
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]





University of Southampton

Faculty of Social Sciences

School of Mathematical Sciences

Investigating the effect of survey designs

on urban forest population estimates: A

simulation based approach using

Bayesian spatial models

by

Philip Wells

MSc

A thesis for the degree of

Doctor of Mathematical Sciences

July 2024

http://www.southampton.ac.uk




University of Southampton

Abstract

Faculty of Social Sciences

School of Mathematical Sciences

Doctor of Mathematical Sciences

Investigating the effect of survey designs on urban forest population

estimates: A simulation based approach using Bayesian spatial models

by Philip Wells

Field-based survey methods are a commonly used ecological approach for developing

a greater understanding of the benefits of urban forests. Such surveys often aim to

collect information on trees contained in several pre-specified plot locations. However,

uncertainty exists on the total minimum number of survey plots required to effectively

quantify urban forest benefits. By optimising the number of survey plots we ensure

that surveys of urban forests in UK towns and cities can be carried out as quickly and

cheaply as possible. In this thesis we propose a simulation-based approach for exploring

the optimal number of survey plots required for urban forest surveys. Our approach uses

state of the art Bayesian spatial modelling to account for the spatial nature of the survey

data and characteristics of the city such as many features of the prevailing landscape

and their spatial properties. We illustrate our models using bespoke code written in

the STAN software language, which allows for modelling of spatially dependent data.

Simulations from our models are then used to explore a variety of different survey plot

designs, by considering the efficacy of the survey plot design in estimating total tree

populations. We illustrate our methods using both survey data and tree locations derived

from areal photography. Using the proposed simulation methodology, we obtain robust

results and compare those with similar results reported by other authors using non-model

based methods. Assessment of population errors from the simulations, highlighted the

need for more survey plots in areas with higher variation in the rate of trees. Relative

population errors simulated under a range of different conditions have been produced,

with conclusions on the minimum number of survey plots required dependent on which

simulation conditions are deemed most appropriate. Generally, the accuracy in tree

population estimates increased at a lower rate after 200 survey plots, suggesting further

plots may not provide much additional information, however this is subject to personal

interpretation of an acceptable level of estimation accuracy. Stratified survey designs

are found to have little impact on the accuracy of urban forest population estimates in

our research, however are likely to result in more representative surveys.

http://www.southampton.ac.uk




v

Contents

List of Figures ix

List of Tables xv

Declaration of Authorship xix

Acknowledgements xxi

1 Ecological background 1

1.1 Defining urban forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Urban forests and ecosystem services . . . . . . . . . . . . . . . . . . . . . 2

1.3 Quantifying urban forest benefits . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 i-Tree Eco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Survey plot design considerations in i-Tree Eco . . . . . . . . . . . . . . . 9

1.6 Existing studies on survey design effects in the ecology literature . . . . . 10

1.6.1 Survey context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.2 Survey sample size . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6.3 Survey plot locations . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.4 Other survey design considerations . . . . . . . . . . . . . . . . . . 16

1.6.5 Survey designs in i-Tree Eco . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Statistical Theory 21

2.1 Bayesian statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Bayes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Markov chain Monte Carlo (MCMC) . . . . . . . . . . . . . . . . . 23

2.1.3 Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.5 Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.6 Assessing convergence and comparing model performance . . . . . 25

2.2 Spatial analysis introduction . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Types of spatial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Neighbourhood definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Exploratory spatial techniques . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Areal exploratory techniques . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Point pattern exploratory techniques . . . . . . . . . . . . . . . . . 34



vi CONTENTS

2.6 Bayesian spatial models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Conditional Autoregressive models . . . . . . . . . . . . . . . . . . 35

2.6.2 Besag, York and Molie model . . . . . . . . . . . . . . . . . . . . . 37

2.6.3 Leroux model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.4 Scaling the spatial component . . . . . . . . . . . . . . . . . . . . . 39

2.6.5 BYM2 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Model fitting in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.1 OpenBUGS (Open Bayesian inference Using Gibbs Sampling) . . . 40

2.7.2 Integrated Nested Laplace Approximations (INLA) . . . . . . . . . 41

2.7.3 CARBayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7.4 Stan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Simulation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Spatial model application to completely observed areal imaging data 45

3.1 Initial data set introduction: Cambridge ProximiTREE . . . . . . . . . . 45

3.2 Environmental covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Land use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 OS MasterMap Topography . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Air Quality Management Areas (AQMAs) . . . . . . . . . . . . . . 52

3.2.4 Indicies of Multiple Deprivation (IMD) . . . . . . . . . . . . . . . . 53

3.3 Full model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Convergence and model fit diagnostics . . . . . . . . . . . . . . . . . . . . 61

3.5 Population densities and estimates . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Summary of findings in Petersfield . . . . . . . . . . . . . . . . . . . . . . 64

4 Spatial model application to partially observed survey data 67

4.1 Initial data set introduction: Southampton i-Tree Eco . . . . . . . . . . . 67

4.2 Modelling setup for partially observed survey data . . . . . . . . . . . . . 71

4.3 Zero-inflated data considerations . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Full model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Convergence and model fit diagnostics . . . . . . . . . . . . . . . . . . . . 79

4.6 Population densities and estimates . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Summary of other areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.1 Petersfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7.2 Cambridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Exploration of modelling accuracy using completely observed data . . . . 84

5 Simulation approach for assessing survey design efficacy 87

5.1 Simulation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Simulating plot locations . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.2 Simulating tree densities . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.3 Calculating population estimation accuracy from simulations . . . 91

5.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Assessement of survey plot design error from models fitted to the
ProximiTREE and National Tree Map (NTM) data . . . . . . . . 93

5.2.2 Assessement of survey plot design error from models fitted to i-
Tree Eco data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.3 Simulations from a Poisson distribution . . . . . . . . . . . . . . . 96



CONTENTS vii

5.2.4 Simulating from selected samples . . . . . . . . . . . . . . . . . . . 98

5.2.5 Stratification by variable . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.6 Absolute error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Discussion and future work 103

6.1 Ecological conclusions and discussion . . . . . . . . . . . . . . . . . . . . . 103

6.2 Appropriateness of model . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Appendix A Additional Chapter 3 plots and tables 109

Appendix B Additional Chapter 4 plots, code and tables 121

Appendix C Additional Chapter 5 plots and tables 145

References 161





ix

List of Figures

2.1 Example of a point-reference setup approach for some i-Tree Eco survey
data located in Southampton . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Example of an areal setup approach for some i-Tree Eco survey data
located in Southampton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Plot of trees for a single plot in the i-Tree Eco survey data, to illustrate
point pattern data. Note that a plot with a particularly high tree coverage
has been selected for illustrative purposes. . . . . . . . . . . . . . . . . . . 30

2.4 Example neighbourhood structures for a 3×3 grid . . . . . . . . . . . . . 31

2.5 Example illustration of how a proximity matrix and an edge set can be
created from a basic spatial structure . . . . . . . . . . . . . . . . . . . . 32

3.1 Plot of the number of ProximiTREE trees located within overlaid hexag-
onal cells of size 0.5Ha in Cambridge . . . . . . . . . . . . . . . . . . . . . 47

3.2 Plot of Land Use categories in Cambridge . . . . . . . . . . . . . . . . . . 49

3.3 Plot of Greenspace coverage within overlaid hexagonal cells of size 0.5Ha
in Cambridge. Greenspace coverage defined from OS MasterMap Topol-
ogy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Plot of Building coverage within overlaid hexagonal cells of size 0.5Ha in
Cambridge. Building coverage defined from OS MasterMap Topology data 52

3.5 Plot of Air Quality Management Areas (AQMA) in Cambridge . . . . . . 54

3.6 Plot of Indicies of Multiple Deprivation (IMD) deciles in Cambridge . . . 56

3.7 Plot of the Leroux mixing parameter, ρ, density for the Cambridge Prox-
imiTREE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Plot of the mean Cambridge ProximiTREE model errors. Model error
calculate by subtracting observed values from modelled values . . . . . . . 60

3.9 Median of the expected number of trees for each cell in Cambridge, as
predicted from the Cambridge ProximiTREE data . . . . . . . . . . . . . 61

3.10 Standard deviation in the expected number of trees for each cell in Cam-
bridge, as predicted from the Cambridge ProximiTREE data . . . . . . . 62

3.11 Parameter traceplots for the Cambridge ProximiTREE model . . . . . . . 63

3.12 Plot of the population density as estimated from the Cambridge Proxim-
iTREE data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Accessible and inaccessible survey plots in the Southampton i-Tree Eco
dataset. Note that the survey plots displayed here are not to scale . . . . 70

4.2 Plot of the median values of the spatial parameter, θ, by cell. Spatial
model fitted to the i-Tree Eco Southampton dataset . . . . . . . . . . . . 73

4.3 Plot of the mean Southampton i-Tree Eco model errors. Model error
calculate by subtracting observed values from modelled values . . . . . . . 77



x LIST OF FIGURES

4.4 Log median of the expected number of trees for each cell in Southampton,
as predicted from the Southampton i-Tree Eco data . . . . . . . . . . . . 78

4.5 Log standard deviation in the expected number of trees for each cell in
Southampton, as predicted from the Southampton i-Tree Eco data . . . . 78

4.6 Parameter traceplots for the Southampton i-Tree Eco model . . . . . . . . 80

4.7 Plot of the population density as estimated from the Southampton i-Tree
Eco data in thousands of trees . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Plot of the relative error against the number of survey plots. Relative er-
rors calculated using simulations from spatial models fitted to the Cam-
bridge ProximiTREE and Petersfield National Tree Map (NTM) data.
Solid lines represent mean values, whilst dashed lines represent 90th per-
centiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Plot of the relative error against the number of survey plots. Relative
errors calculated using negative binomial simulations from modeled i-Tree
Eco data. Solid lines represent mean values, whilst dashed lines represent
90th percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Plot of the relative error against the number of survey plots. Relative er-
rors calculated using Poisson simulations from modeled i-Tree Eco data.
Solid lines represent mean values, whilst dashed lines represent 90th per-
centiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Plot of the relative error against the number of survey plots, for simula-
tions produced from all and half of the MCMC samples. Relative errors
calculated using negative binomial simulations from modeled i-Tree Eco
data in Southampton. Solid lines represent mean values, whilst dashed
lines represent 90th percentiles . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Plot of the relative error against the number of survey plots, for simula-
tions produced from all and half of the MCMC samples. Relative errors
calculated using negative binomial simulations from modeled i-Tree Eco
data in Petersfield. Solid lines represent mean values, whilst dashed lines
represent 90th percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Plot of the absolute error against the number of survey plots. Absolute
errors calculated using negative binomial simulations from modeled i-Tree
Eco data. Solid lines represent mean values, whilst dashed lines represent
90th percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Appendix A.1 Plot of the empirical and (completely random) Poisson G func-
tion for the Cambridge ProximiTREE dataset . . . . . . . . . . . . . . . . 109

Appendix A.2 Plot of the empirical and (completely random) Poisson Ripley’s
K function for the Cambridge ProximiTREE dataset . . . . . . . . . . . . 110

Appendix A.3 Plot of the empirical and (completely random) Poisson G func-
tion for the Petersfield National Tree Map dataset . . . . . . . . . . . . . 110

Appendix A.4 Plot of the empirical and (completely random) Poisson Ripley’s
K function for the Petersfield National Tree Map dataset . . . . . . . . . 111

Appendix A.5 Plot of Normalized difference vegetation index(NDVI) in Cam-
bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix A.6 Plot of Normalized difference vegetation index(NDVI) in Pe-
tersfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



LIST OF FIGURES xi

Appendix A.7 Plot of the number of National Tree Map(NTM) trees located
within overlaid hexagonal cells of size 0.1Ha in Petersfield . . . . . . . . . 113

Appendix A.8 Plot of Land Use categories in Petersfield . . . . . . . . . . . . 114

Appendix A.9 Plot of Indicies of Multiple Deprivation(IMD) deciles in Peters-
field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendix A.10 Plot of Greenspace coverage within overlaid hexagonal cells
of size 0.1Ha in Petersfield. Greenspace coverage defined from OS Mas-
terMap Topology data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Appendix A.11 Plot of Building coverage within overlaid hexagonal cells of
size 0.1Ha in Petersfield. Building coverage defined from OS MasterMap
Topology data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Appendix A.12 Coefficient parameter traceplots for the Petersfield National
Tree Map (NTM) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Appendix A.13 Uncertainty parameter traceplots for the Petersfield National
Tree Map (NTM) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendix A.14 Median of the expected number of trees for each hexagonal cell
of size 0.1Ha in Petersfield, as predicted from the Petersfield National
Tree Map (NTM) data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Appendix A.15 Standard deviation in the expected number of trees for each
hexagonal cell of size 0.1Ha in Petersfield, as predicted from the Petersfield
National Tree Map (NTM) data . . . . . . . . . . . . . . . . . . . . . . . . 118

Appendix A.16 Plot of the population density as estimated from the Petersfield
National Tree Map (NTM) data . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendix A.17 Plot of the mean Petersfield National Tree Map (NTM) model
errors. Model error calculate by subtracting observed values from mod-
elled values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendix A.18 Plot of the Leroux mixing parameter, ρ, density for the Peters-
field National Tree Map (NTM) model . . . . . . . . . . . . . . . . . . . . 120

Appendix B.1 Overall uncertainty distribution plot for the Southampton i-
Tree Eco model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendix B.2 Density plot of the mixing parameter, ρ, values for the Southamp-
ton i-Tree Eco model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix B.3 Density plot of the model error associated with the Southamp-
ton i-Tree Eco model in observed cells where the observed number of trees
was not equal to zero. Calculated by subtracting observed values from
expected values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix B.4 Median of the expected number of trees for each cell in Southamp-
ton, as predicted from the Southampton i-Tree Eco data . . . . . . . . . . 124

Appendix B.5 Parameter density plots for the Southampton i-Tree Eco model 125

Appendix B.6 Median of the spatial uncertainty, ϕ for each hexagonal cell of
size 0.5Ha in Cambridge, as predicted from the Cambridge i-Tree Eco data126

Appendix B.7 Density plot of the model error associated with the Cambridge
i-Tree Eco model in all observed cells. Calculated by subtracting observed
values from expected values . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendix B.8 Density plot of the model error associated with the Cambridge
i-Tree Eco model in observed cells where the observed number of trees
was not equal to zero. Calculated by subtracting observed values from
expected values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



xii LIST OF FIGURES

Appendix B.9 Log median of the expected number of trees for each cell in
Cambridge, as predicted from the Cambridge i-Tree Eco data . . . . . . . 129

Appendix B.10 Log standard deviation in the expected number of trees for
each cell in Cambridge, as predicted from the Cambridge i-Tree Eco data 130

Appendix B.11 Plot of the population density as estimated from the Cambridge
i-Tree Eco data in thousands of trees . . . . . . . . . . . . . . . . . . . . . 131

Appendix B.12 Traceplots of the model coefficient parameters for the Cam-
bridge i-Tree Eco model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Appendix B.13 Parameter density plots for the Cambridge i-Tree Eco model . . 133

Appendix B.14 Median of the spatial uncertainty, ϕ for each hexagonal cell of
size 0.5Ha in Petersfield, as predicted from the Petersfield i-Tree Eco data 134

Appendix B.15 Density plot of the model error associated with the Petersfield
i-Tree Eco model in observed cells. Calculated by subtracting observed
values from expected values . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendix B.16 Density plot of the model error associated with the Petersfield
i-Tree Eco model in observed cells where the observed number of trees
was not equal to zero. Calculated by subtracting observed values from
expected values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendix B.17 Log median of the expected number of trees for each cell in
Petersfield, as predicted from the Petersfield i-Tree Eco data . . . . . . . . 136

Appendix B.18 Log standard deviation in the expected number of trees for
each cell in Petersfield, as predicted from the Petersfield i-Tree Eco data . 136

Appendix B.19 Plot of the population density as estimated from the Petersfield
i-Tree Eco data in thousands of trees . . . . . . . . . . . . . . . . . . . . . 137

Appendix B.20 Traceplots of the model coefficient parameters for the Peters-
field i-Tree Eco model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Appendix B.21 Parameter density plots for the Southampton i-Tree Eco model 139

Appendix C.1 Plot of the relative error against the number of survey plots.
Relative errors calculated using negative binomial and Bernoulli simula-
tions from modeled i-Tree Eco data. Solid lines represent mean values,
whilst dashed lines represent 90th percentiles . . . . . . . . . . . . . . . . 151

Appendix C.2 Plot of the relative error against the number of survey plots.
Relative errors calculated using Poisson and Bernoulli simulations from
modeled i-Tree Eco data. Solid lines represent mean values, whilst dashed
lines represent 90th percentiles . . . . . . . . . . . . . . . . . . . . . . . . 152

Appendix C.3 Plot of the relative error against the number of survey plots, for
simulations produced from all and half of the MCMC samples. Relative
errors calculated using Poisson simulations from modeled i-Tree Eco data
in Southampton. Solid lines represent mean values, whilst dashed lines
represent 90th percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Appendix C.4 Plot of tree populations simulated using a negative binomial
distribution from half of the MCMC samples modeled using i-Tree Eco
data in Southampton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Appendix C.5 Plot of tree populations simulated using a negative binomial
distribution from half of the MCMC samples modeled using i-Tree Eco
data in Petersfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



LIST OF FIGURES xiii

Appendix C.6 Plot of the relative error against the number of survey plots, for
random survey designs and survey designs stratified by natural and build-
ing coverage. Relative errors calculated using negative binomial simula-
tions from modeled i-Tree Eco data in Southampton. Solid lines represent
mean values, whilst dashed lines represent 90th percentiles . . . . . . . . . 154

Appendix C.7 Plot of the relative error against the number of survey plots,
for random survey designs and survey designs stratified by natural and
building coverage. Relative errors calculated using Poisson simulations
from modeled i-Tree Eco data in Southampton. Solid lines represent
mean values, whilst dashed lines represent 90th percentiles . . . . . . . . . 154

Appendix C.8 Plot of the relative error against the number of survey plots,
for random survey designs and survey designs stratified by natural and
building coverage. Relative errors calculated from modeled ProximiTREE
data in Cambridge. Solid lines represent mean values, whilst dashed lines
represent 90th percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Appendix C.9 Plot of the relative error against the number of survey plots,
for random survey designs and survey designs stratified by natural and
building coverage. Relative errors calculated using negative binomial sim-
ulations from modeled i-Tree Eco data in Cambridge. Solid lines represent
mean values, whilst dashed lines represent 90th percentiles . . . . . . . . . 155

Appendix C.10 Plot of the relative error against the number of survey plots,
for random survey designs and survey designs stratified by natural and
building coverage. Relative errors calculated using Poisson simulations
from modeled i-Tree Eco data in Cambridge. Solid lines represent mean
values, whilst dashed lines represent 90th percentiles . . . . . . . . . . . . 156

Appendix C.11 Plot of the relative error against the number of survey plots,
for random survey designs and survey designs stratified by natural and
building coverage. Relative errors calculated from modeled National Tree
Map(NTM) data in Petersfield. Solid lines represent mean values, whilst
dashed lines represent 90th percentiles . . . . . . . . . . . . . . . . . . . . 156

Appendix C.12 Plot of the relative error against the number of survey plots,
for random survey designs and survey designs stratified by natural and
building coverage. Relative errors calculated using negative binomial sim-
ulations from modeled i-Tree Eco data in Petersfield. Solid lines represent
mean values, whilst dashed lines represent 90th percentiles . . . . . . . . . 157

Appendix C.13 Plot of the relative error against the number of survey plots,
for random survey designs and survey designs stratified by natural and
building coverage. Relative errors calculated using Poisson simulations
from modeled i-Tree Eco data in Petersfield. Solid lines represent mean
values, whilst dashed lines represent 90th percentiles . . . . . . . . . . . . 157

Appendix C.14 Plot of the absolute error against the number of survey plots.
Absolute errors calculated using Poisson simulations from modeled i-Tree
Eco data. Solid lines represent mean values, whilst dashed lines represent
90th percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Appendix C.15 Summary of the absolute error by percentiles against the num-
ber of survey. Absolute errors calculated using negative binomial simula-
tions from modeled Cambridge i-Tree Eco data . . . . . . . . . . . . . . . 158



xiv LIST OF FIGURES

Appendix C.16 Summary of the absolute error by percentiles against the num-
ber of survey plots. Absolute errors calculated using Poisson simulations
from half the model samples for modeled Southampton i-Tree Eco data . 159



xv

List of Tables

1.1 Matrix of the relationship between ecosystem services and urban forest
components. Table adapted from (Davies et al., 2017a) . . . . . . . . . . . 3

1.2 General plot information collected for the Urban Forest Effects(UFORE)
Model. Table adapted from the UFORE model literature (Nowak et al.,
2008a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Tree variables collected for Urban Forest Effects(UFORE) analysis. Table
adapted from the UFORE model literature (Nowak et al., 2008a) . . . . . 8

3.1 Summary of 2015 Land Cover Map categories used to build the final Land
Use categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Summary of land use categories, adapted from the 2015 Land Cover Map.
Numbers and rates of trees produced from ProximiTree data . . . . . . . 50

3.3 Summary of OS MasterMap Natural data for Cambridge. Numbers and
rates of trees produced from ProximiTREE data . . . . . . . . . . . . . . 51

3.4 Summary of OS MasterMap Buildings data for Cambridge. Numbers and
rates of trees produced from ProximiTREE data . . . . . . . . . . . . . . 52

3.5 Summary of Air Quality Management Areas (areas with poorer levels of
air quality) in Cambridge. Numbers and rates of trees produced from
ProximiTREE data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Domain weights given to each individual domain when constructing the
total Indices of Multiple Deprivation (IMD) score . . . . . . . . . . . . . 55

3.7 Summary of Indicies of Multiple Deprivation (IMD) quintiles for Cam-
bridge. Numbers and rates of trees produced from ProximiTREE . . . . . 57

3.8 Summary of model selection process using backwards selection. The
model components column is used to indicate which variables are included
in the model at each stage of the backwards selection. The WAIC and
an indicator of whether all variables are significant is presented for each
model in the process. The addition of interaction terms is considered as
the final stage of the selection process. . . . . . . . . . . . . . . . . . . . . 59

3.9 Summary of Cambridge ProximiTREE model parameters . . . . . . . . . 59

4.1 Summary of the number of plots, whereby the observed number of trees
lies within the given interval. Note that percentages are given as a pro-
portion of the total number of plots . . . . . . . . . . . . . . . . . . . . . 69

4.2 Summary of Southampton i-Tree Eco model parameters . . . . . . . . . . 76

4.3 Proportion of cells in which the observed value is within the 95% credible
interval for the modeled expected number of trees. Models based on i-
Tree Eco survey locations containing trees from the ProximiTREE and
National Tree Map data for Cambridge and Petersfield respectively . . . 85



xvi LIST OF TABLES

5.1 Summary of the relative error by percentile against the number of survey
plots. Relative errors calculated using simulations from modeled Cam-
bridge ProximiTREE data . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using simulations from modeled Peters-
field National Tree Map (NTM) data . . . . . . . . . . . . . . . . . . . . . 94

5.3 Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using negative binomial simulations from
modeled Southampton i-Tree Eco data . . . . . . . . . . . . . . . . . . . . 96

5.4 Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using Poisson simulations from modeled
Southampton i-Tree Eco data . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using Poisson simulations from half the
model samples for modeled Southampton i-Tree Eco data . . . . . . . . . 99

Appendix A.1 Summary of land use categories for Petersfield, adapted from
the 2015 Land Cover Map. Numbers and rates of trees produced from
National Tree Map (NTM) data . . . . . . . . . . . . . . . . . . . . . . . . 111

Appendix A.2 Summary of Indicies of Multiple Deprivation (IMD) quintiles.
Numbers and rates of trees produced from National Tree Map (NTM) data111

Appendix A.3 Summary of OS MasterMap Green space data for Petersfield.
Numbers and rates of trees produced from National Tree Map (NTM) data112

Appendix A.4 Summary of OS MasterMap Buildings data for Petersfield.
Numbers and rates of trees produced from National Tree Map (NTM)
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix A.5 Summary of the model parameters for the Petersfield National
Tree Map (NTM) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendix B.1 Summary of the model parameters for the Cambridge i-Tree
Eco model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Appendix B.2 Petersfield itree model parameters summary . . . . . . . . . . . 127

Appendix B.3 Proportion of hexagonal cells in which the observed value is
within the 95% credible interval for the modeled expected number of trees.
Models based on survey locations containing trees from the ProximiTREE
data for Cambridge. Survey locations taken from the Cambridge i-Tree
Eco data or randomly simulated from some random seed (Seed number
one and Seed number two) for 200 and 400 survey plots. Results presented
for cells of differing sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Appendix B.4 Proportion of hexagonal cells in which the observed value is
within the 95% credible interval for the modeled expected number of trees.
Models based on survey locations containing trees from the National Tree
Map data for Petersfield. Survey locations taken from the Petersfield
i-Tree Eco data or randomly simulated from some random seed (Seed
number one and Seed number two) for 200 and 400 survey plots. Results
presented for cells of differing sizes . . . . . . . . . . . . . . . . . . . . . . 141



LIST OF TABLES xvii

Appendix B.5 Proportion of cells in which the observed value is within the
95% credible interval for the modeled expected number of trees. Models
based on survey locations containing trees from the ProximiTREE data
for Cambridge. Survey locations taken from the Cambridge i-Tree Eco
data or randomly simulated from some random seed (Seed number one
and Seed number two). Results presented for hexagonal and gridded cells
of differing sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Appendix B.6 Proportion of cells in which the observed value is within the
95% credible interval for the modeled expected number of trees. Models
based on survey locations containing trees from the National Tree Map
data for Petersfield. Survey locations taken from the Petersfield i-Tree
Eco data or randomly simulated from some random seed (Seed number
one and Seed number two). Results presented for hexagonal and gridded
cells of differing sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Appendix C.1 Summary of the relative error by percentiles against the num-
ber of survey plots. Relative errors calculated using negative binomial
simulations from modeled Cambridge i-Tree Eco data . . . . . . . . . . . 145

Appendix C.2 Summary of the relative error by percentiles against the num-
ber of survey plots. Relative errors calculated using negative binomial
simulations from modeled Petersfield i-Tree Eco data . . . . . . . . . . . . 145

Appendix C.3 Summary of the relative error by percentiles against the number
of survey plots. Relative errors calculated using negative binomial and
Bernoulli simulations from modeled Southampton i-Tree Eco data . . . . 146

Appendix C.4 Summary of the relative error by percentiles against the number
of survey plots. Relative errors calculated using negative binomial and
Bernoulli simulations from modeled Cambridge i-Tree Eco data . . . . . . 146

Appendix C.5 Summary of the relative error by percentiles against the number
of survey plots. Relative errors calculated using negative binomial and
Bernoulli simulations from modeled Petersfield i-Tree Eco data . . . . . . 146

Appendix C.6 Summary of the relative error by percentiles against the number
of survey plots. Relative errors calculated using Poisson and Bernoulli
simulations from modeled Southampton i-Tree Eco data . . . . . . . . . . 146

Appendix C.7 Summary of the relative error by percentiles against the number
of survey plots. Relative errors calculated using Poisson simulations from
modeled Cambridge i-Tree Eco data . . . . . . . . . . . . . . . . . . . . . 147

Appendix C.8 Summary of the relative error by percentiles against the number
of survey plots. Relative errors calculated using Poisson and Bernoulli
simulations from modeled Cambridge i-Tree Eco data . . . . . . . . . . . 147

Appendix C.9 Summary of the relative error by percentiles against the number
of survey plots. Relative errors calculated using Poisson simulations from
modeled Petersfield i-Tree Eco data . . . . . . . . . . . . . . . . . . . . . . 147

Appendix C.10 Summary of the relative error by percentiles against the number
of survey plots. Relative errors calculated using Poisson and Bernoulli
simulations from modeled Petersfield i-Tree Eco data . . . . . . . . . . . . 147

Appendix C.11 Summary of the relative error by percentiles against the number
of survey plots. Relative errors calculated using negative binomial simu-
lations from half the model samples for modeled Southampton i-Tree Eco
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



xviii LIST OF TABLES

Appendix C.12 Summary of the relative error by percentiles against the num-
ber of survey plots. Relative errors calculated using negative binomial
simulations from half the model samples for modeled Petersfield i-Tree
Eco data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Appendix C.13 Summary of the relative error by percentiles against the number
of survey plots. Relative errors calculated using Poisson simulations from
half the model samples for modeled Petersfield i-Tree Eco data . . . . . . 148

Appendix C.14 Summary of the absolute error by percentiles against the num-
ber of survey. Absolute errors calculated using negative binomial simula-
tions from modeled Southampton i-Tree Eco data . . . . . . . . . . . . . . 148

Appendix C.15 Summary of the absolute error by percentiles against the num-
ber of survey. Absolute errors calculated using negative binomial simula-
tions from modeled Cambridge i-Tree Eco data . . . . . . . . . . . . . . . 149

Appendix C.16 Summary of the absolute error by percentiles against the num-
ber of survey. Absolute errors calculated using negative binomial simula-
tions from modeled Petersfield i-Tree Eco data . . . . . . . . . . . . . . . 149

Appendix C.17 Summary of the absolute error by percentiles against the num-
ber of survey. Absolute errors calculated using Poisson simulations from
modeled Southampton i-Tree Eco data . . . . . . . . . . . . . . . . . . . . 149

Appendix C.18 Summary of the absolute error by percentiles against the num-
ber of survey. Absolute errors calculated using Poisson simulations from
modeled Cambridge i-Tree Eco data . . . . . . . . . . . . . . . . . . . . . 149

Appendix C.19 Summary of the absolute error by percentiles against the num-
ber of survey. Absolute errors calculated using Poisson simulations from
modeled Petersfield i-Tree Eco data . . . . . . . . . . . . . . . . . . . . . . 150

Appendix C.20 Summary of the absolute error by percentiles against the num-
ber of survey. Absolute errors calculated using half the negative binomial
simulations from modeled Southampton i-Tree Eco data . . . . . . . . . . 150

Appendix C.21 Summary of the absolute error by percentiles against the num-
ber of survey. Absolute errors calculated using half the Poisson simula-
tions from modeled Southampton i-Tree Eco data . . . . . . . . . . . . . . 150

Appendix C.22 Summary of the absolute error by percentile against the number
of survey plots. Relative errors calculated using simulations from modeled
Cambridge ProximiTREE data . . . . . . . . . . . . . . . . . . . . . . . . 150

Appendix C.23 Summary of the absolute error by percentiles against the num-
ber of survey plots. Absolute errors calculated using simulations from
modeled Petersfield National Tree Map (NTM) data . . . . . . . . . . . . 151



xix

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated

by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree

at this University;

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

3. Where I have consulted the published work of others, this is always clearly at-

tributed;

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

7. None of this work has been published before submission

Signed:.......................................................................... Date:..................





xxi

Acknowledgements

Thanks to my supervisors, Sujit Sahu, Malcolm Hudson and Kieron Doick for agreeing

to take me as their PhD student and all their help and support over the last few years.

Thanks to everyone I encountered in Forest Research and the Urban Forest Research

Group, the Scottish Forestry Trust and the University of Southampton. The help,

friendship and information provided was invaluable in completing this Thesis.

I’d like to acknowledge Cambridge City Council, Bluesky World and everyone contribut-

ing to i-Tree Eco surveys, without which this research would not be possible.

Finally, thanks to all my friends and family for their invaluable love and support since

I started in 2019.





1

Chapter 1

Ecological background

1.1 Defining urban forests

The term urban forest can be broadly defined as ‘all the trees in the urban realm –

in public and private spaces, along linear routes and waterways and in amenity areas.

It contributes to green infrastructure and the wider urban ecosystem’ (Doick et al.,

2016). A more specific definition follows this same broad outline but is dependent on

our definitions of the terms ‘urban areas’ and ‘trees’. ‘Urban areas’ is a term largely

used to refer to built up areas containing high population densities. In the context of

this thesis ‘urban areas’ will refer to towns and cities within the UK, with a boundary

specified according to some local authority district dataset provided by the Office for

National Statistics (ONS, 2020). The term ‘tree’ is broadly defined by the Oxford

English Dictionary as:

‘A perennial plant having a self-supporting woody main stem or trunk (which

usually develops woody branches at some distance from the ground), and

growing to a considerable height and size. (Usually distinguished from a

bush or shrub by size and manner of growth)’ (OED, 2023)

As noted in the definition, a more specific criteria is required to differentiate trees from

bushes and shrubs. This criteria differs depending on the context of a dataset. Therefore,

more specific definitions of the term ‘tree’ are given in Sections 1.3.1 and 1.3.2 in the

context of the data being discussed.

One of the central reasons for assessing existing urban forests is to consider their impact

on ‘Ecosystem services’. A definition of the terms ecosystem and ecosystem services is

laid out in the Millennium Ecosystem Assessment (MEA), which states that:
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‘An ecosystem is a dynamic complex of plant, animal, and microorganism

communities and the nonliving environment interacting as a functional unit

. . . Ecosystem services are the benefits people obtain from ecosystems.’ (Mil-

lennium Ecosystem Assessment, 2005)

The MEA divides the Ecosystem services offered into four broad groups. These include:

• Provisioning services, such as food and fuel

• Regulating services, such as climate and flood regulation

• Cultural services, such as recreational and aesthetic benefits

• Supporting services, such as soil formation and photosynthesis.

The research in this thesis will consider ecosystems of urban forests. We therefore begin

by providing a brief overview of a few ecosystem services provided by urban forests.

1.2 Urban forests and ecosystem services

Urban forests provide a number of ecosystem services to the local area. These services

are commonly dependent on a number of different urban forest characteristics, such as

the canopy cover, height and structure of the trees within an urban forest. Table 1.1

provides a number of different ecosystem services that can be offered by urban forests

and illustrates whether the ecosystem service can be provided by single trees, lines of

trees, tree clusters and woodlands (Davies et al., 2017a).

In recent years, there has been a particular emphasis on ensuring people live within

close proximity to green spaces. As part of this, the UK government has plans to

ensure that the entire population lives within 15 minutes of a green space or water

(Briggs, 2023). This idea is developed further through the proposed 3-30-300 rule, which

suggests that people should be within 300m from the nearest park or greenspace, each

neighbourhood should have 30% canopy cover and 3 trees should be visible from each

home (Konijnendijk, 2022). The 3-30-300 rule is motivated by the ecosystem services

provided and also suggests there is an interest in the location of trees within urban

forests.

There is evidence to suggest that increases in the number of people living in urban areas

could have a major impact on the structure of urban forests and in turn the ecosystem

services provided. According to 2018 estimates, the proportion of the UK’s population

living in urban areas, such as towns and cities, could rise from 83% in 2018 to 90%

by 2050 (UN, 2018). If not considered carefully, this population growth could have
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Table 1.1: Matrix of the relationship between ecosystem services and urban forest
components. Table adapted from (Davies et al., 2017a)

a significant impact on the ecosystems in urban areas. The following provides a few

examples of how population growth in urban areas could impact ecosystems.

• A larger urban population may lead to gardens being converted into car parking

surfaces, due to lack of space and increases in car ownership. As car parking

surfaces are generally less permeable than gardens, it would be expected that the

frequency and severity of flooding will increase (Warhurst et al., 2014).

• Characteristics of urban areas commonly result in a phenomenon known as urban

heat islands, whereby urban areas have a higher temperature than surrounding

rural areas. The urban heat island effect has been shown to be directly correlated
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with an urban area’s population size and density. Rising populations in urban

areas, along with the impact of climate change, is therefore likely to exacerbate the

urban heat island effect. The presence of vegetation, such as trees, is an effective

way of reducing the impact of urban heat islands and regulating the temperature

in urban areas (Wang et al., 2021).

• Urban areas can contain a number of chemical pollutants and particulates, which

have a negative effect on the health of an areas inhabitants and the surrounding

environment. Vegetation, including urban forests, has been shown to be an effec-

tive way of removing pollutants and improving the quality of air (Nowak et al.,

2006). As there is evidence to suggest that a correlation exists between an urban

area’s population and the amount of air pollution present (Borck and Schrauth,

2021), urban forests could play a vital part in reducing the amount of pollution

and ensuring suitable levels of air quality in urban areas.

It is therefore of particular interest to monitor and understand the current ecosystem

services provided, so as to allow policy makers and community groups to develop proac-

tive strategies for maintaining the benefits provided by ecosystem services as urban areas

develop into the future.

Despite the benefits, green infrastructure in urban areas is often considered as a ‘de-

velopment luxury or afterthought’ and generally receives less funding in the UK when

compared to infrastructure for housing and transport (Mell et al., 2013). Tree offi-

cers face a number of challenges in providing regulating ecosystem services from urban

forests, highlighted through interviews carried out with staff members responsible for

tree management decisions in urban areas across Britain (Davies et al., 2017b). Amongst

the interviewed participants ‘widespread dissatisfaction’ was noted for the reactive ap-

proaches to urban forest management, with participants instead preferring more proac-

tive management approaches which enhance the provision of ecosystem services. The

introduction of proactive urban forest management is in part dependent on political sup-

port and funding. Many of the interviewed tree officers expressed that a key approach

for gaining political support is through comprehensive summaries of local ecosystem ser-

vices delivered by trees and the resulting economic benefits. There is therefore interest

in approaches that use the structure and properties of existing trees in urban areas to

establish and quantify estimates of the ecosystem services delivered and the resulting

economic impact.

1.3 Quantifying urban forest benefits

To quantify some of the ecosystem services offered by urban forests, it is important

to first consider the structure and characteristics of an urban forest. In this thesis we
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consider remote sensing and the i-Tree Eco program as two separate approaches for

capturing information on existing urban forests.

1.3.1 Remote sensing

The term remote sensing refers to the process in which the earth’s surface is imaged,

often with the use of observation satellites. Using remote sensing it is then possible to

build up some image of how an urban forest’s structure is expected to look. Remote

sensing data can come from a variety of different locations including the European Space

Agency’s Sentinel program and the Environment Agency’s LiDAR data (Fassnacht et al.,

2023). Remote sensing and satellite approaches are particularly adept at summarising

canopy cover, defined as the area of ground covered by a tree canopy. An example of this

is the i-Tree canopy study, which asked participants to select whether random points

contain tree canopy cover or not based on webmap images. The responses at different

points were then used to provide an overall estimate of the canopy cover for the total

study area (Sales et al., 2023). Areal images are however less successful at capturing

ground level information, such as the species of tree and shrub data, which can be vital

when trying to summarise the ecosystem services offered by urban forests.

The remote sensing data used to explore urban forest structures throughout this thesis

will be the National Tree Map (BlueSky, 2020a) and ProximiTREE (BlueSky, 2020b)

datasets. Using aerial photography, accurate terrain and surface data, the National Tree

Map/ProximiTREEE data is designed to capture locations, heights and canopy/crown

extents of all trees within a set area. Trees are only included in the National Tree map

data if they are over 3m in height, with a canopy width larger than 10 metres and only

included in the ProximiTREE data if they are over 1m in height. The ProximiTREE

data has been funded by the Interreg 2 Seas Programme 2014-2020 co-funded by the Eu-

ropean Regional Development Fund under subsidy contract No. 2S05 -048 and supplied

by Cambridge City Council as part of its Cambridge Canopy Project commitments.

Petersfield NTM data was supplied by Bluesky International Limited.

1.3.2 i-Tree Eco

An alternative approach to remote sensing for exploring urban forests is the use of survey

plots. Unlike remote sensing, survey plots generally only allow for a small proportion

of the total area under investigation to be observed. Inference surrounding the entire

urban area is then made based on the observed, sampled locations. Whilst surveying

approaches don’t give explicit information on the urban forest across the entirety of

an urban area, surveying does allow for ground level information to be collected that

would not necessarily be available using remote sensing techniques. It is for this reason
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that remote sensing approaches are designed to ‘augment rather than replace existing

protocols, such as iTree Eco’ (Baines et al., 2020).

The surveying approach followed and explored in this thesis is the one laid out in the

i-Tree Eco program. In short, i-Tree Eco is a survey based approach for assessing the

structure and function of trees within urban areas. As the data is collected at ground

level, trees and bushes are differentiated through the Diameter at Breast Height (DBH)

as opposed to either canopy cover, or tree height. The DBH is a measurement of a tree

diameter provided at approximately breast height, or more specifically a height of 4.5

feet (1.37 meters) from the ground. Within i-Tree Eco data, trees are defined as woody

material with a DBH larger than or equal to 7cm. A more detailed overview of the

i-Tree Eco program is given on the i-Tree Eco website, which states:

‘i-Tree Eco version 6 is a flexible software application designed to use data

collected in the field from single trees, complete inventories, or randomly

located plots throughout a study area along with local hourly air pollution and

meteorological data to quantify forest structure, environmental effects, and

value to communities’ (i-Tree Eco, 2021)

The underlying model assessing the structure and function of trees in i-Tree Eco is

referred to as the Urban FORest Effects (UFORE) model (Nowak et al., 2008a). By

collecting data relating to the land use, tree cover, meteorology and pollution concen-

tration, the UFORE model is able to provide estimates for a variety of information,

both relating to the forest structure (e.g. number of trees, species composition, tree

health) and several regulating services functions, such as air pollution removal, carbon

storage and sequestration. Furthermore, i-Tree Eco is then able to calculate and present

economic summaries associated with some of the ecosystem services, summarising an

urban forest as an asset with an appreciable return (Mutch et al., 2017).

A variety of information is collected from the i-Tree Eco survey plots and the observed

trees for the UFORE model to work effectively. We summarise information collected for

i-Tree Eco surveys using two tables observed in the UFORE model literature (Nowak

et al., 2008a). Table 1.2 details each of the collected variables for the survey plots, whilst

Table 1.3 details each of the collected variables for the observed trees.

1.4 Machine learning

An alternative approach for summarising urban forest characteristics across an urban

area is presented in a paper employing machine learning (Baines et al., 2020). Machine

learning can be broadly described as an approach which uses computational algorithms

to automatically examine datasets and then make resulting inferences. (Baines et al.,
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Table 1.2: General plot information collected for the Urban Forest Effects(UFORE) Model. Table
adapted from the UFORE model literature (Nowak et al., 2008a)

Variable Description

Plot IDz Unique identifier

Plot addressy

Date and crew

Photo number Used to help identify plot

Measurement unitsz Units for all measurement in the plot; metric (m/cm) or English
(ft/in)

Reference objectsy At least two objects that will assist in locating plot center for
future plot remeasurements

Distance to reference objecty Distance from plot center to each reference object (ft or m)

Direction to objecty Direction from plot center to each reference object (degrees)

Tree measurement point
(TMP)y

If plot center falls on a building or other surface (such as a high-
way) where plot center cannot be accessed, the plot is not moved;
all distances and directions to trees are measured and recorded
from a recorded fixed point (e.g., building corner) referred to as
the TMP

Percent measuredz Proportion of the plot that is actually measured as portions of
plot may be denied access

Land usez As determined by crew in the field from a standard list of land
uses

Percent inz Proportion of the plot in each land use to nearest 1%

Tree coverz Percent of plot area covered by tree canopies estimated to nearest
5%

Shrub coverz Percent of plot area covered by shrub canopies estimated to nearest
5%

Plantable space Percent of plot area that is plantable for trees (i.e., plantable soils
space not filled with tree canopies) and tree planting would not
be restricted as a result of land use (footpath, baseball field, and
so on); to nearest 5%

zRequired for Urban Forest Effects(UFORE) analysis.
yRequired for permanent reference of plot
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Table 1.3: Tree variables collected for Urban Forest Effects(UFORE) analysis. Table
adapted from the UFORE model literature (Nowak et al., 2008a)

Variable Description

Tree ID Unique tree number

Distance (ft/m) and direction (degrees)
from plot center or TMPy

Used to identify and locate trees for future measure-
ments; TMP is tree measurement point

Species codez Species code from standard list currently containing
over 10,000 tree and shrub species

Number of dbhs recordedz For multistemmed trees

DBHz Diameter at breast height (in/cm) for all recorded
stems

DBH measurement height Recorded if DBH is not measured at 1.37 m (4.5 ft)

Total heightz Height to top of tree (ft/m)

Height to crown basez Height to base of live crown (ft/m)

Crown widthz Recorded by two measurements: N-S (north–south)
and E-W (east–west) widths (ft/m)

Percent canopy missingz The percent of the crown volume that is not occu-
pied by leaves; two perpendicular measures of missing
leaf mass are made and the average result is recorded;
recorded to nearest 5%

Diebackz Percent crown dieback to nearest 5%

Percent impervious beneath canopy Percent of land area beneath entire tree canopy’s drip
line that is impervious

Percent shrub cover beneath canopy Percent of land area beneath canopy drip line that is
occupied by shrubs

Crown light exposurez Number of sides of the tree receiving sunlight from
above; used to estimate competition and growth rates

Distance (ft/m) and direction (degrees) to
space-conditioned residential buildingsz

Measured for trees at least 6.1 m (20 ft) tall and within
18.3 m (60 ft) of structures three stories or less in
height

Street tree Y/N; used to estimate proportion of population that
is street trees

Tree status Indicates if tree is new or removed from last measure-
ment period

zRequired for Urban Forest Effects(UFORE) analysis.
yRequired for permanent reference of plot
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2020) demonstrates how machine learning techniques can be used to estimate three

urban forest characteristics which include, canopy cover, canopy height and tree density

across urban areas. i-Tree Eco datasets were considered, however models were primarily

developed using remote sensing, LiDAR data. LiDAR data is an areal imaging technique

used here to build three dimensional images of the canopy structure. It is of note that the

LiDAR and i-Tree Eco datasets were only ever considered separately when modelling.

The (Baines et al., 2020) paper notes that the modelling approach used can result

in overestimates of the total number of observed trees. While steps are taken to try

and reduce the issue of overestimation, the results and discussion do not provide any

information regarding the efficacy of the steps taken. The machine learning approaches

used in the paper are also unable to consider spatial effects. As spatial effects have been

shown to influence results throughout ecology (Di Zio et al., 2004; Sahu et al., 2007;

Du et al., 2017), we would preferably like to develop an approach that accounts for the

presence of any spatial effects. As the presence of spatial effects can be inconsistent for

different areas (Zhou et al., 2017) it is important to assess the requirement of whether

a spatial component is needed. Details of how spatial analysis can be considered within

our analysis are provided in Chapter 2.

1.5 Survey plot design considerations in i-Tree Eco

The accuracy of any i-Tree Eco results will be dependent on a suitable area being ob-

served by the survey plots. If the surveyed area is a poor representation of the entire

urban forest, then any results will be unrepresentative of the area under investigation.

The surveyed area may be unrepresentative if either the area characteristics are markedly

different between the full and the surveyed areas, or the surveyed area is not sufficiently

large enough to draw any reasonable conclusions. To ensure the surveyed area is suffi-

ciently large, we could include larger numbers of survey plots in the survey plot design,

however this also makes the entire survey more expensive to conduct.

Limited resources, including tight funding, within urban forestry means that it is par-

ticularly advantageous for i-Tree Eco surveys to be carried out as cheaply as possible,

whilst ensuring accurate results. The problem of limited resources within urban forestry

was raised multiple times in interviews with people involved in i-Tree Eco studies, with

one participant stating:

‘I guess the only barriers to implementing any recommendations would obvi-

ously be financial, those would be the key barriers’ (Hall et al., 2018)

By ensuring the costs of i-Tree Eco studies are kept to a minimum, this could allow

for more money to be spent elsewhere such as on the analysis and dissemination of the

results.
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When discussing the financial cost of i-Tree Eco surveys, it is important to clarify how

much the surveys generally cost to conduct. The topic of i-Tree Eco costs is addressed

in a paper on an i-Tree Eco survey which took place in Petersfield (Moffat and Doick,

2019). The Petersfield i-Tree Eco survey had a much lower cost in comparison to other

surveys due to a use of ‘citizen science’ volunteers for data collection. However, the

paper notes that using a professional arboricultural firm consisting of two-person teams

surveying 200 i-Tree Eco plots over a period of approximately five weeks is expected to

cost approximately £20,000 (2017 prices). This cost assumed cost-saving approaches,

such as minimising the travelling time for each day and areal pre-assessments so that

more surveyors can be applied to densely covered plots and vice-versa. Furthermore, it

is suggested by Forest research that an i-Tree Eco study consisting of 200 plots, delivered

by a lead co-ordinator and sub-contracted field-surveyors is expected to cost approxi-

mately £35,000 (2017 prices). The survey design, specifically the number of survey plots

required, is therefore key in calculating how much time is required to complete the i-Tree

Eco survey. By optimising the number of survey plots required, we will minimise the

time, and therefore the cost, required for completion of an i-Tree Eco survey, while still

ensuring accuracy in the results.

1.6 Existing studies on survey design effects in the ecology

literature

Optimising survey designs so as to provide results as efficiently as possible is a sub-

ject that has previously been addressed in the ecology literature. In this section we

summarise some of the findings and general approaches from the ecology literature, to

consider how our research will be conducted and how our research will fit into the wider

literature.

1.6.1 Survey context

Before exploring the details of surveying approaches in the wider ecological literature, it

is first worth highlighting the context dependent nature of efficient sampling procedures.

This idea is explored in a paper on the context of monitoring biodiversity (Yoccoz et al.,

2001), which suggests that the following three questions should be considered at the

sampling design stage :

• ‘Why monitor?’

• ‘What should be monitored?’

• ‘How should monitoring be carried out?’
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A broad approach does little to answer these specific questions and therefore further

developments of survey designs are often required for specific contexts.

In their exploration of surveying approaches across ecology, (Kenkel et al., 1989) noted

the importance of context when considering sampling procedures, emphasising how sam-

pling considerations should naturally follow from consideration of the investigation ob-

jectives. When reviewing sampling designs in the wider ecological literature it is therefore

important for us to consider how the techniques used to explore sampling procedures

are applicable in the context of our research and sampling objectives.

(Kenkel et al., 1989) further suggested that sampling approaches in ecology arise from

three dichotomies which include, parameter estimation versus pattern detection, uni-

variate outcomes versus multivariate outcomes and discrete versus continuous sampling

universes. The meanings of these terms are summarised as follows:

• Parameter estimation: The survey is intended to determine estimates for some kind

of parameter of interest. Examples of parameters could include species diversity

or the effect of air quality. Commonly parameter estimation should also consider

the amount of variation associated with a parameter estimate.

• Pattern detection: Considers underlying patterns observed in the data. This can

often take the form of some spatial analysis in an ecological context.

• Univariate: Refers to instances where we have one outcome of interest.

• Multivariate: Refers to instances where we have multiple outcomes which are

assessed simultaneously.

• Discrete sampling universe: Sampling units are natural, distinct and recognisable.

Examples include individual plants or geographic units such as islands.

• Continuous sampling universe: Sampling units are defined as part of the sampling

design and are not natural recognisable units. In a continuous sampling universe,

consideration needs to be given to the location, number and sizes of sampling units.

For the i-Tree Eco data, we note that a multivariate, parameter estimation approach,

with continuous sampling is used. Whilst pattern detection analysis could be conducted

from i-Tree Eco data, this is not part of the UFORE model used to summarise the data.

The data has multivariate outcomes as the UFORE model considers multiple different

variables to produce a variety of different summary information. i-Tree Eco surveys have

a continuous sampling universe as the survey design is decided at random in advance of

conducting the survey, without the sampling units occurring naturally.

While (Kenkel et al., 1989) provides a useful overview of different sampling considera-

tions, we believe that some aspects of the paper are either oversimplified or outdated.
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For example, it could be argued that pattern analysis should be considered as part of

parameter estimation, as observed patterns may in turn affect parameter estimates. It

could therefore be appropriate to view pattern analysis and parameter estimates simul-

taneously, however it is still important to consider that both are accounted for at the

design stage of the sampling. It is also of note that the ecology literature has expanded

considerably since the paper’s publication, resulting in the literature addressing more

specific and relevant sampling areas as opposed to more generalised sampling recom-

mendations. It is however still key to ensure that the context of the sampling literature

is carefully considered.

Sample size, plot size, plot shape and plot locations were each highlighted as sampling

features that should be considered at the design stage (Kenkel et al., 1989). We therefore

consider how each of these sampling features are dealt with in the ecology literature.

1.6.2 Survey sample size

We begin our review of the environmental survey literature by examining different ap-

proaches to optimising the number of survey plots, otherwise known as the sample size.

(Hoffmann et al., 2019) demonstrates an approach for identifying the optimal size and

number of survey plots required for quantifying and understanding biodiversity within

some alpine grassland areas. This aim is summarised as selecting the size and num-

ber of survey plots so as to provide ‘maximal information via minimal effort’. Despite

looking more specifically at the topic of biodiversity and studying alpine grassland areas

as opposed to urban forests, the overall aim of the paper is very similar to one of the

key aims being investigated in our research. However, rather than being based on data

observed within a select number of small locations, findings are instead based on nine

20m × 20m squares in which the required information has been fully observed. Each

of these squares is then divided up into 100 smaller grids of size 2m × 2m, referred to

in the paper as subplots. These subplots provide a useful framework, from which mul-

tiple different design strategies can be assessed. For example to investigate a sampling

strategy of 12 subplots, 12 subplots could be selected from within the entire grid and

compared to the findings observed throughout the entire 20m × 20m grid. Information

collected for the paper included the diversity metric, Shannon’s information entropy,

and species richness. For each of the assessed sample sizes, medians and 95% intervals

were also presented, so as to give some estimate of the associated level of certainty.

While the number of survey plots is one of the key focuses of the paper, the impact of the

size and location of the survey plots was also considered. The size was directly accounted

for by considering progressively larger grid sizes in addition to different sample sizes.

The findings between grid sizes were then compared using a very similar approach to

the comparison of sample sizes.
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The impact of subplot locations on any findings is acknowledged, however is not explicitly

addressed in comparison to survey plot numbers and sizes. (Steinbauer et al., 2012) is

cited as highlighting how distance decay between species communities has been observed

in the literature, suggesting that more similar communities of species are observed closer

together in comparison to distances further away. Areas with a large number of nearby

communities can then be referred to as clustered locations, in which we could expect to

find more similar species. To address the effect of clustering, each selection procedure was

carried out 10,000 times with locations being randomly selected. Summaries were then

presented across the entirety of the sampling locations, so that the variation resulting

from the subplot locations was captured in the summary. While this presents a useful

overview, it may have been of interest to also consider the effectiveness of unclustered

subplot locations, an idea explored in more depth in Section 1.6.3.

In general, the approach outlined by (Hoffmann et al., 2019) provides a useful framework

for assessing the impact of different sampling designs. However, the approach is difficult

to apply for i-Tree Eco datasets where the urban forest has not been fully observed.

We instead consider an alternative approach in which sampling designs can be assessed

without the requirement of a fully observed set of data.

As an alternative to using fully observed data, (Schweiger et al., 2016) provides a simu-

lation based approach for assessing different sampling designs. These sampling designs

are not placed within a specific ecological context, with the paper instead providing a

more general summary of sampling designs. This broad approach extends to the re-

sponse variable, which is defined as a biotic response and used to represent responses

ranging from species richness to biomass. These responses are simulated from a range

of modelling distributions, with random error components added to provide ‘noise’ that

would commonly be observed in ecological data. The term simulation is used here to

refer to data that has been artificially created in such a way that it is a reasonable

approximation of the reality. The three error terms considered include

• Gradient error: Some kind of expected variation that can be fully explained. For

example some kind of area characteristic.

• Systematic error: a constant but unknown error in the data. Could for example

be a result of spatial clustering.

• Random error: Error that cannot be explained. This is used to represent the

presence of random variation in the response.

Like the (Hoffmann et al., 2019) paper, data is represented using grids with different

survey plot combinations repeatedly assessed for a range of different sample sizes. The

suitability of the survey designs for pattern detection are then explored by fitting linear

models to the data found in the survey plots. The parameters included in the linear
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models were decided through the calculation of the AICc, a prediction error estimator

designed to compare models by measuring the trade-off between model fit and model

complexity. We note that replicates of survey plots, in which data is repeatedly measured

at the survey plot locations, are considered in the paper but deemed largely inappropriate

in the context of urban forests.

The derivation of some of the error terms provided, appear to be unreliable. For example

it is suggested that the random noise is not expected to account for more than 25% of

the total variation, based on eddy flux measurements which contain very high levels of

uncertainty. This appears to be quite a crude method of establishing the proportion

of random noise accounted for in the simulations, which may not be appropriate for

all ecological designs. Additionally, the paper appears to suggest that if the random

error has a normal distribution with standard deviation of 0.25, then 25% of the total

variation is accounted for by the error term. It is unclear how this conclusion is reached,

due to the normal distribution being centered around an undefined predictor level and

interpretations of the associated standard deviation being unclear without further infor-

mation.

We propose that for i-Tree Eco data a simulation based approach be used to investi-

gate different sampling designs. This will consist of simulating tree locations over an

entire area, based on observed data in select locations. Using this approach provides

the density of trees in locations across the area of interest, without requiring a fully

observed dataset of tree locations. The simulated data can then be used as a frame-

work for assessing different sampling designs. Simulation based approaches can also be

considered for the National Tree Map/ProximiTREE data as whilst the National Tree

Map/ProximiTREE data is effectively observed in full, simulation approaches allow us

to consider alternative potential urban forest structures which follow from the data,

but have not been directly observed. We note here that the i-Tree Eco data and Na-

tional Tree Map/ProximiTREE data will be considered separately due to disagreements

between the datasets and differences between the dataset’s definitions of the term tree.

1.6.3 Survey plot locations

The topic of survey plot locations is explored for a number of different scenarios, through-

out the ecology literature. A primary reason for exploring survey locations is that find-

ings in nearby survey plots are often more likely to share similarities than survey plots

which are further away, an occurrence referred to as spatial clustering. Spacial clustering

is therefore often accounted for at the design stage, by using careful selection of survey

locations. However, there is variation in the approaches and conclusions reached about

how survey plot locations should be decided within the ecology literature.
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(Bacaro et al., 2015) compared the effect of three sampling ‘shapes’ in estimating plant

diversity, using a complete, existing dataset in the Siena Province, Italy. As before, the

observed area was split up into subplots which were then used to represent different

sampling designs. As the data is fully observed, the subplot survey findings can be

compared to the ‘real’ values and used to make inference about different survey designs.

In this case 604 10m × 10m plots were each divided up into 16 2.5m × 2.5m subplots.

Sampling designs were then assessed by selecting four subplots in each plot so as to

be arranged as either squares, rectangles, or placed at random locations. For squares,

four subplots are selected so that all of the squares are touching and with each subplot

representing a corner of a square. For rectangles, the subplots are instead laid out in

one connected straight line resembling a rectangle. We note that the interpretation of

the word ‘shape’ in the context of this paper, refers to the shape of the sampling designs

as opposed to the shapes of the subplots. The findings of the paper suggested that the

shape of the survey design should be dependent on the survey objective, although a

random placement approach generally resulted in much higher species richness values.

The use of square survey designs was said to be more suitable if the objective was to

explore species composition amongst more homogeneous vegetation, whereas rectangular

survey designs were suited for recording more species than squares whilst still ensuring

the results are pooled over one large area. These results can be attributed to the distance

decay in similarities of species composition (Steinbauer et al., 2012), whereby species

composition is likely to be more similar in nearby areas, such as observed in the square

survey designs, compared to further away. It is therefore more appropriate to consider

randomly located survey plots for surveying urban forest data, so as to capture as much

information over the entire area as possible.

(Güler et al., 2016) conducted a similar approach for investigating the impact of plot

locations on species richness counts. Once again, square and rectangular survey plot

designs were considered and compared to randomly located survey plot designs, referred

to as discontiguous sampling designs. However, it was concluded that the species richness

findings for contiguous and discontiguous survey designs were incomparable due to the

presence of clustering in the underlying data. (Güler et al., 2016) instead proposed that

species richness calculations from discontiguous survey designs, be referred to using the

term ‘cumulative richness’. For i-Tree Eco data we are intending to summarise over a

wider area and therefore are more interested in species richness across the entire area as

opposed to select locations.

The impact of survey plot locations were also considered in the context of sampling bias.

(Leitão et al., 2011) considers surveys in which survey plot locations are biased so as to

explore primarily special protection areas and areas near to roads. The context of the

paper explores habitat models of species distributions for a large Steppe bird dataset

in Southern Portugal. These models are designed so as to provide information on the

spatial pattern of species and biodiversity. Once again observations are removed from
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some underlying baseline dataset to form sampling designs which are then compared to

the original findings at baseline. Due to the nature of the data (birds are not station-

ary) the underlying baseline dataset is instead based on an intensive random sample

as opposed to a fully observed dataset. Analysis was conducted by comparing fitted

models for the sampling designs to fitted models at baseline, with the results suggesting

that model performance was dependent on the locations selected under the sampling

design. More specifically (Leitão et al., 2011) suggests that ‘it is logical that the greater

the geographical bias in a dataset, the greater the resulting environmental bias will be’.

These findings are echoed in the plant community literature (Chiarucci, 2007), where

randomisation techniques were found to be more reliable than preferential sampling

techniques. As i-Tree Eco datasets are generally subjected to randomisation procedures

in the sampling design, we would not expect environmental bias to be present. How-

ever, (Leitão et al., 2011) notes that environmental bias can occur under even carefully

designed studies. It is therefore suggested that surveys should be assessed to ensure

suitability for extrapolating results. As a result, different underlying characteristics of

the datasets will be explored prior to any analysis in this report. For sampling designs,

we should ensure that randomisation designs such as stratification are considered and

that the survey design covers a sufficient area.

1.6.4 Other survey design considerations

The ecology literature also considers other aspects of survey design which will not be

addressed in our analysis for practical reasons. For example, the size of survey plots in

sampling designs has been highlighted in the literature as an important consideration

when exploring ecological data (Levin, 1992; Chave, 2013). The interest in survey plot

sizes is due in part to the existence of ecological communities, described as ‘the living

organisms present within a space-time unit of any magnitude’ (Palmer and White, 1994).

It could be expected for ecological communities to share similar characteristics, however

these communities are difficult to scale due to a lack of a clear classification. It is

therefore often impossible to select the size and location of a survey plot so as to ensure

an entire community has been observed. Within the literature, similar approaches were

taken to assess the impact of survey plot sizes, as to assessing appropriate survey plot

locations and sample sizes. Approaches involved comparison of sampling designs to

both simulated (Steinbauer et al., 2012) and observed (Dengler et al., 2009; Hoffmann

et al., 2019) baseline datasets and generally concluded that the size of survey plots

could influence outcomes. (Dengler et al., 2009) further suggested that in the context

of observing species richness, it is beneficial for uniform plot sizes to be applied. The

literature did not appear to address some of the practical concerns surrounding the use

of large survey plots in an urban forest context. For example, larger survey plots in

residential areas are likely to require more permissions in comparison to smaller survey

plots covering less land. This could result in parts of larger survey plots being inaccessible
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and increase the time taken for data collection. Additionally, survey plots in woodland

areas can contain dense tree and shrub populations, resulting in the data taking much

longer than usual to collect. We should therefore provide some consideration of the

time data collection takes when considering survey plot sizes and numbers, to ensure

estimates are optimised according to available resources. It is due to practical concerns,

that the size of survey plots used will not be explored in further detail within this thesis.

The shape of survey plots in ecological sampling designs, has also received some attention

in the literature. For example (Paul et al., 2019) compared the use of square and circular

survey plots for collecting forestry information. The use of square plots were shown to be

positively biased, whereas circular plots were less biased. This bias could be attributed

to data collection being much easier to carry out practically with circular plots than

square plots. To explain further, circular plot areas can be easily defined as within a

certain distance of some centre point, whereas the exact boundary of a square plot may

often be defined by the surveyor, which could lead to the introduction of biases. In some

instances the use of grids may be more appropriate, particularly if it is advantageous for

the survey plots to be able to tessellate (Keeley and Fotheringham, 2005; Bacaro et al.,

2015). For the outlined practical purposes, only the use of circular survey plots will be

considered within this thesis.

1.6.5 Survey designs in i-Tree Eco

There are a few papers in the Ecology literature which directly address the appropri-

ateness of survey designs in i-Tree Eco. Perhaps the most central paper on the subject,

(Nowak et al., 2008b), examines the effect of plot and sample sizes on the timing and pre-

cision of urban forest assessments and reaches the conclusion that the use of 200 circular

one-tenth acre (0.04 ha) survey plots provides a reasonable population estimate. This

conclusion is reached in the paper using survey data collected for the UFORE model

in 14 different cities, with plot sizes ranging from 110 to 220 survey plots. The errors

were standardised using a population size of 200 plots and relative standard errors, pro-

portional to the population estimates, were calculated. From these findings the paper

suggests that if a 12% relative standard error is deemed appropriate, then 200 one-tenth

acre plots will produce a reasonable population estimate. However, this conclusion is

based on the average relative standard error, whereas the relative standard error across

the 14 cities can be seen to vary between 8.1 and 19.2, suggesting that 200 plots is

far from guaranteed to result in a relative standard error of 12%. Furthermore, this

variation in the relative standard error highlights how the number of plots required is

often dependent on characteristics of the area under observation and that a simple ‘one

size fits all’ approach to assessing the number of survey plots needed is inappropriate.

It should also be noted that the paper’s results are based on urban areas within the US

and may not be generalisable within the UK. For example grid based road systems have
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generally been adopted much more widely in the US than the UK which could have an

impact on the underlying ecosystem, including the urban forest structure.

(Nowak et al., 2008b) examines how the relative standard error changes as the number of

plots increases. The relative standard error results appear to be based on manipulating

the standard errors observed within the 14 cities, as opposed to using surveys with the

appropriate number of survey plots. For instance, the relative standard error is presented

up to 500 survey plots, however none of the surveys used in the analysis contains more

than 220 survey plots. Ideally results would be based on the standard errors observed for

the requisite number of plots as opposed to extrapolating the results of existing studies.

Despite issues surrounding the analysis of the population estimates, the paper offers

useful information on time considerations when carrying out the surveys. Amongst these

considerations are the set up time and number of permissions required from landowners

for the plots, the time it takes to travel between plots and the relationship between

the assessment time and the plot size. These considerations should be accounted for

when developing a plot design structure, so as to ensure that the design is economically

feasible. For example, a hypothetical design that prioritises plot placement in areas

which are expected to have a high density of trees may provide a better population

estimate using less plots, however the increased time it would take to assess densely

covered plots (Nowak et al., 2008b) could mean that the approach provides little or no

economic benefit. This concern can be addressed by ensuring results hold for a range of

different survey plot designs.

In an investigation into the effects of sampling on quantifying urban forest structures,

(Jin and Yang, 2020) found reason to reject the suggestion that 200 survey plots should

ensure a population estimate with a 12% relative standard error. The paper investigated

the benefits and drawbacks of three different sampling designs. These designs include

simple random sampling, whereby locations were decided at random, stratified sampling,

whereby locations were located randomly according to some set strata or sub popula-

tions, and systematic sampling, whereby locations were randomly set but with a fixed

periodic interval. Analysis for this paper was carried out by attempting to extract the

spatial locations of trees within urban areas and then using the results to build an under-

lying urban forestry structure in Philadelphia and Beijing. Surveys were then simulated

according to the different sampling strategies and repeated for each sample size between

200 and 500 survey plots. Unlike (Nowak et al., 2008b), this approach has the advantage

of allowing the results of different survey plot designs to be repeatedly tested for the

data and does not rely on extrapolating the standard error of existing studies. Once the

study designs were simulated, the error in the total population estimates was calculated

based on comparisons to the population estimate from the extracted tree locations. The

results of the analysis concluded that smaller sample sizes, particularly surveys with

plot sizes less than 200, resulted in population estimates with low levels of accuracy.

Additionally, stratified random sampling designs were generally found to produce more
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reliable estimates when compared to simple random sampling and systematic sampling

designs. As discussed, there are drawbacks associated with only drawing tree locations

from areal images, with (Jin and Yang, 2020) noting how the real distribution patterns

of the tree species are likely to be much more complex than those constructed for the

analysis. Generalisability of the results to urban areas in the UK was also quite low,

with assessment only carried out on two cities located outside the UK. It is therefore of

interest to establish an approach that considers the appropriateness of using 200 survey

plots and whether or not a different survey design approach would be more efficient.

1.7 Thesis outline

The aim of this thesis is to consider the use of Bayesian spatial modelling techniques,

to assess the number of survey plots required for accurate estimates of urban forest

populations using i-Tree Eco data. For each survey plot design we consider not only

whether the design is generally appropriate, but if the results are stable under a wider

variety of conditions. The outlined approach is considered for i-Tree Eco, ProximiTREE

and National Tree Map (NTM) data only, however could be easily adapted for alternative

datasets so as to assess a range of ecological surveying processes.

Chapter 2 introduces and summarises the existing statistical techniques that have been

employed to obtain our results. We summarise the Bayesian modelling approach in

general, before detailing some of the spatial models considered for analysis. For each

spatial modelling approach we consider the suitability of the model, including statistical

benefits and drawbacks of the approach. Practical application of the discussed spatial

models is considered for the programming language R, before concluding the chapter

with an introduction to the basic methodology used for simulating data.

In Chapter 3, application of the discussed spatial modelling techniques is illustrated in

full for some completely observed data, which uses areal imaging as a basis, in the UK city

of Cambridge. We begin the chapter with a full summary of completely observed data,

the ProximiTREE data set, including specific reference to findings in the Cambridge

area. Spatial exploratory analysis is conducted on the ProximiTREE data, to provide

some initial evidence in favour of including a spatial component in our models. All

environmental covariates explored for our fitted models are summarised in full, with

example tables and illustrations given for the area of Cambridge. The fitted model is

then detailed in full, along with assessment of convergence diagnostics, the model fit,

the estimated populations and the estimated cell values. A brief summary of findings

for a similar, completely observed, set of data in Petersfield is also provided.

The application of spatial modelling techniques to partially observed i-Tree Eco survey

data is explored in Chapter 4. A detailed summary of the i-Tree Eco data is provided,

with a particular focus on i-Tree Eco data collected for the UK city of Southampton.
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The Southampton i-Tree Eco data contained approximately 400 survey plots, double

the previously recommended sample size for i-Tree Eco surveys, providing a much larger

observed area for our models. Our novel spatial modelling approach for partially ob-

served survey data, is detailed in full and illustrated for the Southampton i-Tree Eco

data. As in Chapter 3, our fitted model is assessed in full, before considering the results

of applying the model to i-Tree Eco data for the Cambridge and Petersfield areas.

Using the models fitted in Chapters 3 and 4, we explore the efficacy of different survey

designs in estimating total tree populations from simulations drawn from the fitted mod-

els. The processes used to simulate survey plot locations, tree densities and estimates of

population errors associated with survey plot structures are detailed and considered in

full. The results of the simulation approach are considered under a number of different

conditions including, the data driving model simulations, the area being assessed, the

amount of variation in the tree density values, the simulations drawn from the model,

the use of stratification in the survey plot designs and the approach used to calculating

population error.

We conclude the thesis with a discussion of both the simulation and model results.

Further work that could be conducted from the topics explored in our thesis is also

considered. Appendices containing additional code, tables and figures for Chapters 3,

4 and 5 are provided. The appendices provide information used to obtain our results,

which are not included in the main body of the thesis for the sake of brevity.
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Chapter 2

Statistical Theory

Throughout this thesis we make use of existing statistical methodologies to construct an

approach for assessing survey plot designs. In this chapter, we summarise the existing

statistical theories which form a backbone to the analysis we have conducted. The chap-

ter begins with a summary of what the term Bayesian modelling means, before detailing

different sampling techniques for implementing Bayesian models. We then proceed to

discuss a variety of spatial analysis techniques, with a particular focus on approaches

for incorporating a spatial component into Bayesian modelling methodologies. Practical

approaches for how the described Bayesian spatial models can be fitted in the pro-

gramming language R is provided. The chapter concludes with a brief summary of the

approach taken to simulating data in the thesis. We note that this chapter is intended

to provide background to the ideas developed in later chapters of the thesis and that

further specifics on applying the statistical techniques is given in later chapters, within

the context of the data.

2.1 Bayesian statistics

Throughout this thesis we have generally applied a Bayesian approach for conducting

statistical analysis, where parameters of interest are assumed to have distributions of

possible values. The Bayesian approach contrasts the frequentist approach to statistical

analysis, with the frequentist approach instead assuming that parameters are fixed but

unknown values. As a result, the Bayesian approach allows parameter uncertainty to

be accounted for explicitly as part of the analysis. The consideration of parameters as

distributions rather than fixed points means Bayesian statistics is an ideal framework

for producing simulated values, an idea explored further in Section 2.8.

A further benefit of using a Bayesian approach for conducting statistical analysis, is

that Bayesian statistics allows for the inclusion of prior information. Prior information
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refers to additional information and beliefs outside of the observed data which can be

incorporated into analysis using Bayesian statistics. The basic framework, allowing for

both observed and prior information to be considered, is given by Bayes theorem and is

introduced as follows.

2.1.1 Bayes’ theorem

We introduce Bayes’ theorem by first considering how the theorem can be used to calcu-

late the probability of an event occurrence. Taking A as an event with some associated

probability of occurrence and B1, B2, . . . , Bn as a set of mutually exclusive and exhaus-

tive events, then Bayes’ theorem can be written for any i, where i = 1, . . . , n, as,

P (Bi|A) =
P (Bi ∩A)

P (A)
=

P (A|Bi)P (Bi)∑︁n
j=1 P (A|Bj)P (Bj)

(2.1)

Under the definition of Bayes’ theorem above, additional information can be incorpo-

rated into the probability calculation through the term P (Bi). The term P (Bi) is

referred to as our prior information which we note is derived independently of event A.

For the purposes of Bayesian modelling, the Bayes theorem given in Equation 2.1 can be

generalised for random variables. In the generalisation we replace Bi with a set of model

parameters, θ, and replace A with some observed data y. Our prior information takes

the form of p(θ), the likelihood derived from our observed data is represented by f(y|θ)
and our posterior distribution is represented as π(θ|y). More formally, Bayes theorem

can be written for random variables as,

π(θ|y) = f(y|θ)π(θ)∫︁∞
−∞ f(y|θ)π(θ)dθ

(2.2)

where −∞ < θ < ∞.

We note that the denominator, often known as the normalising constant, of Equation 2.2

does not contain θ as the term is integrated out of the expression. As the normalising

constant can be tricky to calculate, it is commonly removed when writing the generali-

sation of Bayes theorem for random variables. By rewriting Equation 2.2 to remove the

normalising constant, Bayes theorem is given as,

π(θ|y) ∝ f(y|θ)π(θ) (2.3)

Or in words, the posterior is proportional to the likelihood multiplied by the prior.
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2.1.2 Markov chain Monte Carlo (MCMC)

A common way of obtaining posterior inference for Bayesian models is through the

use of the Markov chain Monte Carlo (MCMC) methodology. As the name suggests,

the MCMC methodology uses a combination of both Markov chains and Monte Carlo

integration to derive posterior inference for Bayesian models.

The term Markov chain is used to describe a process in which a sequence of numbers

are generated from a transition distribution, with each sequence entry based only on

the result of the previous sequence entry, following some initial value in the sequence.

Formally we can write a Markov chain for a parameter, θ as,

θ(i+1) ∼ p(θ|θ(i)) (2.4)

where i is a whole number representing the sequence position and p() represents a

transition kernel associated with the chain.

The term Monte Carlo integration essentially refers to a process whereby integrals of dis-

tributions can be estimated by drawing a large number of samples from the distribution.

By applying Monte Carlo techniques to Markov chains estimating some parameter of

interest, we have the basis for the MCMC methodology. In essence, we say that MCMC

methods provide an approach for drawing large numbers of random samples from some

parameters of interest, θ, in order to provide accurate estimates of a posterior distri-

bution. MCMC methods are generally viewed as a computationally intensive approach

for gaining estimated posterior samples, due to the high level of sampling required by

Monte Carlo integration techniques. Additionally, the number of samples required for

MCMC methods should account for the fact that MCMC techniques often take time to

converge to the posterior estimate. As a result, the first set of iterations are commonly

referred to as ‘burn in’ and are not included in final MCMC estimates.

2.1.3 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is an approach which incorporates MCMC method-

ology for providing samples to estimate some posterior distribution. A general version

of the algorithm in a Bayesian modelling context is given as follows:

STEP 1: Set the initial value θ0 = (θ01, θ
0
2, . . . , θ

0
n)

STEP 2: Generate ϕ, the candidate point, from a proposal distribution, q(ϕ|θ)
for the first parameter, θ1, at iteration t+ 1.
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STEP 3: Calculate the acceptance probability for the first parameter using,

α(θ1, ϕ) = min

{︃
1,

π(ϕ|θ1)q(θ1|ϕ)
π(θ1|y)q(ϕ|θ1)

}︃

STEP 4: With probability α(θ1, ϕ) we accept the proposed value and set

θ
(t+1)
1 = ϕ, else θ

(t+1)
1 = θ

(t)
1

STEP 5: Repeat steps 2-4 for all other parameters

STEP 6: Repeat steps 2-5 for total number of iterations

We note that while the above approach updates each of the parameters separately, it is

also possible to simultaneously update a set of parameters with each step if required.

2.1.4 Gibbs sampler

The Gibbs sampler is a widely used MCMC sampling approach that represents a special

case of the Metropolis-Hastings algorithm where the proposal distribution is set as equal

to the posterior distribution. As a result, the acceptance probability calculated for the

Metropolis-Hastings algorithm is equal to one for the Gibbs sampler and all samples

are accepted. The Gibbs sampler algorithm can be used to generate samples from some

posterior distribution, π(θ) as follows,

STEP 1: Set the initial value θ0 = (θ01, θ
0
2, . . . , θ

0
n)

STEP 2: Update parameters for step t+ 1 as follows

θ
(t+1)
1 is sampled from π(θ1|θ(t)2 , . . . , θ

(t)
n )

θ
(t+1)
2 is sampled from π(θ2|θ(t+1)

1 , θ
(t)
3 . . . , θ

(t)
n )

...
...

...

θ
(t+1)
n is sampled from π(θn|θ(t+1)

1 , θ
(t+1)
2 , . . . , θ

(t+1)
n−1 )

STEP 3: Repeat STEP 2 until t is equal to the total number of iterations.

2.1.5 Hamiltonian Monte Carlo

Another sampling approach which avoids some of the slow exploration associated with

random walk techniques is the Hamiltonian Monte Carlo(HMC) sampler (Neal, 2012).
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The HMC sampler uses the concept of Hamiltonian dynamics, a concept originating

in physics, to prioritise areas with higher posterior probabilities, whilst a Metropolis

Hastings step in the sampler ensures that areas with lower posterior probabilities are

not ignored completely. As a result, the HMC sampler is often considered a more efficient

sampling approach when compared to alternative approaches such as the Gibbs sampler.

2.1.6 Assessing convergence and comparing model performance

After using some MCMC sampling approach to obtain estimates of model parameters,

it is important to consider the efficacy of both the model and the sampling process. A

number of techniques exist which allow the user to consider whether posterior samples

have converged effectively. We briefly detail some of these techniques as follows,

Multiple chains - Currently the MCMC process has been defined using only one

chain generated from a set of initial values. By running multiple chains from a

variety of different initial values, we can assess whether the sampler has converged

through comparison between chains. Chains can be run simultaneously using

different cores, to ensure that multiple chains can be obtained without a significant

time penalty. It is generally recommended that four chains be used to ensure

convergence without large time and computational penalties (Stan Development

Team, 2018).

Trace plots - A simple visual approach for considering whether a sampler has

converged. Trace plots involve tracing the line between parameter values sampled

at each iteration. Traceplots should look like ‘hairy caterpillars’ centered around

the average parameter estimate, with alternatives suggesting potential issues with

the sampler. By plotting chains simultaneously with different colours, the trace

plots should also confirm whether any chains have mixed well.

R̂ - The R̂ diagnostic is an approach for comparing the between and within chain

convergence of parameter estimates. Between chain convergence is assessed, as

chains may converge to different distributions and within chain convergence is

assessed as chains may cover the same area without converging to a distribution.

R̂ values close to one suggest the chains have mixed well, whereas values larger

than one suggest the chains have not mixed well (Vehtari et al., 2021).

Geweke diagnostic - The Geweke diagnostic is a convergence diagnostic comparing

the mean at the start of a chain, typically the first 10%, to the mean at the end

of a chain, typically the last 50%. Mean comparison is conducted through the

calculation of a test statistic for equal means. Convergence is suggested if the

means at the beginning and end of a chain are approximately equal (Geweke,

1991).
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Thinning - Thinning is an approach whereby samples are systematically removed

according to some pattern, e.g. every tenth sample. Thinning allows for posterior

samples to take up less memory, whilst still allowing the sampler to run for the

intended number of total samples.

Credible intervals - Credible intervals refer to probability intervals associated with

some parameter. For example, we would say with probability, p, that some pa-

rameter lies between two values. These two values define the upper and lower end

of our credible intervals. Credible intervals should be interpreted in the context of

the fitted model, however the inclusion of zero in a parameter’s credible interval

can be indicative of the parameter failing to have a significant effect. Credible

intervals are often provided at the 95% probability level, however the probability

level should be specified.

Effective sample size - Autocorrelation within chains can be responsible for in-

creasing uncertainty in parameter estimates. For each parameter estimate, the

effective sample size provides the number of independent samples with the same

power as the autocorrelated samples. In Stan, the effective sample size calculations

are similar to the R̂ calculations and incorporate both between chain and within

chain calculations (Stan Development Team, 2018).

Deviance Information Criterion (DIC) - The Deviance Information Criterion (DIC)

is a model comparison statistic, commonly used for the comparison of Bayesian

hierarchical models. The DIC assesses model efficacy while penalising model com-

plexity to ensure effective models that afford overfitting. Models with lower DIC

values are generally considered as superior to models with higher DIC values.

Watanabe-Akaik Information Criterion (WAIC) - The Watanabe-Akaik Informa-

tion Criterion (WAIC) is an alternative to the DIC, which is considered ‘a more

fully Bayesian approach’. The WAIC is considered ‘more Bayesian’ as the WAIC

derives values by averaging over the posterior as opposed to using point estimates.

The derivation of the WAIC can be more difficult to calculate than that of the

DIC, however is often considered more appropriate, particularly for hierarchical

models (Gelman et al., 2013).

Leave-One-Out-Cross-Validation (LOOCV) - Leave-One-Out-Cross-Validation (LOOCV)

is another model comparison statistic commonly used for comparing Bayesian hi-

erarchical models. As a basis for LOOCV, we consider removing one observation

from a set of n observations. Our fitted model is then used to estimate the miss-

ing observation, based on the remaining n − 1 observations. Under LOOCV this

process is repeated for all n observations, with the accuracy of model estimates

used to calculate the LOOCV estimate. Like the DIC and WAIC, the LOOCV

is interpreted by comparing the values obtained under different models. Stable

LOO calculations can be calculated quickly from existing simulation draws using
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a procedure known as Pareto-smoothed importance sampling (PSIS). PSIS (Ve-

htari et al., 2016). The PSIS procedure is an approach which uses importance

sampling to attach weights which smooth over long tails that may not be captur-

ing the target distribution (Vehtari et al., 2022). More detailed information on how

the LOOCV and PSIS procedures are calculated can be found in the literature.

2.2 Spatial analysis introduction

The term spatial analysis refers to analysis that not only accounts for characteristics of

an observed area, but also findings in nearby areas. The reason for conducting spatial

analysis is perhaps best explained through Tobler’s first law of Geography, which states

‘everything is related to everything else, but near things are more related than distant

things’. As spatial analysis often considers some response values in the context of other

nearby response values, it is common for spatial analysis to consider autocorrelation.

As autocorrelation is a common consideration in time series analysis, time series and

spatial analysis techniques frequently overlap in their methodologies.

The spatial analysis techniques that can be applied are generally dependent on the

structure of a dataset. The following section explores some forms the data can take and

gives a basic overview of some spatial analysis techniques that can be applied.

2.3 Types of spatial data

Spatial data can typically be classified as one of the following three types, point-reference,

areal or point pattern data (Banerjee et al., 2014). The first of these types, Point-

reference data, refers to data collected from observations at a number of randomly

selected locations within some area of interest. Point-reference data can be written as

a stochastic process with {Y (s) : s ∈ D}, where D refers to a fixed geographical area,

s a finite set of locations found within D (written as s ∈ D) and Y (s) the number of

observations at location s. The proximity of locations from each other provides a basis

for defining a spatial component when conducting point reference analysis. Surveyed i-

Tree Eco data can be placed in a format suitable for point-reference analysis by treating

our locations, s, as the centre points for each survey plot and our response, Y (s), as the

total number of trees observed within the boundaries of each survey plot. An illustration

of how this point-reference setup looks is given in Figure 2.1 for some i-Tree Eco data

collected in the UK city of Southampton. By applying point-reference approaches to

surveyed i-Tree Eco data as described, we ensure that the locations of the survey plots

are used but lose information on the precise locations of trees within each of the survey

plots.
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Figure 2.1: Example of a point-reference setup approach for some i-Tree Eco survey
data located in Southampton

The term areal data refers to data relating to smaller areal units within a larger area

of interest. More formally a two dimensional polygon, D, is partitioned into a number

of smaller areal units, C. We use Y (C) to refer to some response variable within each

areal unit, with the total number of areal units written as nC . By using the proximity

of areal units, C, from each other as a basis, spatial analysis can be conducted on

areal data. Frequently, areal data is only available in instances where information has

been anonymised for privacy such as illness, household income and voting habits. The

availability of areal data means that areal analysis techniques are commonly used in

disease mapping (Lee, 2011; Obaromi, 2019), however other examples include analysis

of voting data (Lauderdale and Clark, 2016) and analysis of motor vehicle crashes (Morris

et al., 2019). In Figure 2.2 we illustrate how some areal data could be expected to look

using manipulated i-Tree Eco data taken from the UK city of Southampton. To achieve

the illustration, the area of Southampton has been divided up into polygons based on

Medium Layer Super Output Areas and a total rate of trees per Ha has been calculated

for each polygon based on the survey data found within the polygon boundaries.

Point pattern data has similarities to point reference data, but with points being indica-

tive of an event occurrence as opposed to a fixed location. A key part in the analysis

of point pattern data is often whether observations exhibit clustering, regularity or

Complete Spatial Randomness ( CSR) (Cressie, 1994). Clustering is identified if points

are spatially grouped together, with regularity indicated by points being approximately

equally spaced out across the area of interest. In the absence of both clustering and

regularity, CSR would be concluded. An intensity parameter, λ, is used to represent the
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Figure 2.2: Example of an areal setup approach for some i-Tree Eco survey data
located in Southampton

rate of occurrences within a nearby area and is expected to be homogeneous across the

area of interest in the absence of any spatial effects. Examples of point pattern data

include earthquake epicentres (Ouchi and Uekawa, 1986), wildlife locations (Khaemba,

2001) and tree locations within a forest (Law et al., 2009). The trees located within the

survey plots would be considered point pattern data, an example of which is illustrated

in Figure 2.3 for a survey plot with a particularly high level of trees observed.

For the analysis conducted in this thesis, we will largely focus on applying statistical

methods used for modelling areal data. Justification for this decision is given within the

context of the data being analysed in chapters 3 and 4, along with consideration to the

benefits and drawbacks of the methodology being used.

2.4 Neighbourhood definitions

The basis commonly used to account for the spatial structure when exploring and mod-

elling areal data is referred to as the neighbourhood, or proximity, matrix. This is

essentially a matrix where each entry is used to provide information on the spatial re-

lationship observed between each possible pair of areal units. More formally the matrix

consists of weights, W , which represent the spatial association between the different

areal units 1, 2, . . . , G. Weights, wjk, are assigned within the matrix, to represent the

spatial association between the areal units j and k (Banerjee et al., 2014). Commonly

these weights are defined as binary values based on whether the two areal units share a
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Figure 2.3: Plot of trees for a single plot in the i-Tree Eco survey data, to illustrate
point pattern data. Note that a plot with a particularly high tree coverage has been

selected for illustrative purposes.

border, however the weighting function could instead be designed so as to incorporate

other spatial information, such as the distances between areal units. If required, addi-

tional proximity matrices can be defined for different orders, whereby the order dictates

the proximity of the areal units. For instance we may have a first order proximity ma-

trix representing the direct neighbours of an areal unit, a second order proximity matrix

representing both the first order areal units and neighbours of the first order areal units

and so on.

When working with areal data, where the proximity matrix is defined based on touching

areal units, it is useful to specify whether ‘queen’ or ‘rook’ based neighbours are being

used. In the R package spdep, ‘queen’ based neighbours refer to any touching areal

units, whereas ‘rook’ based neighbours use the stricter criteria that both areal units

must share an edge (Bivand and Wong, 2018). An example of how this will look using

both queen and rook based neighbours can be seen for a simple 3× 3 grid in Figure 2.4.

‘Queen’ based neighbours have been applied for the proximity matrices used throughout

this thesis, so as to account for the entirety of any surrounding cells.

As an alternative to proximity matrices, (Morris et al., 2019) recommends the use of

graph edgesets for defining the neighbourhood relationships when conducting spatial

modelling in the programming platform, Stan. Graph edgesets consist of two vectors in

which each vector row defines neighbouring cells for all of the neighborhood relationships

present within a graph. An example illustration of how an edgeset can be defined from

a simple graph and proximity matrix is given in Figure 2.5.



2.5. Exploratory spatial techniques 31

(a) Neighbourhood structure using
‘Rook’ weights

(b) Neighbourhood structure using
‘Queen’ rates

Figure 2.4: Example neighbourhood structures for a 3×3 grid

Graph edgesets are recommended as an alternative to proximity matrices as storing

the neighbourhood definitions as an edgeset requires less memory than specifying a full

proximity matrix in cases where the proximity matrix is sparse. Additionally, the use

of proximitry matrices when modelling is often much slower than the use of edgesets,

as manipulating large matrices is much more computationally expensive compared to a

pair of vectors.

In this thesis we will exclusively consider first order proximity matrices with binary

weights, as this structure allows the neighbour relationships to be easily defined as a

graph edgeset. Note that despite the use of the phrase edgeset here, ‘Queen’ based

neighbour definitions are still being applied.

2.5 Exploratory spatial techniques

Before fitting a statistical model, we can conduct a number of spatial exploratory analysis

techniques to provide preliminary evidence on whether a spatial term is required in our

model. We will be considering spatial exploratory techniques associated with areal

and point pattern data. For areal data, exploratory spatial techniques can be used to

establish preliminary evidence on whether some observations, Y , are more similar in

nearby areas compared to observations further away. This preliminary evidence can

then be used to provide an initial justification for whether a spatial component should

be considered in any statistical modelling approaches. For point pattern data, spatial

exploratory techniques can be used to asses the extent that fully observed tree locations

exhibit signs of clustering.

2.5.1 Areal exploratory techniques

Moran’s I and Geary’s C are two techniques that can be conducted as spatial exploratory

analysis for areal data. These techniques provide exploratory analysis on whether a
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Here we illustrate how a spatial structure can be defined for use in
spatial modelling. We begin with a numbered diagram of a 3× 2 grid:

1 2 3

4 5 6

From the above spatial structure we define the following proximity
matrix. This proximity matrix uses first order queen based neighbours
with binary weights: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 0

1 0 1 1 1 1

0 1 0 0 1 1

1 1 0 0 1 0

1 1 1 1 0 1

0 1 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Alternatively, our binary weights matrix can be written as a pair of
vectors, known as an edge set:

⎧⎨⎩1 1 1 2 2 2 2 2 3 3 3 4 4 4 5 5 5 5 5 6 6 6

2 4 5 1 3 4 5 6 2 5 6 1 2 5 1 2 3 4 6 2 3 5

⎫⎬⎭
T

Figure 2.5: Example illustration of how a proximity matrix and an edge set can be
created from a basic spatial structure
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spatial association exists between areal units. Evidence of a spatial association can

then provide justification on whether a spatial component should be considered in any

statistical models.

Moran’s I (Moran, 1950), acts as an adaptation of Pearson’s correlation coefficient and

summarises the level of spatial autocorrelation present. The level of spatial autocor-

relation present is calculated for Moran’s I by comparing an observed area unit to its

neighbouring areas using the weights, wjk, as defined in section 2.4. More specifically

the formula for Moran’s I can be written as:

I =
G

S0

∑︁G
j=1

∑︁G
k=1wjk(yj − ȳ)(yk − ȳ)∑︁G

j=1(yj − ȳ)2
(2.5)

Where S0 =
∑︁n

j=1

∑︁n
k=1wjk is the sum of all the neighbours, G is the total number of

areal units and yj is the response value associated with areal unit j. Moran’s I usually

ranges between −1 and +1, with values close to −1 indicative of regularity and values

close to +1 indicative of clustering. Under the null hypothesis of no autocorrelation, the

expected value of Moran’s I is not always equal to zero. It is therefore common to assess

whether spatial autocorrelation is present by conducting a statistical test comparing the

observed I, Î, to the value of I in the instance of no autocorrelation, I0 (Paradis and

Schliep, 2019). Alternatively, the observed Moran’s I could be assessed through com-

parison to other Moran’s I values drawn using a Monte Carlo approach. Under a Monte

Carlo approach, observed responses are randomly distributed to existing areal units a

number of times and used as a basis for calculating a number of alternative Moran’s I

values. The original Moran’s I can be compared to the Moran’s I values generated by

the Monte Carlo approach, to assess for the presence of spatial autocorrelation (Gimond,

2023).

For further investigation into whether a spatial component is present, Geary’s C can

be calculated (Geary, 1954). Like Moran’s I, Geary’s C acts as a measure of spatial

autocorrelation present in the data. More formally we write Geary’s C as:

C =
(G− 1)

∑︁G
j=1

∑︁n
k=1wjk(yj − yk)

2

2S0
∑︁n

j=1(yj − ȳ)2
(2.6)

where once again S0 =
∑︁n

j=1

∑︁n
k=1wjk is the sum of all the neighbours, G is the total

number of areal units and yj is the response value associated with areal unit j. Under

the absence of spatial correlation it’s expected that Geary’s C would be approximately

equal to one and therefore spatial correlation is identified when Geary’s C tends to less

than one. A Monte Carlo approach can also be conducted for Geary’s C using the same

basic outline conducted for Moran’s I (Bivand and Wong, 2018).
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2.5.2 Point pattern exploratory techniques

To assess whether some point pattern data exhibits CSR, we can apply techniques known

as the G function and Ripley’s K to the data. We note that in the context of the G

function and Ripley’s K, the term neighbours refers to nearby locations as opposed to

the definition given in section 2.4 for areal data.

To assess for the presence of CSR amongst the point reference locations, the G function

uses the distance, r, between the nearest neighbours for each observation in a point

pattern dataset and compares this to what would be expected under CSR. Informally

the function, G(r), can be thought of as a ‘nearest neighbour distribution’ where G(r) =

Pr(nearest event ≤ r) and which represents the cumulative distribution function of

the distance between a typical random point and its nearest neighbour (Banerjee et al.,

2014). For observations close to the border of an area of interest, D, we are likely to

observe edge effects, whereby potential surrounding observations that lie outside the

border are not accounted for. An edge correction can be built into the G function

estimate using the following adaptation for each location, si,

Ĝ(r) =

∑︁
i I(ri ≤ r ≤ bi)∑︁

i I(r < bi)
(2.7)

where ri refers to the neighbour distance for each i, bi refers to the distance from si to

the edge of the area of interest, D, and si refers to the ith location amongst the set of

locations, s.

Whether the locations exhibit CSR can be established by comparison of the estimated G

function to the G function under CSR defined as G(r) = 1−exp(−λπr2), for a constant

intensity, λ.

Another distance based exploratory method applicable to point reference data is Ripley’s

K (Ripley, 1977). As opposed to calculating the distance between a point and its nearest

neighbour, Ripley’s K instead counts the number of observations within distance, d of

a point. We again calculate an estimate of Ripley’s K based on the observed data and

compare this to Ripley’s K under CSR. More formally, (Kiskowski et al., 2009) specifies

Ripley’s K for distance, r, as,

K(r) =
1

h

h∑︂
i=1

Hsi(r)/λ (2.8)

where si is the ith plot location, λ is the intensity and the function H(r) is the expected

number of points within distance, r, and the sum is taken over h points.

For more convenient use, (Besag, 1977) accounted for the fact that the area of the circle



2.6. Bayesian spatial models 35

under CSR is πr2 and proposed,

L(r) =

√︃
K(r)

π
(2.9)

A common way to interpret L(r) is to plot d against L(d), so as to illustrate how

the function behaves as the distance increases. Under CSR we would have L(d) =

d, suggesting that much larger and smaller values than expected would indicate the

existence of clustering and regularity respectively. To account for edge effects, Ripley’s

K can be adjusted so as to be calculated relative to the circle area within the study

area.

2.6 Bayesian spatial models

There are a wide variety of approaches for fitting Bayesian spatial models to datasets

with a range of different structures. In the following sections we consider areal modelling

techniques which employ a Conditional Autoregressive (CAR) spatial component.

2.6.1 Conditional Autoregressive models

A popular way of defining a spatial component for areal data is through the use of Con-

ditional Autoregresive (CAR) models. Sometimes known as Besag models, CAR models

smooth over neighbouring areal units in an attempt to remove the noise attributed to

spatial variation. An approach for defining the CAR model is laid out by (Banerjee

et al., 2014) and considers the CAR model for each ϕj as follows,

ϕj |ϕk, k ̸= j ∼ N

(︄∑︂
k

bjkϕk, σ
2
CARj

)︄
, j = 1, . . . , G (2.10)

with bjk representing values of a spatial weights matrix, B, and σ2
CARj

representing the

unknown variance of the CAR model for each areal unit, j. From Equation 2.10, we

say that each ϕj is Normally distributed around the sum of the weighted value of its

neighbours with some unknown variance, σ2
CARj

.

Using Brook’s lemma (Besag, 1974), it can then be show that when (I −B)−1 σ2
CAR is

positive definite, then ϕ ∼ N (0,ΣCAR), where ΣCAR is a covariance matrix equal to

(I −B)−1 σ2
CAR. For ΣCAR to be considered a valid covariance matrix, the following

conditions must hold (Ver Hoef et al., 2017):

• I −B has positive eigenvalues,

• ΣCAR is diagonal with positive diagonal elements,
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• bi,i = 0 ∀i and

• bi,j/σ
2
CARi,i

= bi,j/σ
2
CARj,j

∀i, j.

By defining Q as a precision matrix equal to the inverse of our covariance matrix ΣCAR,

we can then write ϕ ∼ N(0,Q−1). The precision matrix Q is constructed using two

matrices, D and A (Morris et al., 2019). The matrix D represents a diagonal matrix in

which the off-diagonal entries are equal to zero and the diagonal entries, djj , represent

the number of neighbours observed at the jth areal unit. Meanwhile, A represents

an adjacency matrix, with entries equal to one if areal units are neighbours and zero

otherwise. Following the conditions laid out for a valid covariance matrix above, it

should be ensured that the precision matrix, Q is a positive definite matrix (Ver Hoef

et al., 2017). The proximity matrix can then be written as:

Q = D (I − αA) (2.11)

where I is the identity matrix and α is a parameter used to control the amount of spatial

dependence, with α = 0 representing spatial independence (Banerjee et al., 2014).

By setting α = 1, we have a special case of the CAR model known as the Intrinsic

Conditional Autoregressive (ICAR) model, where the proximity matrix is now defined

as Q = D−A. As the new definition of Q allows for some zero eigenvalues, we say that

Q is improper (Lavine and Hodges, 2012). As Q is improper, we are unable to use the

ICAR model as a model for data and instead used the model as a prior distribution.

(Morris et al., 2019) highlights the advantage of using the ICAR model over the CAR

model in terms of computation time. It is noted that the log probability density of ϕ

under the CAR model can be written as:

n

2
log(det(Q))− 1

2
ϕTQϕ (2.12)

where n is the number of components in each graph.

Computing the determinant for Q requires G3 operations, where G is the total number

of areal units. An MCMC sampler will need to recalculate the probability density of

ϕ for every new proposal and therefore using the CAR model can be computationally

expensive. Meanwhile, under the ICAR model, the term n
2 log(det(Q)) is constant,

resulting in only G2 operations being required. In summary, while the ICAR model

can only be used as a prior distribution, it is much more computationally efficient when

using MCMC methods.

Under the ICAR model the conditional specification of ϕj can be written as:

ϕj ∼ N

(︄∑︁
j∼k ϕj

dj
,
τϕ

2
j

dj

)︄
(2.13)
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Additionally, it can be particularly useful for model fitting in programs such as Stan to

use the joint specification of the ICARmodel (Morris et al., 2019). The joint specification

for ϕ is given as:

p(ϕ) ∝ exp

⎛⎝−1

2

∑︂
j∼k

(ϕj − ϕk)
2

⎞⎠ (2.14)

where as the term (ϕj − ϕk)
2 is dependent on the difference between the values of

neighbouring cells, it follows that minimising this term will result in spatial smoothing.

Furthermore, by centering the model using the constraint
∑︁

G ϕj = 0, we ensure that

the log probability density will be defined, as the domain of integration is restricted to

only the set of parameters summing to one (Morris et al., 2019).

A limitation of the Besag model is that it exclusively accounts for spatial variation and

not other explanatory parameters. We therefore consider models that contain a spatial

CAR component alongside an independent random error term and model covariates.

2.6.2 Besag, York and Molie model

One adaptation of the Besag model that allows for the inclusion of a a spatial CAR

component, independent random error component and model covariates, is the Besag,

York and Molié (BYM) model (Besag et al., 1991). The BYM model is a lognormal

Poisson model, often used for modelling count data, Yj for each area j. Often a Poisson

distribution with mean Ejηj is used, where Ej is an expected count and η is some

relative risk. This setup allows for easy interpretation of the relative risk, quantifying in

each area whether the average risk is higher (ηj > 1) or lower (ηj < 1) than the average

risk in the standard population (Moraga, 2019). The ease of interpreting the relative

risk means the BYM model is popular in disease mapping contexts. It is important

to highlight the use of the log link in the BYM model, which is particularly adept at

modelling the occurrence of rare events.

In full, the BYM model can be formally written as

Yj |ηj ∼ Poisson(Ejηj), j = 1, . . . , nc (2.15)

log(ηj) = µ+ β1Xj1 + ...+ βpXjp + σj (2.16)

σj = uj + vj (2.17)

where µ represents the intercept and overall risk level, Xj = (Xj,1, Xj,2, ..., Xj,p) is a

vector of p covariates relating to area, j and β = (β1, β2, ..., βp)
′
is a vector of associated

coefficients, uj represents a spatial component assigned with an ICAR distribution, vj

is some uncorrelated non-spatial random effects term and σj is some total error term

comprising the sum of the spatial and non-spatial error terms.
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Following our definition in section 2.6.1 we assign a prior distribution of u ∼ N
(︁
0, τ−1

u Q−)︁
where Q− represents the inverse of the precision matrix Q and τu represents a precision

parameter associated with the spatial random effect terms, u. A similar structure is

employed for the independent random error term which is assigned a prior distribution

of v ∼ N
(︁
0, τ−1

v I
)︁
, where I is the identity matrix and τv is some precision parameter

associated with the independent random effect terms, v.

(Riebler et al., 2016) highlights some of the issues surrounding the interpretation of

parameters in the BYM model. As either u or v can be responsible for most of the

variation, it is difficult to know how hyperpriors, i.e. priors placed on parameters of

prior distributions, should be set for the precision parameters τu and τv. Furthermore,

only the sum of the random effects, σ is identifiable under the BYM model, as the

spatial, u, and non-spatial, v, error terms cannot be viewed independently of each other

(MacNab, 2011). We therefore consider alternatives to the BYM model, which maintain

the inclusion of a CAR prior whilst ensuring parameters can be clearly defined and

interpreted.

2.6.3 Leroux model

An alternative approach to the BYM model when considering the implementation of a

CAR component is given by the Leroux model (Riebler et al., 2016). Under the Leroux

model, only the sum of the spatial and independent error terms, σ, is considered. Spatial

and non-spatial error is accounted for with the introduction of a mixing parameter, ρ,

which ranges between 0 and 1. When ρ = 0 we say that the model accounts for non-

spatial random effects only, whereas for ρ = 1 the model reduces down to the Besag

model. By considering the proportion of spatial to non-spatial error through a mixing

parameter, the Leroux model avoids the issue of separate identifiable error terms found

with the BYM model. Under the Leroux model, we define our σ term to be normally

distributed around a mean of of 0 with a covariance matrix of:

V ar(σ|τσ, ρ) = τ−1
σ ((1− ρ)I + ρQ)−1 (2.18)

where τσ represents a precision parameter associated with our overall random effects

term, σ, I represents the identity matrix and Q represents a precision matrix as defined

in Section 2.6.1.

From Equation 2.18, the conditional expectation of σj can be written as a weighted

average of our independent random error model and the Besag model, considering for

all other random effects. Furthermore, the conditional variance of σ is the weighted

average of 1
τσ

and 1
τσ ·n where n is the number of neighbours at cell j (Riebler et al.,

2016).
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The primary advantage of the Leroux model compared to the BYM model is in the

interpretation of the random effects u and v. Using the BYM model only the sum of

the random effects, u+v is identifiable, meaning that we are unable to see the spatially

structured component independently of the random error component (MacNab, 2011).

In contrast the σ and ρ parameters can be considered independently of each other,

lending the parameters to a much easier interpretation.

2.6.4 Scaling the spatial component

A potential problem with both the BYM and the Leroux models is that the spatial com-

ponent is not scaled. By scaling Intrinsic Gaussian Markov Random Fields (IGMRFs),

such as the CAR model, we allow for a much better understanding of our precision

parameters, τu, τv and τσ. Without scaling, the precision parameters commonly become

confounded, complicating any assignation of hyperpriors. If the hyperprior selected for

the precision parameters is too large, then the spatial variation may become ‘blurred’,

whereas if the selected hyperprior is too small, the spatial variation may be overfitted as

a result of large local variations. Furthermore, by scaling the precision parameters across

different applications, interpretation of the the precision parameters becomes identical

across applications, as opposed to being dependent on an underlying neighbourhood

matrix (Sørbye and Rue, 2014; Riebler et al., 2016).

The benefits of scaling mean that it is desirable to scale the Leroux model, however this

is impossible as scaling would be dependent on the value of ρ (Riebler et al., 2016). We

therefore consider an alternative model to the Leroux, which retains the easily identifi-

able ρ and σ parameters, whilst allowing for the model to be scaled.

2.6.5 BYM2 model

By combining the ideas laid out in Section 2.6 so far, we can define a model commonly

referred to in the literature as the BYM2 model. The BYM2 model reparameterises the

BYM model so as to include both a mixing parameter, ρ, and overall error term, σ, as

defined for the Leroux model, while maintaining the error terms u and v defined for the

BYM model (Dean et al., 2001). The BYM2 model uses a similar structure to the BYM

model, only differing in the definition of σ, which is given for the BYM2 model as,

σ =
1

√
τσ

(︂√
ρu⋆ +

√︁
1− ρv

)︂
(2.19)

with covariance matrix defined as,

V ar(σ|τσ, ρ) = τ−1
σ

(︁
(1− ρ)I + ρQ−

∗
)︁

(2.20)
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where u⋆ is a scaled version of the spatial random effects term and Q−
∗ is the scaled

version of the inverted proximity matrix.

For σ to legitimately be a standard deviation for overall error, the variance of both u⋆

and v should be approximately equal to 1. This is achieved through the appropriate

selection of a scaling factor, s. As the scaling factor is only dependent on the underlying

neighbourhood structure, as opposed to outcomes of the model fit, the scaling factor can

be introduce into the model as data prior to running the model (Morris et al., 2019).

By introducing the scaling factor as data, we avoid the need for the scaling factor to be

repeatedly calculated at each iteration of an MCMC sampler.

2.7 Model fitting in R

The models introduced within this section can be modelled using a number of different

approaches within the programming language R. We consider four different approaches,

each of which uses Bayesian modelling techniques and includes a CAR component to deal

with spatial variation. Comparisons between the different approaches is presented, with

the findings lifted in part from a paper comparing different software implementations

for spatial disease mapping (Vranckx et al., 2019).

2.7.1 OpenBUGS (Open Bayesian inference Using Gibbs Sampling)

BUGS, or Bayesian inference Using Gibbs Sampling, is a piece of software designed for

the analysis of Bayesian models using Markov Chain Monte Carlo (MCMC) methods

(Lunn et al., 2009). OpenBUGS is a more recent open source addition to the BUGS
project which allows MCMC methods to be fitted using a number of different sampling

approaches including Gibbs, Metropolis-Hastings or slice sampling (Lunn et al., 2000).

Using the package R2OpenBUGS allows for OpenBUGS code to be called directly from,

and subsequently analysed in, R (Sturtz et al., 2005).

CAR models can be fitted in OpenBUGS using the built in function car.normal()

(Spiegelhalter et al., 2003). The car.normal() function takes four values as inputs and

are defined as follows:

adj[]: The second column of a graph edgeset as described in Section 2.4. This is

a vector listing the ID’s of neighbouring cells in order.

weights[]: A vector containing the weight associated with each entry in the adj[]

vector. These weights follow the definition given to the weights matrix defined in

Section 2.4.

num[]: a vector containing the number of neighbours in each cell.
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tau: A scalar argument representing the precision parameter of the CAR prior,

defined in Section 2.6.1 for the CAR model as τu.

The ability to fit CAR models using the car.normal() function can be easily extended

to allow the BYM and BYM2 models to be fitted using BUGS, however is more complex

for models such as the Leroux. In comparison to other software implementations, Open-
BUGS was found to produce similar results but at much slower rates (Vranckx et al.,

2019).

2.7.2 Integrated Nested Laplace Approximations (INLA)

Integrated Nested Laplace Approximations (INLA) refers to a Bayesian model fitting

methodology which acts as an alternative to MCMC based approaches. INLA instead

uses Laplace approximations to calculate posterior estimates for approximate Bayesian

inference of a class of models known as latent Gaussian models. Generally, the term

latent Gaussian models refers to a subclass of models taking the basic form of a vari-

able, yj , which is assumed to follow some distribution family, a link function used to

model some structured additive predictor required for the distribution family and a third

stage allowing for prior and hyperprior assignment (Rue et al., 2009). We say that the

BYM model can be referred to as a latent Gaussian model, as the response is assumed

to follow a Poisson distribution, with a log link function used for modelling the Pois-

son rates ηj , with priors and hyperpriors assigned to each of the requisite parameters.

Furthermore, the Besag, Leroux and BYM2 models can be classified as latent Gaus-

sian models and therefore be fitted using INLA. The absence of any random sampling

process results in the INLA methodology providing deterministic approximations of the

parameter marginals.

The main benefit of INLA’s deterministic approach is that the parameter estimates

are produced much quicker than the MCMC approaches applied in our other software

implementations. The deterministic nature of the INLA methodology also ensures that

sample convergence and mixing do not need to be assessed as they would generally be for

MCMC methods (Moraga, 2019). Despite being computationally less intensive, there is

evidence to suggest that estimates produced using INLA, share similar levels of accuracy

to estimates produced using MCMC methods (Smedt et al., 2015). Fitting and assessing

models using the INLA methodology is easily accessible within R through the R-INLA
package, which directly allows for the specification of Besag, BYM, Leroux and BYM2

models.

R-INLA has however been criticised due to difficulties in explicitly defining parts of mod-

els. For example it has been noted that hyperpriors cannot be defined and implemented



42 Chapter 2. Statistical Theory

easily, particularly when compared to other software implementations such as Open-
BUGS (Carroll et al., 2015). Alternative approaches to the R-INLA package may therefore

be more appropriate for defining and developing on existing modelling approaches.

2.7.3 CARBayes

CARBayes (Lee, 2013) is a spatial modelling package in R, which uses MCMC methods

for fitting spatial models with CAR priors. Of the models presented in Section 2.6,

the CARBayes package is capable of fitting the BYM and Leroux models through the

functions S.CARbym() and S.CARleroux() respectively. Furthermore the Besag model

can be fitted using the S.CARleroux() function and setting the value of ρ equal to one.

The CARBayes package allows for a range of distribution families including Binomial,

Poisson and Zero-Inflated Poisson (ZIP) distributions. In addition to the S.CARbym()

and S.CARleroux() functions, each of the CARBayes models can also be fitted through

the function Bcartime(), found within the R package bmstdr (Sahu, 2022). Using the

Bcartime() function allows for easy spatial modelling and analysis of areal unit data

through both CARBayes and R-Inla.

CARBayes results were found to be roughly comparable to those in other software pack-

ages, albeit with marginally wider credible intervals (Vranckx et al., 2019). Unlike R-Inla,
the CARBayes modelling functions cannot contain areal units without any neighbours.

It is of further note that missing response values are generally predicted by the model

under CARBayes, with the exception of the ZIP distribution family which requires that

all response values are observed. While CARBayes is a very useful tool for fitting exist-

ing spatial modelling structures, an alternative software implementation should be used

when developing bespoke models that fall outside of the CARBayes framework.

2.7.4 Stan

The final software implementation that we consider is that of Stan (Carpenter et al.,

2017). Stan is a C++ based package that uses MCMC algorithms to fit a variety

of Bayesian models specified by the user. Stan primarily uses a No-U-Turn Sampler

(NUTS) approach for obtaining samples from a model’s posterior distribution. NUTS

is a sampler intended as an extension to Hamilton Monte Carlo that avoids retracing

previous steps so that the sampler should perform more efficiently (Hoffman and Gelman,

2014). Stan code is typically split into a number of different blocks, each of which specify

different parts of the model. Some examples include:

data: A block used to specify all of the inputs required for the model.

transformed data: A block specifying any transformations that are required.

For example, to use the log of any inputs in the model.
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parameters: A block specifying any variables which are to be directly sampled

in Stan.

transformed parameters: Additional variables calculated from the data,transformed

data and parameters blocks. The variables specified in the transformed parameters

blocks are included as output for each draw.

model: The block used to define the model fitted in Stan.

generated quantities: A block used for generating posterior inference directly

in Stan. Alternatively, this posterior inference can often be calculated from the

Stan output in R if required.

For each variable introduced in Stan it is important to declare the data type (e.g. integer,

vector, matrices) along with any further required information (e.g. a minimum integer

value, the total number of vector entries, the number of rows and columns included in

a matrix). Stan can be run directly in R through the use of the R-Stan package.

While Stan does not contain any direct functions for fitting models with CAR priors, the

BYM2 model can still be fitted in Stan (Morris et al., 2019). To save memory and use

a computationally less expensive approach, it is recommended that neighbour relations

are defined as edgesets as opposed to full adjacency matrices. The use of edgesets lends

itself particularly well to sparse matrices such as those commonly used when defining

the spatial weights for areal modelling. The CAR component can be defined from the

edgeset in Stan using the joint specification definition of ϕ introduced in Section 2.6

(Equation 2.14). A light sum to zero constraint is imposed on ϕ by ensuring the mean

of ϕ is Normally distributed around zero with little variation.

Compared to other software packages using CAR-based modelling approaches, Stan was

found to produce reliable estimates quickly, albeit at a slower rate than INLA (Vranckx

et al., 2019). The ability to specify each stage of the modelling process means that Stan
is particularly adept at offering a flexible approach for fitting accurate models with CAR

priors. We therefore suggest that the Stan software is ideal for fitting bespoke models

which incorporate CAR priors.

2.8 Simulation methodology

Simulations can provide an ideal framework for observing the performance of a process

under a range of different conditions. By using Bayesian models as a basis, we ensure that

simulations are informed by the data and prior information included in the model. Using

the MCMC based sampling techniques discussed earlier in the chapter provides a range of

sample values for each parameter and our response value. By adjusting observed sample
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parameters, we can also consider simulations produced under systematically different

conditions to the observed data. Further detail on how simulations have been applied

for this thesis are given in Chapter 5 in the context of our data and resulting models.
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Chapter 3

Spatial model application to

completely observed areal

imaging data

Using the techniques introduced in Chapter 2, we propose fitting a spatial model to tree

location data collected across an entire area of interest. As i-Tree Eco data is only col-

lected at surveyed locations, we instead use tree locations taken from the ProximiTREE

and National Tree Map (NTM) datasets for the areas of Cambridge and Petersfield

respectively. By using fully observed data, we expect less variation in our model pa-

rameters due to the availability of more information and the absence of extrapolation

for unobserved areas. A drawback to the ProximiTREE and NTM data is that trees

are defined based on some minimum height, whereas trees are defined for i-Tree Eco

based on the diameter at breast height. The difference in tree definitions could result in

differing conclusions based on the fitted model and any resulting simulations. We there-

fore present an approach for modelling fully observed ProximiTREE and NTM data in

this chapter, before proceeding to present a modelling approach for i-Tree Eco data in

Chapter 4.

Before detailing the spatial model approach taken for completely observed data, we

first introduce the data being modelled, followed by the data used as covariates in both

modelling chapters.

3.1 Initial data set introduction: Cambridge ProximiTREE

As discussed in Section 1.3.1, ProximiTREE (BlueSky, 2020b) data can be used to

derive tree locations using a number of techniques, such as areal photography. Under

the ProximiTREE data, trees are defined based on a height over 1m, a much looser
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definition compared to the National Tree Map (NTM) definition (3m or higher) and

the i-Tree Eco definition (Diameter at breast height of 7cm or larger). Due to the

tree definition used for the ProximiTREE data, we would expect that the rate of trees

observed by the ProximiTREE dataset would generally be higher than the rate of trees

observed in i-Tree Eco and the NTM datasets for comparable areas.

In this chapter, we explore ProximiTREE data taken from the Cambridge area. Cam-

bridge was selected for analysis due in part to the availability of both i-Tree Eco and

ProximiTREE datasets. Furthermore, as Cambridge is a mid-sized city, with a total area

of approximately 4,000 Hectares, this allows for easier comparison between the findings

in the Cambridge and Southampton areas later in the Thesis.

In total, the Cambridge ProximiTREE data contains 335,972 trees, with 226,354(67%)

trees of height larger than 3m. On average, 82.6 trees were observed per Hectare

across the Cambridge ProximiTREE data, much higher than the estimated 52.2 trees

per Hectare from the Cambridge i-Tree Eco data. Spatial exploratory analysis using

Moran’s I and Geary’s C suggested highly significant evidence of clustering, using both

a statistical test and Markov Chain Monte Carlo methods.

Tree densities were summarised from the ProximiTREE data across the Cambridge area

by overlaying hexagonal cells of size 0.5Ha as described in Chapter 2. Discussion and

justification for the selected cell shape and size, is provided in Section 4.8. The number

of trees observed within the cells, ranged between 0 and 441 trees, with Figure 3.1

illustrating the number of trees observed in all cells across Cambridge. Visual inspection

of the number of trees in each cell suggests a possible spatial effect, with nearby cells

often appearing to contain similar numbers of trees.

Around the border of Cambridge, cells are not entirely located within the area of interest.

To ensure our model accounts for the proportion of observed area within the cells, we

introduce the expected number of trees in each cell as an offset. The expected number

of trees is calculated from the observed area for each cell using internal standardisation,

a process detailed in Section 4.2. The inclusion of an offset avoids the model penalising

results from cells around the border, which could otherwise be attributed to the area

observed in the cell rather than the area characteristics.

Consideration of the G function and Ripley’s K, strongly suggested the presence of

clustering amongst the tree rates in the cells (Figures A.1 and A.2 in Appendix A). We

therefore suggest that the inclusion of a spatial component should be considered when

modelling the Cambridge ProximiTREE data.
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Figure 3.1: Plot of the number of ProximiTREE trees located within overlaid hexag-
onal cells of size 0.5Ha in Cambridge

3.2 Environmental covariates

In the following sections we give an overview of the covariates considered in our models.

The following section discusses the covariates associated with the Cambridge area only,

however tables and figures for Petersfield are provided in Appendix A. Environmental

covariates were often considered based on their inclusion in the stratification process for

the Southampton i-Tree Eco survey plots. Further details of the stratification process

are provided in Section 4.1.

It is of note that the Normalized difference vegetation index (NDVI) was also explored

as a possible covariate in the model, but is not described in detail here. The NDVI

is a remote sensing based vegetation index which ranges between −1 and +1, with

values approaching +1 generally indicative of dense healthy vegetation and lower values

indicative of less or no vegetation (GISGeography, 2024). The NDVI data (NASA, 2016)

was explored to assess whether the amount of vegetation in the cells, best explained the

density of trees. Calculating the correlation coefficient between the tree density and

NDVI values for each cell gave a value of 0.0538, indicating little association between

the NDVI and the tree densities. Similar findings were found in other areas and an
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NDVI covariate was explored but not included in the final model for any model selection

processes conducted.

3.2.1 Land use

The density of trees within an area is expected to be strongly linked with the make

up of the environment. For example, we would expect a higher number of trees to be

observed in woodland areas compared to more industrial areas. For the purposes of

modelling in this thesis, area environments are placed into broad Land use categories

adapted from a 2015 land cover map from the UK Centre for Ecology and Hydrology

(Rowland et al., 2017). Under the 2015 land cover map, multiple interlinking polygons

representing different land use categories are used to build up a summary of the un-

derlying environment within an area of interest. For ease of use in our analysis, the

land use categories have been condensed using the broad habitat categories offered by

the 2015 Land cover map (UKCEH, 2017). Additional Land use categories that could

not be easily grouped together, were classified using an ‘other’ category. Details of the

categories used to construct the final categories can be observed in Table 3.1.

Table 3.1: Summary of 2015 Land Cover Map categories used to build the final Land
Use categories

Final categories Original Categories

Grassland

Rough low-productivity grassland

Fen marsh and swamp

Neutral grassland

Improved grassland

Suburban Suburban

Urban/Urban industrial

Bare

Urban industrial

Urban

Woodland
Broad leaved, mixed and yew woodland

Coniferous woodland

Other

Littoral sediment

Supra-littoral sediment

Freshwater

Salt water

Inland rock

Arable and horticulture
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By illustrating the land use coverage in Cambridge (Figure 3.2) we can observe that a

large proportion of the area is suburban with some urban areas clustered in the centre

and grassland spread throughout the city. We note that there appears to be very few

woodland areas recorded in Cambridge. These findings are supported by our summary

of land use coverage presented in Table 3.2, which suggests suburban areas encompass

42.3% of Cambridge compared to woodland area encompassing just 2.7% of Cambridge.

The rate of trees within each land use category is also presented in Table 3.2 and

illustrates the differences between the number of trees observed in each land use category.

Of particular note is that the suburban tree rate is particularly high, with more trees

per Ha observed in suburban areas than woodland areas. In our research, the high rate

of trees in suburban areas is unique to the Cambridge ProximiTREE data and does not

appear to be reflected in the Petersfield National Tree Map data or any of the i-Tree Eco

data. The discrepancy between tree rates under different land use categories resulted in

a land use category being included when carrying out a model selection process for the

Cambridge ProximiTREE data.
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Figure 3.2: Plot of Land Use categories in Cambridge

3.2.2 OS MasterMap Topography

As an alternative to the land use categories presented in 3.1, we explore the use of

the OS MasterMap Topography Layer from the Ordinance Survey (OS, 2019). The OS
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Table 3.2: Summary of land use categories, adapted from the 2015 Land Cover Map.
Numbers and rates of trees produced from ProximiTree data

Land use category

Grassland Other Suburban
Urban/

Urban industrial
Woodland

Cambridge area
coverage in Ha (%)

776.6 (19.1%) 682.3 (16.8%) 1,756.6 (43.2%) 743.4 (18.3%) 110.9 (2.7%)

Number of
trees (%)

29,566 (8.8%) 19,030 (5.7%) 229,187 (68.2%) 48,191 (14.3%) 9,998 (3.0%)

Rate of trees
per Ha

38.1 27.9 130.5 64.8 90.1

Mastermap Topography Layer data, henceforth referred to as the MasterMap data, is

a frequently maintained framework which is used for the the referencing of geographic

information across Great Britain (OS, 2017). The MasterMap data contains a range

of environmental characteristics represented using points, lines and polygons as appro-

priate. The data product guide notes that features are represented using nine different

themes, listed as:

• Administrative boundaries

• Buildings

• Heritage and antiquities

• Land

• Rail

• Roads, tracks, and paths

• Structures

• Terrain and height

• Water

For our modelling purposes, we have extracted data from the land theme which uses

polygons as an indicator of areas classed as ‘natural’. Our belief is that the natural

polygons are more likely to contain highers densities of trees inside them. To assess

this belief, we intend to explore whether natural polygons are required as part of the

modelling. The high quantity of natural polygons means that this data must be rein-

terpreted for computationally feasible analysis. This has been achieved by calculating

the proportion of each cell covered by the natural polygons and storing the result as a

value ranging from zero to one. It is expected that the natural proportions will contain

similar information to the land use data and a decision on which best represents the

information will be decided as part of the model selection process.
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Illustrations of the natural proportions for each cell suggest less natural area within the

centre of Cambridge (Figure 3.3), similar to the high levels of urban land use observed in

the centre of Cambridge. Generally the rate of trees was found to increase as the natural

proportions got higher, with an exception amongst some of the highest proportions

(Table 3.3). This exception may be explained away by the inclusion of other variables

as part of the modelling process. Assessed natural cover categories were defined with

zero representing cells with no natural coverage and categories one to four representing

quartiles of the non-zero natural coverage values.
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Figure 3.3: Plot of Greenspace coverage within overlaid hexagonal cells of size 0.5Ha
in Cambridge. Greenspace coverage defined from OS MasterMap Topology data

Table 3.3: Summary of OS MasterMap Natural data for Cambridge. Numbers and
rates of trees produced from ProximiTREE data

Natural coverage category

0 1 2 3 4

Number of
trees (%)

6,800 (2.0%) 53,491 (15.9%) 104,176 (31.0%) 117,529 (35.0%) 53,976 (16.1%)

Rate of trees
per Ha

13.8 60.3 115.2 130.8 60.8

Using an identical approach to calculating the natural proportions, we also calculate

the proportion of each cell covered in buildings from the Mastermap data. Using the

proportion of buildings is again intended as an alternative interpretation of the land use

data at a smaller level. As almost half of the cells have a building proportion value equal

to zero, we have rewritten the building proportion variable into a categorical format,

more conducive for analysis. The categorical format is created by storing the zero values
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in one category and defining four other categories based on the quartiles of the non-zero

building proportion values.

In contrast to the natural proportion findings, the building proportions were generally

found to be much higher in the urban areas in the centre of Cambridge (Figure 3.4).

Furthermore, the rate of trees in cells with buildings was found to to be higher than

cells without buildings (3.4). This again could be explained in a modelling context with

consideration to other variables.
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Figure 3.4: Plot of Building coverage within overlaid hexagonal cells of size 0.5Ha in
Cambridge. Building coverage defined from OS MasterMap Topology data

Table 3.4: Summary of OS MasterMap Buildings data for Cambridge. Numbers and
rates of trees produced from ProximiTREE data

Buildings coverage category

0 1 2 3 4

Number of
trees (%)

40,579 (12.1%) 61,961 (18.4%) 94,642 (28.2%) 86,662 (25.8%) 52,128 (15.5%)

Rate of trees
per Ha

31.6 89.6 135.4 124.2 75.0

3.2.3 Air Quality Management Areas (AQMAs)

Air Quality Management Area ( AQMA) data uses polygons to identify areas with poor

levels of air quality (Defra, 2020). These areas are established through a review and

assessment of the air quality by local authorities within the UK and indicate areas
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where the air quality is unlikely to meet the national air quality objectives. These

objectives relate to the concentration of various pollutants, such as sulphur dioxide, and

include dates for which the objective should be reached and then maintained. AQMAs

are represented using polygons, which are generally indicative of areas with poorer air

quality. We note that in some areas, such as Petersfield, no AQMAs are present, whereas

in other areas, such as Birmingham, the entire city is classified as an AQMA (BCC,

2021).

AQMAs were selected as one of the strata when stratifying the survey plots due to the

important role trees play in improving the air quality in urban areas. For example,

the role that vegetation, particularly trees, could play in mitigating the effects of PM10

pollution has been highlighted in the literature (Tiwary et al., 2009). There is therefore

interest in understanding the existing vegetation found in areas with particularly poor

air quality (highlighted by the AQMAs).

In Cambridge, the AQMAs are largely confined to one large area of size 661Ha in the

centre of the city (Figure 3.5). A slight difference in the rate of trees between AQMAs

and non-AQMAs has been observed, with lower rates of trees observed in AQMAs. While

the variation in tree rates may be explained away when accounting for other variables,

there is some justification for investigating whether an AQMA variable is needed when

modelling.

Table 3.5: Summary of Air Quality Management Areas (areas with poorer levels of
air quality) in Cambridge. Numbers and rates of trees produced from ProximiTREE

data

Air Quality Management Area

Yes No Total

Cambridge
coverage, ha (%)

662.6 (16.3%) 3,407.3 (83.7%) 4,069.9 (100%)

Number of
trees (%)

43,642 (13.0%) 292,330 (87.0%) 335,972 (100%)

Rate of
trees per ha

65.8 85.8 82.6

3.2.4 Indicies of Multiple Deprivation (IMD)

Indices of Multiple Deprivation( IMD)(MHCLG, 2019) are used to indicate the levels

of deprivation at the Lower Layer Super Output Area (LSOA) level, a geospatial unit

used throughout England and Wales for the reporting of statistics in small areas. The

IMD consists of the following domains, each of which represents a different domain of

deprivation: (Noble et al., 2019):
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Figure 3.5: Plot of Air Quality Management Areas (AQMA) in Cambridge

• Income deprivation - The proportion of the population experiencing deprivation

relating to low income.

• Employment deprivation - The proportion of the working age population who are

involuntarily excluded from the labour market.

• Education, Skills and Training Deprivation - A measurement of the lack of attain-

ment and skills in the population.

• Health, Deprivation and Disability - the risk of premature death and the impair-

ment of quality of life through poor physical or mental health in a population.

• Crime - A measurement of the risk of personal and material victimisation at local

level.

• Barriers to Housing and Services - A measurement of the physical and financial

accessibility of housing and local services.
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• Living Environment Deprivation - A measurement of the quality of the local envi-

ronment.

Each domain is provided with a score ranging between 0 and 100, with higher values

indicative of less deprived areas. A total IMD score is then calculated as a weighted

combination of all the domains, using the domain weights provided in Table 3.6.

Table 3.6: Domain weights given to each individual domain when constructing the
total Indices of Multiple Deprivation (IMD) score

Domain Domain weight (%)

Income deprivation 22.5

Employment deprivation 22.5

Education, Skills and Training Deprivation 13.5

Health, Deprivation and Disability 13.5

Crime 9.3

Barriers to Housing and Services 9.3

Living Environment Deprivation 9.3

To interpret the IMD scores, it is suggested that deciles of the IMD scores be calculated

at the UK level by ranking all LSOAs by their IMD scores and then dividing the LSOAs

into ten equal groups. Deciles are interpreted as opposed to raw scores due to the scores

not being easily interpretable on a continuous scale. For example a score of 60 does

not necessarily indicate an area being twice as deprived as an area with a score of 30

(Noble et al., 2019), however modelling the IMD scores directly would assume that the

difference observed is uniform for each unit increase. The IMD deciles are numbered

between one and ten with one indicative of the most deprived areas and ten indicative

of the least deprived areas.

Looking over the domain names it would appear that the Living Environment domain

would be of particular interest when trying to establish environmental characteristics

for modelling the observed and expected density of trees. The Living Environment

domain is measured using an indoors sub-domain, based on the proportion of houses

without central heating and the proportion of houses in poor condition, and an out-

doors sub-domain, measuring the air quality based on emission rates for four pollutants

and the number of road traffic accidents. For modelling tree densities only the air qual-

ity component would appear to be of particular interest, however air quality is only

one component of the domain which is accounted for more directly using the AQMAs.

We therefore consider the total IMD score when modelling as opposed to any of the

individual IMD domains.
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The IMD deciles for Cambridge suggest that there is generally little deprivation, with the

exception of the North West of Cambridge which is largely more deprived in comparison

to the rest of the city (Figure 3.6). Contrary to expectations, the rate of trees from

the ProximiTREE dataset appear to be higher in the most deprived areas of Cambridge

(Figure 3.7). As the most deprived Quintile consists of only 2% of the total area, we

interpret this finding as an unexpected outlier resulting from such a small area being

observed. The remaining quintiles behave approximately as expected with the second

highest rate of trees per Ha being observed in the least deprived areas of Cambridge.

As a result, the inclusion of an IMD decile variable has been considered when fitting

statistical models.
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Figure 3.6: Plot of Indicies of Multiple Deprivation (IMD) deciles in Cambridge
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Table 3.7: Summary of Indicies of Multiple Deprivation (IMD) quintiles for Cam-
bridge. Numbers and rates of trees produced from ProximiTREE

Indicies of Multiple Deprivation (IMD) quintile

1 2 3 4 5

Number of
trees (%)

6,800 (2.0%) 53,491 (15.9%) 104,176 (31.0%) 117,529 (35.0%) 53,976 (16.1%)

Cambridge area
coverage in Ha (%)

78.4 (1.9%) 398.3 (9.8%) 1152.8 (28.3%) 1293.1 (31.8%) 1147.4 (28.2%)

Number of
trees (%)

8225 (2.4%) 31220 (9.3%) 98875 (29.4%) 93581 (27.9%) 104071 (31.0%)

Rate of trees
per Ha

104.9 78.4 85.8 72.4 90.7

3.3 Full model definition

Using the model variables described so far as covariates, we consider approaches for

fitting spatial models to the number of ProximiTREE trees observed in each cell. Rele-

vant covariates are considered through the model selection technique, backwards selec-

tion, whereby parameters are systematically removed from the full model until they are

deemed to be removing significant information. Spatial models have been fitted using

the Leroux model in CARBayes as opposed to the BYM2 model in Stan. The Leroux

model in CARBayes has been used as this provides a computationally efficient approach

for fitting multiple spatial models as required for the backwards selection process. Fur-

thermore, we consider the use of a scaled spatial component to be more beneficial when

dealing with incomplete data that requires a consistent definition, than complete data

where spatial components do not need to be established for missing areas. We note

that CARBayes models have been fitted using the Bcartime() function in the R package

bmstdr (Sahu, 2022), as discussed in Section 2.7.3.

Each of the ProximiTREE models were run for 100,000 samples following an initial

burn in of 20,000 samples. After collecting the samples a thinning of 100 iterations was

applied so as to make the MCMC samples more manageable. Due to a lack of additional

information, default priors were used as defined in CARBayes. These priors are defined

as:

β ∼ N(0, 1000) - A Normal distribution with mean 0 and variance 1000 for our

regression parameters β

σ2 ∼ IG(0.001, 0.001) - An Inverse-Gamma distribution with shape and scale equal

to 0.001 for our overall standard deviation term, σ

τ2 ∼ IG(0.001, 0.001) - An Inverse-Gamma distribution with shape and scale equal

to 0.001 for our precision term, τ
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A summary of how the model selection process was conducted is included in Table 3.8.

We note that the WAIC is treated with some caution due to the spatial nature of the

data contradicting the assumption of independence between cell observations (Gelman

et al., 2013). Therefore, if one model contains significant variables or does not present

convergence issues, we have sometimes decided to select this model despite slightly higher

WAIC values. For example, the natural and buildings variables sometimes have higher

WAIC values, but were still included due to all of the parameters successfully converging

to significant results.

As a final step of the model selection process, we consider the inclusion of an interaction

parameter. Interaction parameters are not included in the full model at the beginning

as this would make the model fitting impractical to perform, but are given consideration

as part of the process. For fitting a model to the Cambridge ProximiTREE data, we

found that an interaction term did not improve the model fit, due to a higher WAIC

value and complications with parameter convergence.

The final model for the fully observed, Cambridge ProximiTREE data follows the Leroux

model detailed in Equation 2.18 with the associated β values summarised in Table

3.9. We note that cases where cells did not contain any buildings was treated as the

model baseline, meaning the category does not have an explicit associated β value.

From Table 3.9 we observe that all β values have a significant effect, including each

buildings coefficient. These results largely line up with the findings from our exploratory

analysis, with more trees estimated in areas containing buildings and more trees generally

observed in areas with more natural coverage.

From Figure 3.7 we observe that the mixing parameter, ρ, results are all close to one.

This suggests strong evidence of a spatial effect present within our model. The presence

of a strong spatial effect is in part used as justification for assuming a strong spatial

effect when selecting our i-Tree Eco model priors in the following Chapter.

The accuracy of the model fit was assessed through comparison between the values

provided by the MCMC samples and the observed Cambridge ProximiTREE values for

each cell. Error values were calculated by subtracting the observed Yj values from the

mean of the expected Yj MCMC sample values for each cell. From observing a density

plot of the error values (Figure 3.8), the average expected values appear to accurately

estimate the tree density for each cell, with estimates generally no more than four

trees away from the observed value. The density appears symmetric around a centre of

zero, suggesting the model is neither consistently over or underestimating the expected

number of trees in the cells. We note that error values provided here are based on the

mean expected number of trees for each cell and does not account for further variation

observed within the cells. Generally all expected tree counts for the cells are relatively

accurate, with 95% of all simulated expected tree values being within 15 trees of the

observed tree counts.
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Table 3.8: Summary of model selection process using backwards selection. The model
components column is used to indicate which variables are included in the model at each
stage of the backwards selection. The WAIC and an indicator of whether all variables
are significant is presented for each model in the process. The addition of interaction

terms is considered as the final stage of the selection process.

Model components
(includes covariates and spatial component)

Component removed WAIC
Significant
Variables?

Spatial component, land use, NDVI, IMD
Decile, Natural proportion and Buildings
proportion (Categorical)

None 53764 No

IMD 53771 No

Land Use 53700 No

NDVI 53761 Yes

Natural 53705 No

Buildings 53707 No

Land Use removed due to low WAIC

Spatial component, NDVI, IMD Decile,
Natural proportion and Buildings proportion
(Categorical)

None 53764 No

IMD 53701 No

NDVI 53670 Yes

Natural 53636 No

Buildings 53640 No

NDVI removed due to low WAIC and removal resulting in significant variables

Spatial component, IMD Decile, Natural
proportion and Buildings proportion
(Categorical)

IMD 53690 Yes

Natural 53620 Yes

Buildings 53630 Yes

IMD removed as convergence issues observed when removing other parameters

Spatial component, Natural proportion and
Buildings proportion (Categorical)

None 53690 Yes

Interaction 53706 Yes

Interaction not included as WAIC is higher and the model includes convergence issues

Table 3.9: Summary of Cambridge ProximiTREE model parameters

Name Symbol Category Mean (95% CI)

Intercept β0 - 7.06 (6.95, 7.17)

Natural β1 - 1.14 (0.97, 1.29)

Buildings

β2 (0 < x ≤ 0.11) 0.92 (0.83, 1.02)

β3 (0.11 < x ≤ 0.18) 1.19 (1.10, 1.32)

β4 (0.18 < x ≤ 0.26) 1.17, (1.10 1.27)

β5 (0.26 < x) 0.96 (0.86, 1.11)
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Figure 3.7: Plot of the Leroux mixing parameter, ρ, density for the Cambridge Prox-
imiTREE model
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Figure 3.8: Plot of the mean Cambridge ProximiTREE model errors. Model error
calculate by subtracting observed values from modelled values
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Figure 3.9 provides an illustration of the mean expected number of trees in each cell

for the Cambridge ProximiTREE model. From visual inspection, the model estimates

appear to be accurately capturing the ProximiTREE data, with Figure 3.9 looking very

similar to the plot of the ProximiTREE data presented in Figure 3.1.

The standard deviation in the expected number of trees, based on the ProximiTREE

data, for each cell is displayed in Figure 3.10. In general, the standard deviation in the

expected tree estimates appears to be higher in cells with higher expected tree estimates.

We note that in cells where tree estimates are low, values cannot fall below zero which

may, in part, be responsible for lower standard deviations in the modelled values.

52.16°N

52.17°N

52.18°N

52.19°N

52.20°N

52.21°N

52.22°N

52.23°N

0.08°E 0.10°E 0.12°E 0.14°E 0.16°E 0.18°E
lon

la
t

100

200

300

400

Median

© OpenMapTiles © OpenStreetMap contributors

Figure 3.9: Median of the expected number of trees for each cell in Cambridge, as
predicted from the Cambridge ProximiTREE data

3.4 Convergence and model fit diagnostics

Generally it appears that the model has converged as expected, with the traceplots for

the β values, the precision parameters, τ2σ , and the mixing parameter, ρ, all suggesting

convergence (Figure 3.11). Furthermore, the chains appear to have mixed well with
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Figure 3.10: Standard deviation in the expected number of trees for each cell in
Cambridge, as predicted from the Cambridge ProximiTREE data

few deviations, indicating an appropriate model fit. We note a much clearer presence of

convergence and mixing amongst the uncertainty parameters, compared to the β param-

eters, but not to the level where this is of significant concern. The Geweke diagnostic

values for each parameter were all below the 1.96 value, again suggesting the model is

appropriate for our data.

3.5 Population densities and estimates

Total tree populations can be calculated for the model fitted to the Cambridge Prox-

imiTREE data, by summing the number of trees estimated for each cell within each

MCMC iteration. The expected tree populations appear roughly symmetrical (Figure

3.12), with a centre close to the total number of observed trees, 335,972. The range of

populations observed by the model is relatively narrow, ranging between 332,700 trees

339,076 trees. The narrow range could be attributed to the relative accuracy of the



3.5. Population densities and estimates 63

0 200 400 600 800

6.
9

7.
0

7.
1

7.
2

7.
3

β0

Iterations

β 0

0 200 400 600 800

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

β1

Iterations

β 1

0 200 400 600 800

0.
75

0.
85

0.
95

1.
05

β2

Iterations

β 2

0 200 400 600 800

1.
0

1.
1

1.
2

1.
3

β3

Iterations

β 3

0 200 400 600 800

1.
0

1.
1

1.
2

1.
3

β4

Iterations

β 4

0 200 400 600 800

0.
7

0.
8

0.
9

1.
0

1.
1

β5

Iterations

β 5

0 200 400 600 800

3.
5

3.
6

3.
7

3.
8

3.
9

4.
0

4.
1

τσ
2

Iterations

τ σ2

0 200 400 600 800

0.
97

5
0.

98
5

0.
99

5

ρ

Iterations

ρ

Figure 3.11: Parameter traceplots for the Cambridge ProximiTREE model
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model and the lack of added variation from unobserved areas. We note that the nar-

row range of populations, suggests that using this model in simulations is also likely to

result in a narrow range of simulated populations, however these populations appear to

be representative of the observed data.
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Figure 3.12: Plot of the population density as estimated from the Cambridge Prox-
imiTREE data

3.6 Summary of findings in Petersfield

The approach outlined for modelling the Cambridge ProximiTREE dataset was repli-

cated for National Tree Map (NTM) data located in the UK town of Petersfield. The

Petersfield area is much smaller than that of Cambridge and Southampton, with a to-

tal size of approximately 801 hectares. The Petersfield area was therefore selected to

explore how survey efficacy differs in smaller areas than Cambridge and Southampton.

As Petersfield did not contain any AQMAs, we note that an AQMA variable was not

considered for the Petersfield area.

Due to a smaller area size and more restrictive definition of what constitutes a tree than

the ProximiTREE definition, the Petersfield NTM data was found to contain much less

trees than the Cambridge ProximiTREE data. In total 25,689 trees were observed in

the Petersfield NTM datasets, with a average of 32.1 trees per Ha across the entire area.

Overlaying Hexagonal cells of size 0.1 Ha on the Petersfield NTM data, found a median

of two trees in each cell, with a maximum of 21 trees in a cell. The use of smaller
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cells and the reduced rate of trees, resulted in cells generally containing less trees when

compared to the Cambridge ProximiTREE data.

Fitting a Leroux model to the Petersfield NTM data reached similar conclusions to the

Cambridge ProximiTREE model, albeit with the inclusion of an interaction term slightly

improving the model. Cells with higher natural coverage were again estimated to contain

more trees, however in contrast to the Cambridge ProximiTREE model, cells with higher

building coverage were estimated to contain less trees. It would therefore appear that a

relationship exists between the tree and building densities in both the Cambridge and

Petersfield areas, however the nature of this relationship is not consistent. We note that

the mixing parameter estimate is again close to one, suggesting heavy emphasis on the

spatial error term over the independent error.

Conducting diagnostic checks, suggests the model fitted to the Petersfield NTM data is

largely appropriate. Traceplots indicate that the coefficient and uncertainty parameters

have converged, with chains mixing well. Convergence is also suggested by the Geweke

diagnostics for the parameters, which are within the expected range for convergence.

Analysis of the model residuals suggests a largely symmetric distribution centered around

zero, with a little overestimation present, but not to the level where this is a concern. The

populations estimated from the model are approximately centered around the observed

tree population of 25,689 with all estimated populations no more than 1,000 trees away

from the true populations.
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Chapter 4

Spatial model application to

partially observed survey data

For our analysis we explore a novel spatial modelling approach that fits a model based

on the tree locations, whilst accounting for the fact that tree locations have only been

observed within the survey plots. The spatial component of this model has been defined

using an areal structure based on the tree locations found in an i-Tree Eco dataset.

We begin this chapter by introducing the Southampton i-Tree Eco dataset, before pro-

ceeding to explain our approach for fitting a spatial model, containing a Conditional

Autoregressive (CAR) component, to the data.

4.1 Initial data set introduction: Southampton i-Tree Eco

The area of Southampton is a city and port located along the Southern coast of the UK.

Using Defra’s 2011 Rural-Urban classification score, the Southampton area is classified

as ‘urban with city and town’ ,due to less than 26% of the residential population living

in areas classified as rural (Defra, 2014; Mutch et al., 2017). Based on the local authority

district boundaries (ONS, 2020), Southampton is defined as a medium-sized city which

encompasses an area of approximately 4,990 Ha, comparable to other UK cities such

as Oxford and Exeter. Consideration towards ensuring Southampton is a green and

environmentally sustainable city, have been explored and summarised in recent years,

such as in the Southampton Green City Plan (Southampton City Council, 2020). The

Southampton Green City Plan notes some of the environmental challenges Southamp-

ton is expected to face, including the expectation that Southampton’s population will

increase from 257,305 in 2020 to 292,505 by 2040.

In Summer 2016, a survey of trees in Southampton was carried out by the University of

Southampton, working in partnership with Southampton City Council, Forest Research
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and Treeconomics, as a basis for investigating Southampton’s urban forest structure.

The survey was carried out by a group of students on the University of Southampton

Excel Internship scheme, using the i-Tree methodology and following the i-Tree survey

protocol (i-Tree, 2021a). For every observed tree in the survey plots, the location and

characteristics of the tree, such as the species, crown condition and diameter at breast

height were all recorded and entered into an i-Tree Eco dataset.

Commonly, i-Tree Eco surveys use approximately 200 survey plots of size 0.04 ha, as

recommended by (Nowak et al., 2008b). However the Southampton i-Tree Eco survey

instead aimed for a total of at least 400 accessible survey plots of size 0.04 ha, with 50

additional plots included so as to ensure that this target would be met. The Southamp-

ton i-Tree Eco report (Mutch et al., 2017) notes that the use of 400 survey plots results

in a plot being observed on average every 12 ha, a much higher density of plots than

any other UK based i-Tree Eco study, at the time the survey was conducted. We would

expect that a higher density of plots should provide us with more information than

comparable UK surveys, lending the Southampton i-Tree Eco survey to various model

based simulations.

The locations of the survey plots were established through stratification, a process

whereby we ensure that the observed area satisfies some predetermined strata criteria.

For the i-Tree Eco Southampton dataset, plot locations were established through a

stratification method whereby it was ensured that at least 30 plot centres were randomly

located within each layer of the strata. Once this criteria was met, remaining plots were

located randomly across Southampton. A circular boundary with radius 11.4m was

placed around the randomly located centre points, providing an area of approximately

0.04 ha for observation. The strata were assigned using information on air quality zones,

habitat, open spaces managed by the Southampton city council and index of multiple

deprivation quintiles. These strata were selected as differences in the survey findings

could potentially be observed between the different strata and because it was required

for the strata to be sufficiently powered for intended subgroup analysis in the future.

Once survey plot locations had been identified, it was then possible for the data to be

observed and recorded for each of the survey plots locations.

Of the total number of survey plots, 8% of the plots were found to be inaccessible and

resulted in missing data at these locations. These inaccessible plots are expected, with

the i-Tree Eco user’s manual (i-Tree, 2021b) recommending the addition of an extra

5-10% to the final number of plots used when setting up surveys. Common reasons

for why survey plots are inaccessible in i-Tree Eco surveys include the area being too

unsafe to approach and instances where the surveyors are denied access to the survey

plot locations. In total, 38 plots could not be surveyed, leaving 412 plots containing

870 trees in the initial i-Tree Eco dataset. A visual inspection of the accessible and

inaccessible plot locations (Figure 4.1) allowed us to conclude that the plot locations

appear to be missing at random. We reached this conclusion as the missing plot locations
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do not appear to exhibit any indication of clustering, which could potentially be biasing

any survey results. We therefore suggest that the number and location of inaccessible

plots are not expected to affect the findings of our results.

Prior to any analysis, the dataset was first cleaned to remove any potential errors or

inconsistencies in the data. As part of the data cleaning, the total number of trees rose

to 876 as seven additional trees were found in a hard copy of the data and one tree, found

to lie outside the plot radius, was removed. Distances and directions of the trees from

the centre of the plots are provided in the i-Tree Eco dataset and were used to establish

co-ordinates for each of the tree locations. In cases where either the direction or distance

of the tree from the centre was missing, we instead estimated the tree location from areal

images. While areal imaging would not be suitable for collecting all of the information

required in the survey, it was deemed satisfactory for estimating tree locations given that

we already knew that a tree was included inside the survey plot. In total, tree locations

needed to be estimated for 28 trees across 13 different survey plots, a relatively small

proportion of the overall data. Additional cleaning was carried out when prompted by

the comments or the observation of unusual results in the data. For example, missing

decimals and negative signs were inserted when appropriate for the plot centre latitudes

and longitudes. Due to some discrepancies in the approaches taken to data cleaning, we

would expect that the data analysed here will have slight differences when compared to

the data used for the i-Tree Eco report.

From assessing the number of trees found in the plots, we note that in over half the

survey plots no trees were observed. This high proportion of observed zeroes, sometimes

referred to as zero inflation, should be addressed in our modelling procedure for providing

accurate models. As zero inflated data is commonly observed in ecological data, we refer

to the existing literature (Agarwal et al., 2002; Potts and Elith, 2006) on zero inflation

when conducting our analysis. We have assessed whether the modelling approaches

taken are currently compatible with existing approaches for dealing with zero inflated

data. When not equal to zero, the number of trees observed in the survey plots tended to

be relatively low, with a median value of three trees observed in survey plots containing

at least one tree. In contrast, a few plots were found to be very densely populated,

resulting in as many as 25 trees observed in a couple of plots. These findings are

reflected in Table 4.1, which summarises the number of trees observed within the survey

plots for six separate categories.

Table 4.1: Summary of the number of plots, whereby the observed number of trees
lies within the given interval. Note that percentages are given as a proportion of the

total number of plots

Number of trees 0 1-5 6-10 11-15 16-20 21-25

Number of plots (%) 231 (56%) 140 (34%) 21 (5%) 6 (1%) 5 (1%) 9 (2%)
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Using the i-Tree Eco Southampton data, we are able to extract simple estimates of the

total tree population by ignoring spatial and environmental effects.

By dividing through the total number of observed trees by the total observed area of the

survey plots, an average of approximately 52.1 trees are observed per Hectare (Ha) within

the survey plots. This value is similar to the 53 trees per Ha observed in the survey plots

of an i-Tree Eco study which took place in inner and outer London, suggesting these

results are typical of cities in the UK. Multiplying the average number of trees observed

per Ha by the total area of Southampton provides us with a total tree population

estimate of approximately 260,000 trees in Southampton. This is a little lower than

the existing total population estimate of 267,000 trees found using the UFORE model

in i-Tree Eco. This discrepancy in values can be attributed to differences in the data

cleaning approaches and the use of a slightly tighter boundary for Southampton, that

does not include the River Itchen. For a more accurate estimate with some associated

error terms, we wish to account for characteristics of Southampton in our estimate. A

more accurate estimate that also summarises the estimate error can be achieved through

modelling techniques.

Figure 4.1: Accessible and inaccessible survey plots in the Southampton i-Tree Eco
dataset. Note that the survey plots displayed here are not to scale

For the Southampton i-Tree data, point reference analysis could be carried out by as-

signing tree counts to each of the centre points of the sample plots, however this would

not make use of information given by the tree locations within the plots. An example

of how this looks can be seen in Figure 2.1.
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4.2 Modelling setup for partially observed survey data

To provide a definition for our spatial component, we overlay an interlinking cell struc-

ture onto the Southampton area, as done in Chapter 3 for the ProximiTREE data.

Following the findings discussed later in Section 4.8, the cells each have a hexagonal

shape of size 0.5 Ha. Each of the covariates provided in Chapter 3 are calculated for the

Southampton cells as previously discussed. Unlike with the ProximiTree data, the i-Tree

Eco data only provides samples of an area as opposed to the entire tree population. We

propose a novel approach whereby the number of observed trees from the i-Tree Eco

data is calculated for each cell, along with the total area observed by the survey plots

in each cell. The number of observed trees has been taken as our response variable

when modelling and used to estimate the total number of trees we would expect to find

within each cell. In cases where a cell bisects a survey plot, the number of trees in each

cell is based on the given tree locations, whilst the survey area is calculated based on

the amount of survey coverage in each cell. Commonly, cells do not contain any survey

plot coverage, in which case we intend to predict the number present in the cell using

our model. By applying a similar setup for our partially observed i-Tree Eco data to

our fully observed ProximiTree data, we intend to allow for easy comparison between

results. Comparison between i-Tree Eco and ProximiTree results is expected to be more

advantageous for the Cambridge and Petersfield areas in which we have both i-Tree Eco

and ProximiTree datasets available.

Using our modelling setup we establish how the number of observed trees in the overlaid

cells can be used to provide an estimate of the total number of trees within each cell.

Within this chapter we use Ci to refer to the survey plot area calculated for each cell, i,

where i = 1, 2, ..., nc and nc refers to the total number of cells within our area of interest.

The term mc is used for referring to the total number of cells in which at least some

of the cell has been observed by the survey plots, i.e Ci ̸= 0, and j as an indicator of

length mc for the cells in which Ci ̸= 0, such that Cj ∈ Ci and mc ≤ nc.

We therefore fit a model using the number of trees in our observed cells, Yj , as a response,

where Yj represents the trees observed within the survey plots for each cell j. From

modelling the Yj values we construct an approach for estimating the total number of

trees inside all of the initial cells, indicated here using Zi. We note that Zi refers to the

total number of trees both inside and outside of any survey plots for each cell, i, and

that we expect Yj ≤ Zj .

As Cj is not expected to be equal for all j, it must be ensured that the Cj values are

accounted for when modelling Yj . Because the Cj values arise from the design structure

of the survey plot and cell locations, we include an offset in our model to account for

the size of the survey plot area observed in each cell. By treating Cj as an offset, the

survey plot areas in each cell are accounted for in our model without being treated

as predictors. In practice, an offset is included by calculating the expected number of
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observed trees given the survey plot coverage, Ej , and including this in our model as

discussed in Section 2.6.2. To calculate Ej a process know as internal standardisation

was applied, whereby Ej is derived in part from our response variable, Yj as follows:

Ej ≡ Cj

(︄∑︁G
j=1 Yj∑︁G
j=1Cj

)︄
(4.1)

The use of internal standardisation to calculate the values of Ej has been described

as ‘correspond[ing] to a kind of null hypothesis’ (Banerjee et al., 2014), whereby the

observed number of trees are compared to the expected number of trees, given Cj .

By incorporating Ej , our model for Yj takes the form:

Yj |ηj ∼ Poisson(Ejηj) (4.2)

where ηj is the relative risk defined using the BYM2 model as laid out in Section 2.6.5.

From this equation we have a modelling setup that can be used for investigating the

impact different variables have on tree densities, but which does not directly provide

estimates for Zi.

To provide estimates for Zj we propose an approach whereby the expected number of

trees, E∗
j , is calculated within the entire cell, rather than only the observed survey plots.

The definition for our proposed value of E∗
j again uses internal standardisation and can

formally be written as:

E∗
j ≡ Aj

(︄∑︁G
j=1 Yj∑︁G
j=1Cj

)︄
(4.3)

where Aj is the total area of interest (i.e. Southampton) covered within each cell. Aj

is calculated for each cell so as to adjust for cells placed around the border which are

likely to contain land outside the area of interest.

We propose that estimates of Zj are calculated from both the η values estimated by the

BYM2 model in Equation 4.2 and the calculated E∗
j using:

Zj |ηj ∼ Poisson(E∗
j ηj) (4.4)

By adjusting our offset value to use the expected rate of trees throughout the entire grid

as a basis, our response is ‘scaled up’ so as to provide tree estimates for the entire cell.

Under the approach presented in Equation 4.4 an assumption is made that the relative

risk estimated from the partially observed survey plots in each hexagon is representative

of the relative risk throughout the entire cell. Whilst this assumption may not fully hold
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in reality, we suggest that smaller cell sizes should often result in larger proportions of

each cell being observed, minimising potential errors.

Using covariate information associated with each cell where Ci = 0, estimates can be

calculated for all E∗
i , ηi and using Equation 4.4, Zi. For estimates of Zi calculated

outside the observed cells, extreme extrapolated values could be observed due to the use

of an exponential scale in the BYM2 model, however this problem should be minimised

through the use of survey locations representative of the underlying area.

When establishing ηi in areas where Ci = 0, we need to clearly define how we specify

our spatial term, θi. We propose that θi be defined from the CAR model presented in

Section 2.6.1, with θj values extracted from θi and included in the model provided in

Equation 4.2. Through this setup we ensure that the spatial term is defined when fitting

our model, whilst also ensuring spatial terms are estimated for all nc cells. By scaling

the θi values as part of the BYM2 model we ensure a consistent interpretation of the

spatial component throughout the entire cell structure. A soft sum to zero constraint is

place on the values θi, ensuring our spatial component is centered around zero and easily

identifiable. An illustration of the median θi values modelled from the Southampton i-

Tree Eco data is provided in Figure 4.2, in which we can observe how θi values are

frequently clustered together.

50.88°N

50.90°N

50.92°N

50.94°N

50.96°N

1.45°W 1.40°W 1.35°W

−1.0

−0.5

0.0

0.5

1.0

φ

Figure 4.2: Plot of the median values of the spatial parameter, θ, by cell. Spatial
model fitted to the i-Tree Eco Southampton dataset

To explore the efficacy of the modelling approach proposed in this section, we applied

the methods presented here to partially observed ProximiTree data in Cambridge and
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Petersfield. Generally we found that our estimated tree density values were accurate for

a range of different cell sizes and shapes. The analysis conducted and the results found

are presented in further detail in Section 4.8.

4.3 Zero-inflated data considerations

As the i-Tree Eco data is found to contain a large number of survey plots with no observa-

tions, alternative distributions to the Poisson that consider the presence of zero-inflation,

should be considered. This is implemented by trading out the Poisson distribution used

in Equations 4.2 and 4.3 with an alternative distribution. While the Hurdle and Zero-

Inflated Poisson (ZIP) distributions are commonly used for modelling zero inflated data

in ecology (Agarwal et al., 2002), both distributions present issues in predicting the

values of Zi. Under the Hurdle and ZIP distributions, the response is assumed to take

the form of either 0 or some continuous value. While this assumption may hold when

modelling within our observed responses, Yj , the assumption is not expected to hold

when estimating throughout the entire grid for Zi. In short, while no trees are com-

monly observed within the survey plots, we would rarely expect no trees to be observed

within the entire 0.5 Ha cells, as illustrated by the lack of empty cells when considering

the Cambridge and Petersfield ProximiTree data. We instead propose using a negative

binomial distribution as an alternative to the Poisson, when modelling our data. While

still recommended as an approach for dealing with zero-inflated data within the ecology

literature (Agarwal et al., 2002), the negative binomial distribution follows a similar

definition to the Poisson with the addition of term controlling the level of variation ob-

served. As opposed to the consistent variation assumed under the Poisson distribution,

the negative binomial can assume less deviation around low values compared to higher

values, ensuring relative risk estimates are close to zero but not constrained to zero.

4.4 Full model definition

Using the modelling approach outlined so far in this chapter, along with some of the

covariates detailed in Chapter 3, a BYM2 model has been fitted to our Southampton i-

Tree Eco data using the program Stan. The applied Stan code used existing approaches

for modelling the BYM2 model in Stan (Morris et al., 2019) as a basis, but adapted

the code to be suitable for our partially observed survey plot data approach, outlined

in Sections 4.2 and 4.3. The final version of our Stan code is presented in full in Listing

B.1 of the Appendix.

Each of the i-Tree Eco models were run for 10,000 samples following an initial burn

in of 2,000 samples and thinning every tenth sample. The longer computational time

associated with Stan modelling and the NUTS sampler resulted in a lower number of
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samples included in the model compared to Chapter 3. The number of samples used

should still be large enough to produce simulations in Chapter 5 and tests are again

conducted to ensure model parameters have converged.

Priors and hyperpriors were selected for the models as follows:

β ∼ N(0, 5) - A Normal distribution with mean 0 and variance 5 for our regression

parameters β. Default prior due to lack of specific information on covariate effect.

v ∼ N(0, 1) - A Normal distribution with mean 0 and variance 1 for our indepen-

dent uncertainty parameter, v. We expect the independent error to be centred

around zero and have a standard deviation of one as a result of scaling the spatial

component.

1√
τσ

∼ HalfCauchy(0, 25) - A half-Cauchy distribution with mean 0 and scale 25

for our inverse precision parameter 1√
τσ
. A prior recommended in the literature

for variance parameters in hierarchical models (Gelman, 2006).

ρ ∼ Beta(0.5, 0.5) - A beta distribution with alpha and beta equal to 0.5 for our

mixing parameter, ρ. A symmetric prior ranging between 0 and 1, which places

more weight around the values 0 and 1. This prior was selected based on evidence

of a strong spatial effect in the ProximiTree models.

Due to the computationally intensive nature of fitting multiple Stan models, a full model

selection process is not presented here. Instead, the buildings and natural variables

from the MasterMap data were included in the model to explore whether this provided

a sufficient fit. The inclusion of the buildings and natural variables is based on our

findings in Chapter 3, where both variables were included in the final model selection

for models fitted to the Cambridge and Petersfield ProximiTree data. An interaction

term between the natural and buildings variables has been included in the Southampton

i-Tree Eco model, as including an interaction term was found to lower the LOOCV

(1484.1 vs 1478.6) and the WAIC (1469 vs 1457.9).

Parameter information, related to the fitted Southampton i-Tree Eco model is provided

in Table 4.2. From our results, we generally expect that as the proportion of natural

coverage increases, the tree density will also increase. Furthermore, we expect the tree

density to be lower in areas with a higher proportion of buildings, albeit with the tree

density still larger in areas with higher natural coverage. In contrast, areas with low

numbers of buildings are estimated to have lower tree densities as the amount of natural

area increases. While there is no definite reason for this result, it could potentially be

attributed to large natural areas generally containing less trees when a low number of

buildings are present (e.g. golf course, school playing fields).
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The uncertainty estimates provided in Table 4.2, appear to suggest that the spatial

and non-spatial error is being accounted for appropriately. The mean of the uncertainty

parameter suggests error terms are being accounted for in the model, whereas the mixing

parameter being close to 1 suggests more emphasis being placed on the spatial random

error term in comparison to the independent random error term.

Table 4.2: Summary of Southampton i-Tree Eco model parameters

Name Symbol Category Mean (SD) 95% CI

Intercept β0 - −2.71 (0.61) (−3.96, −1.57)

Natural β1 - 2.3 (0.52) (1.33, 3.40)

Buildings

β2 (0 < x ≤ 0.12) 1.46 (0.71) (0.09, 2.86)

β3 (0.12 < x ≤ 0.19) 1.05 (1.00) (−0.89, 3.00)

β4 (0.19 < x ≤ 0.25) −0.42 (1.12) (−2.61, 1.67)

β5 (0.25 < x) −0.41 (0.94) (−2.26, 1.40)

Interaction

β6 (0 < x ≤ 0.12) −1.12 (0.75) (−2.61, 0.31)

β7 (0.12 < x ≤ 0.19) −0.75 (1.41) (−3.56, 2.07)

β8 (0.19 < x ≤ 0.25) 1.41 (1.80) (−2.10, 4.96)

β9 (0.25 < x) 0.61 (1.74) (−2.77, 4.03)

Uncertainty parameter 1√
τσ

- 1.28 (0.32) (0.74, 1.97)

Mixing parameter ρ - 0.91 (0.11) (0.60, 1.00)

Model accuracy was assessed through comparison of the observed Yj to the expected

Yj values taken from the model. In Figure 4.3 we present a summary of the estimation

error, calculated by subtracting the observed Yj values from the mean of the expected Yj

MCMC sample values for each cell. Estimation errors close to zero should be indicative of

an accurate model estimation, whereas values larger and smaller than zero are indicative

of model over-estimation and underestimation respectively. Figure 4.3, largely suggests

a high level of model accuracy, with the majority of the errors being close to zero. While

larger errors are present, these appear to be infrequent and the symmetric nature of the

density plot suggests the model is not consistently over-estimating or under-estimating

the expected number of observed trees. These findings were largely found to hold when

also considering the model error associated with non-zero Yj values.

Using the fitted model, estimates can be provided for the total number of trees within

each cell, as detailed in Section 4.2. Figure 4.4 illustrates the log of the expected number

of trees for each cell covering Southampton. Log values are presented here for the

purposes of illustration with median expected values from the MCMC samples taken for



4.4. Full model definition 77

−20 −10 0 10 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

D
en

si
ty

Median = 0.4

Figure 4.3: Plot of the mean Southampton i-Tree Eco model errors. Model error
calculate by subtracting observed values from modelled values

each grid. From Figure 4.4, characteristics of the Southampton area are represented,

such as the increased tree density in the Southampton common around the centre of the

map and the low density of trees observed around the docks in the South-West. The

median expected tree numbers for each cell range between 0.2 and 456.6, with a mean

value of 17.2 trees in each cell. Comparing these results to the ProximiTREE and NTM

data explored in Chapter 3 and tree density estimates from the i-Tree Eco model appear

a little lower than expected, with mean estimates of 82.3 and 34.6 for the ProximiTREE

and NTM data respectively. It is of note that the summarised expected tree numbers are

averages and that much higher values have been observed for some cells. Furthermore,

tree simulations will be generated from a negative binomial distribution, which could

lead to more extreme tree density estimates in some of the cells.

The standard deviation in the expected number of trees was found to generally be higher

in cells with higher tree density estimates, a point illustrated by comparing the log

standard deviations (Figure 4.5) in each cell to the log medians( Figure 4.4). Generally

the standard deviations appear to be high relative to the median estimates, however this

is to be expected given how little of the Southampton area is observed by the survey

plots. We note that the uncertainty associated with each cell estimate is likely to increase

in the simulations, when generating samples from a negative binomial distribution.
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Figure 4.4: Log median of the expected number of trees for each cell in Southampton,
as predicted from the Southampton i-Tree Eco data
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Figure 4.5: Log standard deviation in the expected number of trees for each cell in
Southampton, as predicted from the Southampton i-Tree Eco data
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4.5 Convergence and model fit diagnostics

The parameters included in the Southampton i-Tree Eco model appear to have converged

as expected. Traceplots of important parameters (Figure 4.6) all illustrate parameters

appearing to converge, with good mixing between the chains. Convergence is also sug-

gested by the R̂ values which provided to three significant figures are generally equal

to 1.00. Exceptions are the inverse precision parameter and negative binomial variation

parameter which have R̂ values calculated as 1.02. While slightly higher, these R̂ values

only indicate the possibility of mild convergence issues, not considered high enough to

be of concern. Density plots of parameters are as expected. From visual inspection of

the density plots, each parameter appears to be normally distributed, with the exception

of the mixing parameter which appears to have a half-normal distribution with a peak

close to one. The modelled distribution of the mixing parameter is as expected and

results from values being unable to exceed the maximum value of one.

Prior sensitivity was assessed by rerunning the model fitted to the Southampton i-Tree

Eco data, with adjusted prior definitions for select parameters. Our sensitivity checks

can be summarised as follows:

β ∼ N(0, 1) - A Normal distribution with mean 0 and variance 1 for our regression

parameters β. The adjusted prior has the same distribution as before, but with a

smaller variance. The resulting model parameters were very similar to the original

model, with no convergence issues observed.

v ∼ N(0, 5) - A Normal distribution with mean 0 and variance 5 for our inde-

pendent uncertainty parameter, v. The adjusted prior used here has an identical

distribution, but with a larger variance. Resulting model parameters were very

similar to the original model, albeit with the borderline significance observed for

the β2 parameter by the 95% CI now being just below, rather than just above,

zero. No convergence issues were observed.

1√
τσ

∼ Normal(0, 1) - A Normal distribution with mean 0 and variance 1 for our

inverse precision parameter 1√
τσ
. The resulting model parameters were very similar

to the original model, with no convergence issues observed.

ρ ∼ uniform(0, 1) - A uniform distribution ranging between 0 and 1 for our mixing

parameter, ρ. The resulting model parameters were very similar to the original

model, with no convergence issues observed. Mixing parameter estimates were

found to be a little lower, however generally remained close to one.
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Figure 4.6: Parameter traceplots for the Southampton i-Tree Eco model
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4.6 Population densities and estimates

Total tree population estimates for the Southampton area can be obtained by calculating

the sum of the estimated number of trees in each cell,
∑︁nc

i=1 Zi for cells i = 1, 2, ..., nc.

A density plot of the expected tree populations predicted from the Southampton i-Tree

Eco model can be observed in Figure 4.7. The estimated tree population density peaks

close to the original i-Tree Eco estimate of 267,000 trees, suggesting the modelled tree

populations seem appropriate. A relatively high level of uncertainty is observed in the

population estimates, with the 95% credible interval ranging between approximately

194,000 trees and 442,000 trees. This uncertainty can be attributed to the high levels

of prediction required for estimating the total number of trees within each cell.
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Figure 4.7: Plot of the population density as estimated from the Southampton i-Tree
Eco data in thousands of trees

4.7 Summary of other areas

In addition to Southampton, BYM2 models were also fitted in Stan for i-Tree Eco data

in Petersfield and Cambridge. By fitting spatial models to i-Tree Eco data in other

areas we allow for tree densities to be simulated from a variety of locations. Through

the inclusion of different locations, we can assess to what extent our findings on the

efficacy of various survey plot designs has been observed across different areas. Plots
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and tables summarising the Petersfield and Cambridge i-Tree Eco models are included

in Chapter B of the appendix.

4.7.1 Petersfield

The Petersfield i-Tree Eco data consists of 201 survey plots containing a total of 662 trees.

The total number of trees corresponds to an overall rate of 82.1 trees per hectare within

the survey plots resulting in an estimated total population of 65,805 trees throughout

the area of Petersfield, providing the rate observed in the survey plots is representative

of the entire area. We note that both the rate and estimated population of trees from

the Petersfield i-Tree Eco data is much higher than the corresponding values in the NTM

data. Like the Southampton data, a high number of survey plots (44%) were found to

not contain any trees and of the plots containing trees, less than half contained more

than five trees. Like the Southampton data, we therefore accounted for zero inflation

in our dataset by using a negative binomial distribution, as opposed to a Poisson when

model fitting.

In the Petersfield i-Tree Eco data, a low number of survey plots were found to include

a high number of trees, with eight survey plots containing more than 20 trees and

one plot containing as many as 39 trees. We note that the plot containing 39 trees

corresponds to an average rate of 972.6 trees per hectare, much higher than is generally

observed. These larger values present issues when modelling, due to the low number

of plots providing limited information on when larger tree densities would be expected.

Like in Southampton, the inclusion of an exponential component in the model and the

reliance on extrapolating estimates, results in some high levels of uncertainty in areas

where large numbers of trees are predicted.

Convergence and model fit diagnostics for the Petersfield model suggest a good model

fit. Trace plots of the coefficient and uncertainty parameters indicate mixing and con-

vergence, R̂ values indicate convergence by not rising above 1.01, whilst density plot

of the parameters distributions appear appropriate. Assessments of prior sensitivity all

found very similar parameter values to the original model, without any indication of

convergence issues.

As anticipated, the model estimated the expected number of trees to be very large in

some areas. Whilst this follows the findings of the data, we suggest that the number of

expected trees are often larger than could be observed in reality. Further consideration on

how extreme values generated from the model can be considered is given when discussing

the simulations in Chapter 5.

As observed in Southampton, analysis of the residuals largely suggest an accurate model,

albeit with errors associated at extreme values. The 95% credible interval of the expected
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total population from the model is wide, however the inclusion of the i-Tree Eco popula-

tion estimate from the overall rate of trees in the estimated population density, suggests

model accuracy. We note that the NTM population estimate is below the lower inter-

val of the calculated 95% credible interval, however this is expected due to the large

discrepency in the tree rates found for the i-Tree Eco and NTM datasets.

4.7.2 Cambridge

The Cambridge i-Tree Eco data contains 202 survey plots in which 422 trees were ob-

served, corresponding to an average rate of 52.2 trees per ha within the survey plots. The

rate of trees in the Cambridge i-Tree Eco data is similar to that observed in Southamp-

ton but much lower than the rates in the Petersfield i-Tree Eco data and the Cambridge

NTM data. Assuming the rate of trees in the survey plots is representative of the en-

tire Cambridge area, we would predict an estimated tree population of 212,344 trees

throughout Cambridge

Similarly to Southampton and Petersfield, no trees were observed in a large number of

survey plots (50%) for the Cambridge i-Tree Eco data. Unlike Southampton and Peters-

field, less plots contained high number of trees, with only three survey plots including

more than 20 trees. We note that the lower maximum values within the survey plots gen-

erally corresponds to lower maximum tree estimates from the model, with unrealistically

large tree densities being rarely estimated.

Generally the model fitted to the Cambridge i-Tree Eco data appears appropriate. Resid-

uals were often observed to be close to zero, albeit with a low number of instances where

the model underestimates the number of trees in areas with high tree densities. Total

population estimates are significantly lower than the tree population provided by the

ProximiTREE data, an expected result attributed to the loose definition of trees used

for the ProximiTREE data. Based on the model results, population estimates were gen-

erally lower than the population estimate calculated by assuming a consistent rate of

trees throughout the Cambridge area, however a significant difference was not observed.

Convergence and density plots appear appropriate for all coefficient and uncertainty

parameters, with the exception of the mixing parameter. From the density plot of the

mixing parameter, it appears that the MCMC samples contain a range of values, with

higher estimates close to zero and close to one. The emphasis on either high levels

of independent error or high levels of spatial error, can in part be attributed to the

beta hyperprior placed on the mixing parameter. Consideration of alternative priors

and hyperpriors, noted some changes in parameter estimates and similar convergence

issues with the mixing parameter. Simulations from the Cambridge i-Tree Eco model

are still explored in the following chapter, however we note the discrepancy in how the
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model error is accounted for, which may be attributed to a lack of information from the

underlying survey plot locations.

4.8 Exploration of modelling accuracy using completely

observed data

To further assess whether the modelling approach outlined in this chapter was suitable

for the i-Tree Eco data, we employed the completely observed ProximiTREE and Na-

tional Tree Map (NTM) data, modelled in Chapter 3. The survey plot locations from

the Cambridge and Petersfield i-Tree Eco surveys, were overlaid on top of the Proxim-

iTREE and NTM data and trees observed outside the survey plots were removed. We

then fitted our spatial model, detailed in this chapter, to the survey plots and compared

the modeled results to the initial ProximiTREE and NTM data. Comparisons were

conducted by assessing whether the true values were within the 95% credible intervals

estimated by the model, both for the total populations and by cell.

We assessed the accuracy of the model fits under a range of different conditions. To

compare between different cell structures, models were fitted to cells of size 1.5, 1,

0.5 and 0.1 hectares using both hexagonal and gridded cell shapes. Cells of size 0.1

hectares were only explored for the smaller area of Petersfield, as cells of size 0.1 hectares

were computationally infeasible for Cambridge. To ensure consistency of results, model

accuracy was explored under different survey plot designs. In addition to the i-Tree Eco

survey locations, we simulated an additional four complete and randomly located survey

plot designs for both Cambridge and Petersfield. We note that two of the survey plot

designs contained 200 plots, whilst the other two contained 400 plots. Plot locations

were simulated according to the process outline in Section 5.1.1. Model covariates were

obtained for each cell size and shape, by conducting a model selection process on the

complete ProximiTREE and NTM datasets. While complete data was used to establish

the included covariates, we note that only data inside the survey plots was accounted

for in the model estimation.

Our results generally suggested that the outlined modelling process provided accurate

summaries of the ProximiTREE and NTM datasets from the surveyed data. For all cell

structures and survey designs considered, the true population was found to lie within

the 95% credible intervals of the expected populations produced by the MCMC samples.

These population results, suggest strong evidence of the models providing appropriate

tree population estimates. We also considered the proportion of cells in which the

observed cell values were found to lie within the 95% credible interval of the expected

number of trees. Results by cell are summarised in Table 4.3, for hexagonal cells of all

sizes. Our results generally suggest that the estimated tree densities were appropriate,

with values above 95%, however a slight drop in accuracy is observed for the smaller cells.
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We note that the drop could be attributed to smaller cells being more likely to contain

no trees, whereas the expected numbers of trees cannot fall below zero. Furthermore,

while a drop is observed, the values do not appear low enough to be of particular

concern. Similar results to those illustrated in Table 4.3 were also found in each of the

simulated survey plot designs (Tables B.4 and B.3 in Appendix B), further illustrating

the suitability of our modelling approach. Due to the higher level of precision offered

by smaller cell sizes, our final modelling process was conducted using cell sizes of 0.5 for

Southampton and Cambridge and sizes of 0.1 for Petersfield.

Table 4.3: Proportion of cells in which the observed value is within the 95% credible
interval for the modeled expected number of trees. Models based on i-Tree Eco survey
locations containing trees from the ProximiTREE and National Tree Map data for

Cambridge and Petersfield respectively

Location Hexagon size (Ha) Proportion of hexagons in the 95% CI

Petersfield

1.5 97.5

1 97

0.5 95.6

0.1 90

Cambridge

1.5 99.3

1 96.4

0.5 93.8

Further examination of different cell structures and survey plot designs, suggested our

modelling approach was effective for a range of different situations. Hexagonal and

gridded cells were found to produce estimates with similar levels of accuracy. We selected

the use of hexagonal cells, due to hexagonal cells usually allowing for a larger number of

neighbours than grids. Similar levels of modelling efficacy were observed for 200 and 400

survey plots suggesting our modelling approach should be suitable for all of the i-Tree

Eco datasets assessed in this thesis.

We note that our findings use the ProximiTREE and NTM definitions of a tree as a

basis for modelling, as opposed to i-Tree Eco. While we believe that the results presented

here demonstrate the efficacy of the modelling approach presented in this chapter, we

cannot fully understand how accurate the modelling approach is for predicting i-Tree

Eco data. Furthermore, a low number of fitted models contained convergence issues,

similar to those observed in Section 4.7.2. Despite these concerns, the consistency of the

modelling approach in producing reasonable estimates is encouraging.
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Chapter 5

Simulation approach for assessing

survey design efficacy

In this chapter an approach for using simulations to assess the efficacy of different survey

plot design structures, is presented. The chapter begins by detailing the process used in

the analysis, while the results of the analysis are summarised in the second half of the

chapter.

5.1 Simulation methodology

To assess the efficacy of different survey plot designs, we propose an approach which

employs simulating tree densities within cells covering some area of interest, using models

fitted in Chapters 3 and 4. A variety of survey plot designs were placed over the simulated

data, to assess how well the area contained within the survey plots summarised the full

simulated data. The efficacy of a survey plot design was assessed by comparing the total

tree population estimated by the survey plots to the total tree population simulated from

our models. The accuracy of tree population estimates has been selected to summarise

the efficacy of survey plot designs, as repeated accurate tree population estimates should

be indicative of a survey design accurately representing the overall area. The use of tree

populations for summarising survey design efficacy is discussed and considered in further

detail in Section 6.1.

Over the following sections we detail the approach taken to applying the simulation

approach described above. Each process has been written and run through the pro-

gramming language R.
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5.1.1 Simulating plot locations

The simulations conducted in our approach can be divided into simulating tree densi-

ties and simulating plot locations. The following details the broad approach taken to

establishing survey plot locations.

STEP 1: Specify the number of plots, nS , polygon representing the area being

investigate, D, and plot radius in metres, r.

STEP 2: Randomly locate nS survey plots within the area, D.

STEP 3: Calculate the distance between all survey plots and remove survey

plots with a distance of less than 2r metres between each other.

STEP 4: Calculate the distance between the survey plots and the area bound-

ary. Remove all survey plots less than r metres away from the boundary.

STEP 5: Repeat STEPS 2, 3 and 4 for the number of survey plots rejected.

For STEP 3, the calculated distances include plots that have not been rejected,

however only plots introduced in STEP 5 can be removed.

STEP 6: Repeat STEP 5 until all nS survey plots have simulated locations.

To conduct the final step of the above process, a ‘for’ loop has been employed to repeat

the step until the survey plot locations are satisfactory. The use of ‘for’ loops in R is

computationally expensive, however allows for a process to be easily repeated whilst

accounting for any results in the previous loop iteration. The number of loops required

is generally low and rarely exceeds a maximum of four loops for the assessed areas.

Adaptations to the plot simulation process are required when incorporating stratification

into the survey plot design. Under stratification, survey plots are located such that a

set number of locations are placed within areas that meet some strata condition. For

example, we have explored a stratification process which stratifies according to the

natural and buildings categories detailed in Chapter 3. After establishing the number

of survey plots to be assigned to each strata, the plot simulation process is repeatedly

applied to the area satisfying the strata conditions, for the requisite number of survey

plots. When applying the plot simulation process to stratified areas, a looser definition

is applied whereby only the centre of the survey plot needs to lie in the strata rather

than the entirety of the survey plot area. The looser definition for strata ensures that

survey plots can be located in small or constrained strata areas, however are still set so

that the survey plot cannot contain any area outside the overall area border.
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Strata for the natural and buildings variables, consisting of five categories each, are

applied by combining both variables into one single variable, consisting of 25 categories.

The proportion of the total area meeting the strata criteria was then used to assess how

many survey plots should be placed inside each strata level. For example, if 500 survey

plots were being assigned in total and a strata level represented 1% of the total area, we

would expect to place five survey plots within this strata. Strata numbers are selected

based on the proportions of the strata in the overall area, as this is expected to result

in the areas observed by the survey plots best representing the overall area.

5.1.2 Simulating tree densities

In addition to simulating survey plot locations, tree densities within overlaid hexagonal

cells have also been simulated. The following process gives a brief overview of how

the total number of trees and the number of trees within the survey plots have been

simulated from some fitted Bayesian model with a spatial CAR component:

STEP 1: Generate random values from a N(0,1) distribution for our indepen-

dent random error term, v, in all cells

STEP 2: Select an MCMC iteration and use the simulated values, along with

our independent random errors generated in STEP 1, to calculate the relative

risk, η ,for each cell. Spatial samples taken from one MCMC iteration due to

the interlinking nature of the fitted models.

STEP 3: Multiply the η values from STEP 2 by the expected number of trees

within the simulated survey plot areas, E, for each cell.

STEP 4: Multiply the η values from step 2 by the expected number of trees

within the entire cell, E∗.

STEP 5: Generate random tree densities from a Negative Binomial distri-

bution with variance parameter taken from the MCMC iteration selected in

STEP 2 and mean taken from the STEP 3 results. The resulting values repre-

sent the simulated number of trees observed in survey plot areas within each

cell, Y .

STEP 6: Repeat STEP 5 with the Negative Binomial mean taken from STEP

4. The resulting values represent the simulated number of trees observed

within the entirety of each cell, Z.
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In the first step of the above process, an independent random error term is randomly

simulated, to ensure that some non-spatial, independent random error is accounted for in

the model. Simulations were drawn from a normal distribution with a mean of zero and

standard deviation of one, in line with the prior distribution assigned to the independent

random error term in the i-Tree Eco models. Due to the heavy emphasis on the spatial

error over the independent error term in a lot of the observed models, it is of note that

the non-spatial random error term is often having little effect on the simulated tree

values.

The expected values used to simulate trees for both the cells and survey plots, were again

calculated using internal standardisation. By keeping the rate of trees consistent with

the definition from the observed data, it is ensured that interpretation of the expected

values also remains consistent throughout the simulations.

To ensure the number of observed trees are whole numbers, random draws are taken

from a negative binomial distribution with the mean taken as the expected number of

trees and the dispersion parameter taken from the dispersion parameter used in the

associated MCMC iteration. The negative binomial distribution has been selected for

the i-Tree Eco models due to the inclusion of the dispersion parameter to deal with

zero-inflated data. However, there is uncertainty on whether the total number of trees

estimated throughout the entire cell also follows a negative binomial distribution. As

the trees modelled in Chapter 3 follow a Poisson distribution, in which the variation

is considered equal to the mean, generating tree density simulations from a Poisson

distribution for the i-Tree Eco model simulations has also been considered. It is of

note that the ProximiTREE and National Tree Map (NTM) model simulations are all

calculated using Poisson distributions as opposed to negative binomial distributions.

As the tree density simulations for within the entire cell and within the survey plots are

drawn from separate distributions, it is unlikely but not impossible for the trees observed

within a survey plot to exceed the total number of trees simulated for the associated

cell. Generally the plot simulations are more likely to exceed the cell simulations in areas

where a large proportion of the cell has been observed, however the problem can also

occur when drawing randomly from a negative binomial distribution with a high level of

uncertainty. The decision was made to not adjust simulations such that plot simulations

did not exceed cell simulations, as this could systematically lower population estimates

calculated from the simulated survey plots.

An alternative approach, incorporating random draws from a Bernoulli distribution, was

explored for simulating the number of trees found within the survey plots. As opposed

to being directly drawn from a random distribution, simulations for the number of trees

in the survey plots are instead calculated from the number of trees simulated for the

entire cell. For each cell the proportion of the cell observed by the simulated survey

plots was calculated and the result multiplied by the number of trees simulated for the
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entire cell. The decimal value was then used as the probability in a random draw from

a Bernoulli distribution, to establish whether the estimate was rounded down or up to

the nearest whole number. For example, if three trees were simulated for a cell of size

two hectares, where one hectare of the cell was observed by survey plots, the number

of simulated trees inside the survey area would be one with probability 0.5 or two with

probability 0.5. Using this approach ensures that the number of trees simulated in the

survey plots follows the rate of trees simulated, but cannot exceed the total number of

trees simulated for the cell.

While using the Bernoulli approach results in simulated tree density values that logically

make sense, the approach makes an implicit assumption that the rate of trees is largely

consistent throughout a cell. In reality, we could expect the rate of trees to vary within

a cell and by assuming a constant rate, the Bernoulli approach may be removing some of

the variation in the plot estimates, and therefore the population estimates. In contrast,

simulating the tree populations for the survey plots from either the Poisson or Negative

Binomial distribution, ensures that variability in the tree density within the cells is

maintained. In the simulations analysis, we therefore considered the impact of simulating

the trees in the survey plots using both the Bernoulli approach and by taking draws from

a random distribution.

5.1.3 Calculating population estimation accuracy from simulations

Using the approaches to simulating survey plots and trees densities, the following de-

scribes the process for assessing survey plot accuracy based on the number of survey

plots in a survey plot design.

STEP 1: Simulate complete tree densities Zi for each cell, i.

STEP 2: Calculate the simulated total tree population, by summing the results

in STEP 2.

STEP 3: Select random plot locations and draw buffers around each survey

plot.

STEP 4: Calculate the survey plot area included in each cell.

STEP 5: Simulate values for the number of trees observed within the survey

plots, Yj for cells containing survey plot areas.

STEP 6: Calculate an estimate of the tree population from the survey plot

estimates simulated in STEP 5.
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STEP 7: Compare the total population estimated from the survey plots in

STEP 6 to the total population simulated in STEP 2.

In the final step of the approach detailed above, comparisons between the simulated and

estimated total populations is conducted by calculating the relative error. The relative

error is defined by dividing the populations estimated from the survey plots by the

simulated populations. By calculating and presenting the relative error, survey design

accuracy is assessed relative to the total populations, ensuring that areas with larger

tree populations are not penalised. For comparison, raw errors are also presented and

interpreted in the results. Consideration is given to how interpretation of both the raw

and relative errors inform our results.

A key consideration of assessing survey plot designs is the number of survey plots in-

cluded. However, repeatedly using the above process to explore population estimation

accuracy for a range of different survey plot sizes is computationally expensive. An effi-

cient way to make the process less computationally expensive, is to minimise the number

of times survey plot locations are simulated in STEP 3. We propose selecting plot loca-

tions for only the largest survey plot designs, giving plot locations of s = (s1, s2, . . . , sn)

where n represent the maximum number of survey plots being explored. Smaller plot

designs were then obtained by randomly sampling plot locations from s without re-

placement, as opposed to simulating entirely new survey plot designs. We note that for

stratified survey plot designs, locations must be randomly sampled so as to adhere to

any outlined stratification criteria. STEPs 4 to 7 of the above simulation process were

then conducted on both the full plot locations and the randomly sampled locations,

providing accuracy estimates for plot designs across a range of sizes.

Running the above approach for estimating population accuracy multiple times across

a number of iterations, provides results for a range of different plot location and tree

density simulations. Due to survey plot designs being sampled from the largest design in

each iteration, we note that independence will exist between, but not within, iterations.

As interpretation of our results is provided across iterations this has not posed a problem

when conducting our analysis. In our results, 5,000 iterations have been applied as this

appears to always be sufficient for convergence without being computationally infeasible.

5.2 Simulation results

Using the simulations based approach outlined in this chapter, we now consider how

the number of survey plots in a survey plot design affects the population estimate error

for tree density values simulated from the spatial models fitted in Chapters 3 and 4.

We begin by presenting the results taken from the National Tree Map (NTM) and

ProximiTREE models, before presenting results from the i-Tree Eco models. Due to the
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large number of tables and figures assessed, additional tables and figures are provided

in Appendix C .

5.2.1 Assessement of survey plot design error from models fitted to

the ProximiTREE and National Tree Map (NTM) data

Generally, the relative errors associated with the ProximiTREE and NTMmodels appear

to quickly converge to a low level of relative error as the the number of survey plots

increases. A visual representation of the relative error against the number of survey

plots is included in Figure 5.1, with solid lines representing the mean relative error from

the simulations and the dashed lines representing the 90th percentiles. The dashed 90th

percentile line indicates the higher relative error values that have been observed, with

90% of our relative errors found to lie below the 90th percentile line. Generally, the

mean relative error appears to reduce very little beyond 100 survey plots in both areas,

with the 90th percentiles reducing very little beyond 200 survey plots. From the 90th

percentiles, it would therefore appear that 200 survey plots would usually be sufficient,

based on the ProximiTREE and NTM data.
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Figure 5.1: Plot of the relative error against the number of survey plots. Relative
errors calculated using simulations from spatial models fitted to the Cambridge Prox-
imiTREE and Petersfield National Tree Map (NTM) data. Solid lines represent mean

values, whilst dashed lines represent 90th percentiles
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For ease of interpretation, relative errors are summarised numerically for the Cambridge

ProximiTREE model and Petersfield NTM model in Tables 5.1 and 5.2 respectively.

The tables present the relative errors associated with the total number of survey plots

at the 50th, 75th, 90th and 95th percentiles, with the number of survey plots increasing

in increments of 50 between 50 and 500. For example, in Table 5.1 we can observe that

90% of survey plot designs with 200 plots had a relative error of 12.8% or lower based on

simulations from the Cambridge ProximiTREE model. Both Tables 5.1 and 5.2, again

highlight how the relative error reduces at a slower rate after 200 survey plots. Based

on the ProximiTREE and NTM data, it could therefore be suggested that sampling

with more than 200 survey plots provides little benefit in reducing the observed relative

error, however this conclusion is subject to personal interpretation of what constitutes

an acceptably low relative error.

Table 5.1: Summary of the relative error by percentile against the number of survey
plots. Relative errors calculated using simulations from modeled Cambridge Proxim-

iTREE data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 10.5% 7.5% 6.1% 5.2% 4.8% 4.3% 4.0% 3.7% 3.5% 3.3%

75% 18.1% 12.8% 10.5% 8.9% 8.0% 7.3% 6.7% 6.3% 6.0% 5.6%

90% 25.7% 18.2% 15.1% 12.8% 11.5% 10.5% 9.7% 9.1% 8.7% 8.1%

95% 30.8% 21.6% 18.1% 15.4% 13.9% 12.6% 11.7% 10.9% 10.3% 9.7%

Table 5.2: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using simulations from modeled Petersfield National

Tree Map (NTM) data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 13.8% 9.7% 7.9% 6.8% 6.0% 5.6% 5.0% 4.8% 4.5% 4.2%

75% 23.5% 16.6% 13.4% 11.5% 10.3% 9.4% 8.7% 8.1% 7.6% 7.3%

90% 33.1% 23.5% 19.2% 16.3% 14.6% 13.3% 12.4% 11.4% 10.9% 10.4%

95% 39.5% 27.8% 22.7% 19.2% 17.4% 15.7% 14.8% 13.6% 12.9% 12.4%

Despite differences in tree definitions and the underlying areas, the relative errors appear

similar for the findings simulated from the Cambridge ProximiTREE and Petersfield

NTM models, albeit with slightly lower relative errors observed for Cambridge. The

ProximiTREE and NTM results would therefore appear to suggest that the accuracy of

a survey plot design in estimating the underlying ‘true’ rate of trees, is not tied to the size

of an area or even the total number of trees observed within an area. We note however

that the findings presented in this section consider only the relative error, as opposed to
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the absolute error, and are using the definitions of trees provided for the ProximiTREE

and NTM data, both of which differ from the definition of a tree given under i-Tree Eco.

In the following section we explore the relationship between the number of survey plots

and the relative error for simulations taken from i-Tree Eco data. Consideration of the

absolute error, as opposed to relative error is provided in section 5.2.6.

5.2.2 Assessement of survey plot design error from models fitted to

i-Tree Eco data

Relative errors calculated using i-Tree Eco model simulations were found to be much

higher across all locations (Figure 5.2), compared to ProximiTREE and NTM simula-

tions. In each location the mean relative error converges to a higher value of approxi-

mately 20% at a much slower rate than previously observed. Of particular concern are

the high relative errors for the 90th percentiles, with 200 survey plots corresponding to

a relative error of 46% at the 90th percentile in Southampton (Table 5.3). It is of note

that an excess of 250 survey plots results in little reduction in the relative error, however

the relative error remains larger than expected.
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Figure 5.2: Plot of the relative error against the number of survey plots. Relative
errors calculated using negative binomial simulations from modeled i-Tree Eco data.

Solid lines represent mean values, whilst dashed lines represent 90th percentiles
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Table 5.3: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using negative binomial simulations from modeled

Southampton i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 31.5% 24.6% 20.8% 18.6% 16.9% 16.0% 15.3% 14.4% 13.6% 13.3%

75% 49.3% 39.7% 34.0% 31.3% 28.4% 27.2% 25.8% 24.3% 23.0% 22.4%

90% 68.3% 57.1% 50.1% 46.0% 41.8% 40.0% 37.8% 36.0% 34.3% 33.1%

95% 98.5% 79.7% 67.1% 61.0% 54.6% 51.7% 49.9% 46.1% 44.5% 43.1%

Simulating plot values from a Bernoulli distribution, as outlined in Section 5.1.2, was

found to provide almost identical results to simulating plot values from a negative

binomial distribution, throughout all areas. Furthermore, we note that applying the

Bernoulli distribution approach does little to substantially effect the relative errors pro-

duced throughout all of the simulations we considered. The Bernoulli approach having

little effect suggests that accounting for tree variation within the cells as part of our

calculations has little effect on the overall accuracy of the survey plot designs. Due to

offering very similar results, Bernoulli simulation results have been produced, but are

generally not presented any further.

Unlike the ProximiTREE and NTM models, the relative errors simulated from the i-

Tree Eco models were found to differ by location, with relative errors largely higher

in Southampton and Petersfield than Cambridge. We suggest that the lower relative

errors in Cambridge could be attributed to the maximum expected tree rate from the

model being much lower in Cambridge, compared to Southampton and Petersfield. In

cases where a small number of areas are accounting for a large proportion of the total

tree population, survey plot error is expected to be much higher if cells with higher tree

rates are not sufficiently accounted for in the survey plot design. Cells containing large

number of trees for the i-Tree Eco models can be attributed to a number of reasons

including, the uncertainty introduced in the prediction, the use of an exponential and

the use of a negative binomial distribution. In the following sections, we consider how

adaptations to the simulation process impact the population errors produced.

5.2.3 Simulations from a Poisson distribution

Relative errors calculated using i-Tree Eco model simulations, were generally found to

be lower when tree densities for both cells and plots were drawn from a Poisson distri-

bution, as opposed to a negative binomial (Figure 5.3). For example, in Southampton a

relative error of of 33.9% was observed at the 90th percentile for 200 plots, approximately

12% lower than was observed when simulations were drawn from a negative binomial
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distribution. Relative errors being lower for Poisson simulations is not surprising given

that the negative binomial is often providing additional uncertainty for the i-Tree Eco

models. The use of a Poisson distribution can somewhat be justified by the distribution’s

efficacy in modelling the ProximiTREE and NTM data, which both suggest the number

of trees in the cells follow a Poisson distribution. As i-Tree Eco data is provided at the

survey plot level and often contains a large number of empty plots, it is possible that a

negative binomial distribution is more appropriate for modelling survey plot data than

simulating tree densities for entire cells.

We note that under the Poisson simulation approach, the relative errors is still lowest

in Cambridge, however the Southampton relative error is now lower than Petersfield.

The higher reduction in the relative error for Southampton could be attributed to higher

uncertainty values for the negative binomial in the Southampton i-Tree Eco model, when

compared to Petersfield. The rate at which the relative error reduces after 200 survey

plots is comparable to that observed using a negative binomial distribution, however the

relative error is lower due to a faster reduction in the relative error between 0 and 200

survey plots.
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Figure 5.3: Plot of the relative error against the number of survey plots. Relative
errors calculated using Poisson simulations from modeled i-Tree Eco data. Solid lines

represent mean values, whilst dashed lines represent 90th percentiles
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Table 5.4: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using Poisson simulations from modeled Southampton

i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 23.6% 18.1% 14.9% 13.4% 11.9% 11.1% 10.6% 9.8% 9.3% 9.0%

75% 39.2% 30.1% 25.5% 23.1% 20.7% 19.4% 18.4% 17.3% 16.4% 15.5%

90% 56.1% 44.5% 37.7% 33.9% 31.3% 29.2% 27.6% 26.5% 25.0% 24.1%

95% 75.1% 57.3% 48.8% 44.0% 39.8% 37.2% 35.0% 33.5% 31.4% 30.4%

5.2.4 Simulating from selected samples

For both the Southampton and Petersfield i-Tree Eco models, we observed extreme

expected tree estimates that we do not believe would be observed in reality. We therefore

consider how the population error would look if simulations drawn from the Southampton

and Petersfield models did not include these extreme observations. For each MCMC

sample we extracted the cell with the largest expected tree value in the cells, ordered

the MCMC samples from smallest to largest by the largest expected tree value, removed

the top half of the MCMC samples and assessed population error using our simulation

approach from the lower half of the MCMC samples. By removing half the MCMC

samples, we ensure that the largest simulated tree densities are lower than would be

expected in the full model.

By removing half the MCMC samples, the relative error was reduced for both the

Southampton (Figure 5.4) and Petersfield (Figure 5.5) i-Tree Eco models. Further-

more, consideration of only half the MCMC samples was found to reduce the relative

error when sampling from both the negative binomial and Poission distributions. In

Southampton a relative error of 28.4% was observed at the 90th percentile for 200 plots,

when only including half the MCMC samples and simulating from a Poisson distribution

(Table 5.5), much lower than the 46% observed when including all samples and simu-

lating from a negative binomial distribution. The observed reduction in relative error,

could suggest that extreme values produced from the models are inflating the relative

error by considering simulations that would not exist in reality. A possible solution

could be to constrain the expected number of trees in each cell at the modelling stage,

preventing some of the larger tree estimates that were observed in Chapter 4.

We note again that the rate at which the relative error reduces after 200 survey plots

is comparable to under the negative binomial distribution, however the relative error

reduces at a much faster rate between 0 and 200 plots. An excess of 200 survey plots

can therefore be viewed as providing little benefit in reducing the relative error further,

however this is subject to personal interpretation of the results.
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The total populations produced when considering only half the MCMC samples appear

to be appropriate. For both Southampton and Petersfield, the population densities

still peak close to the estimates provided in i-Tree Eco reports, however the long tails

observed when using the full MCMC samples were missing. By sampling from only half

the MCMC samples, the relative errors for Southampton and Petersfield were found to

be much closer to those observed under the full MCMC samples in Cambridge, albeit

with relative errors still lower in Cambridge.
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Figure 5.4: Plot of the relative error against the number of survey plots, for simu-
lations produced from all and half of the MCMC samples. Relative errors calculated
using negative binomial simulations from modeled i-Tree Eco data in Southampton.

Solid lines represent mean values, whilst dashed lines represent 90th percentiles

Table 5.5: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using Poisson simulations from half the model samples

for modeled Southampton i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 21.0% 15.7% 12.9% 11.2% 10.4% 9.5% 8.8% 8.3% 7.9% 7.3%

75% 34.8% 26.3% 21.9% 19.3% 17.4% 16.1% 15.0% 14.1% 13.5% 12.6%

90% 51.1% 38.3% 31.8% 28.4% 25.6% 23.5% 21.8% 20.6% 19.5% 18.4%

95% 68.0% 48.5% 39.1% 35.1% 31.6% 28.8% 26.7% 25.2% 23.7% 22.5%
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Figure 5.5: Plot of the relative error against the number of survey plots, for simu-
lations produced from all and half of the MCMC samples. Relative errors calculated
using negative binomial simulations from modeled i-Tree Eco data in Petersfield. Solid

lines represent mean values, whilst dashed lines represent 90th percentiles

5.2.5 Stratification by variable

As an additional survey design consideration, we explored the impact of stratification

on the relative error values. The stratification procedure used the proportion of natural

and buildings coverage as strata, as outlined in Section 5.1.1. We explored applying

stratification criteria to the survey plot locations for simulations drawn from the Prox-

imiTREE, NTM and i-Tree Eco models. For i-Tree Eco models we considered drawing

simulated tree values from both the negative binomial and Poisson distributions.

Generally, very little difference was observed in the relative errors between stratified

and randomly located survey plot designs. We note however that stratification may be

providing benefits, such as a more representative sample for other variables collected for

i-Tree Eco surveys, despite having little impact on the population estimate. Further-

more, consideration of a stratification approach that accounts for spatial correlations in

the area being observed, may result in lower relative errors than stratifying by covariates.

5.2.6 Absolute error

So far we have considered the relative error associated with population estimates, how-

ever it can also be important to consider the absolute error. As opposed to the relative

error, absolute error provides the raw differences between the observed and the estimated
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populations in the simulations. By considering the relative error, we effectively assess

how well the survey plots capture the overall rate of trees, whereas consideration of the

absolute error, captures how well our estimated rate of trees ‘scales up’ to represent an

entire area.

Absolute errors were found to generally reduce down quicker when simulating from

the Petersfield i-Tree Eco model using a negative binomial distribution, as opposed

to simulating from the Southampton and Cambridge i-Tree Eco models (Figure 5.6).

Furthermore, the mean absolute error appears to generally reduce very little between

100 and 200 plots for Petersfield, whilst the 90th percentile generally reduces very little

beyond 200 survey plots. We note that our interpretation of the Petersfield absolute

errors is provided within the context of the corresponding Southampton and Cambridge

absolute errors.

Given the size of the area, the Cambridge absolute errors appear to also reduce down

very quickly, albeit at a slower rate than observed for Petersfield. By 200 survey plots

the mean absolute errors are very similar for both Petersfield and Cambridge, however

the 90th percentile remains higher in Cambridge. Relatively low absolute errors being

observed in Cambridge, despite the Cambridge area being much larger than Petersfield,

reflect the low relative errors observed when simulating from the Cambridge i-Tree Eco

data earlier in the chapter.

Absolute errors produced from the Southampton i-Tree Eco data, were observed to

be much higher than both Petersfield and Cambridge. We note that consideration of

Poisson simulations and simulating from half the MCMC samples was found to reduce

the absolute error in a comparable way to the relative error results presented earlier in

the chapter. Tables and Figures summarising the absolute error for different simulation

considerations in all areas, are provided in Appendix C.
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Figure 5.6: Plot of the absolute error against the number of survey plots. Absolute
errors calculated using negative binomial simulations from modeled i-Tree Eco data.

Solid lines represent mean values, whilst dashed lines represent 90th percentiles
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Chapter 6

Discussion and future work

6.1 Ecological conclusions and discussion

From our research, the suitability of using 200 survey plots in an i-Tree Eco survey de-

sign is dependent on a number of different conditions. More generally, we suggest that

providing a representative survey is dependent on capturing the variety of information

present within an urban area. When considering the accuracy of tree population esti-

mates, we usually found much more accurate estimates when considering urban areas

with lower variation in tree densities, compared to urban areas with higher variation

in tree densities. The difference in relative population errors as a result of tree density

variation, is perhaps best illustrated by considering the differences observed by gener-

ating from a negative binomial and a Poisson distribution for our i-Tree Eco models.

For both distributions the expected number of trees in each cell was identical, however

the additional variation introduced by the negative binomial distribution was found to

result in higher relative errors from within the survey plots.

The conclusions reached on the suitability of using 200 survey plots in i-Tree Eco surveys,

are also dependent on the definition of the term tree. Simulations from models fitted

to ProximiTREE and National Tree Map(NTM) data found much lower relative errors

under 200 survey plots, compared to simulations from models fitted to i-Tree Eco data.

The ProximiTREE/NTM datasets differ from the i-Tree Eco datasets in two key ways,

the first being that the i-Tree Eco data defines trees based on diameter at breast height,

whilst the ProximiTREE/NTM data defines trees based on tree height. The second key

difference is that the ProximiTREE/NTM data has been fully observed, whereas the

i-Tree Eco data has only been observed at survey plot locations.

Due to their predictive nature, simulations of entire urban areas from i-Tree Eco models

were found to contain high levels of uncertainty which could be inflating the relative error

in population estimates. For Southampton and Petersfield, we observed that by remov-

ing simulations which contained larger tree density estimates, we reduced the relative
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population errors while maintaining reasonable estimates of the total population. This

would suggest inflated relative population errors could be attributed to larger estimates

in simulations, which result from high levels of modelling uncertainty. The completely

observed nature of the ProximiTREE and NTM data result in less model uncertainty

in our resulting simulations, suggesting that the results may be more reflective of tree

densities that could be observed in reality.

However, differences in relative errors between the ProximiTREE/NTM and i-Tree Eco

simulations, could also be attributed to differences in tree definitions. Comparisons

between the ProximiTREE/NTM and i-Tree Eco data often found relatively low levels

of agreement, which could suggest that the larger relative errors observed for the i-Tree

Eco data are as a result of underlying differences in the ProximiTREE/NTM and i-Tree

Eco datasets, as opposed to just modelling uncertainty. Furthermore, the simulation

results from i-Tree Eco data are the only results which use the definition of trees as

defined by i-Tree Eco, as a basis for exploring the relative errors. Despite the high levels

of uncertainty, all simulations from the i-Tree Eco model are all predominantly based on

findings observed within the i-Tree Eco data. We therefore conclude that whether or not

the ProximiTREE/NTM models provide more representative population errors than the

i-Tree Eco models, is largely reliant on whether or not the difference in tree definitions

is expected to result in significant differences in tree densities across the observed areas.

A further consideration to whether 200 survey plots are suitable for an i-Tree Eco survey,

is whether 200 survey plots is the most appropriate number of survey plots in all areas.

Simulations from our i-Tree Eco data appear to indicate differences in the relative pop-

ulation errors, although these differences were somewhat mitigated by considering the

use of a Poisson distribution and the use of only selected MCMC samples. Our finding

that the accuracy of the relative error estimate is lower in areas with higher variation in

tree densities, could suggest that less survey plots may be required in areas where the

tree density is considered more homogeneous. However in practical terms, information

on the presence of tree density homogeneity may not be present for an area prior to

collecting information for the survey.

We note that when comparing survey accuracy between locations, we believe it is impor-

tant to account for both the information being collected and consider the absolute errors

produced in our results, as opposed to just the relative errors. By considering only the

relative population error, we effectively consider how close the rate of trees estimated in

the survey is to the actual rate. However considering the absolute error also accounts

for the size of the area under investigation and considers in actual terms how close our

population estimate from our surveys is to the simulated populations. For example, two

areas of different sizes may have the same relative error, but we would expect the larger

area to have a higher absolute error compared to the smaller area. In general, estimates

provided by the UFORE model could be associated with higher absolute errors in larger

areas if collected data is ‘scaled up’ to represent an entire urban area.
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In contrast to other research in the literature (Jin and Yang, 2020), we found very

little effect on the relative error as a result of stratifying survey plots. Our differing

results could be attributed to a number of reasons, including differences in stratification

approaches and differences in underlying areas. We note that while stratified survey

plot designs did little to reduce the relative error, stratification should provide more

representative survey data which may be accounted for in other variables collected in

the i-Tree Eco surveys.

6.2 Appropriateness of model

Generally, we believe that the models fitted in Chapters 3 and 4 are appropriate for

the simulation process outlined in Chapter 5, however we acknowledge the existence

of some potential issues in the models. In particular, larger tree densities predicted in

some cells for the Southampton and Petersfield i-Tree Eco models may be unrealistically

high, despite following naturally from the fitted model. As model fit diagnostics and

our findings in Section 4.8 suggest the models are otherwise appropriate, it may be of

interest to explore constraining some of the model parameters for the Southampton and

Petersfield i-Tree Eco models. Furthermore, some convergence issues were observed with

the mixing parameter in the Cambridge i-Tree Eco model, which may require further

investigation.

Despite all the hard work and effort that goes into planning, preparing and conducting

every i-Tree Eco survey, it is only possible to observe a small proportion of the total area.

For example, despite containing a larger number of plots than usual, the Southampton

i-Tree Eco survey covered less than 0.4% of the total Southampton area. Models fitted

from the survey plots are therefore based on relatively limited information, reflected in

the high levels of uncertainty observed. We believe that unless the information collected

in the survey plots is misleading in representing the underlying area, then the resulting

simulations should provide logical tree densities for each cell, which follow naturally

from the observed data. We note that the simulations are expected to provide a range

of ‘believable’ tree densities across all of the cells, as opposed to accurately replicating

what would be observed in reality.

When overlaying cells, the decision was made to bisect survey plots. Survey plots were

bisected so as to use the exact tree locations given within the data, whilst the areas

observed in each cell were accounted for by the inclusion of an offset term in the model.

By bisecting survey plots, we risk complicating the spatial relationship due to trees

potentially being separated into different cells despite being observed within the same

survey plot. We note that the presence of a spatial component in the ProximiTREE and

NTM models, along with exploratory spatial analysis of the trees included in the survey

plots, suggest the high levels of spatial autocorrelation observed in our i-Tree Eco models
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are as expected. Furthermore, our results of Section 4.8, suggest that the cell structures

applied should be sufficient for the purposes of the modelling conducted in Chapter 4.

Alternative definitions for the cell structures were considered, such as Voronoi diagrams

(Okabe et al., 2009), however cells of equal sizes were deemed more appropriate for

summarising interaction between nearby areas. Additional consideration on the effect

cell structures and definitions have on our model results, could further ensure that

findings are attributed to the observations in our data as opposed to originating from

the cell structure definition.

While our modelling process provides results to a reasonable level of accuracy (Section

4.8), the use of a negative binomial distribution to deal with zero inflation results in

large levels of uncertainty in our simulations. Alternative distributions such as the Zero

Inflated Poisson (ZIP) and hurdle models may provide a more appropriate modelling

approach for the survey plots, but do not provide results conducive for estimating tree

densities throughout entire cells. Further consideration of alternative distributions, such

as the Tweedie distribution (Swallow et al., 2016), may provide an improved model

fit compared to the negative binomial, however it must be ensured that the selected

distribution is computationally feasible for both the model fitting in Chapter 4 and the

simulations process in Chapter 5.

6.3 Further work

In this thesis, we have considered our results within the locations of Southampton, Cam-

bridge and Petersfield. Whilst the range of simulations explored allowed us to consider

the efficacy of survey plot design structures under a wide range of conditions, it may be

beneficial to explore additional urban areas. In particular, our research does not directly

address survey plot design efficacy in larger urban areas, such as the city of Manchester.

While results from larger areas would enable further consideration on the relationship

between the number of survey plots required and the area under investigation, model

fitting and simulations for large areas could prove to be much more computationally

expensive.

Modelling approaches for the ProximiTREE/National Tree Map data have been con-

ducted separately from the i-Tree Eco data, due to the use of different tree definitions

and resulting discrepancies in the datasets. An approach which considers employing the

findings of the ProximiTREE and National Tree Map data for informing models fitted

to tree locations in i-Tree Eco, may further reduce the variation observed in resulting

simulations. Combining remote sensing and ground level data is a topic investigated

within the ecology literature (Rattalino Edreira et al., 2020; Henrys and Jarvis, 2019;

Uhl et al., 2021), however an approach suitable for our research could not be found.
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More widely, we note that assessing the efficacy of survey plot designs through the

design’s population estimates has limitations. In general, we have made an assumption

that by representing the ‘true’ rate of trees throughout an area, a survey plot design

will be sufficient for conducting i-Tree Eco surveys. Whilst we suggest that survey plot

designs with large population errors are unlikely to be representative of the wider area,

consideration should be given to ensuring survey plot designs are representative for all

information collected in i-Tree Eco studies.
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Appendix A

Additional Chapter 3 plots and

tables
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Figure A.1: Plot of the empirical and (completely random) Poisson G function for
the Cambridge ProximiTREE dataset
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Figure A.2: Plot of the empirical and (completely random) Poisson Ripley’s K func-
tion for the Cambridge ProximiTREE dataset
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Figure A.3: Plot of the empirical and (completely random) Poisson G function for
the Petersfield National Tree Map dataset



111

0 100 200 300 400

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

r

K
(r

)

K̂bord(r)
Kpois(r)

Figure A.4: Plot of the empirical and (completely random) Poisson Ripley’s K func-
tion for the Petersfield National Tree Map dataset

Table A.1: Summary of land use categories for Petersfield, adapted from the 2015
Land Cover Map. Numbers and rates of trees produced from National Tree Map (NTM)

data

Land use category

Grassland Other Suburban
Urban/

Urban industrial
Woodland

Petersfield area
coverage in Ha (%)

305.8 (38.2%) 64.2 (8.0%) 350 (43.7%) 45.0 (5.6%) 36.1 (4.5%)

Number of
trees (%)

6,740 (26.2%) 767 (3.0%) 13,119 (51.1%) 902 (3.5%) 4,161 (16.2%)

Rate of trees
per Ha

22.0 12.0 37.5 20.0 115.2

Table A.2: Summary of Indicies of Multiple Deprivation (IMD) quintiles. Numbers
and rates of trees produced from National Tree Map (NTM) data

Indicies of Multiple Deprivation (IMD) quintile

1 2 3 4 5

Petersfield area
coverage in Ha (%)

0 (0%) 35.2 (4.4%) 2.6 (0.3%) 484.4 (60.5%) 279.0 (34.8%)

Number of
trees (%)

0 (0%) 1143 (4.5%) 142 (0.6%) 14,115 (55.0%) 10,289 (40.1%)

Rate of trees
per Ha

NA 32.5 54.6 29.1 36.9
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Figure A.5: Plot of Normalized difference vegetation index(NDVI) in Cambridge

Table A.3: Summary of OS MasterMap Green space data for Petersfield. Numbers
and rates of trees produced from National Tree Map (NTM) data

Natural coverage category

0 1 2 3 4

Number of
trees (%)

3,076 (12.0%) 3,731 (14.5%) 4,700 (18.3%) 7,169 (27.9%) 7,013 (27.3%)

Rate of trees
per Ha

14.5 25.5 31.5 48.3 48.2

Table A.4: Summary of OS MasterMap Buildings data for Petersfield. Numbers and
rates of trees produced from National Tree Map (NTM) data

Buildings coverage category

0 1 2 3 4

Number of
trees (%)

14,505 (56.5%) 4,599 (17.9%) 3,103 (12.1%) 2,183 (8.5%) 1,299 (5.1%)

Rate of trees
per Ha

33.0 50.9 34.2 24.1 14.3
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Figure A.6: Plot of Normalized difference vegetation index(NDVI) in Petersfield
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Figure A.7: Plot of the number of National Tree Map(NTM) trees located within
overlaid hexagonal cells of size 0.1Ha in Petersfield
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Figure A.8: Plot of Land Use categories in Petersfield
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Figure A.9: Plot of Indicies of Multiple Deprivation(IMD) deciles in Petersfield
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Figure A.10: Plot of Greenspace coverage within overlaid hexagonal cells of size 0.1Ha
in Petersfield. Greenspace coverage defined from OS MasterMap Topology data
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Figure A.11: Plot of Building coverage within overlaid hexagonal cells of size 0.1Ha
in Petersfield. Building coverage defined from OS MasterMap Topology data
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Figure A.12: Coefficient parameter traceplots for the Petersfield National Tree Map
(NTM) model
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Table A.5: Summary of the model parameters for the Petersfield National Tree Map
(NTM) model

Name Symbol Category Mean (95% CI)

Intercept β0 - 7.67 (7.58, 7.76)

Greenspace β1 - 1.80 (1.65, 1.95)

Buildings

β2 (0 < x ≤ 0.08) 0.32 (0.13, 0.53)

β3 (0.08 < x ≤ 0.18) −0.39 (−0.64, −0.13)

β4 (0.18 < x ≤ 0.26) −0.75 (−1.04, −0.35)

β5 (0.26 < x) −1.29 (−1.53, −1.09)

Interaction

β6 (0 < x ≤ 0.08) −0.20 (−0.47, 0.08)

β7 (0.08 < x ≤ 0.18) 0.46 (0.10, 0.85)

β8 (0.18 < x ≤ 0.26) 0.68 (0.16, 1.12)

β5 (0.26 < x) 1.21 (0.87, 1.65)
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Figure A.13: Uncertainty parameter traceplots for the Petersfield National Tree Map
(NTM) model
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Figure A.14: Median of the expected number of trees for each hexagonal cell of size
0.1Ha in Petersfield, as predicted from the Petersfield National Tree Map (NTM) data
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Figure A.15: Standard deviation in the expected number of trees for each hexagonal
cell of size 0.1Ha in Petersfield, as predicted from the Petersfield National Tree Map

(NTM) data
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Figure A.16: Plot of the population density as estimated from the Petersfield National
Tree Map (NTM) data
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Model error calculate by subtracting observed values from modelled values
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Figure A.18: Plot of the Leroux mixing parameter, ρ, density for the Petersfield
National Tree Map (NTM) model
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Appendix B

Additional Chapter 4 plots, code

and tables

data {

int <lower=0> N;

int <lower=N> M;

int <lower=0> N_edges;

int <lower=1, upper=M> node1[N_edges ];

int <lower=1, upper=M> node2[N_edges ];

int <lower=0> y[N];

int <lower=0> K;

matrix[N, K] x;

vector <lower =0>[N] E;

real <lower=0> scaling_factor;

real reciprocal_phi_nb_scale;

}

transformed data {

vector[N] log_E = log(E);

}

parameters {

real reciprocal_phi_nb;

vector[K] beta ;

real <lower=0> sigma;

real <lower=0, upper=1> rho;

vector[N] theta;

vector[N] phi_fitted;

vector[M-N] phi_missing;

}

transformed parameters {

vector[N] convolved_re;

real phi_nb;

vector[N] eta;

vector[M] phi_all;

phi_all [1:N] = phi_fitted;

phi_all [(N+1):M] = phi_missing;
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convolved_re = sqrt(1 - rho) * theta + sqrt(rho / scaling_factor) * phi_fitted;

phi_nb = 1. / reciprocal_phi_nb;

eta = log_E + x * beta + convolved_re * sigma;

}

model {

reciprocal_phi_nb ~ cauchy (0., reciprocal_phi_nb_scale );

y ~ neg_binomial_2_log(eta , phi_nb );

target += -0.5 * dot_self(phi_all[node1] - phi_all[node2 ]);

sum(phi_fitted) ~ normal(0, 0.001 * N);

beta ~ normal(0, 5);

theta ~ normal(0, 1);

sigma ~ cauchy(0, 25);

rho ~ beta (0.5, 0.5);

}

Listing B.1: Stan code used to model the partially observed survey data
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Figure B.1: Overall uncertainty distribution plot for the Southampton i-Tree Eco
model
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Figure B.2: Density plot of the mixing parameter, ρ, values for the Southampton
i-Tree Eco model
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Figure B.3: Density plot of the model error associated with the Southampton i-Tree
Eco model in observed cells where the observed number of trees was not equal to zero.

Calculated by subtracting observed values from expected values



124 Chapter B. Additional Chapter 4 plots, code and tables

50.89°N

50.90°N

50.91°N

50.92°N

50.93°N

50.94°N

50.95°N

1.46°W 1.44°W 1.42°W 1.40°W 1.38°W 1.36°W 1.34°W
lon

la
t

100

200

300

400

Number 
 of trees

© OpenMapTiles © OpenStreetMap contributors

Figure B.4: Median of the expected number of trees for each cell in Southampton, as
predicted from the Southampton i-Tree Eco data

Table B.1: Summary of the model parameters for the Cambridge i-Tree Eco model

Name Symbol Category Mean (SD) 95% CI

Intercept β0 - −1.74 (0.52) (−2.84, −0.83)

Greenspace β1 - 0.84 (0.38) (0.13, 1.57)

Buildings

β2 (0 < x ≤ 0.11) 0.39 (0.41) (−0.40, 1.23)

β3 (0.11 < x ≤ 0.18) −0.20 (0.47) (−1.06, 0.74)

β4 (0.18 < x ≤ 0.26) 0.36 (0.42) (−0.44, 1.21)

β5 (0.26 < x) 1.83 (0.51) (0.79, 2.80)

Transformed precision 1√
τσ

- 0.86 (0.41) (0.09, 1.65)

Mixing parameter ρ - 0.48 (0.34) (0.00, 1.00)



125

rho

beta8 beta9 beta10 Inverse root Tau

beta4 beta5 beta6 beta7

reciprocal_phi_nb beta1 beta2 beta3

0.4 0.6 0.8 1.0

−5.0 −2.5 0.0 2.5 −5 0 5 −4 0 4 8 1 2

−2.5 0.0 2.5 5.0 −4 −2 0 2 −2 0 2 −2 0 2

0 1 2 3 4 −5 −4 −3 −2 −1 1 2 3 4 0 2 4

Figure B.5: Parameter density plots for the Southampton i-Tree Eco model
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Figure B.6: Median of the spatial uncertainty, ϕ for each hexagonal cell of size 0.5Ha
in Cambridge, as predicted from the Cambridge i-Tree Eco data
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Figure B.7: Density plot of the model error associated with the Cambridge i-Tree Eco
model in all observed cells. Calculated by subtracting observed values from expected

values

Table B.2: Petersfield itree model parameters summary

Name Symbol Category Mean (SD) 95% CI

Intercept β0 - −2.29 (0.44) (−3.18, −1.44)

Greenspace β1 - 1.64 (0.55) (0.54, 2.76)

Buildings

β2 (0 < x ≤ 0.08) 0.93 (0.74) (−0.58, 2.38)

β3 (0.08 < x ≤ 0.18) −0.56 (0.96) (−2.40, 1.32)

β4 (0.18 < x ≤ 0.26) 0.08 (0.89) (−1, 67, 1.78)

β5 (0.26 < x) −1.73 (1.13) (−4.06, 0.40)

Interaction

β6 (0 < x ≤ 0.08) −0.36 (1.01) (−2.27, 1.67)

β7 (0.08 < x ≤ 0.18) 1.47 (1.38) (−1.20, 4.23)

β8 (0.18 < x ≤ 0.26) 0.50 (1.45) (−2.26, 3.40)

β9 (0.26 < x) 2.86 (1.97) (−0.99, 6.69)

Transformed precision 1√
τσ

- 1.91 (0.26) (1.35, 2.39)

Mixing parameter ρ - 0.92 (0.09) (0.67, 1.00)
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Figure B.8: Density plot of the model error associated with the Cambridge i-Tree
Eco model in observed cells where the observed number of trees was not equal to zero.

Calculated by subtracting observed values from expected values
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Figure B.9: Log median of the expected number of trees for each cell in Cambridge,
as predicted from the Cambridge i-Tree Eco data
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Figure B.10: Log standard deviation in the expected number of trees for each cell in
Cambridge, as predicted from the Cambridge i-Tree Eco data
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Figure B.11: Plot of the population density as estimated from the Cambridge i-Tree
Eco data in thousands of trees
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Figure B.12: Traceplots of the model coefficient parameters for the Cambridge i-Tree
Eco model
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Figure B.13: Parameter density plots for the Cambridge i-Tree Eco model
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Figure B.14: Median of the spatial uncertainty, ϕ for each hexagonal cell of size 0.5Ha
in Petersfield, as predicted from the Petersfield i-Tree Eco data
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Figure B.15: Density plot of the model error associated with the Petersfield i-Tree
Eco model in observed cells. Calculated by subtracting observed values from expected

values
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Figure B.16: Density plot of the model error associated with the Petersfield i-Tree
Eco model in observed cells where the observed number of trees was not equal to zero.

Calculated by subtracting observed values from expected values
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Figure B.17: Log median of the expected number of trees for each cell in Petersfield,
as predicted from the Petersfield i-Tree Eco data
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Figure B.18: Log standard deviation in the expected number of trees for each cell in
Petersfield, as predicted from the Petersfield i-Tree Eco data
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Figure B.19: Plot of the population density as estimated from the Petersfield i-Tree
Eco data in thousands of trees
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Figure B.20: Traceplots of the model coefficient parameters for the Petersfield i-Tree
Eco model
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Figure B.21: Parameter density plots for the Southampton i-Tree Eco model
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Table B.3: Proportion of hexagonal cells in which the observed value is within the
95% credible interval for the modeled expected number of trees. Models based on
survey locations containing trees from the ProximiTREE data for Cambridge. Survey
locations taken from the Cambridge i-Tree Eco data or randomly simulated from some
random seed (Seed number one and Seed number two) for 200 and 400 survey plots.

Results presented for cells of differing sizes

Seed Cell size (Ha) Number of plots
Proportion of cells

in the 95% CI

Seed
number
one

1.5
200 96.8

400 88.2

1
200 90.7

400 89.3

0.5
200 84.9

400 92.6

Seed
number
two

1.5
200 97.2

400 92.5

1
200 94

400 84.6

0.5
200 86.4

400 83.3
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Table B.4: Proportion of hexagonal cells in which the observed value is within the 95%
credible interval for the modeled expected number of trees. Models based on survey
locations containing trees from the National Tree Map data for Petersfield. Survey
locations taken from the Petersfield i-Tree Eco data or randomly simulated from some
random seed (Seed number one and Seed number two) for 200 and 400 survey plots.

Results presented for cells of differing sizes

Seed Cell size (Ha) Number of plots
Proportion of cells

in the 95% CI

Seed
number
one

1.5
200 99.2

400 100

1
200 99.2

400 98.1

0.5
200 96.8

400 97.7

0.1
200 91.2

400 91.8

Seed
number
two

1.5
200 95.7

400 86.7

1
200 95

400 90

0.5
200 94.5

400 94.3

0.1
200 90.2

400 90.1



142 Chapter B. Additional Chapter 4 plots, code and tables

Table B.5: Proportion of cells in which the observed value is within the 95% credible
interval for the modeled expected number of trees. Models based on survey locations
containing trees from the ProximiTREE data for Cambridge. Survey locations taken
from the Cambridge i-Tree Eco data or randomly simulated from some random seed
(Seed number one and Seed number two). Results presented for hexagonal and gridded

cells of differing sizes

Seed Cell size (Ha) Cell structure
Proportion of cells

in the 95% CI

i-Tree

1.5
Hexagon 96.4

Grid 96.6

1
Hexagon 93.8

Grid 94.2

0.5
Hexagon 99.3

Grid 94.2

Seed
number
one

1.5
Hexagon 96.8

Grid 91.9

1
Hexagon 90.7

Grid 81.2

0.5
Hexagon 84.9

Grid 81.2

Seed
number
two

1.5
Hexagon 92.5

Grid 84.7

1
Hexagon 84.6

Grid 85.4

0.5
Hexagon 83.3

Grid 85.4
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Table B.6: Proportion of cells in which the observed value is within the 95% credible
interval for the modeled expected number of trees. Models based on survey locations
containing trees from the National Tree Map data for Petersfield. Survey locations
taken from the Petersfield i-Tree Eco data or randomly simulated from some random
seed (Seed number one and Seed number two). Results presented for hexagonal and

gridded cells of differing sizes

Seed Cell size (Ha) Cell structure
Proportion of cells

in the 95% CI

i-Tree

1.5
Hexagon 97.5

Grid 98.7

1
Hexagon 97

Grid 98.6

0.5
Hexagon 95.6

Grid 94.2

0.1
Hexagon 90

Grid 91.2

Seed
number
one

1.5
Hexagon 99.2

Grid 98

1
Hexagon 99.2

Grid 99.3

0.5
Hexagon 96.8

Grid 98.1

0.1
Hexagon 91

Grid 91.2

Seed
number
two

1.5
Hexagon 95.7

Grid 94.7

1
Hexagon 95

Grid 93

0.5
Hexagon 94.5

Grid 93.3

0.1
Hexagon 90.2

Grid 90.8
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Appendix C

Additional Chapter 5 plots and

tables

Table C.1: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using negative binomial simulations from modeled

Cambridge i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 24.5% 17.9% 14.8% 13.3% 11.8% 11.0% 10.2% 9.5% 9.2% 8.9%

75% 40.5% 30.7% 25.3% 22.7% 20.3% 19.0% 17.5% 16.6% 15.9% 15.4%

90% 57.9% 43.9% 37.1% 32.8% 29.7% 27.7% 25.9% 24.2% 23.0% 22.6%

95% 74.6% 54.5% 46.3% 41.0% 37.0% 34.1% 31.8% 30.2% 28.5% 27.7%

Table C.2: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using negative binomial simulations from modeled

Petersfield i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 29.0% 22.4% 18.9% 17.0% 15.3% 14.4% 13.5% 12.7% 11.9% 11.5%

75% 46.6% 36.6% 31.6% 28.5% 26.0% 24.2% 22.9% 21.7% 20.5% 19.5%

90% 66.6% 53.1% 46.6% 42.6% 38.5% 36.2% 34.6% 31.9% 30.7% 29.7%

95% 91.8% 71.2% 62.4% 57.4% 52.5% 48.5% 47.0% 42.6% 41.4% 40.3%
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Table C.3: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using negative binomial and Bernoulli simulations from

modeled Southampton i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 30.7% 24.0% 20.3% 18.2% 16.6% 15.4% 14.7% 13.8% 12.9% 12.1%

75% 48.1% 38.7% 33.4% 30.1% 27.6% 26.2% 24.6% 23.2% 22.1% 21.2%

90% 66.9% 55.1% 48.6% 44.1% 40.5% 38.9% 36.6% 35.0% 33.8% 32.4%

95% 101.1% 77.8% 66.2% 58.8% 54.3% 50.5% 48.7% 46.2% 43.4% 41.6%

Table C.4: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using negative binomial and Bernoulli simulations from

modeled Cambridge i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 23.7% 17.1% 14.4% 12.3% 11.0% 10.3% 9.3% 8.8% 8.5% 8.1%

75% 39.2% 29.3% 24.0% 21.2% 19.0% 17.5% 16.4% 15.4% 14.6% 13.9%

90% 56.4% 42.7% 35.3% 31.4% 28.1% 25.6% 24.2% 22.5% 21.1% 20.2%

95% 73.5% 53.4% 43.7% 38.7% 34.8% 31.9% 29.8% 27.6% 26.1% 24.9%

Table C.5: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using negative binomial and Bernoulli simulations from

modeled Petersfield i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 28.5% 22.1% 18.8% 16.8% 15.1% 14.3% 13.2% 12.5% 11.8% 11.3%

75% 45.7% 36.2% 31.6% 28.3% 25.8% 24.0% 22.5% 21.5% 20.3% 19.5%

90% 65.0% 53.2% 46.9% 42.3% 38.5% 35.5% 34.0% 32.3% 30.6% 29.3%

95% 88.6% 71.3% 62.8% 56.6% 51.9% 48.2% 45.8% 42.4% 41.1% 39.1%

Table C.6: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using Poisson and Bernoulli simulations from modeled

Southampton i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 23.0% 17.3% 14.5% 13.0% 11.4% 10.8% 10.3% 9.6% 9.1% 8.6%

75% 37.9% 29.4% 25.0% 22.4% 20.1% 19.0% 17.9% 16.8% 15.9% 15.2%

95% 74.2% 56.2% 47.7% 42.9% 39.4% 36.3% 34.7% 32.9% 31.1% 29.9%
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Table C.7: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using Poisson simulations from modeled Cambridge

i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 15.2% 11.1% 9.0% 7.8% 7.0% 6.3% 5.9% 5.5% 5.2% 4.9%

75% 26.7% 19.3% 15.8% 13.8% 12.4% 11.2% 10.3% 9.8% 9.1% 8.6%

90% 40.1% 28.9% 23.9% 21.3% 18.6% 17.1% 15.5% 14.8% 13.7% 13.1%

95% 49.4% 36.3% 29.6% 26.6% 23.4% 21.6% 19.7% 18.6% 17.4% 16.6%

Table C.8: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using Poisson and Bernoulli simulations from modeled

Cambridge i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 13.9% 9.9% 8.1% 7.1% 6.3% 5.7% 5.3% 5.0% 4.6% 4.5%

75% 24.6% 17.6% 14.6% 12.7% 11.3% 10.2% 9.5% 8.9% 8.2% 7.8%

90% 37.2% 26.9% 22.2% 19.5% 17.4% 15.9% 14.5% 13.7% 12.8% 12.1%

95% 46.2% 34.0% 27.8% 24.8% 22.0% 20.3% 18.4% 17.6% 16.5% 15.9%

Table C.9: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using Poisson simulations from modeled Petersfield

i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 26.2% 19.5% 16.5% 14.8% 13.1% 12.2% 11.3% 10.7% 10.1% 9.7%

75% 43.0% 33.0% 28.4% 25.1% 22.8% 21.3% 19.9% 18.7% 17.8% 16.9%

90% 60.7% 48.4% 42.5% 38.1% 34.9% 32.6% 30.9% 28.6% 27.2% 25.9%

95% 80.7% 63.2% 56.2% 51.6% 46.9% 43.0% 40.8% 38.2% 36.3% 35.2%

Table C.10: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using Poisson and Bernoulli simulations from modeled

Petersfield i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 26.0% 19.3% 16.1% 14.6% 13.0% 12.1% 11.2% 10.6% 10.0% 9.5%

75% 42.6% 32.5% 27.9% 24.9% 22.7% 21.0% 19.6% 18.5% 17.7% 16.8%

90% 59.7% 47.8% 42.0% 37.8% 34.9% 32.4% 30.7% 28.5% 27.1% 25.8%

95% 80.2% 62.5% 55.1% 51.2% 46.4% 43.1% 41.1% 38.0% 36.1% 35.0%
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Table C.11: Summary of the relative error by percentiles against the number of
survey plots. Relative errors calculated using negative binomial simulations from half

the model samples for modeled Southampton i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 28.5% 22.2% 18.6% 16.8% 15.2% 14.3% 13.1% 12.7% 11.9% 11.4%

75% 44.8% 36.1% 30.6% 28.0% 25.3% 23.9% 22.3% 21.5% 20.1% 19.2%

90% 65.3% 51.5% 44.3% 40.7% 36.3% 34.8% 32.4% 31.5% 29.5% 27.9%

95% 96.8% 70.3% 57.8% 52.7% 46.4% 44.0% 40.5% 40.1% 36.7% 34.4%

Table C.12: Summary of the relative error by percentiles against the number of
survey plots. Relative errors calculated using negative binomial simulations from half

the model samples for modeled Petersfield i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 26.9% 20.1% 16.6% 14.6% 13.2% 12.5% 11.4% 10.7% 10.2% 9.8%

75% 43.3% 32.7% 27.9% 24.7% 22.4% 20.9% 19.3% 18.2% 17.2% 16.4%

90% 60.0% 46.7% 40.3% 35.6% 32.2% 30.3% 28.0% 26.5% 25.1% 23.8%

95% 82.7% 61.0% 51.5% 44.9% 40.0% 37.7% 34.6% 32.5% 31.2% 29.8%

Table C.13: Summary of the relative error by percentiles against the number of survey
plots. Relative errors calculated using Poisson simulations from half the model samples

for modeled Petersfield i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 22.9% 16.8% 14.0% 12.2% 11.0% 10.1% 9.3% 8.8% 8.3% 7.8%

75% 37.9% 28.3% 24.0% 21.0% 18.8% 17.4% 16.0% 15.1% 14.2% 13.4%

90% 54.5% 41.4% 35.5% 30.9% 27.3% 25.4% 23.5% 21.9% 20.7% 19.5%

95% 69.7% 52.0% 43.9% 38.3% 33.6% 31.5% 28.8% 26.9% 25.6 24.1

Table C.14: Summary of the absolute error by percentiles against the number of
survey. Absolute errors calculated using negative binomial simulations from modeled

Southampton i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 92,727 72,144 60,678 54,553 49,474 46,731 44,775 41,909 39,409 38,879

75% 153,034 122,189 104,471 96,064 86,982 83,004 79,026 74,577 70,039 68,786

90% 232,285 192,674 167,779 152,535 137,738 132,662 125,000 117,571 113,675 109,381

95% 322,281 268,706 232,270 214,963 186,110 182,059 170,686 160,386 156,470 151,706
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Table C.15: Summary of the absolute error by percentiles against the number of
survey. Absolute errors calculated using negative binomial simulations from modeled

Cambridge i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 45,507 33,399 27,475 24,530 22,036 20,532 18,773 17,466 16,932 16,395

75% 76,556 57,774 47,892 42,417 38,313 36,227 32,998 31,226 30,097 28,300

90% 116,204 87,719 72,984 65,219 58,744 54,715 50,750 48,423 45,841 44,253

95% 154,124 113,000 95,026 85,168 76,234 68,971 65,447 62,210 57,769 57,366

Table C.16: Summary of the absolute error by percentiles against the number of
survey. Absolute errors calculated using negative binomial simulations from modeled

Petersfield i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 21,728 16,900 14,242 12,717 11,466 10,793 10,025 9,471 8,970 8,577

75% 37,362 29,124 25,024 22,626 20,665 19,290 18,106 17,067 16,233 15,493

90% 60,366 48,458 41,505 37,609 34,535 32,571 31,015 28,318 27,211 25,828

95% 94,638 70,976 62,221 57,024 52,289 47,646 46,174 41,847 41,223 40,037

Table C.17: Summary of the absolute error by percentiles against the number of sur-
vey. Absolute errors calculated using Poisson simulations from modeled Southampton

i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 68,736 52,241 43,684 39,197 34,562 32,408 31,179 28,659 27,333 26,180

75% 120,116 91,763 77,809 70,067 63,193 59,488 56,725 52,606 49,415 46,918

90% 187,601 149,768 125,430 113,188 103,332 96,727 90,941 86,355 82,121 79,011

95% 264,251 202,375 170,548 153,337 141,785 130,267 122,029 115,734 110,066 107,129

Table C.18: Summary of the absolute error by percentiles against the number of
survey. Absolute errors calculated using Poisson simulations from modeled Cambridge

i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 28,091 20,472 16,710 14,371 12,841 11,636 10,832 10,043 9,547 8,999

75% 50,712 36,453 30,034 25,995 23,494 21,249 19,543 18,443 17,359 16,315

90% 79,189 57,834 47,147 42,434 36,969 34,547 31,208 29,567 27,773 26,375

95% 104,392 76,338 62,557 56,769 49,246 44,723 40,860 39,258 36,758 35,220
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Table C.19: Summary of the absolute error by percentiles against the number of
survey. Absolute errors calculated using Poisson simulations from modeled Petersfield

i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 21,702 16,939 14,216 12,653 11,482 10,817 10,014 9,491 8,985 8,574

75% 37,382 29,185 25,021 22,587 20,626 19,248 18,156 17,135 16,262 15,478

90% 60,141 48,310 41,622 37,812 34,583 32,272 31,049 28,178 27,139 26,012

95% 94,170 70,574 62,184 56,740 52,485 47,534 46,196 42,076 41,240 39,868

Table C.20: Summary of the absolute error by percentiles against the number of
survey. Absolute errors calculated using half the negative binomial simulations from

modeled Southampton i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 76,709 59,954 50,317 455,04 41,120 38,533 35,543 34,631 32,225 30,622

75% 126,048 99,355 84,631 77,233 69,703 65,961 61,398 59,386 55,423 52,640

90% 187,772 147,291 126,017 115,731 103,594 994,49 926,42 895,49 841,21 790,26

95% 267,593 197,419 165,036 151,340 134,550 128,817 116,543 115,976 105,772 99,434

Table C.21: Summary of the absolute error by percentiles against the number of
survey. Absolute errors calculated using half the Poisson simulations from modeled

Southampton i-Tree Eco data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 64,265 48,935 40,584 36,597 32,289 30,317 28,827 26,690 25,372 24,387

75% 107,237 82,740 70,147 63,255 57,179 53,112 50,805 47,768 44,826 42,965

90% 157,822 123,248 104,742 94,187 88,006 81,174 76,912 73,357 69,379 66,195

95% 211,392 160,968 136,493 122,872 113,343 105,208 97,105 93,293 88,347 85,436

Table C.22: Summary of the absolute error by percentile against the number of
survey plots. Relative errors calculated using simulations from modeled Cambridge

ProximiTREE data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 35,130 25,110 20,427 17,426 15,990 14,309 13,283 12,548 11,833 11,206

75% 60,985 43,008 35,366 29,930 26,778 24,543 22,445 21,172 20,331 18,949

90% 86,286 61,166 50,553 42,904 38,765 35,171 32,416 30,536 29,060 27,192

95% 103,508 72,574 60,644 51,827 46,626 42,327 39,094 36,494 34,416 32,579
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Table C.23: Summary of the absolute error by percentiles against the number of
survey plots. Absolute errors calculated using simulations from modeled Petersfield

National Tree Map (NTM) data

Percentile
Number of survey plots

50 100 150 200 250 300 350 400 450 500

50% 3,533 2,497 2,018 1,736 1,550 1,431 1,297 1,243 1,143 1,079

75% 6,019 4,266 3,440 2,950 2,645 2,427 2,235 2,089 1,948 1,872

90% 8,507 6,056 4,915 4,184 3,746 3,411 3,183 2,938 2,808 2,658

95% 10,173 7,153 5,852 4,939 4,478 4,021 3,797 3,491 3,316 3,190
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Figure C.1: Plot of the relative error against the number of survey plots. Relative
errors calculated using negative binomial and Bernoulli simulations from modeled i-
Tree Eco data. Solid lines represent mean values, whilst dashed lines represent 90th

percentiles
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Figure C.2: Plot of the relative error against the number of survey plots. Relative
errors calculated using Poisson and Bernoulli simulations from modeled i-Tree Eco data.

Solid lines represent mean values, whilst dashed lines represent 90th percentiles
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Figure C.3: Plot of the relative error against the number of survey plots, for simu-
lations produced from all and half of the MCMC samples. Relative errors calculated
using Poisson simulations from modeled i-Tree Eco data in Southampton. Solid lines

represent mean values, whilst dashed lines represent 90th percentiles
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Figure C.4: Plot of tree populations simulated using a negative binomial distribution
from half of the MCMC samples modeled using i-Tree Eco data in Southampton
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Figure C.5: Plot of tree populations simulated using a negative binomial distribution
from half of the MCMC samples modeled using i-Tree Eco data in Petersfield
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Figure C.6: Plot of the relative error against the number of survey plots, for random
survey designs and survey designs stratified by natural and building coverage. Relative
errors calculated using negative binomial simulations from modeled i-Tree Eco data
in Southampton. Solid lines represent mean values, whilst dashed lines represent 90th

percentiles
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Figure C.7: Plot of the relative error against the number of survey plots, for random
survey designs and survey designs stratified by natural and building coverage. Relative
errors calculated using Poisson simulations from modeled i-Tree Eco data in Southamp-
ton. Solid lines represent mean values, whilst dashed lines represent 90th percentiles
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Figure C.8: Plot of the relative error against the number of survey plots, for random
survey designs and survey designs stratified by natural and building coverage. Relative
errors calculated from modeled ProximiTREE data in Cambridge. Solid lines represent

mean values, whilst dashed lines represent 90th percentiles
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Figure C.9: Plot of the relative error against the number of survey plots, for random
survey designs and survey designs stratified by natural and building coverage. Relative
errors calculated using negative binomial simulations from modeled i-Tree Eco data
in Cambridge. Solid lines represent mean values, whilst dashed lines represent 90th

percentiles
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Figure C.10: Plot of the relative error against the number of survey plots, for random
survey designs and survey designs stratified by natural and building coverage. Relative
errors calculated using Poisson simulations from modeled i-Tree Eco data in Cambridge.

Solid lines represent mean values, whilst dashed lines represent 90th percentiles
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Figure C.11: Plot of the relative error against the number of survey plots, for random
survey designs and survey designs stratified by natural and building coverage. Relative
errors calculated from modeled National Tree Map(NTM) data in Petersfield. Solid

lines represent mean values, whilst dashed lines represent 90th percentiles
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Figure C.12: Plot of the relative error against the number of survey plots, for random
survey designs and survey designs stratified by natural and building coverage. Relative
errors calculated using negative binomial simulations from modeled i-Tree Eco data
in Petersfield. Solid lines represent mean values, whilst dashed lines represent 90th

percentiles
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Figure C.13: Plot of the relative error against the number of survey plots, for random
survey designs and survey designs stratified by natural and building coverage. Relative
errors calculated using Poisson simulations from modeled i-Tree Eco data in Petersfield.

Solid lines represent mean values, whilst dashed lines represent 90th percentiles
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Figure C.14: Plot of the absolute error against the number of survey plots. Absolute
errors calculated using Poisson simulations from modeled i-Tree Eco data. Solid lines

represent mean values, whilst dashed lines represent 90th percentiles
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Figure C.15: Summary of the absolute error by percentiles against the number of
survey. Absolute errors calculated using negative binomial simulations from modeled

Cambridge i-Tree Eco data
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Figure C.16: Summary of the absolute error by percentiles against the number of
survey plots. Absolute errors calculated using Poisson simulations from half the model

samples for modeled Southampton i-Tree Eco data
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model in Stan, Spatial and spatio-temporal epidemiology 31. Article 100301.

Mutch, E., Davies, H., Hudson, M., Parks, K., Schreckenberg, K., Doick, K., Hand-

ley, P., Rogers, K., Kiss, S. and McCulloch, L. (2017). Understanding the value of

Southampton’s urban trees. Results of the 2016 i-Tree Eco survey. Technical Report.

University of Southampton, Forest Research, Treeconomics and Southampton City

Council, Southampton.

NASA (2016). Normalized Difference Vegetation Index (NDVI). Data retrieved from

the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS);

URL: https://appeears.earthdatacloud.nasa.gov/, Accessed on 01-03-2023.

Neal, R. (2012). Handbook of Markov Chain Monte Carlo, 1 edn, Chapman & Hall, New

York, chapter MCMC using Hamiltonian dynamics.

Noble, S., McLennan, D., Noble, M., Plunkett, E., Gutacker, N., Silk, M. and Gemma,

W. (2019). The English Indices of Deprivation 2019 research report. Technical Report,

Ministry of Housing, Communities and Local Government.

Nowak, D., Crane, D., Stevens, J., Hoehn, R., Walton, J. and Bond, J. (2008a). A

ground-based method of assessing urban forest structure and ecosystem services, Ar-

boriculture & Urban Forestry 34(6): 347–358.

Nowak, D. J., Crane, D. E. and Stevens, J. C. (2006). Air pollution removal by urban

trees and shrubs in the United States, Urban Forestry & Urban Greening 4(3): 115–

123.

Nowak, D., Walton, J., Stevens, J., Crane, D. and Hoehn, R. (2008b). Effect of Plot

and Sample Size on Timing and Precision of Urban Forest Assessments, Arboriculture

and Urban Forestry 34(6): 386–390.

Obaromi, D. (2019). Spatial modelling of some Conditional Autoregressive priors in a

disease mapping model: the Bayesian approach, Biomedical journal of scientific and

technical research 14(3): 10680–10686.

https://appeears.earthdatacloud.nasa.gov/


REFERENCES 167

OED (2023). Tree, n.. — Oxford University Press. Oxford English Dictionary, URL:

https://www.oed.com/dictionary/tree_n Online, Accessed 10-06-2024.

Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. (2009). Spatial tessellations: concepts

and applications of Voronoi diagrams, John Wiley & Sons, Hoboken, NJ, United

States.

ONS (2020). Local Authority Districts data. Data retrieved from the Office for National

Statistics; URL: https://geoportal.statistics.gov.uk/, Accessed on various

dates.

OS (2017). OS MasterMap Topography Layer Product Guide. Version 2, User manual,

Ordinance Survey.

OS (2019). OS MasterMap® Topography Layer[GeoPackage geospatial data], Scale

1:1250, Tiles: GB. Data retrieved from the Ordnance Survey (GB), using the EDINA

Digimap Ordnance Survey Service ; URL: https://digimap.edina.ac.uk, Accessed

on various dates.

Ouchi, T. and Uekawa, T. (1986). Statistical analysis of the spatial distribution of

earthquakes—variation of the spatial distribution of earthquakes before and after large

earthquakes, Physics of the Earth and Planetary Interiors 44(3): 211–225.

Palmer, M. W. and White, P. S. (1994). On the Existence of Ecological Communities,

Journal of Vegetation Science 5(2): 279–282.

Paradis, E. and Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics

and evolutionary analyses in R, Bioinformatics 35: 526–528. URL: https://cran.r

-project.org/web/packages/ape/index.html.

Paul, T. S. H., Kimberley, M. O. and Beets, P. (2019). Thinking outside the square:

Evidence that plot shape and layout in forest inventories can bias estimates of stand

metrics, Methods in Ecology and Evolution 10(3): 381–388.

Potts, J. M. and Elith, J. (2006). Comparing species abundance models, Ecological

Modelling 199(2): 153–163.

Rattalino Edreira, J. I., Mourtzinis, S., Azzari, G., Andrade, J. F., Conley, S. P., Specht,

J. E. and Grassini, P. (2020). Combining field-level data and remote sensing to un-

derstand impact of management practices on producer yields, Field Crops Research

257. Article 107932.

Riebler, A., Sørbye, S. H., Simpson, D. and Rue, H. (2016). An intuitive Bayesian spatial

model for disease mapping that accounts for scaling, Statistical Methods in Medical

Research 25(4): 1145–1165.

Ripley, B. D. (1977). Modelling spatial patterns, Journal of the Royal Statistical Society.

Series B (Methodological) 39(2): 172–212.

https://www.oed.com/dictionary/tree_n
https://geoportal.statistics.gov.uk/
https://digimap.edina.ac.uk
https://cran.r-project.org/web/packages/ape/index.html
https://cran.r-project.org/web/packages/ape/index.html


168 REFERENCES

Rowland, C., Morton, R., Carrasco, L., McShane, G., A.W., O. and C.M., W. (2017).

Land Cover Map 2015 (vector, GB). Data retrieved from the NERC Environmental

Information Data Centre, Using: EDINA Digimap Service; URL: https://doi.org/

10.5285/6c6c9203-7333-4d96-88ab-78925e7a4e73, Accessed on various dates.

Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent

Gaussian models by using integrated nested Laplace approximations, Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 71(2): 319–392.

Sahu, S. (2022). Bayesian Modeling of Spatio-Temporal Data with R, 1 edn, Chapman

& Hall/CRC, New York. URL: https://cran.r-project.org/web/packages/bmst

dr/index.html.

Sahu, S., Gelfand, A. and Holland, D. (2007). High-resolution space-time ozone modeling

for assessing trends, Journal of the American Statistical Association 102(480): 1221–

1234.

Sales, K., Walker, H., Sparrow, K., Handley, P., Vaz Monteiro, M., Hand, K. L., Buck-

land, A., Chamber-Ostler, A. and Doick, K. J. (2023). The canopy cover Webmap of

the United Kingdom’s towns and cities, Arboricultural Journal 45(4): 258–289.

Schweiger, A., Irl, S., Steinbauer, M., Dengler, J. and Beierkuhnlein, C. (2016). Optimiz-

ing sampling approaches along ecological gradients, Methods in Ecology and Evolution

7(4): 463–471.

Smedt, T., Simons, K., Van Nieuwenhuyse, A. and Molenberghs, G. (2015). Comparing

MCMC and INLA for disease mapping with Bayesian hierarchical models, Archives

of Public Health 73(Suppl 1). Article number: O2.

Sørbye, S. H. and Rue, H. (2014). Scaling intrinsic Gaussian Markov random field priors

in spatial modelling, Spatial Statistics 8: 39–51.

Southampton City Council (2020). Greener City Plan 2030. URL: https://www.so

uthampton.gov.uk/our-green-city/council-commitments/plan-2030/ Online,

Accessed 14-08-2022.

Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2003). WinBUGS User Manual,

MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK. URL: http:

//www.mrc-bsu.cam.ac.uk/bugs.

Stan Development Team (2018). Stan Modeling Language Users Guide and Reference

Manual. version 2.18, section 15.4. URL: https://mc-stan.org.

Steinbauer, M. J., Dolos, K., Reineking, B. and Beierkuhnlein, C. (2012). Current

measures for distance decay in similarity of species composition are influenced by

study extent and grain size, Global Ecology and Biogeography 21(12): 1203–1212.

https://doi.org/10.5285/6c6c9203-7333-4d96-88ab-78925e7a4e73
https://doi.org/10.5285/6c6c9203-7333-4d96-88ab-78925e7a4e73
https://cran.r-project.org/web/packages/bmstdr/index.html
https://cran.r-project.org/web/packages/bmstdr/index.html
https://www.southampton.gov.uk/our-green-city/council-commitments/plan-2030/
https://www.southampton.gov.uk/our-green-city/council-commitments/plan-2030/
 http://www.mrc-bsu.cam.ac.uk/bugs
 http://www.mrc-bsu.cam.ac.uk/bugs
https://mc-stan.org


REFERENCES 169

Sturtz, S., Ligges, U. and Gelman, A. (2005). R2WinBUGS: A Package for Running

WinBUGS from R, Journal of Statistical Software 12(3): 1–16.

Swallow, B., Buckland, S. T., King, R. and Toms, M. P. (2016). Bayesian hierar-

chical modelling of continuous non-negative longitudinal data with a spike at zero:

An application to a study of birds visiting gardens in winter, Biometrical Journal

58(2): 357–371.

Tiwary, A., Sinnett, D., Peachey, C., Chalabi, Z., Vardoulakis, S., Fletcher, T., Leonardi,

G., Grundy, C., Azapagic, A. and Hutchings, T. R. (2009). An integrated tool to assess

the role of new planting in PM10 capture and the human health benefits: A case study

in London, Environmental Pollution 157(10): 2645–2653.

Uhl, J. H., Leyk, S., Li, Z., Duan, W., Shbita, B., Chiang, Y.-Y. and Knoblock, C. A.

(2021). Combining Remote-Sensing-Derived Data and Historical Maps for Long-Term

Back-Casting of Urban Extents, Remote Sensing 13(18). Article 3672.

UKCEH (2017). Land cover map dataset documentation. Version 1.2, User manual, UK

Centre for Ecology and Hydrology.

UN (2018). World Urbanization Prospects: The 2018 Revision — Department of

Economic and Social Affairs, Population Division. United Nations, URL: https:

//population.un.org/wup/Country-Profiles/ Online, Accessed 11-03-2023.

Vehtari, A., Gelman, A. and Gabry, J. (2016). Practical Bayesian model evaluation using

leave-one-out cross-validation and WAIC, Statistics and Computing 27(5): 1413–1432.

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. and Bürkner, P.-C. (2021). Rank-

Normalization, Folding, and Localization: An Improved R̂ for Assessing Convergence

of MCMC (with Discussion), Bayesian Analysis 16(2): 667–718.

Vehtari, A., Simpson, D., Gelman, A., Yao, Y. and Gabry, J. (2022). Pareto Smoothed

Importance Sampling v8, arXiv preprint . arXiv:1507.02646.

Ver Hoef, J., Peterson, E., Hooten, M., Hanks, E. and Fortin, M. J. (2017). Spa-

tial Autoregressive Models for Statistical Inference from Ecological Data, Ecological

Monographs 88(1): 36–59.

Vranckx, M., Neyens, T. and Faes, C. (2019). Comparison of different software imple-

mentations for spatial disease mapping, Spatial and Spatio-temporal Epidemiology 31.

Article 100302.

Wang, X., Dallimer, M., Scott, C. E., Shi, W. and Gao, J. (2021). Tree species rich-

ness and diversity predicts the magnitude of urban heat island mitigation effects of

greenspaces, Science of The Total Environment 770. Article 145211.

https://population.un.org/wup/Country-Profiles/
https://population.un.org/wup/Country-Profiles/


170 REFERENCES

Warhurst, J. R., Parks, K. E., McCulloch, L. and Hudson, M. D. (2014). Front gardens

to car parks: Changes in garden permeability and effects on flood regulation, Science

of The Total Environment 485-486: 329 – 339.

Yoccoz, N. G., Nichols, J. D. and Boulinier, T. (2001). Monitoring of biological diversity

in space and time, Trends in Ecology & Evolution 16(8): 446–453.

Zhou, W., Wang, J. and Cadenasso, M. (2017). Effects of the spatial configuration of

trees on urban heat mitigation: A comparative study, Remote Sensing of Environment

195: 1–12.


	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	1 Ecological background
	1.1 Defining urban forests
	1.2 Urban forests and ecosystem services
	1.3 Quantifying urban forest benefits
	1.3.1 Remote sensing
	1.3.2 i-Tree Eco

	1.4 Machine learning
	1.5 Survey plot design considerations in i-Tree Eco
	1.6 Existing studies on survey design effects in the ecology literature
	1.6.1 Survey context
	1.6.2 Survey sample size
	1.6.3 Survey plot locations
	1.6.4 Other survey design considerations
	1.6.5 Survey designs in i-Tree Eco

	1.7 Thesis outline

	2 Statistical Theory
	2.1 Bayesian statistics
	2.1.1 Bayes' theorem
	2.1.2 Markov chain Monte Carlo (MCMC)
	2.1.3 Metropolis-Hastings algorithm
	2.1.4 Gibbs sampler
	2.1.5 Hamiltonian Monte Carlo
	2.1.6 Assessing convergence and comparing model performance

	2.2 Spatial analysis introduction
	2.3 Types of spatial data
	2.4 Neighbourhood definitions
	2.5 Exploratory spatial techniques
	2.5.1 Areal exploratory techniques
	2.5.2 Point pattern exploratory techniques

	2.6 Bayesian spatial models
	2.6.1 Conditional Autoregressive models
	2.6.2 Besag, York and Molie model
	2.6.3 Leroux model
	2.6.4 Scaling the spatial component
	2.6.5 BYM2 model

	2.7 Model fitting in R
	2.7.1 OpenBUGS (Open Bayesian inference Using Gibbs Sampling)
	2.7.2 Integrated Nested Laplace Approximations (INLA)
	2.7.3 CARBayes
	2.7.4 Stan

	2.8 Simulation methodology

	3 Spatial model application to completely observed areal imaging data
	3.1 Initial data set introduction: Cambridge ProximiTREE
	3.2 Environmental covariates
	3.2.1 Land use
	3.2.2 OS MasterMap Topography
	3.2.3 Air Quality Management Areas (AQMAs)
	3.2.4 Indicies of Multiple Deprivation (IMD)

	3.3 Full model definition
	3.4 Convergence and model fit diagnostics
	3.5 Population densities and estimates
	3.6 Summary of findings in Petersfield

	4 Spatial model application to partially observed survey data
	4.1 Initial data set introduction: Southampton i-Tree Eco
	4.2 Modelling setup for partially observed survey data
	4.3 Zero-inflated data considerations
	4.4 Full model definition
	4.5 Convergence and model fit diagnostics
	4.6 Population densities and estimates
	4.7 Summary of other areas
	4.7.1 Petersfield
	4.7.2 Cambridge

	4.8 Exploration of modelling accuracy using completely observed data

	5 Simulation approach for assessing survey design efficacy
	5.1 Simulation methodology
	5.1.1 Simulating plot locations
	5.1.2 Simulating tree densities
	5.1.3 Calculating population estimation accuracy from simulations

	5.2 Simulation results
	5.2.1 Assessement of survey plot design error from models fitted to the ProximiTREE and National Tree Map (NTM) data
	5.2.2 Assessement of survey plot design error from models fitted to i-Tree Eco data
	5.2.3 Simulations from a Poisson distribution
	5.2.4 Simulating from selected samples
	5.2.5 Stratification by variable
	5.2.6 Absolute error


	6 Discussion and future work
	6.1 Ecological conclusions and discussion
	6.2 Appropriateness of model
	6.3 Further work

	Appendix A Additional Chapter 3 plots and tables
	Appendix B Additional Chapter 4 plots, code and tables
	Appendix C Additional Chapter 5 plots and tables
	References

