (MAMAR) of lag 10,
and nonlinear Robust MAMAR (RMAMAR) of lag 10. The errors εt
are generated from a Student’s t-distribution with 3 degrees of freedom
εt ∼ (t3). The sample sizes n are 140, 200, and 250 for each respective
model. The median MSPE values for AR, MAMAR, and RMAMAR are
provided in the legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Ex1. Boxplot illustrating 100 repetitions of the Mean Squared Prediction
Error (MSPE) for linear Autoregressive (AR) models with lag 10, non-
linear Model Averaging MArginal Regression (MAMAR) of lag 10 and
nonlinear Robust MAMAR (RMAMAR) of lag 10. The errors εt are gen-
erated from Normal distribution εt ∼ i.i.d.N(0, σ2). The sample sizes n
are 140, 200, and 250 for each respective model. The median MSPE val-
ues for AR, MAMAR, and RMAMAR are provided in the legend. . . . . 38

2.4 Ex2. Boxplot illustrating 100 repetitions of the Mean Squared Predic-
tion Error (MSPE) for nonlinear Model Averaging MArginal Regression
(MAMAR) of lag 10, nonlinear Robust MAMAR (RMAMAR) of lag 10
and nonlinear additive AR model of order 10, abbreviated as (GAM).
The errors are εt ∼ (t3). The sample sizes n are 140, 200, and 250 with
two different values of δ : 0.1 and 0.5. The median MSPE values for MA-
MAR, RMAMAR and GAM are provided in the legend. . . . . . . . . . . 40

2.5 Ex2. Boxplot illustrating 100 repetitions of the Mean Squared Predic-
tion Error (MSPE) for nonlinear Model Averaging MArginal Regression
(MAMAR) of lag 10, nonlinear Robust MAMAR (RMAMAR) of lag 10
and nonlinear additive AR model of order 10, abbreviated as (GAM).
The errors εt are generated from Normal distribution εt ∼ i.i.d.N(0, σ2).
The sample sizes n are 140, 200, and 250 with two different values of
δ : 0.1 and 0.5. The median MSPE values for MAMAR, RMAMAR and
GAM are provided in the legend. . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Ex3. Boxplot illustrating 100 repetitions of the Mean Squared Prediction
Error (MSPE) for nonlinear Model Averaging MArginal Regression (MA-
MAR) of lag 10, nonlinear Robust MAMAR (RMAMAR) of lag 10 and
nonlinear additive AR model of order 10, abbreviated as (GAM). The er-
rors εt ∼ (t3). The sample sizes n are 140, 200, and 250 with γ = 0.1 and
different values of δ. The median MSPE values for MAMAR, RMAMAR
and GAM are provided in the legend. . . . . . . . . . . . . . . . . . . . . 44



viii LIST OF FIGURES

2.7 Ex3. Boxplot illustrating 100 repetitions of the Mean Squared Prediction
Error (MSPE) for nonlinear Model Averaging MArginal Regression (MA-
MAR) of lag 10, nonlinear Robust MAMAR (RMAMAR) of lag 10 and
nonlinear additive AR model of order 10, abbreviated as (GAM). The er-
rors εt ∼ (t3). The sample sizes n are 140, 200, and 250 with γ = 0.5 and
different values of δ. The median MSPE values for MAMAR, RMAMAR
and GAM are provided in the legend. . . . . . . . . . . . . . . . . . . . . 45

2.8 Ex3. Boxplot illustrating 100 repetitions of the Mean Squared Predic-
tion Error (MSPE) for nonlinear Model Averaging MArginal Regression
(MAMAR) of lag 10, nonlinear Robust MAMAR (RMAMAR) of lag 10
and nonlinear additive AR model of order 10, abbreviated as (GAM).
The errors εt are generated from Normal distribution εt ∼ i.i.d.N(0, σ2).
The sample sizes n are 140, 200, and 250 with γ = 0.1 and different val-
ues of δ. The median MSPE values for MAMAR, RMAMAR and GAM
are provided in the legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.9 Ex3. Boxplot illustrating 100 repetitions of the Mean Squared Predic-
tion Error (MSPE) for nonlinear Model Averaging MArginal Regression
(MAMAR) of lag 10, nonlinear Robust MAMAR (RMAMAR) of lag 10
and nonlinear additive AR model of order 10, abbreviated as (GAM).
The errors εt are generated from Normal distribution εt ∼ i.i.d.N(0, σ2).
The sample sizes n are 140, 200, and 250 with γ = 0.5 and different val-
ues of δ. The median MSPE values for MAMAR, RMAMAR and GAM
are provided in the legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.10 Daily rainfall data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.11 ACF plot for daily rainfall data . . . . . . . . . . . . . . . . . . . . . . . . 49
2.12 PACF plot for daily rainfall data . . . . . . . . . . . . . . . . . . . . . . . 50
2.13 Kernel density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.14 Mean Absolute Error (MAE) out-of-sample performance for the linear

AR(10), nonlinear MAMAR of lag 10, nonlinear additive AR of order 10
(GAM) and nonlinear Robust MAMAR of lag 10. . . . . . . . . . . . . . . 55

3.1 Rolling window process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Timeline of Financial Crises and Global Events (2007 -2022) . . . . . . . . 77
3.3 Ex.1:Daily return of the six assets: (S&P 500 = GSPC, NASDAQ = IXIC,

Dow Jones = DJI, SPDR Gold Shares = GLD, U.S. Aggregate Bond =
AGG, Treasury Inflation-Protected Securities = TIP) . . . . . . . . . . . . 96

3.4 Ex.1:Nonparametric kernel estimates of the unconditional densities of
daily log-returns on the six assets . . . . . . . . . . . . . . . . . . . . . . . 96

3.5 Ex1.The Dynamics of Portfolio Weights in Cond.Q0.05 strategy over 2007
to 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Ex1. Comparison of Sharpe Ratios for Conditional Quantile Portfolio
Strategies with Different Risk Levels over 2007-2022 . . . . . . . . . . . . 97

3.7 Ex1. Comparison of Sortion Ratios for Conditional Quantile Portfolio
Strategies with Different Risk Levels over 2007-2022 . . . . . . . . . . . . 98

3.8 Ex2. Comparison of Sharpe Ratios across Portfolios2007-2022 . . . . . . 98
3.9 Ex2. Comparison of Sortino Ratios across Portfolios 2007-2022 . . . . . . 99
3.10 Ex2. Comparison of Sharpe Ratios for Conditional Quantile Portfolio

Strategies with Different Risk Levels over 2007-2022 . . . . . . . . . . . . 99



LIST OF FIGURES ix

3.11 Ex2. Comparison of Sortion Ratios for Conditional Quantile Portfolio
Strategies with Different Risk Levels over 2007-2022 . . . . . . . . . . . . 100

4.1 Flowchart illustrating the components of the data generating process . . 127
4.2 Flowchart depicting the steps involved in the risk forecasting process . . 131
4.3 The Two Models Employed for Risk Measure Forecasting . . . . . . . . . 137
4.4 Top: GARCH model with Gaussian copula forecasting CoVaR(CoES) as

the blue(red) line along with DAX log losses on days when the S&P
500 exceeds its VaR forecast. Bottom: similar to the top but with GJR-
GARCH with t-copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.5 The bar plot displays the p-value results of the weighted score function
S(VaR+CoVaR. We examine various weights ranging from 0 to 1 with a step
size of 0.1 on our score function to study the impact of these weights.
Each bar represents a specific weight configuration denoted as (VaR, Co-
VaR). The x-axis labels indicate the weight configurations in the format
(VaR, CoVaR), while the y-axis represents the corresponding p-values
obtained from the statistical analysis. This plot provides insights into
the significance of risk forecasts generated under various weight combi-
nations, aiding in the evaluation of their predictive performance. Addi-
tionally, the statistical significance of the score differences at a 5% level
is assessed using the T OS.uni

n -based Wald test for S(VaR+CoVaR). Low p-
values indicate that the GJR–GARCH model with t-copula performs well
compared to the GARCH model with Gaussian copula. . . . . . . . . . . 140

4.6 The bar plot displays the p-value results of the weighted score func-
tion S(VaR+CoVaR+CoES). We examine various weights ranging from 0 to 1
with a step size of 0.1 on our score function to study the impact of these
weights. Each bar represents a specific weight configuration denoted
as (VaR, CoVaR, CoES). The x-axis labels indicate the weight configura-
tions in the format (VaR, CoVaR, CoES), while the y-axis represents the
corresponding p-values obtained from the statistical analysis. This plot
provides insights into the significance of risk forecasts generated under
various weight combinations, aiding in the evaluation of their predictive
performance. Additionally, the statistical significance of the score differ-
ences at a 5% level is assessed using the T OS.uni

n -based Wald test for
S(VaR+CoVaR+CoES). Low p-values indicate that the GJR–GARCH model
with t-copula performs well compared to the GARCH model with Gaus-
sian copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.7 The plot illustrates the Mean Squared Error (MSE) values of the CoVaR
estimation component in the score function S(VaR+CoVaR) across a range
of α/β values (0.01 to 0.99) for different correlation coefficients ρ (0.4 and
-0.4). Each subplot represents a different ρ value: the first subplot corre-
sponds to ρ = 0.4, while the second subplot corresponds to ρ = −0.4.
The MSE is computed over 10000 simulations, with each simulation gen-
erating data and computing MSE over 100 iterations. This involves run-
ning the CoVaR estimation algorithm multiple times to assess its perfor-
mance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



x LIST OF FIGURES

4.8 The plot illustrates the Mean Squared Error (MSE) values of the CoVaR
estimation component in the score function S(VaR+CoVaR) across a range
of α/β values (0.01 to 0.99) for different correlation coefficients ρ (0.9, 0.7,
0.5, 0.3 and 0.1). Each subplot represents a different ρ value. The MSE
is computed over 10000 simulations, with each simulation generating
data and computing MSE over 100 iterations. This involves running the
CoVaR estimation algorithm multiple times to assess its performance. . 146

4.9 The plot illustrates the Mean Squared Error (MSE) values of the CoVaR
estimation component in the score function S(VaR+CoVaR) across a range
of α/β values (0.01 to 0.99) for different correlation coefficients ρ (-0.9,
-0.7, -0.5, -0.3 and -0.1). Each subplot represents a different ρ value. The
MSE is computed over 10000 simulations, with each simulation generat-
ing data and computing MSE over 100 iterations. This involves running
the CoVaR estimation algorithm multiple times to assess its performance. 147

4.10 The plot illustrates the Mean Squared Error (MSE) values of the CoES
estimation component in the score function S(VaR+CoVaR+CoES) across a
range of α/β values (0.01 to 0.99) for different correlation coefficients ρ
(0.9, 0.7, 0.5, 0.3 and 0.1). Each subplot represents a different ρ value. The
MSE is computed over 10000 simulations, with each simulation generat-
ing data and computing MSE over 100 iterations. This involves running
the CoES estimation algorithm multiple times to assess its performance. 147

4.11 The plot illustrates the Mean Squared Error (MSE) values of the CoES
estimation component in the score function S(VaR+CoVaR+CoES) across a
range of α/β values (0.01 to 0.99) for different correlation coefficients ρ
(-0.9, -0.7, -0.5, -0.3 and -0.1). Each subplot represents a different ρ value.
The MSE is computed over 10000 simulations, with each simulation gen-
erating data and computing MSE over 100 iterations. This involves run-
ning the CoES estimation algorithm multiple times to assess its perfor-
mance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.12 The slice plots illustrate the impact of different combinations of weights
on the statistical significance of the Wald Test results for the score func-
tion S(VaR+CoVaR+CoES). Each subplot represents a fixed value of one
weight component, while the other two weight components vary. (a)
Slice plot with weight on VaR fixed, (b) Slice plot with weight on CoVaR
fixed, and (c) Slice plot with weight on CoES fixed. Each marker’s posi-
tion represents a combination of weight values. Marker colour indicates
the Wald Test p-value associated with each combination, with darker
colours representing lower p-values. . . . . . . . . . . . . . . . . . . . . 148



xi

List of Tables

2.1 Comparison of Standard Kernel Functions . . . . . . . . . . . . . . . . . . 16
2.2 Comparison of Robust Loss Functions: Different ρ Functions and Corre-

sponding Derivatives ψ for Huber and Tukey Losses, where ε i denotes
the residuals from a regression model, ε i = (xi − xT

i β) where xi repre-
sents the explanatory variables and β represents the regression coefficients. 19

2.3 The variance σ2 and the coefficients ad in the model (2.30). . . . . . . . . 36
2.4 AIC Values for AR Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5 Estimated Coefficients , Standard Errors and p-values for AR(10) Model 51
2.6 Estimated coefficients and their standard errors in RMAMAR with lags

from 1 to 10 for the estimation sub-sample of the series . . . . . . . . . . 55
2.7 Comparison of Mean Absolute Error (MAE) for the AR(10), MAMAR,

GAM and RMAMAR models, considering both in-sample estimation
and out-of-sample performance. . . . . . . . . . . . . . . . . . . . . . . . 55

2.8 AIC Values for AR Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.9 Comparison of Mean Absolute Error (MAE) for MAMAR and RMAMAR

models, evaluating both in-sample estimation and out-of-sample per-
formance. The optimal bandwidth, determined through simple cross-
validation, is h=0.9314397 using the h.select function within R package sm. 57

2.10 Comparison of Mean Absolute Error (MAE) for MAMAR and RMAMAR
models, evaluating both in-sample estimation and out-of-sample perfor-
mance. The optimal bandwidth, determined through the rule of thumb,
is h=0.331656 using the bw.nrd function from the stats R package. . . . . 58

2.11 Comparison of Mean Absolute Error (MAE) for the MAMAR and RMA-
MAR models, evaluating both in-sample estimation and out-of-sample
performance. The optimal bandwidth, determined through biased cross-
validation, is h= 1.0516 using bw.bcv function from stats package in R. . 58

2.12 Comparison of Mean Absolute Error (MAE) for the MAMAR and RMA-
MAR models, evaluating both in-sample estimation and out-of-sample
performance. The optimal bandwidth, determined through unbiased
cross-validation, is h= 0.1099 using bw.ucv function from stats package
in R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2 Ex.1: Mean and Standard Deviation for the unconditional Portfolio out-

of-sample Sharpe Ratios covering the period 2007-2022. . . . . . . . . . . 86
3.3 Mean and Standard Deviation of the Portfolio out-of-sample Sharpe Ra-

tios based on quantile preference, covering the period 2007-2022 . . . . . 86



xii LIST OF TABLES

3.4 Ex.1:Bootstrap out of sample mean Sharpe ratio analysis for Cond.Qτ vs
Uncond.Qτ strategy with the same τ value. The null hypothesis: the
mean Sharpe ratios of portfolio Cond.Qτ is less than or equal to that of
Uncond.Qτ. If the p-value is smaller than 5%, there is strong evidence to
reject the null hypothesis and conclude that Cond.Qτ has a significantly
higher mean Sharpe ratio than Uncond.Qτ. . . . . . . . . . . . . . . . . . 87

3.5 Ex. 1: Mean and Standard Deviation of the Portfolio out-of-sample Sharpe
Ratios, based on a quantile preference, over different periods. . . . . . . 87

3.6 Ex.1:Mean and Standard Deviation for the unconditional Portfolio out-
of-sample Sortino Ratios covers the period 2007-2022. . . . . . . . . . . . 88

3.7 Ex.1:Mean and Standard Deviation of the Portfolio out-of-sample Sor-
tion Ratios, based on a quantile preference, covers the period 2007-2022. 88

3.8 Ex.1:Bootstrap out of sample mean Sortino ratio analysis for Cond.Qτ

vs Uncond.Qτ strategy with the same τ value. The null hypothesis: the
mean Sortino ratios of portfolio Cond.Qτ is less than or equal to that of
Uncond.Qτ. If the p-value is smaller than 5%, there is strong evidence to
reject the null hypothesis and conclude that Cond.Qτ has a significantly
higher mean Sortino ratio than Uncond.Qτ. . . . . . . . . . . . . . . . . . 88

3.9 Ex.1:Mean and Standard Deviation of the Portfolio out-of-sample Sortino
Ratios, based on a quantile preference, over different periods. . . . . . . 89

3.10 Ex.1:Mean of the Portfolio out-of-sample Variance statistics, based on a
quantile preference, covers the period 2007-2022. . . . . . . . . . . . . . . 89

3.11 Ex.2: Mean and Standard Deviation for the unconditional Portfolio out-
of-sample Sharpe Ratios covers the period 2007-2022. . . . . . . . . . . . 90

3.12 Ex.2:Mean and Standard Deviation of the Portfolio out-of-sample Sharpe
Ratios, based on a quantile preference, covers the period 2007-2022. . . . 90

3.13 Ex.2:Bootstrap out of sample mean Sharpe ratio analysis for Cond.Qτ vs
Uncond.Qτ strategy with the same τ value. The null hypothesis: the
mean Sharpe ratios of portfolio Cond.Qτ is less than or equal to that of
Uncond.Qτ. If the p-value is smaller than 5%, there is strong evidence to
reject the null hypothesis and conclude that Cond.Qτ has a significantly
higher mean Sharpe ratio than Uncond.Qτ. . . . . . . . . . . . . . . . . . 90

3.14 Ex.2:Mean and Standard Deviation of the Portfolio out-of-sample Sharpe
Ratios, based on a quantile preference, over different periods . . . . . . . 91

3.15 Ex.2:Mean and Standard Deviation for the unconditional Portfolio out-
of-sample Sortino Ratios covers the period 2007-2022 . . . . . . . . . . . 91

3.16 Ex.2:Mean and Standard Deviation of the Portfolio out-of-sample Sor-
tion Ratios, based on a quantile preference, covers the period 2007-2022 92

3.17 Ex.1:Bootstrap out of sample mean Sortino ratio analysis for Cond.Qτ

vs Uncond.Qτ strategy with the same τ value. The null hypothesis: the
mean Sortino ratios of portfolio Cond.Qτ is less than or equal to that of
Uncond.Qτ. If the p-value is smaller than 5%, there is strong evidence to
reject the null hypothesis and conclude that Cond.Qτ has a significantly
higher mean Sortino ratio than Uncond.Qτ. . . . . . . . . . . . . . . . . . 92

3.18 Ex.2:Mean and Standard Deviation of the Portfolio out-of-sample Sortino
Ratios, based on a quantile preference, over different time periods . . . . 93

3.19 Ex.2:Mean of the Portfolio out-of-sample Variance statistics, based on a
quantile preference, covers the period 2007-2022 . . . . . . . . . . . . . . 93



LIST OF TABLES xiii

3.20 Ex.1: Mean and (Standard Deviation) of the Portfolio out-of-sample Sharpe
ratio, covering the period 2007-2022 for different γ values of τ = 0.01, 0.05, 0.10
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.21 Ex.1: Mean and (Standard Deviation) of the Portfolio out-of-sample Sortino
ratio, covering the period 2007-2022 for different γ values of τ = 0.01, 0.05, 0.10
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.22 Ex.2: Mean and (Standard Deviation) of the Portfolio out-of-sample Sharpe
ratio, covering the period 2007-2022 for different γ values of τ = 0.01, 0.05, 0.10
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.23 Ex.2: Mean and (Standard Deviation) of the Portfolio out-of-sample Sortino
ratio, covering the period 2007-2022 for different γ values of τ = 0.01, 0.05, 0.10
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Rejection frequencies (%) of H0 based on V (V̂aR, ̂CoVaR), VBR, and V(V̂aR+ ̂CoVaR)

for different sample sizes under Normal distribution. Results are dis-
played for correctly specified and misspecified forecasts. . . . . . . . . . 119

4.2 Rejection frequencies (%) of H0 based on V (V̂aR, ̂CoVaR), VBR, and V(V̂aR+ ̂CoVaR)

for different sample sizes under tν where ν = 5. Results are displayed
for correctly specified and misspecified forecasts. . . . . . . . . . . . . . . 120

4.3 Summary of Simulation Scenarios of S(VaR+CoVaR) score function. . . . . 122
4.4 Comparison of theoretical values, mean optimal values and MSE which

represents the mean of squared differences between the fixed theoretical
value and the estimated optimal value across 100 iterations. This simu-
lation study evaluates the performance of our proposed score function,
with risk levels α = β = 0.95, under various structures. The findings
presented in this section contribute to discussing the elicitable property
of the proposed loss functions. The v∗ and c∗ represent the mean optimal
values of VaR and CoVaR, respectively. . . . . . . . . . . . . . . . . . . . 123

4.5 Summary of results for simulation study investigates the performance
of our proposed risk measures S(VaR+SR) in Scenario 6, correlation co-
efficient ρ = 0.4, with various risk levels α = β. The analysis is based
on CoVaR estimation, where the CoVaR theoretical value, mean optimal
value, and Mean Squared Error (MSE) are examined. The mean optimal
value represents the average CoVaR value obtained from the optimisa-
tion process across 100 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 Summary of results for simulation study investigates the performance
of our proposed risk measures S(VaR+SR) in Scenario 7, correlation coef-
ficient ρ = -0.4, with various risk levels α = β. The analysis is based
on CoVaR estimation, where the CoVaR theoretical value, mean optimal
value, and Mean Squared Error (MSE) are examined. The mean optimal
value represents the average CoVaR value obtained from the optimisa-
tion process across 100 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.7 Parameter Values for Data Generating Process . . . . . . . . . . . . . . . 127



xiv LIST OF TABLES

4.8 Rejection Frequencies (%) of H0 for r1,t = (rVaR
1,t , rSR

1,t ) and r2,t = (rVaR
2,t , rSR

2,t ),
assuming VaR forecasts of both models are equally misspecified: rVaR

1,t =

r̂VaR
1,t and rVaR

2,t = r̂VaR
2,t while we consider various systemic risk scenarios.

The last two columns of the table present the results of Fissler and Hoga
score function S(VaR,SR). For S(VaR+SR), we obtain T OS.uni

n to test : H0 :
E
[
d̄uni

n
]
≤ 0. While for S(VaR,SR), we obtain One and a Half-Sided test,

T OS
n , to examine H⪯lex

0 : E
[
d̄1n
]
= 0 and E

[
d̄2n
]
≤ 0. The (*) indicates

accurate forecasts in the second model. . . . . . . . . . . . . . . . . . . . 133
4.9 Rejection Frequencies (%) of H0 for r1,t = (rVaR

1,t , rSR
1,t ) and r2,t = (rVaR

2,t , rSR
2,t ),

assuming the VaR forecasts of the second model is better than the first
model, rVaR

1,t = r̂VaR
1,t and rVaR

2,t = r̂VaR∗
2,t . The last two columns of the ta-

ble present the results of Fissler and Hoga score function S(VaR,SR). For
S(VaR+SR), we obtain T OS.uni

n to test : H0 : E
[
d̄uni

n
]
≤ 0. While for S(VaR,SR),

we obtain One and a Half-Sided test, T OS
n , to examine H⪯lex

0 : E
[
d̄1n
]
=

0 and E
[
d̄2n
]
≤ 0. The (*) indicates accurate forecasts in the second

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.10 The table presents the impact of different combinations of weights on

the statistical significance of the Wald Test results for the score function
S(VaR+CoVaR). Each row represents a combination of weights for VaRVaR
(γ) and CoVaR δ and the Weights range from 0 to 1 with a step size of
0.1. Additionally, the statistical significance of the score differences at a
5% level is assessed using the T OS.uni

n -based Wald test for S(VaR+CoVaR),
with low p-values indicating superior performance of the GJR–GARCH
model with t-copula compared to the GARCH model with Gaussian cop-
ula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.11 The table presents the impact of different weight combinations on the
statistical significance of the Wald Test results for the score function S(VaR+CoVaR+CoES).
Each subtable pair represents fixed values of the weights assigned to VaR
(γ) while varying the weights for CoVaR (δ) and CoES (λ). The weights
range from 0 to 1 with a step size of 0.1. Additionally, the statistical
significance of the score differences at a 5% level is assessed using the
T OS.uni

n -based Wald test for S(VaR+CoVaR)+CoES), with low p-values indi-
cating superior performance of the GJR–GARCH model with t-copula
compared to the GARCH model with Gaussian copula. . . . . . . . . . . 142



xv

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been
generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been
clearly stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as:

Signed:.......................................................................... Date:..................





xvii

Acknowledgements

First and foremost, I thank Allah, the Most Merciful and the Most Compassionate,
who makes all things possible for His blessings given to me during this journey and in
completing my thesis.

I would like to express special thanks to my supervisor, Prof. Jose Olmo, for his
constant support, valuable feedback, and discussion. Prof. Olmo exemplified for me
the scientific spirit of a true scholar. It was a privilege to be supervised by Prof. Olmo
with the incredible human side that helped to overcome challenges throughout this
journey. Many thanks to Prof. Zudi Lu and Prof. Huifu Xu for their guidance and
support.

I extend sincere love and thanks to my Mother for her daily prayers, support, and
unconditional love, who taught me to see the light at the end of the tunnel. With her
endless love, I am blessed.

I would also like to express my special thanks, deepest gratitude, and love to my
husband, Zaid, and my children, Sara, Reema, and Azzam, for their encouragement,
patience, unconditional love, and belief in me when I doubt myself. My gratitude also
extends to my siblings and friends for their prayers, love and support.

Lastly, I dedicate this thesis to the spirit of my father, whom I dearly wish were alive
to share in my success.





1

Chapter 1

Introduction

1.1 Motivation

Modern statistical analysis and financial modelling fundamentally require robust
approaches that can manage high-dimensional data, capture dependencies among
variables, and effectively evaluate forecasting models. This thesis addresses these
crucial requirements by developing and applying advanced statistical techniques in
diverse areas of risk management and financial modelling. Specifically, the thesis
focuses on three main topics: (1) the development of Robust Model Averaging
MArginal Regressions (RMAMAR) for nonparametric time series analysis with
high-dimensional data, (2) the construction of dynamic optimal portfolios using
Quantile Preferences (QP) with multiple conditioning variables, and (3) the testing
and comparison of forecasting models considering both Value at Risk (VaR) and
systemic risk (SR) components. Each topic contributes unique insights and
methodologies to advance the field of statistical analysis and financial modelling, with
the goal of providing robust and effective solutions to complex challenges in risk
management and financial decision-making. Detailed motivations, with references to
relevant literature, are available in the introductory sections of each chapter, detailing
the rationale behind the research conducted within that specific chapter. The
motivation of each chapter are as follows:

Chapter 2: Robust Model Averaging MArginal Regressions (RMAMAR) for
Nonparametric Time Series Analysis with high-dimensional data:
In the Second chapter of this thesis, we investigate nonparametric time series analysis,
where dealing with the curse of dimensionality is a major challenge for achieving
accurate estimation and forecasting. In the presence of high-dimensional predictors,
traditional nonparametric methods often provide poor estimation due to the
exponential increase in required sample sizes Fan and Yao (2003). Recently, Li et al.
(2015) proposed a semiparametric model, namely Model Averaging MArginal
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Regressions (MAMAR), to address this challenge of nonlinear time series analysis,
particularly in cases where the conditioning information involves a large number of
lags. MAMAR provides a flexible prediction method by averaging a collection of
marginal nonparametric models, utilizing suitable weights derived through least
squares minimisation. However, real-world datasets often exhibit outliers, which are
observations that significantly deviate from the majority of the data. Additionally,
these datasets may contain heavy-tailed distributions or deviate from assumed
distributional forms. The presence of outliers, heavy tails, or distributional deviations
can significantly affect the accuracy of model estimates if the estimator is sensitive to
such phenomena.
Although least squares estimators are the most popular classical regression techniques
for estimating a model’s parameters, these traditional estimators are extremely
sensitive and thus easily affected by outliers Tukey (1960), Huber (1964) and Hampel
(1968). This sensitivity can lead to poor performance, particularly in scenarios like
financial data where deviations are common occurrences. This chapter introduces the
Robust Model Averaging Marginal Regressions (RMAMAR) procedure, motivated by
the necessity for robust estimation techniques. RMAMAR aims to forecast the future
using conditional time series regression, incorporating a high-dimensional vector of
lagged predictors. By robustly combining one-dimensional marginal regression
functions, RMAMAR minimises the impact of extreme events and enhances the
accuracy and robustness of parameter estimation within high-dimensional settings.
The approach employs local linear estimation and robust estimation techniques, such
as M-estimators, to achieve these objectives.

Chapter 3: Large-Dimensional Dynamic Optimal Portfolio Construction with Quantile
Preferences:
In Chapter 3, we address the demand for robust methodologies by focusing on
dynamic portfolio selection, a crucial aspect of risk management and investment
strategy, particularly in scenarios with multiple conditioning variables. In practice,
choosing a dynamic portfolio often involves considering numerous conditioning or
forecasting variables that capture changes in the investment opportunity set over
time. Various methods have been proposed to characterise the dependency of the
portfolio decision on a set of conditioning variables such as Brandt (1999).
Nevertheless, dealing with data that have a high number of dimensions frequently
presents difficulties in optimizing portfolios Fan and Yao (2003), and the need to
capture dependencies among variables is crucial. Chen et al. (2016) suggested a novel
data-driven approach under the Expected Utility (EU) framework to estimate the
optimal portfolio considering multiple conditioning variables. Chen et al. (2016) ’s
work is partly motivated by the Model Averaging MArginal Regression (MAMAR)
method introduced by Li et al. (2015). Motivated by Chen et al. (2016), Chapter 3
departs from the EU framework and investigates investors’ quantile preferences, by
focusing on specific quantiles of the returns distribution rather than just the mean.
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The chapter aims to develop methodologies that not only overcome the challenges
posed by high-dimensional data in portfolio choice under quantile preferences but
also offer practical and robust frameworks for optimizing portfolio allocations. By
extending model averaging techniques to dynamic portfolio selection and utilizing QP
along with multiple conditioning variables, our proposed methodology offers a robust
approach to constructing dynamic optimal portfolios.

Chapter 4: Testing and Comparing Forecasting Models for VaR and Systemic Risk:
Given the significance of systemic risk measures, developing accurate statistical
assessment tools for evaluating different models’ predictive performance becomes
crucial. Introducing such tools, known as backtesting in finance, is the core objective
of Chapter 4. Due to the existence of multiple alternative risk forecasting models, the
backtesting tries to make forecast comparisons and rank models, and this is similar to
the model selection procedure in statistics, known as comparative backtesting. In the
light of the comparative backtesting, Fissler and Hoga (2023) present a valuable
framework for comparing risk forecasts by introducing the concept of multi-objective
score function equipped with the lexicographic order. Based on that, Fissler and Hoga
(2023) proposed Diebold–Mariano One and a Half-Sided test with bivariate scores to
compare risk measures forecasting.
However Fissler and Hoga (2023) methodology has a significant limitation. The
lexicographic order approach employed in their tests imposes a constraint on the
evaluation and comparison of risk measures. Specifically, the assessment is restricted
to either VaR or SR conditioning on the equality of VaR across the models under
consideration. This constraint implies that the evaluation and comparison of the risk
measures cannot be conducted on an equal footing.
Motivated by the work of Fissler and Hoga (2023), in Chapter 4, we propose an
alternative univariate score function to test and compare models’ forecasting by
considering the forecasting of both VaR and SR components without implementing
the lexicographic order. This proposed score function is designed to evaluate both risk
measures, VaR and SR, on an equitable basis unlike the method of Fissler and Hoga
(2023). Our univariate score function is defined as the sum of the
marginal/conditional score functions for forecasting VaR and SR. By defining our
score function as the sum of these individual score functions, we ensure that both risk
measures are assessed simultaneously and on an equal footing, without the need to
prioritize one over the other based on the equality of VaR across models. This
alternative score function avoids the restrictive assumption of equal expected values
for the first risk measure, which is a prerequisite for the lexicographic order approach.
Following the introduction of the motivations behind each chapter in the thesis, we
outline the chapters in detail, along with the contributions, in the subsequent section.
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1.2 Outline and Contributions of the Thesis

This section offers an overview of the thesis structure and highlight the contributions
to the literature. The thesis consists of five chapters.
In Chapter 2, we propose the Robsut Model Averaging MArginal Regressions
(RMAMAR) procedure, which robustly approximates the conditional regression
function by combining one-dimensional marginal regression functions in an affine
manner. Initially, we employ the local linear estimation technique to estimate the
conditional marginal regressions. Then, we combine the fitted conditional marginal
regressions using weight parameters determined through M-estimators to enhance the
robustness of the parameter estimation. Hence, our contributions in Chapter 2 are as
follows; First, in this proposing approach, we enhance the robustness of the MAMAR
approach by employing robust M-estimation techniques, which are less sensitive to
outliers compared to least squares methods used in Li et al. (2015). Moreover, our
RMAMAR addresses the curse of dimensionality, a common challenge in statistical
modelling, particularly in high-dimensional datasets. By incorporating
one-dimensional marginal nonparametric regressions, similar to MAMAR approach
proposed by Li et al. (2015), we overcome the challenges associated with
high-dimensional conditional regression functions. Furthermore, we establish the
theoretical foundation for our robust estimator by demonstrating its uniform
convergence under some mild conditions. In addition, we investigate the performance
of our RMAMAR approach through Monte Carlo simulations and empirical
application; in the simulation section, we conduct three simulation examples across
various scenarios and distributional assumptions. Our findings show that the
proposed RMAMAR approach performs accurately in the presence of
high-dimensional predictors, and it consistently outperformed other competitive
models, such as MAMAR approach and nonlinear additive models, demonstrating its
robustness in various settings. In the empirical application, our approach performs
well under the presence of heavy tails and the occurrence of abnormal observations.
Moreover, the results highlight RMAMAR ability to uncover nonlinear lag effects
compared to the linear Autoregressive model. In addition, RMAMAR provides the
lowest Mean Absolute Error (MAE) in both in-sample and out-of-sample analysis,
underscoring its superior predictive performance compared to other models
conducted in the study.
The Chapter is structured as follows: Section 2.2 describes our proposed Robust
Model Averaging MArginal Regression (RMAMAR). In Section 2.3, we establish the
theoretical foundation for our robust estimator by demonstrating its uniform
convergence under some mild conditions and deriving the estimator consistency.
Section 2.4 introduces Monte Carlo simulation to examine our proposed RMAMAR
method in understanding time series lag effects in applications, where three
simulation examples following various scenarios are introduced. As an empirical
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application of the proposed robust method, we analyse rainfall in North London data
in Section 2.5. Section 2.6 gives the conclusion of the Chapter.
In Chapter 3, we extend the semiparametric dynamic portfolio choice under EU
framework proposed by Chen et al. (2016) by incorporating investors’ quantile
preferences, focusing on specific quantiles of the returns distribution rather than just
the mean return. To the best of our knowledge, no prior research has been conducted
to avoid the curse of dimensionality issue on the portfolio choice problem under the
QP setting when the number of conditioning variables is large. Thus, our
contributions are threefold; first, we construct dynamic optimal portfolios using
quantile preferences with multiple conditioning variables. This is accomplished in
two stages. In the first stage, we derive the optimal portfolio weights based on single
conditioning variable Xj in the information set, where j = 1, ..., p,. This involves, for
each j-th conditioning variable Xj,t−1 = xj and a given τ ∈ (0, 1), we obtain the
optimal portfolio weights using quantile regressions. In the second stage, the optimal
portfolios constructed from the individual conditioning variables are combined by a
model averaging approach to obtain an optimal portfolio based on multiple
conditioning variables. This approach is similar in spirit to the MAMAR method
proposed in Chen et al. (2016) but adapted to a quantile setting. The second
contribution is to show that the proposed quantile method based on conditioning
variables effectively captures investor’s downside preferences during crises such as
the 2007 financial crisis and the COVID-19 pandemic. This is achieved by means of an
empirical application to a diversified portfolio comprising six major financial assets
such as bonds, gold, and stock indexes. The optimal portfolios obtained from the
conditional quantile regression approach outperform the unconditional counterpart
portfolio strategies under different metrics in out-of-sample settings. The third
contribution is to show the ability of this investment strategy to construct optimal
portfolios under quantile preferences in large dimensions.
The Chapter is structured as follows. The methodology for estimating the dynamic
portfolio choice under the QP setting is described in Section 2. This estimation can be
accomplished in two steps. In the first step, we select the marginal optimal portfolio
weights wj(xj) under QP by maximising the conditional quantile portfolio problem.
We combine the marginal optimal portfolio weights in the second step through the
model averaging approach. A description of the out-of-sample performance
methodology, along with a review of the approaches considered in the evaluation, is
provided in Section 3. Section 4 implements our approach to construct optimal
portfolios under QP with multiple covariates in two empirical exercises. The first
exercise focuses on a small portfolio allocation problem that comprises six major
financial assets such as bonds, gold, and stock indexes and six conditioning variables.
In contrast, the second portfolio allocation problem considers all the assets traded in
the FTSE100 over the last 16 years. The Chapter is concluded in Section 5.
In Chapter 4, the lexicographic order approach employed in the One and a Half-Sided
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tests proposed by Fissler and Hoga (2023) imposes a constraint on the evaluation and
comparison of risk measures. Specifically, the assessment is restricted to either VaR or
SR , conditioning on the equality of VaR across the models under consideration. To
address this limitation, our contributions in this Chapter are the following: First, we
propose an alternative univariate score function to test and compare models’
forecasting by considering the forecasting of both VaR and SR components without
implementing the lexicographic order in our score function, which goes beyond the
backtesting implemented by Fissler and Hoga (2023). Our proposed approach
introduces a univariate score function that combines the marginal/conditional score
functions for forecasting VaR and SR measure. By defining our score function as the
sum of these individual score functions, we ensure that both risk measures are
assessed concurrently and on an equal footing, without the need to prioritize one over
the other based on the equality of VaR across models. Consequently, our proposed
univariate score function addresses the limitation of the existing methodology by
providing a more equitable framework for risk forecast comparison.
Moreover, to assess the risk of employing non strict identification function in
backtesting, we conduct a comparative analysis of our identification function along
with the one-dimensional identification function introduced by Banulescu-Radu et al.
(2021) in addition to the two-dimensional identification function introduced by Fissler
and Hoga (2023). Specifically, we evaluate the power of the three identification
functions, in identifying misspecified systemic risk forecasts under various sample
sizes and distributional scenarios. A misspecified risk measure is defined as a measure
that fails to capture the true tail risk dynamics over time accurately. Through our
analysis, we demonstrate the superiority of our proposed identification function
compared to Banulescu-Radu et al. (2021) identification function. In Particular, the
backtest proposed by Banulescu-Radu et al. (2021) exhibits a complete loss of power in
distinguishing between correct and misspecified forecasts. In contrast, our
identification function, aligning with Fissler and Hoga (2023) identification function,
successfully identifies misspecified forecasts almost with certainty with almost 100%
across different distributional assumptions and sample sizes. These results underscore
the power and consistency of our proposed identification function in detecting
misspecified systemic risk forecasts, outperforming Banulescu-Radu et al. (2021)
method. Furthermore, through a comprehensive simulation analysis, we show that
the risk measures VaR and SR are elicitable under our joint score function and our
identification function is strict and has the ability to detect the misspecified forecasting
models with almost certainty.
Chapter 4 is constructed as follows: Section (4.2) introduces the systemic risk
measures CoVaR and CoES. Section 4.3 discusses backtesting systemic risk measures,
reviewing the multi-objective score function by Fissler and Hoga (2023) and proposing
an alternative univariate score function, which includes weighted extensions.
Furthermore, we present in (4.3.3.3) a comparative analysis of our identification



1.2. Outline and Contributions of the Thesis 7

function with the one-dimensional function by Banulescu-Radu et al. (2021) and the
two-dimensional function by Fissler and Hoga (2023). In Section (4.3.3.4), we
investigate the elicitability property of our proposed score function, S(VaR+SR), where
SR represents systemic risk, through comprehensive simulations. Monte Carlo
simulations in Subsection (4.4.1) examine the finite-sample performance of our test
T OS.uni

n when testing the null hypothesis H0 : E[d̄uni
n ] ≤ 0 under different scenarios,

where duni
n represents the score differences. We apply our test to the forecasts of (VaR,

CoVaR) and (VaR, CoVaR, CoES) obtained from a bivariate GARCH(1,1) model with a
t-copula for innovations, and the time-varying correlation ρt follows the Generalized
Autoregressive Score (GAS) model. One-step-ahead forecasts are the focus throughout
our analysis. The simulation results indicate the following: Firstly, the power of our
tests increases significantly as the sample size (n) increases. Secondly, in general, it is
easier to detect differences in predictive ability of two models when considering
scenarios where both VaR and SR forecasts are accurate for one model while being
misspecified for the other. Thirdly, even when introducing a small difference in the
predictive accuracy of the VaR forecasts, our tests exhibit the power to identify this
differentiation, even in cases where the systemic risk forecasts demonstrate
comparable forecasting performance. This finding highlights the sensitivity of our
tests in detecting marginal differences in model forecasting. Furthermore, across the
various scenarios examined in this study, our tests generally demonstrate superior
performance compared to those proposed by Fissler and Hoga (2023) in evaluations
incorporating both (VaR + CoVaR) and (VaR + CoVaR + CoES). Finally, comparisons
involving CoVaR and CoES exhibit higher power compared to those depending on
CoVaR only, potentially attributed to the richer informational content offered by the
CoES component, increasing the overall power of the analysis.
In (4.4.2), an empirical application focuses on the daily log-returns of the DAX 30
index, using the daily log-returns of the S&P 500 index as a reference variable. The
study compares systemic risk forecasts obtained from two copula models: a
benchmark Gaussian copula model and a t-copula model. In both models, the
correlation parameter, capturing the dependence structure between the two indices, is
modeled using the dynamic GAS framework proposed byCreal et al. (2013). Our
findings indicate that the t-copula exhibits superior predictive performance,
supported by p-values of 0.005 for (VaR,CoVaR) and 0.0204 for (VaR,CoVaR,CoES),
aligning with its popularity in empirical studies. The Chapter concluded in Section
(4.6).
In Chapter 5 we conclude the thesis.
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Chapter 2

Semiparametric Robust Averaging

2.1 Introduction

In recent years, for forecasting the future, econometricians and statisticians have been
challenged by the large number of variables as well as the ambiguity surrounding the
functional forms in regression and time series analysis. When conducting regression
analysis, selecting from a large number of potential explanatory (covariates) variables
presents a significant challenge. The challenge becomes even worse in time series
analysis because we consider all possible lags of all possible predictor variables as
candidate variables during the estimation and forecasting steps. This complexity
underscores the need to carefully investigate the process of constructing our
forecasting models, particularly in determining ”what” variables we should include
and ”how” they are related to the dependent variable. Various methods have been
introduced in the literature to address the challenge of determining ”what” variables
to include in time series models to identify the optimal fitting without overfitting,
especially when faced with numerous lagged observations. Model selection
procedures were introduced first in the literature to address this challenge. In
regression and time series analysis, the model selection technique is defined as the
process of identifying the optimal model that includes only necessary variables based
on specific criteria from a set of candidates. Model selection (variable selection)
procedures recently gained popularity with the rise of econometric and statistical
models known as high-dimensional models that include a large number of time series
lagged observations. For instance, in fields such as labour economics and financial
econometrics, researchers can have situations where regression models may include
hundreds or even thousands of regressors Belloni and Chernozhukov (2011). In this
case, including a large number of lagged observations will lead to increased
complexities in modelling and inference as selecting the most relevant variables
becomes crucial. A considerable amount of literature introduces model selection
procedures and criteria proposed according to some optimality considerations, such
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as the Akaike Information Criterion method (AIC) Akaike (1973), the Mallows’s Cp
method (Mallows (1973)), the Bayesian Information Criterion method (BIC) Schwarz
(1978), the generalized AIC method Nishii (1984), the cross-validation(CV) method
Stone (1974), the generalized CV (GCV) method (Craven and Wahba (1978)) and
others, see. Shao (1997) and Ding et al. (2018) for references and a thorough overview
of various model selection techniques.
Although model selection techniques have been widely employed in various fields, in
many cases, when conducting statistical analysis, it is uncommon to find one single
solution, and this, due to factors such as the limited amount of data available, leads to
different combinations of predictors that could be all reasonable explanations for our
model. In addition, the existence of various estimation and forecasting approaches in
the literature might give slightly different results and conclusions; for more details
about that, the reader is referred to Hastie et al. (2009) and Kuhn et al. (2013).
Furthermore, Selection from several candidate models relies on various criteria, such
as AIC or BIC, and this variability in the selection procedure may yield a different
selected model, introducing uncertainty into the selection process. For more
discussion on model uncertainty see Chatfield (1995), Draper (1995) and Yuan and
Yang (2005). Pötscher (1991), demonstrated that using AIC for model selection can
result in biased inference. Subsequent studies by Kabaila (1995) investigated the
negative impacts of model selection on confidence intervals and prediction intervals.
References Leeb and Pötscher (2003) and Leeb and Pötscher (2006) discuss the
limitations of post-model-selection estimators, which are obtained by first selecting a
model (e.g., using AIC ) and then estimating the parameters in the selected model
using the same data set. They show that it is impossible to estimate the unconditional
distribution of these estimators with reasonable accuracy, even asymptotically. In
particular, they prove that no estimator for this distribution can be uniformly
consistent, not even locally.. Traditional model selection methods can become
time-consuming when dealing with a large candidate models and lagged predictor
variables, as they involve exploring every possible combination to identify the
best-fitting model.
Considering the limitations of model selection discussed above, model averaging was
introduced in the literature as an alternative to overcome the difficulties in choosing
between a large number of covariates (lagged predictor variables) and the problem of
dimensionality in both regression and time series settings. Model averaging combines
information from multiple candidate models and weighs them based on some
criterion to obtain more accurate and robust estimates of parameters or predictions. By
including multiple models and weighting their contributions based on their predictive
performance or other criteria, model averaging offers a flexible approach to help
reduce the uncertainty and variability that appear in model selection with possibly
reducing modelling biases Peng and Yang (2022). Rather than depending mainly on a
single model, model averaging considers the insights derived from multiple models,
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giving each model a certain level of weight based on its performance. The idea of
combining all candidate models instead of depending on one final model to obtain
improvements in forecasting was introduced first by Bates and Granger (1969). There
exists an extensive body of literature on Bayesian model averaging, including Hoeting
et al. (1999), Raftery et al. (1997) and Hjort and Claeskens (2003) for an overview of
Bayesian model averaging. However, more recent attention has focused on
constructing optimal model averaging weights for frequentist models. For instance,
the Mallows model averaging introduced by Hansen (2007) selects the model weights
by minimising Mallows’ criterion over a set of discrete weight values. Wan et al.
(2010) provide more robust theoretical results for using Mallow’s criterion, which
concentrated on two of Hansen (2007) ’s assumptions. To allow for heteroskedasticity
models, Hansen and Racine (2012) introduced a jackknife model averaging approach
where weights are selected to minimize a leave-one-out cross-validation criterion
function. They established that the proposed estimator achieves the minimum
asymptotic squared error. Zhang et al. (2013) extend the jackknife model averaging
framework to models with dependent data. Zhang et al. (2016) investigate optimal
model averaging estimators for generalised linear models. For recent surveys on
variable selection and model averaging, one can refer to the surveys by Claeskens and
Hjort (2008) and Fan and Lv (2008, 2010) and references therein.
Almost all mentioned studies are averaging under the parametric dynamic structure.
Although parametric models have gained substantial attention due to their simplicity,
nonparametric procedures based on data have been widely utilised to address the
challenge of ”how” to determine the unknown functional forms of econometric
models. Compared to parametric models, nonparametric procedures, such as kernel
smoothing methods, local polynomial regression and smoothing splines, offer less
structural restriction and more flexibility in capturing the complex relationship
between dependent and explanatory variables. See, for instance, (Li and Racine
(2023),Ullah and Pagan (1999)) for discussions on kernel smoothing procedures, and
(Fan (2018), Fan et al. (1995)) for local polynomial regression, Eubank (1999)) for
coverage spline methods.
Let (Yt, XT

t ) be stationary time series data, where Yt represents the response of the
time series data and Xt = (Xt1, · · · , Xtd)

T represents a d-dimensional random vector
containing the available information up to time t-1. The components of Xt may consist
of lagged values of the response Yt itself, as well as various time series predictor
variables. Consequently, the dimensionality d of Xt can become substantially large, as
observed in Li et al. (2015) and in practical scenarios. In many applications, we are
interested in estimating/forecasting the regression function
E(Yt|Xt = x), x = (x1, · · · , xd)

T. The nonparametric methods can effectively estimate
regression functions E(Yt|Xt = x), x = (x1, · · · , xd)

T when the dimension ”d” is small.
However, it is widely recognized that the performance of nonparametric estimation
diminishes when applied directly in high-dimensional settings, especially as the
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dimension ”d” increases, particularly d > 3. This deterioration in performance can be
attributed to the exponential increase in the required sample size to attain estimation
accuracy comparable to that of a one-dimensional function. This reduction in the
performance as the dimensionality escalates is known as the ”curse of dimensionality”
see (Stone (1980, 1982)), Ibragimov and Hasminskii (1981) and Silverman (2018).
Therefore, direct utilization of nonparametric methods may not be recommended in
practice as it could lead to the potential curse of dimensionality, leading to poor
estimation and forecasting. As a result, several nonlinear and nonparametric
approaches have been introduced in the literature to avoid the curse of
dimensionality, such as varying coefficient models, additive models and partially
linear models, see Fan and Yao (2003), Teräsvirta et al. (2010), Gao (2007) and Li and
Racine (2023) for comprehensive reviews. As we mentioned earlier, in the context of
time series analysis, the problem becomes more pronounced where the conditioning
information E(Yt|Yt1, · · · , Ytd) may include an infinite number of lags, i.e., d = ∞ Li
et al. (2015). To address this challenge of nonlinear time series analysis, especially
when dealing with a large number of lagged conditioning variables, several
semiparametric methods have been proposed, such as Linton and Mammen (2005,
2008), Linton and Sancetta (2009) and Chen and Ghysels (2011). However, these
proposed approaches are computationally intensive (refer to aforementioned
references). The reader is referred to Li et al. (2015) for further discussions and to
explore the limitations of these proposed models.
Recently, Li et al. (2015) addressed the limitations of the mentioned earlier methods
and proposed a semiparametric model, namely Model Averaging MArginal
Regressions (MAMAR), for forecasting the regression function
E(Yt|Xt = x), x = (x1, · · · , xd)

T using conditional time series regression by utilizing a
high-dimensional vector of lagged predictors. MAMAR provides a flexible prediction
approach by averaging a set of marginal nonparametric models with appropriate
weights assigned by minimising the least squares criterion. In the MAMAR method,
the individual marginal regression functions are estimated by a nonparametric kernel
estimation technique. Motivated by Li et al. (2015), Chen et al. (2016) extended
MAMAR to dynamic portfolio choice problem. Huang and Li (2018) and Chen et al.
(2018) extended the MAMAR method to panel data by providing the asymptotic
results of the proposed procedure and to ultra-high dimensional time series data,
respectively. Li et al. (2018) extended MAMAR by constructing a varying coefficient
regression model and Peng and Lu (2021) explored the idea of model averaging
marginal logistic regressions on a binary time series classification.
Traditional statistical approaches often rely on the assumption that observations
follow a normal distribution. However, this assumption is frequently violated in
real-world datasets, which exhibit deviations from normality, due to several reasons
such as the presence of heavy-tailed distributions and the occurrence of abnormal
observations, commonly referred to as outliers. Heavy-tailed distributions,
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characterized by a higher probability of extreme values compared to the normal
distribution, are a common occurrence in various fields such as finance, insurance,
and risk management. Additionally, real-world datasets often contain abnormal
observations, or outliers, observation deviate significantly from the rest of the data.
These outliers can appear due to various factors, such as measurement errors, data
entry mistakes, or genuine but infrequent events. Ignoring or improperly handling
these events can lead to biased estimates and the accuracy of the model estimates can
be significantly affected as highlighted by Tukey (1960). For more discussion on the
impact of normality assumption violation, the reader is referred to Atkinson (1985),
Belsley et al. (2005) and Gujarati et al. (2003), among others.
Least squares estimators are the most popular classical regression techniques for
estimating the parameters of a model. However, least square estimators are extremely
sensitive and thus easily affected by outliers and heavy-tailed distributions Tukey
(1960), Huber (1964) and Hampel (1968). This sensitivity often leads to poor
performance, particularly in scenarios where deviations are common, such as in
financial data. Consequently, it underscores the necessity for robust estimation
techniques like M-estimators (generalizations of a Maximum Likelihood estimator),
which aim to minimise the impact of these extreme events. For comprehensive
reviews of M-estimators, see De Menezes et al. (2021), Peracchi (1990) and van der
Vaart et al. (1996).
Although the MAMAR technique performs well in out-of-sample prediction, it is
expected to be highly influenced by outliers or/and heavy-tailed distributions, which
will reduce its efficiency when dealing with commonly used non-normal errors. To
address the limitation of the MAMAR approach and its sensitivity to outlying
observations and extreme cases, De Gooijer and Zerom (2019) introduced a
computational approach for obtaining quantile predictions based on penalised high
dimensional quantile averaging. Tu et al. (2021) proposed a semiparametric model
averaging prediction under independent and identically distributed (i.i.d) data. Zhan
et al. (2023) developed a model averaging approach to estimate the conditional
quantiles utilising a collection of semiparametric varying coefficient models by
adopting a uniform structure across all models, and each sub-model contains only a
single varying coefficient.
Therefore, motivated by Li et al. (2015), De Gooijer and Zerom (2019), Tu et al. (2021)
and Zhan et al. (2023), we propose a procedure called Robsut Model Averaging
MArginal Regressions (RMAMAR) that aims to approximate the conditional time
series regression by robustly combining one-dimensional marginal regression
functions in an affine manner. Initially, we employ the local linear estimation
technique to estimate the conditional marginal regressions. Then, we combine the
fitted conditional marginal regressions using weight parameters determined through
M-estimators to enhance the robustness of the parameter estimation.
Thus, our contributions in this Chapter are as follows: we enhance the robustness of
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the MAMAR approach by employing robust M-estimation techniques, which are less
sensitive to outliers compared to least squares methods used in Li et al. (2015).
Moreover, our RMAMAR addresses the ’curse of dimensionality’, a common
challenge in statistical modelling, particularly in high-dimensional datasets. By
incorporating one-dimensional marginal nonparametric regressions, similar to the
MAMAR approach proposed by Li et al. (2015), we overcome issues associated with
high-dimensional conditional regression functions. Furthermore, we establish the
theoretical foundation for our robust estimator by demonstrating its uniform
convergence under some mild conditions and deriving the estimator consistency. In
addition, through extensive Monte Carlo simulations and real data analysis across
various scenarios and distributional assumptions, our findings show that the
proposed RMAMAR approach performs accurately in the presence of
high-dimensional predictors, and it consistently outperformed alternative methods
such as the MAMAR approach and nonlinear additive models. In the empirical
application, our approach performs well under the presence of heavy tails and the
occurrence of abnormal observations. Moreover, the results highlight RMAMAR
ability to uncover nonlinear lag effects compared to the linear Autoregressive model.
In addition, RMAMAR provides the lowest Mean Absolute Error (MAE) in both
in-sample and out-of-sample analysis, underscoring its superior predictive
performance compared to other models conducted in the study.

The Chapter is structured as follows: Section 2.2 describes our proposed Robust
Model Averaging MArginal Regression (RMAMAR). In Section 2.3, we establish the
theoretical foundation for our robust estimator by demonstrating its uniform
convergence under some mild conditions and deriving the estimator consistency.
Section 2.4 introduces Monte Carlo simulation to examine our proposed RMAMAR
method in understanding time series lag effects in applications, where three
simulation examples following various scenarios are introduced. As an empirical
application of the proposed robust method, we analyse rainfall in North London data
in Section 2.5. Section 2.6 gives the conclusion of the Chapter.

2.2 RMAMAR Approach

The model averaging is useful for prediction by fitting multiple candidate models and
assigning higher weights to the most optimal candidate models. This strategy
enhances prediction accuracy and decreases the risk of model misspecification (Yang
(2001),Hansen (2007) and Hjort and Claeskens (2003)). Let (Yt, XT

t ), 1 ≤ t ≤ n be
stationary time series data, where Yt represents the response of the time series data
and Xt = (Xt1, · · · , Xtd)

T represents a d-dimensional random vector containing the
available information up to time t-1. The components of Xt may consist of various
predictor variables, including lagged values of the response variable Yt itself.
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Consequently, the dimensionality d of Xt can become substantially large, as observed
in Li et al. (2015) and in practical scenarios.
To avoid the curse of dimensionality, mainly when the dimension of the covariates
exceeds ( d > 3), Li et al. (2015) introduced a semiparametric model for forecasting the
multivariate regression function E(Yt|Xt = x), wherex = (x1, · · · , xd)

T, by employing
conditional time series regression and incorporating a high dimensional vector of
lagged predictors. Li et al. (2015) proposed a flexible time series prediction approach
called MAMAR, wherein they approximate a multivariate regression function by
averaging a collection of nonparametric models, each representing a one-dimensional
marginal regression function. The weights for this approximation are estimated by
minimising the least squares. This method estimates the individual marginal
regression functions through a nonparametric kernel estimation technique. In the
following subsection, we first describe the MAMAR approach, including the
estimation procedures and employing model averaging by combining these estimates.
Then, we introduce our proposed RMAMAR.

2.2.1 MAMAR Approach

In the MAMAR approach, we approximate the conditional mean function
m(x) = E(Y|X = x) by a linear combination of one-dimensional regression functions.
Such that we approximate

m(x) = E(Y|X = x) by

mω(x) =
d

∑
j=1

ωjmj(xj)
(2.1)

Here, mj(xj) = E(Y|Xj = xj) represents the marginal conditional regression functions
for each individual predictor Xj, each of these marginal regression functions can be
viewed as a nonlinear candidate model, ωj represents the weights assigned to each
regression function mj(xj) and d is the dimensionality of the predictor space.
Therefore, our objective is to obtain ωop = (ωop,1, · · · , ωop,d)

T that minimizes

E[Y −
d

∑
j=1

ωjE(Y|Xj)]
2, (2.2)

According to equation (2.1), in order to obtain the estimator of m(x), we should
estimate the marginal conditional regression functions and obtain the weights. In the
MAMAR approach, this process begins with estimating the marginal conditional
regressions mj(xj) by utilising the Nadaraya-Watson kernel method, which is
proposed independently by Nadaraya (1964) and Watson (1964). This method
provides a flexible way to estimate the conditional mean by weighting each
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observation based on its distance from the point at which the mean is being computed.

m̂j(xj) =
∑n

t=1 YtK(
Xtj−xj

hj
)

∑n
t=1 K(Xtj−xj

hj
)

, (2.3)

Where K represents a kernel function, which is a non-negative real-valued smooth
integrable function satisfying the normalisation property:

∫
K(u)du = 1, and

symmetry K(−u) = K(u) for all u ∈ R. Table 2.1 provides examples of common
symmetric kernel functions, such as the Gaussian kernel, Uniform kernel and the
Epanechnikov kernel. The parameter hj > 0 is the smoothing bandwidth, which needs
to be appropriately selected to control the width of the kernel function. The reader is
referred to Ruppert et al. (1995) and Heidenreich et al. (2013) for a comprehensive
review of optimal bandwidth selection with further references.

Kernel K(x)
∫

x2K(x) dx
∫

K(x)2 dx

Uniform 1
2 I(|x| ≤ 1) 1

3
1
2

Epanechnikov 3
4 (1 − x2)I(|x| ≤ 1) 1

5
3
5

Gaussian 1√
2π

exp
(
− x2

2

)
1 1

2
√

π

TABLE 2.1: Comparison of Standard Kernel Functions

Next, after estimating the marginal regression functions m̂j(xj), j = 1, · · · , d at the
sample points, our objective is to combine them by assigning weights ωop,j to each
conditional mean component. These weights represent the contribution of each m̂j(xj)

to the overall estimation of the conditional mean function. The weight vector is
estimated by minimising the least squares sample objective function given by:

min
ω1,...,ωd

n

∑
t=1

(
Yt −

d

∑
j=1

ωjm̂j(xtj)

)2

, (2.4)

where Yt is the observed response and m̂j(xtj) represents the estimated
one-dimensional regression functions. Here, ωj is the weight associated with the j-th
predictor variable.
Once the weight vector ω̂op = (ω̂op,1, · · · ω̂op,d)

T is estimated, where each weight
component ω̂op,j represents the weight assigned to each conditional mean function, we
compute the conditional regression function m̂(x) by combining the estimated
marginal conditional regression functions m̂j(xj) with the corresponding weights :

m̂(x) := m̂ω̂(x) =
d

∑
j=1

ω̂op,jm̂j(xj) (2.5)
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where x = (x1, ..., xd)
T.

Least squares estimators are the most popular classical regression techniques for
estimating the parameters of a model. However, least square estimators are extremely
sensitive and thus easily affected by outliers, and heavy-tailed distributions see Tukey
(1960), Huber (1964) and Hampel (1968). For instance, Tukey (1960) showed that while
least square estimators perform well when applying to data sampled from a normal
distribution, they tend to perform poorly when the distribution is changed slightly,
such as by introducing contamination. This sensitivity often leads to poor
performance, particularly in scenarios where deviations are common, such as in
financial data. Consequently, it underscores the need for robust estimation techniques
like M-estimators (generalisations of a Maximum Likelihood estimator), which aim to
minimise the influence of these extreme events. For comprehensive reviews of
M-estimators, see Huber (2004), De Menezes et al. (2021), Peracchi (1990) and van der
Vaart et al. (1996).
While the MAMAR technique employs least squares and performs well in
out-of-sample prediction, its sensitivity to outliers or heavy-tailed distributions may
reduce its efficiency when handling commonly used non-normal errors. To address
this limitation of the MAMAR approach, we propose RMAMAR, which aims to
approximate a multivariate regression function more robustly while combining
one-dimensional marginal regression functions in an affine manner. We utilise robust
M-estimation techniques, such as the Huber function proposed by Huber (1964), to
improve parameter estimation’s robustness in such situations. By minimising
objective functions designed to handle outliers and deviations more effectively,
RMAMAR provides more robust parameter estimates than MAMAR. This robustness
ensures that the resulting model accurately captures the underlying relationships in
the data, making RMAMAR particularly valuable in scenarios where the data exhibits
characteristics such as asymmetry or heavy tails. In summary, adopting RMAMAR as
a statistical modelling technique is suitable for various applications across diverse
fields where data quality and robustness are critical issues. Before introducing the
RMAMAR approach, we present some literature reviews about robust M-estimators.

2.2.1.1 Overview of Robust M-estimators

As mentioned before, least square estimators were conducted widely in the literature;
however, Tukey (1960) illustrated that those estimators are extremely sensitive to
outliers and heavy-tailed distributions. A single outlier can have a significant impact
on the estimates. To overcome the drawbacks of nonrobust estimators, the field of
robust statistics emerged in the 1960s with seminal work of Tukey (1960), the article by
Huber (1964), and the thesis by Hampel (1968). These contributions and others aim to
propose robust regression techniques capable of resisting the effects of outliers and
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nonnormality. As part of this effort, Peter Bickel, Peter Huber, and Frank Hampel
were invited to collaborate with John Tukey during the academic year 1970-1971 at
Princeton University, aiming to advance robust statistics Hampel (1997). In the
Princeton robustness study, see Andrews et al. (1972) for more details; the primary
objective was to develop compromise estimators capable of performing well across
the range between the normal and heavy-tailed distributions. In the field of robust
estimation, various classes of estimators such as L-estimators, R-estimators and
M-estimators (generalisations of a Maximum Likelihood estimator introduced by
Huber (1964)) have been developed to address the challenges of outliers and
deviations from standard assumptions. Among these classes, M-estimators offer
computational efficiency despite being computationally more expensive Huber
(2004),De Menezes et al. (2021) and Prata et al. (2009) among others. In addition,
M-estimators offer a simpler and more straightforward approach to robust estimation
than L- and R-estimators, as a fixed function determines their shape, simplifying the
estimation process. Defining the robust properties upfront can be challenging in L-
and R-estimators, as their behaviour may vary depending on the data and estimation
procedure. The mathematical structure of M-estimators, including their robust
objective functions and influence functions, enables them to effectively handle outliers
and deviations in the data, making them robust tools for statistical estimation (Rey
(2012), Huber and Ronchetti (2009)). These estimators prioritise the majority of the
data clustered around the mean while minimising the impact of outliers, which are
typically located far from the mean, through the use of robust objective functions that
downweight the impact of outliers relative to the majority of the data.
Instead of estimating parameter β by minimising the sum of squared error as it is done
in traditional least squares, the M-estimator replaces that with a robust criterion as
follows:

β̂ = arg min
β

n

∑
i=1

ρ(xi, β) (2.6)

Here, ρ is a robust loss function, and the type of ρ function has been investigated in
extensive literature. Table (2.2) presents two popular types of robust loss functions and
corresponding derivatives. Furthermore, Figure (2.1) illustrates various loss functions,
Least Absolute Deviation (LAD), OLS, and Huber Loss, with different values of k.
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Type ρ(ε i) ψ(ε i)

Huber





1
2 ε2

i if |ε i| ≤ k

k
(
|ε i| − 1

2 k
)

if |ε i| > k





ε i if |ε i| ≤ k

k sign(ε i) if |ε i| > k

Tukey





k2

6

(
1 −

[
1 −

(
ε
k

)2
]3
)

if |ε| ≤ k

k2

6 otherwise





ε
[
1 −

(
ε
k

)2
]2

if |ε| ≤ k

0 otherwise

TABLE 2.2: Comparison of Robust Loss Functions: Different ρ Functions and Corre-
sponding Derivatives ψ for Huber and Tukey Losses, where εi denotes the residuals
from a regression model, εi = (xi − xT

i β) where xi represents the explanatory variables
and β represents the regression coefficients.

FIGURE 2.1: Plot of various loss functions: Least Absolute Deviation (LAD), Ordinary
Least Squares (OLS), and Huber Loss with different values of k.

In the literature, several general properties are considered for ρ to be satisfied:
ρ(ε ≥ 0); ρ(ε) = ρ(−ε); ρ(0) = 0 , ρ(ε i) ≥ ρ(ε j) for |ε i| ≥ |ε j| and continuous
derivative with respect to the coefficients to enable numerical stability and find the
minima.
The M-estimation method assigns smaller weights to observations with outliers,
making it more robust to outliers compared to least squares estimation. To find the
estimator for β in the M-estimation method, we differentiate (2.6) with respect to β

and set the partial derivative to zero:

n

∑
i=1

ψ(ε i)xi = 0 (2.7)
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where ε i = yi − xT
i β represents the residual for the i-th observation. Here, ψ represents

the derivative of ρ. To solve (2.7), we define the weight function W(ε) = ψ(ε)
ε for ε ̸= 0,

and W(ε) = ψ′(0) for ε = 0. Substituting the expression for W(ε) into Eq (2.7), we
obtain:

n

∑
i=1

Wiε i = 0

n

∑
i=1

Wiε ixi = 0
(2.8)

where Wi = W(ε i). The solution to this estimating equation (2.8), denoted as β̂n, can
be found by iteratively adjusting the weights Wi and the parameter β until
convergence is achieved. This method, known as iteratively reweighted least squares,
is employed to estimate the parameters in M-estimation.
A substantial amount of literature has investigated the asymptotic properties of the
solution β̂n with different forms of ρ. Several authors consider the assumption ei is
i.i.d and discuss particular choices of ρ or ψ, we start with the seminal work of Huber
(1964, 1973), Bai et al. (1990) , Bai et al. (1992) ,Niemiro (1992), He and Shao (1996),
Chen et al. (1990) and Arcones (1998) among others. For literature relaxing the i.i.d
assumption of the error and allowing different dependent errors see, for example,
Gastwirth and Rubin (1975), Lin et al. (2009), Phillips (1991), Cui et al. (2004), Berlinet
et al. (2000), Gao et al. (2009) and Babu (1989), among others.
Now, after introducing the M-estimators class, we present our RMAMAR approach.
At RMAMAR, we aim to develop a robust M-estimation framework to approximate
conditional regression. Similar to the MAMAR approach, we approximate the
conditional regression function by a robust linear combination of one-dimensional
regression functions, which is described by the following:

mρw(x) =
d

∑
j=1

ωρjmρj
(
xj
)

(2.9)

Here, d is the dimensionality of the covariate space and is assumed to have a fixed
value, mρj(xj) represents a regression function for the j-th predictor variable Xj, the
subscript ρ represents the robust fitting technique we employ it compared to
MAMAR, and ωρj denotes the weight associated with each regression function mρj(xj)

in the RMAMAR framework. These weights are based on robust estimation methods,
such as M-estimation, with a robust objective function, like the Huber loss function (as
defined in Table (2.2)). Therefore, we aim to obtain ωop = (ωop,1, · · · , ωop,d)

T that
minimizes

E ρ

(
Y −

d

∑
j=1

ωρj mρj(Xj)

)
. (2.10)
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Here, ρ is a robust loss function, such as the Huber loss, penalising the difference
between the observed response variable Y. The predicted values, which are calculated
based on the regression functions mρj(Xj), j = 1, · · · , d and weighted by the robust
weights ωρj, j = 1, · · · , d. This penalty aims to mitigate the impact of outliers and
deviations from the assumed distributional form, ensuring the robustness of the
estimation process.

The regression functions mρj(Xj), j = 1, · · · , d are unknown but one dimensional, and
they can be estimated using nonparametric approaches. A substantial amount of
literature on modelling the relationship between the response (dependent) variable
and covariate (independent) variables with various linear smoothing techniques to
estimate nonparametric regression functions, such as kernel, spline, and local
polynomial methods. For a comprehensive review of available methods and findings
on both theory and applications, the reader is referred to the books authored by
Eubank (1988), Härdle (1990), Wahba (1990), Hastie and Tibshirani (1990), Fan and
Gijbels (1996) and Bosq (2012) among others. In recent years, the local linear method
has gained popularity among the mentioned linear smoothing techniques due to the
method’s numerical and theoretical attractive properties, including bias reduction and
the method’s robustness by its ability to adapt the edge effects compared to the
Nadaraya–Watson type estimator utilised in the MAMAR approach, for further details
on the methods and results, the reader is referred to Fan (1993), and the book by Fan
and Gijbels (1996).

In RMAMAR, for xj close to Xtj we aim to estimate mρj
(
xj
)

in a more robust way by
conducting the local linear estimation method. Using Taylor expansion gives,

mρj(Xtj) ≈ mρj(xj) + m̀ρj(xj)(Xtj − xj)

≡ aj + bj(Xtj − xj) ; t = 1, ..., n , j = 1, ..., d and d is fixed,

where m̀ρj(xj) is the first order derivative of mρj(xj).

The estimator is defined as m̂ρj(x) = â where â and b̂ minimizes

min
aj,bj

n

∑
t=1

(
Yt −

d

∑
j=1

aj − bj(Xtj − xj)

)2

K(
Xtj − xj

hj
), (2.11)

where K represents a kernel function and hj is a chosen bandwidth that was explained
earlier.
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2.2.1.2 Practical Limitations of Local Linear Estimation Procedures

While local linear estimation is a powerful technique for estimating marginal
regression functions in the RMAMAR methodology, offering advantages such as
reduced sensitivity to boundary effects compared to the Nadaraya-Watson estimator
used in the original MAMAR approach, it is crucial to acknowledge and discuss the
practical limitations one may encounter during implementation. One of the key
challenges lies in the optimal choice of the bandwidth parameter, which determines
the size of the local neighborhood used for fitting the local linear regression at each
point. A smaller bandwidth leads to a more flexible fit but may introduce higher
variance, while a larger bandwidth produces a smoother fit but may introduce bias.
Finding the optimal balance between bias and variance is crucial for accurate
estimation. Several bandwidth selection methods, including cross-validation, plug-in
methods, and rule-of-thumb approaches, have been proposed, each with its own
advantages and limitations. The choice of bandwidth selection method can
significantly impact the estimation results, and it is often recommended to try
multiple methods and compare the results to assess the sensitivity of the estimates to
the bandwidth choice.
Another practical limitation is the potential for boundary bias, which occurs when
estimating the regression function near the boundaries of the predictor space, where
the local neighborhood used for fitting the local linear regression is asymmetric. This
asymmetry can lead to biased estimates at the boundaries. Various techniques have
been proposed to mitigate boundary bias, such as boundary kernel methods, local
polynomial fitting with higher-order polynomials, and reflection methods, but these
techniques may introduce additional complexity and computational burden to the
estimation procedure. Addressing the practical limitations of local linear estimation in
the context of the RMAMAR methodology is an important area for future research.
Further investigations could focus on developing robust and data-driven bandwidth
selection methods specifically tailored for the RMAMAR approach, as well as
exploring advanced techniques for handling boundary issues, such as adaptive
bandwidth selection or boundary correction methods. These efforts will improve the
accuracy and reliability of the marginal regression function estimates, enhancing the
applicability and performance of the RMAMAR approach in real-world scenarios.

In the next step and after estimating the marginal regression functions at the sample
points, we aim to assign weights ω

op
ρj to each conditional mean component mρj(xj).

These weights ωρj indicate the influence or importance of each mρj(xj) to the overall
estimation of the conditional mean function. The weight vector is estimated by
minimising

min
ω1,··· ,ωd

n

∑
t=1

ρ

(
Yt −

d

∑
j=1

ωρjm̂ρj(Xtj)

)
, (2.12)
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where ρ represents the general convex loss function used in M-estimation, Yt denotes
the observed response variable, ωρj represents the theoretical or true weights
associated with each predictor variable in the robust linear regression model, and
m̂ρj(xtj) represents the estimated conditional mean function for the j-th predictor
variable, obtained through a robust local M-estimation method in the previous step.

2.2.2 Clarification on the Dimensionality of the Auxiliary Regression

The auxiliary regression step in RMAMAR, as shown in Equation (2.12), can be
viewed as a regression problem where the observed response Yt is regressed on the
estimated marginal regressions m̂j(Xtj) using a robust loss function ρ. It is important
to note that while this auxiliary regression involves multiple predictors (the estimated
marginal regressions), these predictors are one-dimensional marginal regressions,
which can be estimated efficiently using nonparametric techniques without suffering
from the curse of dimensionality.
The key advantage of the RMAMAR approach is that it breaks down the
high-dimensional conditional regression problem into a series of one-dimensional
marginal regressions, which can be estimated reliably using nonparametric methods.
The auxiliary regression step is then used to combine these one-dimensional marginal
regressions in a robust manner, effectively approximating the high-dimensional
conditional regression function. Furthermore, the auxiliary regression step in
RMAMAR does not require estimating a high-dimensional regression model directly.
Instead, it relies on the estimated marginal regressions, which are low-dimensional
and can be obtained efficiently using local linear estimation or other nonparametric
techniques.
It is worth noting that the dimensionality of the auxiliary regression is equal to the
number of marginal regressions considered, which can be chosen based on domain
knowledge or variable selection techniques. In many practical applications, including
only the most relevant marginal regressions may be sufficient, further reducing the
dimensionality of the auxiliary regression step.
In summary, while the RMAMAR approach involves an auxiliary regression step to
estimate the weights for combining the marginal regressions, this step does not
require estimating a high-dimensional regression model directly. Instead, it leverages
the low-dimensional marginal regressions, which can be estimated efficiently using
nonparametric techniques, and combines them in a robust manner through the
auxiliary regression. This approach effectively mitigates the curse of dimensionality
while providing a flexible and robust approximation to the high-dimensional
conditional regression function.
Once the weight vector ω̂

op
ρ is estimated through equation (2.12), where each weight

component ω̂ρj in the vector represents the weight assigned to each conditional mean
function m̂ρj(xtj), we combine the estimated one-dimensional regression functions
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m̂ρj(xtj) with their corresponding weights to form the estimated robust conditional
regression function, defined as following

m̂(x) := m̂ρω̂(x) =
d

∑
j=1

ω̂
op
ρj m̂ρj(xj) (2.13)

where x = (x1, ..., xd)
T.

2.2.2.1 Considerations for Omitted Variables and Endogeneity in RMAMAR

The RMAMAR approach, introduced as an extension of the MAMAR framework by
Li et al. (2015), employs marginal regressions to approximate the conditional
regression function. While this approach is motivated by the desire to avoid the curse
of dimensionality in high-dimensional time series analysis, it naturally raises concerns
regarding the potential impact of omitted variables and endogeneity on the model’s
performance and the validity of the averaging process.
Omitted variable bias is a common issue in regression analysis, occurring when
important predictors are excluded from the model, and these excluded predictors are
correlated with the included predictors. In the context of marginal regressions, if the
excluded predictors have a significant influence on the response variable and are
correlated with the included predictors, it can lead to biased estimates of the marginal
effects. The included predictors may partially capture the effects of the omitted
variables, resulting in inaccurate estimates of the true relationships.
The presence of omitted variables and high correlation among predictors may have
implications for the averaging process in the RMAMAR methodology. If the excluded
predictors are strongly correlated with the included predictors, the averaging process
may not effectively capture the true underlying relationships, potentially leading to
suboptimal performance. The assigned averaging weights to the marginal regressions
may not accurately reflect the importance of each predictor, as the effects of omitted
variables may be inadvertently incorporated into the weights of the included
predictors.
However, it is important to recognize that the RMAMAR approach does not assume
that the approximating model using marginal regressions is the true data-generating
process. As stated in Li et al. (2015), the marginal regression averaging is viewed as a
flexible approximation or model averaging device, particularly useful when dealing
with high-dimensional datasets with many potential predictors of unknown
functional forms. The key assumption required for the approximation to be exact is a
weaker condition that allows for some dependence between covariates, rather than
requiring full independence.
Furthermore, the RMAMAR method involves a trade-off between bias and variance.
By focusing on marginal regressions, it may indeed introduce some bias due to
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omitted variables or endogeneity concerns. However, this potential increase in bias is
traded off against a reduction in variance, especially when dealing with
high-dimensional data or complex nonlinear relationships. The marginal regression
approximation can be considered a pragmatic use of lower-dimensional relationships
to build a more complex predictor, without imposing restrictive parametric
assumptions. This property arguably provides some robustness compared to
misspecified parametric models in the presence of omitted variables.
To mitigate the potential limitations of omitted variables and endogeneity, the
RMAMAR approach incorporates robust estimation techniques, such as M-estimation
with the Huber loss function. By downweighting the influence of outliers and
heavy-tailed distributions, the robust approach aims to mitigate the impact of
potential deviations from model assumptions, including the potential effects of
omitted variables or endogeneity.
Additionally, to address the issue of omitted variable bias, the concept of ”limited
correlatedness” among the predictors can be considered as an underlying assumption
when using marginal regressions. This assumption suggests that the correlations
between the included and excluded predictors should be relatively low. By ensuring
that the included predictors are not strongly correlated with the excluded predictors,
the effects of omitted variables can be minimized, and the marginal regressions can
provide more reliable estimates of the individual predictor effects.
Moreover, variable selection techniques or regularization methods can be employed to
identify and include the most relevant predictors or lags in the analysis, minimizing
the impact of omitted variables. For instance, Lasso (Least Absolute Shrinkage and
Selection Operator) is a popular regularization technique that introduces an L1 penalty
term to the objective function, encouraging sparsity and effectively performing
variable selection. By selecting a subset of relevant predictors, Lasso can help reduce
the impact of omitted variables and improve the interpretability of the model.
It is crucial to acknowledge that the impact of omitted variables and endogeneity on
the RMAMAR methodology is an important area for future research. Further
investigations could focus on developing robust methods specifically designed to
handle these issues and improve the performance of the averaging process in the
presence of correlated predictors. This may involve exploring advanced variable
selection techniques, incorporating regularization methods to handle
high-dimensional data, or developing novel approaches to account for endogeneity in
the context of marginal regressions.
In conclusion, while the use of marginal regressions in the RMAMAR methodology
raises important considerations regarding the potential impact of omitted variables
and endogeneity, the robust nature of the approach, combined with variable selection
strategies and the trade-off between bias and variance reduction, aims to mitigate
these limitations. By acknowledging these concerns and continuing to explore robust
methods and techniques, the RMAMAR methodology can be further enhanced to
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provide more reliable and accurate results, ensuring its robustness and effectiveness in
various practical applications.
In the next Section, we investigate the properties of our estimator ω̂

op
nρ in case the

robust marginal regression functions mρj(xj) are known. In the rest of this chapter, we
omit ρ from mρ(Xt) , ω̂

op
nρ and drop the suffix n and represent ω̂

op
nρ by ω̂ for simplicity.

Before introducing the main Theorem and the model assumptions, we define the
α-mixing process.

Definition (α-mixing)

For a stochastic process X := (Xt, t ∈ Z) on given probability space(Ω,F , P), we
define F l

n = σ{Xt : n ≤ t ≤ l} as the σ-algebra generated by the random variables Xt.
We define the measure of dependence for any two σ-algebra A and B ⊂ F as

α(A,B) := sup
A∈A,B∈B

|P(A ∩ B)− P(A)P(B)|.

For the stochastic process{Xt}, and a positive integer m, the coefficient α(m), serves as
the dependence coefficient and expressed as

α(m) = α(X, m) := sup
n∈Z

α(F n
−∞,F∞

n+m)

The stochastic process{Xt} is said to be α-mixing if is satisfies α(m) → 0 as m → ∞,
this condition proposed by Rosenblatt (1956).
The α-mixing condition is crucial in various limit theorems for stochastic processes,
including central limit theorems as employed by Rosenblatt (1956). Further details on
limit theorems for α-mixing processes can be found in Bradley (1986) and Lin and Lu
(1996). Several literature proposed regression estimation methods under various
mixing conditions, such as α-mixing, ρ-mixing, β-mixing, uniform strong mixing (
ϕ-mixing ) and ψ−mixing. These conditions are related, with α-mixing being a weaker
and less restrictive assumption compared to others. The following diagram illustrates
the relationship between these mixing conditions as discussed in the Bradley (2005)
survey.

ψ-mixing ⇒ ϕ-mixing ⇒ ρ-mixing ⇒ α-mixing
β-mixing

Doukhan (2012) investigated the relationships between those mixing conditions with
examples of models. Moreover, for a survey on various mixing conditions, the reader
is referred to Bradley (2005) and Bobbia et al. (2022).
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Next, we establish the uniform convergence of our estimator, which assures the
estimator’s consistency.

2.3 Analyzing Estimator Behavior: Establishing Uniform
Convergence

In this section, we introduce Theorem 1, which establishes the uniform convergence
properties of our M-estimator ω̂, indicating that as the sample size increases, the
estimator converges uniformly to the true parameter value across the entire parameter
space.

Before stating the main results, we need to assume the following regularity
assumptions on ρ, m(Xt) and et. The assumptions are standard assumptions and are
often employed for statistical inference to establish the theoretical framework for
M-estimation in regression models under α-mixing dependence. see, for instance, Bai
et al. (1992), Wu (2007), Gao et al. (2009).
A1. ρ takes the form of a convex function, with important examples such as the Huber
loss function. We assume a series of strictly stationary random errors for the error,{et}.
A2. Let ψ represents the derivative of ρ and ψ satisfies the following properties:
(i) As |s| → 0 , the expected value of the derivative function ψ (e1 + s) behave
approximately as a linear function of s, with a small error term such as k1s + o(|s|)
where k1 is a positive constant.

E (ψ (e1 + s)) = k1s + o(|s|).

(ii) For any s approaching zero, the expected square difference between ψ (e1 + s) and
ψ (e1) is bounded by a function k2(|s|), where k2 is continuous at s = 0 and satisfies
k2(|s|) = O(|s|). This condition bounds the fluctuation of ψ (e1 + s) around ψ (e1) as s
approaches zero.

E (ψ (e1 + s)− ψ (e1))
2 ≤ k2(|s|),

Moreover, for any sequence of random variables {ηn} such that η converges in
probability to zero (ηn = oP(1)), the expected square difference between ψ (e1 + ηn)

and ψ (e1) tends to zero.

E (ψ (e1 + ηn)− ψ (e1))
2 = o(1).
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(iii) The expectation of the square of the derivative function ψ evaluated at e1 denoted
by ξ0 = E

(
ψ2 (e1)

)
is finite, which indicates that the second moment of ψ(e1) is

bounded.
(iv) As |s| and |l| tends to zero, and for sufficiently large t, the expected value of the
product (ψ (e1 + s)ψ (et + l)) can be approximated as the sum of the expected
products (ψ(e1)ψ(et) and k2

1sl with a small error term o(|sl|)

E (ψ (e1 + s)ψ (et + l)) = E (ψ (e1)ψ (et)) + k2
1sl + o(|sl|).

(v) Both sequences {et} and {m(Xt)} are strictly stationary. Additionally, for all h ≤ t,
m(Xh) and et are mutually independent for all h ≤ t.
A3. Let {m(Xt)} represents a sequence of stationary α-mixing values. The fourth
moment of ∥m(X1)∥ denoted as E

(
∥m(X1)∥4+γ

)
is finite, indicating limited

variability in the distribution of m(X1). In addition, ∑∞
n=1 αγ/(4+γ)(n) converges,

ensuring certain regularity properties of the sequence {m(Xt)} in terms of its mixing
behaviour. Here, ∥ · ∥ denotes the L2-distance and γ > 0.

We introduce some notation for simplicity. Let

Θn(ω) =
n

∑
t=1

ρ

(
Yt −

d

∑
j=1

mj(Xtj)
⊤ωj

)
, Ψn(ω) =

n

∑
t=1

d

∑
j=1

mj(Xtj)ψ

(
Yt −

d

∑
j=1

mj(Xtj)
⊤ωj

)

(2.14)

Theorem. Suppose that assumptions A1 through A3 hold true, then for a given
constant c > 0 and sufficiently large n, we obtain the following

sup
|T1/2

n (ω−ω0)∥≤c

∣∣∣∣Θn(ω)− Θn (ω0) + (ω − ω0)
⊤ Ψn (ω0)−

1
2
(ω − ω0)

⊤ Rn (ω − ω0)

∣∣∣∣ = oP(1),

(2.15)

Here, Tn is a matrix obtained by scaling the sum of two terms by the sample size n.
The first term is a combination of the autocovariance matrix Ω0 = E

(
m(X)0m(X)⊤0

)

multiplied by ζi = E (ψ (e1)ψ (ei+1)), and the cross-covariance between m(X0) and its
lagged versions m(Xi) for (i ≥ 1) which is denoted as 2 ∑∞

i=1 ζiE
(
X0X⊤

i
)
.

Furthermore, Rn denoted as Rn = nk1Ω0.

To simplify the expression and notation, the proof concentrates solely on the scenario
where d = 1, given that the basic ideas of our methodology remain applicable for
d ≥ 2.
Subsequently, we present two basic lemmas. The first lemma establishes two
covariance inequalities applicable to α-mixing processes. The proofs of these
inequalities lemma can be found in the literature on α-mixing processes, such as Lin
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and Lu (1996). The second lemma is referenced as Lemma 1 in Bai et al. (1992), and its
proof is provided therein.
Lemma 1. If E (|X|p + |Y|q) < ∞ for some p, q ≥ 1 and 1/p + 1/q < 1, then

| cov(X, Y)| ≤ 8α1/r [E (|X|p)]1/p [E (|Y|q)]1/q ,

where r = (1 − 1/p − 1/q)−1 and α = supA∈σ(X),B∈σ(Y) |Pr(AB)− Pr(A)Pr(B)|. If
Pr (|X| ≤ C1) = 1 and Pr (|Y| ≤ C2) = 1 for some C1 > 0, C2 > 0, then

| cov(X, Y)| ≤ 4αC1C2.

lemma 2. Under the assumptions A1-A2(i), we have

E [ρ (e1 + s)− ρ (e1)] =
1
2

s′As + o
(
∥s∥2) as s → 0.

Proof of Theorem Define,

Gn,t = ρ (et − m(Xt) (ω − ω0))− ρ (et)−m(Xt) (ω − ω0)ψ (et) where et = Yt −m(Xt)
⊤ω0.

Given the definition of Gn,t, we rewrite Θn(ω) and Θn(ω0) in (2.14) as follows:

Θn(ω) =
n

∑
t=1

ρ
(

Yt − m(Xt)
⊤ω
)
=

n

∑
t=1

ρ
(

et − m(Xt)
⊤(ω − ω0)

)

Θn(ω0) =
n

∑
t=1

ρ
(

Yt − m(Xt)
⊤ω0

)
=

n

∑
t=1

ρ (et)

Note that,

Θn(ω)− Θn (ω0) + (ω − ω0)Ψn (ω0)− E (Θn(ω)− Θn (ω0) + (ω − ω0)Ψn (ω0))

=
n

∑
t=1

(Gn,t − E (Gn,t))

First, we want to demonstrate

var

(
n

∑
t=1

Gn,t

)
= o(1) (2.16)

We know that

var

(
n

∑
t=1

Gn,t

)
=

n

∑
t=1

var (Gn,t) + ∑
h ̸=t

cov (Gn,h, Gn,t) . (2.17)
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We aim to show that both components in the right-hand side (RHS) of (2.17) tend to
zero as n increases, which indicates that var (∑n

t=1 Gn,t) tends to zero as well.
Note that,

Gn,t =
∫ m(Xt)(ω−ω0)

0
(ψ (et + v)− ψ (et)) dv (2.18)

Given assumption A2(ii): for a constant C we have, for
∣∣T1/2

n (ω − ω0)
∣∣ ≤ C,

n

∑
t=1

E(G2
n,t) =

n

∑
t=1

E
(∫ m(Xt)(ω−ω0)

0
(ψ (et + v)− ψ (et)) dv

)2

To bound the expectation, we utilize the Cauchy-Schwarz Inequality, which states that
for any two integrable functions f and g, the following inequality holds:

(∫ b

a
f (x)g(x)dx

)2

≤
∫ b

a
f (x)2dx ·

∫ b

a
g(x)2dx

Hence,

n

∑
t=1

E
(
G2

n,t
)
=

n

∑
t=1

E

[(∫ m(Xt)(ω−ω0)

0
(ψ (et + v)− ψ (et)) dv

)2
]

≤
n

∑
t=1

E
[
|m(Xt) (ω − ω0)|

∫ m(Xt)(ω−ω0)

0
(ψ (et + v)− ψ (et))

2 dv
]

We implement the Law of Iterated Expectations: E[X] = E[E[X|Y]]

=
n

∑
t=1

E
[
|m(Xt) (ω − ω0)| · E

(∫ m(Xt)(ω−ω0)

0
(ψ (et + v)− ψ (et))

2 dv|m(Xt)

)]

After integrating out the randomness of m(Xt), we no longer condition on
m(Xt) in the outer expectation, which simplifies the expression to:

=
n

∑
t=1

E
[
|m(Xt) (ω − ω0)| ·

∫ m(Xt)(ω−ω0)

0
E (ψ (et + v)− ψ (et))

2 dv
]

Since both |m(Xt)(ω − ω0)| and the integral are bounded by constants, we
bound the entire expression by a constant C times the expectation of
|m(Xt)(ω − ω0)| multiplied by the integral.

≤
n

∑
t=1

CE
(
|m(Xt) (ω − ω0)| ·

∫ m(Xt)(ω−ω0)

0
|v|dv

)

Because the expectation of |m(Xt)(ω − ω0)| is of order O(n−1/2) given the

condition |T
1
2

n (ω − ω0)| ≤ C, and we are multiplying it by a constant C,
where the product remains of order O(n−1/2). Hence, the entire expression is
of order O(n−1/2), which is equivalent to o(1).

≤ O
(

n−1/2
)
= o(1).
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Therefore, we have
n

∑
t=1

var (Gn,t) ≤
n

∑
t=1

E
(
G2

n,t
)
= o(1) (2.19)

We split the summation ∑h ̸=t cov (Gn,h, Gn,t) into two parts as follows,

∑
h ̸=t

cov (Gn,h, Gn,t) = 2
qn

∑
t=2

(n− t+ 1) cov (Gn,1, Gn,t)+ 2
n

∑
t=qn+1

(n− t+ 1) cov (Gn,1, Gn,t) ,

(2.20)

Here, qn represents a sequence of values such that qn → ∞ as n increases, but at a
slower rate than

√
n such that qn = o(

√
n). Since qn = o(

√
n), as n increases, the value

of qn also increases. Consequently, the upper limit of the sum qn becomes larger and
larger, but the contribution of each term diminishes as n grows larger. Therefore, the
overall sum ∑

qn
t=2(n − t + 1) cov (Gn,1, Gn,t) is of the order O

(
1√
n

)
, indicating that it is

bounded by a quantity that diminishes to zero as n → ∞. Thus,

qn

∑
t=2

(n − t + 1) cov (Gn,1, Gn,t) = o(1). (2.21)

In addition, assumption A2(iv) states that as |v1| , |v2| approaches zero, for sufficient
large n where |t − h| > qn, we have

E ((ψ (et + v1)− ψ (et)) (ψ (eh + v2)− ψ (eh))) = k2
1v1v2 + o (|v1| |v2|) , (2.22)

We start by computing E (Gn,hGn,t),

E (Gn,hGn,t)

= E
(∫ m(Xt)(ω−ω0)

0

∫ m(Xh)(ω−ω0)

0
((ψ (et + v1)− ψ (et)) (ψ (eh + v2)− ψ (eh))) dv1dv2

)

From (2.22) we obtain.

= k2
1E
(∫ m(Xt)(ω−ω0)

0

∫ m(Xh)(ω−ω0)

0
v1v2dv1dv2

)
+ o

(
E
(∫ m(Xt)(ω−ω0)

0

∫ m(Xh)(ω−ω0)

0
v1v2dv1dv2

))
.

Note that the product of the expectations of Gn,h and Gn,t is given by,

E (Gn,h)E (Gn,t) = k2
1E
(∫ m(Xt)(ω−ω0)

0
v1dv1

)
E
(∫ m(Xh)(ω−ω0)

0
v2dv2

)
.

Thus, by invoking Lemma 1 to Gn,h and Gn,t and simplify the computation, we obtain
for
∣∣T1/2

n (ω − ω0)
∣∣ ≤ C,

|cov (Gn,h, Gn,t)| ≤ Cn−2αγ/(4+γ)(|h − t|) + o
(
n−2) (2.23)
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By utilizing the result of (2.23) and assumption A3 we have

n

∑
t=qn+1

(n − t + 1) |cov (Gn,1, Gn,t)| = Cn−1

n

∑
t=qn+1

αγ/(4+γ)(t) + o
(
n (n − qn) n−2) = o(1).

(2.24)

Hence, Equation (2.16) is concluded from (2.19),(2.21), and (2.24). Therefore, Equation
(2.16) implies that Gn,t becomes more stable as n increases. Consequently,

Θn(ω)−Θn (ω0)+ (ω − ω0)Ψn (ω0)−E (Θn(ω)− Θn (ω0) + (ω − ω0)Ψn (ω0)) = oP(1)
(2.25)

By implementing Lemma 2, we have

E (Θn(β)− Θn (β0)) =
1
2

Rn (β − β0)
2 and E (Ψn (β0)) = 0. (2.26)

Therefore,

E (Θn(ω)− Θn (ω0) + (ω − ω0)Ψn (ω0)) =
1
2

Rn (β − β0)
2 (2.27)

Substituting (2.27) into (2.25) we have,

Θn(ω)− Θn (ω0)− (ω − ω0)Ψn (ω0)−
1
2

Rn (β − β0)
2 = oP(1) (2.28)

Since Θn(ω)− Θn (ω0)− (ω − ω0)Ψn (ω0) is convex in ω and Rn (β − β0)
2 is

continuous and convex in ω, by Theorem 10.8 of (Rockafellar (1969), p.90), we
prove(2.15) by (2.28).
Remark. If we assumed Ω0 is positive definite, then based on equation (2.15) and
employing same argument as presented in (Bai et al. (1992) ,Theorem 2.2), the
consistency of the estimator will be derived easily.

ω̂ − ω0 = op(1). (2.29)

Generality of the Proof for Higher Dimensions

It is important to discuss whether the proof based on d=1 is without loss of generality.
While the presented proof focuses on the case where d=1 for simplicity and clarity, the
main ideas and techniques used in the proof can be extended to higher dimensions
(d > 1) with some modifications.
The proof for the case of d=1 holds significant value, even though it may not be
directly applicable to higher dimensions. By presenting the proof for the
one-dimensional case, we gain important insights into the fundamental ideas and
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techniques that form the foundation for extending the results to the multi-dimensional
setting. The proof for d=1 serves as a stepping stone, showcasing the key concepts and
mathematical tools that are essential for establishing the theoretical properties of the
RMAMAR estimator. It highlights the crucial steps, such as the decomposition of the
objective function, the use of mixing conditions, and the application of limit theorems,
which can be adapted and generalized to accommodate higher dimensions. By
understanding the proof for d=1, researchers can grasp the underlying logic and
structure that govern the behavior of the RMAMAR estimator. This understanding is
invaluable when considering the extension to higher dimensions, as it provides a
roadmap for navigating the complexities and challenges that arise in the
multi-dimensional setting.
In the case of d > 1, the key steps of the proof remain similar. The main difference lies
in the notation and the dimensionality of the vectors and matrices involved. For
example, the weight vector ω and the marginal regression functions mj(xj) would be
replaced by their multi-dimensional counterparts, and the summations would be
performed over all dimensions.
The assumptions and conditions used in the proof, such as the mixing conditions and
moment bounds, would need to be extended to accommodate the higher-dimensional
setting. However, the overall structure and logic of the proof would remain intact.
It is worth noting that the extension of the proof to higher dimensions introduce
additional technical complexities and require more elaborate notation. Nevertheless,
the fundamental ideas and techniques used in the proof, such as the decomposition of
the objective function, the use of mixing conditions, and the application of limit
theorems, can be adapted to handle the multi-dimensional case.
Future research could focus on rigorously establishing the theoretical properties of the
RMAMAR estimator in the multi-dimensional setting, building upon the ideas and
techniques presented in this proof.
In summary, while the proof based on d=1 is presented for simplicity and clarity, the
main ideas and techniques used in the proof can be extended to higher dimensions
with appropriate modifications. The presented proof provides a solid foundation for
future research on the theoretical properties of the RMAMAR estimator in the general
multi-dimensional setting.

2.4 Monte Carlo Simulation

In this Monte Carlo simulation study, We demonstrate the practical application of our
RMAMAR model through simulated data, aiming to examine how lagged information
influences the forecasting of time series data. For comparative purposes, our
simulation models are similar to that in Li et al. (2015).
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The selection of the smoothing bandwidth hj, as indicated in Equation (2.11), is crucial
for effective smoothing. In our simulations, we employ the Cross-Validation (CV)
method using the h.select function provided in the R package sm. However, it’s
important to note that we are aware of its sensitivity to outliers when CV is applied.
We leave this aspect for future investigation.

In Example 1, we consider the linear Autoregressive (AR) model in our simulation.
We conduct a comparative study involving three different model predictions: the
linear AR model of order 10, the nonlinear MAMAR of lag 10 proposed in Li et al.
(2015) and the nonlinear RMAMAR of lag 10 proposed in this Chapter.
The estimation process for the linear AR model relies on the ARIMA with the
maximum likelihood (ML) method, implemented by the ”ML” function within the R
package STATS. In nonlinear MAMAR, we implement a nonparametric model
averaging approach, specifically using a nonrobust local constant method. This is
achieved by fitting local constant regressions to the predictor variables using the
sm.regression function from the sm package. Then, we estimate the weights that
combine the fitted regressions by lm function in R, which utilizes least square
estimation. The estimation procedure for our proposed approach, RMAMAR, is
provided in this Chapter’s section (2.2). Across all three simulation examples, we
employ the robust Huber loss function introduced earlier in Table (2.2) to calculate the
weights. The next Empirical Application section provides more details about the
robust Huber loss function.
In Example 2 and 3, we introduce a nonlinear additive AR model in our simulation.
We compare three prediction models: the nonlinear additive autoregressive model of
order 10, the nonlinear MAMAR of lag 10 and RMAMAR of lag 10. The estimation
technique in the nonlinear additive AR model is based on the Generalized Additive
Models (GAM) with smoothing splines in the GAM R package. GAM, introduced first
by Hastie and Tibshirani (1986), is a class of statistical models that extend the
framework of a linear model to include nonlinear relationships between predictors
and the response (dependent) variable. This extension is represented by modelling the
nonlinear relationships through smooth functions alongside the linear relationship
between the response (dependent) and predictor (covariate) variables. These smooth
functions are represented through nonparametric regression methods like smoothing
splines.
To gain a deep understanding and evaluate the forecasting performance of our
proposed approach compared to other forecasting approaches, we generate different
simulation scenarios that start with a simple structure of linear models to complex
nonlinear structures with interactions. First, we introduce our general framework
model, the foundation for generating the three simulation scenarios we consider in
this study.
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Yt =
10

∑
j=1

ϑj∗(Yt−j) + εt

ϑj∗(Yt−j) = ajYt−j + δ
exp(−jYt−j)

1 + exp(−jYt−j)
+ γ cos(Yt−jYt−1)

(2.30)

Here, Yt represents the response (dependent) variable at time t, and j is the lag
variable. In assessing the robustness of our proposed method, we consider the error to
follow two types of distribution: a t-distribution with 3 degrees of freedom εt ∼ (t3)

and a normal distribution εt ∼ i.i.d.N(0, σ2). The εt ∼ (t3) distribution exhibits
heavier tails than the normal distribution, enabling us to evaluate method
performance under conditions of increased variability or outliers. The values of σ2

and the coefficients aj in (2.30) for j = 1, 2, · · · , 10 are presented in Table (2.3). These
values are the estimated values of a linear Autoregressive model of order 10, AR(10),
using the whole data set in our time series daily rainfall in North London in the
Empirical Application Section (2.5). The parameters δ and γ are constants that take
different values in our simulations, such as δ = 0, 0.1, 5 and γ = 0, 0.1, .5. From (2.30),
we observe that the parameter δ introduces nonlinear transformations of lagged
values, and γ captures the interaction between Yt−j and Yt−1. By adjusting the values
of δ and γ, we construct three model structures to simulate our time series data.
Example 1 considers the case where δ and γ = 0. In this case, model (2.30) simplifies
to a pure linear AR(10). In the second example, a simulation derived from a nonlinear
additive autoregressive model of order 10, the model is constructed by setting
δ ̸= 0 and γ = 0. To improve the complexity of the model structure, in example 3, we
include the interactions between Yt−j and Yt−1 by considering γ ̸= 0.
To generate the stationary time series data of size n from (2.30), as a general
framework of our three examples, we follow the process of iterating the model starting
from initial values Y1 = · · · = Y10 are set equal to zero. To ensure the stationarity of
the data, we delete the first 100 observations among the (100 + n) observations
obtained through this iteration. We consider the performance under different sample
sizes n = 140, 200 and 250. We split the generated time series data n into two subsets:
an estimation sample and a prediction sample denoted as nest, npred, respectively. The
estimation sample is implemented for estimating the model parameters and
determined by nest = n − npred. To evaluate the model performance, we introduce the
prediction sample to forecast the dependent variable values utilizing the estimation
models. The size of the npred is fixed at 50, therefore the nest will take the values
90, 150 and 200 for n = 140, 200 and 250, respectively. Based on estimated model we
examine one-step-ahead prediction of Ynest+t, say Ŷnest+t, for t = 1, 2, . . . , npred. The
prediction methods’ performance are evaluated by employing the mean squared
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prediction error (MSPE) on the prediction sample, which is defined by

MSPE =
1

npred

npred

∑
t=1

(
Ynest+i − Ŷnest +i

)2
. (2.31)

Following the Li et al. (2015) simulation examples setting, the simulation process of all
three examples is repeated 100 times. Next, we present the simulation results for each
example by providing boxplots of the MSPE from 100 repetitions for different
prediction methods under two types of error distribution.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 σ2

0.2255 0.0174 0.0544 -0.0082 0.0264 0.0046 0.023 0.0347 0.0108 -0.0513 13.11

TABLE 2.3: The variance σ2 and the coefficients ad in the model (2.30).

2.4.1 Example 1. Linear Autoregressive Model

We generate the random samples of length n = 140, 200 and 250 from the following
model

Yt = ∑10
j=1 ajYt−j + εt (2.32)

As mentioned earlier, we investigate the models’ performance across different sample
sizes and distributions. We compare linear AR(10), nonlinear nonrobust MAMAR
proposed by Li et al. (2015) and nonlinear RMAMAR proposed in this Chapter. The
comparison of prediction methods using mean squared prediction error (MSPE)
evaluation provides valuable insights into their relative performance. We expect a
superior linear AR(10) model performance in this example since the underlying data
generation process follows a linear AR(10) model. Therefore, employing a linear
AR(10) model for prediction aligns closely with the true data-generating process,
resulting in superior predictive accuracy compared to other approaches as confirmed
in Figures (2.2 and 2.3). In the case of εt ∼ (t3), the linear AR(10) method consistently
outperforms all prediction approaches, especially with smaller sample sizes as
provided in Figure (2.2). However, our proposed nonlinear RMAMAR of lag 10’s
prediction accuracy is better than the nonrobust nonlinear MAMAR of lag 10 across
all sample sizes. Specifically, with an increase in sample size, the performance of our
RMAMAR approach significantly improves, approaching the performance of the
linear AR(10) method. For instance, in a sample size of 200, the median MSPE of the
AR(10) method is 2.87, slightly better than our RMAMAR approach at 2.98. In
contrast, in the sample size of 250, the performance gap decreases further, indicating
that our method’s predictive accuracy improves with larger datasets.
However, when the underlying distribution is normal, Figure (2.3) illustrates that the
AR(10) method consistently outperforms all approaches, and the behaviour becomes
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more evident with small sample sizes. At the same time, the RMAMAR performs
better compared to MAMAR. Overall, the results in case of εt ∼ (t3) show the
robustness of our proposed RMAMAR to extreme cases, such as heavy-tailed data
distributions, where RMAMAR offers a competitive alternative approach, and the
prediction accuracy can be significantly improved, especially with larger datasets.

FIGURE 2.2: Ex1. Boxplot illustrating 100 repetitions of the Mean Squared Prediction
Error (MSPE) for linear Autoregressive (AR) models with lag 10, nonlinear Model Av-
eraging MArginal Regression (MAMAR) of lag 10, and nonlinear Robust MAMAR
(RMAMAR) of lag 10. The errors εt are generated from a Student’s t-distribution with
3 degrees of freedom εt ∼ (t3). The sample sizes n are 140, 200, and 250 for each
respective model. The median MSPE values for AR, MAMAR, and RMAMAR are

provided in the legend.
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FIGURE 2.3: Ex1. Boxplot illustrating 100 repetitions of the Mean Squared Pre-
diction Error (MSPE) for linear Autoregressive (AR) models with lag 10, nonlinear
Model Averaging MArginal Regression (MAMAR) of lag 10 and nonlinear Robust
MAMAR (RMAMAR) of lag 10. The errors εt are generated from Normal distribu-
tion εt ∼ i.i.d.N(0, σ2). The sample sizes n are 140, 200, and 250 for each respective
model. The median MSPE values for AR, MAMAR, and RMAMAR are provided in

the legend.

2.4.2 Example 2. Nonlinear Additive Autoregressive Model

The underlying data generation process is characterized by a purely nonlinear
additive AR model of order 10, as defined by the following:
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Yt =
10

∑
j=1

ajYt−j + δ
exp

(
−jYt−j

)

1 + exp
(
−jYt−j

) ) + εt (2.33)

This study evaluates the prediction performance of three methods: nonlinear
MAMAR of lag 10, nonlinear RMAMAR of lag 10, and nonlinear additive AR model of
order 10, abbreviated as (GAM) for simplicity. Figure (2.4) displays MSEP evaluation
under εt ∼ (t3) across variations in sample size and the δ values: 0.1 and 0.5. We
observe that from equation (2.33), by increasing the δ values, we effectively increase
the nonlinearity in the model, which can help to assess the three approaches’ ability to
capture the higher degree of nonlinearity in the models. Across all sample sizes and
nonlinearity levels, the RMAMAR approach consistently demonstrates the best
performance, as indicated by its lower median MSEP values and smaller interquartile
ranges (boxes) compared to MAMAR and GAM. This outperformance of RMAMAR is
clear when the sample size is small, indicating the ability of our approach to capture
nonlinear relationships and perform well even with limited data and greater
nonlinearity degree represented by δ = 0.5. Moreover, the performance of the GAM
and MAMAR methods improves with larger sample sizes, although GAM is slightly
better than MAMAR when the sample size increases. Moreover, Figure (2.5) shows the
performance of the three prediction methods when the underlying distribution is
normal. In this scenario, our RMAMAR maintains its advantages compared to the
other approaches, highlighting its effectiveness in handling various data conditions
across variations in sample size and the level of nonlinearity represented by δ values.

In summary, the consistent outperformance of our proposed method, the nonlinear
RMAMAR of lag 10 across different distributional scenarios, underscores its
effectiveness in capturing and predicting outcomes in real-world data settings, where
data may exhibit nonlinearities and uncertainties.



40 Chapter 2. Semiparametric Robust Averaging

FIGURE 2.4: Ex2. Boxplot illustrating 100 repetitions of the Mean Squared Prediction Error
(MSPE) for nonlinear Model Averaging MArginal Regression (MAMAR) of lag 10, nonlinear
Robust MAMAR (RMAMAR) of lag 10 and nonlinear additive AR model of order 10, abbre-
viated as (GAM). The errors are εt ∼ (t3). The sample sizes n are 140, 200, and 250 with two
different values of δ : 0.1 and 0.5. The median MSPE values for MAMAR, RMAMAR and GAM

are provided in the legend.
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FIGURE 2.5: Ex2. Boxplot illustrating 100 repetitions of the Mean Squared Prediction Error
(MSPE) for nonlinear Model Averaging MArginal Regression (MAMAR) of lag 10, nonlinear
Robust MAMAR (RMAMAR) of lag 10 and nonlinear additive AR model of order 10, abbrevi-
ated as (GAM). The errors εt are generated from Normal distribution εt ∼ i.i.d.N(0, σ2). The
sample sizes n are 140, 200, and 250 with two different values of δ : 0.1 and 0.5. The median

MSPE values for MAMAR, RMAMAR and GAM are provided in the legend.
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2.4.3 Example 3. Nonlinear Autoregressive Model with Interactions

In this example, γ in Eq (2.30) takes non-zero values while δ could be either 0 or
non-zero. The model is defined as:

Yt =
10

∑
j=1

ajYt−j + δ
exp(−jYt−j)

1 + exp(−jYt−j)
+ γ cos(Yt−jYt−1) + εt (2.34)

Under this scenario, for γ ̸= 0, model (2.34) is a nonlinear additive AR(10) with
interaction between Yt−j and Yt−1. In this simulation example, the predictive
performance of three methods, nonlinear MAMAR, nonlinear RMAMAR and GAM, is
evaluated under t-distribution and normal distribution scenarios. Figure (2.6)
represents the scenario where γ is set to a low value of 0.1. In this case, the model in
(2.34) closely resembles a purely to a purely additive AR model under t distribution
since the impact of the cosine term on the overall model behaviour is relatively small.
As presented, our nonlinear RMAMAR approach consistently outperforms the other
methods across all sample sizes. It introduces greater nonlinearity into the model by
increasing the δ values, which can capture more complex relationships in the data.
Moreover, the MAMAR approach slightly improves over GAM when δ = 0 in all the
sample sizes. However, GAM becomes slightly better as the δ value increases while
the behaviour of our outperforming approach is maintained across sample sizes. By
setting γ = 0.5, the model (2.34) significantly deviates from the purely additive AR
structure due to the stronger influence of the cosine term that introduces interactions
between lags in the model. As illustrated in Figure (2.7), RMAMAR performs better
than GAM when increasing the sample size and setting δ = 0 but worse than the
MAMAR method. All three approaches perform similarly by increasing the δ = 0.5
and sample size. Figures (2.8) and (2.9) show the simulation under the normal
distribution and considering two scenarios γ = 0.1 and γ = 0.5, respectively. In both
scenarios, our RMAMAR approach consistently outperforms all other approaches
across different sample sizes, and with increasing the δ values all over the sample
sizes, the GAM approach shows improvement while MAMAR is in contrast,
especially with small γ value where the model is close to being pure nonlinear
additive AR model.

In summary, our simulation investigation shows that compared to other existing
prediction methods we consider in the three analysis models, our proposed
RMAMAR overall illustrates consistent performance compared to nonrobust
MAMAR and GAM across different distributional scenarios. When the actual model is
purely additive, as shown in Example 2, it outperforms the nonrobust version across a
variation of sample sizes and δ values. However, when a purely additive modelling
framework is violated, as presented in Example 3, RMAMAR provides better results
with a low value of γ where the model structure closely approximates a purely
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additive model, and the three approaches start to act similarly when the sample size
increases, and δ value increases as well. This demonstrates that our proposed
procedure can precisely lead to satisfactory prediction performances within purely
nonlinear additive AR model structures, even with limited sample sizes.
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(A) Sample size n = 140

(B) Sample size n = 200

(C) Sample size n = 250

FIGURE 2.6: Ex3. Boxplot illustrating 100 repetitions of the Mean Squared Prediction Error
(MSPE) for nonlinear Model Averaging MArginal Regression (MAMAR) of lag 10, nonlinear
Robust MAMAR (RMAMAR) of lag 10 and nonlinear additive AR model of order 10, abbrevi-
ated as (GAM). The errors εt ∼ (t3). The sample sizes n are 140, 200, and 250 with γ = 0.1 and
different values of δ. The median MSPE values for MAMAR, RMAMAR and GAM are provided

in the legend.
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(A) Sample size n = 140

(B) Sample size n = 200

(C) Sample size n = 250

FIGURE 2.7: Ex3. Boxplot illustrating 100 repetitions of the Mean Squared Prediction Error
(MSPE) for nonlinear Model Averaging MArginal Regression (MAMAR) of lag 10, nonlinear
Robust MAMAR (RMAMAR) of lag 10 and nonlinear additive AR model of order 10, abbrevi-
ated as (GAM). The errors εt ∼ (t3). The sample sizes n are 140, 200, and 250 with γ = 0.5 and
different values of δ. The median MSPE values for MAMAR, RMAMAR and GAM are provided

in the legend.
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(A) Sample size n = 140

(B) Sample size n = 200

(C) Sample size n = 250

FIGURE 2.8: Ex3. Boxplot illustrating 100 repetitions of the Mean Squared Prediction Error
(MSPE) for nonlinear Model Averaging MArginal Regression (MAMAR) of lag 10, nonlinear
Robust MAMAR (RMAMAR) of lag 10 and nonlinear additive AR model of order 10, abbrevi-
ated as (GAM). The errors εt are generated from Normal distribution εt ∼ i.i.d.N(0, σ2). The
sample sizes n are 140, 200, and 250 with γ = 0.1 and different values of δ. The median MSPE

values for MAMAR, RMAMAR and GAM are provided in the legend.
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(A) Sample size n = 140

(B) Sample size n = 200

(C) Sample size n = 250

FIGURE 2.9: Ex3. Boxplot illustrating 100 repetitions of the Mean Squared Prediction Error
(MSPE) for nonlinear Model Averaging MArginal Regression (MAMAR) of lag 10, nonlinear
Robust MAMAR (RMAMAR) of lag 10 and nonlinear additive AR model of order 10, abbrevi-
ated as (GAM). The errors εt are generated from Normal distribution εt ∼ i.i.d.N(0, σ2). The
sample sizes n are 140, 200, and 250 with γ = 0.5 and different values of δ. The median MSPE

values for MAMAR, RMAMAR and GAM are provided in the legend.
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2.5 Empirical application: Analysis of North London Daily
Rainfall Data

Weather forecasting is vital for daily planning, with agriculture and various industries
relying heavily on accurate predictions. Forecasting weather encompasses multiple
aspects, including snowfall, air pressure, rainfall, and temperature variations, which
significantly impact human activities. Among these, rainfall intensity is a critical
parameter due to its profound influence on various natural processes. Rainfall affects
vegetation distribution, crop planting and harvest, water resource management, and
more.

Rainfall also plays a crucial role in managing reservoir water levels, but its
unpredictability can lead to natural disasters such as floods. Studying changes in the
intensity and frequency of heavy rainfall events is crucial for understanding climate
change. However, forecasting rainfall is a formidable challenge due to its
multidimensional and highly nonlinear nature, requiring thorough investigation and
analysis for accurate predictions. Time series analysis has emerged as a significant tool
in this endeavour, with various classical methods explored for forecasting rainfall
intensity.

2.5.1 Data Analysis

This study intends to utilize various time series methodologies to investigate,
compare, and evaluate the forecast accuracy of future areal rainfall in North London.
The data involved in this study is Northern London rainfall amount, and it is daily
data, which is available at London DATASTORE
https://data.london.gov.uk/dataset/daily-areal-rainfall. Areal rainfall is calculated
using data collected at one or more rain gauges within each unit. This is then
averaged and weighted across each areal unit. The data covers 1-October 2007 to
30-September- 2010, giving 1096 observations. Time series data may exhibit
seasonality, trends, and various patterns, such as exponential or linear patterns. In
response to these scenarios and before modelling the rainfall forecast, preliminary
statistical tests were applied to monitor these fluctuating features.

The daily rainfall data plot illustrated in Figure(2.10) appears stationary since the
series’ mean and variance do not seem to vary significantly over time. Furthermore,
the autocorrelation function (ACF) and partial autocorrelation function (PACF), as
illustrated in Figure (2.11) and (2.12), respectively, provide evidence supporting the
stationarity of the daily rainfall data. The rapid decay and lack of significant
autocorrelations and partial autocorrelations at higher lags suggest that the series does
not have strong long-term dependence. The absence of significant spikes at regular
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seasonal lags in both plots also indicates that the seasonal pattern in the data is not
captured by the ACF and PACF. To formally assess the stationarity of the series, we
conduct the Dickey-Fuller test, a widely used statistical test to evaluate the presence of
unit roots, which are indicative of non-stationarity. The p-value of 0.01 indicates that
the null hypothesis of a unit root (non-stationarity) can be rejected at the 5%
significance level, providing further evidence that the time series is stationary.

FIGURE 2.10: Daily rainfall data

FIGURE 2.11: ACF plot for daily rainfall data
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FIGURE 2.12: PACF plot for daily rainfall data

We divide the total sample size of n = 1096 into two subsets: one for model estimation
and the other for prediction evaluation. Specifically, we set npred = 30, resulting in an
estimation sample size of nest = n − npred = 1066. In this study, our focus lies on the
one-step-ahead prediction of the areal rainfall (mm) in North London using the
information of lagged rainfall observations. We aim to determine whether utilizing
lagged rainfall observations is useful in improving the explanation and prediction of
the future. Our time series forecasting model will treat each lagged rainfall
observation as an individual predictor.
To do that, we start by applying the linear Autoregressive (AR(p)) model to the
estimation sub-sample, where we test p model values ranging from 1 to 30. The
Akaike Information Criterion (AIC) is commonly utilized for model selection. As
suggested by Li et al. (2015), we use AIC values to identify the best-fit model as an
initial step. Table (2.4) presents the AIC values for p =1 to 10, the complete AIC values
for p=1 to 30 are provided in Table (2.8) in the Chapter Appendix.
Our main objective in this chapter is to consider models with a large number of lag
variables. Although the AR(3) model demonstrated the lowest AIC among the tested
models, we select AR(10) to introduce additional complexities to our model and
examine how effectively our RMAMAR approach handles the inherent complexities
of such datasets. This choice aligns with our focus on addressing the curse of
dimensionality that arises when the dimension exceeds 3 (Fan and Yao (2003)). It is
worth noting that in such a high-dimensional case, selecting optimal lags is an
interesting issue that can be considered in future work.
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AR Order AIC

p = 1 5795.5
p = 2 5796.4
p = 3 5795.2
p = 4 5797.2
p = 5 5798.3
p = 6 5800.2
p = 7 5801.0
p = 8 5801.8
p = 9 5803.8
p = 10 5803.4

TABLE 2.4: AIC Values for AR Models

The estimated coefficients of AR(10) are provided in Table (2.5), indicating the
influence of lags up to 10 days on the daily areal rainfall data for North London. In
this linear analysis, the p-values indicate that the coefficients of ar2 − ar10 at the 5%
significance level are insignificant from zero.

Coefficient Estimate Standard Error p-value

intercept 1.830 0.170 < 2e-16 ***
ar1 0.228 0.030 < 2e-16 ***
ar2 0.018 0.031 0.5583
ar3 0.052 0.031 0.0919 .
ar4 -0.005 0.031 0.8564
ar5 0.025 0.031 0.4168
ar6 0.001 0.031 0.9718
ar7 0.027 0.031 0.3943
ar8 0.036 0.031 0.2583
ar9 0.012 0.032 0.6941
ar10 -0.049 0.031 0.1195

AIC 5803.43

TABLE 2.5: Estimated Coefficients , Standard Errors and p-values for AR(10) Model

Upon examining the kernel density estimate of the daily rainfall series in Figure (2.13),
we observe that it does not follow a Gaussian (normal) distribution. The distribution
is heavily skewed to the right, with a long right tail, indicating the presence of a
significant number of high rainfall events. The peak of the distribution is close to zero,
suggesting that most of the rainfall amounts are relatively small, while the occurrence
of large rainfall amounts is less frequent but still notable. The asymmetry in the
distribution suggests that the rainfall data is not well-described by a symmetric
distribution like the Gaussian. The non-Gaussian nature of the rainfall distribution
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suggest that linear models based on the assumption of normality may not fully
capture the characteristics of the data. Hence, we apply the semiparametric RMAMAR
approximation of lag 10 proposed in this chapter along with the semiparametric
MAMAR of lag 10 introduced by Li et al. (2015) and the nonlinear additive AR model
of order 10 (for short, we use GAM) in addition to the linear AR model of order 10.
The estimation procedure of AR(10) and GAM is similar to the methods explained
earlier in Section (2.4). The MAMAR approximation method is expressed as,

E(yt|yt−1, · · · , yt−10) = w0 +
10

∑
j=1

wj · E(yt|yt−j). (2.35)

Here, we estimate the marginal conditional expectation E(yt|yt−j) using a local
constant estimator (Nadaraya–Watson). Then we estimate the weight coefficients
ω0, · · · , w10 through least squares estimation as follows

min
w0,··· ,w10

nest

∑
t=11

[
yt − w0 −

10

∑
j=1

wj · Ê(yt|yt−j)

]2

, (2.36)

Here, nest represents the number of observations in the estimation sample, the term
Ê(yt|yt−j) denotes the local constant estimator of the conditional expectation of yt

given yt−j.

In contrast, in the RMAMAR approximation, we first estimate the marginal
conditional regression functions mρj(yt|yt−j) by local linear estimator. Then we obtain
the weight coefficients ω0, · · · , w10 by the following

min
w0,··· ,w10

nest

∑
t=11

ρ

[
yt − w0 −

10

∑
j=1

wjm̂ρj(yt|yt−j)

]
. (2.37)

Here, ρ represents a robust check function. Among various robust loss functions
available, two popular loss functions adopted widely in the literature are the Huber
loss function and the Tukey loss function, introduced earlier in Table (2.2). We conduct
the Huber loss function in this analysis for its desirable optimization properties.
Specifically, the Huber loss function corresponds to a convex optimization problem,
guaranteeing a unique solution. In contrast, the Tukey loss function may lead to
multiple local minima and complicate the optimization process. Recall the definition
of the Huber loss function:

ρ(ε i) =





1
2 ε2

i if |ε i| ≤ k

k
(
|ε i| − 1

2 k
)

if |ε i| > k
(2.38)



2.5. Empirical application: Analysis of North London Daily Rainfall Data 53

As we observe from the definition of the Huber loss function in (2.38), it employs a
quadratic piecewise function for small errors similar to the least squares loss, which is
sensitive to small errors that provide accurate estimates of the data central tendency.
On the other hand, for large errors exceeding a threshold determined by the
parameter k, it adopts a linear behaviour similar to the absolute deviation loss
function, which enhances robustness against outliers. This combination of features
allows the Huber loss function to find a good balance between sensitivity to small
errors and robustness to outliers, making it appropriate for diverse applications.
Furthermore, m̂ρ(yt|yt−j) is the local linear estimator of mρ(yt|yt−j). We use the R
function ”lprobust” from the package ”nprobust” to perform local linear regression
where confidence intervals produced by lprobust are robust and bias-corrected; see
Calonico et al. (2018) for more details. We fixed the bandwidth parameter at h = 0.5 for
the RMAMAR and MAMAR for simplicity and illustrative purposes. Additional
bandwidth selection methods and their results are provided in the Chapter Appendix.

FIGURE 2.13: Kernel density

Table (2.6) illustrates the estimated coefficients of the lag effects in RMAMAR.
Notably, we observe that almost all the coefficients are significant at the 5% level. In
particular, the lag effects ranging from 2 to 10, which were considered insignificant in
the linear AR model (Table (2.5)) demonstrate significance in RMAMAR framework (
Table (2.6)). This shift suggests that these lag effects may exhibit nonlinear behaviour
in our data, a phenomenon our approach can capture effectively. In addition, AIC is a
widely used criterion for model selection; comparing the AIC values of the RMAMAR
of lag 10 (2645.8) and the AR(10) model (5803.43) suggests that the RMAMAR of lag 10
is preferred over the AR(10) model. Lower AIC values imply a more optimal fit of the
model to the data, and in this case, the RMAMAR model demonstrates substantially
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lower AIC compared to the AR(10) model, indicating its superiority in capturing the
data.

Moreover, since we are dealing with data that has heavy tails and the occurrence of
abnormal observations, as presented in Figure (2.13), this can consequently
significantly influence the mean squared error (MSE) therefore implementing the
mean absolute deviation (MAD) can be a more robust measure in such cases. Table
(2.7) shows MAE values for various forecasting approaches using both in-sample and
out-of-sample data. In the estimation sample, our robust semiparametric approach
RMAMAR method has MAE of 1.755, smaller than that of the linear AR model (2.257),
the nonrobust semiparametric approach MAMAR (1.979) and the GAM (2.153). This
suggests that our robust approach, RMAMAR, provides more accurate performance in
the estimation sample. Furthermore, within the evaluation sample for one-step-ahead
prediction with a size of npred = 30, our RMAMAR demonstrates the lowest MAE of
1.632, followed by the GAM with MAE of 2.017, the nonrobust approach MAMAR
with MAE of 2.19 and the linear AR model with MAE of 2.323. These findings
underscore the superior predictive performance of our robust semiparametric
approach compared to linear AR, nonlinear additive AR and nonrobust
semiparametric methods.
Overall, this analysis demonstrates the effectiveness of our robust semiparametric
approach in uncovering nonlinear lag effects compared to the linear AR. Further,
RMAMAR demonstrates the lowest MAE using both in-sample and out-of-sample
data with heavy tails, underscoring our approach’s superior robustness in handling
challenging data and providing accurate predictions. In this study, we set the
bandwidth parameter h = 0.5 for both RMAMAR and MAMAR models for simplicity
and illustrative purposes. Further investigation of bandwidth selection methods and
their results are provided in the Chapter Appendix. The results of additional
bandwidth selection methods consistently demonstrate the superiority of our
RMAMAR approach over MAMAR. It is important to highlight that the performance
of kernel-based models, such as local linear regression and local constant regression,
can be impacted by the choice of bandwidth, and it is essential to note that
determining the optimal bandwidth selection remains an area for future investigation.
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Coefficient Estimated Value Standard Error p-value

ω0 -3.1732 0.2992 <2e-16 ***
ω1 0.3592 0.0316 <2e-16 ***
ω2 0.2185 0.0618 0.0004 ***
ω3 0.2119 0.0645 0.0010 ***
ω4 0.2397 0.0940 0.0108 *
ω5 0.1090 0.0650 0.0936 .
ω6 0.2876 0.0771 0.0002 ***
ω7 0.2068 0.0709 0.0035 **
ω8 0.1387 0.0761 0.0683 .
ω9 0.1705 0.0814 0.0362 *
ω10 0.2926 0.0742 0.0001 ***

AIC 2645.814

TABLE 2.6: Estimated coefficients and their standard errors in RMAMAR with lags
from 1 to 10 for the estimation sub-sample of the series

MAE
Model

AR MAMAR GAM RMAMAR
In Sample 2.257 1.979 2.153 1.755

Out of Sample 2.323 2.199 2.017 1.632

TABLE 2.7: Comparison of Mean Absolute Error (MAE) for the AR(10), MAMAR,
GAM and RMAMAR models, considering both in-sample estimation and out-of-

sample performance.

FIGURE 2.14: Mean Absolute Error (MAE) out-of-sample performance for the linear
AR(10), nonlinear MAMAR of lag 10, nonlinear additive AR of order 10 (GAM) and

nonlinear Robust MAMAR of lag 10.
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2.6 Conclusion

In this chapter, we proposed the Robust Model Averaging MArginal Regression
(RMAMAR) method as an extension of the Model Averaging MArginal Regression
(MAMAR) methodology introduced by Li et al. (2015). RMAMAR integrates robust
estimation techniques with nonparametric regression to provide a more robust
approach for modeling conditional relationships in high-dimensional time series data.
We investigated the behavior of our estimator by demonstrating uniform
convergence, leading to the consistency of the estimator.
To evaluate the performance of RMAMAR approach, we conducted Monte Carlo
simulations and real data analysis. The simulation study investigated our approach
under three scenarios and various distributional assumptions, including
t-distributions and normal distributions. We also implemented different parameter
values in our simulated models to assess the sensitivity of our approach. The results
showed that RMAMAR could lead to satisfactory prediction performances within
purely nonlinear additive AR model structures, even with limited sample sizes,
compared to alternative methods such as MAMAR and nonlinear additive models
across different distributional scenarios. In the real data analysis, we applied
RMAMAR to rainfall data characterized by heavy tails. Our analysis demonstrated
RMAMAR’s ability to uncover nonlinear lag effects compared to the linear
Autoregressive (AR) model. Furthermore, RMAMAR achieved the lowest Mean
Absolute Error (MAE) both in-sample and out-of-sample, indicating improved
predictive ability compared to the other models considered in the analysis.
This chapter’s key contributions are as follows: First, we extended the MAMAR
approach by incorporating robust estimation techniques, enhancing its robustness to
outliers and heavy-tailed distributions. Second, we established the theoretical
properties of our estimator, including uniform convergence and consistency. Third,
through extensive simulations and real data analysis, we demonstrated the superior
performance of RMAMAR in capturing nonlinear relationships and providing
accurate predictions, even in the presence of outliers and heavy-tailed distributions.
In summary, our study highlights the advantages of the proposed RMAMAR method
in understanding and modelling time series data containing outliers and nonlinear
dependencies. By combining robust estimation techniques in model averaging with
nonparametric regression, RMAMAR offers a flexible and robust approach for
analyzing complex time series datasets in various applications.
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Appendix

AR Order AIC Value
1 5795.51
2 5796.41
3 5795.29
4 5797.28
5 5798.40
6 5800.29
7 5801.09
8 5801.85
9 5803.85

10 5803.43
11 5805.31
12 5806.74
13 5808.44
14 5809.80
15 5811.45
16 5813.34
17 5815.23
18 5816.85
19 5818.31
20 5820.07
21 5821.92
22 5823.08
23 5823.99
24 5825.44
25 5827.43
26 5829.40
27 5831.11
28 5830.73
29 5830.97
30 5831.98

TABLE 2.8: AIC Values for AR Models

MAE
Model

MAMAR RMAMAR
In Sample 2.069 1.767

Out of Sample 2.008 1.621

TABLE 2.9: Comparison of Mean Absolute Error (MAE) for MAMAR and RMAMAR
models, evaluating both in-sample estimation and out-of-sample performance. The
optimal bandwidth, determined through simple cross-validation, is h=0.9314397 using

the h.select function within R package sm.
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MAE
Model

MAMAR RMAMAR
In Sample 1.923 1.751

Out of Sample 2.203 1.644

TABLE 2.10: Comparison of Mean Absolute Error (MAE) for MAMAR and RMAMAR
models, evaluating both in-sample estimation and out-of-sample performance. The
optimal bandwidth, determined through the rule of thumb, is h=0.331656 using the

bw.nrd function from the stats R package.

MAE
Model

MAMAR RMAMAR
In Sample 2.1624 1.7951

Out of Sample 1.848 1.519

TABLE 2.11: Comparison of Mean Absolute Error (MAE) for the MAMAR and RMA-
MAR models, evaluating both in-sample estimation and out-of-sample performance.
The optimal bandwidth, determined through biased cross-validation, is h= 1.0516 us-

ing bw.bcv function from stats package in R.

MAE
Model

MAMAR RMAMAR
In Sample 2.1624 1.7951

Out of Sample 1.848 1.519

TABLE 2.12: Comparison of Mean Absolute Error (MAE) for the MAMAR and RMA-
MAR models, evaluating both in-sample estimation and out-of-sample performance.
The optimal bandwidth, determined through unbiased cross-validation, is h= 0.1099

using bw.ucv function from stats package in R.
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Chapter 3

Large Dimensional Optimal
Portfolios Under Quantile
Preferences

3.1 Introduction

A portfolio refers to a collection of securities or other assets. Constructing an optimal
portfolio is one of the most significant objectives in financial research and represents a
critical application of decision theory in uncertain environments. Throughout history,
traditional models, grounded in the Expected Utility (EU) framework, have long
served as a roadmap for investors’ investment decisions. The EU hypothesis is a
popular paradigm in economics; it was formalised in von Neumann and Morgenstern
(1947) and has been proven to hold under general conditions of uncertainty (Savage
(1972)). However, criticisms of the EU framework have been made over the past three
decades, supported by experimental studies see for instance Simon (1979), Payne et al.
(1992), Baltussen and Post (2011), Kahneman and Tversky (1981), Rabin (2000) and
Tversky and Kahneman (1992). In the complex world of financial markets, investors
often exhibit preferences beyond EU considerations.
This Chapter departs from the EU framework and sheds light on investors’ quantile
preferences, by focusing on specific quantiles of the returns distribution rather than
just the mean. When faced with uncertain alternatives, an agent under the theory of
expected utility selects the choice that maximises the expected value of his utility
function. In the case of quantile utility, the agent maximises the utility function at a
selected τ quantile instead of its mean. For example, in the case of the 0.25 quantile,
the agent with quantile preferences focuses on maximising that quantile for a given
target τ probability. Quantile preferences (QP) have several attractive features. The
quantile, τ ∈ (0, 1), is a single-dimensional parameter that captures risk attitude. The
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decision maker, a quantile-maximiser, is more risk averse when the τ value is low
Castro et al. (2022). Therefore, the risk attitude measure is simple and intuitive. QP
and properties of a quantile model for an individual’s behaviour have been attracting
increasing attention recently. Manski (1988) was the first to investigate QP properties,
which Chambers (2009), Rostek (2010) and de Castro and Galvao (2022) later
axiomatized. Chambers (2009) axiomatised the QP within a risk framework,
demonstrating that these preferences satisfy the criteria of monotonicity, ordinal
covariance, and continuity. On the other hand, Rostek (2010) axiomatised quantile
maximisation within the subjective uncertainty framework proposed by Savage
(1954). de Castro and Galvao (2022) provided an alternate axiomatisation for the static
scenario incorporating an uncertain context and a finite state space. Recently, there has
been a growing interest in studying dynamic quantile preferences. The study
conducted by Giovannetti (2013) investigates a two-period standard economy
featuring one risky and one risk-free asset, focusing on an asset pricing model under
QP maximisation. In de Castro and Galvao (2019), a dynamic model of rational
behaviour under uncertainty is proposed, wherein the agent’s preferences are
determined by a quantile of the returns distribution instead of the expected utility.
Recently, in Castro et al. (2022), the portfolio selection problem is investigated within a
model where individuals demonstrate QP. de Castro et al. (2022) utilise an
experimental study to evaluate the importance of QP and the investors’ choices that
are consistent with the occurrence of QP.
In practical scenarios, the selection of a dynamic portfolio frequently relies on various
conditioning or forecasting variables that reflect changes in the investment
opportunity across time. In empirical studies, variables such as interest rates, inflation
rates, dividend yield, default premium, lagged excess return, and others are
commonly considered. For instance, in empirical studies of portfolio choice in
single-period contexts, Avramov (2002) and Kandel and Stambaugh (1996)
implemented the dividend yield as conditioning variables, Brandt (1999) examined
various variables, including the dividend yield, default premium, term premium and
lagged return in his portfolio choice problems while Chen et al. (2016) focused on
lagged return. In multi-period settings, Campbell and Viceira (2001) used the Treasury
bill yield as conditioning variables, while several studies such as Balduzzi and Lynch
(1999), Campbell and Viceira (1999) and Barberis (2000) considered the dividend yield
as conditioning variables.
Generally, the portfolio decision’s dependency on the conditioning variables can be
described in two ways. The first approach relies on a parametric statistical model in
which returns from risky assets are correlated with the conditioning variables. This
approach is commonly illustrated by linear regression-based models, which condition
the expected return of assets on various factors using linear relationships.1 The second
strategy for characterising the dependency of the portfolio decision on a set of

1The basic Capital Asset Pricing Model (CAPM) and Fama-French models stand out as foundational
frameworks (see Treynor(1961, 1962), Sharpe (1964), Mossin (1966)); Fama and French (1992, 1993) extend
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conditioning variables is based on nonparametric techniques. Brandt (1999)
introduces a nonparametric approach within the Expected Utility (EU) framework, in
addition to analyze the asymptotic properties of the estimated optimal portfolio
choice. The decision-making process for portfolio selection is conditioned on factors
such as dividend yield, default premium, term premium, and lagged excess return.
However, both techniques perform poorly in cases where the dimensionality of the
conditioning variables is high due to the phenomenon known as the curse of
dimensionality; see Fan and Yao (2003) for a discussion of the curse of dimensionality
problem. This challenge suggests that when there are several conditioning variables, it
may not be desirable to directly utilise the parametric technique or Brandt (1999) ’s
nonparametric approach. In order to avoid the challenges posed by the curse of
dimensionality, Chen et al. (2016) propose a novel data-driven approach within the EU
framework to estimate the optimal portfolio choice even when dealing with multiple
conditioning variables of high dimensionality. In Chen et al. (2016) empirical
applications, decisions to construct an optimal portfolio are made conditionally based
on the lagged excess return. Chen et al. (2016) ’s work is partly inspired by the Model
Averaging MArginal Regression (MAMAR) approach proposed by Li et al. (2015),
which has demonstrated a good performance in estimating the conditional mean
regression function and in out-of-sample prediction. Model averaging in the presence
of large dimensional predictors is a relatively new technique that has been mainly
used to estimate and forecast the conditional mean (Ando and Li (2014); Li et al.
(2015); Cheng and Hansen (2015); Chen et al. (2016); Chen et al. (2018)). Tu et al. (2021)
explored the extension of high-dimensional forecasting into the conditional quantile
context by developing a semiparametric model averaging prediction under i.i.d data.
Conversely, De Gooijer and Zerom (2019) extended MAMAR approach by proposing a
penalized high-dimensional quantile averaging in time series data.

To the best of our knowledge, no prior research has tackled the challenge of
overcoming the curse of dimensionality in portfolio selection under the framework of
QP when dealing with a large number of conditioning variables. Thus, our
contributions are threefold; first, we construct dynamic optimal portfolios using
quantile preferences with multiple conditioning variables. This is accomplished in
two stages. In the first stage, we derive the optimal portfolio weights based on single
conditioning variables. This involves, for each j-th conditioning variable Xj,t−1 = xj

and a given τ ∈ (0, 1), we obtain the optimal portfolio weights using quantile
regressions. In the second stage, the optimal portfolios constructed from the
individual conditioning variables are combined by a model-averaging approach to
obtain an optimal portfolio based on multiple conditioning variables. This approach is
similar in spirit to the MAMAR method proposed in Chen et al. (2016) but adapted to

the basic CAPM by introducing additional factors such as size and book-to-market, as explanatory vari-
ables for describing the cross-section of stock returns. More recently, Fama and French (2015) include two
additional risk factors in their three-factor model exploiting cross-sectional differences in profitability and
investment across assets.
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a quantile setting. The second contribution demonstrates that the proposed quantile
method based on conditioning variables effectively aligns with investor’s downside
preferences during significant crises, such as the 2007 global financial crisis and the
COVID-19 pandemic. This is achieved by employing an empirical application to a
portfolio of six major financial indices. The optimal portfolios obtained from the
conditional quantile regression approach outperform the unconditional counterpart
portfolio strategies under different metrics in out-of-sample settings. The third
contribution is to show the ability of this investment strategy to construct optimal
portfolios under quantile preferences in large dimensions.

The Chapter is organized as follows: Section 2 presents the methodology for
estimating dynamic portfolio choices within the framework of quantile preferences.
This estimation can be accomplished in two steps. In the first step, we select the
marginal optimal portfolio weights wj(xj) under QP by maximising the conditional
quantile portfolio problem. We combine the marginal optimal portfolio weights in the
second step through the model averaging approach. A description of the
out-of-sample performance methodology, along with a review of the approaches
considered in the evaluation, is provided in Section 3. Section 4 implements our
approach to construct optimal portfolios under QP with multiple covariates in two
empirical exercises. The first exercise focuses on a small portfolio allocation problem
that comprises six index assets and six conditioning variables. In contrast, the second
portfolio allocation problem considers all the assets traded in the FTSE100 over the
last 16 years. The Chapter is concluded in Section 5.

3.2 Methodology for Estimating the Dynamic Quantile
Portfolio Choice

Within the domain of decision theory under uncertainty, it is customary to assume
that individuals are endowed with a utility function denoted as u(·), which serves to
characterize their preferences. Several candidate functions have dominated the
literature on portfolio theory. Thus, the quadratic utility function defined as
u(W) = W − (γ/2)W2 and the Constant Absolute Risk Aversion utility (CARA)
function, defined as u(W) = 1 − exp(−γW), closely correspond to the classical
mean-variance framework developed by Markowitz (1952), with W denoting
investor’s wealth. More recently, the literature has focused on the Constant Relative
Risk Aversion utility function (CRRA), given by the family of power utility functions

u(W) =





W1−γ

1−γ , γ ̸= 1

ln(W) , γ = 1,
(3.1)

where γ is risk aversion parameter.
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The following subsection introduces the optimal portfolio choice problem in the
expected utility framework for a large set of conditional variables. To do this, we
review the nonparametric setting introduced by Brandt (1999) and Chen et al. (2016).

3.2.1 Expected Utility Framework

Suppose that there are n assets, whose return vector at time t is denoted by
Rt = (R1t, .., Rnt)T. In the expected utility framework, we aim to solve the following
general maximisation problem given by:

E[u(wTRt)|X1,t−1, ..., Xp,t−1],

s.t. 1⊤n w =
n

∑
i=1

wi = 1,
(3.2)

Here, Xt = (X1t, ..., Xpt)T represents a vector of p conditioning or forecasting variables
Xjt. Under the expected utility framework, to solve the following general
maximisation problem:

E[u(wTRt)|X1,t−1, ..., Xp,t−1],

s.t. 1⊤n w =
n

∑
i=1

wi = 1,
(3.3)

Brandt (1999) develops a nonparametric approach for estimating the optimal portfolio
weights without explicitly modelling returns or portfolio weights. Following Brandt
(1999) approach, we differentiate u(.) in (3.3) with respect to wi to the first order, then
we determine the optimal portfolio by solving the following for w1, ..., wn−1:

E
[
(Rit − Rnt) u̇

(
w⊤Rt

)
| X1,t−1, . . . , Xp,t−1

]
= 0 a.s. , i = 1, . . . , n − 1, (3.4)

Here, u̇(.) represents the derivative of the utility function u(.). By utilizing the
constraint ∑n

i=1 wi = 1, we can compute the last element wn in w. To derive the
solution of (3.4), Brandt (1999) suggests employing a kernel-based smoothing
technique. However, when p (the dimension of the conditioning variables is large),
the proposed conditional approach often performs poorly due to the ”curse of
dimensionality”. To address this challenge, Chen et al. (2016) introduces a technique
to estimate dynamic portfolio choices with large number of conditioning variables
through a model averaging approach. In Chen et al. (2016) approach, the marginal
objective function is defined for each univariate conditioning variable Xj as,
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E[u(wTRt)|Xj,t−1 = xj],

s.t. 1⊤n w =
n

∑
i=1

wi = 1,
(3.5)

Here, wT = (w1, . . . , wn), 1n represents the n-dimensional column vector of ones, and
u(.) denotes a concave utility function evaluating the investor’s wealth at time t. The
corresponding first-order conditions for the marginal optimal portfolio weights wj

assessed at the conditioning variable xj are:

E
[
(Rit − Rnt) u̇

(
wT

j Rt

)
| Xj,t−1 = xj

]
= 0 a.s. , i = 1, . . . , n − 1 (3.6)

Here, wT
j = [w1(j), . . . , wn(j)] with wn(j) = 1 − ∑n−1

i=1 wi(j) .

By utilizing the sample data, the first-order conditions of the marginal optimal
portfolio, as described in (3.6), can be represented as follows for each j = 1, · · · , p:

1
Th

T

∑
t=1

[
(Rit − Rnt) u̇

(
w⊤Rt

)
K
(

Xj,t−1 − xj

h

)]
= 0 a.s. , i = 1, . . . , n − 1. (3.7)

Here, K(.) represents the kernel function, and h → 0 denotes a bandwidth parameter
that converges to zero as T → ∞. The solution of (3.7) is denoted by
ŵT

j = [ŵ1(j), . . . , ŵn(j)] where ŵn(j) = 1 − ∑n−1
i=1 ŵij.

As proposed by Chen et al. (2016), after estimating the optimal portfolios, we
construct a joint portfolio choice by combining the marginal optimal portfolios
selected across all the conditioning variables using the model averaging weights,
which is expressed as follows:

ŵa(Xt) =
p

∑
j=1

ajŵj(Xjt) with
p

∑
j=1

aj = 1, (3.8)

Here, a = (a1, ..., ap)T represents the weights assigned to each marginal optimal
portfolio selected for each conditioning variable Xj. Next, we discuss the selection of
the weights a = (a1, ..., ap)T in (3.8).
The performance of the portfolio choice in (3.8) mainly depends on the determination
of the model averaging weights a1, ..., ap. Let wa,t ≡ wa(X t) = ∑

p
j=1 ajwj(Xjt). The

optimal model averaging weights ao are obtained by maximising:

ao = arg max
a

E

{
u

[
p

∑
j=1

ajwT
j (Xj,t−1)Rt

]}
, s.t.

p

∑
j=1

aj = 1. (3.9)
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Here we replace the weights wT
j (Xj,t−1) by the estimated values ŵT

j (Xj,t−1), that is the
solution of (3.7). We estimate ao by â = (â1, ..., âp)T, which satisfies the following
equations:

1
T

T

∑
t=1

(R̂wj,t − R̂wp,t) · u̇

(
p

∑
j=1

âjR̂wj,t

)
= 0 for j = 1, ..., p − 1,

and âp = 1 − ∑
p−1
j=1 âj, where R̂wj,t = ŵj(Xj,t−1)R and R̂wp,t is the return obtained from

the last conditioning variable p. For a comprehensive understanding of the estimation
techniques for the model averaging weights a = (a1, ..., ap)T, the reader is referred to
Chen et al. (2016), Section 4.
The following subsection adapts this approach to the recent quantile utility
framework developed by de Castro and Galvao (2019) and de Castro et al. (2022).

3.2.2 Quantile Utility Framework

For a specified risk attitude τ ∈ (0, 1), in the presence of conditioning variables within
the QP framework, the optimal portfolio weights are obtained as a solution to the
following general maximisation problem:

Qτ[u(wTRt)|X1,t−1, ..., Xp,t−1],

s.t. 1⊤n w =
n

∑
i=1

wi = 1, wi ≥ 0,
(3.10)

Here, w = (w1, . . . , wn)
T represents the portfolio weights for n assets, 1n denotes a

column vector of ones with n dimensions and u(.) denotes a utility function that
exhibits strict monotonicity with respect to wealth.

Remark 1. Quantiles exhibit several essential properties; a well-known property is
its equivariance under monotonic transformations. Formally, if f (·) : R → R is
continuous and strictly in creasing function, then

Qτ[ f (X)] = f (Qτ[X]). (3.11)

In simpler terms, this means that the quantiles of the transformed random variable
f (X) correspond to the transformed quantiles of the original variable X. Due to this
property, the selection of the utility function becomes irrelevant under QP if it is
strictly monotonic, which is formalised in the following remark.
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Remark 2. suppose u(.) is a continuous and monotonically increasing utility
function defined over the domain of the random variables wTRt, subject to the
constraint 1⊤n w = ∑n

i=1 wi = 1, where 1n represents the n-dimensional column vector
of ones. The optimal portfolio weight w∗ is a solution to (3.10) if and only if it is a
solution to the following:

max
w

Qτ[wTRt|X1,t−1, ..., Xp,t−1],

s.t. 1⊤n w =
n

∑
i=1

wi = 1, wi ≥ 0.
(3.12)

Proof. The objective function of (3.10) is to maximize

Qτ[u(wTRt)|X1,t−1, ..., Xp,t−1].

Noting that u(.) is a continuously increasing utility function and since the quantile is
invariant to monotone transformations, hence the former maximisation problem can
be written as:

arg max
w

Qτ[u(wTRt)|X1,t−1, ..., Xp,t−1] = arg max
w

u(Qτ[wTRt|X1,t−1, ..., Xp,t−1])

= arg max
w

Qτ[wTRt|X1,t−1, ..., Xp,t−1].

Our primary focus in the remainder of the Chapter is to analyse the problem
described in (3.12) with particular emphasis on scenarios involving a large number of
conditioning variables.

3.2.2.1 Model Averaging in a Quantile Setting

To address the curse of dimensionality problem within the QP framework, we are
motivated by the methodology presented in Chen et al. (2016) and propose a model
averaging approach for portfolio selection under QP. Our strategy focuses on
approximating the quantile function Qτ[wTRt|X1,t−1, ..., Xp,t−1] by a weighted sum of
quantile functions corresponding to each conditioning variable. This weighted sum is
expressed as ∑

p
j=1 ajQτ[wT

j (Xj,t−1)Rt|Xj,t−1], where aj represents the optimal model
averaging weights.
By adopting this strategy, our objective shifts from directly maximising
Qτ[wTRt|X1,t−1, ..., Xp,t−1], to maximising the weighted sum

∑
p
j=1 ajQτ[wT

j (Xj,t−1)Rt|Xj,t−1] which helps to overcome the challenge of the curse of
dimensionality in the presence of large number of conditioning variables. We
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decompose the problem into p separate portfolio problems, each involving an
individual conditioning variable, and subsequently, we formulate the joint dynamic
optimal portfolio by assigning weights to each individual portfolio, with the weights
reflecting the importance or influence of each variable on the overall portfolio.
Our approach is accomplished in two stages. In the first stage, we solve the portfolio
choice for each individual conditioning variable Xj where j = 1, ..., p,. This involves,
for each j-th conditioning variable Xj,t−1 = xj and a given τ ∈ (0, 1), we obtain the
optimal portfolio weights under QP, this can be formulated as:

max
w

Qτ[wT
j (xj)Rt|Xj,t−1 = xj],

s.t.
n

∑
i=1

wi = 1, wi ≥ 0.
(3.13)

Here, wj = [wj,1, . . . , wj,n]
T is the vector of portfolio weights for the j-th conditioning

variable, Rt is the vector of asset returns at time t, and Qτ[·] denotes the conditional
quantile function at the τ-th quantile level. The optimization problem in (3.13) aims to
find the portfolio weights wj that maximize the conditional quantile of the portfolio
returns given the conditioning variable Xj,t−1 = xj.

By solving this optimization problem for each conditioning variable j = 1, . . . , p, we
obtain p vectors of portfolio weights, denoted as wT

op,1, wT
op,2, . . . , wT

op,p, where each
vector corresponds to the optimal portfolio choice for a specific conditioning variable.

W(p×n) =




wT
op,1

wT
op,2
...

wT
op,p



=




w1(1) · · · wn(1)

w1(2) · · · wn(2)
...

. . .
...

w1(p) · · · wn(p)




(3.14)

Here, n represents the portfolio assets’ number, and p is the number of conditioning
variables.
In the second stage, our goal now is to combine these marginal portfolio choices (p
vectors) to establish a joint portfolio choice that accounts for all the conditioning
variables. The joint portfolio choice, denoted by wa(τ)(x), is obtained as follows:

wa(τ)(x) =
p

∑
j=1

ajwT
op,j(xj) ,

s.t.
p

∑
j=1

aj = 1, aj ≥ 0, ∀j = 1, . . . , p.

(3.15)
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By formulating the joint portfolio choice as a weighted average of the marginal
portfolio choices, we effectively combine the information from each conditioning
variable, allowing for a more comprehensive portfolio selection strategy.2

Next, we discuss the selection of the marginal optimal portfolio weights under QP and
their weighted average, aj.

Stage 1. Estimation of the Marginal Optimal Portfolio Weights wj(xj)

In order to compute the quantile portfolio return for each specific conditioning
variable in Xt−1, we first replace the unknown portfolio weight vector wT with a grid
of random portfolio weights meeting our total investment constraint

∑n
i=1 wi = 1, wi ≥ 0.

For τ ∈ (0, 1) and each known vector wT = (w1, ..., wn) in the grid, where n is the
number of assets, we estimate Qτ[wTRt|Xj,t−1 = xj] by applying linear quantile
regression:3

wTRt = α(τ) + β(τ)Xj,t−1 + ϵt(τ). (3.16)

Here, t is the number of observations, α(τ) and β(τ) denote the quantile regression
coefficients at a specific quantile level τ ∈ (0, 1), Xj,t−1 represents the j-th conditioning
variable where j = 1, . . . , p , and ϵt(τ) is the tth error term associated with the quantile
τ. The error term represents the difference between the observed and predicted values
at τ- quantile level; for instance, at the τ-quantile, the median of the error term is zero
when τ = 0.5.
We obtain (α̂(τ), β̂(τ)) such that,

Q̂τ[wTRt|Xj,t−1 = xj] = α̂(τ) + β̂(τ)Xj,t−1. (3.17)

We iterate through each weight vector wT in the defined grid and obtain a different Q̂τ

for each iteration. We next select the optimal quantile portfolio weights wT
j (xj)

2Our proposed methodology does not involve directly averaging quantiles. Instead, we employ a
model averaging approach to combine the optimal portfolio weights obtained from separate quantile re-
gressions for each conditioning variable. In the first stage, we solve a quantile optimization problem for
each conditioning variable Xj to determine the optimal portfolio weights wj that maximize the condi-
tional quantile of the portfolio return, Qτ [(w⊤

j Rt)|Xj]. These optimal portfolio weights are not quantiles
themselves but rather the solutions to optimization problems that utilize quantile regression techniques.
In the second stage, we combine these optimal portfolio weights using a weighted average, effectively
integrating the information from each conditioning variable to construct a joint portfolio that considers all
available information. This model averaging approach allows us to address the curse of dimensionality
while incorporating the information from multiple conditioning variables in a computationally efficient
manner.

3Introduced by Koenker and Bassett (1978), quantile regression captures the relationship between spe-
cific quantiles of the returns distributions, and inherently adjusts for outliers and extreme events, pro-
viding a more efficient risk assessment, see, for instance, Hampel et al. (1986), Huber (2004) and Huber
and Ronchetti (2009). Quantile regression has been widely employed in various financial applications
throughout the last decade, see Engle and Manganelli (2004), for conditional Value at Risk models; Barnes
and Hughes (2002) to study the CAPM for different quantiles of the cross-section of stock market returns;
or Allen et al. (2011) that integrate quantile methods into the Fama-French three-factor model.
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evaluated at the conditioning variable xj that maximize Qτ[wT
j (xj)Rt|Xj,t−1 = xj]. i.e.

we optimize over wT on the grid,

max
w

Qτ[(wTRt)|Xj,t−1 = xj],

s.t. 1⊤n w =
n

∑
i=1

wi = 1, wi ≥ 0.
(3.18)

Let ŵT
op,j denote the optimal portfolio weight vector for a specific conditioning variable

xj in (3.18) by using quantile regression. We repeat stage 1 for all the conditioning
variables Xt−1 = X1,t−1, ..., Xp,t−1. Therefore, for j = 1, ...p we will have

W∗
(p×n) =




ŵT
op,1

ŵT
op,2
...

ŵT
op,p



=




ŵ1(1) · · · ŵn(1)

ŵ1(2) · · · ŵn(2)
...

. . .
...

ŵ1(p) · · · ŵn(p)




We then combine all the estimated optimal portfolio weights by a model averaging
approach, which will be explained in the following stage.

Grid-based Approach for Determining Optimal Weights

In our analysis, we employ a grid-based approach to generate a comprehensive set of
portfolio weight combinations for determining the optimal weights that maximize the
conditional quantile of the portfolio return. Specifically, we use Monte Carlo sampling
from uniform distributions to generate a large number of random portfolio weight
vectors (e.g., 1000) that satisfy the constraints of full investment (∑n

i=1 wi = 1) and
non-negative weights (wi ≥ 0). This approach provides flexibility in terms of the
number of weight combinations considered and the choice of distribution for
generating the weights.
While the grid-based approach offers several advantages, it is essential to
acknowledge its limitations. Firstly, generating a large grid and evaluating the
performance of each weight combination can be computationally intensive, especially
as the number of assets or the grid size increases. Secondly, the choice of distribution
(currently uniform) for generating the weights may influence the results, and different
distributions may be more suitable depending on the specific characteristics of the
assets or the investor’s preferences. Lastly, while the grid approach explores a wide
range of weight combinations, it may not guarantee finding the globally optimal
solution, especially if the grid is not sufficiently dense or if the optimization landscape
is complex. Despite these limitations, the empirical results demonstrate the
effectiveness of the grid approach, combined with quantile regression, in capturing
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relevant information and providing useful insights for portfolio selection. The
approach can be further refined or adapted based on specific requirements, such as
increasing the grid size, using alternative distributions, or incorporating more
advanced optimization techniques. Future research could explore potential avenues
for enhancing the grid approach, such as using adaptive or iterative grid generation
methods, incorporating domain knowledge to guide the weight distribution, or
employing parallel computing to handle larger grid sizes efficiently.

Stage 2. Estimation of the weighted average of quantiles

Earlier in (3.15), we introduced the joint portfolio choice, wa(τ)(x), as a weighted
average of the marginal optimal portfolio choices, wT

op,j(xj), that obtained from solving
the individual optimization problems for each conditioning variable. The
Performance of (3.15) mainly depends on the selection of the model averaging weights
a = (a1, ..., ap)T. In this stage, we aim to combine all the marginal optimal portfolio
choices ŵT

op,j(xj) over j = 1, ..., p that were previously selected in Stage 1 in order to
establish the joint portfolio choice. The process for estimating the unknown model
averaging weights a will be discussed next.
Let wa(τ),t ≡ wa(τ)(X t) = ∑

p
j=1 aj wT

op,j(Xjt). The optimal model averaging weights â
are obtained by solving the following optimization problem:

â = arg max
a

E

{
u

[
p

∑
j=1

aj wT
op,j(Xj,t−1)Rt

]}
,

s.t.
p

∑
j=1

aj = 1, aj ≥ 0.

(3.19)

Here in equation (3.19), we replace the wT
op,j(Xj,t−1) with the estimated values

ŵT
op,j(Xj,t−1), which are obtained from the solution of Equation (3.18).

It is important to note that by introducing the notation wa(τ),t we are illustrating to the
reader that the expression aj ŵT

op,j(xj) implemented in (3.19) depends on ”j” unlike the
returns Rt.

Remark. The expression
[
∑

p
j=1 aj wT

op,j(Xj,t−1)Rt

]
in (3.19) can be illustrated by using

the matrix notation as:

a(1×p)Ŵ
∗
(p×n)R(n×1) =

[
a1 · · · ap

]




ŵ1(1) · · · ŵn(1)

ŵ1(2) · · · ŵn(2)
...

. . .
...

ŵ1(p) · · · ŵn(p)







R1
...

Rn
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Motivation for Model Averaging in Stage 2

Our methodology comprises two distinct stages with specific objectives. In Stage 1,
our primary goal is to incorporate the investor’s quantile preferences and obtain the
marginal optimal portfolio weights for each conditioning variable. This is achieved by
maximizing the quantile utility function through quantile regression, allowing us to
capture the investor’s risk preferences and construct portfolios that align with their
desired level of downside protection.
However, in Stage 2, our objective shifts to combining the marginal optimal portfolios
obtained from Stage 1 to create a comprehensive portfolio that takes into account the
information from all the conditioning variables. At this stage, we employ the model
averaging approach, where the marginal optimal portfolios are aggregated using a set
of weights determined by optimizing a specific objective function. The model
averaging approach serves as a practical and effective method for combining the
marginal optimal portfolios, allowing us to exploit the diversification benefits of
multiple conditioning variables.
By optimizing the weights in the model averaging approach, we aim to find the
optimal combination that balances the contributions of each conditioning variable to
the overall portfolio performance. The model averaging approach provides a flexible
and intuitive framework for aggregating different components or portfolios, making it
a suitable choice for this stage of our methodology. It is important to note that the use
of model averaging in Stage 2 does not diminish the significance of the quantile
preferences established in Stage 1. The quantile preferences are inherently captured
and incorporated into the final portfolio through the marginal optimal weights
obtained in Stage 1, and the model averaging approach in Stage 2 serves as an
effective means to combine these weights.
While alternative approaches, such as optimizing a quantile utility function in Stage 2,
were explored, the results were not as satisfactory compared to the model averaging
approach. Optimizing a quantile utility function in Stage 2 can be challenging due to
the non-additive nature of quantiles and the potential for distortions when combining
quantiles from different distributions. In contrast, the use of model averaging in Stage
2 has proven to be a practical and reliable choice for combining the marginal optimal
portfolios and achieving the desired portfolio characteristics.
Our empirical results demonstrate the effectiveness of this approach in capturing the
investor’s preferences and providing satisfactory portfolio performance. The use of
model averaging in Stage 2, combined with the quantile preferences in Stage 1, has
shown to yield stable and robust portfolio optimization outcomes, as evidenced by the
favorable out-of-sample performance and risk measures in our analysis.
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3.3 Out-of-Sample Performance Evaluation

In this section, three criteria are used to evaluate our proposed method across various
τ values: (i) out-of-sample portfolio Variance statistics,(ii) out-of-sample Sharpe ratio
criteria and (iii) out-of-sample Sortino ratio criteria. To conduct a comparative
analysis, we compare out-of-sample performance to various portfolio strategies from
the existing literature. We arrange our analysis systematically to ensure a
comprehensive evaluation of the portfolio strategies. Initially, we conduct an
”unconditional” comparison of various portfolio strategies, particularly the
unconditional quantile method (Uncond.Qτ) that has different τ values, against a set
of benchmark competitors. These benchmarks include the Equally Weighted Portfolio
(EWP), the unconditional Markowitz’s Mean-variance portfolio (referred to as
Markowitz portfolio throughout the Chapter), and the unconditional
Minimum-variance portfolio (Min.Var).

Our goal in studying these strategies is to produce insights that will assist investors in
making the optimal decisions when choosing a portfolio strategy that meets specific
risk-return goals. Following this comparison, we aim to further explore by comparing
the unconditional quantile approach (Uncond.Qτ) to the conditional quantile
approach (Cond.Qτ). By comparing these quantile approaches, we aim to understand
the advantages of including conditioning information in the quantile strategy and
evaluate its impact on improving portfolio performance and risk management. An
EWP is an investment portfolio where all assets or securities are allocated an equal
weight 1

n where n represents the number of assets in the portfolio. The unconditional
Markowitz portfolio is a fundamental concept in modern portfolio theory. There are
three approaches to interpret Markowitz’s portfolio optimization problem. First, the
objective function is maximising the utility function of the investor:

maximize
w

µTw − γwTΣw

subject to 1T
n w = ∑n

i=1 wi = 1, w ≥ 0. (3.20)

This problem is a convex quadratic with linear constraints, which has a closed-form
solution:

wMarkowitz =
1

2γ
Σ−1(µ + ν1)

where ν is the optimal dual variable, ν = 2γ−1TΣ−1µ
1TΣ−11 . Here, γ is the risk aversion

parameter, representing the investor’s attitude towards risk. A higher value of γ

implies a more risk-averse investor. This risk aversion parameter helps adjust the
trade-off between portfolio return and risk. The second alternative reformulation for
Markowitz portfolio is minimising the portfolio variance with a constraint that
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imposes a lower bound on the expected return :

minimize
w

w⊤Σw

subject to µ⊤w ≥ Rmin,
1T

n w = ∑n
i=1 wi = 1, w ≥ 0.

(3.21)

Here Rmin stands for the lower bound on expected return for the investment.
Alternatively, we set the objective function by maximising the expected portfolio
return for a target risk as a constraint:

maximize
w

µTw

subject to w⊤Σw ≤ δ2,
1T

n w = ∑n
i=1 wi = 1, w ≥ 0,

(3.22)

where δ denotes an upper bound on the portfolio risk.
The third portfolio strategy we construct in this study is the unconditional
Minimum-variance portfolio (Min.Var). This technique is a risk-based portfolio where
the optimisation explicitly does not focus on expected returns but mainly on risk
reduction. It seeks to construct a portfolio with the lowest possible variance or
standard deviation of returns.

minimize
w

wTΣw

subject to 1T
n w = ∑n

i=1 wi = 1, w ≥ 0.
(3.23)

Which has a closed-form analytical solution:

wMin.Var = Σ−11
1TΣ−11

. (3.24)

The last portfolio strategy is the unconditional quantile portfolio (Uncond.Qτ). For a
given τ ∈ (0, 1) the objective function is:

max
w

Qτ[wTRt],

s.t. 1T
n w =

n

∑
i=1

wi = 1, w ≥ 0.
(3.25)

The Uncond.Qτ can be implemented by considering the following steps. First, we
consider a grid of portfolio weights. For each known wT = (w1, ..., wn), we compute
the portfolio return wTRt. Then, we sort the data in ascending order to calculate the
empirical quantile of the portfolio return. The quantile is given by the order statistic in
the position τ T, with the quantile τ ∈ (0, 1) and T the number of observations. We
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iterate through each weight vector wT in the defined grid and calculate the empirical
quantile of the portfolio for each iteration. Subsequently, we construct our portfolio by
selecting the weight vector wT from the grid that maximises the quantile of the
portfolio return.
In all described portfolio strategies, the constraint 1T

n w = ∑n
i=1 wi = 1 ensures that the

total sum of portfolio weights equals one. In addition, the constraint w ≥ 0 represents
the presence of a short-selling constraint. For both Markowitz and Min.Var portfolios,
the expected return is calculated as the weighted sum of the unconditional individual
asset returns, and the portfolio variance is computed based on the unconditional
covariance matrix of asset returns.

3.3.1 Performance Evaluation Metrics

We employ the out-of-sample evaluation criteria, namely the portfolio Sharpe ratio,
the Sortino ratio and the Variance, to compare the performance of our proposed
approach to the previously discussed strategies. To conduct this comparison, we adopt
the following rolling window strategy. We implement a window size M=12 months(1
year), including m = 11 months for the in-sample estimation window, and h represents
the out-of-sample, which is one month (20 days),m < T and T is the total number of
months in the data set. The window will move forward at each step by one month ( 20
days ). In the first rolling window, data from day 1 through m is included, and in the
subsequent window, observations from day 21 through m + 20 are considered. This
process continues iteratively. Diagram 3.1 illustrates the partitioning process.

1 T
Sample

m

h

Rolling window 1

m

h

Rolling window 1

Rolling window 2

m

h
Rolling window T-m

FIGURE 3.1: Rolling window process

Based on the in-sample estimations (m), we construct various portfolios. At the end of
this partitioning process, for each strategy k, we have generated T − m portfolio
weight vectors; that is wk

t for t = m, ..., T − 1. For each strategy k, holding the portfolio
wk

t for one month gives the out-of-sample portfolio return at time t + 1 denoted as
R̂(p),t+1 = wT

t Rt+1, where Rt+1 denotes the asset returns vector.
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The three criteria employed in this study assess the strategies’ risk-adjusted
performance. The Sharpe ratio calculates a portfolio’s risk-adjusted return, measuring
the excess return per unit of volatility (or standard deviation). A higher Sharpe ratio
indicates a more favourable risk-adjusted performance. The out-of-sample Variance
statistics and Sharpe ratio for strategy k are:

(
σ̂k
)2

=
1

T − m − 1

T−1

∑
t=m

(
wk⊤

t Rt+1 − µ̂k
)2

, (3.26)

with,

µ̂k =
1

T − m

T−1

∑
t=m

wk⊤
t Rt+1 (3.27)

Ŝharpe
k
=

µ̂k

σ̂k (3.28)

While the Sharpe ratio evaluates the strategy’s upside and downside volatility, the
Sortino ratio focuses only on the downside volatility of the strategy. It is calculated by
dividing the strategy’s excess return by its downside deviation. This helps evaluate
the strategies’ downside risk and identify those with lower downside volatility, which
captures investor preferences for minimising downside deviations during challenging
times:

Ŝortino
k
=

µ̂k − MAR
σ̂k

d
(3.29)

Here σ̂k
d is the standard deviation of the downside (negative) returns of a portfolio

which can be defined as

σ̂k
d =

√√√√ 1
T − m

T−1

∑
t=m

(
min

(
wk⊤

t Rt+1 − MAR, 0
))2

,

Where MAR stands for Minimum Acceptable Return, a higher Sortino ratio suggests
superior risk-adjusted performance regarding downside risk, the reader is referred to
Sortino and Van Der Meer (1991), Mohan et al. (2016) and Basile et al. (2016) for
further discussion of the Sortino ratio and MAR.
Bootstrapping is employed for statistical inference through resampling techniques to
assess the significance of the mean Sharpe (Sortino) ratio differences for given pairs of
portfolios. We compute the differences between the two strategies’ mean Sharpe
(Sortino) ratios for each observation, then resample these differences with replacement
and compute the mean differences for each bootstrap sample. The hypothesis we are
testing for each portfolio comparison is as follows: the Null Hypothesis(H0): the mean
Sharpe (Sortino) ratio of our strategy is less than or equal to the mean Sharpe (Sortino)
ratio of the competitor’s strategy. i.e. H0 : µour strategy ≤ µcompetitor. The Alternative
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Hypothesis (Ha): Our strategy’s mean Sharpe (Sortino) ratio is greater than the
competitor’s. Suppose the p-value is less than the predefined significance level (e.g.,
0.05); then, we reject the null hypothesis, showing that our strategy has a statistically
significant higher Sharpe (Sortino) ratio than the competitor’s strategy.

3.4 Empirical application

This section presents an empirical application that demonstrates the methodologies
developed in the Chapter. We investigate the dynamic quantile portfolio choice by
considering multiple conditioning variables and allowing the dimension of the
conditioning variables to be large. In both examples, we utilise our approach on a
rolling-window basis as described in section 3.3.1. We also employ the out-of-sample
evaluation criteria: the Sharpe ratio, the Sortino ratio and the portfolio out-of-sample
Variance statistics. In addition, we implement bootstrapping methods to measure the
significance of the mean Sharpe (Sortino) ratio differences for given pairs of portfolios.
In the below empirical exercises, our objective is to allocate the optimal portfolio
weights for the conditional quantile preferences model across the quantile levels
τ ∈ (0, 1), utilizing lag-one returns as the conditioning variables, i.e. Xt−1 = RT

t−1.
Hence, the number of conditioning variables involved in the exercises equals the
number of assets evaluated for investment purposes, denoted as p = n. The lag-one
returns are chosen for convenience of computation. In both examples, we set the
Minimum Acceptable Return (MAR) = 3%. After analysing the historical performance
of Portfolio 1 (6 assets) and Portfolio 2 (68 assets), we found that Portfolio 1 has mean
returns that fall between 0% and 4% and standard deviations indicating different
levels of risk. Portfolio 2, with the majority (51 out of 68) of assets, achieved returns
above the 3% MAR. Therefore, the 3% MAR for both portfolios reflects the balance
between achieving a reasonable return and managing risk. We also apply the CRRA
utility function with γ = 2 for both examples. We consider additional γ values
commonly used in the literature to indicate various risk aversion preferences as a
robustness exercise. The findings are presented in the Appendix.
In both examples, our data covers the period from 2007 to 2022, capturing a range of
distresses with varying effects on the global economy. For example, the global
financial crisis occurred between 2007 and 2010 and greatly influenced the global
economy. This event started in the US mortgage market and led to global financial
instability. From 2011- 2015, there were global events, such as the European debt crisis
and the Chinese stock market crash. Greece, Portugal, Ireland, Italy, and Spain, known
as the ”PIIGS” countries, were the most heavily affected by the European debt crisis.
The dramatic drop in stock prices on the Shanghai and Shenzhen stock exchanges
during this time is called the ”Chinese stock market crash”. Compared to the Global
Financial Crisis, both events concentrated more on specific countries and had a more
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indirect and comparatively lesser influence on the global economy. Between 2016 and
2019, the economy was steady compared to prior financial events. Finally, the
COVID-19 Pandemic covers the period 2020-2022, and it is a global health crisis that
has had significant impacts on social, economic, and public health worldwide. It
originated in Wuhan, China, and quickly spread globally through international travel
and person-to-person transmission, resulting in a sharp increase in cases in most
countries.

After analysing the global economy impact of the four periods, it becomes clear that
some periods can be categorised as crises, such as the Global Financial Crisis 2007-2010
and the COVID-19 Pandemic 2020-2022, while we consider 2011-2015 and 2016-2019
as non-crisis since it had a relatively more minor impact because it was more focused
on specific countries not globally. This division and differentiating between crisis and
non-crisis periods can provide valuable information about our portfolio analysis for
several reasons. For instance, it allows for a comparative analysis of the portfolio’s
performance during different market conditions. This helps to understand the
portfolio behaviour during times of stability vs times of crises, enabling us to evaluate
their flexibility and ability to adapt to changing economic conditions.

As a result, to achieve a more comprehensive understanding of the portfolio’s
performance in both examples, we first analyse our optimal portfolio selection over
the entire study period from 2007 to 2022. Furthermore, to better understand
conditional information’s role in influencing conditional portfolio strategies during
challenging times, we divide the out-of-sample evaluation of the entire period into
two categories: crises and non-crises, as presented in diagram 3.2.
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Crisis Period Non-Crisis Period Non-Crisis Period Crisis Period

FIGURE 3.2: Timeline of Financial Crises and Global Events (2007 -2022)

3.4.1 Example 1. Small Portfolio Allocation Problem

3.4.1.1 Data Description

In this analysis, we examine the optimal portfolio selection of an investor with
quantile preferences who can distribute wealth among six assets: the Bloomberg US
Aggregate Bond Index, Treasury Inflation-Protected Securities (TIPS), SPDR Gold
Shares, S&P 500, Dow Jones and NASDAQ. The Bloomberg U.S. Aggregate Bond is an
exchange-traded fund (ETF) representing a broad U.S. fixed-income market index.
The second asset is TIPS, a type of U.S. government bond that protects against
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inflation. SPDR Gold Shares is an ETF that tracks the performance of the price of gold.
It is one of the most popular and widely traded gold ETFs. The last three assets are
stock indexes: S&P 500, Dow Jones and NASDAQ. We consider a sample of daily
returns data that covers the period from January 2007 to December 2022. The lag-1
returns of the six assets serve as conditioning variables, i.e. Xt−1 = RT

t−1. Hence, we
seek to choose an optimal quantile portfolio that depends on six variables.

3.4.1.2 Preliminary Analysis

In Figure 3.3, a plot of the daily log returns on each asset is displayed. Additionally,
Figure 3.4 reports nonparametric kernel Gaussian estimates illustrating the
unconditional density function of financial returns for the six assets. Visually
examining the density plots reveals that all six density functions have similar mean
returns but have notably different standard deviations. However, a formal statistical
test rejects the null hypothesis that all pairwise combinations have equal mean.
Furthermore, the Shapiro-Wilk normality test has been implemented for the six assets.
The resulting p-values for all assets are extremely small, suggesting the rejection of the
null hypothesis of normality and indicating significant deviations in the return
distributions for all assets from a normal distribution.

Table 3.1 summarises the descriptive statistics of all asset returns, including
information about each asset’s mean return, standard deviation, and highest and
lowest observed returns. Based on these summary statistics, it can be inferred that the
stock indexes exhibit the highest expected return and variance and are followed by
SPDR Gold Shares in terms of expected return and risk. Conversely, the bond indexes
have the lowest mean and variance. In Figure 3.5, we select Cond.Q0.05 as a
representative example of our proposed approach, showing how our proposed
portfolio dynamically allocates weights over time.

3.4.1.3 Discussion of the Out-of-Sample Performance analysis

In this example, we have calculated 181 out-of-sample portfolio Variance statistics,
Sharpe ratios and Sortino ratios for each portfolio strategy. We constructed the
optimal portfolio across different τ values in our proposed portfolio approach.

First, we make a comparison between unconditional portfolio strategies: EWP,
Markowitz, Min.Var, Uncond.Q0.01, Uncond.Q0.05 and Uncond.Q0.10. Table 3.2
provides summary statistics, including mean and standard deviation Sharpe ratios
across unconditional portfolio strategies covering the entire study period 2007-2022.
Among all the strategies, the Uncond.Q0.01 and EWP strategies achieve the highest
mean Sharpe ratio at 0.082 and 0.080, respectively, while the Markowitz strategy
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shows the lowest mean Sharpe ratio at 0.035. Second, to study the role of the
conditioning set, we conducted a comparison between conditional quantile strategies
(Cond.Qτ) and unconditional quantile strategies (Uncond.Qτ). Table 3.3 illustrates the
mean and standard deviation of Sharpe ratios for both conditional and unconditional
quantile portfolio strategies throughout the study period from 2007 to 2022. In this
Table, among all the strategies, the Cond.Q0.05 strategy exhibits the highest mean
Sharpe ratios at around 0.09. In contrast, the Uncond.Q0.05 strategy shows the lowest
mean Sharpe ratios at 0.063. This value suggests that, compared to other strategies, the
Uncond.Q0.05 strategy might not have performed as effectively on a risk-adjusted
basis during this time frame. Regarding risk, the Uncond.Q0.01 strategy shows slightly
the highest variability with a standard deviation of 0.255.

To measure the statistical difference in means between the out-of-sample Sharpe ratios
of a benchmark portfolio and portfolio k competitor, we first check the normality of
the Sharpe ratios for all portfolio strategies by conducting various methods such as
histograms, Q-Q plots, the Shapiro-Wilk Test and Kolmogorov-Smirnov test,
Skewness and Excess Kurtosis. All strategies show positive skewness, suggesting they
are all right-skewed to some extent. The excess kurtosis values are positive, indicating
that all strategies are heavy-tailed compared to a normal distribution. Since
bootstrapping does not require the assumption of normality and can provide robust
results even when data does not have a normal distribution, we implement
bootstrapping for our analyses.

Bootstrapping is a powerful resampling approach that involves regularly collecting
replacement samples from the original data and recalculating the statistic for each
sample to estimate the sampling distribution of a statistic. In our analysis, the basic
bootstrapping method is utilised to compare the returns of a benchmark portfolio
against the competitor. We calculate the difference in means between our benchmark
strategy and the competitor for each portfolio of interest. The following process
bootstrapped the pair of returns: We randomly drew pairs of returns with
replacements from the original data. Then, for each resampled dataset, we calculate
the mean difference. We create a distribution of the mean difference by repeating this
process for several iterations (set to 1000 in this example).

For each portfolio comparison, we set Cond.Qτ as the benchmark portfolio and
compare it with Uncond.Qτ with the same τ value. The following were calculated:
Mean of the bootstrapped mean differences, 95% confidence interval of the mean
difference and p-value to test the Null and Alternative Hypotheses. The Null
hypothesis (H0): the mean of the Sharpe ratio of Cond.Qτ is less than or equal to the
mean of the Sharpe ratio of Uncond.Qτ with the same τ value of the competitor. The
alternative hypothesis (Ha) specifies that the mean of Sharpe ratio of Cond.Qτ is
greater than the mean of the competitor. Table 3.4 reports the bootstrap analysis for
the study period from 2007 to 2022. Based on bootstrap resampling and a significance
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level of α = 0.05, the results for Cond.Q0.05 and Cond.Q0.10 are positive but only
statistically significant for Cond.Q0.05. In contrast, the sample is very small for
Cond.Q0.01, and the results are unreliable.

To examine the influence of conditional information in improving portfolio strategy
performance across varying market conditions and investor preferences, Table 3.5
presents a comprehensive overview of all quantile portfolio strategies and their mean
Sharpe ratios and standard deviation during both crisis and non-crisis periods. Given
the statistically significant evidence showing that the Cond.Q0.05 strategy’s mean
Sharpe ratio outperforms the Uncond.Q0.05 strategy, our analysis centres on examining
the performance of these two strategies over both crisis and non-crisis periods. The
Cond.Q0.05 has consistently been superior to Uncond.Q0.05 in both crisis periods.
Specifically, Cond.Q0.05 yields mean Sharpe ratios of 0.076 and 0.032, whereas the
Uncond.Q0.05 achieved only 0.065 and 0.008, respectively. However, the standard
deviation differences between the two strategies are relatively small. This implies that
even during unstable market conditions, the conditional strategy provides higher
returns while maintaining a slightly smaller level of risk than the unconditional
quantile portfolio. The benefits of conditional information are still seen even during
the two non-crisis periods. The Cond.Q0.05 portfolio again outperforms with a Sharpe
ratio of 0.062 and 0.163 compared to 0.045 and 0.121 for the Uncond.Q0.05.

The standard deviations are also closely matched between the two strategies, with
Cond.Q0.05 standard deviations at 0.258 and 0.241 and the Uncond.Q0.05 at 0.259 and
0.253, respectively. Regardless of the market conditions, this shows that while the
conditional strategy leads to better mean Sharpe ratio returns, it offers a slightly
smaller risk level than the unconditional quantile strategy. Our analysis indicates that
including conditional information may enhance portfolio strategies and improve
performance under various market conditions.

The second out-of-sample evaluation criterion is the Sortino ratio, where risk-adjusted
performance measures focus on the downside risk of portfolios. Table 3.6 covers the
entire study period 2007-2022 and provides an overview of the performance of
out-of-sample Sortino ratios across unconditional portfolios. The Min.Var and
Markowitz strategies display the highest mean Sortino ratios with 0.522 and 0.486
values, respectively, and they also carry the highest variability in Sortino ratios at 3.24
and 1.77, respectively, over the 2007-2022 period. However, the EWP and
Uncond.Q0.05 report the lowest mean Sortino ratio with standard deviation at 0.449
and 0.477, respectively. Table 3.7 compares the conditional and unconditional quantile
portfolio strategies from the 2007-2022 study period using Sortino ratios’ mean and
standard deviation. All Cond.Qτ portfolios dominate in terms of risk-adjusted returns
when considering negative volatility, while Uncond.Q0.05 exhibits the lowest mean
Sortino ratio with 0.10.
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We employ bootstrapping methods to measure the statistical difference between the
out-of-sample Sortino ratios for the return of Cond.Qτ quantile portfolio compared to
Uncond.Qτ quantile strategy having the same τ value. Table 3.8 represents the
bootstrap analysis covering the study period 2007-2022. We test the null hypothesis
that Cond.Qτ’s Sortino ratios are less than or equal to that of Uncond.Qτ portfolio
with the same τ value. If the p-value is smaller than 5%, it provides evidence for
rejecting the null hypothesis, suggesting that Cond.Qτ exhibits a significantly higher
Sortino ratio than Uncond.Qτ. Based on bootstrap resampling, Table 3.8 and
corresponding p-value provide evidence to support the rejection of the null
hypothesis, indicating that the mean Sortino ratio of Cond.Q0.05 strategy is
significantly greater than Uncond.Q0.05 portfolio. On the other hand, while the mean
differences between the rest Cond.Qτ strategies vs the Uncond.Qτ with the same τ

value are positive, suggesting a higher mean Sharpe ratio for those Cond.Qτ

strategies, the evidence is not enough to reject the null hypothesis.

To assess the impact of conditional information on portfolio outcomes across varying
market conditions and investor preferences, Table 3.9 presents a comprehensive
overview of all quantile portfolio strategies and their mean Sortino ratios with the
standard deviation during both crisis and non-crisis periods. The primary focus of our
analysis centres on comparing the performance of conditional and unconditional
quantile portfolios with τ = 0.05 across the crises and non-crises intervals. During the
initial crisis phase, Uncond.Q0.05 portfolios have a Sortino ratio of 0.16 to 0.13 for the
Cond.Q0.05, which indicates superior downside risk management for Uncond.Q0.05

compared to the Cond.Q0.05 portfolio. The conditional portfolio, however, performed
better than the non-conditional portfolio in the subsequent crisis, with a value of 0.07
to 0.04. Despite these figures, the Cond.Q0.05 portfolio reports a sample standard
deviation of 0.40 across both crises. In contrast, the Uncond.Q0.05 shows greater
variability in the first period with a deviation of 0.53, stabilising to 0.40 in the next
phase. The Cond.Q0.05 portfolio consistently exceeded the Uncond.Q0.05 portfolio in
the non-crisis period, registering Sortino ratios of 0.12 and 0.24, respectively,
compared to 0.08 and 0.12. Nevertheless, this superior performance was paired with
increased variability, as evidenced by the standard deviations of 0.56 and 0.58 for the
conditional strategy compared to 0.46 and 0.50 for the Uncond.Q0.05 strategy. In
conclusion, while the conditional strategy has often offered better mean Sortino ratios,
especially in non-crisis times, it does so with increased variability in performance.
Table 3.10 presents the average out-of-sample portfolio Variance statistics. The
comparison of Cond.Qτ and Uncond.Qτ were relatively close to each other in the case
of τ = 0.01, 0.05. However, the Cond.Q0.10 portfolio displays lower mean
out-of-sample Variance statistics, at 0.541 compared to Uncond.Q0.10 strategy with
0.627 out-of-sample Variance statistics.

Overall, our empirical analysis shows the superior performance of Cond.Qτ strategy
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during the crisis periods. Specifically across the Sharpe ratio metric, Cond.Q0.01 and
Cond.Q0.05 strategies demonstrate their adaptability to manage risk during unstable
market conditions. Furthermore, when considering the Sortino ratio, most of the time,
the Cond.Q0.01 and Cond.Q0.05 consistently outperform the remaining competitors.
These findings emphasise the tail risk sensitivity of Cond.Q0.01 and Cond.Q0.05, which
is beneficial during crises when extreme events are more likely to occur. Moreover, the
risk-averse nature of these lower quantiles, i.e., lower quantiles, reflects a higher level
of risk aversion and thereby represents an advantage during unstable market
conditions.

3.4.2 Example 2. Large Portfolio Allocation Problem

In this example, we aim to empirically explore the performance of our quantile
portfolio strategy conditioning on a large number of assets. This way, we can assess
the ability to use our weighted average approach in high-dimensional data. Therefore,
we consider a sample of daily returns data on FTSE-100 collected from January 2007 to
July 2022. The FTSE-100 index consists of 100 companies; however, our data covers
the entire period for 68 of these companies. The remaining companies have entered
and exited the index during the period under consideration. Therefore, our analysis
primarily focuses on these 68 companies.

We utilize a dataset comprising T = 3911 observations on stock returns from 68
companies. The lag-1 returns on these 68 stocks serve as the conditioning variables.
Our methodology will be applied using the same rolling-window framework, CRRA
utility function, out-of-sample evaluation criteria, and bootstrapping techniques as
demonstrated in Example 1. By utilising these approaches and metrics, we aim to
comprehensively understand the performance and significance of the portfolios under
consideration. In this example, we have calculated 185 out-of-sample Sharpe ratios,
Sortino ratios and Variance statistics for each portfolio strategy.

Figures 3.8 and 3.9 illustrate the Sharpe and Sortino ratios of different portfolios
covering 2007-2022. Initially, we compare the mean and standard deviation of
portfolio Sharpe ratios between unconditional portfolio strategies, with the results
provided in Table 3.11. In this Table, the EWP strategy shows the highest return at
0.064, while the Markowitz strategy has the lowest mean Sharpe ratio at 0.008.
Additionally, Table 3.12 presents a comparison between Cond.Qτ and Uncond.Qτ in
terms of a mean and standard deviation of Sharpe ratios. The Cond.Q0.05 and
Cond.Q0.10 strategies provide higher mean returns compared to the Uncond.Qτ

strategies with the same τ value.

We employ bootstrapping methods to measure the statistical difference between the
out-of-sample Sharpe ratios for the return of Cond.Qτ compared to Uncond.Qτ with
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the same τ value. Table 3.13 reports the bootstrap analysis for the study period from
2007 to 2022. The null hypothesis tested is that the mean Sharpe ratio of Cond.Qτ

portfolio is less than or equal to that of Uncond.Qτ strategy. If the p-value is smaller
than 5%, there is strong evidence to support the rejection of the null hypothesis and
conclude that Cond.Qτ has a significantly higher Sharpe ratio than Uncond.Qτ

portfolio. Although Cond.Qτ strategies with τ = .05 and 0.10 have always had a
higher out-of-sample mean Sharpe ratio than Uncond.Qτ portfolios with the same τ

values, the p-values do not report evidence to reject the null hypothesis, indicating
that there is no statistically significant difference in the Sharpe ratios between
Conditional Qτ strategies and Unconditional Qτ strategies.

Table 3.14 provides an overview of all quantile portfolio strategies and their mean
Sharpe ratios and standard deviation during both intervals, crisis and non-crisis. The
results present the impact of conditional information in enhancing portfolio strategy
performance across varying market conditions and investor preferences. To maintain
consistency with Example 1, we compare the performance of a conditional quantile
portfolio with τ = 0.05 to the unconditional quantile portfolio with the same τ value
throughout both crisis and non-crisis periods. By including conditional information,
the portfolio has generally been superior to the unconditional portfolio in terms of the
Sharpe ratio over the two crisis periods. Specifically, Cond.Q0.05 yields a mean Sharpe
Ratio of 0.036 and 0.047, whereas the Uncond.Q0.05 achieves only 0.028 and 0.039.
However, the differences remained relatively close when assessing the portfolios’
volatility, represented by the standard deviations. This implies that while the
conditional strategy provides higher returns, even during unstable market conditions,
it maintains a similar level of risk to the unconditional quantile portfolio. Even during
the two non-crisis intervals, the benefits of conditional information persisted. The
Cond.Q0.05 portfolio again outperforms the Uncond.Q0.05, achieving slightly higher
Sharpe ratios of 0.086 and 0.067 than the unconditional portfolio of 0.085 and 0.064.
The volatility levels remain closely matched between the two strategies during these
periods, with the conditional strategy’s standard deviations at 0.227 and 0.230 and the
unconditional’s at 0.232 and 0.234. This finding suggests that even during unstable
market conditions, the Cond.Q0.05 strategy still offers higher returns while
maintaining a comparable level of risk to the Uncond.Q0.05 portfolio. Overall, our
findings indicate that portfolio strategies can be enhanced by including conditional
information and offering potential improvement in performance under a range of
market conditions. Moreover, as the conditional strategy yields better returns, it does
not add any extra risk compared to strategies that do not consider such conditions.

In our assessment of the Sortino ratios, we introduce two tables providing the
performance of various portfolio strategies over the entire study period. Table 3.15
compares unconditional portfolio strategies, presenting each strategy’s mean and
standard deviation of the Sortino ratios. It shows that, compared to all strategies,
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Min.Var strategy has the highest mean returns at 0.132 and the lowest standard
deviation at 0.445. By exploring the comparison of the quantile of conditional and
unconditional portfolios, the analysis findings are captured in Table 3.16. The results
show that Cond.Q0.05 has a slightly higher mean return than Uncond.Q0.05 while all
other strategies show a comparable mean return. Additionally, to examine the
statistical difference among the out-of-sample Sortino ratios for Uncond.Qτ portfolios
compared to Cond.Qτ portfolios, we have conducted a bootstrapping analysis. Table
(3.17) reports the bootstrapping results where the null hypothesis is that the mean
Sortino ratios of portfolio Cond.Qτ are less than or equal to that of Uncond.Qτ with
the same τ value. When the p-value is less than 5%, there is strong evidence
supporting the rejection of the null hypothesis, suggesting that the Conditional Qτ

strategy exhibits a significantly higher Sharpe ratio compared to the competitor. Based
on bootstrap resampling and a significance level of α = 0.05, the positive mean
differences suggest that Cond.Q0.05 might have a higher mean Sharpe ratio than
Uncond.Q0.05. However, the corresponding p-values suggest no evidence to reject the
null hypothesis and conclude that Cond.Q0.05 has no difference in Sortino ratio than
other strategies.

To assess the impact of conditional information on portfolio outcomes across varying
market conditions and investor preferences, Table 3.18 presents a comprehensive
overview of all quantile portfolio strategies and their mean Sortino ratios with the
standard deviation during both crisis and non-crisis periods. To maintain consistency
with Example 1, we focus mainly on comparing the performance of conditional and
unconditional quantile portfolios with τ = 0.05 over the crises and non-crises time
intervals. With mean Sortino ratios of 0.084 and 0.090 compared to 0.077 and 0.070, the
Cond.Q0.05 portfolio outperforms the Uncond.Q0.05 strategy during both crisis phases,
demonstrating superior downside risk management. In the first phase, the standard
deviation of the Uncond.Q0.05 portfolio shows an increase at 0.38, then decreases at 31;
the Cond.Q0.05 portfolio consistently shows a standard deviation of 0.35 across both
crises.

During non-crisis times, the Cond.Q0.05 portfolio consistently outperforms the
Uncond.Q0.05 with mean Sortino ratios of 0.189 and 0.099 vs 0.177 and 0.093. This
better performance is accompanied by high variability, as shown by the standard
deviations of 0.641 in the first non-crisis period compared to the unconditional
standard deviations of 0.582. In contrast, the differences remain relatively small in the
second non-crisis period, with 0.371 and 0.380, respectively. In conclusion, the
Cond.Q0.05 technique frequently improves average Sortino ratios across crisis and
crisis intervals. Furthermore, compared to non-crisis periods, it displays a more stable
risk-adjusted profile during a crisis period, emphasising the desirable balance
between performance potential and consistency. Table 3.19 presents the average
out-of-sample portfolio Variance statistics. All the Uncond.Qτ strategies display lower
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mean out-of-sample Variance statistics than Cond.Qτ strategies corresponding to the
same τ value.

3.5 Conclusion

In this Chapter, we extended the semiparametric dynamic portfolio choice under EU
framework proposed by Chen et al. (2016) by incorporating investors’ quantile
preferences, focusing on specific quantiles of the returns distribution rather than just
the mean return. To the best of our knowledge, no prior research has been conducted
to avoid the curse of dimensionality issue on the portfolio choice problem under the
QP setting when the number of conditioning variables is large. We proposed a
methodology for estimating the dynamic portfolio choice under the QP setting. This
estimation can be accomplished in two steps. In the first step, we select the marginal
optimal portfolio weights wj(xj) under QP by maximising the conditional quantile
portfolio problem. This involves, for each j-th conditioning variable Xj,t−1 = xj and a
given τ ∈ (0, 1), we obtain the optimal portfolio weights using quantile regressions. In
the second stage, the optimal portfolios constructed from the individual conditioning
variables are combined by a model averaging approach to obtain an optimal portfolio
based on multiple conditioning variables. This approach is similar in spirit to the
MAMAR method proposed in Chen et al. (2016) but adapted to a quantile setting. We
implemented our approach to construct optimal portfolios under QP with multiple
covariates in two empirical exercises. The first exercise focuses on a small portfolio
allocation problem that comprises six major financial assets such as bonds, gold, and
stock indexes and six conditioning variables. In contrast, the second portfolio
allocation problem considers all the assets traded in the FTSE100 over the last 16
years. The empirical applications demonstrated that the proposed methodology
performs well most of the time in the out-of-sample evaluation. It illustrated that our
proposed quantile method effectively captures the investor’s preference for avoiding
large downside deviations during crises such as the 2007 financial crisis and the
COVID-19 pandemic. It showed that optimal portfolios obtained from the conditional
quantile regression approach outperform the unconditional counterpart portfolio
strategies under different metrics in out-of-sample settings. This indicates that
including conditional information may enhance portfolio strategies and improve
performance under various market conditions.
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Appendix

Variable N Mean Std.Dev. Median Trimmed MAD Min Max Range Skew Kurtosis SE

S&P 500 4027 0.02 1.30 0.07 0.06 0.76 -12.77 10.96 23.72 -0.51 11.80 0.02

NASDAQ 4027 0.04 1.44 0.10 0.08 0.94 -13.15 11.16 24.31 -0.44 7.53 0.02

Dow Jones 4027 0.02 1.23 0.06 0.06 0.73 -13.84 10.76 24.61 -0.47 14.67 0.02

SPDR Gold Shares 4027 0.02 1.12 0.05 0.04 0.83 -9.19 10.70 19.89 -0.25 6.55 0.02

U.S. Aggregate Bond 4027 0.00 0.34 0.01 0.01 0.22 -7.08 3.80 10.88 -2.62 65.21 0.01

Treasury Inflation-Protected Securities 4027 0.00 0.42 0.01 0.01 0.31 -3.00 4.36 7.35 0.04 9.99 0.01

TABLE 3.1: Summary Statistics

Portfolio Mean Std.Dev.

EWP 0.08 0.253
Markowitz 0.035 0.244
Min.Var 0.054 0.238
Uncond.Q0.01 0.082 0.255
Uncond.Q0.05 0.063 0.255
Uncond.Q0.10 0.068 0.245

TABLE 3.2: Ex.1: Mean and Standard Deviation for the unconditional Portfolio out-of-
sample Sharpe Ratios covering the period 2007-2022.

τ value Portfolio Mean Std.Dev.

0.01
Cond.Q0.01 0.071 0.244

Uncond.Q0.01 0.082 0.255

0.05
Cond.Q0.05 0.086 0.249

Uncond.Q0.05 0.063 0.252

0.10
Cond.Q0.10 0.08 0.253

Uncond.Q0.10 0.068 0.245

TABLE 3.3: Mean and Standard Deviation of the Portfolio out-of-sample Sharpe Ratios
based on quantile preference, covering the period 2007-2022
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Portfolio Bootstrapping analysis

Mean Diff.(Bootstrap Estimation) 95% conf. interval p-value

Cond.Q0.01 vs Uncond.Q0.01 -0.0327 [ -0.1197 , 0.0496 ] 0.781

Cond.Q0.05 vs Uncond.Q0.05 0.0958 [ 0.0306 , 0.1706 ] 0.006

Cond.Q0.10 vs Uncond.Q0.10 0.0381 [ -0.0485 , 0.1205 ] 0.181

TABLE 3.4: Ex.1:Bootstrap out of sample mean Sharpe ratio analysis for Cond.Qτ vs
Uncond.Qτ strategy with the same τ value. The null hypothesis: the mean Sharpe
ratios of portfolio Cond.Qτ is less than or equal to that of Uncond.Qτ . If the p-value
is smaller than 5%, there is strong evidence to reject the null hypothesis and conclude

that Cond.Qτ has a significantly higher mean Sharpe ratio than Uncond.Qτ .

τ = 0.01

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.01
0.057 0.044 0.125 0.058

(0.239) (0.250) (0.242) (0.241)

Uncond.Q0.01
0.050 0.061 0.166 0.040

(0.224) (0.265) ( 0.250) (0.258)

τ = 0.05

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.05
0.076 0.062 0.163 0.032

(0.226) (0.258) (0.241) (0.251)

Uncond.Q0.05
0.068 0.045 0.121 0.008

(0.232) (0.259) (0.253) (0.252)

τ = 0.10

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.10
0.054 0.049 0.173 0.034

(0.248) (0.256) (0.239) ( 0.250)

Uncond.Q0.10
0.065 0.062 0.132 -0.006

(0.229) (0.248) (0.243) (0.246)

TABLE 3.5: Ex. 1: Mean and Standard Deviation of the Portfolio out-of-sample Sharpe
Ratios, based on a quantile preference, over different periods.
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Portfolio Mean Std.Dev.

EWP 0.108 0.449
Markowitz 0.486 1.77
Min.Var 0.522 3.24
Uncond.Q0.01 0.13 0.474
Uncond.Q0.05 0.10 0.477
Uncond.Q0.10 0.124 0.521

TABLE 3.6: Ex.1:Mean and Standard Deviation for the unconditional Portfolio out-of-
sample Sortino Ratios covers the period 2007-2022.

τ value Portfolio Mean Std.Dev.

0.01
Cond.Q0.01 0.13 0.527

Uncond.Q0.01 0.13 0.474

0.05
Cond.Q0.05 0.144 0.508

Uncond.Q0.05 0.10 0.477

0.10
Cond.Q0.10 0.175 0.834

Uncond.Q0.10 0.124 0.521

TABLE 3.7: Ex.1:Mean and Standard Deviation of the Portfolio out-of-sample Sortion
Ratios, based on a quantile preference, covers the period 2007-2022.

Portfolio Bootstrapping analysis

Mean Diff.(Bootstrap Estimation) 95% conf. interval p-value

Cond.Q0.01 vs Uncond.Q0.01 0.0054 [ -0.2181 , 0.251 ] 0.507

Cond.Q0.05 vs Uncond.Q0.05 0.2059 [ 0.0061 , 0.431 ] 0.023

Cond.Q0.10 vs Uncond.Q0.10 0.2230 [ -0.0974 , 0.657 ] 0.118

TABLE 3.8: Ex.1:Bootstrap out of sample mean Sortino ratio analysis for Cond.Qτ vs
Uncond.Qτ strategy with the same τ value. The null hypothesis: the mean Sortino
ratios of portfolio Cond.Qτ is less than or equal to that of Uncond.Qτ . If the p-value
is smaller than 5%, there is strong evidence to reject the null hypothesis and conclude

that Cond.Qτ has a significantly higher mean Sortino ratio than Uncond.Qτ .
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τ = 0.01

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.01
0.11 0.12 0.19 0.10

(0.42) (0.60) (0.59) (0.38)

Uncond.Q0.01
0.08 0.11 0.22 0.10

(0.40) (0.50) (0.50) ( 0.46)

τ = 0.05

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.05
0.13 0.12 0.24 0.07

(0.40) (0.56) (0.58) (0.40)

Uncond.Q0.05
0.16 0.08 0.12 0.04

(0.53) (0.46) (0.50) ( 0.40)

τ = 0.10

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.10
0.10 0.09 0.41 0.07

(0.43) (0.54) (1.40) (0.39)

Uncond.Q0.10
0.13 0.11 0.21 0.03

(0.49) (0.47) (0.64) ( 0.46)

TABLE 3.9: Ex.1:Mean and Standard Deviation of the Portfolio out-of-sample Sortino
Ratios, based on a quantile preference, over different periods.

τ value Portfolio Mean of Portfolio Variance

0.01
Cond.Q0.01 0.569

Uncond.Q0.01 0.579

0.05
Cond.Q0.05 0.598

Uncond.Q0.05 0.589

0.10
Cond.Q0.10 0.541

Uncond.Q0.10 0.627

TABLE 3.10: Ex.1:Mean of the Portfolio out-of-sample Variance statistics, based on a
quantile preference, covers the period 2007-2022.
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Portfolio Mean Std.Dev.

EWP 0.064 0.244
Markowitz 0.008 0.224
Min.Var 0.061 0.213
Uncond.Q0.01 0.062 0.226
Uncond.Q0.05 0.06 0.225
Uncond.Q0.10 0.062 0.222

TABLE 3.11: Ex.2: Mean and Standard Deviation for the unconditional Portfolio out-
of-sample Sharpe Ratios covers the period 2007-2022.

τ value Portfolio Mean Std.Dev.

0.01
Cond.Q0.01 0.059 0.231

Uncond.Q0.01 0.062 0.226

0.05
Cond.Q0.05 0.064 0.221

Uncond.Q0.05 0.06 0.225

0.10
Cond.Q0.10 0.065 0.231

Uncond.Q0.10 0.062 0.222

TABLE 3.12: Ex.2:Mean and Standard Deviation of the Portfolio out-of-sample Sharpe
Ratios, based on a quantile preference, covers the period 2007-2022.

Portfolio Bootstrapping analysis

Mean Diff.(Bootstrap Estimation) 95% conf. interval p-value

Cond.Q0.01 vs Uncond.Q0.01 -0.0207 [ -0.0626 , 0.023 ] 0.826

Cond.Q0.05 vs Uncond.Q0.05 0.0250 [ -0.0123 , 0.065 ] 0.103

Cond.Q0.10 vs Uncond.Q0.10 0.0044 [ -0.033 , 0.0402 ] 0.405

TABLE 3.13: Ex.2:Bootstrap out of sample mean Sharpe ratio analysis for Cond.Qτ vs
Uncond.Qτ strategy with the same τ value. The null hypothesis: the mean Sharpe
ratios of portfolio Cond.Qτ is less than or equal to that of Uncond.Qτ . If the p-value
is smaller than 5%, there is strong evidence to reject the null hypothesis and conclude

that Cond.Qτ has a significantly higher mean Sharpe ratio than Uncond.Qτ .
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τ = 0.01

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.01
0.033 0.083 0.046 0.058

(0.231) (0.240) (0.240) (0.220)

Uncond.Q0.01
0.039 0.080 0.066 0.045

(0.225) (0.239) (0.234) (0.210)

τ = 0.05

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.05
0.036 0.086 0.067 0.047

(0.218) (0.227) (0.230) (0.212)

Uncond.Q0.05
0.028 0.085 0.064 0.039

(0.230) (0.232) (0.234) (0.204)

τ = 0.10

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.10
0.037 0.087 0.069 0.049

(0.230) ( 0.247) (0.239) (0.201)

Uncond.Q0.10
0.037 0.090 0.055 0.040

(0.218) (0.233) (0.229) (0.208)

TABLE 3.14: Ex.2:Mean and Standard Deviation of the Portfolio out-of-sample Sharpe
Ratios, based on a quantile preference, over different periods

Portfolio Mean Std.Dev.

EWP 0.121 0.476
Markowitz 0.093 0.503
Min.Var 0.132 0.445
Uncond.Q0.01 0.121 0.497
Uncond.Q0.05 0.113 0.446
Uncond.Q0.10 0.124 0.504

TABLE 3.15: Ex.2:Mean and Standard Deviation for the unconditional Portfolio out-
of-sample Sortino Ratios covers the period 2007-2022
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τ value Portfolio Mean Std.Dev.

0.01
Cond.Q0.01 0.122 0.473

Uncond.Q0.01 0.121 0.497

0.05
Cond.Q0.05 0.125 0.47

Uncond.Q0.05 0.113 0.446

0.10
Cond.Q0.10 0.126 0.469

Uncond.Q0.10 0.124 0.504

TABLE 3.16: Ex.2:Mean and Standard Deviation of the Portfolio out-of-sample Sortion
Ratios, based on a quantile preference, covers the period 2007-2022

Portfolio Bootstrapping analysis

Mean Diff.(Bootstrap Estimation) 95% conf. interval p-value

Cond.Q0.01 vs Uncond.Q0.01 -0.0094 [ -0.1209 , 0.0965 ] 0.573

Cond.Q0.05 vs Uncond.Q0.05 0.0447 [ -0.1462 , 0.1306 ] 0.183

Cond.Q0.10 vs Uncond.Q0.10 -0.0084 [ -0.1268 , 0.0904 ] 0.551

TABLE 3.17: Ex.1:Bootstrap out of sample mean Sortino ratio analysis for Cond.Qτ vs
Uncond.Qτ strategy with the same τ value. The null hypothesis: the mean Sortino
ratios of portfolio Cond.Qτ is less than or equal to that of Uncond.Qτ . If the p-value
is smaller than 5%, there is strong evidence to reject the null hypothesis and conclude

that Cond.Qτ has a significantly higher mean Sortino ratio than Uncond.Qτ .
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τ = 0.01

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.01
0.086 0.186 0.074 0.117

(0.398) (0.618) (0.377) (0.394)

Uncond.Q0.01
0.086 0.183 0.097 0.086

( 0.376) (0.693) (0.381) (0.355)

τ = 0.05

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.05
0.084 0.189 0.099 0.090

(0.356) (0.641) (0.371) (0.353)

Uncond.Q0.05
0.077 0.177 0.093 0.070

(0.389) (0.582) (0.380) (0.318)

τ = 0.10

Portfolio 2007-2010 2011-2015 2016-2019 2020-2022

Cond.Q0.10
0.094 0.186 0.101 0.090

(0.413) (0.617) (0.385) ( 0.345)

Uncond.Q0.10
0.086 0.212 0.074 0.077

( 0.380) ( 0.721) (0.348) (0.338)

TABLE 3.18: Ex.2:Mean and Standard Deviation of the Portfolio out-of-sample Sortino
Ratios, based on a quantile preference, over different time periods

τ value Portfolio Mean of Portfolio Variance

0.01
Cond.Q0.01 2.87

Uncond.Q0.01 2.76

0.05
Cond.Q0.05 3.85

Uncond.Q0.05 3.58

0.10
Cond.Q0.10 2.28

Uncond.Q0.10 1.64

TABLE 3.19: Ex.2:Mean of the Portfolio out-of-sample Variance statistics, based on a
quantile preference, covers the period 2007-2022
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Comparison between the Sharpe and Sortino ratios of the conditional
quantile method, considering various γ values that align with different τ

values.

Portfolio Mean and Standard Deviation
γ = 2 γ = 5 γ = 10

Cond.Q0.01
0.071 0.067 0.076

(0.244) (0.231) (0.242)

Cond.Q0.05
0.086 0.082 0.083

(0.249) ( 0.251 ) (0.247 )

Cond.Q0.10
0.080 0.075 0.079

(0.253 ) ( 0.249) (0.253)

TABLE 3.20: Ex.1: Mean and (Standard Deviation) of the Portfolio out-of-sample
Sharpe ratio, covering the period 2007-2022 for different γ values of τ = 0.01, 0.05, 0.10

respectively.

Portfolio Mean and Standard Deviation
γ = 2 γ = 5 γ = 10

Cond.Q0.01
0.130 0.104 0.119

(0.527) (0.450) (0.490)

Cond.Q0.05
0.144 0.169 0.146

(0.508) ( 0.649) (0.563)

Cond.Q0.10
0.175 0.158 0.135

(0.834) (0.715) (0.520)

TABLE 3.21: Ex.1: Mean and (Standard Deviation) of the Portfolio out-of-sample
Sortino ratio, covering the period 2007-2022 for different γ values of τ = 0.01, 0.05, 0.10

respectively.
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Portfolio Mean and Standard Deviation
γ = 2 γ = 5 γ = 10

Cond.Q0.01
0.0587 0.0594 0.0631
( 0.231) (0.222) (0.229)

Cond.Q0.05
0.0641 0.0667 0.0644
(0.221) (0.218) ( 0.223)

Cond.Q0.10
0.0649 0.0585 0.0615
(0.231 ) (0.229) (0.224)

TABLE 3.22: Ex.2: Mean and (Standard Deviation) of the Portfolio out-of-sample
Sharpe ratio, covering the period 2007-2022 for different γ values of τ = 0.01, 0.05, 0.10

respectively.

Portfolio Mean and Standard Deviation
γ = 2 γ = 5 γ = 10

Cond.Q0.01
0.122 0.129 0.121

(0.473) (0.512) ( 0.437)

Cond.Q0.05
0.125 0.118 0.127

(0.470) (0.414) (0.482)

Cond.Q0.10
0.126 0.140 0.147

(0.469) (0.599) (0.739)

TABLE 3.23: Ex.2: Mean and (Standard Deviation) of the Portfolio out-of-sample
Sortino ratio, covering the period 2007-2022 for different γ values of τ = 0.01, 0.05, 0.10

respectively.
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FIGURE 3.3: Ex.1:Daily return of the six assets: (S&P 500 = GSPC, NASDAQ = IXIC,
Dow Jones = DJI, SPDR Gold Shares = GLD, U.S. Aggregate Bond = AGG, Treasury

Inflation-Protected Securities = TIP)

FIGURE 3.4: Ex.1:Nonparametric kernel estimates of the unconditional densities of
daily log-returns on the six assets
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(A) 2007-2010 (B) 2011-2015

(C) 2016-2019 (D) 2020-2022

FIGURE 3.5: Ex1.The Dynamics of Portfolio Weights in Cond.Q0.05 strategy over 2007
to 2022

FIGURE 3.6: Ex1. Comparison of Sharpe Ratios for Conditional Quantile Portfolio
Strategies with Different Risk Levels over 2007-2022
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FIGURE 3.7: Ex1. Comparison of Sortion Ratios for Conditional Quantile Portfolio
Strategies with Different Risk Levels over 2007-2022

FIGURE 3.8: Ex2. Comparison of Sharpe Ratios across Portfolios2007-2022
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FIGURE 3.9: Ex2. Comparison of Sortino Ratios across Portfolios 2007-2022

FIGURE 3.10: Ex2. Comparison of Sharpe Ratios for Conditional Quantile Portfolio
Strategies with Different Risk Levels over 2007-2022
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FIGURE 3.11: Ex2. Comparison of Sortion Ratios for Conditional Quantile Portfolio
Strategies with Different Risk Levels over 2007-2022
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Chapter 4

Simplifying the Complexity:
Backtesting of Systemic Risk
Measures

4.1 Introduction

Crises such as the US subprime mortgage in 2008–2009 and the COVID-19 pandemic
in 2020 have brought attention to the interdependence within the financial system
because losses among these institutions naturally spread in times of distress, exposing
the entire financial system to vulnerability. Financial regulations, like the Basel capital
requirements, aim to constrain the risk associated with each institution when
considered in isolation. Consequently, while individual risks might be effectively
managed under regular conditions, the system as a whole is sometimes induced to be
fragile and vulnerable to significant macroeconomic shocks. Systemic risk is the
potential for an extremely unfavourable event at an individual institution or a set of
interconnected institutions to trigger a domino effect. It may lead to serious instability
or the collapse of a whole financial system. The European Central Bank (ECB) defines
systemic risk as ”a risk of financial instability so widespread that it impairs the
functioning of a financial system to the point where economic growth and welfare
suffer materially European Central Bank (ECB) (2010) ”. These crises have also
underscored the significance of managing and measuring systemic risk in the financial
sector rather than solely regulating individual financial institutions to protect overall
financial stability. Prior to that, risk assessment mainly centred on the marginal
distribution of losses, and the two standard metrics for assessing firm-level risk were
the Value at Risk (VaR) and Expected Shortfall (ES). These measures aim to assess the
potential loss a firm could experience during an extreme event. Regarding VaR, the
seminal work by Artzner et al. (1999) establishes a robust axiomatic framework for
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risk measures. VaR represents the maximum loss (negative log return) that a firm
could experience with a confidence level of 1 − α, meaning that the probability of the
loss exceeding this VaR value is α. The parameter α is commonly set at 1% or 5%. For
instance, when α is 5%, VaR indicates the maximum loss the firm could have with 95%
confidence. The concept of VaR was soon extended to ES by Rockafellar et al. (2000)
and Acerbi and Tasche (2002), among others. ES provides a more comprehensive risk
measure by considering the expected value of losses beyond the VaR threshold. ES
calculates the average loss (negative log return) given that the losses exceed the VaR at
a specified confidence level α. Mathematically, it is defined as: ESα = E[X|X > VaRα]

,where X represents the loss (negative log return).
Over the last decade and as a consequence of the crises, systemic risk has been an
active area of research, with a substantial amount of literature focusing on measuring
systemic risk. The primary objective of a systemic risk measure is to offer a
comprehensive assessment and understanding of vulnerabilities present in the
financial system. It aims to quantify these risks and contribute to creating policies and
regulations that boost stability, thereby diminishing the probability of systemic crises.
Two alternative perspectives are involved in addressing the measurement of systemic
risk: quantifying systemic risk for the entire financial sector and determining the
impact of each institution on the overall systemic risk to understand how the distress
of a particular institution could spread through the financial system, contributing to
broader risks. Researchers have developed and proposed a variety of methodologies
and models to examine the two perspectives, the comprehensive level of risk within
the financial system and the marginal systemic risk of individual institutions, see(
Giesecke and Kim (2011), Acharya et al. (2017) Pedersen et al. (2010) Brownlees and
Engle (2017), Huang et al. (2009), Tobias and Brunnermeier (2016), Feinstein et al.
(2017) and others).
In this Chapter, we reexamine the forecasting of two significant systemic risk
measures. We explore the risk measures introduced first by Tobias and Brunnermeier
(2016) Conditional value at risk (CoVaR) and Conditional Expected Shortfall (CoES).
These measures, designed to assess the interdependencies among individual firms
and the overall market, are extensions of the traditional VaR and ES in the context of
systemic risk. If the losses of interest are represented by Y and the losses of a reference
position are denoted by X, then the VaR(ES) of Y at a certain confidence level α, given
that a reference position X is in distress (undergoing an extreme adverse event), is
represented by CoVaRα|β(Y|X) (CoESα|β(Y|X)), where the distress event for X is
defined as X ≥ VaRβ(X). Estimating and forecasting systemic risk measures such as
CoVaR and CoES has become a critical problem as the need for systemic risk
prevention in financial institutions becomes more widely recognised. Forecasting the
above-mentioned systemic risk measures requires appropriate models for the
marginal distribution of X and Y and their dependence structure. It involves
developing models that accurately capture the individual behaviour of variables X



4.1. Introduction 103

and Y and their dependence structure. Although correlation coefficients have been
widely used to measure dependency, they fail to capture crucial tail behaviour of the
joint probability distributions( see, e.g.,Embrechts (1999) and Embrechts et al. (2002)).
Consequently, the literature has introduced a variety of modelling approaches to
address these requirements (see Girardi and Ergün (2013)), Calabrese and Osmetti
(2019), Bernardi and Catania (2019),Oh and Patton (2018),Reboredo and Ugolini
(2015),Mainik and Schaanning (2014), Bernardi et al. (2017) )
Given the significance of systemic risk measures, developing accurate statistical
assessment tools for evaluating different models’ predictive performance becomes
crucial. Introducing such tools, known as backtesting in finance, is the core objective
of this Chapter. Backtesting aims to address two main questions. The initial question
is how well the forecasts of risk measures align with the observed losses in the
sequence. Hence, backtesting is implemented with the aim of examining the accuracy
of tail risk forecasts, which is similar to model validation in statistics. Fissler and Hoga
(2023) and Fissler et al. (2015) call this backtesting approach as ”traditional backtests”.
Escanciano and Olmo (2010) emphasises that the core of backtesting involves
evaluating how actual outcomes align with risk measures generated by a model.
Due to the existence of multiple alternative risk forecasting models, the second
primary question that backtesting tries to answer is which prediction model for risk
measures demonstrates superior predictive accuracy relative to a set of competitors.
Therefore, backtesting is utilised to make forecast comparisons and model ranking,
and this is similar to the model selection procedure in statistics, known as comparative
backtesting. In the light of the second question under comparative backtesting, Fissler
and Hoga (2023) present a valuable framework for comparing risk forecasts by
introducing the concept of multi-objective elicitability, which operates with bivariate
scores S mapping to R2 equipped with the lexicographic order. However, the
lexicographic order approach employed in the One and a Half-Sided tests proposed
by Fissler and Hoga (2023) imposes a constraint on the evaluation and comparison of
risk measures. Specifically, the assessment is confined to either VaR or the systemic
risk measure (SR) contingent upon the equality of VaR across the models under
consideration. This indicates that Fissler and Hoga (2023) approach fails to assess both
risk measures on an equal footing. To overcome this limitation, our contributions in
this chapter are as follows: First, we propose an alternative approach by introducing a
univariate score function that combines the marginal/conditional score functions for
forecasting VaR and SR measure. By defining our score function as the summation of
these individual score functions, we ensure an equitable assessment of both risk
measures without the need to prioritize one over the other based on the equality of
VaR across models, which goes beyond the backtesting implemented by Fissler and
Hoga (2023). Moreover, we examine the risk of employing identification functions that
are not strictly defined for backtesting by conducting a comparative analysis of our
identification function along with the one-dimensional identification function
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introduced by Banulescu-Radu et al. (2021) in addition to the two-dimensional
identification function introduced by Fissler and Hoga (2023). Specifically, we
evaluate the power of the three identification functions in identifying misspecified
systemic risk forecasts under various sample sizes and distributional scenarios. A
misspecified risk measure is defined as a measure that fails to capture the true tail risk
dynamics over time accurately. Through our analysis, we demonstrate the superiority
of our proposed identification function compared to Banulescu-Radu et al. (2021)
identification function. In Particular, the backtest proposed by Banulescu-Radu et al.
(2021) exhibits a complete loss of power in distinguishing between correct and
misspecified forecasts. In contrast, our identification function, aligning with Fissler
and Hoga (2023) identification function, successfully identifies misspecified forecasts
almost with certainty (100%) across different distributional assumptions and sample
sizes. These results underscore the power of our proposed identification function in
detecting misspecified systemic risk forecasts, outperforming Banulescu-Radu et al.
(2021) method. Furthermore, through a comprehensive simulation analysis, we
illustrate the elicitability of our proposed score function. Moreover, we show through
a Monte Carlo simulation the following: Firstly, the power of our tests increases
significantly as the sample size (n) grows larger. Secondly, our tests show a good size
control with a rejection frequency close to a 5% significance level, even for a small
sample size (n = 500). Thirdly, detecting differences in the predictive ability of two
models becomes easier when considering scenarios where both VaR and SR forecasts
are accurate for one model while being misspecified for the other. Fourth, despite
introducing only a small difference in the predictive accuracy of the VaR forecasts, our
test has the power to detect this differentiation, even in cases where the systemic risk
forecasts demonstrate a comparable performance across models. This finding
highlighted the good sensitivity of our tests to detect marginal differences in model
forecasting. Furthermore, across the various scenarios examined in this study, our tests
generally demonstrate slightly higher power compared to those proposed by Fissler
and Hoga (2023) in evaluations incorporating both (VaR + CoVaR) and (VaR + CoVaR
+ CoES). Finally, comparisons involving CoVaR and CoES exhibit higher power than
those depending on CoVaR only, potentially attributed to the richer informational
content offered by the CoES component, increasing the overall power of the analysis.
The Chapter is constructed as follows: In Section (4.2), we introduce the systemic risk
measures CoVaR and CoES. Section (4.3) introduces backtesting systemic risk
measures with a review of Fissler and Hoga (2023) multi-objective score function and
the alternative proposed univariate score function with also extending the univariate
score functions to include weights. Furthermore, in (4.3.3.3), we focus on examining
the risks of employing non-strict identification functions for backtesting systemic risk
measures. Specifically, we conduct a comparative analysis of our identification
function along with the one-dimensional identification function introduced by
Banulescu-Radu et al. (2021) in addition to the two-dimensional identification
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function introduced by Fissler and Hoga (2023). In addition, in (4.3.3.4), we
investigate the elicitable property of our proposed score function, S(VaR+SR) where SR
represents the systemic risk, through a comprehensive simulation study. Monte Carlo
simulations are illustrated in (4.4.1), where we evaluate the performance of the
proposed backtesting procedure under a more realistic and dynamic setting. The
generated data captures the potential heterogeneity and dynamic dependencies
commonly observed in financial time series data. We apply our proposed test to the
forecasts of (VaR, CoVaR) and (VaR, CoVaR, CoES) obtained from a bivariate
GARCH(1,1) model with a t-copula for innovations with time varying correlation ρt

follows the Generalized Autoregressive Score (GAS) model. We focus on
one-step-ahead forecasts throughout our analysis. In (4.4.2), an empirical application
focuses on the daily log losses of the DAX 30 index, using the daily log losses of the
S&P 500 index as a reference variable. The study compares the systemic risk forecasts
obtained from two different copula models: a benchmark Gaussian copula model and
a t-copula model. In both copula models, the correlation parameter, which captures
the dependence structure between the two indices, is modelled using a dynamic
approach known as the generalized autoregressive score (GAS) framework, as
proposed by Creal et al. (2013). Our findings indicate that the t-copula exhibits
superior predictive performance, supported by p-values of 0.005 for (VaR,CoVaR) and
0.0204 for (VaR,CoVaR,CoES), aligning with its popularity in empirical studies. The
Chapter concluded in Section (4.6).

4.2 Systemic Risk Measures CoVaR and CoES

The fragility of the financial system, highlighted by financial crises, underscores the
importance of analyzing the interdependence among the assets or liabilities of various
financial institutions in crisis analysis (see Embrechts et al. (2005), Kaas et al. (2009),
Goovaerts et al. (2011), Asimit and Gerrard (2016), Gupta et al. (2021), Dhaene et al.
(2022)). Classical risk measures, such as VaR and ES, were ineffective in assessing
global contagion during several financial crises. Since VaR only focuses on a single
institution, many scholars believe that this well-known classical risk metric cannot
adequately represent the systemic nature of risk. According to Danielsson et al. (2011),
VaR does not view an institution as a component of a complex system capable of
generating new risks. Therefore, several researchers have proposed various empirical
tools aimed at better measuring systemic risk, and numerous studies provide in-depth
analysis of systemic risk and quantify it using measures such as conditional
value-at-risk (CoVaR)1, coexpected shortfall(CoES), and others. According to Tobias

1In some literature, conditional value-at-risk (CVaR), is defined as expected shortfall (ES) as discussed
in this chapter (see Rockafellar and Uryasev (2002), Sarykalin et al. (2008), Noyan and Rudolf (2013)).
However, in contrast to CVaR, conditional value at risk, or CoVaR for short, is presented in this chapter as
a systemic risk measure following Tobias and Brunnermeier (2016) and Girardi and Ergün (2013).
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and Brunnermeier (2016), CoVaRi|j is defined as the value at risk (VaR) of a financial
institution i conditioning on another institution j being at its VaR exactly. Girardi and
Ergün (2013) extend the definition of CoVaR introduced by Tobias and Brunnermeier
(2016) by permitting the financial distress event for institution j to occur when its
return falls at or below its VaR (Rj ≤ VaRj), instead of exactly at its VaR (Rj = VaRj).
While CoVaR is formulated based on conditional probability and the VaR of the
system, CoES focuses on conditional expectations, emphasizing the tail of the loss
distribution and the expected shortfall (see Tobias and Brunnermeier (2016) and
Mainik and Schaanning (2014) ). In particular, the tail of a distribution represents
extreme events, and CoES measures the average of losses beyond a certain threshold
when an extreme event happens. We now formally define the two systemic risk
measures employed in the chapter.

Definition (CoVaR and CoES )

Given significance levels α ∈ (0, 1), β ∈ [0, 1),
(i) CoVaR is defined by following Girardi and Tolga Ergün (2013) and Banulescu-Radu
et al. (2021) as:

CoVaRα|β(Y | X) := CoVaRα|β (FX,Y) := VaRα

(
FY|X≥VaRβ(X)

)
, (4.1)

here FY|X≥VaRβ(X) = P
{

Y ≤ · | X ≥ VaRβ(X)
}

. Throughout this chapter, we follow the
sign convention used by Fissler and Hoga (2023), where positive values represent
losses and negative values represent gains for both the position of interest (Y) and the
reference position (X). For special cases, include β = 0, it simplifies to
CoVaRα|0(Y | X) := VaRα(Y), and if β = α it simplifies to
CoVaRα(Y | X) = CoVaRα|α(Y | X). This equation denotes the VaRα of the distribution
of Y conditional on X being greater than or equal to the VaR at a specific level β.

(ii) CoES is defined as:

CoESα|β(Y | X) := CoESα|β (FX,Y) :=
1

1 − α

∫ 1

α
CoVaRγ|β(Y | X)dγ. (4.2)

For continuous FX,Y, CoES simplifies to the conditional expectation of Y given that Y is
greater than or equal to the conditional CoVaR and X is greater than or equal to its
β-quantile: CoESα|β(Y | X) = E

[
Y | Y ≥ CoVaRα|β(Y | X), X ≥ VaRβ(X)

]
. Special

cases include CoESα|0(Y | X) = ESα(Y), where β = 0, and
CoESα(Y | X) = CoESα | α(Y | X) if β = α.

Remark. The definition of CoVaR in Eq(4.1) is proposed by Girardi and Ergün (2013)
and Banulescu-Radu et al. (2021). Tobias and Brunnermeier (2016) defines CoVaR as
CoVaRβ, representing the β-quantile of the conditional distribution function
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FY
(
· | X = VaRβ(X)

)
= P

{
Y ≤ · | X = VaRβ(X)

}
. This definition captures the idea of

measuring the risk of Y under the specific condition that X is precisely at
its-β−quantile. However, Tobias and Brunnermeier (2016) definition has some
limitations. First, if FX is continuous, the probability associated with the event
{X = VaRβ(X)} can be zero because the probability of any specific point is zero in a
continuous random variable. Conditioning on a specific point is challenging in such
continuous distributions where the probability of a single point is zero. Secondly, it
fails to completely capture the tail risk of FX.

4.3 Backtesting Systemic Risk Measures

Considering the significance of systemic risk measures, it becomes crucial to develop
accurate statistical evaluations for evaluating the accuracy of different models’
forecasting, such tools known in finance as backtests. Two primary goals are
considered for backtesting. First, we aim to measure/test if the models’ forecasts are
accurate, this process is similar to model validation in statistics. Fissler and Hoga
(2023) and Fissler et al. (2015) call this backtesting approach as ”traditional backtests”.
Jorion (2007) defined the backtesting approach aligns with this goal as a formal
statistical tool that compares actual losses (realized outcomes) with the predicted loss
values generated by risk prediction models. Given that the actual value of the risk
measure cannot be directly observed, making these comparisons often relies on
violations. For example, in the context of VaR, we consider a violation when the
realized portfolio return falls below the forecasted VaR. Escanciano and Olmo (2010)
emphasize that the core of backtesting involves evaluating how actual outcomes align
with risk measures generated by a model. Hence, the natural question this backtesting
deals with is deciding how well the forecasts of risk measures align with the observed
losses in the sequence.
Due to the existence of multiple alternative risk prediction models, the second
primary purpose of backtesting lies in the necessity of forecast comparison and
ranking, and this similar to model selection procedure in statistics. This approach of
backtesting is known as comparative backtesting. Here, we deal with the question of
which prediction model for risk measures demonstrates superior predictive accuracy
relative to the others. In the following subsection, we introduce basic definitions of
properties that are important for ranking the forecasts and forecast validation.

4.3.1 Basic Definitions

We introduce foundational concepts that drawing from the decision-theoretic
framework illustrated and discussed by Osband (1985), Lambert et al. (2008), Gneiting
(2011), Emmer et al. (2015), as well as Fissler and Ziegel (2016, 2019) and Fissler and
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Hoga (2023). The set A, a subset of Rk, represents the entire domain of potential
forecasts or predictions. The observation domain is specified as Rd. A functional T is
considered, which takes a class of distributions F (a subset of the distributions on Rd)
as input and produces an output in A. For simplicity, the discussion is restricted to
single-valued functionals.
Definition of Integrability. A function a : Rd → R is said to be F -integrable if the
integral of the absolute value of a with respect to any distribution F in F is finite. For
such a function a, an induced map ā : F → R can be defined as ā(F) =

∫
a(y)dF(y).

Similarly, a function g : A× Rd → R is called F -integrable if g(r, ·) is F -integrable for
all r in A.
Definition of Consistent Scoring Function. An F -integrable function
S : A× Rd → R is termed an F -consistent scoring function for T if the following
condition holds: For any distribution F in F and any r in A, the expected value of
S(T(F), F) with respect to F is less than or equal to the expected value of S(r, F) with
respect to F. If, additionally, equality holds only when T(F) = r, then S is called a
strictly F -consistent scoring function for T.
Definition of Elicitability. The functional T is said to be elicitable on F if there exists
a strictly F -consistent scoring function for T.
Definition of Identification Function An F -integrable function V : A× Rd → Rm is
called an F -identification function for T if the expected value of V(T(F), F) with
respect to F is equal to the zero vector for all F in F . If, furthermore, for any F in F
and any r in A, the expected value of V(r, F) with respect to F being equal to the zero
vector implies that T(F) = r, then V is termed a strict F -identification function for T.
Definition of Identifiability. The functional T is identifiable on F if there exists a
strict F -identification function for T.
Definition of Conditional Elicitability by Fissler and Hoga (2023). Let us consider
two functionals, T1 and T2, where T1 maps from a class of distributions F to an action
domain A1, and T2 maps from F to another action domain A2. The functional T2 is
said to be conditionally elicitable with respect to T1 on F if the following conditions
hold:
1- The functional T1 is elicitable on F .
2- For any specific value r1 in A1, the functional T2 is elicitable on the subset of
distributions Fr1 ⊂ F , where Fr1 is defined as the set of distributions F in F such that
T1(F) = r1.

Definition of Conditional Identifiabilit by Fissler and Hoga (2023). The functional T2

is said to be conditionally identifiable with respect to T1 on F if the following
conditions hold:
1- The functional T1 is identifiable on F .
2- For any specific value r1 in A1, the functional T2 is identifiable on the subset of
distributions Fr1 ⊂ F , where Fr1 is defined as the set of distributions F in F such that
T1(F) = r1.
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For the purpose of comparative backtesting of systemic risk measures, the Diebold
and Mariano (1995) (DM) test is a widely used statistical test in econometrics and
finance in forecast comparisons. This statistical test uses formal hypothesis tests to
address sampling uncertainty in forecast comparisons. In particular, the DM test
compares the expected loss differential between two competing forecasts. It relies on
scalar scoring functions, which provide a single numerical value summarizing the
forecast errors. A significant result reflecting the power of the DM test in assessing
different models’ accuracy comes from West (1996). This study shows the asymptotic
validity of DM when applied to forecast errors based on estimated residuals. This
allows for a more practical application of the DM test in situations where true
residuals cannot be directly observed and must be estimated from the available data.
In the following subsection, we will introduce Fissler and Hoga (2023) methodology
that adjusts the DM test to be implemented in the multi-objective score function.

4.3.2 Review of Multi-objective Score Function Backtesting

The DM tests introduce formal hypothesis tests for addressing the challenges
associated with sampling uncertainty in forecast comparisons. These tests are
frequently employed in empirical forecast evaluations and continue to be explored in
theoretical research. Following the principle of strict consistency, DM tests have
traditionally relied on scalar scoring functions. Fissler and Hoga (2023) methodology
adjusts the DM tests to be implemented for the proposed multi-objective elicitability
scores equipped with the lexicographic order to compare systemic risk forecasts.
Utilising the lexicographic order on R2 enables the comparison of all forecasts,
including those that may be misspecified; throughout the chapter, the term a
”misspecified risk measure” is a measure that is not able to capture the true tail risk
dynamically over time. Fissler and Hoga (2023) introduce and establish the concept of
conditional identifiability and conditional elicitability of CoVaRα|β(Y|X) and
(CoVaRα|β(Y|X), CoESα|β(Y|X))withVaRbeta(X), respectively.

The foundation of Fissler and Hoga (2023) methodology lies in the derivation of
multi-objective scores, denoted as S = (S1, S2)

′, through Theorem 4.2 in their paper
which will be represented in the below subsection.

4.3.2.1 Definition of Fissler and Hoga (2023) Multi-Objective Scores and
Identification Functions

We introduce the multi-objective scores proposed by Fissler and Hoga (2023), which
are based on the lexicographic order ⪯lex on R2 as outlined in their Theorem 4.2.
These scores consist of three main components:
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1- VaR Score Defined as:

SVaR(v, (x, y)) =(1{x ≤ v} − β)h(v)

− 1{x ≤ v}h(x) + aVaR(x, y)
(4.3)

where, 1x ≤ v is the indicator function, h : R → R is strictly increasing, and aVaR(x, y)
is a term chosen based on integrability and sign considerations.
2- (VaR, CoVaR) Score. Represented as:

S(VaR,CoVaR)((v, c), (x, y)) =

(
SVaR(v, (x, y))

SCoVaR
v (c, (x, y))

)
,

SCoVaR
v (c, (x, y)) = 1{x > v}[(1{y ≤ c} − α)g(c)

−1{y ≤ c}g(y) + a(y)]

+aCoVaR(x, y),

(4.4)

where g : R → R is strictly increasing and SCoVaR
v is F integrable for all v ∈ R.

3- (VaR, CoVaR, CoES ) Score. Given by:

S(VaR,CoVaR,CoES)((v, c, e), (x, y)) =

(
SVaR(v, (x, y))

S(CoVaR,CoES)
v ((c, e), (x, y))

)
,

S(CoVaR,CoES)
v ((c, e), (x, y)) = 1{x > v}

[
(1{y ≤ c} − α)g(c)− 1{y ≤ c}g(y)

+ ϕ′(e)
(

e − 1
1 − α

(y1{y > c}+ c(1{y ≤ c} − α))

)

− ϕ(e) + a(y)
]
+ aCoES(x, y),

(4.5)

Where ϕ : R → R is strictly convex with a subgradient ϕ′ < 0.
The functions aVaR(x, y), aCoVaR(x, y), and aCoES(x, y) are selected based on the
integrability of the scoring functions and their respective signs.

Moreover, we present the identification functions proposed by Fissler and Hoga (2023)
as illustrated in Theorem S.3.1. in their supplementary materials.

1- VaR Strict Identification Function. Defined as:

V(VaR)(v, (x, y)) = 1{x ≤ v} − β. (4.6)

2- (VaR,CoVaR) Strict Identification Function. Given by:

V (VaR,CoVaR)((v, c), (x, y)) =

(
1{x ≤ v} − β

1{x > v}[1{y ≤ c} − α]

)
. (4.7)
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3- (VaR, CoVaR, CoES) Strict Identification Function. Represented as:

V (VaR,CoVaR,CoES)((v, c, e), (x, y)) =




1{x ≤ v} − β

1{x > v}[1{y ≤ c} − α]

1{x > v}
[
e − 1

1−α (y1{y > c}+ c(1{y ≤ c} − α))
]


 .

(4.8)

In the following subsection, we present the implementation of comparative backtests
with the multi-objective scores as proposed by Fissler and Hoga (2023).

4.3.2.2 Diebold–Mariano tests for multi-objective scores

Two-Sided Tests

Consider two sequences of forecasts {r1,t}t=1,...,n and {r2,t}t=1,...,n as the series of
generated by the models and S = (S1, S2)

′ denote one of the multi-objective scores
provided earlier. For instance, if S = S(VaR,CoVaR,CoES), then
ri,t = (V̂aRi,t, ĈoVaRi,t, ĈoESi,t) for i = 1, 2. These scores are used to define bivariate
score differences dt = (d1t, d2t)

′ = S (r1,t, (Xt, Yt))− S (r2,t, (Xt, Yt)) at each time t,
capturing the forecast differences between the competing models, where (Xt, Yt)t=1,...,n

represent the verifying observations. Fissler and Hoga (2023) propose a two-sided test
to assess whether both forecast models predict equally well on average. The null
hypothesis is given by H=

0 : E
[
dn

]
= 0 for all n = 1, 2, . . . , where

dn := (d1n, d2n)′ := 1
n ∑n

t=1 dt. The test statistic for the two-sided test is defined as:

Tn = nd
′
nΩ̂

−1
n dn,

where Ω̂n is a consistent estimator of the variance-covariance matrix of
√

ndn under
the null hypothesis. Under suitable regularity conditions, Tn converges in distribution
to a chi-square distribution with two degrees of freedom as n → ∞.

One and a Half-Sided Tests

Fissler and Hoga (2023) introduce the One and a Half-sided tests to assess the
superiority of risk forecasts {r2,t}t=1,...,n over benchmark forecasts {r1,t}t=1,...,n. The
null hypothesis under consideration takes the form:

H⪯lex
0 : E

[
d̄1n
]
= 0 and E

[
d̄2n
]
≤ 0 for all n = 1, 2, . . . . (4.9)
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which states that the expected average score difference for the first component (VaR) is
zero, and the expected average score difference for the second component (e.g., CoVaR
or CoES) is less than or equal to zero.

To test the null hypothesis H⪯lex
0 , Fissler and Hoga (2023) proposed the the following

test statistic:
T OS

n =n
(
d̄1n, max

{
d̄2n, (σ̂12,n/σ̂11,n) d̄1n

})
Ω̂

−1
n(

d̄1n

max
{

d̄2n, (σ̂12,n/σ̂11,n) d̄1n
}
)

.

Here, Ω̂n is an estimator of the variance-covariance matrix of the average score
differences, defined as:

Ω̂n =

(
σ̂11,n σ̂12,n

σ̂12,n σ̂22,n

)
=

1
n

n

∑
t=1

(
dt − dn

) (
dt − dn

)′

+
1
n

mn

∑
h=1

wn,h

n

∑
t=h+1

[(
dt − dn

) (
dt−h − dn

)′
+
(

dt−h − dn

) (
dt − dn

)′]
,

(4.10)

where, mn represents a sequence of integers that tends to infinity as n increases and
wn,h is a uniformly bounded scalar triangular array, with wn,h approaching 1 as n
increases for all h = 1, . . . , mn.

Although the One and a Half-Sided tests provide a useful framework for comparing
risk forecasts through multi-objective scores, their methodology suffers from a
significant limitation. The use of a lexicographic order operates under the assumption
that the expected value of the first risk measure, VaR, denoted as E[d̄1n], is consistent
across the comparative forecasts. This constraint implies that the evaluation and
comparison of the risk measures cannot be conducted on an equal footing. Instead, the
assessment is restricted to either VaR or SR contingent upon the equality of VaR across
the models under consideration.
To address this limitation, we propose an alternative approach that goes beyond the
tests implemented by Fissler and Hoga (2023). Our approach aims to assess both risk
measures, VaR and SR, on an equitable basis unlike the lexicographic order method,
which evaluates either VaR or SR depending on the equality of VaR across models. In
the following subsection, we introduce our proposed alternative approach.

4.3.3 Alternative Univariate Backtesting Systemic Risk Forecasts

In response to the limitation inherent in the Diebold-Mariano (DM) tests utilising
two-dimensional multi-objective scores proposed by Fissler and Hoga (2023), in
particular focusing on systemic risk forecasts with the assumption of the equality of
VaRs forecasts, we propose an alternative score function that is designed to address a
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more comprehensive evaluation of risk models by considering both risk measures
forecasting, and it is one-dimensional score function. Our proposed score function for
two risk measures S(r1, r2, y) is defined as the sum of two individual score functions:

S(r1, r2, y) = S1(r1, y) + S2,r1(r2, y), (4.11)

Here, S1(r1, y) represents the marginal score function for the first risk measure, and
S2,r1(r2, y) represents the conditional score function for the second risk measure given
the realisation of the first risk measure r1. This score function is designed to provide a
joint assessment of forecasts for both risk measures, considering both individual
forecasts and their relationship with each other.
Most existing studies in the literature focus on evaluating either VaR or SR measures
individually. In contrast, our approach introduces a novel univariate score function,
S(VaR+SR), that combines VaR and systemic risk measures for a comprehensive
evaluation of risk forecasts. By incorporating both VaR and systemic risk measures
into a single score function, we aimed to provide a more holistic view of risk
assessment in the financial sector. While the existing literature primarily concentrates
on individual risk measures, our work explores the potential benefits of jointly
assessing VaR and systemic risk measures. We believe that this joint assessment
framework offers a unique perspective on risk forecasting and highlights the
importance of considering multiple risk criteria collectively in risk management
practices. Our objectives and methodological approach differ from studies focusing
solely on individual risk measures, and we believe that our work contributes to the
literature by proposing this novel framework for joint risk assessment, which has
received limited attention in the existing literature. The novelty of our approach
suggests the potential for further research in this direction, as the integration of
multiple risk criteria is an area that warrants further exploration and investigation.

After introducing the general score function S(r1, r2, y), we now introduce our score
function S(VaR+CoVaR)((v, c), (x, y)) for the joint assessment of forecasts for two risk
measures: VaR and CoVaR, which will be defined as follows:

S(VaR+CoVaR)((v, c), (x, y)) = SVaR(v, (x, y)) + SCoVaR
v (c, (x, y)) (4.12)

Here, v represents VaR forecasts, and c represents CoVaR forecasts. The first
component SVaR(v, (x, y)) represents the scoring function associated with the first risk
measure VaR. This scoring function independently assesses the accuracy of the VaR
forecast. The second component SCoVaR

v (c, (x, y)) is associated with the second risk
measure component CoVaR given the realisation of VaR, where the marginal scores
SVaR(v, (x, y)) and SCoVaR

v (c, (x, y)) are defined in (4.3) and (4.4).
As illustrated from (4.12), our proposed univariate score function is formulated to
ensure that both risk measures, VaR and CoVaR, are assessed concurrently and on an
equal footing without the need to prioritize one over the other based on the equality of
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VaR across models. By avoiding the restrictive assumption of equal expected values
for the first risk measure, a prerequisite for the lexicographic order approach
employed in the One and a Half-Sided tests by Fissler and Hoga (2023), our joint score
function facilitates a more holistic and balanced evaluation of risk forecasts.
After introducing our consistent scoring function S(VaR+CoVaR), we derive our
identification function V(VaR+CoVaR)((v, c), (x, y)) as the summation of the
identification functions for VaR and CoVaR, respectively. Specifically, the
identification function is given by:

V(VaR+CoVaR)((v, c), (x, y)) =
(

∂SVaR(v, (x, y))
∂v

)
+

(
∂SCoVaR

v (c, (x, y))
∂c

)
(4.13)

Where the first term, ∂SVaR(v,(x,y))
∂v , represents the identification function for VaR, and

the second term, ∂SCoVaR
v (c,(x,y))

∂c , represents the identification function for CoVaR. Which
leads to :

V(VaR+CoVaR)((v, c), (x, y)) =
(

1x ≤ v − β + 1x > v [1y ≤ c − α]
)

(4.14)

In (4.3.3.3), we evaluate the power of our proposed identification function,
V(VaR+CoVaR), in identifying misspecified systemic risk forecasts under various sample
sizes and distributional scenarios. Specifically, we conduct a comparative analysis of
our identification function V(VaR+CoVaR) along with the one-dimensional identification
function introduced by Banulescu-Radu et al. (2021) in addition to the
two-dimensional identification function introduced by V (VaR,CoVaR). Moreover, in
(4.3.3.4) we prove through a numerical simulation analysis that our score function
S(VaR+CoVaR) is elicitable under various simulation scenarios.

4.3.3.1 Comparing Competing Risk Models through Univariate Scoring Function

To compare the forecasts of two competing risk models, we analyse the sequences of
forecasts {r1,t}t=1,...,n and {r2,t}t=1,...,n. We consider the score function S(VaR+CoVaR),
which evaluates the performance of these forecasts, each forecast consists of
ri,t = (V̂aRi,t, ĈoVaRi,t) for i = 1, 2. The verifying observations are denoted as
{(X t, Y t)}t=1,...,n. The score function S(VaR+CoVaR) is defined as follows:

S(VaR+CoVaR)(ri,t, (x, y)) = SVaR(V̂aRi,t, (x, y)) + SCoVaR(ĈoVaRi,t, (x, y)) (4.15)

To compare the two forecasts at time t, we compute the univariate score difference duni
t

between the two sequences:

duni
t = S(VaR+CoVaR)(r1,t, (x, y))− S(VaR+CoVaR)(r2,t, (x, y)) (4.16)
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Subsequently, we calculate the test statistic for a one-sided test for univariate loss
differences duni

t where the sample variance of a univariate time series is computed as:

σ̂n =
∑n

t=1(duni
t − d̄uni)2

n
. (4.17)

We defined the test Statistic T OS.uni
n as follows:

T OS.uni
n =

√
n√
σ̂n

· d̄uni (4.18)

The hypothesis we are testing,

H0 : E
[
d̄uni

n

]
≤ 0 vs Ha : E

[
d̄uni

n

]
> 0.

Under the null hypothesis H0 : E[d̄uni
n ] ≤ 0, to properly interpret the test statistic

T OS.uni
n and compute the p-value, we need to specify the asymptotic distribution of the

test statistic under the equality condition, i.e., when E[d̄uni
n ] = 0. Specifically, under the

null hypothesis of equality H0 : E[d̄uni
n ] = 0, the test statistic T OS.uni

n converges in
distribution to a standard normal asymptotically:

T OS.uni
n

d→ N(0, 1)

Therefore, to test the one-sided alternative Ha : E[d̄uni
n ] > 0, we can apply a standard

one-sided z-test (or equivalently, a one-sided t-test) and reject the null hypothesis
H0 : E[d̄uni

n ] ≤ 0 in the right tail when the observed value of T OS.uni
n is sufficiently large

and positive. A small p-value supports the conclusion that the first model is
statistically significantly worse in terms of mean loss compared to the second model.

4.3.3.2 Extension of the Proposed Univariate Score function

We are extending our initial proposed score function to include three risk measures by
introducing the CoES risk measure. Following a similar framework, we denote the
score of three risk measures as S(VaR,CoVaR,CoES). Specifically, we define the score
function for three risk measures as

S(VaR+CoVaR+CoES)((v, c, e), (x, y)) = SVaR(v, (x, y)) + S(CoVaR,CoES)
v ((c, e), (x, y)) (4.19)

Where S(CoVaR,CoES)
v ((c, e), (x, y)) defined in (4.5). The advantage of incorporating

CoES into the score function lies in its ability to provide insights beyond the VaR and
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CoVaR framework. CoES represents the expected shortfall conditioned on the joint
occurrence of extreme events captured by VaR and CoVaR, and it will lead to a more
comprehensive risk assessment. This extension makes the score function capable of
distinguishing between models based not only on individual risk measures (VaR) and
conditional risk (CoVaR) but also on their ability to capture joint dynamics in extreme
events (CoES). This allows for a more detailed assessment of model performance and
ranking.

We also could extend the score functions to include weights. For instance, the
expression defined in (4.12) after including the weights will be as follows:

S(VaR+CoVaR)((v, c), (x, y)) = γ · SVaR(v, (x, y)) + δ · SCoVaR
v (c, (x, y)) (4.20)

Here, we introduce the weights for the VaR and CoVaR components as γ and 1 − γ,
respectively. We can adjust these weights according to the desired emphasis on each
risk measure. If we seek to prioritize VaR, we increase the value of γ relative to 1 − γ.
Conversely, we increase the value of 1 − γ if we want to emphasize the systemic risk
component (CoVaR).

Our investigation continues by next examining the risk of employing identification
functions that are not strictly defined for backtesting systemic risk measures by
conducting a comparative analysis of our identification function V(VaR+CoVaR) along
with the one-dimensional identification function introduced by Banulescu-Radu et al.
(2021) in addition to the two-dimensional identification function introduced by
V (VaR,CoVaR).

4.3.3.3 Comparison of Identification Functions for Backtesting Systemic Risk
Measures

The main objective of this analysis is to investigate the performance of identification
functions in backtesting systemic risk measures, specifically VaR and CoVaR. To
illustrate this, we evaluate the power of three identification functions in detecting
misspecified forecasts. We consider our proposed identification function V(VaR+CoVaR),
defined in equation (4.14), the strict identification function V (VaR,CoVaR) proposed by
Fissler and Hoga (2023), given in equation (4.7), and the one-dimensional
identification function VBR proposed by Banulescu-Radu et al. (2021), defined in
equation (4.21) in the next Remark 4.3.3.3.1.

Remark 4.3.3.3.1. Banulescu-Radu et al. (2021) propose in their equation (4) a one
dimensional identification function VBR for the pair

(
VaRβ(X), CoVaRα|β(Y | X)

)
.

The function VBR maps pairs of real numbers (v, c) and (x, y) to a real number and is
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defined as,

VBR((v, c), (x, y)) = 1{x > v}1{y > c} − (1 − α)(1 − β). (4.21)

A simulation study is conducted where we generate bivariate normal random

variables (Xt, Yt) with covariance matrix Σ =

(
1 0.5

0.5 2

)
. Our objective is to

forecast VaRβ of Xt and CoVaRα|β of Yt given Xt at confidence levels α = β = 0.95. We
consider two sets of forecasts: accurately specified forecasts for these risk measures
computed and denoted as (V̂aRβ,t, ĈoVaRα|β,t), and intentionally misspecified

forecasts (V̂aRβ′,t, ĈoVaRα′|β′,t) with different confidence levels (α′, β′) = (0.75, 0.99).

The correctly specified forecasts are V̂aRβ,t = VaRβ,t ≈ 1.64 and
ĈoVaRα|β,t = CoVaRα|β,t ≈ 3.23 , while the misspecified forecasts are

(V̂aRβ′,t, ĈoVaRα′|β′,t) ≈ (2.33, 2.23). It is important to note that in this scenario, we
satisfy the condition (1 − α′)(1 − β′) = (1 − α)(1 − β). Under this condition, as
illustrated in Fissler and Hoga (2023) that the identification function VBR of
Banulescu-Radu et al. (2021) cannot uniquely identify the true VaR and CoVaR values
from the data. Specifically, VBR satisfies:

V̄
((

VaRβ(X), CoVaRα|β(X | Y)
)

, FX,Y

)
= 0

However, it also satisfies:

V̄
((

VaRβ′(X), CoVaRα′|β′(X | Y)
)

, FX,Y

)
= 0

as long as (1 − α′)(1 − β′) = (1 − α)(1 − β).

The analysis examines the null hypothesis of correct unconditional calibration for each
identification function.

Definition 4.3.3.3.1. A sequence of predictions {rt}t∈N is considered calibrated for a
parameter Θ on average if

E[V(rt, (Xt, Yt))] = 0 ∀ t ∈ N. (4.22)

For V (VaR,CoVaR), the null hypothesis of correct unconditional calibration is:

H0 : E
[
V (VaR,CoVaR)

(
(V̂aRt, ĈoVaRt), (Xt, Yt)

)]
= 0 for all t = 1, 2, . . .
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However, for the non-strict VBR, the null hypothesis effectively becomes:

H0 : E
[
VBR

(
(V̂aRt, ĈoVaRt), (Xt, Yt)

)]
= 0 for all t = 1, 2, . . .

While for our identification function V(VaR+CoVaR),
H0 : E[V(VaR+CoVaR)((V̂aRt, ĈoVaRt), (Xt, Yt))] = 0 ∀ t = 1, 2, . . .

To test for the null hypothesis of correct unconditional calibration of the three
identification functions, we follow Nolde and Ziegel (2017) and Fissler and Hoga
(2023) by introducing the following test statistic provided by Fissler and Hoga (2023)
in the supplementary materials :

T V
n := n

(
1
n

n

∑
t=1

V(rt, (Xt, Yt))

)′
Σ̂
−1
n

(
1
n

n

∑
t=1

V(rt, (Xt, Yt))

)
. (4.23)

Based on this expression, the test statistic for each identification function is calculated.
For instance, for T V (VaR,CoVaR)

n proposed by Fissler and Hoga (2023) the Σ̂n is defined
similarly to Ω̂n in equation (4.10), but we replace dt with V (VaR,CoVaR)(rt, (Xt, Yt)) as
defined in (4.7). The test statistic T V

n in (4.23) follows an asymptotic χ2 distribution
with degrees of freedom equal to the dimension of V under the null hypothesis, see
Fissler and Hoga (2023) for more details. However, in the case of our one dimensional
identification function, the test statistic, denoted as T V(VaR+CoVaR)

n , will define the Σ̂n in
(4.23) similarly to σ̂n in equation (4.17), but we replace duni

t with
V(VaR+CoVaR)(rt, (Xt, Yt)) as defined in (4.14).

Let zα/2 denote the (1 − α/2)-quantile of the standard normal distribution. Then, the
null hypothesis of correct unconditional calibration for V(VaR+CoVaR) is rejected at the α

significance level if:
|T V(VaR+CoVaR)

n | > zα/2

Rejection of the null hypothesis implies that the forecasts of VaR and CoVaR are not
correctly calibrated, as assessed by the identification function V(VaR+CoVaR). This
suggests that the forecasts are misspecified and do not align with the true underlying
distribution of the data.

It is important to note that the test statistic T V(VaR+CoVaR)

n represents a two-sided test and
rejection of the null hypothesis occurs for both large positive and large negative values
of the test statistic, indicating potential misspecification in either direction. By
comparing the absolute value of T V(VaR+CoVaR)

n to the critical value zα/2, we can assess
the statistical significance of the deviations from correct calibration and make
informed decisions regarding the adequacy of the forecasts based on the proposed
identification function.

The simulation results are based on
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V (V̂aR,ĈoVaR)
=

1
n

n

∑
t=1

V (VaR,CoVaR)
(
(V̂aRt, ĈoVaRt), (Xt, Yt)

)
,

VBR
=

1
n

n

∑
t=1

VBR
(
(V̂aRt, ĈoVaRt), (Xt, Yt)

)
,

and

V(V̂aR+ĈoVaR)
=

1
n

n

∑
t=1

V(VaR+CoVaR)
(
(V̂aRt, ĈoVaRt), (Xt, Yt)

)
.

Table (4.1) presents rejection frequencies, derived from 10,000 replications, for three
tests conducted at a 5% significance level. The investigation is under different sample
sizes (n ∈ {500, 1000}) and considers three identification functions: V (VaR,CoVaR), VBR,
and V(VaR+CoVaR). When employing V (VaR,CoVaR), the test keeps size, with
approximately 6% of correctly specified forecasts leading to rejection of the null
hypothesis (close to the expected 5% level). Additionally, it demonstrates high power
in detecting misspecified forecasts, nearly identifying them with certainty (close to
100% rejection) across both sample sizes. In contrast, the identification function VBR

fails to differentiate between correctly specified and misspecified forecasts effectively.
At a sample size of 500 (1000), the null hypothesis is rejected at similar frequencies of
around 29% (8%) for both types of forecasts. This limitation highlights the risk of
employing non-strict identification functions for backtesting systemic risk measures.
Notably, the performance of V(VaR+CoVaR) is comparable to V (VaR,CoVaR). It also keeps
size, with the rejection frequency for correctly specified forecasts being approximately
6% (5.5%) at a sample size of 500 (1000). Moreover, similar to V (VaR,CoVaR),
misspecified forecasts are nearly identified with certainty (100% rejection) across both
sample sizes. These findings underscore the ability of our proposed identification
function to distinguish between correct and misspecified forecasts, a crucial aspect of
effective backtesting procedures for systemic risk measures.

Sample Size Identification Function Correctly Specified Misspecified
Forecasts Forecasts

500
V (VaR,CoVaR) 6.13 99.97

VBR 29.06 28.72
V(VaR+CoVaR) 6.69 99.69

1000
V (VaR,CoVaR) 6.68 100

VBR 8.57 7.98
V(VaR+CoVaR) 5.86 100

TABLE 4.1: Rejection frequencies (%) of H0 based on V (V̂aR,ĈoVaR), VBR, and

V(V̂aR+ĈoVaR) for different sample sizes under Normal distribution. Results are dis-
played for correctly specified and misspecified forecasts.
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We have also examined the three identification functions under a t-distribution with 5
degrees of freedom t5. The covariance matrix for the t-distribution, denoted as Σ

(5)
t , is

obtained by scaling the covariance matrix of a corresponding normal distribution,Σ,
by a factor determined by the degrees of freedom parameter (ν) of the t-distribution.

Specifically, Σ
(5)
t = ν

ν−2 × Σ = 5
3 ×

(
1 0.5

0.5 2

)
. Given the assumed distribution and

a specific significance level α = β = 0.95, the correctly specified forecasts, denoted as
V̂aRβ,t ≈ 2.02 and ĈoVaRα|β,t ≈ 4.72. Additionally, we introduce the misspecified

V̂aRβ′,t ≈ 3.36 and ĈoVaRα′|β′,t ≈ 4.76, where α′ = 0.75 and β′ = 0.99. Table (4.2)
presents the rejection frequencies of the null hypothesis derived from 10,000
replications for three tests conducted at a 5% significance level and sample
sizesn ∈ {500, 1000} under t distribution. The simulation results corroborate the
findings presented in Table (4.1). In particular, the identification function proposed by
Banulescu-Radu et al. (2021) exhibits a clear limitation in distinguishing between
correctly specified and misspecified forecasts. It rejects the null hypothesis at
approximately similar frequencies for both types of forecasts, failing to differentiate
between them effectively. In contrast, our proposed identification function,
V(VaR+CoVaR), demonstrates comparable performance to the identification function
introduced by Fissler and Hoga (2023). Both of these identification functions exhibit a
high degree of power in detecting misspecified forecasts, rejecting the null hypothesis
100% frequency across the different sample sizes examined.

Sample Size Identification Function Correctly Specified Misspecified
Forecasts Forecasts

500
V (VaR,CoVaR) 9.08 100

VBR 93.67 98.73
V(VaR+CoVaR) 9.78 100

1000
V (VaR,CoVaR) 10.98 100

VBR 87.54 97.2
V(VaR+CoVaR) 8.83 100

TABLE 4.2: Rejection frequencies (%) of H0 based on V (V̂aR,ĈoVaR), VBR, and

V(V̂aR+ĈoVaR) for different sample sizes under tν where ν = 5. Results are displayed
for correctly specified and misspecified forecasts.

Our investigation continues by next examining the elicitability of our proposed
univariate score function S(VaR+SR) through a simulation exercise. This exercise
systematically tests the score function behaviour across various scenarios and
evaluates its sensitivity and accuracy.
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4.3.3.4 Exploring the Elicitability of Our Univariate Score Function Through
Numerical Simulation

We conduct a comprehensive simulation study to numerically investigate the
elicitability of our proposed score function S(VaR+CoVaR). We introduce
S(VaR+CoVaR+CoES) later in this section.
In this study, we systematically implement various simulation scenarios to validate
our score functions. We start the analysis within a univariate framework, where we
generate data following a normal distribution with the objective to minimise S(VaR),
the reader is referred to equation (4.3) for S(VaR) definition, we set the risk levels for
the first scenario at α = 0.95. The solution to this optimisation problem is the candidate
for VaR value. This experimental setting evaluates the accuracy of the S(VaR) in
estimating the quantile associated with the specified coverage probability α by
comparing the solution of the optimisation with the theoretical VaR value. The
elicitability will be illustrated when we are able to retrieve the VaR theoretical value
from the minimisation exercise. Then, we extend our evaluation within a bivariate
framework and as a general setting and for simplicity, we set the risk levels for all
scenarios at α = β = 0.95. For a bivariate framework our variables follow a normal

distribution N (µ, Σ), where µ =

[
µ1

µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. We set µ =

[
0
0

]
, and the

matrix Σ is considered as a symmetric matrix where the off-diagonal of the matrix
denoted as ρ. We start the analysis under a bivariate framework by generating two
independent random variables under N(µ, Σ). We introduce our joint score function
S(VaR+VaR) that is defined in the general proposed univariate score function in (4.11)
where the marginal scores that we combine are S(VaR) and S(VaR). In this scenario 2,
our objective is to minimise S(VaR+VaR) and allocate the solutions of this optimisation
problem that correspond to the candidate for VaR values of each marginal score
function and evaluate the two VaR solutions with the theoretical VaR values of each
independent random variable. The elicitability will be illustrated when we are able to
retrieve the two VaR theoretical values from the minimisation exercise.
In Scenario 3, we repeat Scenario 2 but with replacing one of the S(VaR) with S(CoVaR).
Therefore, our objective is to minimise the joint score S(VaR+CoVaR) that is introduced in
(4.12), where the marginal scores S(VaR) and S(CoVaR) are defined earlier in (4.3) and
(4.4), respectively. Since we generate two independent random variables under
N(µ, Σ), then the CoVaR value will be the VaR value of the first VaR. Again, the
elicitability will be illustrated when we retrieve the two VaR theoretical values from
the minimisation exercise.
To ensure that the proposed score function accurately estimates risk measures in the
presence of correlations, in Scenarios 4 and 5, we minimise S(VaR+VaR) following a
bivariate distribution under N(µ, Σ), where the correlation coefficients ρ for Scenarios
4 and 5 are 0.4 and -0.4, respectively. The elicitability will be illustrated when we are
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able to retrieve the two VaR theoretical values from the minimisation exercise under
these scenarios.
In Scenarios 6 and 7, we replicate Scenarios 4 and 5 by replacing one of S(VaR)

components by S(CoVaR). Therefore, our objective is to minimise the joint score
S(VaR+CoVaR) that is introduced in (4.12), where the marginal scores S(VaR) and S(CoVaR)

are defined earlier in (4.3) and (4.4), respectively. This adjustment allows us to
examine the performance of S(VaR+CoVaR) in estimating risk measures in the presence
of correlations. The elicitability will be illustrated when we are able to retrieve the VaR
theoretical value and CoVaR theoretical value from the minimisation exercise under
these scenarios. Table (4.3) summarises the scenarios conducted in our analysis.

Scenario Score Function Distribution Correlation Coefficients (ρ)

1 S(VaR) N(0,1) N/A
2 S(VaR+VaR) N(µ, Σ) 0
3 S(VaR+CoVaR) N(µ, Σ) 0
4 S(VaR+VaR) N(µ, Σ) 0.4
5 S(VaR+VaR) N(µ, Σ) -0.4
6 S(VaR+CoVaR) N(µ, Σ) 0.4
7 S(VaR+CoVaR) N(µ, Σ) -0.4

TABLE 4.3: Summary of Simulation Scenarios of S(VaR+CoVaR) score function.

To provide robust empirical evidence regarding our proposed score function, we
iterate the simulation procedure 100 times, and as a reference point, we compute the
theoretical value corresponding to each scenario. We consider computing the squared
difference between the fixed theoretical value and the estimated optimal value across
all iterations. Subsequently, we compute the mean of these squared differences over
all iterations. The theoretical values of CoVaR obtained from the conditional normal
distribution corresponding to the specific α and β, which is obtained as follows:

If we have a multivariate normal vector Y ∼ N (µ, Σ), where µ =

[
µ1

µ2

]
and

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, then the conditional quantile of the multivariate normal vector

Y ∼ N (µ, Σ) at level β, given that the realization of the first variable X as its VaRα is
given by:

CoVaRβ(Y | X = VaRα) = µ + zβ

√
Σ̄ ,

here, µ = µ1 + Σ12Σ−1
22 (VaRα − µ2), zβ is the critical value from the standard normal

distribution for quantile β, and
√

Σ̄ =
√

Σ11 − Σ12Σ−1
22 Σ21.

Table (4.4) presents the simulation study results evaluating the performance of our
proposed score function, with risk levels α = β = 0.95, under various structures. We
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include the mean of optimal values across all iterations, the theoretical values and the
Mean Squared Error (MSE) of each Scenario where these results contribute to the
discussion of the elicitable property of our proposed loss functions. Overall, the low
MSE values in Table (4.4) suggest that the estimated optimal values obtained from our
minimisation exercises closely align with the fixed theoretical values on average,
which suggests that our score functions successfully are able to provide accurate
estimates that closely match the theoretical values across multiple simulation runs.

Scenario Theoretical Value Mean Optimal Value MSE

1 v: 1.6449 v∗ : 1.6431 0.0005

2 v1: 1.6449 v∗1 :1.6446 0.0004
v2: 1.6449 v∗2 : 1.6439 0.0004

3 v: 1.6449 v∗: 1.6760 0.0017
c : 1.6449 c∗ : 1.5835 0.0234

4 v1 1.6449 v∗1 :1.6408 0.0004
v2 1.6449 v∗2 : 1.6405 0.0005

5 v1: 1.6449 v∗1 : 1.6456 0.0004
v2: 1.6449 v∗2 : 1.6442 0.0004

6 v: 1.6449 v∗:1.6493 0.0006
c: 2.3538 c∗: 2.3737 0.0144

7 v: 1.6449 v∗: 1.6473 0.0006
c: 0.7005 c∗ : 0.6945 0.0073

TABLE 4.4: Comparison of theoretical values, mean optimal values and MSE which represents
the mean of squared differences between the fixed theoretical value and the estimated optimal
value across 100 iterations. This simulation study evaluates the performance of our proposed
score function, with risk levels α = β = 0.95, under various structures. The findings presented
in this section contribute to discussing the elicitable property of the proposed loss functions.

The v∗ and c∗ represent the mean optimal values of VaR and CoVaR, respectively.

As a robustness check of the sensitivity of our score functions, in scenarios 6 and 7, we
assess the effect of varying risk levels on the performance of our proposed score
function S(VaR+CoVaR) by examining a range of values for α and β. Tables (4.5) and (4.6)
provide the theoretical CoVaR values at different risk levels of α and β and the
optimal CoVaR values computed through the simulation in Scenarios 6 and 7. From
the findings illustrated in Tables (4.5) and (4.6), we conclude that there is consistency
between optimal and theoretical CoVaR values across various risk levels, suggesting
that the optimisation process provides results that capture the conditional tail
behaviour successfully.
Furthermore, in the Appendix of this Chapter, Figure (4.7) represents the MSE values
of the CoVaR estimation component in the score function S(VaR+CoVaR) across a range
of risk levels specified by α = β ∈ [0.1, 0.99] for correlation coefficients ρ = 0.4 and ρ=
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-0.4. Moreover, we analyze the impact of varying correlation coefficients, in addition
to the risk levels specified by α = β ∈ [0.1, 0.99], on the performance of our score
function S(VaR+CoVaR) by examining a range of positive and negative correlation
values. For the positive correlation case, we utilise ρ = 0.9, 0.7, 0.5, 0.3, and 0.1, while
for the negative correlation case, we use ρ = −0.9,−0.7,−0.5,−0.3, and −0.1. Figures
(4.8) and (4.9) in the Appendix of this Chapter illustrate the MSE values of the CoVaR
estimation component in the score function S(VaR+CoVaR) across positive and negative
correlation values, respectively.

Risk Level CoVaR Theoretical Value Mean Optimal Value MSE

α = β = 0.97 2.6761 2.6529 0.0186
α = β = 0.90 1.895 1.894 0.0071
α = β = 0.85 1.589 1.577 0.0035
α = β = 0.80 1.346 1.339 0.0013
α = β = 0.75 1.139 1.1360 0.0006

TABLE 4.5: Summary of results for simulation study investigates the performance of our pro-
posed risk measures S(VaR+SR) in Scenario 6, correlation coefficient ρ = 0.4, with various risk
levels α = β. The analysis is based on CoVaR estimation, where the CoVaR theoretical value,
mean optimal value, and Mean Squared Error (MSE) are examined. The mean optimal value

represents the average CoVaR value obtained from the optimisation process across 100 runs.

Risk Level CoVaR Theoretical Value Mean Optimal Value MSE

α = β = 0.97 0.8345 0.8140 0.0134
α = β = 0.90 0.490 0.4798 0.0024
α = β = 0.85 0.345 0.3434 0.0014
α = β = 0.80 0.227 0.2244 0.0009
α = β = 0.75 0.124 0.1228 0.0006

TABLE 4.6: Summary of results for simulation study investigates the performance of our pro-
posed risk measures S(VaR+SR) in Scenario 7, correlation coefficient ρ = -0.4, with various risk
levels α = β. The analysis is based on CoVaR estimation, where the CoVaR theoretical value,
mean optimal value, and Mean Squared Error (MSE) are examined. The mean optimal value

represents the average CoVaR value obtained from the optimisation process across 100 runs.

Additionally, we extend the score function from S(VaR+CoVaR) to S(VaR+CoVaR+CoES),
where the objective is to introduce the concept of CoES alongside VaR and CoVaR.
Our objective is to minimise the joint score function S(VaR+CoVaR+CoES) that is
introduced in (4.19) where the marginal scores S(VaR) and S(CoVaR+CoES) are defined
earlier in (4.3) and (4.5). Under the assumption that Y follows a bivariate normal
distribution with mean µ and covariance matrix Σ, we compute the theoretical CoES
to compare the theoretical values with our optimisation values that we allocate from
minimising S(VaR+CoVaR+CoES).

CoESβ(Y | X = VaRα) = µY|X + σY|X
1
α

∫ 1

1−α
Φ−1(u)du
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Where, µY|X and σY|X are the conditional mean and standard deviation of Y given
X = VaRα, Φ−1(u) is the inverse cumulative distribution function (quantile function)
of the standard normal distribution evaluated at u. The term 1

α

∫ 1
1−α Φ−1(u)du

represents the conditional expectation of the inverse standard normal distribution in
the right tail region beyond the α-quantile.

For S(VaR+CoVaR+CoES), we conduct a comprehensive simulation exercise by examining
the impact of changing the correlation coefficient values on the our score function
S(VaR+CoVaR+CoES) across the risk levels interval α = β ∈ [0.1, 0.99]. In the Appendix of
this Chapter, Figures (4.10) and (4.11) illustrate the MSE values of the CoES estimation
component based on the score function S(VaR+CoVaR+CoES) across a range of
α = β ∈ [0.1, 0.99] values for positive and negative correlation coefficients,
respectively.
Overall, after conducting different simulation scenarios, we have drawn essential
conclusions regarding our score function’s elicitability by systematically testing its
behaviour across various scenarios, including univariate and multivariate
distributions and comparing the results with theoretical values. The successful
retrieval of quantiles corresponding to specified coverage probabilities in different
simulation scenarios and the consistent results obtained from the score functions
underscore the consistency of our joint score function across different risk measures,
demonstrating the joint score function’s elicitability. Additionally, we assess the effect
of varying risk levels on the performance of our joint score function by examining a
range of values for α and β. The results of the optimal values and theoretical CoVaR
and CoES values across various risk levels prove our score function’s robustness and
effectiveness in conducting comparative backtesting and risk assessment tasks.

4.4 Numerical Evidence: Monte Carlo Simulation and
Empirical Application

In Subsection(4.4.1), the simulation study aims to evaluate the performance of the
proposed backtesting procedure under a more realistic and dynamic setting unlike the
simulation conducted in (4.3.3.3) where we focus mainly in investigate the
performance of our identification function V(VaR+CoVaR) and other existing
identification functions and illustrate the risks of employing non-strict identification
functions for backtesting systemic risk measures.
Consistent with the models and dataset outlined in Fissler and Hoga (2023), we
employ a bivariate GARCH(1,1) model with a t-copula for innovations driven by GAS
in the simulation subsection. In the empirical application subsection, we conduct a
comparative analysis by implementing our proposed backtest, contrasting the
bivariate GARCH(1,1) model with a Gaussian-copula for innovations driven by GAS
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against the GJR-GARCH(1,1) model with a t-copula driven by GAS for the
dependence model. This approach ensures consistency and smooths the way for a
comprehensive analysis of the given models across simulated and real-world
scenarios.

Additionally, it is important to note that in both the Monte Carlo simulations and the
empirical application, we follow the same setting and data-generating process
employed in the Fissler and Hoga (2023) paper. This ensures consistency and
facilitates direct comparison with the results presented therein.

4.4.1 Monte Carlo simulations

In our simulation study, we examine how well our test T OS.uni
n performs in finite

samples when testing H0. We apply this test to forecasts of (VaR, CoVaR) and (VaR,
CoVaR, CoES) obtained from a bivariate GARCH(1,1) model with a t-copula for
innovations. We focus on one-step-ahead forecasts throughout our analysis.

4.4.1.1 Data Generating Process

Following the same data generating process setting illustrated in the supplementary
materials Fissler and Hoga (2023), this simulation study is built on a carefully
designed process that starts with a bivariate GARCH model and copula theory. The
behaviour of two variables, Xt and Yt, is generated by a GARCH(1,1) structure, where
their variances evolve over time according to specific formulas.

Xt = σx,tεx,t, σ2
x,t = ωx + αxX2

t−1 + βxσ2
x,t−1,

Yt = σy,tεy,t, σ2
y,t = ωy + αyY2

t−1 + βyσ2
y,t−1,

(4.24)

Here, ωz > 0, αz ≥ 0, βz ≥ 0 (z ∈ {x, y}). The innovations in these variables, εx,t and
εy,t, have different distributions: εx,t is standard normal, while εy,t follows a
standardized Student’s t5 distribution. The key part is the dependence between Xt

and Yt, which is modelled by t-copula with time-varying correlation parameter
ρt ∈ (−1, 1). This correlation follows the Generalized Autoregressive Score (GAS)
model. In particular, following Creal et al. (2013) and Fissler and Hoga (2023) we set:

ft = ω† + α†st−1 + β† ft−1,

st−1 :=
d

d ft−1
log c (U t−1; ϑ, ∆ ( ft−1)) ,

ρt = ∆( ft),

∆(x) = [1 − exp(−x)]/[1 + exp(x)] ∈ (−1, 1).

(4.25)
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Table (4.7) presents the empirically plausible values for the marginal GARCH
processes and the t-copula dependence structure ( GAS innovations ) implemented in
this study, following Fissler and Hoga (2023) simulation setting. Figure (4.1)
summarises the Data Generating Process (DGP). For more details and discussion
regarding the set-up of the DGP, the reader is referred to supplementary materials in
Fissler and Hoga (2023).

Parameter Value
Marginal Parameters (GARCH)

ωx, ωy 0.001
αx, αy 0.2
βx, βy 0.79

Dependence Parameters (GAS)
ω† 0.001
α† 0.1
β† 0.99
ϑ 5

TABLE 4.7: Parameter Values for Data Generating Process

GARCH(1,1)

Xt = σx,tεx,t Yt = σy,tεy,t

εx,t ∼ N(0, 1) εy,t ∼ t5

Dependence
Structure

t-copula with
time-varying
correlation ρt

ρt ∼ GAS dynamics

FIGURE 4.1: Flowchart illustrating the components of the data generating process
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4.4.1.2 Risk Forecasts

In this subsection, we describe the procedure of forecasting systemic risk measures
and a model specification utilised for the forecasting. A common practice in financial
risk forecasting is a rolling window approach. We have introduced the rolling window
approach in Chapter (3), and we will adjust this approach for the example displays in
(4.4.2). In this study, instead of a rolling-window approach, a fixed-window approach
is employed due to computational feasibility concerns, especially we conduct 10,000
replications for our analysis to ensure robust estimates with minimal standard errors.
The generated data, denoted as{(Xt, Yt)}t=−r+1,...,n from a bivariate GARCH model in
(4.24) with GAS t-copula for the dependence structure to capture the joint dynamics of
Xt and Yt is split into an in-sample period{(Xt, Yt)}t=−r+1,...,0 and an out-of-sample
period{(Xt, Yt)}t=1,...,n. The parameter estimation is performed using the in-sample
data, then we utilize the estimated parameters to generate risk forecasts (VaR, SR) for
the out-of-sample window. Next, we will describe the in-sample parameter estimation
and the out-of-sample risk forecasting.
After generating the data, the marginal parameters, (ωx, αx, βx) and

(
ωy, αy, βy

)
, are

estimated through the in-sample data using Gaussian quasi-maximum likelihood
techniques (QMLE) (Francq and Zakoian (2004),Fissler and Hoga (2023)). More
specifically, we compute the conditional variances σ̂2

x,t and σ̂2
y,t for Xt and Yt

respectively, along with the standardised residuals ε̂x,t and ε̂y,t. Then we obtain the
estimated Probability Integral Transforms (PITs) Û t using the empirical cumulative
distribution functions of the standardized residuals where Û t = (F̂x(ε̂x,t), F̂y(ε̂y,t)).
After that, we estimate the marginal parameters

(
ω†, α†, β†, ϑ

)
by employing the

maximum likelihood estimation based on Û t as proposed by Creal et al. (2013). Then,
we utilize the estimated parameters to generate risk forecasts, including VaR and SR
for the out-of-sample window.
Next, we describe one-step-ahead forecasting of the conditional risk measures
VaRt (Xt), CoVaRt (Yt | Xt), and CoES t (Yt | Xt) for out-of-sample observations. We
repeat the definition of the risk measures forecasted including VaR, CoVaR and CoES
as presented in the supplementary materials in Fissler and Hoga (2023). VaRt for Xt,
denoted as the β-quantile of the conditional distribution FXt|Ft−1

, where α and β are
risk levels set to 0.95 and Ft−1 represents the information set up to time t − 1. i.e.
Ft−1 = σ((Xt−1, Yt−1), (Xt−2, Yt−2), . . . ).

VaRt (Xt) = VaRβ

(
FXt|Ft−1

)
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Similarly, CoVaRt for Yt given Xt is denoted as

CoVaRt (Yt | Xt) = CoVaRα|β
(

F(Xt,Yt)|Ft−1

)

In addition, (CoESt) for Yt given Xt is forecasted as CoESα|β, both defined based on the
conditional distribution and past information.

CoESt (Yt | Xt) = CoESα|β
(

F(Xt,Yt)|Ft−1

)

Where, F(Xt,Yt)|Ft−1
(x, y) = P {Xt ≤ x, Yt ≤ y | Ft−1} =: Pt−1 {Xt ≤ x, Yt ≤ y} for

x, y ∈ R.

We obtain V̂aRt for Xt using the estimated parameters obtained from the in-sample
window, by using conditional standard deviation σ̂x,t and the empirical β-quantile of
standardized residuals {ε̂x,t=−r+1,...,0} i.e.
V̂aRt := V̂aRt (Xt) = σ̂x,tV̂aRx,ε, t = 1, . . . , n.
However, CoVaR and CoES are obtained by numerically solving integral equations
involving the estimated t-copula dependence structure. In particular, CoVaR is
determined by solving

Pt−1 {Yt > CoVaRt (Yt | Xt) | Xt ≥ VaRt (Xt)} = 1 − α.

Additionally, considering the probability that Xt itself exceeding its VaR level ,
denoted as 1 − β, straightforward computations lead to the implicit definition of
CoVaRt (Yt | Xt). This definition involves a double integral over the joint distribution
of Yt and Xt.

(1 − α)(1 − β) =
∫ 1

Fy(CoVaRt(Yt|Xt)/σy,t)

∫ 1

β
c ((u1, u2) , ϑ, ρt)du1 du2. (4.26)

Substituting estimates, for example, replacing ϑ with the in-sample estimate ϑ̂ and Fy

with the empirical cdf F̂y,etc. Then numerically solving the resulting equation (4.26)
gives the forecasts ĈoVaRt for t = 1, . . . , n. After obtaining the CoVaR forecasts
ĈoVaRt, we proceed to calculate the prediction of CoES. From (4.2) we derive CoES
predictions ĈoESt for t = 1, . . . , n. The methods used to obtain CoVaR and CoES in
this study were further detailed in the supplementary materials in Fissler and Hoga
(2023).
Following Fissler and Hoga (2023) to derive the contaminated forecasts, we multiply
the correctly specified forecasts with independent and identically distributed Weibull
distributed random variables. This noise is assumed to be independent and
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Weibull-distributed, ensuring that the forecasts remain positive, and this is significant
due to the requirements of the 0-homogeneous loss functions, see (Fissler and Hoga
(2023)). The equations for this contamination process are as follows:

Let r̂t = (r̂VaR
t , r̂SR

t ) = (V̂aRt, ĈoVaRt, ĈoESt) be the vector of correctly specified
forecasts for time t, where V̂aRt is the VaR forecast, ĈoVaRt is the CoVaR forecast, and
ĈoESt is the CoES forecast.

In particular, to generate two sets of contaminated forecasts, r̂1,t, and r̂2,t, we
implement the following:

r̂VaR
i,t, = V̂aRt · ϵVaR

i,t

r̂CoVaR
i,t = ĈoVaRt · ϵCoVaR

i,t

r̂CoES
i,t = ĈoESt · ϵCoES

i,t

where i = 1, 2, and ϵVaR
i,t t=1,...,n

, ϵCoVaR
i,t t=1,...,n

, and ϵCoES
i,t t=1,...,n

are mutually independent
and identically distributed Weibull-distributed random variables with the following
density function:

f (x) =
k
λ

( x
λ

)k−1
e−(

x
λ )

k

, x > 0

We choose the shape parameter k = 10 and the scale parameter λ = 0.3, which results
in a mean of λΓ(1 + 1/k) ≈ 0.285 for the multiplicative noise; for further detail, see
Fissler and Hoga (2023). This choice ensures that the contaminated forecasts r̂1,t and
r̂t,(2) are seriously misspecified on average.

These equations and the chosen parameters for the Weibull distribution allow to
generate two distinct sets of contaminated forecasts that are misspecified on average
due to the multiplicative noise Fissler and Hoga (2023). The Flowchart (4.2) illustrates
the steps involved in the risk forecasting process.

4.4.1.3 Test description

In the assessment of the risk forecasts, the score functions we choose have a
0-homogeneous property such that the score differences remain unchanged when a
positive constant scales both forecasts and observations. Using 0-homogeneous scores
ensures that the comparisons between different models remain constant regardless of
the scale used for the forecasting and observations. This property is important in
making the model comparison meaningful and robust. In addition, having a
0-homogeneous score often leads to higher power of DM tests where the test is more
likely to distinguish between forecasting models (Nolde and Ziegel (2017), Patton
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Data from bivariate GARCH with GAS t-copula

Split

In-sample: {(Xt, Yt)}t=−r+1,...,0 Out-of-sample: {(Xt, Yt)}t=1,...,n

Parameter Estimation
(Gaussian quasi-

maximum likelihood)

Risk Forecasts (VaR,
CoVaR, CoES)

VaR: estimated GARCH
marginal for Xt

CoVaR, CoES: solve integral
equations with estimated t-

copula dependence structure

Confound forecasts with multiplicative Weibull noise

Test null hypothesis using the confounded forecasts

FIGURE 4.2: Flowchart depicting the steps involved in the risk forecasting process

et al. (2019), Taylor (2019) and Fissler and Hoga (2023)). To achieve 0-homogeneity in
the VaR score function in (4.3) and following (Nolde and Ziegel (2017), example 4 and
the supplementary materials in Fissler and Hoga (2023) ) we set
h(z) = log(z) and aVaR(x, y) = log(x). Also, in SCoVaR

v (c, (x, y)) component from (4.4)
we choose g(z) = log(z) , a(y) = log(y) and aCoVaR(x, y) = 0, this yielding to

SCoVaR
v (c, (x, y)) = 1{x > v}[(1{y ≤ c} − α) log(c) + 1{y ≥ c}log(y)] (4.27)

In addition, for the component SCoVaR,CoES
v in (4.5) we achieve 0-homogeneity by

selecting g(z) = 0 , a(y) = aCoVaR(x, y) = 0 and ϕ(z) = −log(z)(z > 0), leading to
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S(CoVaR,CoES)
v ((c, e), (x, y)) =

1{x > v}
1 − α

[
(1{y > c}y − c

e
+ (1 − α)

( c
e
− 1 + log(e)

) ]
.

(4.28)

Now we investigate the behaviour of our tests after simulating R = 10000 trajectories
{Xt, Yt}t=−r+1,...,n from bivariate GARCH(1,1) model with GAS-driven t-copula as
presented in (4.24) and (4.25) respectively. Here, r = 1000 and n ∈ {500, 1000}. We fit
the model, forecast VaR and systemic risk (SR) components, and compute score
differences for each trajectory. Then we obtain T OS.uni

n test under different scenarios in
our analysis and investigate the behaviour of S(VaR+CoVaR) and S(VaR+CoVaR+CoES)

components under each scenario. The first scenario under consideration is when VaR
and SR forecasts both are comparable, here we compare r1,t = r̂1,t = (r̂VaR

1,t , r̂SR
1,t ) and

r2,t = r̂2,t = (r̂VaR
2,t , r̂SR

2,t ). Therefore, both forecast sets are equally misspecified, which
indicates that there is no difference between the two forecast models.

In the second scenario, we compare the forecast of the two models where we have
comparable VaR forecasts and better SR in the second model, which is illustrated as
r1,t = r̂1,t = (r̂VaR

1,t , r̂SR
1,t )

r2,t = (r̂VaR
2,t , r̂SR

t ) = (V̂aR2,t + ĈoVaRt + ĈoESt)

Here, the r2,t forecast combines the misspecified VaR forecast with the correctly
specified systemic risk forecasts, implying that the systemic risk forecasts of r1,t are
inferior to those of r2,t, leading to an expectation of positive score differences under
this scenario. For notation simplicity, in the results and table illustration, we will use
(*) to indicate accurate forecasting in a model component. For example, r2,t in scenario
2 will be presented in Table (4.8) as r2,t = r̂2,t = (r̂VaR

2,t , r̂SR∗
t ) where (*) indicates an

accurate forecasts in terms of SR component in the second model.
Table (4.8) presents the results of both scenarios under consideration in test statistics of
S(VaR+CoVaR) and S(VaR+CoVaR+CoES) and for different sample sizes.

In the first scenario, where both VaR and Systemic Risk (SR) forecasts are assumed
comparable, the test accurately assesses the average difference between the models
should be zero. For S(VaR+CoVaR), the rejection frequencies are low, at 7% for a sample
size of 500 and 5% for a sample size of 1000. Similarly, for S(VaR+CoVaR+CoES), the
rejection frequencies are 5.5% for both sample sizes of 500 and 1000. These low
rejection frequencies suggest that the tests are able to maintain the correct size when
the null hypothesis is true, even at a relatively small sample size of 500 observations.
In other words, the tests do not reject the null hypothesis too frequently when there is
no actual difference in forecasting performance between the models being compared.
The fact that the rejection frequencies are close to the nominal significance level at 5%)
indicates that the tests have good size control. On the other hand, the test
demonstrates higher sensitivity in scenario 2, where r2,t outperforms r1,t. The
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increased rejection frequencies 80% (94%) of the test of S(VaR+CoVaR) and 83% (96%) for
S(VaR+CoVaR+CoES) in the sample size of 500 (1000) illustrate the test’s ability to
distinguish between models with varying systemic risk forecasting accuracy.

Sample Size
Under the assumption, rVaR

1,t = r̂VaR
1,t and rVaR

2,t = r̂VaR
2,t

S(VaR+SR) score results S(VaR,SR) score results
Systemic Risk Fore-
casts

(VaR+ CoVaR) (VaR+ CoVaR+ CoES) (VaR, CoVaR) (VaR, CoVaR,
CoES)

500

rSR
1,t = r̂SR

1,t
rSR

2,t = r̂SR
2,t 7 5.5 3.5 3

rSR
1,t = r̂SR

1,t
rSR

2,t = r̂SR∗
t 80 83 80 80

1000

rSR
1,t = r̂SR

1,t
rSR

2,t = r̂SR
2,t 5 5.5 5 4.5

rSR
1,t = r̂SR

1,t
rSR

2,t = r̂SR∗
t 94 96 94 95

TABLE 4.8: Rejection Frequencies (%) of H0 for r1,t = (rVaR
1,t , rSR

1,t ) and r2,t = (rVaR
2,t , rSR

2,t ),
assuming VaR forecasts of both models are equally misspecified:

rVaR
1,t = r̂VaR

1,t and rVaR
2,t = r̂VaR

2,t while we consider various systemic risk scenarios. The
last two columns of the table present the results of Fissler and Hoga score function

S(VaR,SR). For S(VaR+SR), we obtain T OS.uni
n to test : H0 : E

[
d̄uni

n
]
≤ 0. While for

S(VaR,SR), we obtain One and a Half-Sided test, T OS
n , to examine

H⪯lex
0 : E

[
d̄1n
]
= 0 and E

[
d̄2n
]
≤ 0.

The (*) indicates accurate forecasts in the second model.

In the initial two scenarios, we assume that VaR forecasts are comparable between the
models, while the accuracy of systemic risk (SR) forecasts varies. Now, we shift to the
scenarios where we have differences in the predictive ability of the VaR predictions.
First, we compare the forecast of the two models, where we have better VaR
forecasting in the second model and equal accuracy in the SR component. To have a
better VaR forecast in the second model, we follow Fissler and Hoga (2023) by
introducing the following:

r̂VaR∗
2,t = V̂aRt(1.03 × ϵVaR

2,t )

Here,1.03 × 0.285 = 0.29355, this will lead to a higher mean with 0.29355 of the
multiplicative noise 1.03 × ϵVaR

2,t compared with the multiplicative noise of ϵVaR
1,t . By

having this and recalling that both ϵVaR
1,t and ϵVaR

2,t are Weibull-distributed with
identical shape and scale parameters, this will lead to have the average VaR losses of
forecasts r̂VaR

1,t are higher than those of the less biased r̂VaR∗
2,t . Under this scenario, we

have, r1,t = (r̂VaR
1,t , r̂SR

1,t ) and r2,t = (r̂VaR∗
2,t , r̂SR

2,t ) where VaR forecasts in the second model
is better while we have equal accuracy in SR component in both models, such that
E
[
d̄n
]
> 0. The final scenario under consideration when the forecasting of both VaR

and SR in the second model is better compared to the first model such that
r1,t = (r̂VaR

1,t , r̂SR
1,t ) and r2,t = (r̂VaR∗

2,t , r̂SR∗
t ). Here, we implement the same step as the

previous scenario to have better VaR forecasting. Table (4.9) presents rejection
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frequencies (%) of the null hypothesis (H0 : E[d̄uni
n ] ≤ 0) for different scenarios and

sample sizes, considering the assumptions that rVaR
1,t = r̂VaR

1,t and rVaR
2,t = r̂VaR∗

2,t where (*)
indicates an accurate VaR forecasts in term of the second model. In scenario 1, Even
though there is a marginal difference in the predictive accuracy of the VaR forecasts
while the systemic risk forecasts are comparable, our tests are sensitive enough to
detect this difference. Leading to rejection frequencies of 44% (72%) for S(VaR+CoVaR)

and 36.5% (64.5%)for S(VaR+CoVaR+CoES) in the sample size of 500 (1000). Furthermore,
our tests demonstrate higher power in detecting this slight variation between the
forecasting models compared to the test conducted by Fissler and Hoga (2023), with
rejection frequencies of 44 % compared to 39.5 % in Fissler and Hoga (2023).
Additionally, increasing the sample size enhances the power of our test to identify this
variability, with the rejection frequency rising to 72 % compared to Fissler and Hoga
(2023) test with 61.5% when the sample size is increased.
Moving to Scenario 2, where both VaR and systemic risk forecasts are considered
accurate in the second model, the tests demonstrate higher sensitivity, yielding
rejection frequencies of 94%(99.5%) for S(VaR+CoVaR) and 93.5 %(100%) for
S(VaR+CoVaR+CoES) in the sample size of 500 (1000). In this scenario, introducing an
additional small difference in VaR forecasts results in a higher rejection frequency than
Scenario 2 in Table (4.8). Specifically, when only SR forecasts are considered superior,
the rejection frequency for a sample size of 500 (1000) is 80% (94%) in the S(VaR+CoVaR).
However, when both VaR and SR are considered accurate in the second model, the
rejection frequency increases to 94% (99.5%) in S(VaR+CoVaR). A similar pattern is
observed in the S(VaR+CoVaR+CoES) combination.
Moreover, comparing our test with the one conducted by Fissler and Hoga (2023), we
observe that our test shows higher power, with a rejection frequency of 94% compared
to 88.5% for a sample size of 500. However, in sample size 1000, the rejection
frequency of our test is slightly higher, with 99.5% compared to 98.5% of Fissler and
Hoga (2023) test.
Overall, although we introduce a small difference in the predictive accuracy of the
VaR forecasts, our tests are capable of detecting this differentiation, even in cases
where the systemic risk forecasts demonstrate comparable forecasting. This indicates
that our tests have a good sensitivity to detect marginal differences in model
forecasting. Additionally, our tests effectively capture differences in forecasting
accuracy, showing increased rejection rates in situations where both VaR and systemic
risk forecasts are considered accurate in the second model.



4.4. Numerical Evidence: Monte Carlo Simulation and Empirical Application 135

Sample Size
Under the assumption, rVaR

1,t = r̂VaR
1,t and rVaR

2,t = r̂VaR∗
2,t

S(VaR+SR) score results S(VaR,SR) score results
Systemic Risk Fore-
casts

(VaR+ CoVaR) (VaR+ CoVaR+ CoES) (VaR, CoVaR) (VaR, CoVaR,
CoES)

500

rSR
1,t = r̂SR

1,t
rSR

2,t = r̂SR
2,t 44 36.5 39.5 39

rSR
1,t = r̂SR

1,t
rSR

2,t = r̂SR∗
2,t 94 93.5 88.5 91

1000

rSR
1,t = r̂SR

1,t
rSR

2,t = r̂SR
2,t 72 64.5 61.5 61

rSR
1,t = r̂SR

1,t
rSR

2,t = r̂SR∗
2,t 99.5 100 98.5 98.5

TABLE 4.9: Rejection Frequencies (%) of H0 for r1,t = (rVaR
1,t , rSR

1,t ) and r2,t = (rVaR
2,t , rSR

2,t ),
assuming the VaR forecasts of the second model is better than the first model,

rVaR
1,t = r̂VaR

1,t and rVaR
2,t = r̂VaR∗

2,t . The last two columns of the table present the results of
Fissler and Hoga score function S(VaR,SR).

For S(VaR+SR), we obtain T OS.uni
n to test : H0 : E

[
d̄uni

n
]
≤ 0. While for S(VaR,SR), we

obtain One and a Half-Sided test, T OS
n , to examine

H⪯lex
0 : E

[
d̄1n
]
= 0 and E

[
d̄2n
]
≤ 0.

The (*) indicates accurate forecasts in the second model.

The simulation study yielded several main results as follows:
Firstly, the power of our tests increases significantly as the sample size (n) grows
larger. Secondly, detecting differences in the predictive ability of two models becomes
more easier when considering scenarios where both VaR and SR forecasts are accurate
for one model while being misspecified for the other. Thirdly, despite introducing
only a small difference in the predictive accuracy of the VaR forecasts, our test has the
power to detect this differentiation, even in cases where the systemic risk forecasts
demonstrate a comparable performance across models. This finding highlighted the
good sensitivity of our tests to detect marginal differences in model forecasting.
Furthermore, across the various scenarios examined in this study, our tests generally
demonstrate superior performance compared to those proposed by Fissler and Hoga
(2023) in evaluations incorporating both (VaR + CoVaR) and (VaR + CoVaR + CoES).
Finally, comparisons involving CoVaR and CoES exhibit higher power compared to
those depending on CoVaR only, potentially attributed to the richer informational
content offered by the CoES component, increasing the overall power of the analysis.

4.4.2 Empirical Application

We analyze daily log-losses on the S&P 500 and DAX 30 from 2000 to 2020, denoted by
X−r+1, . . . , Xn and Y−r+1, . . . , Yn respectively. The data are sourced from
www.wsj.com/market-data/quotes ( using the ticker symbols SPX and DAX). We
calculate the logarithmic return of the stock index
Zt = − log (PZ,t/PZ,t−1) (Z ∈ {X, Y}), where PZ,t is the stock index value at time t,
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and PZ,t−1 is the stock index value at the previous time step (t − 1). The number of
observations where the data on both indexes are available is 5193 observations.
Throughout the analysis, we fix the risk levels α and β at 0.95, and we set r to 1000,
which denotes the length of the rolling window. We compare the (VaR, CoVaR, CoES)
forecast of the rolling window for the series {(Xt, Yt)}t=1,...,n. By choosing X (S&P 500)
and Y (DAX 30) for the analysis, we focus on assessing the risk of large losses in the
DAX 30 under the scenario where S&P 500 is in distress.
In short-term risk management, conditional risk measures that take into account the
available information up to the previous time period are considered more informative
than unconditional risk measures. These conditional risk measures, denoted as
F(Xt, Yt|Ft−1(x, y)), rely on the conditional distribution of the random variables
(Xt, Yt) given the information set generated by past
observations(Xt−1, Yt−1), (Xt−2, Yt−2), and so on, as well as any exogenous
information available up to time t-1. The forecasted conditional risk measures include
the VaRt(Xt) = VaRβ(FXt|Ft−1

), CoVaRt(Yt|Xt) = CoVaRα|β(F(Xt,Yt)|Ft−1
), and

CoESt(Yt|Xt) = CoESα|β(F(Xt,Yt)|Ft−1
). The dependence on risk levels α and β is omitted

for simplicity in notation.

For risk measure forecasting, we employ two models. The first approach involves
fitting separate GARCH(1,1) specifications to the time series Xt and Yt. For modelling
the dependence between the innovations (εx,t, εy,t), we adopt a Gaussian copula
density with time-varying correlation parameter ρt ∈ (−1, 1), where the correlation
dynamics follow the GAS process. Conditional on past information Ft−1, the
innovations are assumed to follow a Gaussian copula with correlation ρt evolving
according to GAS dynamics. The same models implemented in the simulation with (
ϑ = ∞ in (4.25)), models’ details provided in Subsection (4.4.1.1).

In the second forecasting model, we utilise the GJR-GARCH(1,1) proposed by Glosten
et al. (1993) with t-copula driven by GAS for the dependence model. The
GJR-GARCH(1,1) specifications are:

Xt = σx,tεx,t, σ2
x,t = ωx + αxX2

t−1 + βxσ2
x,t−1 + γxX2

t−1 I(Xt−1<0),

Yt = σy,tεy,t, σ2
y,t = ωy + αyY2

t−1 + βyσ2
y,t−1 + γyY2

t−1 I(Yt−1<0).
(4.29)

Here, γx and γy represent additional parameters that accommodate varying impacts
of positive and negative shocks on volatility. The dependence between (εx,t, εy,t) is
modelled using a t-copula density with time-varying correlation driven via GAS
dynamics as in(4.25). Figure (4.3) illustrates the two models employed in the risk
measure forecasting.
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Model 1

GARCH(1,1)

Xt Yt

Gaussian Copula

ρt ∼ GAS

Model 2

GJR-GARCH(1,1)

Xt Yt

t-Copula

ρt ∼ GAS

FIGURE 4.3: The Two Models Employed for Risk Measure Forecasting

For both models, following Fissler and Hoga (2023), we do not make assumptions
about the probability distribution of the error terms εx,t and εy,t. Instead, in the
estimation stage, we use the Gaussian quasi-maximum likelihood estimator (QMLE)
for the GARCH-type marginal models, which is robust to other error distributions.
Furthermore, when forecasting risk, we use the empirical cumulative distribution
functions (cdfs) of the error terms (Fx and Fy) instead of assuming a specific theoretical
distribution. The details regarding the risk prediction calculation are introduced in
(4.4.1.2).

The forecasting comparisons are conducted between the GARCH-Gauss model with
Gaussian copula and the GJR-GARCH with t-copula by evaluating their ability to
predict extreme events in the DAX 30 index with the scenario that the S&P 500 index
experiences VaR violations, and it investigates how well the models forecast extreme
losses in the DAX index during these events. The comparison involves calculating
CoVaR and CoES forecasts for both models, and it involves two series of
rolling-window predictions r1,t and r2,t obtained by refitting the models daily with a
rolling window of length r = 1000. This generates n=4193 forecasts from the GARCH
model with Gaussian copula, denoted as {r1,t}t=1,...,n, and from the GJR-GARCH with
t-copula, denoted as {r2,t}t=1,...,n. We consider r1,t as a benchmark forecasts which are
to be better by r2,t.
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FIGURE 4.4: Top: GARCH model with Gaussian copula forecasting CoVaR(CoES) as
the blue(red) line along with DAX log losses on days when the S&P 500 exceeds its

VaR forecast. Bottom: similar to the top but with GJR-GARCH with t-copula.

In Figure (4.4), we visually represent the specific periods when VaR violations
occurred in the S&P 500 index and then examine how well the two models forecast the
corresponding losses(CoVaR and CoES) in the DAX index during those times. Here,
the GARCH model with Gaussian copula is provided in the top panel, while the
bottom panel corresponds to GJR-GARCH with t-copula. The black line represents the
DAX log losses on days when the S&P 500 exceeds its VaR forecast. As we can
observe, the black lines between the upper and lower panels vary slightly, and this is
because of the distinct marginal models, which lead to varying VaR forecasts.

As previously mentioned, we consider the GARCH model with Gaussian copula as
our benchmark and to test the Null Hypothesis H0 for the following risk
measures:(VaR, CoVaR) and (VaR, CoVaR, CoES). We anticipate that the GJR-GARCH
with the t-copula model to have a better risk forecast by having lower scores than the
GARCH model with the Gaussian copula, potentially leading to a rejection of the H0.
This anticipation is because of the informal comparison that has been conducted by in
Fissler and Hoga (2023), which shows higher non-exceedance frequencies in both
(VaR, CoVaR) and (VaR, CoVaR, CoES) GJR-GARCH with the t-copula compared to
the GARCH model with Gaussian copula. In addition, substantial empirical evidence
and studies favouring GJR-GARCH compared to simple GARCH(1,1), see for
instance( Glosten et al. (1993),Brownlees et al. (2011), Liu and Hung (2010)) and GAS-t
cupola models (Creal et al. (2013) and Bernardi and Catania (2019)). We perform the
tests using T OS.uni

n with S(VaR+CoVaR), and S(VaR+CoVaR+CoES), along with (4.28) and



4.4. Numerical Evidence: Monte Carlo Simulation and Empirical Application 139

(4.27), which feature 0-homogeneous score differences, and utilising σ̂n from (4.17);
details are in Subsection 4.4.1.3 and the supplementary materials in Fissler and Hoga
(2023). It is frequently advised to utilize scoring functions for VaR and ES forecasts
that result in 0-homogeneous score differences, enabling unit-consistent and powerful
comparisons (Nolde and Ziegel (2017),Patton et al. (2019)), where the powerful
comparison has been illustrated in Fissler and Hoga (2023).
Let d̄uni

n be the score differences that are implemented to compare the two forecasts as
described in (4.16). Upon computation of d̄uni

n , we observe that it yields positive
values, indicating that the GJR-GARCH with t-copula has lower scores for both the
S(VaR+CoVaR) and the S(VaR+CoVaR+CoES) forecasts. These score differences are
statistically significant at 5% level, with p-values of 0.0055 for the T OS.uni

n -based Wald
test for S(VaR+CoVaR) and 0.0204 for S(VaR+CoVaR+CoES). This indicates that the
GJR–GARCH model with t-copula performs well compared to the GARCH model
with Gaussian copula.
Furthermore, we extend the analysis to include weights in our joint score functions
and investigate the impact of different weight combinations on the statistical
significance of the Wald Test results for the score functions S(VaR+CoVaR) and
S(VaR+CoVaR+CoES). We examine various weights ranging from 0 to 1 with a step size of
0.1, assigned to the VaR, CoVaR, and CoES components.
Tables (4.10) and (4.11) display the p-value results of the weighted score functions
S(VaR+CoVaR) and S(VaR+CoVaR+CoES), respectively. Upon examining the weights and the
corresponding p-values of the weighted score function S(VaR+CoVaR+CoES), we observe
a significant negative correlation (-0.69) between the weight assigned to VaR and the
resulting p-values. This implies that a higher weight assigned to VaR tends to be
associated with lower p-values, indicating higher statistical significance.
In contrast, the correlation coefficient between weights on CoVaR and p-values is
-0.079, while the weight assigned to CoES exhibits a strong positive correlation (0.77)
with the p-values. This suggests that higher weights assigned to CoES are associated
with higher p-values, indicating lower statistical significance.
These findings emphasize the critical role of weight assignment in evaluating systemic
risk. The strong negative correlation (-0.69) between VaR weight and resulting
p-values aligns with the popularity of the t-copula model in empirical work.
Moreover, we provide visual representations of the p-values, and the weighted score
functions S(VaR+CoVaR) and S(VaR+CoVaR+CoES) in Figure (4.5) and (4.6). Through
additional consideration of weight assignment, the performance of our proposed score
functions S(VaR+CoVaR) and S(VaR+CoVaR+CoES) could further improve, a task we leave
for future investigation.
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FIGURE 4.5: The bar plot displays the p-value results of the weighted score function
S(VaR+CoVaR. We examine various weights ranging from 0 to 1 with a step size of 0.1
on our score function to study the impact of these weights. Each bar represents a
specific weight configuration denoted as (VaR, CoVaR). The x-axis labels indicate the
weight configurations in the format (VaR, CoVaR), while the y-axis represents the cor-
responding p-values obtained from the statistical analysis. This plot provides insights
into the significance of risk forecasts generated under various weight combinations,
aiding in the evaluation of their predictive performance. Additionally, the statistical
significance of the score differences at a 5% level is assessed using the T OS.uni

n -based
Wald test for S(VaR+CoVaR). Low p-values indicate that the GJR–GARCH model with

t-copula performs well compared to the GARCH model with Gaussian copula.
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FIGURE 4.6: The bar plot displays the p-value results of the weighted score function
S(VaR+CoVaR+CoES). We examine various weights ranging from 0 to 1 with a step size
of 0.1 on our score function to study the impact of these weights. Each bar repre-
sents a specific weight configuration denoted as (VaR, CoVaR, CoES). The x-axis labels
indicate the weight configurations in the format (VaR, CoVaR, CoES), while the y-
axis represents the corresponding p-values obtained from the statistical analysis. This
plot provides insights into the significance of risk forecasts generated under various
weight combinations, aiding in the evaluation of their predictive performance. Ad-
ditionally, the statistical significance of the score differences at a 5% level is assessed
using the T OS.uni

n -based Wald test for S(VaR+CoVaR+CoES). Low p-values indicate that
the GJR–GARCH model with t-copula performs well compared to the GARCH model

with Gaussian copula.

p-value Weight Assignment

0.0599 γ = 0.1 , δ = 0.9
0.0302 γ = 0.2 , δ = 0.8
0.0142 γ = 0.3 , δ = 0.7
0.0076 γ = 0.4 , δ = 0.6
0.0056 γ = 0.5 , δ = 0.5
0.0059 γ = 0.6 , δ = 0.4
0.0079 γ = 0.7 , δ = 0.3
0.0114 γ = 0.8 , δ = 0.2
0.0165 γ = 0.9 , δ = 0.1

TABLE 4.10: The table presents the impact of different combinations of weights on the
statistical significance of the Wald Test results for the score function S(VaR+CoVaR). Each
row represents a combination of weights for VaRVaR (γ) and CoVaR δ and the Weights
range from 0 to 1 with a step size of 0.1. Additionally, the statistical significance of
the score differences at a 5% level is assessed using the T OS.uni

n -based Wald test for
S(VaR+CoVaR), with low p-values indicating superior performance of the GJR–GARCH

model with t-copula compared to the GARCH model with Gaussian copula.
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p-value Weight Assignment

0.1508 γ = 0.1 ,δ = 0.1 , λ = 0.8
0.1428 γ = 0.1 ,δ = 0.2 , λ = 0.7
0.1327 γ = 0.1 ,δ = 0.3 , λ = 0.6
0.1197 γ = 0.1 ,δ = 0.4 , λ = 0.5
0.1025 γ = 0.1 ,δ = 0.5 , λ = 0.4
0.0795 γ = 0.1 ,δ = 0.6 , λ = 0.3
0.0499 γ = 0.1 ,δ = 0.7 , λ = 0.2
0.0205 γ = 0.1 ,δ = 0.8 , λ = 0.1

0.0919 γ = 0.2 ,δ = 0.1 , λ = 0.7
0.0795 γ = 0.2 ,δ = 0.2 , λ = 0.6
0.0655 γ = 0.2 ,δ = 0.3 , λ = 0.5
0.0499 γ = 0.2 ,δ = 0.4 , λ = 0.4
0.034 γ = 0.2 ,δ = 0.5 , λ = 0.3
0.0205 γ = 0.2 ,δ = 0.6 , λ = 0.2

0.0499 γ = 0.3 ,δ = 0.1 , λ = 0.6
0.0392 γ = 0.3 ,δ = 0.2 , λ = 0.5
0.029 γ = 0.3 ,δ = 0.3 , λ = 0.4
0.0205 γ = 0.3 ,δ = 0.4 , λ = 0.3
0.015 γ = 0.3 ,δ = 0.5 , λ = 0.2

0.0267 γ = 0.4 ,δ = 0.1 , λ = 0.5
0.0205 γ = 0.4 ,δ = 0.2 , λ = 0.4
0.016 γ = 0.4 ,δ = 0.3 , λ = 0.3
0.0139 γ = 0.4 ,δ = 0.4 , λ = 0.2
0.0153 γ = 0.4 ,δ = 0.5 , λ = 0.1

0.0167 γ = 0.5 ,δ = 0.1 , λ = 0.4
0.0144 γ = 0.5 ,δ = 0.2 , λ = 0.3
0.0139 γ = 0.5 ,δ = 0.3 , λ = 0.2
0.0162 γ = 0.5 ,δ = 0.4 , λ = 0.1

0.0139 γ = 0.6 ,δ = 0.1 , λ = 0.3
0.0143 γ = 0.6 ,δ = 0.2 , λ = 0.2

0.0148 γ = 0.7 ,δ = 0.1 , λ = 0.2
0.018 γ = 0.8 ,δ = 0.1 , λ = 0.1

TABLE 4.11: The table presents the impact of different weight combinations on the
statistical significance of the Wald Test results for the score function S(VaR+CoVaR+CoES).
Each subtable pair represents fixed values of the weights assigned to VaR (γ) while
varying the weights for CoVaR (δ) and CoES (λ). The weights range from 0 to 1 with a
step size of 0.1. Additionally, the statistical significance of the score differences at a 5%
level is assessed using the T OS.uni

n -based Wald test for S(VaR+CoVaR)+CoES), with low
p-values indicating superior performance of the GJR–GARCH model with t-copula

compared to the GARCH model with Gaussian copula.
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4.5 Discussion

4.5.1 Sensitivity to Risk Levels

Our study primarily focuses on risk levels of α = β = 0.95 following Fissler and Hoga
(2023) setting, which is a commonly used setting in practice. However, it is important
to acknowledge the sensitivity of the results to these tuning parameters. To examine
the sensitivity of our proposed score function S(VaR+SR) to varying risk levels, we
conducted additional simulation analyses across a range of α and β values in 4.3.3.4,
where we investigate the elicitability of our proposed score function through
numerical simulations. The results, presented in Tables 4.5 and 4.6, and Figures 4.7,
4.8, 4.9, 4.10 and 4.11, demonstrate that our score function exhibits consistent
performance and robustness across different risk level combinations.
Furthermore, in the empirical application section 4.4.2, we explored the impact of
different weight assignments on the statistical significance of the Wald test results for
the score functions S(VaR+CoVaR) and S(VaR+CoVaR+CoES). This analysis, while not
directly related to the sensitivity to risk levels, provided insights into the sensitivity of
the results to the prioritization of individual risk measures within the combined score
function. While the choice of risk levels can influence the specific numerical values
obtained, our overall findings and conclusions regarding the effectiveness of our
proposed score function in jointly assessing VaR and systemic risk measures remain
valid across a reasonable range of risk level settings.

4.5.2 Limitations and Shortcomings

While our proposed univariate score function S(VaR+SR) offers a novel approach to
jointly assessing VaR and SR, it is important to acknowledge potential limitations and
shortcomings associated with considering a combination statistic. One key limitation
lies in the interpretability and the ability to discern the relative importance of
individual risk components within the combined score. By combining multiple risk
measures into a single score function, the specific contributions or relative importance
of each individual risk measure may be obscured, potentially reducing the
interpretability of the overall score.
To mitigate this issue and gain further insights into the individual performance of the
models, our proposed score function allows for the inclusion of weights, enabling
users to prioritize one risk measure over the other based on their specific
requirements. However, this flexibility in weighting introduces another challenge –
determining optimal weighting strategies. The choice of weights can significantly
influence the overall score and its sensitivity to changes in individual risk measures,
making the determination of appropriate weighting strategies context-dependent and
potentially challenging.
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It is important to note that the proposed test statistic aims to provide an overall
assessment of a model’s performance in capturing both individual and systemic risk
simultaneously. While it is possible that one model outperforms the other in different
risk measures, the joint evaluation of VaR and SR is crucial in many practical
applications, such as risk management and regulatory oversight. A model that
performs well in both measures may be preferred over a model that excels in one
measure but performs poorly in the other. When the test indicates a significant
difference between two models, it suggests that one model has a better overall
performance in capturing both VaR and SR, although it does not necessarily imply
superiority in both measures individually. Despite these potential limitations and
shortcomings, our proposed approach provides a unique perspective on risk
assessment by jointly considering VaR and SR measures. Future research could focus
on addressing these limitations, such as developing robust weighting strategies,
exploring alternative combination methods, or incorporating additional risk measures
to enhance the comprehensiveness of the risk assessment framework.

4.6 Conclusion

In conclusion, our proposed score function, S(VaR+SR), offers a simpler and
straightforward solution that addresses the limitation observed in Fissler and Hoga
(2023) approach. Specifically, Fissler and Hoga (2023) requires a constraint on the
evaluation and comparison of risk measures by stating that the assessment is confined
to either VaR or SR contingent upon the equality of VaR across the models under
consideration. This indicates that Fissler and Hoga (2023) approach fails to assess both
risk measures on an equal footing. However, defining our univariate score function as
the sum of the marginal/conditional score functions for forecasting VaR and SR
without the need to prioritize one over the other based on the equality of VaR across
models goes beyond the backtesting implemented by Fissler and Hoga (2023).
Moreover, the risk of employing identification functions that are not strictly defined
for backtesting is examined by conducting a comparative analysis of our identification
function along with the one-dimensional identification function introduced by
Banulescu-Radu et al. (2021) in addition to the two-dimensional identification
function introduced by Fissler and Hoga (2023). Specifically, we evaluated the power
of the three identification functions in identifying misspecified systemic risk forecasts
under various sample sizes and distributional scenarios. A misspecified risk measure
is defined as a measure that fails to capture the true tail risk dynamics over time
accurately. Through our analysis, we demonstrated the superiority of our proposed
identification function compared to Banulescu-Radu et al. (2021) identification
function. In Particular, the backtest proposed by Banulescu-Radu et al. (2021) exhibits
a complete loss of power in distinguishing between correct and misspecified forecasts.
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In contrast, our identification function, aligning with Fissler and Hoga (2023)
identification function, successfully identifies misspecified forecasts almost with
certainty with almost 100% across different distributional assumptions and sample
sizes. These results underscore the power of our proposed identification function in
detecting misspecified systemic risk forecasts, outperforming Banulescu-Radu et al.
(2021) method. Furthermore, through a comprehensive simulation analysis, we
illustrate the elicitability of our proposed score function. Moreover, we showed
through a Monte Carlo simulation the following: Firstly, the power of our tests
increases significantly as the sample size (n) grows larger. Secondly, our tests show a
good size control with a rejection frequency close to a 5% significance level, even for a
small sample size (n = 500). Thirdly, detecting differences in the predictive ability of
two models becomes more easier when considering scenarios where both VaR and SR
forecasts are accurate for one model while being misspecified for the other. Fourth,
despite introducing only a small difference in the predictive accuracy of the VaR
forecasts, our test has the power to detect this differentiation, even in cases where the
systemic risk forecasts demonstrate a comparable performance across models. This
finding highlighted the good sensitivity of our tests to detect marginal differences in
model forecasting. Furthermore, across the various scenarios examined in this study,
our tests generally demonstrate slightly higher power compared to those proposed by
Fissler and Hoga (2023) in evaluations incorporating both (VaR + CoVaR) and (VaR +
CoVaR + CoES). Finally, comparisons involving CoVaR and CoES exhibit higher
power compared to those depending on CoVaR only, potentially attributed to the
richer informational content offered by the CoES component, increasing the overall
power of the analysis. Furthermore, our analysis extends to include weights into our
proposed joint score functions, offering flexibility in prioritizing various risk measures
such as VaR and CoVaR by adjusting the allocated weights for each component
according to our desired emphasis. We observed a significant negative correlation
(-0.69) between VaR weight and resulting p-values. This suggests that assigning a
higher weight to VaR tends to be associated with lower p-values, indicating higher
statistical significance. On the other hand, a strong positive correlation (0.77) was
observed for CoES weight and resulting p-values. These findings highlight the critical
role of weight assignment in evaluating systemic risk forecasting. Through additional
consideration of weight assignment, the performance of our proposed score function
could further improve, a task we leave for future investigation.
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Appendix

FIGURE 4.7: The plot illustrates the Mean Squared Error (MSE) values of the CoVaR
estimation component in the score function S(VaR+CoVaR) across a range of α/β val-
ues (0.01 to 0.99) for different correlation coefficients ρ (0.4 and -0.4). Each subplot
represents a different ρ value: the first subplot corresponds to ρ = 0.4, while the sec-
ond subplot corresponds to ρ = −0.4. The MSE is computed over 10000 simulations,
with each simulation generating data and computing MSE over 100 iterations. This
involves running the CoVaR estimation algorithm multiple times to assess its perfor-

mance.

FIGURE 4.8: The plot illustrates the Mean Squared Error (MSE) values of the CoVaR
estimation component in the score function S(VaR+CoVaR) across a range of α/β val-
ues (0.01 to 0.99) for different correlation coefficients ρ (0.9, 0.7, 0.5, 0.3 and 0.1). Each
subplot represents a different ρ value. The MSE is computed over 10000 simulations,
with each simulation generating data and computing MSE over 100 iterations. This
involves running the CoVaR estimation algorithm multiple times to assess its perfor-

mance.
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FIGURE 4.9: The plot illustrates the Mean Squared Error (MSE) values of the CoVaR
estimation component in the score function S(VaR+CoVaR) across a range of α/β values
(0.01 to 0.99) for different correlation coefficients ρ (-0.9, -0.7, -0.5, -0.3 and -0.1). Each
subplot represents a different ρ value. The MSE is computed over 10000 simulations,
with each simulation generating data and computing MSE over 100 iterations. This
involves running the CoVaR estimation algorithm multiple times to assess its perfor-

mance.

FIGURE 4.10: The plot illustrates the Mean Squared Error (MSE) values of the CoES
estimation component in the score function S(VaR+CoVaR+CoES) across a range of α/β
values (0.01 to 0.99) for different correlation coefficients ρ (0.9, 0.7, 0.5, 0.3 and 0.1).
Each subplot represents a different ρ value. The MSE is computed over 10000 simula-
tions, with each simulation generating data and computing MSE over 100 iterations.
This involves running the CoES estimation algorithm multiple times to assess its per-

formance.
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FIGURE 4.11: The plot illustrates the Mean Squared Error (MSE) values of the CoES
estimation component in the score function S(VaR+CoVaR+CoES) across a range of α/β
values (0.01 to 0.99) for different correlation coefficients ρ (-0.9, -0.7, -0.5, -0.3 and -0.1).
Each subplot represents a different ρ value. The MSE is computed over 10000 simula-
tions, with each simulation generating data and computing MSE over 100 iterations.
This involves running the CoES estimation algorithm multiple times to assess its per-

formance.

FIGURE 4.12: The slice plots illustrate the impact of different combinations of
weights on the statistical significance of the Wald Test results for the score function
S(VaR+CoVaR+CoES). Each subplot represents a fixed value of one weight component,
while the other two weight components vary. (a) Slice plot with weight on VaR fixed,
(b) Slice plot with weight on CoVaR fixed, and (c) Slice plot with weight on CoES fixed.
Each marker’s position represents a combination of weight values. Marker colour in-
dicates the Wald Test p-value associated with each combination, with darker colours

representing lower p-values.
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Chapter 5

Conclusions and Future Extension

Throughout this thesis, we have undertaken a journey to address crucial challenges in
statistical analysis and financial modelling, spanning robust time series analysis,
dynamic portfolio construction, and comparative backtesting of forecasting models
for risk assessment. Each chapter has contributed unique methodologies and insights,
together advancing the understanding and practice of statistical finance.

Chapter 2 introduced the Robust Model Averaging Marginal Regressions (RMAMAR)
procedure as an extension of the Model Averaging MArginal Regression (MAMAR)
methodology proposed by Li et al. (2015), RMAMAR aims to mitigate the curse of
dimensionality and outlier sensitivity in nonparametric time series analysis. By
combining one-dimensional marginal regression functions through robust
M-estimation techniques, RMAMAR overcomes the limitations of least squares
methods and effectively addresses the curse of dimensionality.
To evaluate the performance of the RMAMAR method, we conducted Monte Carlo
simulations and real data analysis. In the simulation study, we investigated our
approach under three scenarios and across various distributional assumptions,
including t-distributions and normal distributions. To assess the sensitivity of our
approach, we also implemented different parameter values in our simulated models.
The simulation study results showed that, compared to alternative methods across
different distributional scenarios such as MAMAR and nonlinear additive models, our
RMAMAR approach can precisely lead to satisfactory prediction performances within
purely nonlinear additive AR model structures, even with limited sample sizes.
In the real data analysis, we applied our RMAMAR approach to rainfall data
characterized by a long tail to the right. Our analysis exhibited the ability of
RMAMAR to uncover nonlinear lag effects compared to the linear Autoregressive
(AR) model. Additionally, RMAMAR displayed the lowest Mean Absolute Error
(MAE), both in-sample and out-of-sample, demonstrating an improved predictive
ability compared to the different models conducted in the analysis.
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Overall, our study highlights the advantages of the proposed RMAMAR method in
understanding and modelling time series data that contain outliers and nonlinear
dependencies. RMAMAR offers a flexible and robust approach for analyzing complex
time series datasets in various applications by combining robust estimation
techniques in model averaging with nonparametric regression.

In Chapter 3, we explored a dynamic portfolio with a series of conditioning variables
under quantile preferences ( QP ), a departure from traditional Expected Utility
frameworks. Our approach, which incorporates large dimensional conditioning
variables and model averaging techniques, provides practical insights into
constructing dynamic optimal portfolios that align with investors’ downside
preferences. In our proposed approach, we initially estimate the marginal optimal
portfolio choice under QP by solving the conditional quantile function for each
individual conditioning variable. Subsequently, through a model averaging process,
we combine the optimal weights obtained from the previous step to form the overall
dynamic optimal portfolio. The empirical evidence has underscored the effectiveness
of this methodology in capturing downside risk preferences during unstable market
periods, thereby highlighting its practical relevance for risk-aware investment
strategies in both small and large dimensions.

As a future work, in Stage 2, where the estimation of the optimal model averaging
weights of quantiles, ao(τ) are obtained by maximizing:

ao(τ) = arg max
a

E
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p
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aj(Xj) wT
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]}
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aj(Xj) = 1, aj ≥ 0.

(5.1)

one may consider replacing the expected utility maximization in Eq(5.1) with a
quantile-based approach as follows

ao(τ) = arg max
a

Qτ

{
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]}
,
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∑
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aj(Xj) = 1, aj ≥ 0.

(5.2)

The proposed method in (5.2) aims to improve the robustness and accuracy of model
averaging techniques by optimising quantile-based utility functions. Moreover, we
can extend its applicability by relaxing the constraint aj ≥ 0, thereby allowing for
the possibility of negative values for aj.
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Chapter 4 addressed the crucial task of comparing forecasting models for Value at
Risk (VaR) and systemic risk (SR) components. our proposed score function, S(VaR+SR),
offers a robust solution to address the limitation observed in Fissler and Hoga (2023)
backtesting approach. Specifically, Fissler and Hoga (2023) imposes a restrictive
condition, by indicating that the two systemic risk forecasts only influence the ranking
in the lexicographic order under the condition E[d̄1n] = 0. However, by building upon
this existing framework, we introduced an alternative univariate score defined as the
sum of the marginal/conditional score functions for forecasting VaR and SR without
the utilization of the lexicographic order. Our score function provides a simple and
straightforward univariate score function without any restrictive assumption, thus
overcoming the limitations identified in Fissler and Hoga (2023) approach. Through
extensive simulations and empirical analyses we have implemented in this Chapter,
we have proven the power of our score function in identifying misspecified forecasts
and distinguishing between different risk models, thereby directly contributing to the
practical needs of risk management. We also compared our approach with the
two-dimensional identification function introduced by Fissler and Hoga (2023) and
the one-dimensional identification function introduced by Banulescu-Radu et al.
(2021). Specifically, we test the power of the three identification functions under
different sample sizes in detecting specific misspecified systemic risk forecasts. The
backtesting conducted by Banulescu-Radu et al. (2021) indicates a complete inability
to distinguish between correct and misspecified forecasts. Conversely, our
identification function aligns with the conclusion drawn by Fissler and Hoga (2023),
successfully identifying the misspecified forecasts with near certainty. Furthermore,
our analysis extends to include weights in score functions, allowing flexibility in
emphasizing different risk measures such as VaR and CoVaR by adjusting the weights
assigned to each component according to our desired emphasis. We observed a
significant negative correlation (-0.82) between VaR weight and resulting p-values,
contrasting with a positive correlation (0.71) for CoES weight. These findings
highlight the critical role of weight assignment in evaluating systemic risk. Through
additional consideration of weight assignment, we anticipate that the performance of
our proposed score function could further improve, a task we leave for future
investigation.

In conclusion, the findings presented in this thesis contribute not only to the
advancement of statistical finance but also offer practical implications for
decision-makers and practitioners navigating the complexities of modern financial
markets. By addressing critical challenges in time series analysis, portfolio
optimization, and risk assessment, this research offers practical solutions and
strategies that can be used to make more informed choices and enhance risk
management in the dynamic financial landscape.
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