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Efficient bone marrow irradiation and low uptake by non-
haematological organs with an yttrium-90-anti-CD66 antibody
prior to haematopoietic stem cell transplantation
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We report the results of a Phase I radiation dose escalation study using an yttrium-90 (90Y) labelled anti-CD66 monoclonal antibody
given with standard conditioning regimen for patients receiving haematopoietic stem cell transplants for myeloid leukaemia or
myeloma. The 90Y-labelled anti-CD66 was infused prior to standard conditioning. In total, 30 patients entered the trial and 29
received 90Y-labelled mAb, at infused radiation activity levels of 5, 10, 25, or 37.5 megaBequerel (MBq)/kg lean body weight. A
prerequisite for receiving the 90Y-labelled mAb was favourable dosimetry determined by single-photon emission computerised
tomography (SPECT) dosimetry following administration of indium-111 (111In) anti-CD66. Estimated absorbed radiation doses
delivered to the red marrow demonstrated a linear relationship with the infused activity of 90Y-labelled mAb. At the highest activity
level of 37.5 MBq/kg, mean estimated radiation doses for red marrow, liver, spleen, kidneys and lungs were 24.6 ± 5.6 Gy,
5.8 ± 2.7 Gy, 19.1 ± 8.0 Gy, 2.1 ± 1.1 and 2.2 ± 0.9, respectively. All patients engrafted, treatment-related mortality 1-year post-
transplant was zero. Toxicities were no greater than those anticipated for similar conditioning regimens without targeted radiation.
The ability to substantially intensify conditioning prior to haematopoietic stem cell transplantation without increasing toxicity
warrants further testing to determine efficacy. clinicaltrials.gov identifier: NCT01521611.
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INTRODUCTION
Autologous or allogeneic haematopoietic stem cell transplanta-
tion (HSCT) can improve outcomes for a wide range of
haematological malignancies, however, the risks of treatment
toxicity must be balanced against the risk of disease recurrence. In
the allogeneic setting, total body irradiation (TBI) has been shown
to reduce disease recurrence in acute myeloid leukaemia (AML)
and chronic myeloid leukaemia (CML) in a dose-dependent
manner [1–3]. The reduced relapse rate was, however, countered
by corresponding increases in transplant-related mortality (TRM)
at higher doses of radiation. Additionally, the doses of TBI used in
full-intensity allogeneic transplantation protocols have excessive
toxicity for older patients. Reduced-intensity conditioning proto-
cols using lower radiation doses or avoiding TBI allow the
extension of allogeneic transplantation to older patients and
those with significant co-morbid conditions. The reduction of
conditioning intensity results in lower TRMs, allowing engraftment
and stable high donor chimerism but has an increased risk of
disease recurrence, shown by several retrospective studies [4–8].
Essentially, the risks from the toxicity of the conditioning regimen
are exchanged for increased risk of relapse resulting in similar

overall survivals (OS) [9]. This has been confirmed in a large
retrospective analysis of transplant outcomes [10] although
randomised prospective trials have shown conflicting results,
possibly due to differences in the details of conditioning used and
the age limits applied [11–14]. A long-term follow-up study of a
randomised trial showed a lower relapse risk in patients that
received myeloablative conditioning while another long-term
analysis showed no differences in TRM, relapse or OS [12, 13].
However, in patients aged 41–60 years, there was a significantly
higher TRM with the higher TBI dose impacting on OS in these
patients [12].
In the treatment of myeloma, the dose–response relationship

led to the development of high-dose therapy and autologous
stem cell transplantation, shown by several randomised trials to
be of more benefit than chemotherapy alone and remains the
recommended standard treatment [15–20]. Further dose escala-
tion is limited by toxicity to non-haematopoietic organs. The use
of tandem autologous transplantation allows dose intensification
by performing two procedures temporally close, shown in some
trials to result in improved outcomes [21–23] but at the expense of
increased toxicity [24]. The addition of TBI to high-dose melphalan
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has been tested but was associated with increased TRM but no
improvement in response rates or OS [25, 26].
An alternative to TBI that may reduce the incidence of

complications while maintaining therapeutic intensity is targeted
molecular radiotherapy (MRT) where radiation is targeted to
antigens present on haematopoietic cells such as CD45 [27–31],
CD33 [32, 33] and CD66 [34–36], principally using monoclonal
antibodies as vector [37]. Several radioisotopes have been used
clinically, mainly the beta particle emitting isotopes iodine-131
(131I), rhenium-188 (188Re) and 90Y [32] but also alpha-emitting
isotopes such as bismuth-213 (213Bi) or astatine-211 (211As) [38],
each radionuclide having advantages and disadvantages in the
setting of HSCT. Although therapeutic doses of radiation can be
delivered to haematopoietic tissues, a potential problem with the
use of MRT has been the variable uptake and retention of the
radiolabelled agent by non-target organs, particularly liver and
kidneys, causing unwanted toxicities such as renal impairment
and hepatic toxicity necessitating adjustment of the infused
activity [39, 40], impacting on the potential benefit of the targeted
radiation. The reasons for uptake by non-haematopoietic tissues
are complex involving specific and non-specific binding or
instability of the antibody-radioisotope construct in vivo. The
variation of absorbed radiation in red marrow also complicates the
assessment of disease response. Identifying optimal combinations
of vectors and radioisotopes would allow the maximum potential
benefit of targeted therapy to be achieved in all patients.
The cell surface antigen CD66 is an ideal target for MRT with

isoforms of CD66 a, b, c and e present on cells of myeloid origin
from promyelocytes through to mature neutrophils [39] and are
also expressed by leukaemic blasts in 40% of patients with AML
and in 80–100% of patients with B cell acute lymphoblastic
leukaemia [40]. The isoform CD66a is expressed on plasma cells in
the majority of cases of myeloma [41].
We report the results of a Phase I radiation dose escalation

study using an 90Y-anti-CD66 in patients undergoing autologous
or allogeneic HSCT for myeloma or high-risk myeloid leukaemia.

STUDY DESIGN, PATIENTS, MATERIALS AND METHODS
This was an open label, non-randomised Phase I study with four
levels of infused 90Y-anti-CD66 radioactivity. Patients initially
received 111In-anti-CD66 to determine the biodistribution and to
derive organ dosimetry from whole body and SPECT gamma-
camera images. Five patients were treated at each activity level
with a planned expansion of the highest activity level to 15
patients if no dose-limiting toxicity (DLT) was demonstrated. The
study was approved by the UK National Research Ethics
Committee, the Administration of Radioactive Substances Advi-
sory Committee and the Medicines and Healthcare Products and
Regulatory Authority in accordance with the Declaration of
Helsinki. Patients were recruited from referrals to the Wessex
Blood and Marrow Transplantation Program for autologous or
allogeneic HSCT as treatment for myeloma, AML or CML.
Recruitment was dependent on the availability of nuclear
medicine scanning time. Patients with AML had a high risk of
relapse based on the presence of adverse cytogenetics, CR > 1 or
secondary AML and were ineligible for full intensity conditioning
due to age or co-morbid conditions. Patients with CML either had
poor response to tyrosine kinase inhibitors or were in an
accelerated phase. Exclusion criteria included hypocellular bone
marrow with <10% red marrow content. AML patients in relapse
were permitted with marrow blasts <20% of nucleated cells and
peripheral blood leucocytes <30 × 109/L.
Patients were informed of the investigational nature of the

study and received verbal and written information before giving
signed consent. The primary objective was to determine the safety
profile of 90Y-anti-CD66 when included in standard transplant

conditioning. Secondary objectives included determination of the
maximum tolerated infused activity of 90Y-anti-CD66 as MBq/kg
lean body weight, the radiation-related DLT in the context of
standard autologous and allogeneic transplant conditioning
schedules and development of a dosimetry model based on
whole body and SPECT gamma imaging, blood clearance and
thereby determine the pharmacokinetics of the radiolabelled
antibody in vivo.

ANTIBODY DESCRIPTION AND RADIOLABELLING
The anti-CD66 mAb is a murine IgG1, specific for a common
epitope on CD66 isoforms a, b, c, e [42], International Non-
proprietary Name, Besilesomab. The antibody was produced
according to Good Manufacturing Practice and provided in a
purified form by TheraPharm GmbH (Zug, Switzerland). Conjuga-
tion to isothiocyanato-2-aminobenzyl-3-methyl-diethylenetria-
mine-pentaacetic acid (SCN-2B3M-DTPA) [43] was performed on
bulk batches and stored frozen in single use vials. For dosimetry
the anti-CD66 was radiolabelled with ∼185 MBq of 111In and for
therapy 90Y, the activity required based on treatment cohort and
lean body weight (details in Supplementary Information).

DOSIMETRY AND PHARMACOKINETIC STUDIES
Patient-specific internal dosimetry was estimated using a meth-
odology based on the Medical Internal Radiation Dose Committee
and the EANM Dosimetry Committee [44, 45]. Cumulative activity
in the blood was calculated from samples taken immediately at
the end of infusion of 185 MBq 111In-anti-CD66 (T= 0) and at
intervals up to day 7 post-infusion. Serial whole-body (WB)
gamma-camera images were taken within 1 h of completion of
infusion and at least three additional whole-body acquisitions
between days 2 and 7 (details in Supplementary Information).

THERAPY WITH 90Y-LABELLED ANTI-CD66
Patients with a minimum twofold ratio between the calculated
radiation dose to red marrow compared with the next highest
non-haematopoietic organ, in all cases the liver, received therapy
with 90Y-anti-CD66, administered on D-14 of the transplant
schedule. Patients were discharged 2 h post-infusion. Patients
receiving autologous HSCT were admitted on D-2 for melphalan
200mg/m2. Patients undergoing allogeneic HSCT were admitted
on day 5 post-infusion to start standard conditioning with
fludarabine, melphalan and CAMPATH 1H, transplant conditioning
index 2.5 [46] (detailed in Supplementary Information). Imaging
and therapy were delivered as planned day case episodes.

PATIENT CHARACTERISTICS
Thirty patients with myeloma, poor risk AML or CML were
recruited into the study over a 5-year time period, mean age 54.4
years, range 20–68, 5 females and 25 males. Details of disease
characteristics and number of prior therapies are summarised in
Table 1. In patients with myeloma, disease stage was determined
using the Durie–Salmon staging system which was in use at the
time of this study [47].

RESULTS
111In activity in whole blood
Blood 111In activity displayed similar biphasic retention in all
patients, consistent with the sum of two exponential functions. In
each patient, an initial rapid fall in blood 111In activity occurred
within 2 h, followed by a slower decrease over 5–10 h (Fig. 1). After
24 h, the decrease in activity was markedly slower, approximating
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the physical half-life of the isotope and most of the radiation was
located in the red marrow as indicated by whole-body planar
gamma images (Fig. 2a) and SPECT(-CT) (Fig. 2b). From the early
time-activity plots, the mean derived T½ alpha 2.06 ± 0.96 h (range
0.9–3.4), T½ beta 6.0 ± 3.2 h (range 4.0–9.0).

Dosimetry
Thirty patients received 111In-anti-CD66. In the first cohort, one
patient failed dosimetry with red marrow:liver ratio < 2:1 and was

excluded from the study. Within the trial, 29 patients received 90Y-
anti-CD66 at infused activity levels of 5, 10, 25 and 37.5 MBq 90Y
per kilogram body weight, activity ranged from 229 to 2758 MBq,
determined by patient weight and treatment cohort. In Table 2,
the mean absorbed radiation dose to red marrow, spleen, liver,
lungs and kidneys are expressed as milliGray per megaBequerel
(mGy/MBq) of infused 90Y-anti-CD66 and the mean total organ
doses are in Gy. The mean (±1 SD, range) estimated radiation dose
delivered per unit infused radiation activity expressed as mGy/

Table 1. Patient characteristics.

Age at transplant
yrs

Sex Diagnosis Prior treatment cycles Disease status at
transplant

Type of
transplant

45 M Myeloma VAD × 6; oral melphalan × 1
cycle

PR Autologous (1st)

55 M Myeloma VAD × 4 PR Autologous (1st)

58 M Myeloma VAD × 4 PR Autologous (1st)

65 F Myeloma VAD × 5 PR Autologous (1st)

55 F Myeloma C-VAD × 6 CR Autologous (1st)

48 M Myeloma C-VAD; autoHSCT; relapse, CTD
salvage

PR Autologous (2nd)

58 M AML M6 DA, DA, MACE, MiDAC; CR2 Allogeneic (sib)

At relapse: DA, DA, HD ara-C

20 F AML M5a t(9; 11) DA, DA, MiDAC CR1 Allogeneic (sib)

43 M Myeloma C-VAD × 6 PR Autologous (1st)

59 F Myeloma ZDEX; CTD CR Autologous (1st)

66 M Myeloma CTD × 6 PR Autologous (1st)

56 M Myeloma VAD × 4; autoHSCT, relapse PR Allogeneic (sib)

56 M Myeloma VAD × 4; autoHSCT, relapse CR Allogeneic (sib)

53 M Myeloma C-VAD × 6 CR Autologous (1st)

62 M Myeloma VAD × 6 PR Autologous (1st)

65 M Myeloma CTD × 5 PR Autologous (1st)

65 M Myeloma C-VAD × 6; Thal/Dex × 4 PR Autologous (1st)

68 M Myeloma C-VAD × 5 PR Autologous (1st)

60 M Myeloma ABCM× 6; VAD × 2; ZDEX × 4;
CTD × 2

PR Autologous (1st)

62 M CML-CP Imatinib HR Allogeneic (sib)

61 M CML-AP HU, IFN, Imatinib; autoHSCT;
progression

CP2 Allogeneic (VUD)

61 M AML M4, FLT3 mutation.
Primary refractory.

DA; Salvage FLA-Ida × 2, HDAc CR1 Allogeneic (VUD)

54 M Myeloma, Lambda LCD CTD × 4, autoHSCT, relapsed.
Thal/Dex salvage

vgPR Allogeneic (sib)

24 M Secondary AML, FLAG × 2, MACE × 1 CR1 Allogeneic (VUD)

(previous HD. Mediastinal
radiotherapy, autoHSCT)

55 M Secondary AML DA × 2, HDAc, MiDAC CR1 Allogeneic (sib)

45 M Relapsed myeloma IgA kappa VAD × 4, autoHSCT; relapse:
CTD × 4; relapse 2, CTD × 3

CR3 Allogeneic (VUD)

57 M Myeloma CTD × 4, autoHSCT vgPR Allogeneic (sib)

IgG kappa

57 M Relapsed AML M4 DA, DA, MACE, MiDAC. Relapse:
FLAG × 2

CR2 Allogeneic (VUD)

36 F AML M7 DA, DA, MiDAC CR1 Allogeneic (sib)

DA daunorubicin+ ara-C, MACE M-amsacrine+ ara-C+ etoposide, MiDAC mitoxanthrone+ ara-C, HDac high dose ara-C, C-VAD cyclophosphamide+
vincristine+ adriamycin+ dexamethasone, VAD vincristine+ adriamycin+ dexamethasone, CTD cyclophosphamide+ thanlidomide+ dexamethasone, CR
complete remission, PR partial remission, vgPR very good partial remission. Myeloma disease response assessment were determined according to EBMT
criteria; VUD volunteer unrelated donor, HD Hodgkin’s disease.
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MBq were marrow 10.2 (±3.4, 6.5–16.2), liver 2.4 (±1.1, 1.4–5.6),
spleen 9.0 (±3.9, 3.3–20.3), renal 0.6 (±0.4, 0.4–1.2), lungs 0.9 (±0.5,
0.5–1.8) and whole body 0.4 (±0.1, 0.2–0.6). The uptake of
radiolabelled antibody by red marrow showed a high degree of
consistency between patients. The mean red marrow to liver ratio
was 4.3:1, estimated radiation doses to lung, kidneys, muscle and
gut were considerably lower than to red marrow, shown
graphically in Fig. 3. In most patients, the distribution of radiation
was similar with marked uptake in the axial skeleton, ribs, sternum,
pelvis, base of skull and proximal ends of the femur and humerus
(Fig. 2a), consistent with red marrow distribution in adults.
There was a linear relationship between the infused activity of

90Y in MBq and the absorbed dose to the bone marrow in Gy over
all dose levels (Fig. 4) indicating that the uptake of labelled anti-
CD66 mAb was consistent between patients for any given infused
activity cohort. The targeted radiation remained localised within red
marrow over the period of imaging. Additionally, red marrow time/
activity curves for each patient showed a similar effective half-life
(Teff) of 48.14 ± 12.1 h that was slightly shorter than the physical t½
for 111In (67 h) indicating good retention in the target organ (Fig. 5).

Engraftment
Neutrophil recovery reached >0.5 × 109/L at a median of 15 days
(range 9–55) and platelet recovery >50 × 109/L median 15 days (range
10–119) post-transplant. All patients had marrow aspirate and
trephine biopsy performed at approximately day 100 post-transplan-
tation, tri-lineage engraftment was seen in all cases. Importantly, no
late graft failures occurred. Chimerism analysis in recipients of
allogeneic transplants showed >97% donors in unselected peripheral
blood cells by day 30 post-transplant in all patients.

Safety profile
No immediate adverse effects were seen during the infusion of either
111In or 90Y-anti-CD66. Following 111In-anti-CD66 infusion, there were
no changes in peripheral blood counts. Post 90Y-anti-CD66 infusion,
all patients experienced grades 1–4 haematological toxicity, as
indicated by a fall in peripheral blood counts, from days 8 to 12 post
infusion. There was an increasing rate and depth of decline in counts
with increasing total activity of 90Y-anti-CD66 infused. One patient
experienced transient grade 1 gut toxicity with diarrhoea lasting 24 h
post 90Y-anti-CD66 infusion, and another experienced transient grade
2 infection due to bacteraemia related to routine flushing of the
Hickman line. The remaining patients experienced no toxicities, other
than haematological, from the time of infusion up to the start of the
conventional transplant conditioning. All episodes of grades 1–4
(WHO Toxicity Criteria) [48] nausea and vomiting were related to the

infusion of high-dose melphalan, the severity recorded was no
different to that seen in patients who had not received radiolabelled
antibody (Table 3).
Organ toxicities recorded following completion of standard

conditioning therapy and post-stem cell transplantation are
summarised in Table 3 using WHO Toxicity Criteria. As predicted
for patients receiving conditioning therapy for HSCT, all patients
experienced grade≥ 3 haematological toxicity. Gastrointestinal
toxicity was comparable to that caused by conventional transplant
conditioning, particularly that caused by high-dose melphalan.
There was a trend for more patients to experience grade≥ 3 oral
mucositis at the higher radiation dose levels. The severity was within
that expected for high-dose therapy alone, but because of the trend,
this was considered to represent the DLT when used in conjunction
with the dose of melphalan of 200mg/m2. In patients undergoing
allogeneic HSCT, the lower dose of melphalan, 140mg/m2, caused
less generalised mucositis and no clear DLT was seen. The use of
enteral or parenteral nutrition was similar to that required in patients
undergoing standard transplant conditioning without MRT. Two
patients developed HAMA post autologous HSCT.
Transplant-related mortality was 0 at days 30, 100, 180 and

1-year post-transplant for autologous and allogeneic transplant
recipients, an important indicator of regimen-related toxicity. For
patients with myeloma undergoing autologous HSCT, 13 of 15
patients relapsed or experienced disease progression, mean time
to progression 41 months (range 1.5– 245 months); one patient
remains in long-term complete remissions (CR) 20 years post-
transplant and another proceeded to receive a sibling allogeneic
transplant. All 14 patients who received allogeneic HSCT achieved
CR with donor chimerism of >97% at D+ 30. There were no cases
of grade ≥ 3 acute graft versus host disease (GvHD) and no cases
of chronic GvHD. Outcomes are detailed in Table 4.

DISCUSSION
In this study, we demonstrated that 90Y-anti-CD66 consistently
delivered radiation to red marrow and spleen with minimal uptake
by non-haematopoietic organs. The excellent biodistribution of
the radiolabelled antibody allowed the use of a simple method
based on lean body weight to determine the total activity of 90Y
for infusion. It should be noted that patients were in remission or
very good partial remission at the time of imaging and therapy
which would have contributed to the consistent BM targeting as
the target antigen CD66 is predominantly expressed on normal
myeloid cells. Radiolabelling episodes were reproducible and of
high efficiency, both 111In and 90Y routinely achieving >95%
radiochemical purity (RCP) contributing to the observed excellent
inter-patient biodistribution and red marrow dosimetry. Similar
excellent RCP results have been obtained with besilesomab
conjugated to other backbone-substituted derivatives of DTPA
such as MX-DTPA [35] and CHXA”-DTPA [49]. At the highest
infused activity level of 37.5 MBq/kg, the mean estimated
radiation dose to red marrow was 24.5 ± 5.6 Gy, 19.1 ± 8.0 Gy to
spleen, 5.8 ± 2.7 Gy to liver, 2.1 ± 0.8 Gy to kidneys, and
2.2 ± 0.9 Gy to lungs with a whole-body dose of 0.9 ± 0.2 Gy. The
use of 90Y, which emits a high energy (2.3 MeV) beta particle
without gamma-emission, allowed patients to receive therapy as
outpatients, hospital admission was required only for the
completion of standard conditioning. In the period between 90Y-
anti-CD66 therapy and the start of standard conditioning, there
were no serious adverse events attributed to the radiolabelled
antibody. Overall toxicities for the transplant period were within
the limits anticipated for allogeneic transplantation using fludar-
abine and melphalan 140 mg/m2 or for autologous transplanta-
tion with melphalan 200 mg/m2. Mucosal toxicity was within
anticipated limits with no severe or life-threatening events.
However, in patients receiving 200 mg/m2 melphalan prior to
autologous HSCT for myeloma, there was a trend to grade �3

0.00
0.00 2000.00 4000.00 6000.00 8000.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

P
er

ce
nt

ag
e 

of
 in

iti
al

 a
ct

iv
ity

Time after injection (mins)

Anti CD66 blood clearance

Using mean values from all time points

5MBq

10MBq

25Mbq

37.5Mbq

Fig. 1 111In activity blood clearance curves. Mean blood 111In
activity for each infused activity cohort in blood samples taken
immediately at the end of infusion (T0) of

111In-anti-CD66 infusion
and at timed intervals post-infusion. Initial blood 111In activity from
T0 blood sample set as 100%; for subsequent samples, radioactivity
expressed as a % of T0 activity, time in minutes post end of infusion.

K. Orchard et al.

4

Bone Marrow Transplantation



b 

a 

(i) 

(iii) 

(ii) 

Spleen 

Spleen 
Liver 

Liver

Kidneys 

Anterior Posterior

Fig. 2 Planar and SPECT-CT gamma camera images post 111In-antiCD66 infusion. a Whole-body gamma-camera image showing
distribution of 111In-anti-CD66 monoclonal antibody. b Superimposed SPECT gamma radiation (coloured) and CT images (grey scale). (i) Cross-
section showing strong gamma radiation signal in L3 vertebral body (yellow), low in liver and spleen (blue) and undetectable in muscle,
bowel. (ii) Coronal section image showing strong gamma radiation signal in vertebrae and pelvis (yellow), low in liver and spleen (blue) and
very low in kidneys (grey scale image of CT). (iii) Sagittal image showing high gamma signal (yellow) in vertebral bodies, sternum and virtually
none in other organs.

K. Orchard et al.

5

Bone Marrow Transplantation



dysphagia at the higher activity level as indicated by higher pain
scores. Therefore, 37.5 MBq/kg LBW was selected as the activity for
a subsequent randomised Phase IIb trial in myeloma autologous
HSCT (manuscript in preparation). Although 13 of 15 patients thatTa
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Table 3. Summary of all toxicities recorded, up to D+ 100 post-transplantation.

Toxicity Infused activity level MBq/kg

5 n= 4 10 n= 5 25 n= 5 37.5 n= 15

Gastrointestinal

Bilirubin 1 grade 1 1 grade 4a 1 grade 1 4 grade 1

ALT 1 grade 1 3 grade 1 0 0

1 grade 2

GGT 1 grade 1 1 grade 1 1 grade 1 4 grade 1

2 grade 2 1 grade 3 5 grade 2

1 grade 3

ALP 1 grade 1 0 0 4 grade 1

Oral 2 grade 1 3 grade 1 1 grade 1 2 grade 1

2 grade 3 2 grade 2 1 grade 2 2 grade 2

2 grade 3 8 grade 3

1 grade 4 3 grade 4

Diarrhoea 1 grade 1 3 grade 2 2 grade 2 4 grade 1

3 grade 2 2 grade 3 3 grade 3 9 grade 2

1 grade 4b

Constipation 0 0 0 2 grade 1

Nausea and Vomiting 3 grade 1 2 grade 1 1 grade 1 3 grade 1

1 grade 2 3 grade 2 2 grade 2 4 grade 2

1 grade 3 7 grade 3

Renal

Urea 0 1 grade 1 2 grade 1 8 grade 1

Creatinine 0 1 grade 1 0 1 grade 1

Haematuria 0 0 0 5 grade 1

1 grade 2c

Proteinuria 0 1 grade 1 0 7 grade 1

2 grade 2c

Pulmonary 0 0 0 1 grade 1

1 grade 1

2 grade 2

Drug fever 0 0 0 3 grade 1

7 grade 2

Allergic 0 0 0 0

Skin 0 0 0 2 grade 1

2 grade 2

Infection 2 grade 1 3 grade 1 3 grade 1 2 grade 1

1 grade 2 2 grade 2 12 grade 2

Cardiac

Rhythm 0 1 grade 1d 0 4 grade 1e

Pericardial 0 0 0 0

Functional 0 0 0 0

Neurological

Conscious 0 0 0 4 grade 1

Pain 3 grade 1 4 grade 1 3 grade 1 5 grade 1

1 grade 2 1 grade 2 8 grade 2

2 grade 3
aOne patient experienced raised bilirubin; resolved on withdrawal of concurrent medication (norethisterone and itraconazole).
bPatient experienced grade 4 diarrhoea with PR bleeding – colonoscopy revealed a solitary rectal polyp that was removed. Episode unrelated to use of
radiolabelled antibody.
cPatient experienced grade 2 proteinuria and grade 2 haematuria (microscopic) due to BK viral cystitis.
dOne patient experienced transient asymptomatic atrial fibrillation and abnormal thyroid function tests indicative of hyperthyroidism (elevated T4, low TSH).
Resolved after 1 month. Later developed hypothyroidism requiring thyroid replacement.
eTransient fever and associated tachycardia due to CAMPATH 1H infusion in allogeneic transplant recipients.
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received autologous HSCT for myeloma experienced disease
progression there was a trend for longer time to disease
progression between the lowest activity level to the highest with
a mean of 14.4 months in cohort 1 and 43.2 months in cohort 4.
Of the 14 patients receiving allogeneic transplants, all engrafted

and achieved >97% donor chimerism at day 30 that was
maintained. All achieved sustained CRs with ten patients
remaining alive in CR, median follow-up of 220 months.
While not encountered in the study, it is possible that the

marrow will be the dose-limiting organ because of potential
damage to stromal cellular components, compromising stem cell
survival. In a canine model where bone-seeking 166Ho-EDTMP was
used to indirectly target the marrow, the DLT was reversible
marrow fibrosis [50]. External beam radiation of 20 Gy or more was
shown to cause marrow fibrosis in a rat femur model with >40 Gy
causing permanent aplasia [51, 52]. In a clinical trial using an
131I-labelled anti-CD45, graft failure occurred in one patient who
received a total estimated radiation dose of 42.7 Gy consisting of
12 Gy TBI and 30.7 Gy from MRT [28]. Based on this limited
experience, it would seem prudent in future clinical studies to use
an upper limit of radiation delivered by targeted radiotherapy to
the marrow in the order of 45 Gy.
We were able to demonstrate a dose–response relationship

between the infused radiation activity and the effect of this red
marrow-targeted radiation on the peripheral blood counts over a 12-
day period. In the first activity cohort (5MBq/kg), two patients
showed a modest fall in leucocytes. In contrast, at the highest activity
level, all patients had significant falls in leucocytes with the majority of
patients having zero neutrophils at the time of admission for standard
chemotherapy, demonstrating that the targeted molecular radio-
therapy was functioning as a form of ‘pre-conditioning’ rendering the
patients aplastic prior to the start of standard conditioning.
The favourable biodistribution and delivery of high absorbed

radiation doses targeted to red marrow and spleen with the
radiolabelled anti-CD66 mAb added substantial therapy to
standard conditioning without additional toxicity and warrants
further investigation in Phase II trials, particularly in patients with a
high risk of disease relapse post-transplantation.
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