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Abstract

Bayesian modelling of point referenced data estimates the relationships among geospa-

tial variables and enables predictions at unobserved locations. The Watanabe-Akaike

information criterion (WAIC) is a model selection criterion for determining the best

model configuration from a set of competing candidate models. However, the tra-

ditional formulation of the WAIC assumes conditional independence in the outcome

variables, an assumption violated by the spatial dependence often exhibited by point

referenced spatial data. Consequently, spatial models for point referenced data vio-

late the conditional independence assumption. To address this problem, this thesis

introduces the WAICNF, a novel approach employing likelihoods for non-factorisable

models that consider conditional dependencies for WAIC calculation.

We apply the WAICNF to real-world spatial modelling using the 2018 Nigeria

Demographic and Health Survey data, focusing on the coverage of the first-dose of the

measles-containing vaccine (MCV1). We construct models with different covariance

functions and fit them using the integrated nested Laplace approximation – stochastic

partial differential equation (INLA-SPDE) method. We observe notable differences

in the WAICNF values, in comparison with the WAIC values computed by default

using the R-INLA package. Additionally, we extend our WAICNF application to the

MCV1 dataset by fitting spatial models with the nearest-neighbour Gaussian process

(NNGP) method in Stan, effectively identifying the spatial model with the optimal

covariance function specifications for the MCV1 dataset.

This thesis contributes to existing knowledge on model selection methods for point

referenced spatial data with the WAICNF. Our findings highlight its effectiveness

for model selection, particularly when choosing among spatial models with different

covariance functions. Its integration with two Bayesian spatial modelling platforms

— INLA-SPDE in R and NNGP in Stan — enhances its utility and provides a robust

model selection framework for Bayesian modelling of point referenced spatial data.
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Chapter 1

Introduction

1.1 Review of classic model selection methods

Statistical modelling can help statisticians better understand data by estimating re-

lationships between variables of interest, inferring underlying properties of the data

and facilitating predictions. The utility of a statistical model lies in its ability to

capture the essential features of a dataset. While there is no “perfect” model, when

a model fits the data well, it can offer a useful and good representation of the inher-

ent structure and characteristics of the dataset. Therefore, it is crucial to select an

appropriate model for the specific dataset under consideration.

For instance, when dealing with a spatial dataset where the outcomes are dis-

tributed across a geographic domain, a simple linear regression model may be em-

ployed as the first choice. However, a simple linear regression model often prove

inadequate in capturing the inherent spatial dependencies within the spatial dataset.

Spatial models, designed to account for these spatial characteristics, may be a more

suitable alternative. Despite the intuitive appeal of spatial models, it is imperative

to substantiate the decision for employing a spatial model over a simple linear re-

gression model. For this, statisticians rely on robust model selection methods. These

techniques play an important role in affirming that the chosen model offers a more

accurate representation of the data compared to the other candidates. Revisiting

the spatial dataset example, model selection methods can help determine whether a

spatial model provides a better fit to the spatial dataset when compared to a simple

linear regression model.

Consider another scenario where independent variables, referred to as covariates
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or predictors, are introduced into the model. The selection of covariates necessitates

the use of model selection methods to identify the optimal combination. This process

involves a delicate balance between the advantages gained from including additional

variables and the potential drawbacks associated with their omission. This decision

impacts how well the model captures the underlying structure and characteristics of

the data.

The scenarios presented above motivate the need for model selection methods.

The objective of model selection is to identify a model that is good enough where it

can be “useful” (Box, 1976). Conversely, the objective of model selection is to avoid

selecting models that are obviously poor.

When comparing two models, one of which is nested within the other, the model

with more covariates typically provides a better fit to the data. Although this may

intuitively suggest a preference for models with more covariates, such a preference

has inherent disadvantages, primarily related to increased model complexity. Models

with additional covariates often exhibit greater model complexity, making them more

challenging to interpret and compute. Moreover, adhering to the scientific principle of

parsimony implies a preference for simpler models unless the expansion of the model

and the increase in complexity can be adequately substantiated.

In the non-Bayesian framework, models can be compared using the coefficient of

determination, denoted as R2. It serves as a measure of goodness-of-fit by calculating

the ratio between the sum of squares for the regression and the total sum of squares.

However, R2 does not account for model complexity and consistently favours mod-

els with more variables, thus contradicting the aforementioned scientific principle of

parsimony, and resulting in computational and interpretation challenges.

Model selection methods in the non-Bayesian framework that account for model

complexity include the adjusted R2, Mallows Cp (Mallows, 1964, 2000) and the Akaike

information criterion (Akaike, 1973). These model selection methods account for

model complexity by incorporating the number of covariates into their calculations.

These selection methods strike a balance between the fit of the model to the data and

its complexity. Another tool for model selection is the F -test. It is often employed

to identify the model that best fits the data. The F -test is commonly used in the

context of stepwise, forward and backward model selection procedures for nested

models (Kadane and Lazar, 2004).

In the Bayesian framework, the preferred method for model comparison and selec-
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tion is the Bayes factor (Kass and Raftery, 1995). However, practical implementation

of the Bayes factor is challenging in most cases due to the complexities associated with

high-dimensional integration problems. Complications in implementing the Bayes

factor also arises when improper prior distributions are specified, or when dealing

with models that involve large datasets, both of which are commonly encountered in

practice (Gelfand and Ghosh, 1998).

Instead, an easier to implement model selection criterion is the deviance infor-

mation criterion (DIC), often referred to as the “Bayesian version of the Akaike

information criterion” due to their similar formula and asymptotic properties. We

will further elaborate this in Chapter 2. However, the DIC has faced criticism for

not being “fully Bayesian”, since its formulation involves a plug-and-use factor with

a Bayes estimate (Gelman et al., 2014). A more fully Bayesian model selection cri-

terion is the Watanabe-Akaike information criterion (WAIC). Similar to the Akaike

information criterion and Mallows Cp, the DIC and WAIC both not only assess the

fit of the model, but also account for the model complexity.

The predictive model choice criterion (PMCC) is another model selection method

in the Bayesian context. It is based on the minimum posterior predictive loss approach

(Gelfand and Ghosh, 1998). The PMCC appears to be appropriate for many classes

of hierarchical models and for correlated data models, such as spatial models, because

it depends directly on the posterior predictive distribution rather than the likelihood

function. Similar to the DIC and WAIC, the PMCC comprises two components.

A component to measure the fit of the model on the data, and a component that

accounts for model complexity.

1.2 Motivation

Models for spatial data present a fundamental challenge to the traditional model

comparison strategies discussed in the preceding section due to their violation of the

independence assumption (Hoeting et al., 2006). In spatial datasets, outcomes of-

ten exhibit spatial dependence, and capturing this spatial dependence constitutes

a key characteristic of spatial models. As a result, models for spatial data violate

the assumption of independence. For example, while the calculation of the Akaike

information criterion (AIC) relies on likelihood functions that assume conditional in-

dependence among the outcomes of the data, they continue to be a prevalent choice
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for model selection in practical spatial related applications (Liang, 2012, Vahedi Saheli

and Effati, 2021). We will reserve a more detailed exploration of the AIC for Chapter

2, but it is important to acknowledge that failure to account for spatial dependence

among spatial data can result in model selection criteria favouring overly complex

models. This oversight, in turn, leads to greater uncertainty regarding model param-

eters, poorer prediction accuracy and misguides inferential conclusions (Duncan and

Mengersen, 2020).

In the field of ecological sciences, the spatial leave-one-out cross-validation (SLOO)

method is a popular model selection method (Pohjankukka et al., 2017). While pri-

marily employed for variable selection tasks within the non-Bayesian framework, the

SLOO method was developed to address the limitation of the conventional leave-one-

out cross validation (LOO), that is when dealing with structured data like spatial

datasets (Le Rest et al., 2014). The SLOO method involves four key steps: The first

step removes one observation from the dataset. Next, remove all observations that are

spatially correlated with the removed observation in the first step. Subsequently, fit

a model using the remaining data and make a prediction at the location of the obser-

vation removed in the first step, based on the estimated model parameters. Finally,

calculate a score between the observed and predicted value. Le Rest et al. noted that

the SLOO criterion calculation used by Pohjankukka et al. (2017) for selecting data

sampling density for new research area relies on the likelihood instead of the classi-

cal sum of square of errors. As a result, in the absence of spatial autocorrelation,

the SLOO method aligns with the AIC (Le Rest et al., 2014). Although the SLOO

method represents a valid approach for model selection for spatial data, we do not

further explore it in detail within this thesis due to our primary focus on Bayesian

model selection methods. However, we will provide further detail regarding LOO in

Chapter 2.

Within the Bayesian framework, model selection methods include the deviance

information criterion (DIC) and the Watanabe-Akaike information criterion (WAIC).

The computation of these criteria rely on likelihood functions that assume indepen-

dence among the outcomes of the data; we will further elaborate this in Chapter 2.

Specifically, the WAIC requires the dataset to be partitioned into independent parts

(Gelman et al., 2014). Again, however, outcomes from spatial data exhibit spatial

dependence, which violates the required independence assumption of the likelihood

functions. Spatial dependence is a defining characteristic of spatial datasets and is
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a key characteristic captured in spatial models. This inherent spatial dependence

fundamentally contradicts the independence assumption required for DIC and WAIC

calculation.

Bayesian model selection methods for spatial models remains relatively under-

studied within the existing literature, leading to a lack of guidance regarding the

appropriate formulations of model selection methods when there is spatial depen-

dence among the outcomes of the data. While popular Bayesian spatial model fitting

methods provide access to the WAIC, detail on the explicit calculation and imple-

mentation are lacking in available resources, as we will further discuss in Chapter 3.

Furthermore, even when WAIC calculations are conducted, their reliance on condi-

tionally independent likelihood functions persist as a significant challenge.

In response to this challenge, this thesis introduces an innovative approach to the

WAIC computation. This alternative approach utilises the likelihood functions of non-

factorisable models. As we will elaborate in Chapter 3, these likelihood functions serve

as a basis for calculating the WAICNF, a novel criterion providing a practical solution

to Bayesian model selection in the presence of spatial data exhibiting conditional

dependencies.

1.3 Thesis structure

This thesis is organised as follows.

In Chapter 2, we will provide the essential background information necessary for

a comprehensive understanding of this thesis. We will start by introducing point

referenced spatial data and their fundamental properties. This introduction will lay

the groundwork for our exploration of variograms and covariance functions. On the

covariance functions, we will emphasise the Matérn covariance function and the expo-

nential covariance function, both of which will reappear throughout the subsequent

chapters. These functions will assume important roles in Chapter 4, where we will

employ them in simulation examples, as well as in Chapters 5 and 6, where we will

employ them in real-world spatial modelling scenarios. Chapter 2 will also delve into

the construction of models for point referenced spatial data and the methods em-

ployed for fitting them within the Bayesian framework. Particularly, we will focus on

the integrated nested Laplace approximation (INLA) method and the Stan method,

which we will utilise in Chapters 5 and 6 respectively. To conclude Chapter 2, we will
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introduce various model selection techniques, and focus particular on the Watanabe-

Akaike information criteria (WAIC) and the Pareto-smoothed importance sampling

leave-one-out cross validation transformed to the deviance scale (PSIS-LOOIC).

In Chapter 3, we will address the issue related to the formulation of the WAIC,

which will have been introduced in Chapter 2. We will then introduce the readers to

non-factorisable models and their associated likelihood functions, and we will provide

the explicit derivations of these non-factorisable model likelihoods. We will conclude

this chapter by presenting the algorithm for the computation of the non-factorisable

model likelihoods. Furthermore, we will describe how these likelihoods can be imple-

mented to calculate the WAIC and PSIS-LOOIC, which we will call the WAICNF and

PSIS-LOOICNF, respectively. The WAICNF and PSIS-LOOICNF will be the primary

focus for the remainder of the thesis. In Chapter 4 we will illustrate their practical

utility through simulation examples. In Chapters 5 and 6 we will apply them to real-

world spatial modelling scenarios to demonstrate their relevance and effectiveness.

Chapter 4 illustrates the practical utility of the WAICNF and PSIS-LOOICNF

through simulation examples conducted in the statistical programming language R.

The primary objective of the simulation examples is to investigate the difference in

performance between our proposed selection criteria and existing selection criteria,

namely the WAIC calculated by INLA and the WAIC and PSIS-LOOIC calculated

from the log likelihoods extracted from Stan. Specifically, we will investigate two

selection tasks: model selection and variable selection. For the model selection task,

our objective is to evaluate the ability of these selection criteria to correctly identify

the covariance functions, as introduced in Chapter 2, that underlie the generated

datasets. For the variable selection task, the objective is to evaluate the ability of

these selection criteria to correctly identify the combinations of covariates employed in

generating the datasets. These investigations will help us understand both strengths

and limitations of the WAICNF and PSIS-LOOICNF for model selection for models of

point referenced spatial data.

In Chapter 5, we will apply the WAICNF and PSIS-LOOICNF, introduced in Chap-

ter 3, to a real-world spatial modelling scenario. The dataset under consideration is

the 2018 Nigeria Demographic Health Survey program dataset that focuses on the

coverage of the first-dose measles-containing vaccine (MCV1). Our approach will

involve constructing the candidate spatial models for the MCV1 dataset, and incor-

porating the various covariance functions introduced in Chapter 2. Subsequently, we
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will employ the INLA method, as detailed in Chapter 2, to fit these models. Fi-

nally, we will select the optimal model using the proposed WAICNF and the WAIC

calculated by INLA. This analysis will enhance our understanding of the practical

applications and effectiveness of the WAICNF within the context of real-world spatial

modeling.

We will begin Chapter 6 with a discussion on the methodologies proposed in the

literature to address the challenges posed by large spatial datasets. The methodologies

that we discuss include the stochastic partial differential equation approach, which

we implemented in conjunction with the INLA method within Chapter 5. However,

the primary focus of this chapter will be on the nearest-neighbour Gaussian process

(NNGP) approach. We will extend the application of the proposed WAICNF and

PSIS-LOOICNF to the MCV1 dataset, utilising the NNGP approach implemented in

Stan. Chapter 6 will conclude with a summary of the findings.

In Chapter 7, we will conclude this thesis by providing a summary of the results

and findings from preceding chapters. We will close this chapter with a brief discussion

on the potential extensions of the WAICNF and PSIS-LOOICNF in the spatiotemporal

context.
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Chapter 2

Background

2.1 Spatial data

Spatial data encompass observations within a defined study domain and consist of ge-

olocation information such as latitude and longitude coordinates from the geographic

coordinate system or northing and easting from the Universal Transverse Mercator

coordinate system. Spatial data typically fall into one of three distinct categories:

areal data, point pattern data, or point referenced data.

2.1.1 Areal data

Suppose the study domain D is partitioned into a finite number of subregions. Areal

data comprise the aggregated outcomes from each these subregion. In literature, areal

data are commonly referred to as lattice data (Cressie, 2015, Moraga, 2019, Gómez-

Rubio, 2020) and are frequently depicted as checkerboards in trivial examples. In

practical applications, however, areal data are often observed as irregular shapes.

The partition of D in practical applications typically corresponds to administrative

units such as states, counties or districts. The aggregation of the outcomes can be

summary statistics such as the sum, the mean or the median of the observations.

A popular application of areal data analysis is estimating disease risks. In this

context, the aggregated outcomes are ratios between the observed number of cases of

the disease under investigation and the expected number of cases within each subre-

gion. These ratios are referred to as standard mortality rates (SMRs). While SMRs

provide useful exploratory information, they are susceptible to misinterpretation. No-
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tably, subregions with smaller populations may yield extreme SMRs since population

size and disease rarity are not accounted for in the calculation of the SMRs (Moraga,

2019). To address this issue, researchers commonly employ the Besag York Mollié

(BYM) model (Besag et al., 1991).

The BYMmodel incorporates random effect components to account for both struc-

tured and unstructured randomness present in the data. The spatial random effect

captures spatial correlation within the dataset, where outcomes in neighbouring sub-

regions may exhibit stronger associations compared to outcomes in subregions located

farther apart. The BYM model also allow the incorporation of additional information

that may further explain disease risks. Information borrowed from the random effects

and covariates help mitigate the extreme SMRs resulting from small populations or

rarer diseases (Gelfand et al., 2010), providing results conducive to more reasoned

conclusions.

Practical applications of areal data analyses are found in various research domains

including political sciences (y Perdomo, 2004, Harbers, 2017), econometrics (Pineda-

Ŕıos et al., 2019, Laurent and Margaretic, 2021) and environmental sciences (Wang

et al., 2018, Lee et al., 2020).

2.1.2 Point pattern data

Point pattern data consist of mapped point locations within a study domain, which

collectively represent a spatial pattern. Point pattern data analyses emphasise on

understanding the randomness associated with the location of the points (Banerjee

et al., 2014). For example, point pattern data analyses involve examining whether

these points are randomly dispersed throughout the study domain or if they are

located in a non-random pattern, such as clustering patterns.

Point processes is an important concept related to point pattern data analyses.

Point processes are stochastic models that describe the locations of events of interest.

When considering a given point pattern dataset as realisations from a particular

point process, a point process model can be used to identify the distributions of the

locations, estimate the intensity of the events and learn more about the correlation

between the spatial locations and spatial variables (Moraga, 2019). For example,

the homogeneous Poisson process is a point process model where realisations are

equally likely to occur at any location within the study domain, independently of the

9



locations of other events. Another example is the Log-Gaussian Cox process (Møller

et al., 1998, Diggle et al., 2013), where realisations exhibit varying intensity, and the

locations of the events follow a probability distribution.

Practical applications of point pattern data analyses are found in various research

domains, such as astronomy (Babu and Feigelson, 1996), forestry (Stoyan and Pentti-

nen, 2000), ecology (Perry et al., 2006, Wiegand and Moloney, 2013) and epidemiology

(Gatrell et al., 1996). Other examples of applications of point pattern data analyses

as well as an overview of the applications can be found in Møller and Waagepetersen

(2003).

2.1.3 Point referenced data

Point referenced data, also referred to as geostatistical data in literature (Moraga,

2019, Gómez-Rubio, 2020), encompass observations recorded within a specified study

domain D. In the context of point referenced data, D represents a single contin-

uous surface that allows outcomes to be observed anywhere within its boundaries.

Notably, the locations of point referenced data are fixed. Examples of such fixed

locations include weather stations tasked with monitoring air quality indices or hos-

pitals collecting vaccination records.

A main objective in point referenced data analysis is making predictions at loca-

tions where observations have not been recorded. Often, this involves constructing

a prediction surface over D by utilising kriging techniques within a non-Bayesian

framework or posterior predictive distributions from a Bayesian modelling approach.

Bayesian modelling of point referenced data has experienced an increase in popu-

larity, driven by advancements of modern statistical computation tools such as the

integrated nested Laplace approximation method (Rue et al., 2009) which has facili-

tated practical implementation.

Practical applications of point referenced data analyses include modelling health-

care and development indicators (Pezzulo et al., 2023, Utazi et al., 2023) and envi-

ronmental variables (Sahu et al., 2006, Hammond et al., 2020, Sahu et al., 2020). The

primary focus of this thesis will be on point referenced data.
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2.2 Definitions and conventions

Following the traditional convention from literature, a location or site in a specified

study domain D is denoted s and a collection of n sites is written as {s1, s2, . . . , sn}.
Capitalised letters denote random variables and lower case letters are reserved for

realisations of the corresponding random variable unless specified. For example, if Y

is a random variable representing ozone concentration, then y is a realisation of this

random variable and is a numerical value with some unit of ozone concentration.

In this thesis, if a random variable ξ follows from a distribution F , we write ξ ∼ F .

For example,

ω ∼ Nn(0,Σω).

In this example, ω is distributed as an n-dimensional multivariate normal distribution

Nn(·) with mean 0 and covarianceΣω. We use the subscript ω in the covarianceΣω to

explicitly denote that the covariance matrix is related to ω. The bold font is reserved

for vectors, so explicitly, ω = (ω1, ω2, . . . , ωn)
′ and 0 = (01, 02, . . . , 0n)

′, where ′

denotes the transpose operator. We will provide formal definitions for the components

within this example equation later in Section 2.4.3. For now, we emphasise on the

notations that will be used in this thesis.

2.3 Properties of point referenced spatial data

A process is spatial when for d ≥ 2,

{Y (s) : s ∈ D ⊂ Rd},

and realisations of this spatial process are point referenced spatial data. The notation

Y (s) denotes a random variable Y at site s.

2.3.1 Stationarity

There are three types of stationarity: strong stationarity, weak stationarity and in-

trinsic stationarity. We begin this discussion by first denoting h as a distance vector.
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Strong stationarity

A spatial process has strong stationarity if the random variables
(︁
Y (s1), . . . , Y (sn)

)︁′
have the same distribution as

(︁
Y (s1 + h), . . . , Y (sn + h)

)︁′
for any h (Banerjee et al.,

2014). In other words, if shifting the sites by h does not change the distribution of

the random variables, the spatial process is strongly stationary.

Weak stationarity

In practice, strong stationarity does not always hold for spatial processes. Weak

stationarity is a more relaxed assumption for spatial processes than strong station-

arity. A spatial process is weakly stationary if the distribution of random variables(︁
Y (s1), . . . , Y (sn)

)︁′
and

(︁
Y (s1 + h), . . . , Y (sn + h)

)︁′
have a constant mean,

E
[︁
Y (s1), . . . , Y (sn)

]︁
= E

[︁
Y (s1 + h), . . . , Y (sn + h)

]︁
,

and the covariance function between Y (si) and Y (si+h) is a function dependent only

on h, that is C
(︁
Y (si), Y (si +h)

)︁
= C(h) (Banerjee et al., 2014). It should be noted

that a strongly stationary spatial process is also a weakly stationary spatial process.

However, a weakly stationary spatial process is not necessarily a strongly stationary

spatial process with the exception of the Gaussian process.

Intrinsic stationarity

A spatial process has intrinsic stationarity if the variance of Y (s)−Y (s+h) does not

depend on the location s and is only dependent on h. Let Var(·) denote the variance.
Banerjee et al. (2014) defines

Var
(︁
Y (s+ h)− Y (s)

)︁
= 2γ(h),

where 2γ(h) is called the variogram and γ(h) is called the semivariogram. Notice

how the semivariogram is a function dependent only on h. We will come back to the

variogram and semivariogram later in Section 2.3.3.
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Nonstationarity

Spatial processes can also be nonstationary. Banerjee et al. (2014) discussed strategies

for nonstationary spatial processes. For example, one strategy involves adjusting

the mean structure while specifying the covariance function from those proposed by

Cressie and Johannesson (2008). Another strategy involves deformation (Sampson

and Guttorp, 1992) where the specified study domain is transformed to a new domain

such that stationarity holds. For a comprehensive exploration of nonstationarity, we

recommend Gneiting (2002), Schmidt and O’Hagan (2003), and Banerjee et al. (2014).

We note that the ensuing discussion within this thesis will focus only on stationary

spatial processes.

2.3.2 Isotropy

If the semivariogram γ(h) depends only on the length of the distance vector h, denoted

as ||h||, the semivariogram is isotropic. More specifically, we define ||h|| as the L2

norm, the Euclidean distance between two locations. When the distance ||h|| is
short, Y (s+h) and Y (h) are expected to be very similar. Conversely, as the distance

||h|| increases, the similarity between Y (s + h) and Y (h) is expected to diminish.

Isotropy is a useful property as it assumes that the spatial correlation function ρ(·)
relies exclusively on the Euclidean distance between sites and avoids the need for

additional directional parameters.

If directions of h are taken into consideration, the semivariogram γ(h) is anisotropic.

Under anisotropy, ||h|| may vary in each direction. Banerjee et al. (2014) discussed

two strategies for anisotropic spatial processes. The first strategy involves separating

the variogram into directional components, such as latitude and longitude. The sec-

ond strategy involves the consideration of nested models, where the angles associated

with h are categorised into classes with different variograms specified for each class

of angles.

The incorporation of additional components to account for directions of h provide

insights into the directional behaviour of the variogram. However, introducing more

parameters into the variogram also increases the complexity of the function. For

a complex variogram, it may be difficult to identify and learn about the additional

directional parameters unless a lot of locations are available, which may not always be

the case. Furthermore, the extent of possible contour shapes induced by anisotropy
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is limited by the positive definitiveness of the spatial correlation function (Banerjee

et al., 2014). We note that the discussion in the remainder of this thesis will focus on

isotropic spatial processes.

2.3.3 Semivariograms and covariance functions

In Section 2.3.1, we have directly provided the definition of the variogram. Here,

we revisit the definition and provide the explicit derivations. Let E(·) denote the

expectation, Var(·) denote the variance, C(·) denote the covariance function and

assume that E
(︁
Y (s+ h)− Y (s)

)︁
= 0. The derivation starts from the variance of the

difference between Y (s+ h) and Y (s), that is

Var
(︁
Y (s+ y)− Y (s)

)︁
= E

(︃
Y (s+ h)− Y (s)− E

(︁
Y (s+ h)− Y (s)

)︁)︃2

,

= E

(︃
Y (s+ h)− Y (s)− E

(︁
Y (s+ h)

)︁
+ E

(︁
Y (s)

)︁)︃2

,

= E

(︃
Y (s+ h)− E

(︁
Y (s+ h)

)︁
− Y (s) + E

(︁
Y (s)

)︁)︃2

,

= E

(︃
Y (s+ h)− E

(︁
Y (s+ h)

)︁
−
(︁
Y (s)− E

(︁
Y (s)

)︁)︁)︃2

,

= E

(︃(︁
Y (s+ h)− E

(︁
Y (s+ h)

)︁)︁2
+
(︁
Y (s)− E

(︁
Y (s)

)︁)︁2
− 2
(︁
Y (s+ h)− E

(︁
Y (s+ h)

)︁)︁(︁
Y (s)− E

(︁
Y (s)

)︁)︁)︃2

,

= Var
(︁
Y (s+ h)

)︁
+Var

(︁
Y (s)

)︁
− 2C

(︁
Y (s+ h), Y (s)

)︁
.

Recall that under weak stationarity, C
(︁
Y (s + h), Y (s)

)︁
= C(h). An implication of

the weak stationarity property is Var
(︁
Y (s + h)

)︁
= Var

(︁
Y (s)

)︁
= C(0). We continue

the derivation above

Var
(︁
Y (s+ h)− Y (s)

)︁
= Var

(︁
Y (s+ h)

)︁
+Var

(︁
Y (s)

)︁
− 2C

(︁
Y (s+ h), Y (s)

)︁
,

= C(0) + C(0)− 2C(h),

= 2C(0)− 2C(h),

= 2
(︁
C(0)− C(h)

)︁
,

= 2γ(h).

14



Therefore, the definitions of the variogram 2γ(h) and the semivariogram γ(h) in their

simplest form are

2γ(h) = 2
(︁
C(0)− C(h)

)︁
, (2.1)

γ(h) = C(0)− C(h). (2.2)

To simplify the notation, let us define d = ||h|| for the following discussion. The

semivariogram γ(d) is useful for visualising spatial variances. The two most commonly

used semivariograms are:

Exponential semivariogram

γ(d) =

⎧⎨⎩τ 2 + σ2(1− exp(−ϕd)) if d > 0,

0 if d = 0.
(2.3)

Matérn semivariogram

γ(d) =

⎧⎪⎨⎪⎩τ
2 + σ2

(︃
1− (

√
2νdϕ)ν

2ν−1Γ(ν)
Kν(
√
2νdϕ)

)︃
if d > 0,

0 if d = 0,

(2.4)

where Γ(·) denotes the mathematical Gamma function, Kν(·) denotes the modified

Bessel function of the second kind of order ν, ν is the smoothness parameter and ϕ

is the spatial decay parameter.

The asymptotic properties of the semivariogram functions reveal several important

properties. The asymptotic value of the semivariogram limd→0 γ(d) = τ 2 is referred

to as the nugget. Notice that in Equations (2.3) and (2.4) there is a discontinuity

within the semivariogram functions. As the separation distance approaches zero, the

semivariogram converges to τ 2, yet when d = 0, the resulting value is zero. Banerjee

et al. explain that the semivariogram is set to zero when d = 0 to avoid attributing

all errors as spatial errors. As the separation distance becomes very small, the errors

begin to reflect spatial residuals. However, at d = 0, there may be errors unaccounted

for by the spatial residuals such as measurement errors, collection errors, replication
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errors or micro-scale errors (Banerjee et al., 2014).

The asymptotic value of the semivariogram limd→∞ γ(d) = τ 2+σ2 is referred to as

the sill. Notice that there are two components involved within the sill: the nugget τ 2

and the σ2 parameter called the partial sill. The value of d when the semivariogram

reaches the sill is called the range. All γ(d) values for d less than the range are

spatially autocorrelated. Since the still is obtained when d→∞, the range is infinite

and all γ(d) values are spatially autocorrelated. For practical interpretation, the

effective range serves as a more meaningful metric of d. The effective range indicates

the distance where spatial autocorrelation is negligible. In practice, this is when the

correlation function ρ(·) reaches a value of 0.05.

The semivariogram also enables the derivation of the covariance function. For

modelling purposes, the covariance function needs to be specified for the likelihood

function to be written for parameter estimation. The variogram function and the

covariance function have the following relationship. Recall, the semivariogram is

given as

γ(d) = C(0)− C(d).

Assuming that the spatial process is ergodic, C(d) → 0 as d → ∞. The ergodic as-

sumption follows American geographer Waldo R. Tobler’s first law of geography, which

states that objects located closer to each other are more closely related than objects

located further apart (Tobler, 1970). Data values close together in the geographical

space tend to be more alike than data values that are further apart. Observation

on a variable at location i carries some information about what is observed for the

same variable in areas that are close to i (Haining and Li, 2020). Using the ergodic

assumption in Equation (2.2) gives

lim
d→∞

γ(d) = C(0)− lim
d→∞

C(d),

= C(0)− 0,

= C(0).

The ergodic assumption is useful as it allows the relationship between the semivari-

ogram function and the covariance function to be rewritten in terms of the semivari-
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ograms

γ(d) = C(0)− C(d),

C(d) = C(0)− γ(d),

C(d) = lim
u→∞

γ(u)− γ(d).

In the derivation above, γ(u) is also a semivariogram where we define u = ||h||. The
notation change is to explicitly show that the limit should only be taken for the first

term on the right hand side of the equation. From the exponential semivariogram

(2.3) and the Matérn semivariogram (2.4), the exponential covariance function and

the Matérn covariance function are given as follows:

Exponential covariance function

C(d) =

⎧⎨⎩σ2 exp(−ϕd) if d > 0,

τ 2 + σ2 if d = 0.
(2.5)

Matérn covariance function

C(d) =

⎧⎨⎩σ2 (
√
2νdϕ)ν

2ν−1Γ(ν)
Kν(
√
2νdϕ) if d > 0,

τ 2 + σ2 if d = 0.
(2.6)

The explicit derivations of the covariance functions (2.5) and (2.6) are provided in

Appendix A. Covariance functions consist of two components: the variance σ2 (also

referred to as the partial sill) and the correlation function ρ(·). For example, it is

clear from (2.5) that the correlation function ρ(·) = exp(−ϕd) for d > 0. Recall that

the effective range is the distance at which spatial autocorrelation becomes negligible,

often specified as ρ(·) = 0.05 in practical applications. From the correlation function

of the exponential covariance function (2.5), the effective range is derived by solving

for d in exp(−ϕd) = 0.05, which is approximately 3/ϕ.

The exponential covariance function is a popular choice for the covariance func-

tion. Its appeal lies in its simplicity, as it only requires the specification of the spatial
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decay parameter ϕ. Additionally, the exponential covariance function offers desir-

able attributes such as ease of computation and straightforward interpretation of the

effective range.

The exponential covariance function (2.5) is a special case of the Matérn covariance

function (2.6) when the smoothness parameter ν = 1/2. Abramowitz and Stegun

demonstrated that the Matérn covariance function can be expressed as the product

of an exponential component and a polynomial component of order p

Cp+1/2(d) = σ2 exp
(︁
−
√︁

2p+ 1dϕ
)︁ p!

(2p)!

p∑︂
i=0

(p+ i)!

i!(p− i)!
(︁
2
√︁

2p+ 1dϕ
)︁p−i

(2.7)

for d > 0 (Abramowitz and Stegun, 1948). In (2.7), the mathematical symbol ! de-

notes the factorial operator. When p = 0, (2.7) is equal to the exponential covariance

function (2.5).

Other notable special cases of the Matérn covariance function include ν = 3/2

and the limit ν → ∞. We can use (2.7) to derive the Matérn covariance function

with ν = 3/2 by specifying p = 1

C3/2(d) = σ2
(︁
1 +
√
3dϕ
)︁
exp

(︁
−
√
3dϕ
)︁
.

When ν → ∞, the Matérn covariance function converges to a Gaussian covariance

function (Banerjee et al., 2014) given as

C(d) = σ2 exp(−d2ϕ2).

While the exponential and Matérn covariance functions are prominent choices, var-

ious alternative covariance functions are available. Banerjee et al. (2014) provide a

comprehensive table of these available covariance functions.

2.4 Modelling point referenced spatial data

Estimating unknown parameters, such as the regression coefficient β, is a common

task in statistical modelling. In the non-Bayesian framework, β can be derived using

ordinary least squares, a method that minimises the sum of square of the differences

between the observations and the output of the model. Within the Bayesian frame-
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work, β is inferred through Bayes’ theorem, which incorporates prior beliefs about β,

and yields the posterior distribution of β. This posterior distribution encapsulates

the uncertainty associated with β. Explicit modelling within the Bayesian framework

allows us to make inference on the parameters of interest and evaluate the uncertainty

associated with any individual inferential statement (Sahu, 2022).

2.4.1 Kriging

A primary objective of point referenced data analyses is making predictions at an

unobserved or new location, denoted as s0. In the non-Bayesian framework, spa-

tial prediction using the minimum mean-squared error approach is called “kriging”,

named after South African statistician and mining engineer Danie G. Krige for his

contribution to the development of empirical methods for geostatistical data (Math-

eron, 1963).

Let us denote the random variable at s0 as Y (s0). Kriging involves minimising

E
(︁
Y (s0) −

(︁∑︁n
i=1 liY (si) + δ0

)︁)︁2
, where δ0 denotes a minimal error and li denotes

a weight parameter. Notably, the term
∑︁n

i=1 liY (si) incorporates distinct weights

for each observation, with observations in closer proximity to s0 assigned higher

weights compared to those located farther away. Banerjee et al. (2014) demon-

strated that by leveraging the intrinsic stationarity property described in Section

2.3.1 and applying substitutions, the function to be minimised can be reformulated

as −
∑︁n

i=0

∑︁n
j=0 aiajγ(si − sj), where a0 = 1, ai = −li and γ(·) is the semivari-

ogram function (2.2) introduced in Section 2.3.3. As a result, kriging requires prior

knowledge of the parameters associated with the semivariogram function, such as the

spatial decay parameter ϕ in (2.3) or the smoothness parameter ν in (2.4). The opti-

mal values for li can be obtained through the solution of a constrained optimisation

problem using Lagrange multipliers. Further derivations by Banerjee et al. revealed

that
∑︁n

i=1 liY (si) is the best linear unbiased predictor, and the uncertainty in the pre-

diction is the predictive mean squared error calculated from E
(︁
Y (s0)−

∑︁n
i=1 Y (si)

)︁2
(Banerjee et al., 2014).

Another strategy to determine Y (s0) is by evaluating the conditional mean of

Y (s0). We begin by defining the following. Suppose there are n sites, we define

Y =
(︁
Y (s1), Y (s2), . . . , Y (sn)

)︁′
as the vector of random variables at the sites and

define y =
(︁
y(s1), y(s2), . . . , y(sn)

)︁′
as the vector of observations at the sites. From
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multivariate normal theory, we have(︄
Y (s0)

Y

)︄
∼ Nn+1

(︄(︄
µ0

µ

)︄
,

(︄
Ω11 Ω12

Ω21 Ω22

)︄)︄
,

where Nn+1(·) denotes an (n+ 1)-dimensional multivariate normal distribution, µ is

a vector of means of Y and µ0 is the mean of Y (s0). From the distribution above, we

have

Y (s0)|Y ∼ N(µ̄, Σ̄),

where

µ̄ = E
(︁
Y (s0)|Y = y

)︁
= µ0 + Ω12Ω

−1
22 (y − µ), (2.8)

Σ̄ = Var
(︁
Y (s0)|Y = y

)︁
= Ω11 − Ω12Ω

−1
22 Ω21 (2.9)

(Eaton, 1983). Equation (2.8) is the conditional mean of Y (s0) given Y = y, and

Equation (2.9) is the conditional variance. The elements within the covariance matrix

are given as follows. Ω11 denotes the variance of Y (s0) and Ω22 denotes the n ×
n covariance matrix of Y with elements calculated from (2.5), (2.6) or any other

covariance function. Ω12 denotes an n-dimensional row vector with elements given

by the covariance between Y (s0) and Y (si) for i = 1, . . . , n, and Ω21 denotes an

n-dimensional column vector and is the transpose of Ω12.

Kriging is a non-Bayesian approach for spatial prediction. Given that the focus

of this thesis is on Bayesian approaches, we will not further discuss kriging.

2.4.2 Bayes’ theorem and Bayesian inference

Suppose θ is an unknown parameter that we want to estimate, and we have obser-

vations y = (y1, . . . , yn)
′ for random variables Y = (Y1, . . . , Yn)

′. We can utilise the

Bayes’ theorem

p(θ|y) = p(y|θ)p(θ)
p(y)

, (2.10)

where p(·) denotes the probability density function (PDF) for continuous random

variables or the probability mass function (PMF) for discrete random variables. In

(2.10), the component p(y|θ) is known as the likelihood function, the component p(θ)

is known as the prior distribution and the component p(θ|y) is known as the poste-
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rior distribution. The prior distribution represents the prior belief on the unknown

parameter θ. The component p(y) is called the marginal likelihood function and can

be expanded as

p(y) =

∫︂ ∞

−∞
p(y|θ)p(θ)dθ.

Bayes’ theorem (2.10) is often shown in the simpler form

p(θ|y) ∝ p(y|θ)p(θ).

This simplification is possible because p(y) is free of the unknown parameter θ. As

a result, we know that the posterior distribution is proportional to the likelihood

function and the prior distribution up to some normalising-constant.

Using the posterior distribution p(θ|y), we can identify useful measures of cen-

trality including the posterior mean, the posterior median and the posterior mode.

They are given as

θ̂ = E(θ|y),

θ̂ :

∫︂ θ̂

−∞
p(θ|y)dθ = 0.5,

θ̂ : p(θ̂|y) = arg maxθ p(θ|y),

respectively, where the arg maxθ operator is used to find the θ that maximises the

posterior distribution p(θ|y). The posterior distribution p(θ|y) also allows us to make

probability statements about θ. For example, we can find the α/2 and (1 − α/2)

quantiles of p(θ|y). Denoting these quantiles as qL and qU respectively, we have∫︂ qL

−∞
p(θ|y)dθ = α/2,∫︂ ∞

qU

p(θ|y)dθ = (1− α/2),

which implies that P (qL < θ < qU |y) = 1−α. This interval is a 100×(1−α)% credible

set. It should be noted that this interval is symmetric about the mode for symmetric

unimodal posterior distributions. For posterior distributions that are not symmetric

or unimodal, it is better to take values of θ that have high posterior density greater

than some cutoff for the interval. The resulting interval is called the highest posterior
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density (HPD) interval or the highest density interval (Lambert, 2018). Formally, a

100× (1− α)% HPD region for θ is a subset C ∈ Θ defined by

C = {θ : p(θ|y) ≥ k},

where k is the largest number possible while satisfying∫︂
θ:p(θ|y)≥k

p(θ|y)dθ = 1− α.

For example, if the posterior distribution is multimodal, the HPD interval may be a

discontinuous set.

Analyses within the Bayesian framework often require solving integration prob-

lems that are typically intractable in closed-form, even when the likelihood function

and the prior distribution have closed-form expressions. Although analytical solutions

are available, they are often limited to trivial cases, such as when the prior distribu-

tion is conjugate with the likelihood function. Markov chain Monte Carlo (MCMC)

methods have traditionally been the preferred approach to address this challenge. In-

stead of attempting to solve integration problems analytically, MCMC methods rely

on simulation-based approaches. MCMC methods involve generating samples of θ

from a convergent Markov chain, where the stationary distribution corresponds to

the posterior distribution p(θ|y). The generated samples of θ can provide useful in-

formation about the unknown parameter of interest. For example, the mean of these

samples provides an estimate of the posterior mean, while the variance provides an

estimate of the variance of the posterior distribution.

In practical applications, we often want to estimate more than a single unknown

parameter. We can represent the unknown parameters as a vector θ = (θ1, . . . , θp)
′

with up to p unknown parameters. Examples of θ include the regression coefficients

β and other latent variables within hierarchical models. Adapting θ to (2.10), we

have

p(θ|y) = p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫︁∞

−∞· · ·
∫︁∞
−∞ p(y|θ)p(θ)dθ1 . . . dθp

.

This expression can be extended to incorporate hyperparameters and their respective

prior distributions, referred to as hyperprior distributions. A hierarchical structure

emerges in Bayesian models when we include hyperparameters and hyperprior distri-

butions (Green et al., 2020).
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2.4.3 Hierarchical Bayesian models

Hierarchical Bayesian models provide a coherent framework to model stochastic pro-

cesses. They allow the incorporation of prior knowledge and properly account for

uncertainties at different levels of the model. Hierarchical models can account for

within-group similarity and allow for difference between groups for such datasets.

Hierarchical models are models with multiple layers with different specifications to

account for different sources of variations. When the parameter has many compo-

nents, it may be useful to specify their joint prior distribution using a common hyper

parameter. Hierarchical models are useful as they are flexible and representative of

practical complex problems. Berliner (1996) suggested that a hierarchical model can

be thought of in three stages:

Stage 1. [data | process, parameters]

Stage 2. [process | parameters]

Stage 3. [parameters].

Although the original context of this specification was for Bayesian models of time-

series data, it was later adapted for the context of Bayesian models of point referenced

spatial data (Gelfand, 2012, Blangiardo and Cameletti, 2015, Sahu, 2022). In the first

stage, we have the distribution of the observations. The first stage describes the struc-

ture of the conditional distribution of the data, given the underlying process and any

parameters of the model. The second stage describes the structure of the underlying

process. The spatial dependence structure of interest is primarily modelled in the sec-

ond stage. Gaussian processes are commonly used in this stage to model the latent

spatial structure in the observable data. The third stage sets the priors distributions

for the parameters from the first and second stage. The priors distributions speci-

fied in a hierarchical model can be vague or even improper since the data are often

sufficiently informative. The posterior distribution of the parameter from the first

and second stage becomes narrow despite the vagueness of the prior distributions.

The posterior distribution would often change very little even if a more specific prior

distribution was defined for the hyperparameters (Neal, 1996).

To illustrate the hierarchical structure of Bayesian models of point referenced data,

consider the following

Y (si) = x(si)
′β + ω(si) + ϵ(si),
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where Y (si) is the random variable Y at site si for i = 1, . . . , n, x(si) are the covariates

at site si and β is a vector of regression coefficient. The component ω(si) is the spatial

random effect that captures spatial dependence among the data and the component

ϵ(si) is the unstructured random effect. Let us also assume

ω ∼ Nn(0,Σω),

ϵ ∼ Nn(0, τ
2In)

for ω =
(︁
ω(s1), . . . , ω(sn)

)︁′
and ϵ =

(︁
ϵ(s1), . . . , ϵ(sn)

)︁′
, where In denotes an n × n

identity matrix and Σω denotes an n×n covariance matrix with elements calculated

from some covariance function, such as (2.5) or (2.6). This model is equivalently

expressed as

Y|ω,θ ∼ Nn(Xβ + ω, τ 2In),

ω|ψ ∼ Nn(0,Σω),

where θ = (β, τ 2,ψ)′ and ψ is a vector of parameters required by the covariance

function. For example, if the spatial random effect follows a zero-mean n-dimensional

multivariate normal distribution with elements of its covariance matrix calculated

from the exponential covariance function (2.5), thenψ will include the spatial variance

σ2
ω and the spatial decay parameter ϕ, i.e., ψ = (σ2

ω, ϕ)
′. If the elements of the

covariance matrix is calculated from a Matérn covariance function (2.6), then ψ will

include the the spatial variance σ2
ω, the spatial decay parameter ϕ, and the smoothness

parameter ν, i.e., ψ = (σ2
ω, ϕ, ν)

′. When we express our example model this way, the

three-staged specification becomes clear

Stage 1. Y|ω,θ ∼ Nn(Xβ + ω, τ 2In),

Stage 2. ω|ψ ∼ Nn(0,Σω),

Stage 3. Priors distributions on θ.

Bayesian hierarchical modelling provides a natural framework to properly assess

the uncertainty in the parameter estimates and spatial predictions. Bayesian infer-

ence allows us to make probability statements about parameters of interest, including

the uncertainty arising from the model (Gelfand, 2012, Bass, 2015). The hierarchi-
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cal estimates also display a behaviour called “shrinkage towards the mean” where

estimates with the most extreme values are shifted the most since using hierarchical

models takes the probability mass away from the outlier estimates (Lambert, 2018).

Although hierarchical models offer a high degree of flexibility and are well-suited

for capturing the intricacies of real-world problems, they present challenges for pa-

rameter estimation. Hierarchical models are often too complex for exact inference.

Consequently, the most effective approach for parameter estimation for Bayesian hi-

erarchical models is utilising Markov chain Monte Carlo (MCMC) techniques (Robert

and Casella, 2004, Lambert, 2018).

As a remark, we may flatten our example hierarchical model above through suit-

able marginalisation and integration such that

Y|θ ∼ Nn(Xβ,Σω + τ 2In).

Although fitting marginal models using MCMC methods is usually computationally

better behaved (Gelfand, 2012), the models specified in the hierarchical structure

have the advantage of interpretability.

2.5 Markov chain Monte Carlo methods

2.5.1 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953, Hastings, 1970) is

a Markov chain Monte Carlo (MCMC) method. It is used to generate a sequence of

samples that approximate the posterior distribution of the unknown parameters of

interest. These samples enable inferences about the parameters, which is a primary

goal of Bayesian modelling. To facilitate the description of the MH algorithm, let

θ denote an unknown parameter of interest, and let y = (y1, . . . , yn)
′ represent the

observations for the random variables Y = (Y1, . . . , Yn)
′. For sampling iterations

s = 1, . . . , S, where S denotes the total number of sampling iterations, the MH algo-

rithm follows these steps:

Step 0. Initialise

Select an initial sample point θ(0) either randomly or based on prior information.

Prior information can include estimates from previous studies or a prior distribution.
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Another approach is to use simple models, such as a linear regression model, to pro-

vide initial estimates for parameters in a more complex Bayesian model. Choosing

θ(0) wisely is crucial for the efficiency of the algorithm, as a poorly chosen initial point

may lead to slower convergence. For instance, if θ(0) is far from the high probability

regions of the posterior distribution, the algorithm will require more iterations to

converge to the target distribution.

Step 1. Propose

Generate a candidate sample point ϕ from a proposal distribution g(ϕ|θ(s−1)). The

proposal distribution should be easy to sample from, and ideally, one that closely

resembles the posterior distribution to improve convergence towards the target dis-

tribution. An example is a normal distribution centered at θ(s−1), that is ϕ|θ(s−1) ∼
N(θ(s−1), σ2), where σ2 is a predefined variance. It is important to tune σ2 appro-

priately. If σ2 is too large, the acceptance rate will be too low, leading to slow

convergence. If it is too small, the chain will make small moves, also resulting in slow

convergence.

Step 2. Evaluate

Compute the acceptance probability, defined as

α = min

(︃
1,

p(ϕ|y)
p(θ(s−1)|y)

g(θ(s−1)|ϕ)
g(ϕ|θ(s−1))

)︃
.

Formally, the acceptance probability is denoted as A
(︁
ϕ, θ(s−1)

)︁
to explicitly show that

it depends on both ϕ and θ(s−1). For compact notation, we use α to represent the ac-

ceptance probability. The ratio within the acceptance probability is generally called

the Metropolis ratio, though it is sometimes referred to as the Hastings ratio (Dunn

and Shultis, 2022). In the Metropolis ratio, p(ϕ|y) denotes the posterior distribution
evaluated at ϕ, and p(θ(s−1)|y) denotes the posterior distribution evaluated at θ(s−1).

Importantly, this ratio does not depend on the normalising constant, and avoids the

need for integration as in Bayes’ theorem. The terms g(θ(s−1)|ϕ) and g(ϕ|θ(s−1)) repre-

sent the proposal distributions. g(θ(s−1)|ϕ) is the probability of choosing θ(s−1) given

the current state of the Markov chain is ϕ, and g(ϕ|θ(s−1)) is the probability of gen-

erating ϕ given θ(s−1), as described in Step 1.
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Step 3. Accept or reject

Independently sample u from a uniform distribution, u ∼ U(0, 1). If α ≥ u, accept

the candidate sample point and set θ(s) = ϕ. Conversely, if α < u, reject the candi-

date sample point and set θ(s) = θ(s−1).

The MH algorithm repeats Steps 1-3 for a prespecified number of iterations S.

Although there are no definitive guidelines for determining the appropriate value of

S, it is essential to ensure that the Markov chain has converged and exhibits good

mixing. Good mixing implies that the Markov chain explores the target distribution

comprehensively and samples the entire posterior distribution effectively. This means

the chain does not remain in local modes for extended periods and can transition

between different regions of the state space efficiently (Robert et al., 2010, Lambert,

2018). When convergence is achieved, the Markov chain reaches its stationary distri-

bution, which corresponds to the posterior distribution p(θ|y).
It is also important to monitor the acceptance rate of the algorithm. An optimal

acceptance rate facilitates efficient sampling and faster convergence. If the acceptance

rate is excessively low or high, the parameters of the proposal distribution should be

adjusted accordingly. Asymptotically, the optimal acceptance rate is 0.234 (Gelman

et al., 1996), although in practice, the ideal acceptance rate typically ranges between

20% and 40% (Lambert, 2018).

As mentioned in Step 0 of the algorithm, θ(0) may influence the early iterations

of the Markov chain, causing them to be unrepresentative of the target posterior dis-

tribution. Burn-in refers to the initial phase of the Markov chain during which these

samples are discarded. This process helps reduce bias and ensures that the remain-

ing samples are drawn from the stationary distribution, providing a more accurate

representation of the target distribution. Determining the appropriate length of the

burn-in period often requires visual inspection of the trace plots to assess when the

chain has stabilised.

Successive samples drawn from the MH algorithm may be autocorrelated, lead-

ing to greater uncertainties in the parameters of interest. The Effective Sample Size

(ESS) is a metric used to determine the number of independent samples obtained from

the chain. A higher ESS indicates better mixing and more independent information

about the target distribution, while a lower ESS suggests high autocorrelation, fewer

independent samples, and potentially poorer mixing. ESS also helps assess whether
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the number of iterations S is sufficient. If the ESS is low relative to S, it indicates

that more iterations are needed to obtain a sufficient number of independent sam-

ples. Another way to reduce autocorrelation between successive samples is through

thinning. Thinning involves selecting every k-th sample from the Markov chain and

discarding the rest, with the value of k chosen based on the autocorrelation of the

chain.

2.5.2 Gibbs sampler

The Gibbs sampler (Casella and George, 1992) is an MCMC method that, in its most

basic form, is a special case of the MH algorithm where all proposals are accepted.

The Gibbs sampler is particularly useful when sampling directly from the joint distri-

bution is challenging, but sampling from the conditional distributions is more feasible.

To describe the Gibbs sampling algorithm, let θ = (θ1, θ2, θ3, θ4)
′ denote a vector of

unknown parameters of interest, and let y = (y1, . . . , yn)
′ represent the observed data

for the random variables Y = (Y1, . . . , Yn)
′. For sampling iterations s = 1, . . . , S, the

Gibbs sampler follows these steps:

Step 0. Initialise

Select initial sample points θ(0) =
(︁
θ
(0)
1 , θ

(0)
2 , θ

(0)
3 , θ

(0)
4

)︁′
either randomly or based on

prior information. Prior information can include estimates from previous studies or

a prior distribution. The choice of θ(0) may influence the efficiency of the algorithm.

For example, if θ(0) is far from the high probability regions of the posterior distribu-

tion, the algorithm will require more iterations to converge to the target distribution.

Step 1. Sample

Update each parameter sequentially by sampling from its conditional distribution

given the current values of the other parameters and the observed data y

θ
(s)
1 ∼ p(θ1|θ(s−1)

2 , θ
(s−1)
3 , θ

(s−1)
4 ,y),

θ
(s)
2 ∼ p(θ2|θ(s)1 , θ

(s−1)
3 , θ

(s−1)
4 ,y),

θ
(s)
3 ∼ p(θ3|θ(s)1 , θ

(s)
2 , θ

(s−1)
4 ,y),

θ
(s)
4 ∼ p(θ4|θ(s)1 , θ

(s)
2 , θ

(s)
3 ,y).
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The Gibbs sampler repeats step 1 for a prespecified number of iterations S or

until the Markov chain has reached convergence. When convergence is achieved,

the Markov chain reaches its stationary distribution, which corresponds to the joint

posterior distribution p(θ|y). In practical applications, the procedure outlined above

can be generalised to any number of unknown parameters, θ = (θ1, . . . , θp)
′.

Notice that unlike the MH algorithm discussed in Section 2.5.1, where an ac-

ceptance probability is calculated to determine whether a proposed candidate sample

point is accepted or rejected, the Gibbs Sampler “accepts” all proposals. In the Gibbs

Sampler, each proposed candidate is immediately used to sample other parameters.

For instance, in Step 1, after generating θ
(s)
1 , this value is immediately used to gen-

erate θ
(s)
2 . The proposal distribution in Gibbs Sampling is implicitly defined by the

conditional posterior distribution of each parameter given the current values of the

other parameters. When a parameter is updated, a new value is drawn directly from

its conditional posterior distribution, which effectively serves as the proposal distri-

bution for that parameter during that step. This ensures that each step in the Gibbs

Sampler always produces valid samples from the target distribution without the need

for an acceptance-rejection mechanism (Lambert, 2018).

The Gibbs sampler in practical applications comes with several challenges. One of

the primary difficulties is deriving the conditional distributions. The Gibbs sampler

relies on the fact that these conditional distributions can be sampled more easily

than the joint distribution. However, in many cases, closed-form expressions for these

conditional distributions are not available, making them mathematically complex or

computationally expensive to determine. Additionally, high-dimensional parameter

spaces require a large number of sampling iterations for the algorithm to effectively

explore the parameter space, leading to greater computational demand and slower

convergence. Highly correlated unknown parameters can also result in slow mixing

in the Gibbs sampling algorithm, as discussed by Roberts and Sahu (1997). Despite

these challenges, the Gibbs sampler remains a valuable tool for Bayesian modeling

and inference. It can be implemented in statistical software such as JAGS (Just

Another Gibbs Sampler) (Plummer et al., 2003) and WinBUGS (Lunn et al., 2000),

which are based on the BUGS (Bayesian inference Using Gibbs Sampling) project

(Gilks et al., 1994, Spiegelhalter et al., 1996).
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2.5.3 Hamiltonian Monte Carlo and Stan

The Hamiltonian Monte Carlo (HMC) algorithm is an MCMC method that efficiently

explores parameter spaces by exploiting the local geometric information of the pos-

terior distribution, allowing for unconstrained movements. Originally developed by

Duane et al. (1987) under the name “Hybrid Monte Carlo” for applications in quan-

tum chromodynamics within theoretical physics, the algorithm found its first statis-

tical application in neural network models through the work of Neal (1996). It was

later renamed “Hamiltonian Monte Carlo”, as documented in a review by Neal et al.

(2011). The HMC algorithm effectively explores the parameter space by leveraging

the local features of the posterior distribution, such as its “peaks” and “troughs”, to

gain a deeper understanding of the posterior distribution. The HMC algorithm can

be implemented in the probabilistic programming language Stan (Stan Development

Team, 2023).

The operation of the HMC algorithm is analogous to an object sliding on a fric-

tionless surface with varying elevations (Neal et al., 2011, Lambert, 2018). On this

surface, there are peaks and troughs. When the object is pushed off a peak, it de-

scends into a trough. However, because the object has momentum, it has enough

energy to ascend to another peak. Without momentum, the object would only de-

scend. Momentum allows the object to explore both peaks and troughs efficiently.

Additionally, the effect of gravity causes the object to spend less time exploring the

peaks and more time exploring the troughs.

In this analogy, the frictionless surface corresponds to the negative logarithm of

the posterior distribution (NLP), which is the inverse of the posterior distribution.

The peaks on the surface represent areas of low probability in the posterior distribu-

tion, while the troughs represent areas of high probability. The concept of the object

spending less time exploring peaks and more time in troughs is advantageous for the

algorithm, as it implies that more time is allocated to regions of high posterior den-

sity and less to regions of low posterior density. For example, a multimodal posterior

distribution presents a challenge due to its multiple regions of high posterior density

separated by low-probability areas. This complexity makes efficient exploration dif-

ficult. By incorporating momentum, the HMC algorithm can efficiently escape from

one high-density region to another, effectively exploring complex posterior distribu-

tions.

In the HMC algorithm, “Hamiltonian” refers to the concept of total energy in a
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system from physics. It is denoted as H(θ,m), a function of the parameters θ and

momentum m. Specifically, the Hamiltonian comprises two components: potential

energy, which depends on the location of θ within the parameter space, and kinetic

energy, which depends on the momentum m. In the context of HMC algorithm,

the potential energy, denoted as U(θ), corresponds to the NLP. The kinetic energy,

denoted as KE(m), is proportional to the square of the momentum.

H(θ,m) = U(θ) +KE(m), (2.11)

= − log
(︁
p(θ|y)

)︁
+
m2

2
.

As the posterior density p(θ|y) increases, the potential energy U(θ) decreases (be-

comes more negative) because there is less gravitational potential energy available to

be converted to kinetic energy in areas of high posterior density (i.e., the troughs).

Conversely, in areas of low posterior density (i.e., the peaks), a gentle push will ini-

tiate a rapid descent. The HMC algorithm samples from the joint distribution of θ

and m, which has the PDF

p(θ,m|y) ∝ exp
(︁
−H(θ,m)

)︁
.

The objective of the HMC algorithm is to fully explore the NLP landscape while

avoid getting stuck in areas of high posterior density, which can lead to bias results in

the posterior distribution. For sampling iterations s = 1, . . . , S, the HMC algorithm

follow the steps:

Step 0. Initialise

Select an initial sample point θ(0) either randomly or based on prior information.

Prior information can include estimates from previous studies or a prior distribution.

Step 1. Sample momentum

Sample the momentum m from a multivariate normal distribution with mean zero

and identity covariance matrix, m ∼ N (0, I).

Step 2. Propose

Propose a candidate sample point θ̃ and a new momentum m∗ by simulating the
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Hamiltonian dynamics over a period T using the leapfrog integrator. In this step, let

q(0) = θ(s−1) and m(0) = m. For leapfrog steps l = 0, . . . , L−1, the leapfrog integrator

follows the steps:

Step 2.1. Half step update of the momentum

Using the current momentum m(l), step size ϵ and gradient of the potential energy

with respect to the current sample point ∇U(q(l)), update the momentum by half

a step

m(l+ϵ/2) = m(l) − ϵ

2
∇U(q(l)).

Step 2.2. Full step update of the location

Using the current sample point q(l), half step updated momentum m(l+ϵ/2) from

Step 2.1, and step size ϵ, update the sample point by one step

q(l+ϵ) = q(l) + ϵm(l+ϵ/2).

Step 2.3. Another half step update of the momentum

Using the half step updated momentum m(l+ϵ/2) from Step 2.1, step size ϵ and the

gradient of the potential energy with respect to the full step updated sample point

q(l+ϵ) from Step 2.2, update the momentum by another half a step

m(l+ϵ) = m(l+ϵ/2) − ϵ

2
∇U

(︁
q(l+ϵ)

)︁
.

Repeat Steps 2.1-2.3 for L − 1 leapfrog steps, where L is the number of steps de-

termined by the total duration divided by the step size L = T/ϵ, then obtain the

candidate sample point θ̃ = q(L) and the new momentum m∗ = m(L).

Step 3. Evaluate

Compute the acceptance probability

α = min

(︃
1,

exp
(︁
−H(θ̃, m∗)

)︁
exp

(︁
−H(θ(s−1),m)

)︁)︃,
where θ(s−1) denotes the current sample point, θ̃ denotes the candidate sample point

calculated from the previous step, m denotes the current momentum and m∗ denotes

the new momentum calculated from the previous step. H(·) is the Hamiltonian given
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in Equation (2.11).

Step 4. Accept or reject

Independently sample u from a uniform distribution, u ∼ U(0, 1). If α ≥ u, accept

the new location and set θ(s) = θ̃. Otherwise, return to the initial location and set

θ(s) = θ(s−1).

The HMC algorithm repeats Steps 1-4 for a prespecified S number of sampling

iterations or when the Markov chain has reached convergence. When convergence has

been achieved, the algorithm provides samples that approximate the joint posterior

distribution.

The choice of the total duration T and step size ϵ in the leapfrog integrator is

crucial for the convergence of the HMC algorithm. A T that is too short leads to

slower exploration, while a T that is too long can cause the algorithm to retrace its

path, hindering exploration. The No U-Turn Sampler (NUTS) developed by Hoffman

et al. (2014) addresses this by stopping when a U-turn is detected. Shorter T values

are recommended for highly curved posterior distributions, while longer T values are

suitable for flatter ones (Lambert, 2018). Similarly, an ϵ that is too large results

in a low acceptance rate, while an ϵ that is too small wastes computation time and

leads to slow exploration. For practical implementations, Neal et al. (2011) suggested

randomly choosing ϵ from a distribution, using adaptive tuning methods to achieve

an optimal acceptance rate of approximately 0.65, and monitoring diagnostics like

trace plots.

2.6 The INLA method

The integrated nested Laplace approximation (INLA) method (Rue et al., 2009) offers

a powerful alternative to traditional MCMC methods for Bayesian inference. Unlike

MCMC, which relies on iterative sampling, the INLA method employs a combination

of analytical approximations and numerical integration schemes (Martino and Riebler,

2019). This approach reduces computational burdens, particularly when dealing with

large datasets, and helps avoid potential convergence issues often encountered with

MCMC methods (Blangiardo and Cameletti, 2015, Moraga, 2019). By leveraging

these techniques, INLA provides an efficient and scalable solution for approximating
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posterior distributions in Bayesian hierarchical models, making it especially useful in

applications such as spatial and spatio-temporal modelling.

Recall from Section 2.4.3 that one of the primary goals of a Bayesian hierarchical

model for point referenced spatial data is to estimate the spatial random effects

ω =
(︁
ω(s1), . . . , ω(sn)

)︁′
, and the unknown parameters θ. For simplicity, let ωi denote

the spatial random effects, such that ω = (ω1, . . . , ωn)
′ in this section. In this context,

the objective is to estimate

p(ωi|y) =
∫︂ ∞

−∞
p(ωi|θ,y)p(θ|y)dθ, (2.12)

p(θk|y) =
∫︂ ∞

−∞
p(θ|y)dθ−k, (2.13)

for i = 1, . . . , n and k = 1, . . . , p, where p is the number of unknown parameters. The

parameter θ−k denotes the vector of unknown parameters without θk.

To achieve the objective, we may consider evaluating the approximations of p(ωi|y)
and p(θk|y), denoted as p̃(ωi|y) and p̃(θk|y) respectively. With the approximations,

we can re-express (2.12) and (2.13) as

p̃(ωi|y) =
∫︂ ∞

−∞
p̃(ωi|θ,y)p̃(θ|y)dθ,

p̃(θk|y) =
∫︂ ∞

−∞
p̃(θ|y)dθ−k,

where the integrations with respect to θ and θ−k are performed using numerical

integration methods. To obtain p̃(θ|y),

p(θ|y) ∝ p(y|ω,θ)p(ω|θ)p(θ)
p̃G(ω|θ,y)

⃓⃓⃓⃓
⃓
ω=ω∗(θ)

= p̃(θ|y), (2.14)

where p̃G(ω|θ,y) denotes the Gaussian approximation of p(ω|θ,y), and ω∗(θ) is the

mode of the full conditional distribution for a given θ. To obtain p̃(ωi|θ,y),

p(ωi|θ,y) ∝
p(ω,θ|y)
p̃G(ω|θ,y)

⃓⃓⃓⃓
⃓
ω=ω∗(θ)

= p̃(ωi|θ,y). (2.15)

However, the Gaussian approximation p̃(ω|θ,y) is often too strong and tends to give
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poor results since the conditional distributions are typically skewed or heavy tailed

(Blangiardo and Cameletti, 2015).

Another approach to achieve the objective is to partition ω, such that ω =

(ωi,ω−i)
′, where ω−i denotes the vector ω without ωi, and then apply the approxi-

mation

p(ωi|θ,y) ∝
p(ω,θ|y)

p̃G(ω−i|ωi,θ,y)

⃓⃓⃓⃓
⃓
ω−i=ω∗

−i(ωi,θ)

= p̃(ωi|θ,y), (2.16)

where p̃G(ω−i|ωi,θ,y) is the Gaussian approximation of p(ω−i|ωi,θ,y) and ω
∗
−i(ωi,θ)

is its mode. While this approach performs better compared to the previously de-

scribed method, because p̃G(ω−i|ωi,θ,y) is often close to normal, it is computation-

ally expensive (Blangiardo and Cameletti, 2015).

The third approach to achieve the objective involves utilising the simplified Laplace

approximation approach (Blangiardo and Cameletti, 2015). This method employs the

Taylor series expansion up to the third order to approximate p(ωi|θ,y). The Laplace
approximation enables the estimation of the posterior distribution using normal dis-

tributions. In essence, the concept of the Laplace approximation is to approximate

a well-behaved unimodal function with a Gaussian density. Let us demonstrate the

Laplace approximation with the following examples.

Example 1. The Laplace approximation of a χ2 distribution

The PDF of a χ2 distribution with k degrees of freedom is

p(x; k) =
1

2k/2Γ(k/2)
xk/2−1 exp(−x/2),

where Γ(·) is the mathematical Gamma function. The Laplace approximation requires

the log PDF, the first derivative of the log PDF and the second derivative of the log

PDF

log p(x; k) =

(︃
k

2
− 1

)︃
log x− x

2
− log

(︁
2k/2Γ(k/2)

)︁
,

∂

∂x
log p(x; k) =

k
2
− 1

x
− 1

2
,

∂2

∂x2
log p(x; k) =

1− k
2

x2
.
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The Laplace approximation of any distribution is a normal distribution with mean

x̂ and variance σ̂2 = −1/ ∂2

∂x2 log p(x̂). The mean of the Laplace approximate normal

distribution x̂ is obtained by evaluating the first derivative at zero

k
2
− 1

x̂
− 1

2
= 0,

x̂ = k − 2.

The variance of the Laplace approximate normal distribution σ̂2 is calculated as

σ̂2 = −1/ ∂
2

∂x2
log p(x̂),

=
x̂2

k
2
− 1

,

=

(︁
2(k

2
− 1)

)︁2
k
2
− 1

,

=
4
(︁
k
2
− 1
)︁2

k
2
− 1

,

= 2(k − 2).

Hence, the simplified Laplace approximation of a χ2 distribution with k degrees of

freedom is

χ2
k

LA∼ N(x̂ = k − 2, σ̂2 = 2(k − 2)),

where
LA∼ denotes the simplified Laplace approximation.

Example 2. The Laplace approximation of a Gamma distribution

The log PDF of a Gamma distribution is given by

log p(x;α, β) = log

(︄
βα

Γ(α)
xα−1 exp(−βx)

)︄
,

= (α− 1) log x− βx+ α log β − log Γ(α).
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The first and second derivative of the log PDF are

∂

∂x
log p(x;α, β) =

(α− 1)

x
− β,

∂2

∂x2
log p(x;α, β) =

−(α− 1)

x2
.

The mean of the Laplace approximate normal distribution x̂ is obtained as follows

(α− 1)

x̂
− β = 0,

x̂ =
α− 1

β
.

The variance of the Laplace approximate normal distribution σ̂2 is obtained as follows

σ̂2 = −1/ ∂
2

∂x2
log p(x̂),

=
x̂2

(α− 1)
,

=
(α− 1)2

(α− 1)β2 ,

=
(α− 1)

β2 .

Hence, the Laplace approximation of the Gamma distribution is

Γ(α, β)
LA∼ N

(︄
x̂ =

α− 1

β
, σ̂2 =

α− 1

β2

)︄
.

In the examples above, the Laplace approximation works reasonably well for large

k and α. The INLA approach can be implemented in R (R Core Team, 2021) through

the INLA package (Rue et al., 2009, Martins et al., 2013). By default, the simplified

Laplace approximation is used when implementing INLA in R. However, the other

two approximation strategies are also available.

In summary, the INLA method first explores the marginal posterior distribution

of the hyperparameters to locate the mode. It then generates a set of relevant points

along with corresponding weights to approximate the distribution of the parameters

of interest. Each marginal posterior can be obtained through interpolations based on
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these computed values.

2.6.1 The stochastic partial differential equation method

One of the major challenges in employing MCMC methods for Bayesian models of

point referenced spatial data is handling large covariance matrices. The computa-

tional complexity of algebraic operations involving n × n dense covariance matrices

is O(n3), making these methods impractical for large datasets. The stochastic par-

tial differential equation (SPDE) method addresses this problem by providing a more

computationally efficient way to represent Gaussian fields (GFs), particularly those

with Matérn covariance structures. By transforming the problem into solving a dif-

ferential equation, the SPDE method reduces computational complexity, providing a

feasible approach for handling large spatial datasets.

A Gaussian Field (GF) can be thought of as a continuous surface where spatial

data can occur at any point, making it challenging and computationally expensive to

account for every single point. The SPDE method addresses this by describing the

spatial process in terms of its local properties, which can then be used to efficiently

reconstruct the global structure. This is achieved by partitioning the continuous sur-

face into triangles, creating a Gaussian Markov Random Field (GMRF), also referred

to as a mesh. This discretisation simplifies computation by focusing only on the

vertices of the triangles, reducing the computational cost.

To facilitate the description of the SPDE method, consider the following model

Y (si) = η(si) + ϵ(si),

η(si) = x(si)
′β + ω(si),

where Y (si) represents the random variable at location si for i = 1, . . . , n and ϵ(si) is

the unstructured error term, assumed to be independently and identically normally

distributed with mean zero and variance σ2
ϵ . The linear predictor η(si) comprises

the covariates x(si), the regression coefficients β and the spatial random effect ω(si),

which is assumed to follow a zero-mean Gaussian process with a Matérn covariance.

The SPDE method follows the steps:

Step 1. Define the SPDE

Formulate the SPDE to which the GF is a solution. Lindgren et al. demonstrated
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that a GF ω(s) with Matérn covariance is a solution to the linear fractional SPDE

(κ2 −∆)α/2ω(s) =W(s),

where (κ2−∆)α/2 is a pseudo-differential operator with parameters κ and α. Here, κ

controls the spatial range, α relates to the smoothness, ∆ is the Laplacian operator,

and W(s) is a spatial Gaussian white noise process (Lindgren et al., 2011).

Step 2. Discretise the spatial domain

To solve the SPDE numerically, the spatial domain is discretised using a mesh. This

involves a process known as “triangularisation”, where the continuous GF is parti-

tioned into triangles, creating a discretised GMRF, also referred to as a mesh. The

level of detail in the mesh directly impacts both the computational cost and the

accuracy of the representation of the original GF. A finer mesh, with more trian-

gles, offers a closer approximation to the original GF but increases computational

demands. Conversely, a coarser mesh reduces computational cost but may result in a

less accurate representation. Although there are guidelines for constructing the mesh

(Krainski et al., 2018, Righetto et al., 2020), this process remains subjective. Gener-

ally, the mesh should have an outer boundary with larger triangles in the outer region

and smaller triangles within the inner region. The precise influence of the mesh on

model predictions is still not fully understood and requires further investigation.

Step 3. Link to the Gaussian field

The spatial random effect using the discretised GMRF is given by

ω(s) =
G∑︂

g=1

φg(s)ω̃g,

where G is the total number of vertices on the mesh, {φg} is the set of basis function
and {ω̃g} are zero-mean Gaussian distributed weights. The basis functions are chosen

to be piecewise linear on each triangle, such that φg is 1 at the vertex and 0 elsewhere

(Miller et al., 2020). The GMRF representation of the spatial random effect can be
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incorporated into the linear predictor as

η(si) = x(si)
′β +

G∑︂
g=1

Ãigω̃,

where Ã is an n × G sparse matrix and ω̃ = (ω̃1, . . . , ω̃G)
′. The sparse matrix Ã

maps the GMRF weights ω̃ from the n observations to the G triangulation nodes on

the mesh. The model can then be expressed compactly as

Y ∼ Nn(η, σ
2
ϵIn),

η = Xβ + Ãω̃,

where Y =
(︁
Y (s1), . . . , Y (sn)

)︁′
, η =

(︁
η(s1), . . . , η(sn)

)︁′
, In denotes the n×n identity

matrix and X denotes the n× p design matrix.

Step 4. Implement with INLA

Use the INLA package (Rue et al., 2009, Lindgren et al., 2011, Lindgren and Rue, 2015)

in R to implement the SPDE method and fit the model. The mesh is created using the

inla.mesh.2d() function, and the SPDE is defined using the inla.spde2.pcmatern()

function. The inla() function is then used to fit the model to the data.

A limitation of the SPDE method is the restriction of the smoothness parameter

α to 0 < α ≤ 2, as addressed by Lindgren et al. (2011). This constraint ensures desir-

able mathematical properties and computational efficiency. For α ≥ 2, the null space

of the pseudo-differential operator becomes non-trivial, posing challenges in obtaining

results for alternative α values and implying an implicit assumption of appropriate

boundary conditions for the SPDE. Maintaining 0 < α ≤ 2 preserves the positive

definiteness of the resulting covariance matrix, which is crucial for computational

performance. As α increases, the covariance function becomes smoother, making the

process more differentiable. Allowing α > 2 could lead to overly smoothed covariance

functions that might not adequately capture spatial variations, and it would also in-

crease the computational burden. In practical terms, the Matérn covariance function

with 0 < α ≤ 2 performs well for a wide variety of spatial datasets (Lindgren et al.,

2011).
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2.7 Bayesian model selection

Modelling is a fundamental data analytic task and is a way to approximate reality

(Shibata, 1989, Gelfand and Dey, 1994, Marin and Robert, 2014). The responsibilities

of a statistician, when working with models, include assessing their utility, comparing

their predictive performance and exploring directions for improvements. Even when

all models under consideration have mismatches with the data, the simplest model

can provide information towards the next step in model building (Gelman et al., 2014,

Haining and Li, 2020).

2.7.1 Bayes factor

Bayesian model selection begins with the formal Bayes approach, which, in the context

of two models, leads to the calculation of the Bayes factor (Gelfand and Dey, 1994).

The Bayes factor is the standard solution for Bayesian model selection (Lewis and

Raftery, 1997) and should be the only consideration within the orthodox Bayesian

perspective (Sahu, 2022). Suppose there is a choice between two hypotheses, denoted

as H1 and H2, which correspond to the underlying assumptions of models M1 and

M2 respectively, for observations y = (y1, . . . , yn)
′. The prior predictive distribution,

denoted as p(y|Mi) for i = 1, 2, can be expressed as

p(y|Mi) =

∫︂ ∞

−∞
pi(y|θi)pi(θi)dθi, (2.17)

where pi(y|θi) denotes the likelihood function, and pi(θi) denotes the prior distribu-

tion. More explicitly,

p(y|Mi) =

∫︂ ∞

−∞
pi(y|θi,Mi)pi(θi|Mi)dθi.

The Bayes factor is defined as

BF =
p(y|M1)

p(y|M2)
, (2.18)

which is a ratio of the prior predictive distributions. The Bayes factor can take on

any positive value and has many interpretations, as documented by Jeffreys (1961),

Raftery (1996), Lee and Wagenmakers (2014). In general, a BF > 1 favours the
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model in the numerator, which is M1 in this example. Conversely, a BF < 1 provides

evidence in support of the model in the denominator, which is M2 in this example.

Suppose the modelsM1 andM2 have prior probabilities P (M1) and P (M2) respec-

tively, with P (M1)+P (M2) = 1. Following Bayes theorem, the posterior probabilities

P (M1|y) and P (M2|y), for M1 and M2, are calculated as

P (M1|y) =
p(y|M1)P (M1)

p(y|M1)P (M1) + p(y|M2)P (M2)
,

P (M2|y) =
p(y|M2)P (M2)

p(y|M1)P (M1) + p(y|M2)P (M2)
,

with P (M1|y) + P (M2|y) = 1. From these results, the posterior odds ratio is given

as

P (M1|y)
P (M2|y)

=
p(y|M1)P (M1)

p(y|M2)P (M2)
,

=
p(y|M1)

p(y|M2)
× P (M1)

P (M2)
.

The expression above shows that the Bayes factor is the multiplicative factor used

to covert the prior odds ratio to the posterior odds ratio. Rearranging the terms in

the expression can also show that the Bayes factor is the ratio of posterior odds ratio

and prior odds ratio. The Bayes factor provides a measure of whether the data has

improved the odds for M1 relative to M2.

Bayes factors can be used for Bayesian hypothesis testing by quantifying the rela-

tive support for different hypotheses based on observed data and drawing conclusions

about the posterior probabilities (O’Hagan, 2006). This enables informative and ac-

curate interpretations of the evidence favouring or against different hypotheses, in

contrast to the common misunderstandings surrounding p-values in frequentist null

hypothesis significance tests. In such tests, p-values are often misconstrued as the

probability that a null hypothesis H0 is true or false, which is an inaccurate interpre-

tation based on the underlying calculations.

However, Bayes factor are often not implemented in practical applications. As

discussed by Zhu and Carlin, Bayes factor is difficult to compute and interpret for
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high-dimensional hierarchical models and for models with improper prior distributions

(Zhu and Carlin, 2000). Bayes factor is also sensitive to the choice of the prior

distribution for the parameter, denoted as pi(θi) in (2.17). To address these challenges,

alternative approaches to the Bayes factor have been proposed; see O’Hagan (1995)

and Berger and Pericchi (1996) for example. We conclude our discussion on Bayes

factor and will shift our focus to criterion-based model selection methods and cross

validation methods for Bayesian model selection.

2.7.2 Information criteria

The concept of information criteria involves information theory and statistical anal-

ysis. Specifically, the information theory part is based on the Kullback-Leibler (K-

L) divergence, which measures the difference between two probability distributions

(Kullback and Leibler, 1951). Since model selection revolves around the task of ap-

proximation (Akaike, 1973, Buraham and Anderson, 1998), guided by the principle

that “all models are wrong, but some are useful” (Box, 1976), the objective is to

quantify information loss. The K-L information can be used to measure the amount

of information lost when approximating the true underlying probability distribution

with a model (Portet, 2020). The statistical analysis part comes from Akaike (1973)

discovering an asymptotically unbiased estimator of the expected relative K-L diver-

gence, which he termed “an information criterion”. This was later named the “Akaike

information criterion” (AIC) for his contribution to its development (Buraham and

Anderson, 1998).

The AIC is a popular model choice criterion as it produces a metric for easy

model comparisons. It comprises a goodness-of-fit component and a penalty compo-

nent. The goodness-of-fit component is represented by the log likelihood function,

also known as the log predictive density (Gelman et al., 2014). The log likelihood

function is a general summary of the predictive fit and can assess the model fit since

prediction accuracy serves as a proxy for model evaluation (Gneiting, 2011). The

penalty component is the number of parameters estimated within the model, denoted

as p, and act as a corrective measure against overfitting. The penalty component is

consistent with the principle of parsimony, emphasising the importance of keeping a

model as simple as possible (Johnson and Omland, 2004), as the fit of any model can

be improved by increasing the number of parameters (Buraham and Anderson, 1998).
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This concept is commonly known as the bias-variance tradeoff. Too few parameters

can lead to high bias in the parameter estimates. This generally leads to an underfit-

ted model that may fail to identify all important factors, because it is too simplistic to

represent and capture all the nuances and details of the data accurately. Conversely,

too many parameters can lead to high variance in the parameter estimates, resulting

in an overfitted model. While an overfitted model may fit the observed data well, it

often struggles to generalise for unobserved data.

The AIC is defined as

AIC = −2 log p(y|θ̂) + 2p, (2.19)

where log p(y|θ̂) denotes the log likelihood function and θ̂ denotes the maximum

likelihood estimate. Portet suggests that the AIC is suitable when the number of ob-

servations is relatively large, typically when (n/40) > p. In cases where this condition

is not met, the corrected AIC (AICc), introduced by Sugiura (1978), is the preferred

choice (Portet, 2020). It is noteworthy that the penalty component of the AIC repre-

sents a specific case of a more general result derived by Takeuchi (1976), which also

gave rise to the Takeuchi information criterion (TIC). Other adaptations of the AIC

for other specific cases are discussed by Buraham and Anderson (1998), however, they

are rarely used in practical applications due to computational difficulties and issues

with stability (Vehtari and Ojanen, 2012).

The Bayesian information criterion (BIC), developed by Schwarz (1978), is another

information criterion. The “Bayesian” aspect of the BIC arises from the Bayesian

viewpoint of equal priors on the candidate models and vague priors on the param-

eters given the model. Models selected using BIC often assume the purpose of pre-

diction rather than scientific understanding of the process or the system under study

(Buraham and Anderson, 1998). The BIC is calculated as

BIC = −2 log p(y|θ̂) + p log(n).

Gelman et al. believe that the BIC is misleading as there is nothing “Bayesian”

about its formula (Gelman et al., 2014). While the formula of the BIC may resemble

(2.19), it is not an estimator related to the K-L divergence, from which the AIC

originated. Instead, the BIC is based on a criterion called minimum description

length, which is from coding theory, a branch of information theory (Rissanen, 1989,
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Yu, 1996, Buraham and Anderson, 1998). Furthermore, the BIC was developed with

the assumption that a “true” model exists, and the motivation is to select that “true”

model. Compared to the AIC, the BIC gives a larger penalty per parameter, and

favours simpler models (Gelman et al., 2014). In practical applications, models with

lower AIC or BIC values are preferred.

Beyond linear models or models involving flat prior distributions, the number of

estimated parameters cannot be used as a penalty component. Informative prior

distributions and models with hierarchical structure tend to reduce overfitting com-

pared to simple least squares (Gelman et al., 2014). In situations where it is difficult

to identify p, such as hierarchical models, the AIC and the BIC cannot be used for

model comparisons (Spiegelhalter et al., 1998). We conclude our discussion on the

AIC and BIC, and will now focus on the Bayesian variants of information criteria.

Deviance information criterion

The deviance information criterion (DIC), developed by Spiegelhalter et al. (1998), is

often referred to as a generalisation of the AIC for hierarchical models, or a Bayesian

version of the AIC (Spiegelhalter et al., 1998, Zhu and Carlin, 2000, Wheeler et al.,

2010, Gelman et al., 2014, Sahu, 2022). To see why, observe the definition of the DIC

DIC = −2 log p(y|θ̂Bayes) + 2pDIC. (2.20)

The DIC is a Bayesian version of the AIC. There is resemblance between (2.20)

and (2.19) in that they both comprise a goodness-of-fit component and a penalty

component. The first notable difference between the AIC and the DIC is their repre-

sentation of goodness-of-fit. In the AIC, this is the log likelihood function given the

maximum likelihood estimate, denoted as log p(y|θ̂). In the DIC, the goodness-of-

fit component is the log likelihood function given some Bayes estimate, denoted as

log p(y|θ̂Bayes). The Bayes estimate is typically the posterior mean, θ̂Bayes = E(θ|y),
as the posterior mean maximises the log predictive density if it is the same as the

posterior mode.

The DIC is a generalisation of the AIC for hierarchical models. The development

of the DIC stems from the need for Bayesian metrics that can assess model complexity

and goodness-of-fit, particularly, in the context of comparing models with arbitrary

structures, such as models with hierarchical structure. The DIC is a useful tool for
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models where the number of parameters is either not clearly defined or unknown

(Spiegelhalter et al., 2002, Wheeler et al., 2010).

The reduction in uncertainty, due to estimation, is given as

dθ{y,θ, θ̃(y)} = −2 log p(y|θ) + 2 log p(y|θ̃(y)),

where θ̃(y) is an estimator of the parameter θ. dθ can be thought of as the reduction

in degree of “overfitting” due to the estimator θ̃(y) adapting to the data y. The

unknown parameters in dθ can be estimated by its posterior expectation with respect

to p(θ|y),

pD{y,Θ, θ̃(y)} = Eθ|y
(︁
dθ{y,Θ, θ̃(y)}

)︁
,

= Eθ|y
(︁
− 2 log p(y|θ) + 2 log p(y|θ̃(y))

)︁
,

= 2 log p(y|θ̃(y)) + Eθ|y
(︁
− 2 log p(y|θ)

)︁
,

where pD is a measure of complexity for the effective number of parameters (Spiegel-

halter et al., 1998, 2002). pD is also referred to as the “effective number of parame-

ters”, as originally termed by Moody (1991).

Returning to (2.20), the component pDIC is defined as

pDIC = pD{y,Θ, θ̃(y)} = 2
(︁
log p(y|θ̂Bayes)− Eθ|y(log p(y|θ))

)︁
. (2.21)

The penalty component of the DIC can be thought of as the difference between

the posterior mean of the deviance and the deviance at the posterior means of the

parameters of interest (Spiegelhalter et al., 2002). The pDIC is often less than the

total number of model parameters, due to the borrowing of strength across individual

level parameters in hierarchical models (Zhu and Carlin, 2000). If the posterior

mean is far away from the posterior mode, the pDIC will be negative. A penalty

component that produces a negative value is counterproductive, since it is placed to

correct for overfitting. To address this, Gelman et al. proposed an alternative penalty

component, denoted as pDIC alt. It is defined as

pDIC alt = 2Varθ|y
(︁
log p(y|θ)

)︁
, (2.22)

where Varθ|y(·) denotes the posterior variance. Using (2.22) ensures that the penalty
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component will be positive and also avoids the use of a “plug-in” estimate, which is

typically invariant to reparameterisation. However, (2.22) can be unstable (Vehtari

and Ojanen, 2012). In general, the pDIC and pDIC alt are both accurate if the limit of

the fixed model and large n can be derived from the asymptotic chi-squared distri-

bution of the log predictive density (Vehtari and Ojanen, 2012, Gelman et al., 2014).

Between the two versions of the penalty component, the pDIC is more numerically sta-

ble, but pDIC alt has the advantage of always being positive. For linear models with

uniform prior distributions, both pDIC and pDIC alt reduce to p, which is the same as

the AIC (Gelman et al., 2014). Sahu demonstrates this through a simple example in

Chapter 4 of his book (Sahu, 2022).

Spiegelhalter et al. suggest that the DIC should be used as a method to screen for

alternative formulations of the model to produce a list of candidate models for further

consideration. They also expect the DIC to be strongly related to the cross-validatory

assessment (Spiegelhalter et al., 1998), a topic that will be further explored in Section

2.7.3.

Watanabe-Akaike information criterion

A statistical model is “regular” if its parameters are mapped one-to-one to probability

distributions and if its Fisher information matrix is positive definite (Watanabe and

Opper, 2010). If a statistical model is not regular, it is “singular”. A statistical

model with hierarchical structure and latent variables is typically singular (Watanabe

and Opper, 2010, Watanabe, 2010). In singular statistical models, the maximum

likelihood estimator does not satisfy asymptotic normality. Hence, the maximum

likelihood method is not appropriate. The number of parameters in models with

hierarchical and mixture structures tend to increase with sample size (Gelman et al.,

2014). The Watanabe-Akaike information criterion, also referred to as the “widely

applied information criterion”, was developed by Watanabe and Opper (2010) for

such models.

The WAIC is considered to be an improvement over the DIC (Vehtari et al.,

2017b). The WAIC has a more desirable property of averaging over the posterior

distribution, rather than conditioning on a point estimate θ̂Bayes. This renders the

WAIC a fully Bayesian metric as it makes use of the complete posterior distribu-

tion. Furthermore, the WAIC incorporates the posterior predictive density into its

goodness-of-fit component. It is noteworthy that the WAIC is asymptotically equal to
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Bayesian cross-validation. In a prediction context, the WAIC assesses the predictions

used for new data (Gelman et al., 2014).

The WAIC is defined as follows

WAIC = −2
n∑︂

i=1

log

(︃∫︂ ∞

−∞
p(yi|θ)p(θ|y)dθ

)︃
+ 2pWAIC,

where the first term is really the posterior predictive distribution, denoted as p(yi|y).
The definition can be re-expressed as

WAIC = −2
n∑︂

i=1

log p(yi|y) + 2pWAIC. (2.23)

The penalty component of the WAIC comes in two versions: one obtained by using

the posterior mean and the other based on the posterior variance

pWAIC1 = 2
n∑︂

i=1

(︃
logEθ|y(p(yi|θ))− Eθ|y(log p(yi|θ))

)︃
, (2.24)

pWAIC2 =
n∑︂

i=1

Varθ|y
(︁
log p(yi|θ)

)︁
. (2.25)

Gelman et al. (2014) recommend using pWAIC2 over pWAIC1, because the series ex-

pansion of pWAIC2 bears a closer resemblance to the series expansion of leave-one-out

cross-validation. Moreover, in practical applications, pWAIC2 gives results close to

those obtained from leave-one-out cross-validation.

For practical purposes, the WAIC is calculated with S posterior draws θ(s), such

that

WAIC = −2
n∑︂

i=1

log

(︃
1

S

S∑︂
s=1

p(yi|θ(s))
)︃
+ 2pWAIC, (2.26)

where pWAIC is either

pWAIC1 = 2
n∑︂

i=1

(︃
log

(︃
1

S

S∑︂
s=1

p(yi|θ(s))
)︃
− 1

S

S∑︂
s=1

log p(yi|θ(s))
)︃
, (2.27)

pWAIC2 =
n∑︂

i=1

V S
s=1

(︁
log p(yi|θ(s))

)︁
, (2.28)
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where V S
s=1(·) represents the sample variance, i.e.,

V S
s=1(as) =

1

S − 1

S∑︂
s=1

(as − ā)2.

In practice, the candidate model with the lowest WAIC value is preferred.

The WAIC relies on partitioning the data into n parts, which is often not a simple

task for structured data, such as time-series data and spatial data (Gelman et al.,

2014). Additionally, the WAIC assumes that the partitioned data are both disjointed

and, ideally, conditionally independent. This assumption poses a limitation when

dealing with models for point referenced spatial data. To address this limitation, we

will introduce the WAICNF in Chapter 3.

2.7.3 Leave-one-out cross validation

The prediction accuracy of a model can be used to measure the performance of the

model and compare against models. Measures of predictive accuracy for probabilistic

predictions are called scoring rules, and the logarithmic score is the most commonly

used scoring rule in model selection (Bernardo, 1979, Gneiting and Raftery, 2007).

The ideal measure of a model’s fit is its out-of-sample predictive performance for new

data produced from the true data-generating process. Gelman et al. (2014) define

the expected log predictive density for a new data point (elpd) as

elpd =

∫︂ ∞

−∞
log ppost(ỹi)f(ỹi)dỹi,

where ppost(·) denotes a probability that averages over the posterior distribution of

the unknown parameters θ.

Directly computing the elpd using the expression above can be difficult, since

often time the true distribution f is unknown. Instead, various estimation methods

are available to approximate the elpd. One approach involves estimating the elpd for

new data using the log predictive density with existing data. This is referred to as the

within-sample predictive accuracy. While this approach provides a summary that is

quick and easy to understand, it generally leads to overfitting, which can be corrected

by subtracting the effective number of parameters. In other words, the goal is to

estimate the expected out-of-sample prediction error using bias-corrected adjustment
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of within-sample error. Examples of this adjusted within-sample predictive accuracy

approach include the AIC, DIC and WAIC, as detailed in Section 2.7.2.

Another approach to assess out-of-sample predictive accuracy involves partitioning

the dataset into training and testing subsets. The model is then fitted to the training

data, and its predictive accuracy is evaluated using the testing data. This technique is

commonly referred to as cross-validation. While cross-validation avoids overfitting, it

can become computationally expensive, as it typically requires many data partitions

and model fitting to obtain a stable estimate.

Leave-one-out cross validation (LOO) is a special case of cross-validation. Let

y = (y1, . . . , yn)
′ denote the observations, where yi denotes the ith observation and

y−i denotes all observations except for yi. LOO is when the model is fitted to y−i

and evaluated with yi. The Bayesian LOO is given as

p(yi|y−i) =

∫︂ ∞

−∞
p(yi|θ)p(θ|y−i)dθ. (2.29)

Assuming that the posterior distribution p(θ|y−i) is summarised by S simulation

draws of θ(s), the log predictive density can be calculated as log
(︁
1
S

∑︁S
s=1 p(yi|θ

(s))
)︁
.

Gelman et al. re-express (2.29) as

LOO =
n∑︂

i=1

log

(︃
1

S

S∑︂
s=1

p(yi|θ(is))
)︃
, (2.30)

where θ(is) denotes the s = 1, . . . , S posterior simulations of θ for data point i =

1, . . . , n. It is important to note that both cross-validation and LOO assume that data

are partitioned into disjointed and, ideally, conditionally independent parts (Gelman

et al., 2014). Similar to the WAIC, this assumption presents a limitation when applied

to models for point referenced spatial data.

PSIS-LOO

The Pareto smoothed importance sampling leave-one-out cross validation (PSIS-

LOO) was developed by Vehtari et al. (2015) for a better approximation of the

Bayesian LOO (2.29). As mentioned before, calculating the exact LOO requires

fitting the model n times, which can be computationally expensive. Gelfand et al.

(1992) discovered that if the test data, also referred to as hold out points, are condi-
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tionally independent, the Bayesian LOO can be evaluated using importance ratios to

get the importance sampling leave-one-out cross-validation (IS-LOO). The IS-LOO

predictive density is given as

p(yi|y−i) ≈
∑︁S

s=1 r
(s)
i p(yi|θ(s))∑︁S
s=1 r

(s)
i

,

where r
(s)
i denotes the importance ratio and is given as

r
(s)
i =

1

p(yi|θ(s))
∝ p(θ(s)|y−i)

p(θ(s)|y)
.

The IS-LOO predictive density can be further expressed as

p(yi|y−i) ≈
1

1
S

∑︁S
s=1

1

p(yi|θ(s))

.

However, directly applying this induces instability, because r
(s)
i can have high or

infinite variance (Vehtari et al., 2017b). To resolve this problem, Ionides proposed a

modification of the importance ratios by truncated weighting. More explicitly, instead

of using r
(s)
i , use

w
(s)
i = min(r

(s)
i ,
√
Sr̄i),

where r̄i =
1
S

∑︁S
s=1 r

(s)
i (Ionides, 2008). Using these truncated weights gives a mean

square error close to an estimate with a case specific optimal truncation level. How-

ever, the downside in using this approach is that it introduces a bias that can poten-

tially be large.

Vehtari et al. proposed the PSIS-LOO, an approach that is more accurate and

reliable, and one that is more robust in the finite case with weak priors or influential

observations (Vehtari et al., 2015). The procedure of the PSIS-LOO algorithm is

outlined as follows.

Suppose there are s = 1, . . . , S posterior draws and S = 100. The inputs of

the algorithm are the raw importance ratios rs = (r1, . . . , r100)
′ ordered from the

lowest to highest value, and the outputs are the Pareto smoothed importance weights

ws = (w1, . . . , w100)
′. First, determine the number of largest rs to extract. This

number is denoted as M , and the general guideline is M = min(0.2S, 3
√
S). Since
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S = 100, then M = 20. Next, set w̃s = rs, for s = 1, . . . , S −M . Since S = 100

and M = 20, (w̃1, . . . , w̃80)
′ = (r1, . . . , r80)

′. Estimate the parameters k̂ and σ̂ in the

generalised Pareto distribution with (r81, . . . , r100)
′ using the algorithm by Zhang and

Stephens (2009) with a weakly informative Gaussian prior distribution. Then set

w̃S−M+z = F−1

(︃
z − 1/2

M

)︃
for z = 1, . . . ,M . The notation F−1(·) denotes the inverse cumulative distribution

function (CDF) of the generalised Pareto distribution, and is given as

F−1

(︃
z − 1/2

M

)︃
= u+

σ̂

k̂

(︃(︃
1− z − 1/2

M

)︃k̂

− 1

)︃
where u are the M extracted importance ratios, u = (r81, . . . , r100). To guarantee

finite variance for the estimate, Vehtari et al. (2017b) included an additional step

ws = min(w̃s, S
3/4w̄),

where w̄ = 1
S

∑︁S
s=1 w̃s. Note that while not explicitly denoted, this algorithm is

performed for each i hold out data point.

Vehtari et al. define the PSIS-LOO estimate of the LOO expected pointwise

predictive density as

ˆ︃elpdPSIS−LOO =
n∑︂

i=1

log

(︃∑︁S
s=1w

(s)
i p(yi|θ(s))∑︁S
s=1w

(s)
i

)︃
. (2.31)

Additionally, (2.31) be transformed to the deviance scale by

PSIS-LOOIC = −2ˆ︃elpdPSIS−LOO, (2.32)

where PSIS-LOOIC stands for PSIS-LOO information criterion. PSIS-LOOIC is use-

ful for comparing against other information criteria, including the DIC and WAIC.

An important consideration is that when the estimated k̂ from the generalised

Pareto distribution exceeds 0.7, the resulting importance sampling estimates are likely

to exhibit instability. In such instances, Vehtari et al. suggest several potential solu-

tions. These include drawing samples directly from p(θ(s)|y−i) for the problematic ith
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observation, employing a K-fold cross-validation approach, or utilising a more robust

model (Vehtari et al., 2017b). Additionally, this algorithm relies on the assumption

that the n hold-out data points are conditionally independent in the data model (Gel-

man et al., 2014). This is the same problem described for the WAIC in Section 2.7.2,

and it poses a limitation when applied to applied to models of point referenced spatial

data. To address this limitation, we will introduce the PSIS-LOOICNF in Chapter 3.
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Chapter 3

Calculating the WAIC for

non-factorisable models

The two primary objectives of this chapter are the following. The first objective is to

highlight the challenge that arises when applying the computation of the Watanabe-

Akaike information criterion (WAIC) and the Pareto smoothed importance sam-

pling leave-one-out cross-validation information criterion (PSIS-LOOIC) to “non-

factorisable” models. The second objective is to introduce the novel approach, cen-

tered on the non-factorisable model likelihood, for WAIC and PSIS-LOOIC com-

putation, specifically in the context of Bayesian models of point referenced spatial

data.

3.1 The challenge posed by non-factorisable mod-

els in WAIC computation

First, recall the important detail about the WAIC and PSIS-LOOIC from the discus-

sion in Sections 2.7.2 and 2.7.3. The WAIC (2.23) is given by

WAIC = −2
n∑︂

i=1

log p(yi|y) + 2pWAIC,

where log p(yi|y) denotes the posterior predictive distribution, and pWAIC is the penalty

component. The penalty component is defined in two ways, (2.24) and (2.25), given
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by

pWAIC1 = 2
n∑︂

i=1

(︃
logEθ|y(p(yi|θ))− Eθ|y(log p(yi|θ))

)︃
,

pWAIC2 =
n∑︂

i=1

Varθ|y
(︁
log p(yi|θ)

)︁
,

where Eθ|y(·) denotes the posterior average and Varθ|y(·) denotes the posterior vari-

ance. In practical applications, the WAIC and its penalty components are calculated

using S posterior draws of the unknown parameters θ, (2.26), (2.27) and (2.28).

Explicitly, they are

WAIC = −2
n∑︂

i=1

log

(︃
1

S

S∑︂
s=1

p(yi|θ(s))
)︃
+ 2pWAIC,

pWAIC1 = 2
n∑︂

i=1

(︃
log

(︃
1

S

S∑︂
s=1

p(yi|θ(s))
)︃
− 1

S

S∑︂
s=1

log p(yi|θ(s))
)︃
,

pWAIC2 =
n∑︂

i=1

V S
s=1

(︁
log p(yi|θ(s))

)︁
,

for s = 1, . . . , S, and where V S
s=1(·) denotes the sample variance.

The PSIS-LOO estimate of the LOO expected pointwise predictive density (2.31)

is given by ˆ︃elpdPSIS−LOO =
n∑︂

i=1

log

(︃∑︁S
s=1w

(s)
i p(yi|θ(s))∑︁S
s=1w

(s)
i

)︃
,

where w
(s)
i are the Pareto smoothed importance weights calculated following the out-

line described in Section 2.7.3. The PSIS-LOOIC (2.32) is given by

PSIS-LOOIC = −2ˆ︃elpdPSIS−LOO = −2
n∑︂

i=1

log

(︃∑︁S
s=1w

(s)
i p(yi|θ(s))∑︁S
s=1w

(s)
i

)︃
.

An important aspect about the formula of both the WAIC and PSIS-LOOIC is

that they assume the data to be partitioned into disjointed and, ideally, conditionally

independent parts (Gelman et al., 2014). A model that satisfies this assumption is

called a “factorised model”. More specifically, if the observation model is formulated

directly as the product of the pointwise observations, it is called a “factorised model”
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(Vehtari et al., 2018, Bürkner et al., 2021). A factorised model is a model that can

have a full (log) likelihood function expressed as

p(y|ψ) =
n∏︂

i=1

p(yi|ψ),

log p(y|ψ) =
n∑︂

i=1

log p(yi|ψ),

where ψ denotes some model parameters and y = (y1, . . . , yn)
′. This implies that

the observations yi are conditionally independent of one another. Conversely, a “non-

factorisable” model is when the observations are not conditionally independent, and

the full likelihood function cannot be written in the form shown above.

Response values from models of structured data, such as models of point refer-

enced spatial data, often exhibit conditional dependence. We would expect spatial

dependence among the sites in a point referenced spatial dataset, as nearby points

tend to influence each other. Models of structured data are often characterised by

multivariate normal distributions with some structured covariance matrix that does

not factorise. Within the context of point referenced spatial data, this covariance

matrix has dimensions corresponding to the number of sites, and its elements are

calculated from covariance functions such as (2.5) and (2.6), as discussed in Section

2.3.3. The dependence of observations on other observations from a different spa-

tial unit is one of the key features that spatial models aim to capture (Hooten and

Hobbs, 2015). This key characteristic is a reason that a model may be considered as

a non-factorisable model.

Bürkner et al. noted that, conceptually, neither a factorised model nor the condi-

tional independence assumption are necessary prerequisites for LOO (Bürkner et al.,

2021). This conceptually extends to the calculation of the WAIC and PSIS-LOOIC.

However, imposing models of structured data to follow factorised model strategies

for LOO potentially introduces computational inefficiency and numerical instability

(Bürkner et al., 2021). In cases where non-factorisable model strategies are at our

disposal, their adoption is warranted, particularly when handling models inherently

characterised as non-factorisable. Moreover, utilising non-factorisable model strate-

gies for LOO under the appropriate context can provide computational efficiency and

numerical stability.
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To summarise, the challenge posed by non-factorisable models in the calculation of

the WAIC and PSIS-LOOIC is that it does not satisfy the conditional independence

assumption. We will provide an approach to address this challenge in Section 3.5.

3.2 Multivariate calculation of the WAIC

In this section, we make our first attempt to calculate the WAIC for models of point

referenced spatial data. We employ the strategy of directly applying multivariate

normal distributions to the calculation of the WAIC. Consider the following,

Y ∼ Nn(Xβ, σ
2H), (3.1)

where random variables Y = (Y1, . . . , Yn)
′ follows an n-dimensional multivariate nor-

mal distribution with mean structure Xβ and covariance matrix σ2H. The mean

structure comprise an n× p design matrix, denoted as X, and a p× 1 column vector

of regression coefficients, denoted as β. Suppose σ2 is a known value and H is an

n× n identity matrix, denoted as In. Let us assume the prior distribution of β to be

β ∼ Np(β0, σ
2M−1), (3.2)

where Np(·) denotes a p-dimensional multivariate normal distribution with mean

structure β0 and covariance matrix σ2M−1. The mean structure β0 is a p×1 column

vector of known values. Suppose σ2 in the covariance matrix is the same known value,

and M is a p × p identity matrix, denoted as Ip. This implies that M = M−1 = Ip.

To assist the following derivations, define λ2 = 1/σ2.

The PDFs of (3.1) and (3.2) are

p(y|β, λ2) =
(︃
λ2

2π

)︃n
2

det(H)−
1
2 exp

(︃
− λ2

2
(y −Xβ)′H−1(y −Xβ)

)︃
,

p(β|λ2) =
(︃
λ2

2π

)︃ p
2

det(M)
1
2 exp

(︃
− λ2

2
(β − β0)

′M(β − β0)

)︃
,

respectively, where det(·) denotes the determinant. Furthermore, the posterior mean
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and posterior variance of β are

E(β|y, λ2) = β∗, (3.3)

Var(β, |y, λ2) = 1

λ2
(M∗)−1, (3.4)

where

β∗ = (M∗)−1(X ′H−1y +Mβ0),

M∗ = X ′H−1X +M.

The posterior predictive distribution for a new observation, denoted as Ỹ 0, is given

as

Ỹ 0|y, λ2 ∼ N

(︃
g′β∗,

1

λ2
(︁
δ2 + g′(M∗)−1g

)︁)︃
,

with the posterior mean and posterior variance of Ỹ 0 given as

E(Ỹ 0|y, λ2) = g′β∗, (3.5)

Var(Ỹ 0|y, λ2) =
1

λ2
(︁
δ2 + g′(M∗)−1g

)︁
, (3.6)

where

g′ = (x′
0 −Σ12H

−1X),

δ2 = (1−Σ12H
−1Σ21).

and x0 denotes the corresponding elements of the regression variables for Ỹ 0. In

the expressions above, Σ12 = Σ′
21 and Σ12 is an n-dimensional row vector with

elements Cor(Ỹ 0, Yi) for i = 1, . . . , n, where Cor(·) denotes the correlation function.

See Appendix B for the derivation of the posterior mean (3.3) and variance (3.4),

and Appendix C for the derivation of the posterior mean (3.5) and posterior variance

(3.6) of the posterior predictive distribution.

The WAIC (2.23) is given by

WAIC = −2
n∑︂

i=1

log p(yi|y) + 2pWAIC,
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where the penalty component pWAIC is defined in two ways, (2.24) and (2.25), given

by

pWAIC1 = 2
n∑︂

i=1

(︃
logEθ|y(p(yi|θ))− Eθ|y(log p(yi|θ))

)︃
,

pWAIC2 =
n∑︂

i=1

Varθ|y
(︁
log p(yi|θ)

)︁
,

Derivation of pWAIC1. Employing our multivariate calculation strategy, we write the

pWAIC1 as

pWAIC1 = 2

(︃
logEβ|y,λ2

(︁
p(y|β, λ2)

)︁
− Eβ|y,λ2

(︁
log p(y|β, λ2)

)︁)︃
,

= 2

(︃
log p(ỹ0|y, λ2)− Eβ|y,λ2

(︁
log p(y|β, λ2)

)︁)︃
,

where the β is set in place of θ as it is the unknown parameter of interest. To make

the derivation clearer, the two components within the outmost brackets are calculated

separately before combining back together. The first component requires the log PDF

of the posterior predictive distribution, which is given as

log p(ỹ0|y, λ2) =
1

2
log

(︃
λ2

2π

)︃
−1

2
log(δ2+g′(M∗)−1g)−λ

2

2
(δ2+g′(M∗)−1g)(ỹ0−g′β∗)2.

The second component requires the help of the following. Let Z = y − Xβ and

A = H−1. By definition,

E[Z ′AZ] = tr(AΣ) + µ′Aµ, (3.7)

where tr(·) denotes the trace; see Mathai and Provost (1992) for more information

regarding quadratic forms of random variables. In (3.7), µ denotes the posterior mean
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and Σ denotes the posterior variance of Z. They are calculated as follows

µ = Eβ|y,λ2(Z),

= Eβ|y,λ2(y −Xβ),

= y −XEβ|y,λ2(β),

= y −Xβ∗. (3.8)

Σ = Varβ|y,λ2(Z),

= Varβ|y,λ2(y −Xβ),

= Varβ|y,λ2(−Xβ),

= (−X)Varβ|y,λ2(β)(−X)′,

= XΣβX
′, (3.9)

where Σβ denotes the variance of the posterior distribution (3.4). With this informa-

tion, the second component is derived as

Eβ|y,λ2

(︁
log p(y|β, λ2)

)︁
= Eβ|y,λ2

(︃
n

2
log

(︃
λ2

2π

)︃
− 1

2
log
(︁
det(H)

)︁
− λ2

2
(y −Xβ)′H−1(y −Xβ)

)︃
,

=
n

2
log

(︃
λ2

2π

)︃
− 1

2
log
(︁
det(H)

)︁
− λ2

2
Eβ|y,λ2

(︃
(y −Xβ)′H−1(y −Xβ)

)︃
,

=
n

2
log

(︃
λ2

2π

)︃
− 1

2
log
(︁
det(H)

)︁
− λ2

2

(︃
tr
(︁
H−1XΣβX

)︁
+ (y −Xβ∗)′H−1(y −Xβ∗)

)︃
.

Combining the two parts gives us the derivation of pWAIC1 using the multivariate

calculation strategy

pWAIC1 = log

(︃
λ2

2π

)︃
− log(δ2 + g′(M∗)−1g)− λ2(δ2 + g′(M∗)−1g)(ỹ0 − g′β∗)2

− n log
(︃
λ2

2π

)︃
+ log

(︁
det(H)

)︁
+ λ2

(︃
tr
(︁
H−1XΣβX

)︁
+ (y −Xβ∗)′H−1(y −Xβ∗)

)︃
.

(3.10)

Derivation of pWAIC2. Employing our multivariate calculation strategy, we write the
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pWAIC2 as

pWAIC2 = Varβ|y,λ2

(︁
log p(y|β, λ2)

)︁
,

where the β is set in place of θ as it is the unknown parameter of interest. The

derivation requires the definition of the variance of random variables in the quadratic

form. Again, let Z = y −Xβ and A = H−1. By definition,

Var[Z ′AZ] = 2tr(AΣAΣ) + 4µ′AΣAµ, (3.11)

where µ and Σ are the posterior mean and posterior variance of Z as derived in (3.8)

and (3.9) respectively. With this information, the derivation is given as follows

pWAIC2 = Varβ|y,λ2

(︁
log p(y|β, λ2)

)︁
,

= Varβ|y,λ2

(︃
n

2
log

(︃
λ2

2π

)︃
− 1

2
log
(︁
det(H)

)︁
− λ2

2
(y −Xβ)′H−1(y −Xβ)

)︃
,

= Varβ|y,λ2

(︃
− λ2

2
(y −Xβ)′H−1(y −Xβ)

)︃
,

=
λ4

4
Varβ|y,λ2

(︃
(y −Xβ)′H−1(y −Xβ)

)︃
,

=
λ4

4

(︃
2tr
(︁
H−1(XΣβX

′)H−1(XΣβX
′)
)︁
+ 4(y −Xβ∗)′H−1(XΣβX

′)H−1(y −Xβ∗)

)︃
.

(3.12)

Returning to the WAIC (2.23), we rewrites the formula as follows

WAIC = 2 log p(ỹ0|y, λ2) + 2pWAIC,

= 2

(︃
1

2
log

(︃
λ2

2π

)︃
− 1

2
log(δ2 + g′(M∗)−1g)− λ2

2
(δ2 + g′(M∗)−1g)(ỹ0 − g′β∗)2

)︃
+ 2pWAIC,

= log

(︃
λ2

2π

)︃
− log(δ2 + g′(M∗)−1g)− λ2(δ2 + g′(M∗)−1g)(ỹ0 − g′β∗)2 + 2pWAIC,

where pWAIC can be either (3.10) or (3.12).

To verify (3.10) and (3.12), let p = 1 and X = 1n×1, which denotes an n-

dimensional column vector of ones. SinceH is the identity matrix, Σ12 is a null vector,

δ2 = 1 and g′ = x′
0. The initial posterior predictive distribution accounts for one new

observation. Since the pWAIC1 calculation requires a summation of n parts, the verifi-

cation here follows by summing the first part by n parts. Let x′
0 = X0 = X = c and
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ỹ0 = y.

pWAIC1 = n log

(︃
λ2

2π

)︃
− n log

(︃
λ2

2π

)︃
− log

(︁
det(H +X0(M

∗)−1X ′
0)
)︁
+ log

(︁
det(H)

)︁
− λ2(y −X0β

∗)′(H +X0(M
∗)−1X ′

0)
−1(y −X0β

∗)

+ λ2
(︁
tr(H−1XΣβX

′)
)︁
+ λ2

(︁
(y −Xβ∗)′H−1(y −Xβ∗)

)︁
,

= − log
(︁
det(H +X0(M

∗)−1X ′
0)
)︁

− λ2(y −X0β
∗)′(H +X0(M

∗)−1X ′
0)

−1(y −X0β
∗)

+ λ2
(︁
tr(H−1XΣβX

′)
)︁
+ λ2

(︁
(y −Xβ∗)′H−1(y −Xβ∗)

)︁
,

= − log
(︁
det(In×n + (M∗)−1Jn×n)

)︁
− λ2(y − 1n×1β

∗)′(In×n + (M∗)−1Jn×n)
−1(y − 1n×1β

∗)

+ λ2Σβ

(︁
tr(Jn×n)

)︁
+ λ2

n∑︂
i=1

(yi − β∗)2.

The notation Jn×n is used to denote an n × n matrix of ones. Notice that in the

verification above, β∗ is used instead of β∗. Since p = 1, β∗ is scalar and not a

vector. This also implies that M∗, a p × p matrix, is also scalar. To continue with

the verification, define the following

det(aI + bJ) = (a+ nb)an−1,

(aI + bJ)−1 =
1

a
I − b

a(a+ nb)
J,
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where I is the identity matrix and J is a matrix of ones.

pWAIC1 = − log
(︁
det(In×n + (M∗)−1Jn×n)

)︁
− λ2(y − 1n×1β

∗)′(In×n + (M∗)−1Jn×n)
−1(y − 1n×1β

∗)

+ λ2Σβ

(︁
tr(Jn×n)

)︁
+ λ2

n∑︂
i=1

(yi − β∗)2,

= − log
(︁
1 + n(M∗)−1

)︁
+ λ2Σβn+ λ2

n∑︂
i=1

(yi − β∗)2

− λ2(y − 1n×1β
∗)′
(︃
In×n −

(M∗)−1

1 + n(M∗)−1
Jn×n

)︃
(y − 1n×1β

∗),

= − log
(︁
1 + n(M∗)−1

)︁
+ λ2Σβn+ λ2

n∑︂
i=1

(yi − β∗)2 − λ2
n∑︂

i=1

(yi − β∗)2

+ λ2
(︃

(M∗)−1

1 + n(M∗)−1

)︃
(y − 1n×1β

∗)′(Jn×n)(y − 1n×1β
∗),

= − log
(︁
1 + n(M∗)−1

)︁
+ λ2Σβn+

λ2(M∗)−1

1 + n(M∗)−1

(︃ n∑︂
i=1

(yi − β∗)

)︃2

.

Note that in the verification above, when using the quadratic form definition Z ′AZ =∑︁
i

∑︁
j zizjaij, if aij = (Jn×n)ij, (Jn×n)ij = 1 for all i and j = 1, . . . , n. As a result,

the double summation can be condensed to the square of one summation. However,

aij = (In×n)ij, (In×n)ij = 1 only on the diagonal elements, i.e., when j = i for

i = 1, . . . , n. As a result, the double summation can be condensed to one summation,

but as the summation of the squared terms. In other words,

(y − 1n×1β
∗)′(Jn×n)(y − 1n×1β

∗) =

(︃ n∑︂
i=1

(yi − β∗)

)︃2

,

(y − 1n×1β
∗)′(In×n)(y − 1n×1β

∗) =
n∑︂

i=1

(yi − β∗)2.

Recall that M∗ = X ′H−1X + M . This implies that M∗ = 2 in context of the
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verification, which means

pWAIC1 = − log
(︁
1 + 2n

)︁
+ λ2Σβn+

2λ2

1 + 2n

(︃ n∑︂
i=1

(yi − β∗)

)︃2

. (3.13)

This verification result should match the calculation of pWAIC1 in the univariate case,

as shown by Gelman et al. (2014) and Sahu (2022), which is

pWAIC1 = n log

(︃
σ2

σ2 + σ2
p

)︃
+ n

σ2
p

σ2
+

σ2
p

σ2(σ2 + σ2
p)

n∑︂
i=1

(yi − µp)
2. (3.14)

In the case of (3.14), the posterior mean and posterior variance are denoted as µp and

σ2
p respectively, whereas the notation β∗ and Σβ are used in (3.13).

The verification of (3.12) is the following

pWAIC2 = −
λ4

4

(︃
2tr
(︁
H−1(XΣβX

′)H−1(XΣβX
′)
)︁
+ 4(y −Xβ∗)′H−1(XΣβX

′)H−1(y −Xβ∗)

)︃
=
λ4

2

(︃
(Σβ)

2tr
(︁
(Jn×n)(Jn×n)

)︁
+ 2Σβ(y − 1n×1β

∗)′(Jn×n)(y − 1n×1β
∗)

)︃
,

=
λ4

2

(︃
(Σβ)

2n2 + 2Σβ

(︃ n∑︂
i=1

(yi − β∗)

)︃2)︃
,

=
λ4(Σβ)

2

2
n2 + λ4Σβ

(︃ n∑︂
i=1

(yi − β∗)

)︃2

. (3.15)

Likewise, the verification result should match that of the univariate derivation by

Sahu (2022) which is

pWAIC2 = n
σ4
p

2σ4
−
σ2
p

σ4

n∑︂
i=1

(yi − µp)
2. (3.16)

The verification results indicate a discrepancy between the univariate and multi-

variate outcomes. Specifically, (3.13) does not align with (3.14), and (3.15) does not

align with (3.16). This suggests that, although our multivariate calculation strategy

for the WAIC represents a novel approach, it may not be the appropriate method.

The mismatches arise from the inherent differences in the partitioning and summa-

tion processes in the original formulation of the WAIC. In particular, the order of

operations involving the posterior variance and summation in the context of pWAIC2
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differs between the multivariate and univariate cases. These differences are due to

the distinct ways these models handle dependencies and correlations within the data.

Consequently, the results are not expected to align, as they essentially measure dif-

ferent aspects of the data and model fit.

3.3 The calculation of the WAIC in INLA

From the technical aspect, the WAIC and its penalty component, which is referred

to as the effective number of parameters, can be calculated in INLA by invoking the

control.compute = list(waic = T) option within the inla() function within R.

However, attempting to understand how the inla() function calculates the WAIC

proves to be challenging. In our first attempt, we turn to the available INLA docu-

mentation (Martino and Rue, 2009) and online resources (Rue et al., 2013). Within

the online resources, the developers refer to the the WAIC calculations described by

Gelman et al. (2014). Gelman et al. provides their definition of the WAIC as

WAIC = −2(ˆ︂elppdWAIC), (3.17)

ˆ︂elppdWAIC = lppd− pWAIC, (3.18)

where ˆ︂elppdWAIC denotes the estimate of the expected log pointwise predictive density

for a new dataset (Gelman et al., 2014). The lppd denotes the log pointwise predictive

density and is given as

lppd =
n∑︂

i=1

log

∫︂
p(yi|θ)ppost(θ)dθ, (3.19)

where ppost(·) denotes the probability that averages over the posterior distribution.

Additionally, the developers of INLA explicitly mentioned that the effective number

of parameters are calculated following Equation (11) in Gelman et al. (2014), which

is

pWAIC2 =
n∑︂

i=1

Varpost
(︁
log p(yi|θ)

)︁
,

where Varpost(·) denotes the posterior variance. However, beyond these information,

there are not much other useful information that can aid our understanding on the

explicit calculation of the WAIC within the inla() function. Particularly, we are
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interested to understand how INLA obtain the log p(yi|θ) in the pWAIC2 equation

mentioned above.

In our second attempt, we delve into the R code and try to understand how the

WAIC is explicitly calculated internally within the inla() function. We found the

following,

waic = −2(sum(log(po.res− sum(po2.res)))),

p.eff = sum(po2.res).

Although the expressions above are code representation of the formula, they provide

enough information to infer that

po.res =
n∑︂

i=1

log

∫︂
p(yi|θ)ppost(θ)dθ,

po2.res =
n∑︂

i=1

Varpost
(︁
log p(yi|θ)

)︁
.

The calculations above are performed in the background of the inla() function when-

ever the user requires the WAIC to be calculated. Ideally, the derivations of po.res

and po2.res could be further investigated. However, they require components that

are read in from binary files, and the explicit calculations are tucked under layers of

source code.

In our investigation on the code of the WAIC within the inla() function, we

found an interesting comment under the calculation of the WAIC that reads, “yes,

here we use the po results” (Rue et al., 2014). In the context of cross-validation

methods, we hypothesise that “po” denotes predictive ordinates.

Although there are no information specifically on “predictive ordinates”, there are

plenty of literature on the conditional predictive ordinate (CPO). However, there is an

option to calculate the CPO in the inla() function, and we found that the calculation

of the CPO from the code is not entirely the same as po.res and po2.res. Further-

more, calculating the CPO within the inla() function also requires components read

in from binary files, which presents a difficulty when attempting to understand if CPO

is related to “po”. Further investigation into the po.res and po2.res is required to

fully understand how the WAIC is explicitly calculated within the inla() function.

We previously mentioned that the inla() function calculates the conditional pre-
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dictive ordinate (CPO). The CPO is a cross-validation method that estimates the

leave-one-out predictive distribution and measures the predictive ability of the fitted

model (Pettit, 1990, Gelfand et al., 1992, Geisser, 1993, Gelfand and Dey, 1994).

For i = 1, . . . , n, the CPO for observation yi is given as

CPOi = p(yi|y−i) =

∫︂ ∞

−∞
p(yi|y−i,θ)p(θ|y−i)dθ,

where y−i denotes the all observations without yi, and

CPO =
n∏︂

i=1

CPOi.

A larger CPOi value indicates better adjustment, meaning that yi is very likely to

be under the current model. Conversely, a smaller CPOi value indicates that yi is

likely an outlier, or a high leverage observation (Pettit, 1990). A model with a larger

CPO value suggests better predictive performance. Hence, the candidate model with

the largest CPO value is the preferred model. However, it is noted that CPO values

are often close to zero, therefore an alternative criteria is often employed (Draper

and Krnjajic, 2006, Cai et al., 2013). The NLLKCV represents the negative cross-

validatory log likelihood function, and is given as

NLLKCV = −
n∑︂

i=1

logCPOi.

Since a large CPO value indicate agreement between the observation and the model,

a model with a smaller NLLKCV value implies a better fit. The candidate model

with the smallest NLLKCV value has the best predictive performance (Cai et al.,

2013, Ayalew et al., 2021).

Calculating CPOi requires refitting the model each time up to n times. Further-

more, the closed form of CPOi is usually unavailable (Cai et al., 2013). Instead, we

can obtain an approximation from the Monte Carlo estimates of CPOi through the

MCMC samples from the posterior distribution,

ˆ︁CPOi =

(︃
1

S

S∑︂
s=1

1

p(yi|θ(s))

)︃−1

,
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where θ(s) is a sample from the posterior distribution p(θ|yi), and S indicates the

total number of posterior samples (Gelfand et al., 1992, Cai et al., 2013).

While the CPO involves a harmonic mean which yields a numerically unstable

estimator in practical applications (Hooten and Hobbs, 2015), the inla() function is

able to flag problematic cases; see Held et al. (2010). However, numerical problems

may still occur when the CPO are computed by the INLA method. Specifically, some

of the CPO values may not be reliable due to numerical problems when evaluating

p(yi|y−i). INLA evaluates the CPO with a numerical integration step which involves

the full conditional component (Held et al., 2010). However, the INLA method ap-

proximates this full conditional component with either the Gaussian approximation,

Laplace approximation, or the simplified Laplace approximation based on the skew-

normal distribution (Azzalini and Capitanio, 1999, Martino and Rue, 2009, Rue et al.,

2009), as detailed in Section 2.6. Essentially, the accuracy of the numerical integration

is dependent on the accuracy of the approximation.

3.4 The calculation of the WAIC and PSIS-LOOIC

in Stan

The WAIC and PSIS-LOOIC can be calculated with the loo package (Vehtari et al.,

2017a) after fitting models with Stan, using the sampling() function in the rstan

package (Stan Development Team, 2020). More specifically, a model is first written

in the Stan language, then compiled in R. Afterwards the sampling() function draws

MCMC samples from the model. In the initial code of the model, which is written in

Stan language, a generated quantities block have to be included in order to calculate

the WAIC. Within this generated quantities block, the log likelihood is calculated.

The extract log lik() function within the loo package can be used to extract the

calculated log likelihood. Finally, using this extracted log likelihood, the WAIC and

PSIS-LOOIC can be calculated with the waic() and loo() functions in the loo

package. The waic() and loo() functions require an S × n matrix with elements

log p(yi|θ(s)), for i = 1, . . . , n and s = 1, . . . , S, where S denotes the total number of

MCMC samples, and n denotes the number of sites.

The WAIC (3.17) is calculated from the expected log pointwise predictive density

(3.18), which requires a component represented by the the log pointwise predictive
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density (3.19) and a penalty component (2.25) (Gelman et al., 2014, Vehtari et al.,

2017b). In practical applications, the two components can be calculated from the

MCMC samples of the posterior distribution p(θ|y), given as

lppd =
n∑︂

i=1

log

(︃
1

S

S∑︂
s=1

p(yi|θ(s))
)︃
,

pWAIC2 =
n∑︂

i=1

V S
s=1

(︁
log p(yi|θ(s))

)︁
,

where V S
s=1(·) represents the sample variance.

The PSIS-LOOIC is calculated using Equation (2.31). It requires the Pareto

smoothed truncated weights, which is calculated by following the procedure described

in Section 2.7.3. Additionally, the penalty component of the PSIS-LOOIC can be

derived as

pPSIS−LOOIC = ˆ︂elppdPSIS−LOO − lppd,

ˆ︂elppdPSIS−LOO = −PSIS-LOOIC/2,

where lppd denotes log pointwise predictive density (3.19).

The calculation for the WAIC and PSIS-LOO are straightforward and easily im-

plemented with the loo package in R. However, the real challenge, as prompted in

the beginning of this chapter, have not been addressed. In the following section, we

will introduce our approach to calculate the WAIC and PSIS-LOOIC.

3.5 Calculating the WAIC and PSIS-LOOIC with

non-factorisable models likelihoods

Recall from Section 3.1 that a non-factorisable model is one where the the full likeli-

hood cannot be expressed as

p(y|ψ) =
n∏︂

i=1

p(yi|ψ),
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where ψ denotes some model parameters and y = (y1, . . . , yn)
′. A non-factorisable

model also implies that the observations yi are conditionally independent of one an-

other. Models for point referenced spatial data are non-factorisable models, since

we expect point referenced spatial data to exhibit conditional independence, where

nearby points tend to influence each other. As mentioned in Section 3.1, models of

structured data, such as point referenced spatial data, are often characterised by mul-

tivariate normal distributions with some structured covariance matrix Σ that does

not factorise.

According to multivariate normal theory, the conditional distribution for the ith

observation, denoted as p(yi|y−i,θ), is univariate normal with mean µ̃i and variance

σ̃i,

µ̃i = µi + σi,−iΣ
−1
−i (y−i − µ−i),

σ̃i = σii + σi,−iΣ
−1
−iσ−i,i,

where y−i denotes all observations without the ith observation. Additionally, σi,−i

and σ−i,i denote the ith row and column vectors of Σ without the ith element, σii

denotes the ith diagonal element of Σ, Σ−1
−i denotes the inverse of the covariance

matrix without the ith row and column, and µ−i denotes the mean vector without

the ith element. The pointwise log likelihood is then given as

log p(yi|y−i,θ) = −
1

2
log(2πσ̃i)−

1

2

(yi − µ̃i)
2

σ̃i

. (3.20)

However, calculating µ̃i and σ̃i this way is computationally expensive and ineffi-

cient, since Σ must be computed for each i, and may further increase computation

cost depending on its structure. Instead, Bürkner et al. suggest the following,

µ̃i = yi −
gi
σ̄ii

, (3.21)

σ̃i =
1

σ̄ii

, (3.22)

where

gi = [Σ−1(y − µ)]i,

σ̄ii = [Σ−1]ii
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(Bürkner et al., 2021), and likewise, the pointwise conditional log likelihood is given by

Equation (3.20). This way of calculating µ̃i and σ̃i is more computationally efficient

since Σ is calculated and inverted once only and can be reused for each i.

The derivations of (3.21) and (3.22) are based on Lemma 1 of the work by Sundara-

jan and Keerthi (2001), and documented in their supplementary materials. Sundara-

jan and Keerthi demonstrated that, for any finite subset z of a zero-mean Gaussian

process with covariance matrix Σ, the LOO predictive mean and standard deviation

can be computed as follows,

µ̃i = zi −
gi
σ̄ii

,

σ̃i =
1

σ̄ii

,

where

gi = [Σ−1z]i,

σ̄ii = [Σ−1]ii.

It is noteworthy that this proof does not rely on any specific form of the covariance

matrixΣ, implying its applicability to all zero-mean multivariate normal distributions

(Sundarajan and Keerthi, 2001). Following this, if y follows a multivariate normal

distribution with mean vector µ and covariance matrix Σ, then (y − µ) also follows

a multivariate normal distribution with covariance matrix Σ, but with zero-mean.

Hence, (y − µ) can be used in place of z in the proof by Sundarajan and Keerthi

described above. In cases where (yi − µi) has a LOO mean (yi − µi)− gi
σ̄ii

, it follows

that the LOO mean of yi is yi − gi
σ̄ii

(Bürkner et al., 2021).

To facilitate the implementation of (3.20), (3.21), and (3.22), we present the follow-

ing algorithm. The algorithm’s syntax closely resembles that of the R programming

language. It is essential to note that, before applying this algorithm, one should

already possess the MCMC samples of the unknown parameters of interest. These

samples can be obtained, for instance, by fitting the model in Stan, as detailed in

Section 2.5.3. The inputs of this algorithm comprise the MCMC samples of the un-

known parameters of interest, a vector of the observations denoted as y, and the total

number of observations denoted as n. The output of this algorithm is a S×n matrix

of non-factorisable model log likelihood values, where S denotes the total number of
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MCMC samples and n denotes the total number of observations.

Algorithm 1 Non-factorisable model log likelihood

1: for it in 1 to imax do

2:

3: sigmasq ← i sigmasq[it]

4: tausq ← i tausq[it]

5: phi ← i phi[it]

6:

7: MC1 ← 2ˆ(1− nu)/gamma(nu)

8: MC2 ← (sqrt(2 ∗ nu) ∗ phi ∗ D)ˆnu
9: MC3 ← besselK(sqrt(2 ∗ nu) ∗ phi ∗ D, nu = nu)

10: Sigma ← sigmasq ∗ MC1 ∗ MC2 ∗ MC3+ diag(tausq, nrow = n, ncol = n)

11:

12: Qmat ← solve(Sigma)

13: meanvec ← as.numeric(ps xbetas[it, ])

14: meanmult ← diag(1/diag(Qmat), nrow = n, ncol = n) %*% Qmat

15: condmean ← y− meanmult %*% (y− meanvec)

16: condvar ← 1/diag(Qmat)

17:

18: loglik[it, ] ← dnorm(y, mean = condmean, sd = sqrt(condvar), log = T)

19:

20: end for

Algorithm 1 represents a comprehensive set of instructions to be executed it-

eratively until reaching the total number of MCMC samples, denoted as imax or

equivalently as S. In the first part of Algorithm 1 (lines 3-5), the algorithm retrieves

the current MCMC samples from the unknown parameters of interest. Specifically,

these parameters include the spatial variance denoted as σ2
ω, the independent and

identically distributed variance represented by τ 2, and the spatial decay parameter

ϕ. Their respective vectors of MCMC samples are stored as i sigmasq, i tausq and

i phi. The values corresponding to the it iteration are then extracted and stored as

sigmasq, tausq and phi, respectively.

Using sigmasq, tausq and phi, we compute the covariance function, denoted

as Sigma within the algorithm. In lines 7-10 of Algorithm 1, we demonstrate the
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computation of the Matérn covariance function (2.6), which was previously introduced

in Section 2.3.3. Following this, we calculate the inverse of the resulting covariance

matrix, denoted as Qmat.

In line 13 of Algorithm 1, we extract the it row of ps xbetas. Here, ps xbetas

represents the transposed product of the design matrix X of dimensions n × p and

the vector of regression coefficients β. The regression coefficients β are also unknown

parameters of interest. After obtaining the MCMC samples, β extends to a p × S
matrix, where p denotes the number of variables included in the model and S denotes

the total number of MCMC samples. Combining both components and transposing

the resulting matrix gives a S × n matrix, denoted as ps xbetas.

In lines 14-15 of Algorithm 1, we implement the calculation of (3.21), denoted

as condmean within the algorithm. Subsequently, in line 16, we implement the cal-

culation of (3.22), denoted as condvar within the algorithm. Finally, in line 18 of

Algorithm 1, we implement (3.20). This completes the it iteration out of imax.

The resulting loglik object obtained from Algorithm 1 is a S × n matrix. This

loglik matrix assumes an important role in the computation of what we have termed

the WAICNF and the PSIS-LOOICNF. More explicitly, this loglik matrix finds

application in (2.26) and (2.31). In Chapter 4, we further investigate the WAICNF and

PSIS-LOOICNF calculated with the loglik matrix from Algorithm 1. Specifically,

we compare the WAICNF and PSIS-LOOICNF against the WAIC computed by INLA

(Rue et al., 2009, Martins et al., 2013), and the WAIC and PSIS-LOOIC computed

from the log likelihoods extracted from Stan (Stan Development Team, 2020).
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Chapter 4

Simulation examples

In Chapter 3, we introduced two novel model selection criteria for Bayesian models for

point referenced spatial data: the WAICNF and PSIS-LOOICNF. These criteria are

computed using the non-factorisable model log likelihoods, as detailed in Algorithm

1 within Section 3.5. In this chapter, our primary objective is to conduct a compara-

tive analysis between the WAICNF and PSIS-LOOICNF and established alternatives.

These alternatives include the WAIC computed by INLA (Rue et al., 2009, Martins

et al., 2013), as well as the WAIC and PSIS-LOOIC computed from the log likeli-

hoods extracted from Stan (Stan Development Team, 2020). Our investigation will

encompass both model selection tasks and variable selection tasks.

4.1 Data simulation

Y (si) = x(si)
′β + ω(si) + ϵ(si), (4.1)

ω ∼ Nn(0,Σω),

ϵ(si) ∼ N(0, τ 2).

The point referenced spatial data are generated following the model above. The loca-

tions of the point referenced spatial data, denoted as si, i = 1, . . . , n, are generated

from a unit square. On the right-hand side of (4.1), we have a linear combination

that incorporates the covariates, their associated regression coefficients, the spatial

random effect and the independent and identically distributed (iid) random effect.

The spatial random effects, denoted as ω =
(︁
ω(s1), . . . , ω(sn)

)︁′
, is generated using
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a zero-mean Gaussian Process (GP). To elaborate, this GP assumes the form of an

n-dimensional multivariate normal distribution with mean-zero and an n× n covari-

ance matrix denoted as Σω. The iid random effect ϵ(si) is generated from a normal

distribution with mean-zero and a specified variance parameter denoted as τ 2.

The covariance matrix Σω within the spatial random effect comprise a spatial

variance parameter σ2
ω and a correlation matrix component, as detailed in Section

2.3.3. The elements within the correlation matrix are computed through a function

that incorporates additional parameters. Specifically, when employing a Matérn func-

tion, the additional parameters include the smoothness parameter denoted as ν and

the spatial decay parameter denoted as ϕ. More explicitly, the Matérn covariance

function (2.6) is used to calculate the elements of Σω, and is given as

C(d) = σ2 (
√
2νdϕ)ν

2ν−1Γ(ν)
Kν(
√
2νdϕ)

for d > 0, where Γ(·) represents the standard mathematical Gamma function, Kν(·)
denotes the modified Bessel function of the second kind (Abramowitz and Stegun,

1948) of order ν, and σ2
ω denotes the spatial variance parameter. The parameter ν

is referred to as the smoothness parameter as it determines the smoothness of the

covariance function, and ϕ is referred to as the spatial decay as it dictates the rate of

decay as d increases. Additionally, d denotes the Euclidean between the locations of

the point referenced spatial data.

4.1.1 Model selection task: covariance function selection

In this chapter, we conduct model selection tasks with the aim of comparing our pro-

posed model selection criteria, WAICNF and PSIS-LOOICNF as introduced in Section

3.5, against the WAIC computed by INLA, as well as the WAIC and PSIS-LOOIC

computed from the log likelihoods extracted from Stan. The primary focus of our

model selection task centres around covariance function selection.

The outline for the design of the covariance function selection is as follows: We

generate point referenced spatial data, following the procedure outlined in Section 4.1.

The elements within the covariance matrix Σω are calculated based on the specified

covariance functions listed below. Subsequently, Bayesian models are constructed for

the generated data, utilising the candidate covariance functions from the same list.
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These models are fitted using both the INLA method and within the Stan framework.

Following this, we compute the WAICNF and PSIS-LOOICNF, as well as the WAIC

by INLA, and the WAIC and PSIS-LOOIC from the log likelihoods extracted from

Stan for all the candidate models. We determine the best candidate model based on

the magnitude of the selection criteria. Finally, we ascertain whether the selected

candidate model is constructed using the covariance function that aligns with the

covariance function employed in generating the data, thereby shedding light on the

efficacy of the selection criteria within the context of covariance function selection.

The list of candidate covariance functions is the following:

Exponential covariance function

The Matérn covariance function given above can be simplified if we set the smoothing

parameter ν = 1/2. The simplified covariance function is given as

Σω =

⎧⎨⎩σ2
ω exp(−ϕd) if d > 0

τ 2 + σ2
ω if d = 0,

where σ2
ω is the spatial variance parameter, τ 2 is the nugget, ϕ is the spatial decay

parameter and d denotes the Euclidean distance between the sites si, for i = 1, . . . , n.

The exponential covariance function is widely used because of its simplicity and easy

interpretation with the effective range r ≈ 3/ϕ as described in Section 2.3.3.

Matérn (ν = 3/2) covariance function

The Matérn covariance function also simplifies to a nice form when we set the smooth-

ing parameter ν = 3/2. The covariance function is given as

Σω =

⎧⎨⎩σ2
ω(1 +

√
3ϕd) exp(−

√
3ϕd) if d > 0

τ 2 + σ2
ω if d = 0,

where σ2
ω is the spatial variance parameter, τ 2 is the nugget, ϕ is the spatial decay

parameter, and d denotes the Euclidean distance between sites si, for i = 1, . . . , n.

Compared to the exponential covariance function, the Matérn (ν = 3/2) covariance

function decreases at a slower rate as the distance d increases. As a result, it is useful

for capturing more moderate spatial correlations over intermediate distances.
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Matérn (ν = 5/2) covariance function

The Matérn covariance function also simplifies to a nice form when we set the smooth-

ing parameter ν = 5/2. The covariance function is given as

Σω =

⎧⎨⎩σ2
ω(1 +

√
5ϕd+ 5

3
ϕ2d2) exp(−

√
5ϕd) if d > 0

τ 2 + σ2
ω if d = 0,

where σ2
ω is the spatial variance parameter, τ 2 is the nugget, ϕ is the spatial decay

parameter and d denotes the Euclidean distance matrix. The Matérn (ν = 5/2)

covariance function decreases at an even slower rate compared to the exponential

covariance function and the Matérn (ν = 3/2) covariance function as d increases. The

Matérn (ν = 5/2) covariance function captures more long-range spatial dependence.

Spherical covariance function

The spherical covariance function we use as a candidate covariance function in this

chapter follows the definition by Banerjee et al. (2014), and is given

Σω =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if d ≥ 1/ϕ

σ2
ω

(︃
1− 3

2
ϕd+ 1

2
(ϕd)3

)︃
if 0 < d < 1/ϕ

τ 2 + σ2
ω if d = 0,

where σ2
ω is the spatial variance parameter, τ 2 is the nugget, ϕ is the spatial decay

parameter and d is the Euclidean distance between sites si, for i = 1, . . . , n.

Gaussian covariance function

The Gaussian covariance function we use as a candidate covariance function in this

simulation study follow the definition by Banerjee et al. (2014), and is given as

Σω =

⎧⎨⎩σ2
ω exp

(︁
− (ϕd)2

)︁
if d > 0

τ 2 + σ2
ω if d = 0,

where σ2
ω is the spatial variance parameter, τ 2 is the nugget, ϕ is the spatial decay

parameter and d denotes the Euclidean distance between sites si, for i = 1, . . . , n.
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4.1.2 Variable selection task

We employ another approach to compare our proposed model selection criteria, the

WAICNF and PSIS-LOOICNF, against the WAIC computed by INLA, as well as the

WAIC and PSIS-LOOIC computed from the log likelihoods extracted from Stan. This

approach involves variable selection tasks.

The design of the variable selection task is as follows: We generate point refer-

enced data, following the procedure outlined in Section 4.1. Within the covariates on

the right-hand side of (4.1), we specify a combination from the list of covariates com-

bination provided below. Following this, Bayesian models are constructed using the

list of combinations of covariates. These models are then fitted using both the INLA

method and within the Stan framework. Subsequently, we compute the WAICNF and

PSIS-LOOICNF, as well as the WAIC by INLA, and the WAIC and PSIS-LOOIC from

the log likelihoods extracted from Stan. We select the best candidate model based

on the magnitude of the selection criteria. Finally, we ascertain whether the selected

candidate model is constructed using the combination of covariates that aligns with

the combination of covariates employed in generating the data. This investigation

provides insights into the effectiveness of the selection criteria within the context of

variable selection.

The covariates are generated as follows,

x1(si) = 1,

x2(si) ∼ N(0, 1),

x3(si) ∼ N(0, 1),

x4(si) ∼ N(0, 2),

for all i, where N(·) denotes the normal distribution. Note that the covariates could

have been generated as other types, such as binary, gamma-distributed, or heavy-

tailed covariates. These alternative distributions are important for applications where

they more accurately represent the underlying data. However, for the purposes of

this thesis, we focused on Gaussian covariates to maintain consistency with common

geospatial modelling practices. We further apply the Gram-Schmidt orthogonalisa-

tion process (Cheney and Kincaid, 2009) to the generated covariates to ensure that

they are independent; see Appendix D for the explicit calculations of this process.
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The point referenced data are generated using one of the following combination of

covariates, and the candidate models are subsequently constructed and fitted using

these combinations of covariates,

f1 : x(si)
′β = x1(si)β1 + x2(si)β2,

f2 : x(si)
′β = x1(si)β1 + x2(si)β2 + x3(si)β3,

f3 : x(si)
′β = x1(si)β1 + x2(si)β2 + x3(si)β3 + x4(si)β4,

where we set β1 = 1, β2 = 2, β3 = 2, β4 = 2.

4.2 Simulation design

In each dataset we generate, following the procedure outlined in Section 4.1, we

specify the following: the sample size n of the simulated dataset, the smoothness

parameter ν, the spatial variance parameter σ2
ω, the spatial decay parameter ϕ, the

variance parameter τ 2, the covariance function of Σω, as detailed in Section 4.1.1,

and the covariates, as detailed in Section 4.1.2. To illustrate, Figure 4.1 provides an

example of a simulated dataset with sample size of n = 30. This dataset is constructed

using covariates from the f1 configuration, and using parameters σ2
ω = 3, τ 2 = 3 and

ν = 1/2, implying the utilisation of an exponential covariance function.

Figure 4.1. Example of point referenced data generated from a (a) unit square, and

(b) the histogram of the generated responses.
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To facilitate comparison, we generate a total of 100 datasets, using identical con-

figurations. We proceed to construct and fit Bayesian models for these generated

datasets. Subsequently, we calculate the non-factorisable model (NF) log likelihoods,

following Algorithm 1 as detailed in Section 3.5. We then utilise these log likelihoods

to compute both the WAICNF and PSIS-LOOICNF.

When utilising Stan, our procedure involves computing the log likelihoods within

the generated quantities code block within Stan. These log likelihoods are then ex-

tracted using the extract log lik() function within the loo package. Finally we

calculate the WAIC and PSIS-LOO with the waic() and loo() functions, respec-

tively, also found within the loo package. In the case of INLA, it inherently calcu-

lates the WAIC, allowing us to extract the WAIC value for comparison against our

WAICNF.

When we compare the WAICNF and PSIS-LOOICNF against the WAIC and PSIS-

LOOIC from Stan and INLA, the best candidate model is determined based on the

smallest value of the selection criteria. Out of the 100 generated datasets, we ascer-

tain whether the selection criteria correctly identify the candidate model with the

generating configurations.

When using the inla.spde2.pcmatern() function to use the SPDE approach in

INLA, the specification of the smoothness parameter ν is restricted to a limited range.

The alpha argument within the inla.spde2.pcmatern() function corresponds to

ν = α − d/2. For point referenced spatial datasets, where d = 2, this relationship

simplifies to ν = α−1. For instance, if we intend to fit the model using an exponential

covariance function (recalling that a Matérn covariance function with smoothness

parameter ν = 1/2 is equivalent to the exponential covariance function), we will need

to set alpha = 3/2 within the inla.spde2.pcmatern() function. However, INLA

currently restricts the acceptable range for alpha to 0 < alpha < 2, which limits the

range of ν values that can be specified.

All simulations were conducted in Stan (Stan Development Team, 2020) using two

chains, each with a total of 2000 iterations, including 1000 burn-in iterations. These

simulation experiments were executed on a Windows machine equipped with a 4-core

Intel processor and 8GB random-access memory (RAM). The software environment

employed for the simulations was R version 4.0.4 (R Core Team, 2021).
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4.3 Simulation results

Figure 4.2 presents the results of the model selection tasks, specifically pertaining

to covariance function selection, as outlined in Section 4.1.1. In Figure 4.2a, we

generated point referenced spatial datasets using n = 10, spatial variance σ2
ω = 3,

iid variance τ 2 = 3, spatial decay parameter ϕ = 3/0.5 and smoothness parameter

ν = 1/2 for a Matérn covariance function, which corresponds to the utilisation of an

exponential covariance function (2.5). In this experiment, we considered candidate

models employing the Gaussian, spherical and exponential covariance functions, with

the latter being the one used to generate the datasets. These candidate models were

fitted using the Stan framework.

Moving to Figure 4.2b, point referenced spatial datasets were generated using

an increased sample size of n = 15, spatial variance σ2
ω = 2, iid variance τ 2 = 2,

spatial decay parameter ϕ = 3/0.5 and smoothness parameter ν = 3/2 for a Matérn

covariance function. In this experiment, we considered candidate models using Matérn

covariance functions and smoothness parameters ν = 1/2, ν = 5/2 and ν = 3/2, with

the latter being consistent with the smoothness parameter used in generating the

datasets. The candidate models were also fitted within the Stan framework.

Similarly, in Figure 4.2c, point referenced spatial datasets were generated using

n = 15, spatial variance σ2
ω = 3, iid variance τ 2 = 3, spatial decay parameter ϕ =

3/0.5 and smoothness parameter ν = 5/2 for a Matérn covariance function. As in the

previous experiment (Figure 4.2b), the candidate models utilised Matérn covariance

functions and smoothness parameters ν = 1/2, ν = 3/2 and ν = 5/2, with the latter

aligning with the smoothness parameter used to generate the datasets. Once again,

the candidate models were fitted using the Stan framework.

Figure 4.3 presents the results from the variable selection tasks detailed in Section

4.1.2. In Figure 4.3a, point referenced spatial datasets were generated using n = 10,

spatial variance σ2
ω = 3, iid variance τ 2 = 3 and smoothness parameter ν = 1/2

for a Matérn covariance function. The selected covariate combination for this exper-

iment was covariate combination f2. The candidate models incorporated covariate

combinations f1, f2 and f3, and were fitted within the Stan framework.

In Figure 4.3b, point referenced spatial datasets were generated using an increased

sample size n = 15, spatial variance σ2
ω = 3, iid variance τ 2 = 3 and smoothness

parameter ν = 3/2 for a Matérn covariance function. Similar to the previous experi-
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ment, the selected covariate combination was f2, and the candidate models considered

covariate combinations f1, f2 and f3, all fitted within the Stan framework.

Lastly, Figure 4.3c corresponds an experiment where the point referenced spatial

datasets were generated using n = 10, spatial variance σ2
ω = 2, iid variance τ 2 = 2,

smoothness parameter ν = 3/2 for a Matérn covariance function, and the chosen

covariate combination was f1. Once again, the candidate models included covariate

combinations f1, f2, and f3, and they were fitted within the Stan framework. Addi-

tionally, all simulation experiments in Figure 4.3 utilised the spatial decay parameter

ϕ = 3/0.5 in their data generation.

There are several noteworthy observations when examining the simulation experi-

ment results from the selected candidate models. Figure 4.2 shows that the WAICNF

and PSIS-LOOICNF, denoted as NF WAIC and NF PSIS-LOOIC respectively within

the figures, consistently outperform the WAIC and PSIS-LOOIC computed using the

log likelihoods extracted from Stan when tasked with identify the covariance func-

tion employed in generating the datasets. This distinction is particularly evident in

Figures 4.2b and 4.2c, where the WAIC and PSIS-LOOIC computed using the log

likelihoods extracted from Stan tend to favour the candidate model fitted using the

Matérn covariance function and smoothness parameter ν = 1/2, when the datasets

were originally generated using the Matérn covariance function and smoothness pa-

rameters ν = 3/2 (Figure 4.2b) and ν = 5/2 (Figure 4.2c).

However, we observe from Figure 4.3 that neither theWAICNF, the PSIS-LOOICNF,

nor the WAIC and PSIS-LOOIC computed from the log likelihoods extracted from

Stan perform well in identifying the covariate combination employed in data genera-

tion. An exception to this observation occurs when the datasets were generated using

covariate combination f1. In such cases, both the WAIC and PSIS-LOOIC computed

using the NF log likelihood from Algorithm 1, as detailed in Section 3.5, and the

log likelihood extracted from Stan perform well and correctly identify the covariate

combination in most datasets.

Overall, the WAIC and PSIS-LOOIC computed with the log likelihoods extracted

from Stan consistently outperforms our WAICNF and PSIS-LOOICNF across all sim-

ulation experiments in context of variable selection task. The findings from Figures

4.2 and 4.3 suggest that our proposed WAICNF and PSIS-LOOICNF are more suitable

for model selection task, specifically in the context of covariance function selection,

as opposed to variable selection tasks.
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Figure 4.2. Proportion of simulation runs correctly identifying the generating con-

figuration, with green bars indicating the correct configuration.
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Figure 4.3. Proportion of simulation runs correctly identifying the generating con-

figuration, with green bars indicating the correct configuration.
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Figure 4.4 presents the results of experiments with configurations that are similar

to those in Figure 4.2. However, in this case, the candidate models are fitted using

the INLA method. In Figure 4.4a, point referenced spatial datasets were generated

using n = 50, spatial variance σ2
ω = 2, iid variance τ 2 = 2, spatial decay parameter

ϕ = 3/0.5 and smoothness parameter ν = 1 for a Matérn covariance function. The

candidate models employed Matérn covariance functions and smoothness parameters,

ν = 1/10, ν = 1/2 and ν = 1, with the latter configuration aligning the configuration

used to generate the datasets in this experiment.

Moving to Figure 4.4b, point referenced spatial datasets were generated using n =

100, while retaining the remaining parameters consistent with the setup in Figure 4.4a.

Similarly, the candidate models utilised Matérn covariance functions and smoothness

parameters, ν = 1/10, ν = 1/2 and ν = 1, where the latter is the configuration used

to generate the datasets in this experiment.

In Figure 4.4c, point referenced spatial datasets were generated using increased

spatial variability, σ2
ω = 3, and iid variance τ 2 = 3. This experiment used n = 50 and

ϕ = 3/0.5. The smoothness parameter was set to ν = 1/2 for a Matérn covariance

function, implying the incorporation of an exponential covariance function.

Finally, the results in Figure 4.4d were derived from an experiment that generated

datasets using n = 100, spatial variance σ2
ω = 3, iid variance τ 2 = 3, spatial decay

parameter ϕ = 3/0.5 and smoothness parameter ν = 1/10 for a Matérn covariance

function.

Figure 4.5 presents results similar to those in Figure 4.3, showcasing selected can-

didate models from variable selection tasks. Both Figures 4.5a and 4.5b are from

experiments using similar data generating configurations employing spatial variance

σ2
ω = 3, iid variance τ 2 = 3, spatial decay parameter ϕ = 3/0.5, smoothness param-

eter ν = 1/2 for a Matérn covariance function, and covariate combination f2. The

distinguishing factor between these two experiments is in their sample sizes, with

Figure 4.5a using n = 50, and Figure 4.5b using n = 100. In both instances, the can-

didate models incorporate the covariate combinations f1, f2 and f3, and were fitted

using the INLA method.

Figures 4.5c and 4.5d, are also from experiments using similar data generating

configurations. Both experiments used spatial variance σ2
ω = 2, iid variance τ 2 = 2,

spatial decay parameter ϕ = 3/0.5 and smoothness parameter ν = 1/2, for a Matérn

covariance function, implying the utilisation of an exponential covariance function.
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Furthermore, both experiments generated datasets using the covariate combination

f1. The simulation sample size is different between the two experiments, with n = 50

and n = 100 for Figures 4.5c and 4.5d respectively.

The results illustrated in Figures 4.4 and 4.5 yield several noteworthy observations.

First, we observe that the WAICNF consistently outperforms the WAIC calculated by

INLA in its ability to consistently and accurately identify the covariance function

employed in dataset generation. Second, we observe that neither the WAICNF nor

the INLA-calculated WAIC accurately demonstrates high accuracy in distinguishing

the generating covariate combination.

Overall, the WAIC calculated by INLA outperform our proposed WAICNF across

all experiments in the context of variable selection tasks. These findings provide valu-

able insights into the comparative strengths and limitations of these two approaches.

In summary, the result from Figures 4.4 and 4.5 highlight the effectiveness of our

proposed WAICNF in model selection tasks, especially concerning the identification

of the underlying covariance function, while indicating its limitation in variable se-

lection tasks.
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Figure 4.4. Proportion of simulation runs correctly identifying the generating con-

figuration, with blue bars indicating the correct configuration.
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Figure 4.5. Proportion of simulation runs correctly identifying the generating con-

figuration, with blue bars indicating the correct configuration.
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While Figures 4.2, 4.3, 4.4 and 4.5 show the proportion of simulation runs in which

the selected candidate model correctly identifies the configuration of the generating

dataset, it is also valuable to examine the individual values of the selection criteria

alongside their corresponding penalty components.

Table 4.1 provides the calculated selection criteria and their corresponding penalty

components. The results presented in Table 4.1 do not involve candidate models. In-

stead, the selection criteria are computed from Bayesian models fitted using the Stan

framework, and they are constructed using parameters according to the configuration

of the generating dataset.

M1 represents an experiment where the point referenced spatial dataset was gen-

erated using n = 15, spatial variance σ2 = 2, iid variance τ 2 = 2, spatial decay

parameter ϕ = 3/0.5 and smoothness parameter ν = 3/2 for a Matérn covariance

function. Additionally, the dataset was generated using covariate combination f1.

In M2, the point reference spatial dataset was generated using n = 20, spatial vari-

ance σ2 = 3, iid variance τ 2 = 3, spatial decay parameter ϕ = 3/0.5 and smoothness

parameter ν = 1/2 for a Matérn covariance function, implying an exponential covari-

ance function. Furthermore the dataset was generated using covariate combination

f1.

Finally, in M3, the point referenced spatial dataset was generated using n = 10,

spatial variance σ2 = 3, iid variance τ 2 = 3, spatial decay parameter ϕ = 3/0.5 and

smoothness parameter ν = 5/2 for a Matérn covariance function. The dataset was

generated using covariate combination f2.

Table 4.1. Selection criteria and corresponding penalty components derived from

Bayesian models fitted within the Stan framework.

M1 M2 M3

WAICNF (pWAIC) 48.56 (0.19) 66.21 (0.31) 33.49 (0.22)

Stan WAIC (pWAIC) 66.99 (4.64) 91.98 (7.11) 50.20 (3.79)

PSIS-LOOICNF (pPSIS−LOOIC) 48.56 (0.19) 66.23 (0.32) 33.52 (0.23)

Stan PSIS-LOOIC (pPSIS−LOOIC) 67.76 (5.02) 93.53 (7.88) 51.06 (4.22)

The selection criteria and their corresponding penalty components presented in

Table 4.2 are computed from Bayesian models fitted using the INLA method, and
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they are constructed using parameters corresponding to the following data generating

configurations.

In M4, the point referenced spatial dataset was generated using n = 50, spatial

variance σ2
ω = 2, iid variance τ 2 = 2, spatial decay parameter ϕ = 3/0.5, smoothness

parameter ν = 1 for a Matérn covariance function, along with covariate combination

f1.

In M5, the point referenced spatial dataset was generated using an increased

sample size n = 100, spatial variance σ2
ω = 3, iid variance τ 2 = 3, spatial decay

parameter ϕ = 3/0.5 and smoothness parameter ν = 1/2 for a Matérn covariance

function. Additionally, the dataset was generated using covariate combination f1.

In M6, the point referenced spatial dataset was generated using n = 50, spatial

variance σ2
ω = 3, iid variance τ 2 = 3, spatial decay parameter ϕ = 3/0.5, smoothness

parameter ν = 1 for a Matérn covariance function and covariate combination f2.

In M7, the point referenced spatial dataset was generated using n = 100, spatial

variance σ2
ω = 2, iid variance τ 2 = 2, spatial decay parameter ϕ = 3/0.5, smoothness

parameter ν = 1/10 for a Matérn covariance function and covariate combination f2.

Table 4.2. Selection criteria and corresponding penalty components derived from

Bayesian models fitted using the INLA method.

M4 M5 M6 M7

INLA WAIC (pWAIC) 174.88 (17.38) 413.37 (38.66) 209.19 (3.82) 407.97 (10.66)

WAICNF (pWAIC) 144.76 (0.90) 336.57 (0.47) 159.66 (0.31) 320.17 (0.39)

PSIS-LOOICNF (pPSIS−LOOIC) 144.88 (0.95) 336.57 (0.47) 159.66 (0.32) 320.17 (0.39)

From Tables 4.1 and 4.2, we observe that the WAICNF and PSIS-LOOICNF val-

ues are consistently less than the WAIC values computed by INLA, and the WAIC

and PSIS-LOOIC values calculated using the log likelihoods extracted from Stan,

across all experiments. Similarly, the values of the corresponding penalty component

for WAICNF and PSIS-LOOICNF are consistently less than the values of the penalty

components of the WAIC computed by INLA, and the WAIC and PSIS-LOOIC cal-

culated using the log likelihoods extracted from Stan. These relationships are further

illustrated in Figures 4.6 and 4.7.
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Figure 4.6. Selection criteria and associated penalty components calculated from

Bayesian models fitted using the Stan framework across 100 simulation runs.

In Figure 4.6 we further explore the values of the selection criteria and their

associated penalty components. We constructed Bayesian models based on the con-

figurations used to generate the datasets for each experiment. The configurations for

the experiments are as follows. In Figures 4.6a and 4.6b, the point referenced spatial

dataset was generated using n = 10, σ2
ω = 3, τ 2 = 3, ϕ = 3/0.5, and ν = 5/2 for

a Matérn covariance function. In Figures 4.6c and 4.6d, the dataset was generated

using n = 15, σ2
ω = 2, τ 2 = 2, ϕ = 3/0.5 and ν = 3/2 for a Matérn covariance

function.
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Figure 4.7. Selection criteria and associated penalty components calculated from

Bayesian models fitted using the INLA method across 100 simulation runs.

The experiments behind the results presented in Figure 4.7 is similar to those in

Figure 4.6, except the models are fitted using the INLA method. The data generating

configurations for the experiments in Figure 4.7 is as follows. In Figures 4.7a and

4.7b, the point referenced spatial dataset was generated using n = 100, σ2
ω = 2, τ 2 =

2, ϕ = 3/0.5 and ν = 1 for a Matérn covariance function. In Figures 4.7c and 4.7d,

the dataset was generated using n = 100, σ2
ω = 3, τ 2 = 3, ϕ = 3/0.5 and ν = 1/2

for a Matérn covariance function.

Figures 4.6 and 4.7 once again demonstrate that the values of WAICNF and

PSIS-LOOICNF, along with their corresponding penalty components, are less than

the values of the WAIC and PSIS-LOOIC, as well as their associated penalty compo-

nents, computed by both INLA and derived from the log likelihoods extracted from

Stan.

Figures 4.8 and 4.9 show that the relationship holds, where the values of the

WAICNF and PSIS-LOOICNF is less than those of the WAIC and PSIS-LOOIC com-

puted from INLA and derived from the log likelihoods of Stan, even when the spatial
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decay parameter varies. In both figures, the datasets were generated using n = 15,

spatial variance σ2
ω = 3, iid variance τ 2 = 3 and smoothness parameter ν = 1/2 for

a Matérn covariance function, implying an exponential covariance function. We con-

sidered three different spatial decay parameters for both data generating and model

fitting. They are ϕ = 3/0.25, ϕ = 3/0.50 and ϕ = 3/0.75.

Figure 4.8. Selection criteria values and their corresponding penalty components,

computed from models fitted within the Stan framework across 100 simulation runs,

using ϕ1 = 3/0.25, ϕ2 = 3/0.50 and ϕ3 = 3/0.75.
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Figure 4.9. Selection criteria values and their corresponding penalty components,

computed from models fitted using the INLA method across 100 simulation runs,

with ϕ1 = 3/0.25, ϕ2 = 3/0.50 and ϕ3 = 3/0.75.

4.4 Summary of the simulation example results

In summary, the results from the simulation examples conducted in this chapter

provided valuable insights into both the capabilities and limitations of our proposed

approach for calculating the WAIC and PSIS-LOOIC using non-factorisable model

log likelihoods. These findings suggest that the WAICNF and PSIS-LOOICNF serve

as adept selection criteria for model selection tasks. Specifically, they are suitable

for identifying the optimal spatial model among candidate models, each defined by

distinct covariance functions within the spatial random effect.

However, the WAICNF and PSIS-LOOICNF exhibit limitations when applied to

variable selection tasks, where the objective is to choose a subset of covariates from

a larger pool of potential candidates. Our simulation results consistently indicate a

tendency for both the WAICNF and PSIS-LOOICNF to prefer models that include all

available covariates, even when that configuration does not match the one we used to

generate the datasets.

In conclusion, these findings offer a comprehensive perspective on the utility of

the WAICNF and PSIS-LOOICNF, highlighting their effectiveness in context of model
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selection, while also acknowledging the need for alternative approaches for scenarios

centered on variable selection.
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Chapter 5

The WAICNF in practice: Mapping

MCV1 coverage in Nigeria

In this chapter, we illustrate the practical application of our novel criterion, the

WAICNF, for models of point referenced spatial data, within the context of a model

selection task. Specifically, our focus centres on the selection of the optimal covari-

ance function for models constructed for a specific dataset concerning MCV1 coverage

in Nigeria. The outline of this chapter is the following. We begin by introducing the

MCV1 dataset. Subsequently, we provide descriptions of the constructed model. Fol-

lowing this, we present the results of two calculations: the Watanabe-Akaike informa-

tion criterion (WAIC) as computed by INLA, and our WAICNF, which was introduced

in Chapter 3. Finally, we discuss our findings and the associated interpretations and

implications arising from the results.

5.1 Measles vaccine coverage in Nigeria

Measles stands as one of the primary contributors to mortality among children under-

five in Nigeria that is preventable through vaccination (Ibrahim et al., 2019, Shorunke

et al., 2019). Symptoms of this acute viral infection include fever, coughing, coryza

(commonly referred to as a runny nose) and conjunctivitis (characterised by red eyes)

(WHO, 2019, Wariri et al., 2021). Although industrialised countries have achieved

effective control over measles, it remains endemic in Nigeria. Along with 45 other

countries, Nigeria account for 94% of global measles-related deaths (WHO, 2006,

Ibrahim et al., 2019). Incidences of measles escalates during the dry seasons (Shorunke
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et al., 2019, Ori et al., 2021) and whenever vaccination coverage is low (Muscat et al.,

2009, Curtale et al., 2010, Nmor et al., 2011, Kabra and Lodha, 2013). In response

to low measles immunisation, health organisations have adopted and implemented

strategies to eliminate measles by 2020. These strategies involve increasing first-dose

of measles-containing vaccine (MCV1) coverage at both the national and district level

(WHO, 2011, Orenstein et al., 2018, WHO, 2019, Faruk et al., 2020, Ori et al., 2021).

Continuous monitoring of MCV1 coverage is important.

Models for point referenced spatial data are valuable for understanding the het-

erogeneities in MCV1 coverage across the country by producing spatially detailed

estimates and maps of vaccination coverage. The Demographic Health Survey (DHS)

program collects and disseminates accurate, nationally representative data on fertility,

family planning, maternal and child health, gender, HIV/AIDS, malaria, and nutri-

tion for lower- to middle-income countries (Croft et al., 2018). The DHS program

conducts a survey collection once every five years for Nigeria (National Population

Commission Nigeria and ICF, 2019). Recognising the constraints of finite resources

and workforce availability, complete collection of MCV1 coverage data in every single

community across Nigeria proves to be impractical. Instead, constructing models fa-

cilitates efficient high-resolution mapping of MCV1 coverage to understand variation

in coverage at the community level. Predictions with the constructed models can

cover locations that were not surveyed and can provide information that is crucial

for policy making. High-resolution prediction surfaces can be used to identify “cold

spots” characterised by low coverage (Utazi et al., 2020). Policy makers can use this

information to focus more resources and strategic efforts towards areas necessitating

targeted interventions in prospective planning endeavours.

In this chapter, we use the MCV1 survey data within the 2018 Nigeria DHS

dataset, which we will refer to as the “MCV1 dataset”. The objectives of this chapter

are to construct models for the MCV1 dataset, and to identify the optimal covariance

function among the models using the WAICNF and the WAIC computed from INLA.

5.2 Data

The following section provides an overview of the data employed in this chapter. This

includes the MCV1 dataset, the geographical boundaries of Nigeria sourced from the

Database of Global Administrative Areas and the geospatial covariates assembled for
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the analysis.

5.2.1 The MCV1 dataset

The MCV1 dataset contains vaccination records of MCV1 from the 2018 DHS dataset.

The vaccination records of MCV1 have the responses “vaccination date on card”,

“vaccination marked on card”, “reported by mother”, “do not know” and “no”. We

applied a binary coding scheme to these responses, with “no” and “do not know”

coded as zeroes, and the other responses coded as ones. The recoded survey responses

were aggregated by the survey cluster ID such that for each survey cluster location,

we have a total number of survey responses, and a count of how many children aged

12 to 23 months were vaccinated with MCV1. To prevent excessive proportions of

zeroes and ones, survey cluster locations with fewer than two were excluded. Thus,

the analysis is based on n = 1319 survey cluster locations. For the remainder of

this chapter, we use “count” to denote MCV1-vaccinated children in a DHS cluster,

“total” to represent the total survey responses in a DHS cluster and “proportion” (or

“prop”) to denote the proportion, calculated as the count divided by the total.

Figure 5.1. The 2018 DHS survey cluster locations across Nigeria and histograms

of MCV1 survey data.
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Figure 5.1a shows the cluster locations across Nigeria and the corresponding pro-

portion of children vaccinated with MCV1. Notably, areas of lower MCV1 vaccination

proportions are concentrated in the north-western region, while clusters in the south-

ern part of the country exhibit higher proportions. Across the n = 1319 DHS survey

clusters, the maximum count is 18 and the median count is 5. Similarly, the maxi-

mum total is 38 and the median total is 12. The mean proportion is approximately

0.46. The histograms in Figure 5.1b illustrate positive skewness of both count and

total, whereas proportion is observed to be normally distributed.

5.2.2 The geographical boundaries of Nigeria

Shape files containing geographical boundaries were employed primarily for visuali-

sation purposes. These boundaries were sourced from the Database of Global Ad-

ministrative Areas (GADM) version 4.1 (Global Administrative Areas, 2018). The

first-level sub-division provided by GADM encompasses Nigeria’s 36 states along with

the Federal Capital Territory, as depicted by the borders in Figure 5.1a. The second-

level sub-division comprises the 774 local government areas (LGAs).

5.2.3 The geospatial covariates

We consider predictors that are known to influence MCV1 coverage in our model.

Detail related to model construction will be further discussed in Section 5.3. In this

study, we use the following to represent the environmental, geographical and socioeco-

nomic factors that influence MCV1 coverage: “poverty”, “temperature”, “nightlights”

and “traveltime” (Utazi et al., 2018, 2020). These geospatial covariates are given as

1× 1km rasters, as visualised in Figure 5.2.
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Figure 5.2. The geospatial covariates given as 1× 1km rasters.

The geospatial covariates listed above and shown in Figure 5.2 are described as

follows. “Poverty” denotes the 2010 estimates of proportion of individuals residing in

poverty, per grid square, according to a $1.25-a-day threshold (Tatem et al., 2013).

“Temperature” denotes the average maximum temperature recorded between 2013

and 2018, and is measured in degrees Celsius (Wan et al., 2015). “Nightlights” de-

note the nocturnal luminosity in 2016 acquired from the Visible Infrared Imaging

Radiometer Suite and quantified in nano-watts (NOAA, 2019). “Traveltime” denotes

the travel duration to cities in 2015 in minutes (Weiss et al., 2018).

Recall, the MCV1 dataset is aggregated to the DHS cluster locations (Figure

5.1a) while the geospatial covariates are given at the grid level (Figure 5.2) — a higher

spatial resolution. To harmonise these data, we employ an extraction and aggregation

process on the geospatial covariates to match the MCV1 dataset. The following steps

outline this process. First, we refer to the DHS urban-rural classification associated

with each cluster ID of the MCV1 dataset. This information is important for the

extraction process because the DHS program intentionally displaces the actual survey
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locations to ensure anonymity. This displacement is up to 2km for urban survey

locations and 5km for rural survey locations (Burgert et al., 2013). Using the urban-

rural classifications, we create “buffer zones” of 2km and 5km radii around the latitude

and longitude coordinates of the DHS survey locations given in the MCV1 dataset

on the raster. We extract the grids of the geospatial covariate within these buffer

zones. Finally, we compute the mean values from these extracted grids to represent

the geospatial covariate at the DHS survey cluster level which matches the MCV1

dataset. When this extraction and aggregation process is completed for all geospatial

covariates, we have the full MCV1 dataset.

5.3 Constructing models for the MCV1 dataset

The models we construct for the MCV1 dataset have the following structure. For DHS

survey cluster location si, where i = 1, . . . , n DHS survey clusters, let Y (si) denote

children vaccinated with MCV1 in si and N(si) denote the total number surveyed in

si. Now, Y (si) follows a binomial distribution with N(si) and p(si), which denotes

the probability of children vaccinated with MCV1,

Y (si) ∼ Binomial
(︁
N(si), p(si)

)︁
. (5.1)

The model further assumes that p(si) is linked to the geospatial covariates, which was

described in Section 5.2.3, and the random effects through a logit link,

logit
(︁
p(si)

)︁
= x(si)

′β + ω(si), (5.2)

where β denotes a p-dimension column vector of regression coefficients, x(si)
′ denotes

a vector of geospatial covariates associated with si and ω(si) denotes a vector of spatial

random effects.

Let us first focus on x(si)
′β. We can express this component in a more compact

manner with the matrix notation Xβ, where X is an n×p design matrix, and the def-

inition of β remains unchanged. At this stage of the model construction, we consider

the appropriate covariate transformations and the combination of covariates to incor-

porate into our model. Transformations of the geospatial covariates are implemented

to improve the linearity between these covariates and MCV1 coverage, specifically

on the logit scale. To determine if covariate transformations are needed, we observe
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the histogram of the covariates. Figure 5.3 shows that nightlights and traveltime

are heavily right skewed. Applying a log transformation on them transforms their

histogram to become somewhat more symmetrical, relative to the original scale. The

distribution of poverty is normally distributed to begin with, so transformation is not

needed. Applying a log transformation on temperature does not change the overall

shape of the distribution, so we will leave it at the original scale. In summary, we

apply the log transformation only on nightlights and traveltime.

Next, we need to check that multicollinearity is not an issue amongst the geospatial

covariates. In practice (Utazi et al. (2022), Pezzulo et al. (2023), Utazi et al. (2023) for

example), multicollinearity is checked with both the Pearson’s correlation matrix and

variance inflation factors (VIF) (Fox and Monette, 1992, Kutner and Nachtsheim,

2004). Figure 5.4 shows the pairwise scatter plot of the empirical logit of MCV1

coverage and the geospatial covariates. We define the empirical logit as

elogit
(︁
p(si)

)︁
= log

(︃
y(si) + 0.5

m(si)− y(si) + 0.5

)︃
,

where y(si) denote the observed number of children vaccinated with MCV1 at survey

cluster location si, and m(si) denote the observed total number of surveys conducted

at si. We also included 0.5 within the calculation of the empirical logit to avoid com-

putational issues related to the log(·) operator. In Figure 5.4, we observe that there

are no correlation coefficient values |r| > 0.8, where |r| denotes the absolute value of

the correlation coefficient value. To further assess potential multicollinearity, we em-

ployed a non-spatial model that incorporates all geospatial covariates. Subsequently,

we computed the VIF, and found that all VIF values are less than four. Hence, we

can confidently assert that multicollinearity is not an issue. In the situation where

multicollinearity is present, a decision needs to be made by selecting one of the co-

variates between the problematic pair and omitting the other. We note that in this

study, we only considered the linear relationship between the geospatial covariates

and without any interactions for x(si)
′β.

102



Figure 5.3. Histograms of the covariates. Panels on the left show the histogram of

the covariates at the original scale. Panels on the right show the histograms of the

covariates at the log scale.
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Figure 5.4. Pairwise scatter plot and Pearson’s correlation coefficient matrix

amongst the covariates and the empirical logit of the proportion of children vacci-

nated with MCV1.

Returning to the logit link (5.2), the spatial random effects ω =
(︁
ω(s1), . . . , ω(sn)

)︁′
are used to capture residual spatial correlation in the data and follow an n-dimensional

multivariate normal distribution with mean zero and an n×n covariance matrix Σω,

ω ∼ Nn(0,Σω).
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We assume that the elements within the covariance matrix Σω are calculated from

the Matérn covariance function, which has the following definition within the INLA

framework,

Cov(si, sj) =
σ2
ω

2ν−1Γ(ν)
(κ||si − sj||)νKν(κ||si − sj||), (5.3)

for i, j = 1, . . . , n, where ||si− sj|| denotes the Euclidean distance between locations

si and sj. The Γ(·) is the mathematical Gamma function, Kν is the modified Bessel

function of the second kind and order ν, ν denotes the smoothness parameter, κ

denotes a scaling parameter and σ2
ω denotes the spatial variance. The ν parameter is

usually a fixed value, since it is poorly identified (Lindgren and Rue, 2015). It is given

as ν = α−d/2, where α is a fractional operator and d = 2 when we are working in the

spatial domain. The scaling parameter κ has an empirically derived definition of the

range parameter, given as rsp =
√︁

(8ν)/κ, which corresponds to spatial correlation

close to 0.1 (Lindgren et al., 2011). The range parameter rsp is used in favour over κ

for its interpretability.

The exponential covariance function is a popular choice for applied spatial models

(Moraga, 2019) and is a special case of (5.3) of when ν = 1/2. From the definitions,

ν = 1/2 when α = 3/2 and d = 2, and is given as

Cov(si, sj) = σ2
ω exp(−κ||si − sj||). (5.4)

To complete the setup for Bayesian modelling, we specified the following prior dis-

tributions to the unknown parameters of interest. We assign the regression coefficients

β ∼ Np(0, 2Ip), where Np(·) denotes a p-dimension multivariate normal distribution,

and Ip denotes a p × p identity matrix. We assign penalised complexity (PC) priors

(Simpson et al., 2017) on the spatial variance σ2
ω and the spatial range rsp, such that

P (σ2
ω > 1) = 0.05 and P (rsp < r0) = 0.01, respectively. Within the PC priors, r0

denotes the 5% of the extent of Nigeria in the east-west direction.

5.4 Covariance function selection

To demonstrate the practical application of our WAICNF, we construct three mod-

els. The models follow (5.2) as described in Section 5.3. For the Matérn covariance

function (5.3) in our models, we use three different ν parameters: ν = 1/2, ν = 1
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and ν = 1/10. These ν parameters translate to α = 3/2, α = 2 and α = 1.1, respec-

tively, since d = 2 and ν = α − d/2. These parameters are supplied as arguments

in the inla.spde2.pcmatern() function within the INLA package (Rue et al., 2009,

Martins et al., 2013) in R. It is noted that when using the inla.spde2.pcmatern(),

only a limited range of α values are supported. Specifically, α ∈ (0, 2] are supported

for ν = α − d/2 > 0. Since d = 2, then ν = α > 1, meaning that we can only use

α ∈ (1, 2]. The limitation on α was discussed in detail in Section 2.6.1.

After processing the three models in INLA, we calculate the WAICNF. Addition-

ally, we also calculate the PSIS-LOOICNF, which was introduced in Section 3.5. We

compare the WAICNF against the WAIC computed from INLA. As discussed in Chap-

ter 2.7.2, we determine the model that returns the smallest WAIC value to be the

best candidate model. Furthermore, we conduct K-fold cross-validations to validate

model performance. Particularly, we calculate the out-of-sample root mean-squared

error (RMSE), the mean absolute error (MAE) and the continuous ranked probability

score (CRPS). The RMSE and MAE can be used to assess parameter estimation, and

the CRPS can be used to assess predictive ability. They are given as

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(︁
p̂(si)− p(si)

)︁2
,

MAE =
1

n

n∑︂
i=1

⃓⃓
p̂(si)− p(si)

⃓⃓
,

where p̂(si) is the predicted proportion and p(si) is the observed proportion at DHS

cluster locations si. The CRPS is defined by Gneiting and Raftery (2007) as

CRPS(F, y) = EF |Y − y| −
1

2
EF |Y − Y ∗|,

where Y and Y ∗ are independent copies of a random variable with the cumulative dis-

tribution function F (·). The CRPS can be estimated with MCMC samples following

the equation given by Sahu (2022)

ˆ︂CRPS =
1

S

S∑︂
j=1

|y(j) − y| − 1

2S2

S∑︂
j=1

S∑︂
k=1

|y(j) − y(k)|,

where S is the total number of MCMC samples. We fitted the model with the INLA
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package (Rue et al., 2009, Martins et al., 2013) and conducted all analyses in R version

4.0.4 (R Core Team, 2021).

5.5 Results

The WAICNF, PSIS-LOOICNF and the WAIC computed from INLA are presented

in Table 5.1. The WAIC calculated by INLA show marginal differences between the

the three candidate models with different ν parameters. However, determining the

best model strictly from the calculated size of the WAIC value, the best model is the

one fitted using a Matérn covariance function and smoothness parameter ν = 1/10

(WAIC = 4067.733). On the other hand, the WAICNF values are very different for the

three models. The best model amongst the three candidate models is the one fitted

using the Matérn covariance function and smoothness parameter ν = 1 (WAICNF =

4149.58). While the PSIS-LOOIC is not calculated by INLA, our proposed non-

factorisable model likelihood approach enables the calculation of the PSIS-LOOICNF.

The PSIS-LOOICNF show agreeable results with the WAICNF, where the model fitted

using the Matérn covariance function and smoothness parameter ν = 1 is the best

model (PSIS-LOOICNF = 4150.04) out of the three candidate models.

Table 5.1. The WAICNF, PSIS-LOOICNF and the WAIC computed by INLA for

models fitted using Matérn covariance functions and different smoothness parameters

Matérn INLA WAIC (pWAIC) WAICNF (pWAICNF
) PSIS-LOOICNF (pPSIS-LOOICNF

)

ν = 1/2 4067.866 (73.431) 4918.664 (74.164) 4919.146 (74.406)

ν = 1 4067.967 (69.966) 4149.583 (32.433) 4150.036 (32.659)

ν = 1/10 4067.733 (79.639) 5059.547 (92.563) 5060.459 (93.019)

We performed K-fold cross-validation (K = 5) for the three candidate models and

observed no discernible differences in performance based on the validation statistics

RMSE, MAE, and CRPS, as shown in Table 5.2. These results align with the WAIC

results calculated by INLA in Table 5.1, indicating comparable model performance

among the candidate models. This suggests a strength of the NF method in effec-

tively discerning the most optimal candidate model from a pool of high-performing

options. The consistent performance across different choices of the ν parameter in
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the covariance function suggests that all were valid candidates for this dataset. How-

ever, our NF model selection method successfully identified one model from among

these candidates. This may imply that the WAICNF (and PSIS-LOOICNF) is more

sensitive to the choice of covariance function, specifically the selection of ν for the

inla2.spde.pcmatern() function within the INLA framework.

Table 5.2. 5-fold cross-validation statistics for models fitted using Matérn covariance

functions and different smoothness parameters

Matérn RMSE MAE CRPS

ν = 1/2 0.197 0.158 0.112

ν = 1 0.197 0.158 0.112

ν = 1/10 0.198 0.158 0.112

Constructing models for the MCV1 dataset enable prediction in unobserved loca-

tions. Following the model fitted using the Matérn covariance function and smooth-

ness parameter ν = 1, the summary statistics from INLA are given in Table 5.3, and

the high-resolution prediction and uncertainty surfaces are shown in Figure 5.5. From

the model summary statistics, we see that poverty, temperature and traveltime all

have a negative effect on MCV1 coverage whereas nightlights have a positive effect

on MCV1 coverage. The spatial range is given in decimal degrees and translates to

approximately 341 km; indicating the presence of residual spatial correlation in our

model.
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Table 5.3. Summary statistics of the model fitted with spatial random effects with

covariance matrix that has elements derived from a Matérn covariance function and

smoothness parameter ν = 1.

Mean SD 2.5% 50.0% 97.5%

(Intercept) -0.822 0.218 -1.254 -0.826 -0.367

Poverty -0.104 0.070 -0.242 -0.103 0.034

Temperature -0.198 0.111 -0.410 -0.201 0.028

log(Nightlights) 0.088 0.027 0.0360 0.088 0.140

log(Traveltime) -0.199 0.061 -0.319 -0.199 -0.079

Spatial range (r̂sp) 3.079 0.950 1.803 2.874 5.468

Spatial variance (σ̂2
ω) 0.433 0.136 0.246 0.404 0.774

From Figure 5.5a, the southern region exhibits higher MCV1 coverage, while the

north-western part of Nigeria displays lower coverage. Moreover, the high-resolution

prediction surface highlights pockets of high MCV1 coverage in the central, northern,

and eastern regions of the country. Complementing this prediction surface, Figure

5.5b shows the high-resolution uncertainty surface, conveying corresponding poste-

rior standard deviations. Interestingly, areas characterised by the lowest uncertainty

align with predictions of lower MCV1 coverage, while regions of greater uncertainty

correspond to our prediction of higher MCV1 coverage.

Figure 5.5. High-resolution 1× 1km prediction (a) and uncertainty (b) surfaces for

MCV1 coverage among children aged 12-23 months in Nigeria in 2018.

109



The high-resolution surfaces have been aggregated to a lower spatial resolution to

enhance interpretability. Figure 5.6 illustrates this and depicts the surface obtained

by aggregating the high-resolution data from the 1 × 1km grid level to the second-

level sub-division district level provided by the GADM, which consists of the 774 local

government areas (LGAs) within Nigeria.

Figure 5.6. Proportion of MCV1-vaccinated children, calculated through population

weighted aggregations from grid-level to district-level (local government areas).

5.6 Discussion

Our model (Table 5.3) showed the negative effects of traveltime to healthcare facilities

and poverty on MCV1 coverage. Long travel times discourage families from making

the trip to vaccinate their children and, in some cases, are simply impractical. This

finding aligns with the work of Utazi et al. (2020). Similarly, poverty has a negative

effect on MCV1 coverage. While this is intuitive, as poorer families often have less

access to vaccines, the relationship is complex and involves various underlying factors.

The poverty covariate used in this study is derived from a modelling work (Tatem

et al., 2013), which encapsulates broader socioeconomic challenges that hinder vacci-

nation uptake, including parental education and household sizes (Faruk et al., 2020,

Ori et al., 2021).

Geospatial analysis at both the grid and district levels (Figures 5.5 and 5.6) cor-

roborates existing literature, indicating higher measles severity in northern Nigeria.

This region suffers from inadequate measles control strategies, including insufficient
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routine immunization efforts (Ameh et al., 2016, Saleh et al., 2016, Kagucia et al.,

2018, Ibrahim et al., 2019). Addressing these challenges is crucial to improving MCV1

coverage.

Despite global and national increases in vaccination coverage, the goal of elim-

inating measles by 2020 remains unmet. Studies suggest that measles will persist

as an endemic disease in Africa beyond this target year (Patel et al., 2019, Good-

son, 2020, Gignoux et al., 2021). Challenges such as humanitarian crises, political

instability (Ori et al., 2021), insufficient vaccine investments (Goodson, 2020, Gostin

et al., 2020), and disruptions caused by the COVID-19 pandemic (Dixon et al., 2021,

Gignoux et al., 2021) contribute to stagnant or declining vaccination rates in certain

populations.

Addressing these inequities through targeted routine immunisation programs is

crucial. Enhancing access to healthcare for vulnerable and impoverished populations,

especially in cold spots of low MCV1 coverage, is essential to reduce measles-related

mortality (Gignoux et al., 2021, Wariri et al., 2021). Strategies could include increas-

ing public awareness about the benefits of vaccination and utilising innovative tools

like measles rapid diagnostic tests(Grant et al., 2019, Goodson, 2020). As Durrheim

(2020) asserted, measles outbreaks highlight the weaknesses in health systems, mak-

ing them a critical measure of progress towards universal health coverage and public

health accountability.

There are several limitations in this study related to the geostatistical models used

to generate high spatial resolution prediction maps of MCV1 coverage. Firstly, the

models were constructed using survey-based data, primarily from vaccine cards and

maternal recall, which introduces the possibility of recall bias, a concern acknowl-

edged in similar research (Wariri et al., 2021). Secondly, the selection of geospatial

covariates is another limitation. A broader and more diverse set of covariates could

provide additional insights into MCV1 coverage and should be considered in future in-

vestigations. However, this study’s primary aim is to highlight the applicability of the

WAICNF and the PSIS-LOOICNF in determining the appropriate covariance function

for our model. Despite these limitations, this study contributes to the methodology of

model selection for point referenced data by demonstrating the practical application

of the WAICNF and the PSIS-LOOICNF.

Regarding the choice of prior distribution, we specified β ∼ N(0, 2) for the regres-

sion coefficients in the geostatistical models. This choice was informed by examining
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the histograms of the standardised geospatial covariates, such as poverty, tempera-

ture, and the log transformations of travel time and nightlights, which closely resemble

normal distributions with means close to zero (Figure 5.3). While a larger variance

could have been chosen to make the prior less informative, we found that this specific

choice of prior did not heavily influence our results. To verify this, we conducted

additional tests using wider priors, specifically N(0, 1000), and observed that the re-

sults remained consistent with those reported in this thesis. This indicates that our

estimates are robust and not overly sensitive to the choice of prior distribution.

In this chapter, we demonstrated that, in a practical application setting, the WAIC

computed by INLA failed to discern differences among various covariance functions.

Conversely, our proposed WAICNF and PSIS-LOOICNF provided clear discernment

for the optimal model among a pool of high-performing candidates. This suggests

the efficacy of WAICNF and PSIS-LOOICNF for model selection tasks, particularly

in choosing the appropriate covariance function for models of point referenced spa-

tial data. Additionally, the smoothness parameter ν selected by our WAICNF and

PSIS-LOOICNF aligns with the findings of Whittle (1954) and Lindgren and Rue

(2015), specifically favouring α = 2 (equivalent to ν = 1) as a more suitable choice

for models in the spatial domain d = 2.
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Chapter 6

Calculating the WAIC for large

spatial datasets using NNGP

Bayesian modelling of point referenced spatial data often require Markov chain Monte

Carlo (MCMC) algorithms that repeatedly assess the full conditional density func-

tions, and evaluate the likelihood functions, joint densities or conditional densities

within the context of Gaussian process. However, computational operations involv-

ing matrices of dimensions n×n are susceptible to instability, increased computational

cost or, in certain instances, become computationally infeasible. This computational

challenge is commonly referred to as the “big n problem”.

To illustrate this challenge, we encountered difficulties when attempting to model

the MCV1 dataset using the Stan framework in Chapter 5. Instead, we employed an

approximation approach through the stochastic partial differential equation (SPDE)

framework and the integrated nested Laplace approximation (INLA) method. De-

tailed discussion on these approaches can be found in Section 2.6. The strategies

aimed at mitigating the big n problem encompass approximating the exact likelihood

or devising models adept at handling large datasets.

Spatial covariance functions typically do not produce exploitable structures within

their resulting matrices (Zhang et al., 2019). So, the general strategies for modelling

large spatial datasets are to either exploit “low-rank” models or to leverage sparsity.

Banerjee et al. (2014) have classified these strategies into three categories: approxi-

mate likelihood approaches, low-rank models and predictive process models.

A popular way of addressing the challenges posed by large spatial datasets is to

devise models that bring about dimension reduction. Essentially, the spatial process
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is replaced with a dimension-reducing process that is constructed based on a repre-

sentation in terms of the realisations of some latent process, over a smaller set of

coordinates called “knots”. This is called a low-rank model. The primary objective

of low-rank models is to create spatial processes within a lower-dimensional subspace,

thereby decreasing computational costs (Datta et al., 2016a).

Sparse methods include covariance tapering (Furrer et al., 2006, Kaufman et al.,

2008), which introduces sparsity in the covariance matrix using compactly supported

covariance functions. Covariance tapering is effective for parameter estimation and

interpolation of the responses (Datta et al., 2016a). Furthermore, introducing sparsity

to the precision matrix is a prevalent strategy in approximating the Gaussian pro-

cess likelihood. Examples of this strategy include using Markov random fields (Rue

and Held, 2005, Lindgren et al., 2011), products of lower-dimensional conditional

distributions (Stein et al., 2004), or composite likelihoods (Bevilacqua and Gaetan,

2015).

We strongly recommend referring to the works of Sun et al. (2012), Bradley et al.

(2016) and Heaton et al. (2019) for a comprehensive compilation of strategies per-

taining to the handling of large spatial datasets. These references cover each strategy

in great detail, provide practical implementation guidelines and conduct comparative

analyses on the strategies, while highlighting their strengths and limitations.

In this chapter, we will provide detail on the three following strategies devised

to address the big n problem: Gaussian predictive processes, stochastic partial dif-

ferential equations and nearest-neighbour Gaussian processes. Amongst these three

strategies, we will focus most on the latter.

6.1 Gaussian predictive processes

The idea behind Gaussian predictive process (GPP) is to consider some other loca-

tions, say s∗, within the same study domain (s∗ ∈ D) instead of the original observed

locations s. The key here is that the number of locations we choose for s∗ is much

smaller than the number of original locations s. More formally, a set of “knots” is

given by S∗ = {s∗1, . . . , s∗m}, such that m ≪ n in the entire collection of observed

locations S = {s1, . . . , sn} (Banerjee et al., 2008).
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Consider the following the model

Y (si) = x′(si)β + ω(si) + ϵ(si),

if ω =
(︁
ω(s1), . . . , ω(sn)

)︁′
is assumed to be ω ∼ Nn(0,Σω), then ω

∗ =
(︁
ω(s∗1), . . . , ω(s

∗
m)
)︁′

is assumed to be ω∗ ∼ Nm(0,Σω∗), where Nm(·) is an m-dimensional multivariate

normal distribution, and Σω∗ is an m × m covariance matrix. Now, the predictive

process, denoted as ω̃(si), is defined by Finley et al. (2009) as

ω̃(si) = E
(︁
ω(si)|ω∗)︁ = c′(si, s

∗
j)Σ

−1
ω∗ω∗. (6.1)

Within Equation (6.1), there is the precision matrix, denoted as Σ−1
ω∗ , which is the

inverse of Σω∗ . There are the spatial random effects of the knots, denoted as ω∗, as

described above. There is the component c′(si, s
∗
j), which is the covariance between

si and knots s∗1, . . . , s
∗
m. Finley et al. further defined ω̃ =

(︁
ω̃(s1), . . . , ω̃(sn)

)︁′
, and

ω̃ ∼ Nn(0,Σω̃), (6.2)

Σω̃ = C′Σ−1
ω∗C,

where C′ is an n × m covariance matrix. The elements on the ith row of C′ are

calculated by c′(si, s
∗
j), which denotes the covariance between si and knots s∗1, . . . , s

∗
m

(Finley et al., 2009). The predictive process approach exploits the Gaussian process

assumption of the spatial random effects, and is implemented by replacing ω(s) in

our example model with ω̃(s) from (6.1), such that

Y (si) = x′(si)β + ω̃(si) + ϵ(si).

We note that there is also a modified predictive process, proposed by Finley et al.

(2009), to overcome the positive bias in the non-spatial error term of the model

induced by the formulation of the predictive process. Finley et al. found that,

Σω̃ ≤ Σω,

where Σω̃ denotes the variance of ω̃ as provided in (6.2). The average bias underes-

timation is E
(︁
Σω−C′Σ−1

ω∗C
)︁
, where E(·) denotes the element-wise expectation. The
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modified predictive process extends our example model above as

Y (si) = µ(si) + ω̃(si) + ϵ̃(si) + ϵ(si),

where ϵ̃ =
(︁
ϵ̃(s1), . . . , ϵ̃(sn)

)︁′
are spatially independent random effects with the dis-

tribution

ϵ̃ ∼ Nn

(︁
0,Σω −C′Σ−1

ω∗C
)︁
,

such that Var
(︁
ω̃ + ϵ̃

)︁
= Σω. To reiterate, the modified predictive process introduces

an additional random effect to fix the positive bias in the non-spatial error term.

Selecting an appropriate S∗ is important for the GPP strategy. This decision

affects the computational cost and the estimates of the spatial range and variance

components (Banerjee et al., 2008). However, selecting an appropriate S∗ is a com-

plicated process. S∗ can be, but not necessarily, a subset of the original observed

locations (Banerjee et al., 2008). S∗ can be the centroids of the grids from equally

dividing the spatial domain (Finley et al., 2009). We recommend Xia et al. (2006),

Banerjee et al. (2008) and Finley et al. (2009) for further discussions on knot selection

strategies.

6.2 Stochastic partial differential equations

The stochastic partial differential equations (SPDE) method represents another strate-

gic approach developed to address the challenges posed by large spatial datasets. It

should be noted that we have discussed this method in detail in Section 2.6.1. There-

fore, we will refrain from providing further information on the SPDE approach and

instead recommend readers to revisit the aforementioned section for a more detailed

discussion of this method.

Conceptually, the SPDE method can be understood as projecting a continuous

Gaussian field as a discrete Gaussian Markov random fields, represented by a mesh.

Formally, the SPDE approach is based on the equivalence between Matérn covariance

fields and the stochastic partial differential equations (Heaton et al., 2019).

Again, consider the model

Y (si) = x′(si)β + ω(si) + ϵ(si).
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The SPDE approximates the spatial random effect ω(si) as

ω(si) ≈ ω̃(si) =
K∑︂
k=1

hk(si)ω
∗
k,

where the “basis functions”, denoted as hk(si), are chosen to be piece-wise linear on a

triangulation (the mesh) of the domain, and ω∗
k denotes a coefficient (Rue and Held,

2005, Lindgren et al., 2011). The optimal joint distribution for ω∗
k is obtained through

a finite element construction, which leads to a sparse inverse covariance matrix called

the precision matrix (Heaton et al., 2019). The elements of the precision matrix

are polynomials in the precision and inverse range parameters, with sparse matrix

coefficients determined by the choice of triangulation. Computational and storage

cost for the posterior predictions and multivariate Gaussian likelihood of a spatial

Gaussian Markov random field is O(K3/2) (Heaton et al., 2019).

6.3 Nearest-neighbour Gaussian process

The nearest-neighbour Gaussian process (NNGP) is a well-defined and highly scal-

able family of Gaussian processes that offers an efficient solution to the challenges

posed by large spatial datasets (Datta et al., 2016a). The NNGP is defined from

the conditional specification of the joint distribution of spatial random effects, and

it achieves scalability by generating finite dimensional Gaussian densities with sparse

matrices.

To illustrate the NNGP, let us consider the following

Y (si) = x(si)
′β + ω(si) + ϵ(si),

ω ∼ Nn(0,Σω),

ϵ ∼ Nn(0, τ
2In),

where the observations, denoted y(s), at locations s = {s1, . . . , sn} is modelled by the

covariates x(s) at locations s, the spatial random effects ω =
(︁
ω(s1), ω(s2), . . . , ω(sn)

)︁′
that follows a zero-mean Gaussian process (GP), and unstructured random effects

ϵ =
(︁
ϵ(s1), ϵ(s2), . . . , ϵ(sn)

)︁′
, that capture random noise. The GP in the setup is

an n-dimensional multivariate normal distribution, as notated by Nn(·). Here, In
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denotes an n×n identity matrix, and Σω is an n×n covariance matrix with elements

calculated from a covariance function, such as the Matérn covariance function (2.6)

or the exponential covariance function (2.5), as detailed in Section 2.3.3. Recall from

Section 2.4.3 that the setup above can be equivalently expressed as

Y ∼ Nn

(︁
Xβ + ω, τ 2In

)︁
,

ω ∼ Nn(0,Σω).

Finley et al. (2017) and Zhang (2018) express this hierarchical model as

Nn

(︁
Y|Xβ + ω, τ 2I

)︁
Nn

(︁
ω|0,Σω

)︁
p(ψ), (6.3)

where p(ψ) are the prior distributions for the parameters ψ = (σ2
ω, ϕ, ν,β, τ

2)′. Fur-

thermore, ψ is sampled through the posterior distribution,

p
(︁
ψ|y(s)

)︁
∝ Nn

(︁
y(s)|x(s)′β,Σω + τ 2In

)︁
p(ψ). (6.4)

The primary challenge encountered when modelling (6.4) is the computational

complexities associated with the dense covariance matrix, denoted as Σω. The

Bayesian modelling of (6.4) involves the computation of the inverse of the covari-

ance matrix, referred to as the precision matrix and denoted as Σ−1
ω , as well as the

determinant of the covariance matrix, denoted as det(Σω). Both operations require

O(n3) floating point operations (flops). Moreover, the storage requirements forΣω en-

compass a dynamic memory allocation of O(n2), as documented in prior works (Datta

et al., 2016a, Finley et al., 2017). Evidently, as the number of sites n increases within

the spatial dataset, handling Σω becomes increasingly computationally expensive.

The NNGP, introduced in the works of Datta et al. (2016a) and Datta et al.

(2016b), provides a solution for the computational challenges mentioned above. The

NNGP accomplishes this by approximating the spatial covariance matrix through

the utilisation of the covariance structure among neighbouring points. In contrast to

evaluating the entire dataset, the NNGP identifies a subset of nearest neighbours for

each site, based on their spatial proximity. More explicitly, a model employing the

the NNGP can be expressed as

Nn

(︁
y(s)|x(s)′β + ω(s), τ 2In

)︁
Nn(ω(s)|0, Σ̃ω) p(ψ). (6.5)
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Notice that Equation (6.5) is similar to Equation (6.3). The distinguishing factor

between the two equations is in their covariance matrix. The NNGP (6.5) denotes

the covariance matrix as Σ̃ω, and it is elaborated as follows.

The precision matrix of Σ̃ω is defined by Finley et al. as

Σ̃
−1

ω = (I − Ã)′D̃−1
(I − Ã). (6.6)

The likelihood function of ω(s) based on Σ̃
−1

ω is a good approximation and a compu-

tationally efficient approximation to the likelihood function of ω(s) with Σ−1
ω . Fur-

thermore, the computation of the density Nn(ω(s)|0, Σ̃ω) requires O(n) flops (Finley

et al., 2017, 2020).

To derive (6.6), we need to compute the matrices Ã and D̃. Here, Ã denotes a

sparse and strictly lower triangular matrix, characterised by a maximum of m non-

zero entries in each row, where m≪ n. The component D̃ denotes a diagonal matrix

(Finley et al., 2017, Zhang et al., 2019). They are given as

Ã
(︁
i, N(si)

)︁
= Cθ

(︁
si, N(si)

)︁(︁
Cθ(si, N(si)

)︁
+ τ 2In)

−1,

D̃(i, i) = Cθ(si, si) + τ 2 − Cθ

(︁
si, N(si)

)︁(︁
Cθ(si, N(si)

)︁
+ τ 2In)

−1Cθ

(︁
N(si), si

)︁
,

where N(si) denotes the m closest points to si among the locations indexed less than

i. In the expressions for matrices Ã and D̃ above, we follow the convention used

in the works of Zhang (2018) and Zhang et al. (2019) for the covariance function,

denoted as Cθ(·, ·). Note that Cθ(·, ·) expresses a covariance function with parameters

θ = (σ2
ω, ϕ, ν)

′, and is equivalent to Σω. However, expressing the covariance in this

manner offers the advantage of explicitly depicting the sites supplied as arguments

within the covariance function.

Who are our neighbours? Formally, the neighbours are defined by Finley et al.

(2020) as follows,

N(s1) = {},

N(si) = min(m, i− 1) nearest neighbours of si,

N(s) = m nearest neighbours of s ∈ R.

Conceptually, the neighbours can be understood as follows. Consider n = 20 sites

generated from a unit square, as illustrated in Figure 6.1. We first index the points
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based on coordinate 1, as denoted alongside the points within the figure. Now, sup-

pose we wish to identify the 5 nearest neighbours of the observation located at index

15. Within the subset of sites that are indexed lower than 15, we determine the 5 clos-

est sites based on the Euclidean distance. In Figure 6.1, they are sites corresponding

to indices 7, 10, 11, 12 and 13.

Notice that the choice of neighbours depended on the ordering and indexing of the

sites. We could have indexed the points based on coordinate 2 instead of coordinate

1. However, Datta et al. (2016a) suggested that the model is not sensitive to the

choice of ordering in most empirical findings.

Figure 6.1. Neighbours in NNGP

How many neighbours do we need? Increasing the number of neighbours may lead

to an increase in the computational run time for NNGP models. Consequently, the

choice of the number of neighbours for NNGP models is an important decision. While

specifying fewer neighbours can effectively reduce computational time, the NNGP

model may become inaccurate, and may underestimate the spatial random effects

(Quiroz et al., 2023). Conversely, Quiroz et al. found no clear patterns indicating

that a greater number of neighbours lead to an improved model. Hence, the decision

regarding the number of neighbours is a delicate balance between selecting as few

neighbours as possible, while ensuring a reasonably accurate approximation of the

true spatial process.

It is noteworthy that within the existing literature, the explicit reasoning behind

the choice of the number of neighbours is frequently omitted (Finley et al., 2017,
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Zhang, 2018, Zhang et al., 2019, Finley et al., 2020). However, we observe that

the chosen number of neighbours are often very small, when compared to the entire

dataset. Datta et al. have suggested that a range of 10 to 15 neighbours can be suffi-

cient, and may produce performance similar to using the all available sites; although

a larger number of neighbours may be still be beneficial for exceptionally extensive

datasets.

It should be noted that all current implementations of the NNGP model assume

that the response is Gaussian. The response and the conjugate NNGP model explic-

itly rely on Gaussian distributions to derive the marginal distribution for the response.

Finley et al. (2020) noted that although closed form marginal distributions are not

available for non-Gaussian responses, the latent NNGP model can be conceptually

extended to non-Gaussian setting.

6.4 Modelling MCV1 coverage using NNGP

In Chapter 5, we employed the stochastic partial differential equations (SPDE) ap-

proach (Lindgren et al., 2011) and the integrated nested Laplace approximation

(INLA) method (Rue et al., 2009, Martins et al., 2013), as detailed in Section 2.6,

for Bayesian modelling for the MCV1 dataset. It would not have been possible to

use the Stan framework for Bayesian modelling, even though the dataset consist of

a moderately sample size of n = 1319. However, using the NNGP approach, we are

poised to reattempt Bayesian modelling within the Stan framework.

First, recall the model for the MCV1 dataset is the following,

Y (si) ∼ Binomial
(︁
n(si), p(si)

)︁
,

logit
(︁
p(si)

)︁
= x(si)

′β + ω(si),

for i = 1, . . . , n. As before, ω(si) denotes the spatial random effect, which captures

the spatial autocorrelation and describes the spatial residual structure amongst the

data. In Section 5.3, the spatial random effects follows an n-dimensional multivariate

normal distribution with zero-mean and an n×n covariance matrix that has elements

calculated from a covariance function, as described in Section 2.3.3. However, as noted

in Section 6.3, implementation of the the NNGP model necessitate the assumption

of a Gaussian response. In order to align with this prerequisite, we introduce an
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adjustment to our model for the MCV1 dataset as follows,

logit
(︁
p(si)

)︁
∼ N(x(si)

′β + ω(si), τ
2). (6.7)

Furthermore, the spatial random effects ω =
(︁
ω(s1), . . . , ω(sn)

)︁′
now follows an

NNGP, such that

ω ∼ NNGP(0, Σ̃ω), (6.8)

where Σ̃
−1

ω denotes the precision matrix, as defined in Equation (6.6).

To implement the model for the MCV1 dataset and (6.8) within the Stan frame-

work, we follow the code developed by Zhang (2018), and used m = 10 neighbours.

We also specify the following prior distributions for the parameters: a N(0, 2) for the

spatial variance σ2
ω, the iid variance τ 2 and the regression coefficients, and a Γ(2, 2)

for the spatial decay parameter ϕ. We fit the model in Stan using 2 chains and 5000

iterations per chain, of which 2500 are burn-in iterations. The target average accep-

tance probability and the maximum tree-depth are adjusted appropriately to avoid

problems with convergence or mixing. We run the model on a Windows machine with

4-core Intel process and 8GB random-access memory (RAM), and using R version

4.0.4 (R Core Team, 2021).

Table 6.1. Summary statistics for the Bayesian model fitted to the MCV1 dataset

using the Stan framework.

Mean SD 2.5% 50.0% 97.5% ESS

(Intercept) -0.36 0.09 -0.54 -0.36 -0.18 93

Poverty -0.10 0.08 -0.25 -0.10 0.04 477

Temperature -0.27 0.07 -0.40 -0.28 -0.13 282

log(Nightlights) 0.19 0.05 0.08 0.19 0.29 2340

log(Traveltime) -0.14 0.05 -0.24 -0.14 -0.05 1894

Spatial decay (ϕ) 0.03 0.00 0.02 0.03 0.04 150

Spatial variance (σ2
ω) 0.66 0.08 0.52 0.65 0.82 701

Figure 6.2 shows stability in the MCMC chains and demonstrates good mixing

between chains. Additionally, Table 6.1 presents summary statistics that are within

our expectation, based on the results observed from the model fitted using the INLA
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method and the reasoning provided in Chapter 5. Specifically, the variables poverty,

temperature and traveltime exhibit a negative effect on MCV1 coverage, whereas

nightlights have a positive effect on MCV1 coverage.

Figure 6.2. Trace plots of the Bayesian model for the MCV1 dataset from Stan

After fitting the Bayesian model within the Stan framework, we proceed to com-

pute the Watanabe-Akaike information criteria (WAIC) and the Pareto smoothed im-

portance sampling leave-one-out cross validation information criterion (PSIS-LOOIC).

A detailed exposition of these selection criteria are provided in Sections 2.7.2 and

2.7.3, respectively. Specifically, their computation can utilise both the log likelihoods

extracted from Stan, and the non-factorisable model log likelihoods following Algo-

rithm 1, as detailed in Section 3.5.

Our calculations yielded the following results: WAIC = 4065.479 (pWAIC = 111.098)

and PSIS-LOOIC = 4068.376 (pPSIS−LOOIC = 112.546). Additionally, the WAICNF =

3715.508 (pWAICNF
= 17.104) and the PSIS-LOOICNF = 3715.614 (pPSIS-LOOICNF

=

17.156) for the model fitted using the Matérn covariance function with smoothness

parameter ν = 1. These values hold particular significance in scenarios necessitating

the comparison of candidate models characterised by different covariance functions,

as discussed in Section 4.4.

123



Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we have introduced an alternative approach for the computation of the

Watanabe-Akaike information criterion (WAIC). The computation utilises the log

likelihood function tailored for non-factorisable models. We call this the WAICNF.

The WAICNF is based on log likelihoods designed to accommodate outcomes that

exhibit conditional dependencies. Such dependencies are commonly encountered in

point referenced spatial data. Furthermore, we have expanded the application of

these non-factorisable model log likelihoods to facilitate the calculation of the Pareto

smoothed importance sampling leave-one-out cross-validation information criterion

(PSIS-LOOIC), which we refer to as the PSIS-LOOICNF.

The motivation behind introducing the WAICNF and PSIS-LOOICNF stems from

the limitation of the conventional approach to formulating the WAIC, which relies on

a log likelihood that assumes conditional independence among the outcomes of the

dataset. However, this assumption does not hold for spatial models for point refer-

enced datasets. In the context of point referenced spatial dataset, we assume that the

outcomes located across the spatial domain of interest exhibit spatial dependence, a

fundamental characteristic of models for point referenced spatial data. Consequently,

models for point referenced spatial data violate the conditional independence assump-

tion that the conventional WAIC calculation relies upon.

In Chapter 3, we provided Algorithm 1 to compute the non-factorisable model

log likelihoods, which can be used within Equations (2.26) and (2.31) to compute the

WAICNF and PSIS-LOOICNF, respectively. In Chapter 4, we investigated the utility
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of our proposed WAICNF and PSIS-LOOICNF in model selection tasks and variable

selection tasks. We found that our proposed WAICNF and PSIS-LOOICNF are more

suitable for model selection tasks, specifically involving covariance function selection.

However, our proposed WAICNF and PSIS-LOOICNF is not as suitable for variable

selection tasks as our results indicate that the WAICNF and PSIS-LOOICNF tend to

prefer models that include all available covariates, even when it is not appropriate to

do so.

Following this, we demonstrated the practical implementation of our proposed

WAICNF and PSIS-LOOICNF in a spatial modelling scenario using real-world data

sourced from the 2018 Nigeria Demographic Health Survey program, focusing on first-

dose measles-containing vaccine (MCV1) coverage. In this context, we constructed

three distinct models, each characterised by a different covariance function. Subse-

quently, we computed the WAICNF and PSIS-LOOICNF, and extracted the WAIC

calculated by INLA. Our analysis revealed notable discrepancies in the WAICNF and

PSIS-LOOICNF values across the different models, in contrast to the marginal varia-

tions observed in the WAIC values computed by INLA. Leveraging the WAICNF and

PSIS-LOOICNF, we successfully identified a spatial model with optimally specified

covariance functions for the MCV1 dataset. Our findings from this chapter affirm the

effectiveness of our proposed criteria in facilitating informed model selection, partic-

ularly in spatial modeling applications involving varying covariance specifications.

As an extension to the practical application of the WAICNF and PSIS-LOOICNF,

we implemented the nearest-neighbour Gaussian process (NNGP) approach within

the Stan framework as an alternative to address computational challenges of fitting

spatial models in the Bayesian context. By leveraging NNGP, we achieved a com-

putationally efficient mean of fitting the spatial model for the MCV1 dataset that

would have otherwise remained unfeasible. Subsequently, we computed the WAICNF

and PSIS-LOOICNF, providing a comprehensive evaluation of the suitability for our

real-world spatial model.

This thesis contributes to existing knowledge on model selection methodologies

for Bayesian models of point referenced spatial data with the proposed calculation

of the WAICNF and PSIS-LOOICNF. We demonstrated that these criteria excel in

model selection tasks, especially when choosing among models with different covari-

ance functions. We also demonstrated the integration of these criteria in popular

Bayesian spatial model fitting frameworks, including INLA and the NNGP approach
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in Stan. This incorporation enhances the relevance of our proposed selection criteria

while addressing computational challenges, thereby offering a robust model selection

framework tailored for spatial models for point referenced data.

7.2 Future work

Future work can focus on extending Algorithm 1, as presented in Section 3.5, to in-

corporate more flexible covariance structures. This enhancement would allow for a

broader selection of forms for WAICNF and PSIS-LOOICNF, including the capability

to handle point referenced spatiotemporal data. Integrating temporal dimensions into

point referenced spatiotemporal datasets introduces an additional layer of complexity

to the covariance function, as it requires consideration of both spatial and temporal

dynamics. Selecting an appropriate covariance function is crucial for accurately mod-

eling point referenced spatiotemporal data, given its role in effectively capturing the

underlying dependencies.

Consider the following model,

Y (si, t) = x(si, t)
′β + ϵ(si, t), (7.1)

where the random variables located at site si and time point t, for i = 1, . . . , n and

t = 1, . . . , T , are modelled using covariates x(si, t) and an error term ϵ(si, t). The

error term ϵ(si, t) is assumed to follow a zero-mean spatiotemporal Gaussian process

with a separable covariance structure,

Cov
(︁
ϵ(si, tk), ϵ(sj, tl)

)︁
= σ2ρs(·)ρt(·), (7.2)

where ρs(·) denotes the correlation function within the spatial domain, and ρt(·)
denotes the correlation function within the temporal domain. However, the separable

covariance structure (7.2) does not account for the interaction between space and time

in the dependence structure. Despite this limitation, Sahu (2022) suggested that the

separable covariance structure may still be useful for model comparison purposes.

Alternatively, we may assume a temporally independent Gaussian process for the

spatiotemporal process. We can rewrite equation (7.1) as follows,

Y (si, t) = x(si, t)
′β + ω(si, t) + ϵ(si, t), (7.3)
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where,

Cov
(︁
ω(si, t), ω(sj, t)

)︁
= σ2

ωρ(·), (7.4)

and ρ(·) denotes the correlation function within the spatial domain. Furthermore, we

can express (7.3) using the following hierarchical model setup,

Yt|ωt ∼ Nn(µt + ωt, σ
2
ϵ In),

ωt ∼ Nn(0, σ
2
ωΣω),

independently for t = 1, . . . , T .

The challenge in implementing Algorithm 1 within the context of Bayesian models

for point referenced spatiotemporal data lies in specifying the covariance matrix.

While the algorithm detailed in Chapter 3 can handle basic covariance structures,

extending it to incorporate more complex and flexible structures is essential for future

work. At that stage, careful consideration is required to select the most suitable

covariance structure for this specific task.

Another important area for future work involves improving the WAICNF penalty

term. Currently, the WAICNF shows strong performance in covariance function se-

lection but tends to include all available covariates and produces sub-optimal results

for variable selection tasks, as shown in Section 4.4. This suggests room for improve-

ment in our proposed WAICNF. Utilising the structure of WAIC penalty functions

pWAIC1 (Watanabe and Opper, 2010) and pWAIC2 (Gelman et al., 2014), our proposed

WAICNF tends to include all covariates, indicating the need for a stricter penalty

function. One potential solution is to develop a new, more stringent penalty func-

tion for the WAICNF that better balances model complexity and variable selection.

By adjusting the penalty term, we can potentially reduce the tendency to include all

covariates, thereby enhancing the model’s ability to select the most relevant variables.

Extending the algorithm to incorporate a more general covariance function and

developing a new, more stringent penalty term represent valuable avenues for fur-

ther research and development. These enhancements highlight a promising direc-

tion for significantly improving the performance and robustness of the WAICNF and

PSIS-LOOICNF.
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gold. Measles and rubella global strategic plan 2012–2020 midterm review report:

Background and summary. Vaccine, 36:A35–A42, 2018.

P. U. Ori, A. Adebowale, C. D. Umeokonkwo, U. Osigwe, and M. S. Balogun. De-

scriptive epidemiology of measles cases in bauchi state, 2013–2018. BMC Public

Health, 21(1):1–11, 2021.

M. K. Patel, L. Dumolard, Y. Nedelec, S. V. Sodha, C. Steulet, M. Gacic-Dobo,

K. Kretsinger, J. McFarland, P. A. Rota, and J. L. Goodson. Progress toward re-

gional measles elimination—worldwide, 2000–2018. Morbidity and Mortality Weekly

Report, 68(48):1105, 2019.

G. L. Perry, B. P. Miller, and N. J. Enright. A comparison of methods for the

statistical analysis of spatial point patterns in plant ecology. Plant ecology, 187(1):

59–82, 2006.

L. Pettit. The conditional predictive ordinate for the normal distribution. Journal of

the Royal Statistical Society: Series B (Methodological), 52(1):175–184, 1990.

C. Pezzulo, N. Tejedor-Garavito, H. M. T. Chan, I. Dreoni, D. Kerr, S. Ghosh, A. Bon-

nie, M. Bondarenko, M. Salasibew, and A. J. Tatem. A subnational reproductive,

maternal, newborn, child, and adolescent health and development atlas of india.

Scientific Data, 10(1):86, 2023.

138

https://ngdc.noaa.gov/eog/viirs/index.html
https://ngdc.noaa.gov/eog/viirs/index.html
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Appendix A

Deriving covariance functions from

semivariograms

Assuming an isotropic and stationary spatial process, the relationship between the

semivariogram γ(h) and the covariance function C(h) is

γ(h) = C(0)− C(h).

In the derivations below, h and ||h|| are used interchangeably, since only the length

of the separation vector is concerned under the isotropic assumption. Now, further

assuming that the spatial process is ergodic, C(h) → 0 as ||h|| → ∞. Taking the

limit from this expression gives

lim
||h||→∞

γ(h) = C(0)− lim
||h||→∞

C(h),

= C(0)− 0,

= C(0).

Rewriting the relationship in terms of the semivariogram,

γ(h) = C(0)− C(h),

C(h) = C(0)− γ(h),

= lim
||u||→∞

γ(u)− γ(h),
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where u denotes h to avoid confusion with the other components in the expression.

As an example, consider the exponential semivariogram,

γ(h) =

⎧⎨⎩τ 2 + σ2
(︁
1− exp(−ϕ||h||)

)︁
if ||h|| > 0,

0 if ||h|| = 0.

To simplify the notation, let d denote h. Since the spatial process is assumed to be

isotropic, d also represents ||h||. To derive the covariance function, take into account

the two separate cases: when d > 0 and when d = 0. First, consider the case when

d > 0. Following the relationship given above,

C(d) = lim
||u||→∞

γ(u)− γ(d),

= lim
||u||→∞

τ 2 + σ2
(︁
1− exp(−ϕ||u||)

)︁
− γ(d),

= τ 2 + σ2(1− 0)− γ(d),

= τ 2 + σ2 − γ(d),

= τ 2 + σ2 − [τ 2 + σ2(1− exp(−ϕd))],

= τ 2 + σ2 − τ 2 − σ2 + σ2 exp(−ϕd),

= σ2 exp(−ϕd).

The notation u was used to indicate that the limit should only be taken for the first

semivariogram on the right-hand side of the first line of the derivation. Within the

second and third lines of the derivation, the exponential of a large negative number

approaches zero. Hence, C(d) = σ2 exp(−ϕd) when d > 0. Now consider the other

case when d = 0,

C(d) = lim
||u||→∞

γ(u)− γ(d),

= lim
||u||→∞

τ 2 + σ2
(︁
1− exp(−ϕ||u||)

)︁
− γ(d),

= τ 2 + σ2(1− 0)− γ(d),

= τ 2 + σ2 − γ(d),

= τ 2 + σ2 − 0,

= τ 2 + σ2.
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Summarising the derivations, the covariance function of the exponential semivari-

ogram is

C(d) =

⎧⎨⎩σ2 exp(−ϕd) if d > 0,

σ2 + τ 2 if d = 0.

Consider the Matérn semivariogram as another example. The Matérn semivari-

ogram is given as follows,

γ(d) =

⎧⎨⎩τ 2 + σ2
(︁
1− (

√
2νϕd)ν

2ν−1Γ(ν)
Kν(
√
2νϕd)

)︁
if d > 0,

0 if d = 0.

First, consider when d > 0. Once again, the covariance function is given as

C(d) = lim
||u||→∞

γ(u)− γ(d),

= lim
||u||→∞

τ 2 + σ2

(︃
1− (

√
2νϕ||u||)ν

2ν−1Γ(ν)
Kν(
√
2νϕ||u||)

)︃
− γ(d),

= τ 2 + σ2(1− 0)− γ(d),

= τ 2 + σ2 − γ(d),

= τ 2 + σ2 − τ 2 − σ2

(︃
1− (

√
2νϕd)ν

2ν−1Γ(ν)
Kν(
√
2νϕd)

)︃
,

= τ 2 + σ2 − τ 2 − σ2 + σ2 (
√
2νϕd)ν

2ν−1Γ(ν)
Kν(
√
2νϕd),

= σ2 (
√
2νϕd)ν

2ν−1Γ(ν)
Kν(
√
2νϕd).

As previously mentioned, the notation u is used to indicate that the limit should

only be taken for first semivariogram on the right-hand side of the first line of the

derivation. Within the second and third lines of the derivation, since Kν(·) denotes
the modified Bessel function of the second kind of order ν, when the terms inside

the function becomes large, the function tends towards zero. Now, consider the other
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case when d = 0,

C(d) = lim
||u||→∞

γ(u)− γ(d),

= lim
||u||→∞

τ 2 + σ2

[︃
1− (

√
2νϕ||u||)ν

2ν−1Γ(ν)
Kν(
√
2νϕ||u||)

]︃
− γ(d),

= τ 2 + σ2(1− 0)− γ(d),

= τ 2 + σ2 − γ(d),

= τ 2 + σ2 − 0,

= τ 2 + σ2.

Summarising the derivations above, the covariance function for the Matérn semivar-

iogram is

C(d) =

⎧⎨⎩σ2 (
√
2νϕd)ν

2ν−1Γ(ν)
Kν(
√
2νϕd) if d > 0,

τ 2 + σ2 if d = 0.
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Appendix B

Posterior distribution for a

multivariate normal model

Consider the following model,

Y ∼ Nn(Xβ, σ
2H),

where the n× 1 column vector of responses, denoted as Y, follows an n-dimensional

multivariate normal distributionNn(·) with mean structureXβ and covariance matrix

σ2H. The mean structure comprise an n×p design matrix, denoted as X, and a p×1

column vector of regression coefficients, denoted as β. The covariance matrix is given

by some known value σ2 and an n×n matrix H, which is assumed to be the identity

matrix. The prior distribution of β,

β ∼ Np(β0, σ
2M−1),

is assumed to follow a p-dimensional multivariate normal distributionNp(·) with mean

structure β0 and covariance matrix σ2M−1. The mean structure β0 is a p×1 column

vector of known values. The covariance matrix is given by some known value σ2 and

a p × p matrix M , which is assumed to be the identity matrix. Since M is assumed

to be the identity matrix, it implies that M = M−1 = Ip, where Ip denotes a p × p
identity matrix.

To assist the following derivations, we define λ2 = 1/σ2. The probability density
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functions (PDFs) are given as follows,

p(y|β, λ2) =
(︃
λ2

2π

)︃n
2

det(H)−
1
2 exp

(︃
− λ2

2
(y −Xβ)′H−1(y −Xβ)

)︃
,

p(β|λ2) =
(︃
λ2

2π

)︃ p
2

det(M)
1
2 exp

(︃
− λ2

2
(β − β0)

′M(β − β0)

)︃
,

where det(·) denotes the determinant. The posterior distribution can be calculated

as posterior ∝ likelihood × prior. Using the PDFs given above, the full conditional

posterior distribution, denoted as p(β|y, λ2), is calculated as follows,

p(β|y, λ2) ∝ p(y|β, λ2)× p(β|λ2),

∝ exp

(︃
− λ2

2

[︃
(y −Xβ)′H−1(y −Xβ) + (β − β0)

′M(β − β0)

]︃)︃
.

Notice that the above only comprise the components pertaining to β. The other

components from p(y|β, λ2) and p(β|λ2) are absorbed to the proportionality constant.

Focusing on the components within the square brackets, the terms can be expanded

and rearranged as follows

(y −Xβ)′H−1(y −Xβ) + (β − β0)
′M(β − β0)

= y′H−1y − y′H−1(Xβ)− (Xβ)′H−1y + (Xβ)′H−1(Xβ) + β′Mβ − β′Mβ0 − β′
0Mβ + β′

0Mβ0,

= y′H−1y − y′H−1(Xβ)− β′X ′H−1y + β′X ′H−1(Xβ) + β′Mβ − β′Mβ0 − β′
0Mβ + β′

0Mβ0,

= β′(X ′H−1X +M)β − β′(X ′H−1y +Mβ0)− (y′H−1X + β′
0M)β + y′H−1y + β′

0Mβ0.

Recall that since H and M are both assumed to be identity matrix, H = H−1 and

M = M−1. Furthermore, H = H ′ and M = M ′. Therefore, the derivation can be

further simplified,

(y −Xβ)′H−1(y −Xβ) + (β − β0)
′M(β − β0)

= β′(X ′H−1X +M)β − β′(X ′H−1y +Mβ0)− (y′H−1X + β′
0M)β + y′H−1y + β′

0Mβ0,

= β′(X ′H−1X +M)β − β′(X ′H−1y +Mβ0)− β′(X ′H−1y +Mβ0) + y′H−1y + β′
0Mβ0,

= β′(X ′H−1X +M)β − 2β′(X ′H−1y +Mβ0) + y′H−1y + β′
0Mβ0.
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Since the components y′H−1y+β′
0Mβ0 above do not involve β, they can be omitted

from further deviations, and will be accounted for in the proportionality constant. For

notation simplification, we define M∗ = X ′H−1X +M . Returning to the posterior

distribution, the current progress gives

p(β|y, λ2) ∝ exp

(︃
− λ2

2

[︃
β′M∗β − 2β′(X ′H−1y +Mβ0)

]︃)︃
.

The simplification is incomplete. Refocusing on the terms within the square brack-

ets, further simplification requires completing the square,

β′M∗β − 2β′(X ′H−1y +Mβ0) = β
′M∗β − 2β′(X ′H−1y +Mβ0)

+ (X ′H−1y +Mβ0)
′(M∗)−2(X ′H−1y +Mβ0)

− (X ′H−1y +Mβ0)
′(M∗)−2(X ′H−1y +Mβ0).

Notice that the last term−(X ′H−1y+Mβ0)
′(M∗)−2(X ′H−1y+Mβ0) does not involve

β. This term can be omitted and will be absorbed into the proportionality constant.

Using the remaining components, the following simplification can take place,

β′M∗β − 2β′(X ′H−1y +Mβ0) + (X ′H−1y +Mβ0)
′(M∗)−2(X ′H−1y +Mβ0)

=
(︁
β − (M∗)−1(X ′H−1y +Mβ0)

)︁′
M∗(︁β − (M∗)−1(X ′H−1y +Mβ0)

)︁
.

Define β∗ = (M∗)−1(X ′H−1y +Mβ0).

β′M∗β − 2β′(X ′H−1y +Mβ0) + (X ′H−1y +Mβ0)
′(M∗)−2(X ′H−1y +Mβ0)

=
(︁
β − (M∗)−1(X ′H−1y +Mβ0)

)︁′
M∗(︁β − (M∗)−1(X ′H−1y +Mβ0)

)︁
,

= (β − β∗)′M∗(β − β∗).

Finally, returning to the full conditional posterior distribution,

p(β|y, λ2) ∝ exp

(︃
− λ2

2
(β − β∗)′M∗(β − β∗)

)︃
.

From the expression above, the posterior distribution is identified to be a p-dimensional

multivariate normal distribution with mean structure β∗ and covariance matrix (λ2M∗)−1.
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More formally,

β|y, λ2 ∼ Np

(︃
β∗,

1

λ2
(M∗)−1

)︃
,

where

β∗ = (M∗)−1(X ′H−1y +Mβ0),

M∗ = X ′H−1X +M.

This implies that the posterior mean Eβ|y(·) and posterior variance Varβ|y(·) are

E(β|y, λ2) = β∗,

Var(β|y, λ2) = 1

λ2
(M∗)−1.
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Appendix C

Posterior predictive distribution

for a multivariate normal model

Consider the following model,

Y ∼ Nn(Xβ, σ
2H),

where the n× 1 column vector of responses, denoted as Y, follows an n-dimensional

multivariate normal distributionNn(·) with mean structureXβ and covariance matrix

σ2H. The mean structure comprise an n×p design matrix, denoted as X, and a p×1

column vector of regression coefficients, denoted as β. The covariance matrix is given

by some known value σ2 and an n×n matrix H, which is assumed to be the identity

matrix. The prior distribution of β,

β ∼ Np(β0, σ
2M−1),

is assumed to follow a p-dimensional multivariate normal distributionNp(·) with mean

structure β0 and covariance matrix σ2M−1. The mean structure β0 is a p×1 column

vector of known values. The covariance matrix is given by some known value σ2 and

a p×p matrixM , which is assumed to be the identity matrix. SinceM is assumed to

be the identity matrix, that impliesM =M−1 = Ip, where Ip denotes a p×p identity
matrix. To assist the following derivations, we define λ2 = 1/σ2.
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The derived full conditional posterior distribution is

p(β|y, λ2) ∝ exp

(︃
− λ2

2
(β − β∗)′M∗(β − β∗)

)︃
,

where

β∗ = (M∗)−1(X ′H−1y +Mβ0),

M∗ = X ′H−1X +M,

which implies that the posterior mean Eβ|y(·) and posterior variance Varβ|y(·) are

E(β|y, λ2) = β∗,

Var(β|y, λ2) = 1

λ2
(M∗)−1.

Now, suppose there is a new observation, denoted as Y0, that follows a normal

distribution with mean x′
0β and variance σ2, where x0 is a p-dimensional column

vector of covariates, β are the regression coefficients and σ2 denotes a known value,

Y0 ∼ N(x′
0β, σ

2).

To derive the posterior predictive distribution, first start with the joint distribution

of Y0 and Y, which is given as follows,(︄
Y0

Y

)︄
∼ N

(︄(︄
x′
0β

Xβ

)︄
, σ2

(︄
1 Σ12

Σ21 H

)︄)︄
,

where Σ12 = Σ′
21, and Σ12 is a 1×n vector with elements Cor(Y0, Yi), for i = 1, . . . , n.

The notation Cor(·) denotes the correlation function. From multivariate normal dis-

tribution theory, the conditional distribution for Y1|Y2 is given as a normal distribution

with mean µ̄ and covariance Σ̄, where

µ̄ = µ1 +Σ12Σ
−1
22 (y − µ2),

Σ̄ = Σ11 −Σ12Σ
−1
22 Σ21.
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In our context, the conditional distribution is given as

Y0|y,β, λ2 ∼ N

(︃
x′
0β +Σ12H

−1(y −Xβ), 1
λ2

(1−Σ12H
−1Σ21)

)︃
.

To simplify the notation above, we define

δ2 = (1−Σ12H
−1Σ21),

µ0 = x′
0β +Σ12H

−1(y −Xβ),

to reduce the expression as,

Y0|y,β, λ2 ∼ N

(︃
µ0,

δ2

λ2

)︃
.

Now,

y0 − µ0 = y0 −
(︁
x′
0β +Σ12H

−1(y −Xβ)
)︁
,

= y0 − x′
0β −

(︁
Σ12H

−1(y −Xβ)
)︁
,

= y0 − x′
0β −Σ12H

−1y +Σ12H
−1Xβ,

= y0 −Σ12H
−1y − (x′

0 −Σ12H
−1X)β,

= ỹ0 − g′β,

where

ỹ0 = y0 −Σ12H
−1y,

g′ = (x′
0 −Σ12H

−1X).

Using this information, the conditional distribution can be expressed as,

p(Ỹ 0|y,β, λ2) ∝ exp

(︃
λ2

2δ2
(ỹ0 − g′β)2

)︃
,

which implies

Ỹ 0|y,β, λ2 ∼ N

(︃
g′β,

δ2

λ2

)︃
.

Deriving Ỹ 0|y, λ2 from Ỹ 0|y,β, λ2 requires an integration with respect to β. A short-
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cut is to use the derivation results of the posterior mean and variance. That is,

E(Ỹ 0|y, λ2) = Eβ|y,λ2

(︁
E(Ỹ 0|y,β, λ2)

)︁
,

= Eβ|y,λ2

(︁
g′β
)︁
,

= g′β∗,

and

Var(Ỹ 0|y, λ2) = Eβ|y,λ2

(︁
Var(Ỹ 0|y,β, λ2)

)︁
+Varβ|y,λ2

(︁
E(Ỹ 0|y,β, λ2)

)︁
,

= Eβ|y,λ2

(︃
δ2

λ2

)︃
+Varβ|y,λ2(g′β),

=
δ2

λ2
+

1

λ2
g′(M∗)−1g,

=
1

λ2

(︃
δ2 + g′(M∗)−1g

)︃
.

In other words, the conditional posterior predictive distribution is

Ỹ 0|y, λ2 ∼ N

(︃
g′β∗,

1

λ2
(︁
δ2 + g′(M∗)−1g

)︁)︃
,

with

E(Ỹ 0|y, λ2) = g′β∗,

Var(Ỹ 0|y, λ2) =
1

λ2
(︁
δ2 + g′(M∗)−1g

)︁
,

where

g′ = (x′
0 −Σ12H

−1X),

δ2 = (1−Σ12H
−1Σ21).
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Appendix D

Gram-Schmidt orthogonalisation

process

The Gram-Schmidt orthogonalisation process was applied to the generated covariates,

in Chapter 4, to ensure independence. The covariate are generated from the following,

x1(si) = 1,

x2(si) ∼ N(0, 1),

x3(si) ∼ N(0, 1),

x4(si) ∼ N(0, 2),

whereN(·) denotes the Normal distribution. First, we define xp =
(︁
xp(s1), . . . , xp(sn)

)︁′
,

where p = 1, 2, 3, 4. Then, we calculate vp as follows,

v1 = x1,

v2 = x2 −
⟨x2,v1⟩
⟨v1,v1⟩

v1,

v3 = x3 −
⟨x3,v1⟩
⟨v1,v1⟩

v1 −
⟨x3,v2⟩
⟨v2,v2⟩

v2,

v4 = x4 −
⟨x4,v1⟩
⟨v1,v1⟩

v1 −
⟨x4,v2⟩
⟨v2,v2⟩

v2 −
⟨x4,v3⟩
⟨v3,v3⟩

v3,

where ⟨·⟩ denotes the dot product between the two vectors within the braces. For

example, if a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are row vectors, then ⟨a,b⟩ =
a1b1+a2b2+ · · ·+anbn, or in the case where a and b are column vectors ⟨a,b⟩ = a′b.
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Following this, we normalise vp to get wp as follows,

wp =
vp√︁
⟨vp,vp⟩

,

where p = 1, 2, 3, 4. We then use wp as our covariates in place of xp in the simulation

examples, as we have now ensured independence among the covariates with wp.
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Appendix E

Additional simulation designs 1

Following the simulation designs detailed in Chapter 4, we conducted additional ex-

periments with point referenced spatial data generated from other structures. Specifi-

cally, they are the lattice design and the augmented lattice design. Examples of point

referenced spatial data generated from these designs are shown in Figures E.1 and

E.4, respectively.

In the lattice design, the point referenced data are equally spaced within a unit

square. For this design, we generated data with sample size n that has an integer

square-root. Figure E.1a shows a dataset generated using n = 36, so the points are

equally spaced within the unit square in a 6 × 6 manner. In the augmented lattice

design, the point referenced data are also equally spaced within a unit square. For

this design, we chose three additional points and generated 3×3 lattices. Figure E.4a

shows a dataset generated using n = 25, so the points are equally spaced within the

unit square in a 5×5 manner. We then arbitrarily chose three points and created 3×3
lattices, including the selected points. This gives a total of n = 49 in this generated

dataset.

Although the locations of the data are simulated differently, the responses (Figures

E.1b and E.4b) are generated following the procedure detailed in Chapter 4, that is

Y ∼ Nn(Xβ + ω, τ 2In),

ω ∼ Nn(0,Σω),

where Nn(·) denotes an n-dimensional multivariate normal distribution, In denotes an

n×n identity matrix, β denotes a vector of regression coefficients, X denotes an n×p
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design matrix that contains the covariates and Σω denotes an n×n covariance matrix,

with elements calculated from some covariance functions, including those described

in Sections 2.3.3 and 4.1.1. Furthermore, we considered the following combinations

of covariates

f1 : x(si)
′β = x1(si)β1 + x2(si)β2,

f2 : x(si)
′β = x1(si)β1 + x2(si)β2 + x3(si)β3,

f3 : x(si)
′β = x1(si)β1 + x2(si)β2 + x3(si)β3 + x4(si)β4,

where β1 = 1, β2 = 2, β3 = 2, β4 = 2 and

x1(si) = 1,

x2(si) ∼ N(0, 1),

x3(si) ∼ N(0, 1),

x4(si) ∼ N(0, 2).

When fitting the model using the Stan framework and the INLA method, we specified

the following prior distributions for the parameters,

β ∼ Np(0, 2Ip),

ϕ ∼ Γ(2, 2),

σ2
ω ∼ N(0, 2),

τ 2 ∼ N(0, 2),

whereNp(·) denotes an p-dimensional multivariate normal distribution, and Ip denotes

a p× p identity matrix.
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Figure E.1. Example of point referenced data simulated from (a) a lattice design

and (b) a histogram depicting the simulated response.

Figure E.2 shows the results from four simulation experiments. In Figure E.2a, the

dataset was generated with n = 25, σ2
ω = 3, τ 2 = 3, ϕ = 3/0.5, ν = 3/2. In Figure

E.2b, the dataset was generated using n = 25, σ2
ω = 2, τ 2 = 2, ϕ = 3/0.5, ν = 5/2.

In both cases, we first fitted the model with candidate parameters ν = 1/2, ν = 3/2

and ν = 5/2 in the Stan framework, then we calculated the WAIC and PSIS-LOOIC

using both the log likelihood extracted from Stan and the non-factorisable (NF) model

log likelihood. In Figure E.2c, the dataset was generated using n = 16, σ2
ω = 3, τ 2 =

3, ϕ = 3/0.5, ν = 1/2 and covariates combination f2. In Figure E.2d, the dataset

was generated using n = 16, σ2
ω = 2, τ 2 = 2, ϕ = 3/0.5, ν = 5/2 and covariates

combination f1. In both cases, we first fitted the model using candidate covariates

combinations f1, f2 and f3 in the Stan framework, then calculated the WAIC and

PSIS-LOOIC using the log likelihoods extracted from Stan and the NF model log

likelihoods.

Figures E.2a and E.2b show that the WAICNF and PSIS-LOOICNF outperforms

the Stan WAIC and PSIS-LOOIC in correctly identifying the ν parameters used to

generate the datasets. Figure E.2d shows that the Stan-computed WAIC and PSIS-

LOOIC outperforms the WAICNF and PSIS-LOOICNF in correctly identifying the

covariates combination used to generate the datasets. The results from Figure E.2c

is unexpected, as we anticipated either marginal performance between the selection

criteria calculated using the log likelihoods extracted from Stan and the NF model

log likelihoods. Instead, we see that the WAICNF and PSIS-LOOICNF outperforms
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the Stan WAIC and PSIS-LOOIC in correctly identifying the covariates combination

used to generate the datasets. Our explanation for this is due to the small n used

in this experiment for data generation. Although we used different approaches to

generate the data locations, the results shown in here are agreeable with what we

have shown in Section 4.3.

Figure E.3 shows the results from four simulation experiments. In panel (a), the

dataset was simulated using n = 100, σ2
ω = 2, τ 2 = 2, ϕ = 3/0.5, ν = 1; in panel

(b), the dataset was simulated using n = 100, σ2
ω = 3, τ 2 = 3, ϕ = 3/0.5, ν = 1. In

both cases, we first fitted the model with candidate parameters ν = 1/10, ν = 1 and

ν = 1/2 in the INLA method, then we calculated the WAICNF and PSIS-LOOICNF,

as well as the WAIC using INLA. In panel (c), the dataset was simulated using

n = 100, σ2
ω = 2, τ 2 = 2, ϕ = 3/0.5, ν = 1 and covariates combination f2; in panel

(d), the dataset was simulated using n = 100, σ2
ω = 3, τ 2 = 3, ϕ = 3/0.5, ν = 1

and covariates combination f2. In both cases, we first fitted the model with candidate

covariates combinations f1, f2 and f3 in the INLA method, then we calculated the

WAICNF and PSIS-LOOICNF, as well as the WAIC using INLA.

Figures E.3a and E.3b show that our WAICNF outperforms the INLA-computed

WAIC in correctly identifying the ν parameters we used to generate the datasets.

Figures E.3c and E.3d show marginal performance between the WAICNF and the

INLA-computed WAIC when tasked to correctly identify the covariates combination

that we used to generate the datasets. Furthermore, both approaches failed to make

the correct identification in majority of the generated datasets. However, these results

are what we expect, and are agreeable with what was shown in Section 4.3.
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Figure E.2. The proportion of simulation runs where the selection criteria correctly

identify the generating configuration from the lattice design. Green bars represent

the generating configuration.
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Figure E.3. The proportion of simulation runs where the selection criteria correctly

identify the generating configuration from the lattice design. Blue bars represent the

generating configuration.
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Figure E.4. Example of point referenced data generated from (a) an augmented

lattice design and (b) a histogram depicting the simulated response.

Figure E.5 shows the results from four simulation experiments. In panel (a),

the dataset was generated using n = 49, σ2
ω = 3, τ 2 = 3, ϕ = 3/0.5 and ν = 3/2;

in panel (b), the dataset was generated using n = 49, σ2
ω = 2, τ 2 = 2, ϕ = 3/0.5

and ν = 5/2. In both cases, we first fitted the model with candidate parameters

ν = 1/2, ν = 3/2 and ν = 5/2 in the Stan framework, then we calculated the

WAICNF and PSIS-LOOICNF, as well as the WAIC and PSIS-LOOIC using the log

likelihoods extracted from Stan. In panel (c), the dataset was generated using n =

49, σ2
ω = 3, τ 2 = 3, ϕ = 3/0.5, ν = 1/2 and covariates combination f2; in panel (d),

the dataset was generated using n = 49, σ2
ω = 2, τ 2 = 2, ϕ = 3/0.5, ν = 5/2 and

covariates combination f1.

Figures E.5a and E.5b show that our WAICNF and PSIS-LOOICNF outperforms

the WAIC and PSIS-LOOIC computed using the log likelihoods extracted from Stan

in correctly identifying the ν parameters that we used to generate the dataset. When

tasked to identify the covariates combination used to generate the datasets, Figure

E.5c shows that performance is marginal between the WAICNF and PSIS-LOOICNF,

and the WAIC and PSIS-LOOIC. Furthermore, Figure E.5d shows that the Stan

WAIC and PSIS-LOOIC outperforms the WAICNF and PSIS-LOOICNF. These results

are what we expect, and are agreeable with what was shown in Section 4.3.

Figure E.6 shows the results from four simulation experiments. In panel (a), the

dataset was generated using n = 49, σ2
ω = 2, τ 2 = 2, ϕ = 3/0.5 and ν = 1; in panel

(b), the dataset was generated using n = 49, σ2
ω = 3, τ 2 = 3, ϕ = 3/0.5 and ν = 1. In
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both cases, we first fitted the model with candidate parameters ν = 1/10, ν = 1 and

ν = 1/2 in the INLA method, then we calculated the WAICNF and PSIS-LOOICNF

and the the WAIC using the INLA method. In panel (c), the dataset was generated

using n = 49, σ2
ω = 2, τ 2 = 2, ϕ = 3/0.5, ν = 1 and covariates combination f2; in

panel (d), the dataset was generated using n = 49, σ2
ω = 3, τ 2 = 3, ϕ = 3/0.5, ν =

1/2 and covariates combination f2. Figures E.6a and E.6b show that our WAICNF

outperforms the INLA-computed WAIC in correctly identifying the ν parameters

we used to generate the datasets. However, the performance is marginal between the

selection criteria when tasked to correctly identify the covariates combination we used

to generate the datasets. In fact, the INLA-computed WAIC slightly outperforms the

WAICNF, as shown in Figures E.6c and E.6d. These results are what we expect and

are agreeable with what was shown in Section 4.3.
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Figure E.5. The proportion of simulation runs where the selection criteria correctly

identify the generating configuration from the augmented lattice design. Green bars

represent the generating configuration.
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Figure E.6. The proportion of simulation runs where the selection criteria correctly

identify the generating configuration from the augmented lattice design. Blue bars

represent the generating configuration.
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The results from these additional simulation experiments suggest that our pro-

posed WAICNF and PSIS-LOOICNF are suitable for model selection tasks, particu-

larly for determining the optimal covariance function for models of point referenced

spatial data, but are not ideal for variable selection tasks.
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Appendix F

Additional simulation designs 2

We conducted additional simulation experiments to explore the effects of the param-

eters on the WAIC and the PSIS-LOOIC. Specifically, we focus on the spatial decay

parameter ϕ, the spatial variance σ2
ω, and the iid variance τ 2. Recall from Chapter

4, the dataset generation configuration is given as follows,

Y ∼ Nn(Xβ + ω, τ 2In),

ω ∼ Nn(0,Σω),

where Nn(·) denotes an n-dimensional multivariate normal distribution, In denotes

an n× n identity matrix, β denotes a vector of regression coefficients, X denotes an

n× p design matrix that contains the covariates and Σω denotes an n×n covariance

matrix, with elements calculated from the Matérn covariance function described in

Section 2.3.3. We used the following covariates,

x(si)
′β = x1(si)β1 + x2(si)β2,

where β1 = 1 and β2 = 2, and

x1(si) = 1,

x2(si) ∼ N(0, 1).
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When fitting the model using the Stan framework and INLA method, we specified

the following prior distributions for the parameters

β1 ∼ N(0, 2),

β2 ∼ N(0, 2),

ϕ ∼ Γ(2, 2),

σ2
ω ∼ N(0, 2),

τ 2 ∼ N(0, 2).

In each of the following experiments, we first generated the dataset from the set

up described above, then fitted the model using a range of fixed parameters and

calculated the selection criteria, alongside their corresponding penalty components.

Let us illustrate this through the following.

In the first experiment, we generated n = 15 points from a unit square and

their responses following the set up above using the parameters σ2
ω = 3, τ 2 = 3, ϕ =

3/0.5, ν = 1/2. Using the simulated dataset, we fitted a model in the Stan framework

using the prior distributions, as described above, for the parameters except for ϕ. For

ϕ, we used the sequence generating function seq() in R to generate 10 values from

3/1.41 to 3/0.01, and fitted these values in the model. The choice of ϕ from 3/1.41

to 3/0.01 is because 1.41 is approximately the maximum distance between two points

on a unit square and 0.01 is the minimum distance between two points on a unit

square without being the exact same location. Finally, we calculated the WAIC,

PSIS-LOOIC, WAICNF, PSIS-LOOICNF of the model for each of these fitted values.

We also calculated the corresponding penalty components. This was repeated five

times; that is, we simulated five datasets from this set up. Figure F.1 shows the

results from this experiment.
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Figure F.1. WAIC and PSIS-LOOIC computed using non-factorisable model likeli-

hood and Stan-extracted likelihood, for ϕ ranging from 3/0.01 to 3/1.41.

The experiment is also conducted for a range of σ2
ω and τ 2 following the procedure

described above. When we fit a range of σ2
ω in the model, we have a prior on ϕ and

τ 2. We investigated the 10 values from 1 to 5 from the seq() function for σ2
ω.

Likewise, when we fit a range of τ 2 in the model, we have a prior on ϕ and σ2
ω, and

we investigated the 10 values from 1 to 5 from the seq() function for τ 2. Figures F.2

and F.3 show the results of these experiments.

The procedure described above was repeated but with the models fitted with

INLA. The results for these experiments are shown in Figures F.4, F.5 and F.6.
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Figure F.2. WAIC and PSIS-LOOIC computed using non-factorisable model likeli-

hood and Stan-extracted likelihood, for σ2
ω ranging from 1 to 5.

Figure F.3. WAIC and PSIS-LOOIC computed using non-factorisable model likeli-

hood and Stan-extracted likelihood, for τ 2 ranging from 1 to 5.
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Figure F.4. WAIC and PSIS-LOOIC computed using non-factorisable model likeli-

hood, along with INLA-derived WAIC, for ϕ ranging from 3/0.01 to 3/1.41.

Figure F.5. WAIC and PSIS-LOOIC computed using non-factorisable model likeli-

hood, along with INLA-derived WAIC, for σ2
ω ranging from 1 to 5.
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Figure F.6. WAIC and PSIS-LOOIC computed using non-factorisable model likeli-

hood, along with INLA-derived WAIC, for τ 2 ranging from 1 to 5.

We see from Figure F.1 that the WAIC and PSIS-LOOIC values vary between

the simulated datasets when ϕ is large. When ϕ is small, the WAIC and PSIS-

LOOIC values for all the simulated datasets show a small initial change. The WAICNF

and PSIS-LOOICNF remain unchanged as ϕ increases. For the penalty components,

the pWAIC and pPSIS−LOOIC values show an initial increase as ϕ increases whereas

the penalty components for WAICNF and PSIS-LOOICNF remain unchanged as ϕ

increases.

Figure F.2 shows that increasing the σ2
ω parameter slightly decreases the WAIC

and PSIS-LOOIC values but does change the WAICNF and PSIS-LOOICNF values.

Increasing σ2
ω also increase the calculated pWAIC and pPSIS−LOOIC values, but does not

change the penalty components of WAICNF and PSIS-LOOICNF. The WAIC and

PSIS-LOOIC varies between simulated datasets although the simulation set up is the

same.

Figure F.3 shows clear and consistent patterns in the WAIC, WAICNF, PSIS-

LOOIC and PSIS-LOOICNF values between the simulated datasets. Interestingly,

opposite trends emerge as τ 2 increases. The calculated WAIC and PSIS-LOOIC

values decrease as τ 2 increases, whereas the calculated WAICNF and PSIS-LOOICNF

values increase as τ 2 increases. While increasing τ 2 does not change the penalty

component of WAICNF and PSIS-LOOICNF, it decreases the pWAIC and pPSIS−LOOIC
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values.

For the results of the experiments where we fit the model in INLA, we see that

increasing ϕ increases both the INLA WAIC and WAICNF. The results are consistent

between the simulated datasets. Furthermore, we see that while the penalty compo-

nent of WAICNF is unaffected by changes in ϕ, the INLA pWAIC values show huge

changes. Specifically, the INLA pWAIC values initially increase, then steadily decrease

as ϕ increases (Figure F.4).

We observe a similar pattern for both INLA WAIC values and WAICNF values as

we increase σ2
ω. The pattern exhibited is an initial decrease, then a gradual increase

in the INLA WAIC and WAICNF values as σ2
ω increases. Increasing σ2

ω does not

change the penalty component of the WAICNF, but causes the INLA pWAIC to slightly

increases until it flattens (Figure F.5).

Changes in τ 2 show unusual patterns in the INLA WAIC and WAICNF values.

For the WAICNF, we see that the values slightly decrease when τ 2 ≈ 2 and flattens

afterwards. On the other hand, there is are clear patterns with the INLA WAIC

values. Instead, we observe that when τ 2 ≈ 2, the WAIC values either increase by

a large amount or decrease by a large amount. We see the same pattern for the

INLA pWAIC as well while the penalty component of the WAICNF remains unchanged

(Figure F.6).
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Appendix G

Stan function block for latent

NNGP

The subsequent code snippet represents the latent nearest-neighbour Gaussian process

(NNGP) function encapsulated within a function block of a Stan file. This was

developed by Zhang (2018) and is reliant on the contributions Finley et al. (2020).

The latent NNGP serves as a pivotal component in the analytical in Chapter 6.3.

functions {

real nngp_w_lpdf(

vector w, real sigmasq, real phi, matrix NN_dist,

matrix NN_distM, int[,] NN_ind, int N, int M) {

vector[N] V;

vector[N] I_Aw = w;

int dim;

int h;

for (i in 2:N) {

matrix[ i < (M + 1)? (i - 1) : M, i < (M + 1)? (i - 1): M]

iNNdistM;

matrix[ i < (M + 1)? (i - 1) : M, i < (M + 1)? (i - 1): M]

iNNCholL;
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vector[ i < (M + 1)? (i - 1) : M] iNNcorr;

vector[ i < (M + 1)? (i - 1) : M] v;

row_vector[i < (M + 1)? (i - 1) : M] v2;

dim = (i < (M + 1))? (i - 1) : M;

if(dim == 1) {iNNdistM[1, 1] = 1;}

else {

h = 0;

for (j in 1:(dim - 1)) {

for (k in (j + 1):dim) {

h = h + 1;

iNNdistM[j, k] = exp(- phi * NN_distM[(i - 1), h]);

iNNdistM[k, j] = iNNdistM[j, k];

}

}

for(j in 1:dim) {

iNNdistM[j, j] = 1;

}

}

iNNCholL = cholesky_decompose(iNNdistM);

iNNcorr = to_vector(exp(- phi * NN_dist[(i - 1), 1:dim]));

v = mdivide_left_tri_low(iNNCholL, iNNcorr);

V[i] = 1 - dot_self(v);

v2 = mdivide_right_tri_low(v', iNNCholL);

I_Aw[i] = I_Aw[i] - v2 * w[NN_ind[(i - 1), 1:dim]];

}

V[1] = 1;

return - 0.5 * ( 1 / sigmasq * dot_product(I_Aw, (I_Aw ./ V)) +

sum(log(V)) + N * log(sigmasq));

}

}
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